

Appendix AA

Baseline Human Health Risk Assessment

BASELINE HUMAN HEALTH RISK ASSESSMENT REPORT (FINAL)

Benning Road Facility 3400 Benning Road, N.E. Washington, DC 20019

PREPARED FOR:

Pepco and Pepco Energy Services 701 9th Street, NW Washington, DC 20068

PREPARED BY:

AECOM 8000 Virginia Manor Road, Suite 110 Beltsville, MD 20705

February 2020

Contents

Lis	List of Acronyms and Abbreviationsix			
1	Introduction			1-1
	1.1	Backgr	round	1-1
	1.2	•	A Methodology	
2	Site	Characte	erization and Conceptual Site Model	2-1
	2.1	Study /	Area Description	2-1
		2.1.1	Landside Investigation Area	2-1
		2.1.2	Waterside Investigation Area	2-2
	2.2	Humar	n Health Conceptual Site Model	2-4
		2.2.1	Landside Investigation Area	2-5
		2.2.2	Waterside Investigation Area	2-7
	2.3	Consid	deration of Background Conditions	2-8
3	Data	Evaluati	ion and Hazard Identification	3-1
	3.1	Data S	Sets Used in BHHRA	3-1
		3.1.1	Landside Investigation Area Data	3-1
		3.1.2	Anacostia Park Property Adjacent to Kenilworth Maintenance Yard Data	3-3
		3.1.3	Background Data for Soil and Groundwater	3-4
		3.1.4	Waterside Investigation Area Data	3-4
		3.1.5	Data Quality Assessment	3-10
	3.2 Hazard Identification		d Identification	3-12
		3.2.1	Summary Statistics	3-13
		3.2.2	Selection of COPCs	3-15
		3.2.3	COPC Summary	3-21
4	Dose	e-Respor	nse Assessment	4-1
	4.1	Basis o	of Dose-Response Relationships	4-2
	4.2	Sources of Toxicity Data		
	4.3	Noncarcinogenic Toxicity Assessment		
	4.4			
		4.4.1	Mutagenic Mode of Action	4-9
	4.5	Absorp	otion Adjustment for Dermal Toxicity Values	4-10
	4.6	Chemi	cal-Specific Approaches	4-11
		4.6.1	Dioxins and Furans	4-11
		4.6.2	Polychlorinated Biphenyls	4-12
		4.6.3	Polycyclic Aromatic Hydrocarbons	
5	Fxnc	osure As	sessment	5-1

	5.1	Identific	cation of Potential Exposure Scenarios	5-1
		5.1.1	Landside Investigation Area	5-2
		5.1.2	Waterside Investigation Area	5-3
	5.2	Quantif	fication of Potential Exposures	5-5
		5.2.1	Estimating Potential Exposures to COPCs in Soil or Fringe Surface Sediment	5-5
		5.2.2	Estimating Potential Exposures to COPCs in Air	5-6
		5.2.3	Estimating Potential Exposures to COPCs in Surface Water	5-7
		5.2.4	Estimating Potential Exposures to COPCs in Fish Tissue	5-9
	5.3	Recept	or-Specific Exposure Parameters	5-9
		5.3.1	Landside Receptors	5-11
		5.3.2	Waterside Receptors	5-12
	5.4	Chemic	cal-Specific Parameters	5-14
		5.4.1	Dermal Absorption Fractions	5-14
		5.4.2	Oral Absorption Adjustment Factors	5-14
		5.4.3	Dermal Water Parameters	5-15
		5.4.4	Preparation/Cooking Loss	5-16
	5.5	Exposu	ure Point Concentrations	5-16
		5.5.1	Measured EPCs	5-17
		5.5.2	Modeled EPCs	5-19
	5.6	Ground	dwater-to-Surface Water Evaluation	5-20
		5.6.1	Dilution Attenuation Factor Calculation	5-20
		5.6.2	Instream Surface Water Concentration Calculation	5-21
		5.6.3	Comparison to Surface Water Screening Levels	5-22
6	Risk (Characte	erization	6-1
	6.1	Carcino	ogenic Risk Characterization	6-2
	6.2	Noncar	rcinogenic Risk Characterization	6-3
	6.3	Risk Cl	haracterization Results	6-3
		6.3.1	Landside Receptors	6-4
		6.3.2	Waterside Receptors	6-10
	6.4	Potenti	al COCs	6-17
		6.4.1	Landside Investigation Area	6-17
		6.4.2	Waterside Investigation Area	6-18
	6.5	Evalua	tion of Background and Regional Fish Tissue Data	6-19
		6.5.1	Background Evaluation	6-19
		6.5.2	Regional Area Fish Tissue Evaluation	6-21
7	Unce	rtainty A	Analysis	7-1
	7.1	Data E	valuation and COPC Selection	7-1
		7.1.1	Adequacy and Quality of Analytical Data	7-1
		7.1.2	Representativeness of Fish Tissue Data	7-3
		7.1.3	Analysis for PCBs via Aroclor versus Congeners	7-3

		7.1.4	Adequacy of the COPC Selection Process	7-5
	7.2	Dose-F	Response Assessment	7-6
		7.2.1	Animal-to-Human Extrapolation in Noncarcinogenic Dose-Response Eva	luation7-6
		7.2.2	Evaluation of Carcinogenic Dose-Response	7-7
		7.2.3	Potential Contribution from Early-Life Exposures to Lifetime Risk	7-9
		7.2.4	Dioxin-Like Toxicity	7-10
		7.2.5	Tier 3 Toxicity Values	7-12
	7.3	Exposi	ure Assessment	7-13
		7.3.1	Exposure Scenario Assumptions	7-13
		7.3.2	Fish Consumption Pathway	7-14
		7.3.3	Estimation of Exposure Point Concentrations	7-22
		7.3.4	Estimation of Exposure Dose	7-25
	7.4	Risk C	haracterization	7-26
		7.4.1	Risk from Multiple Chemicals	7-27
		7.4.2	Combination of Several Upper-Bound Assumptions	7-27
		7.4.3	Risks to Sensitive Populations	7-28
		7.4.4	Characterization of Background	7-28
	7.5	Summ	ary of Uncertainty in BHHRA	7-29
8	Sum	Summary and Conclusions		
	8.1	Summ	ary of BHHRA for the Study Area	8-1
		8.1.1	Data Evaluation and Hazard Identification	8-1
		8.1.2	Dose-Response Assessment	8-3
		8.1.3	Exposure Assessment	8-3
		8.1.4	Risk Characterization	8-5
	8.2	Conclu	ısions	8-10
		8.2.1	Landside Investigation Area	8-10
		8.2.2	Waterside Investigation Area	
		8.2.3	Potential COCs	8-12
a	Refe	rancas		Q_1

List of Tables

Table 3-1	Soil Samples Used in the BHHRA
Table 3-2	Background Soil Samples
Table 3-3	Groundwater Samples Used in the BHHRA
Table 3-4	Background Groundwater Samples
Table 3-5	Surface Sediment Samples and Identification of Fringe Sediment Samples Used in BHHRA
Table 3-6	Background Surface Sediment Samples
Table 3-7	Surface Water Samples Used in the BHHRA
Table 3-8	Fish Tissue Samples Used in the BHHRA
Table 3-9	Sediment and Soil Screening Levels
Table 3-10	Groundwater Screening Levels for the Volatilization to Excavation Trench Air Pathway
Table 3-11	Surface Water Screening Levels
Table 3-12	Fish Tissue Screening Levels
Table 3-13	Occurrence, Distribution and Selection of Chemicals of Potential Concern in On-Site Soil
Table 3-14	Occurrence, Distribution and Selection of Chemicals of Potential Concern in Groundwater for the Volatilization to Excavation Trench Air Pathway
Table 3-15	Occurrence, Distribution and Selection of Chemicals of Potential Concern in Fringe Surface Sediment
Table 3-16	Occurrence, Distribution and Selection of Chemicals of Potential Concern in Surface Water
Table 3-17	Occurrence, Distribution and Selection of Chemicals of Potential Concern in Fish Tissue – Upper Anacostia River
Table 3-18	Occurrence, Distribution and Selection of Chemicals of Potential Concern in Fish Tissue – Lower Anacostia River
Table 3-19	Occurrence, Distribution and Selection of Chemicals of Potential Concern in Fish Tissue – Upper Potomac River
Table 3-20	Occurrence, Distribution and Selection of Chemicals of Potential Concern in Fish Tissue – Lower Potomac River
Table 3-21	Occurrence, Distribution and Selection of Chemicals of Potential Concern in Fish Tissue – Upstream Non-Tidal Anacostia River
Table 3-22	Hexavalent Chromium Evaluation
Table 3-23	Summary of Chemicals of Potential Concern
Table 4-1	Non-Cancer Toxicity Data for COPCs – Oral/Dermal
Table 4-2	Non-Cancer Toxicity Data for COPCs – Inhalation
Table 4-3	Cancer Toxicity Data for COPCs – Oral/Dermal
Table 4-4	Cancer Toxicity Data for COPCs – Inhalation
Table 5-1	Selection of Exposure Pathways
Table 5-2	Values Used for Daily Intake Calculations – Soil
Table 5-3	Values Used for Daily Intake Calculations – Groundwater Volatilization to Air Pathway

Table 5-4	Values Used for Daily Intake Calculations – Fringe Surface Sediment
Table 5-5	Values Used for Daily Intake Calculations – Surface Water
Table 5-6	Values Used for Daily Intake Calculations – Fish Tissue
Table 5-7	Default Absorption Factors for COPCs in Soil and Fringe Surface Sediment
Table 5-8	Dermal Water Parameters
Table 5-9	Cooking Loss Factors for Fish Tissue
Table 5-10	Exposure Point Concentration Summary – Surface Soil (RME)
Table 5-11	Exposure Point Concentration Summary – Surface Soil (CTE)
Table 5-12	Exposure Point Concentration Summary – Soil (RME)
Table 5-13	Exposure Point Concentration Summary – Soil (CTE)
Table 5-14	Exposure Point Concentration Summary – Groundwater for the Excavation Trench (RME)
Table 5-15	Exposure Point Concentration Summary – Groundwater for the Excavation Trench (CTE)
Table 5-16	Exposure Point Concentration Summary – Fringe Surface Sediment (RME)
Table 5-17	Exposure Point Concentration Summary – Fringe Surface Sediment (CTE)
Table 5-18	Exposure Point Concentration Summary – Surface Water (RME)
Table 5-19	Exposure Point Concentration Summary – Surface Water (CTE)
Table 5-20	Exposure Point Concentration Summary – Fish Tissue (RME)
Table 5-21	Exposure Point Concentration Summary – Fish Tissue (CTE)
Table 5-22	Derivation of Particulate Emission Factor for the Surface Soil to Outdoor Air Pathway (non-excavation pathway)
Table 5-23	Derivation of Particulate Emission Factor for Unpaved Road Traffic for the Construction Worker Scenario
Table 5-24	Exposure Point Concentration Summary –Surface Soil to Outdoor Air - Non-Excavation Scenario (RME)
Table 5-25	Exposure Point Concentration Summary –Surface Soil to Outdoor Air - Non-Excavation Scenario (CTE)
Table 5-26	Exposure Point Concentration Summary –Soil to Outdoor Air - Excavation Scenario (RME)
Table 5-27	Exposure Point Concentration Summary – Soil to Outdoor Air - Excavation Scenario (CTE)
Table 5-28	Exposure Point Concentration Summary - Groundwater Volatilization to Excavation Trench Air Pathway (RME)
Table 5-29	Exposure Point Concentration Summary - Groundwater Volatilization to Excavation Trench Air Pathway (CTE)
Table 5-30	Evaluation of the Groundwater to Surface Water Migration Pathway
Table 6-1	Total Potential Carcinogenic Risks for Construction Worker Receptor (RME)
Table 6-2	Total Potential Hazard Index for Construction Receptor (RME)
Table 6-3	Total Potential Carcinogenic Risks for Construction Receptor (CTE)
Table 6-4	Total Potential Hazard Index for Construction Receptor (CTE)
Table 6-5	Total Potential Carcinogenic Risks for Outdoor Industrial Worker Receptor (RME)
Table 6-6	Total Potential Hazard Index for Outdoor Industrial Worker Receptor (RME)

Table 6-7	Total Potential Carcinogenic Risks for Outdoor Industrial Worker Receptor (CTE)
Table 6-8	Total Potential Hazard Index for Outdoor Industrial Worker Receptor (CTE)
Table 6-9	Total Potential Carcinogenic Risks for Recreational Visitor Receptor (RME)
Table 6-10	Total Potential Hazard Index for Recreational Visitor Receptor (RME)
Table 6-11	Total Potential Carcinogenic Risks for Recreational Visitor Receptor (CTE)
Table 6-12	Total Potential Hazard Index for Recreational Visitor Receptor (CTE)
Table 6-13	Total Potential Carcinogenic Risks for the Angler Receptors – Mixed Fish Diet (RME)
Table 6-14	Total Potential Hazard Index for the Angler Receptors – Mixed Fish Diet (RME)
Table 6-15	Total Potential Carcinogenic Risks for the Angler Receptors – Mixed Fish Diet (CTE)
Table 6-16	Total Potential Hazard Index for the Angler Receptors – Mixed Fish Diet (CTE)
Table 6-17	Total Potential Carcinogenic Risks for the Angler Receptors – Mixed Fish Diet- Regional Reaches (RME)
Table 6-18	Total Potential Hazard Index for the Angler Receptors – Mixed Fish Diet - Regional Reaches (RME)
Table 6-19	Total Potential Carcinogenic Risks for the Angler Receptors – Mixed Fish Diet - Regional Reaches (CTE)
Table 6-20	Total Potential Hazard Index for the Angler Receptors Regional Reaches (CTE)
Table 6-21	Total Potential Carcinogenic Risks for the Swimmer Receptors (RME)
Table 6-22	Total Potential Hazard Index for the Swimmer Receptors (RME)
Table 6-23	Total Potential Carcinogenic Risks for the Swimmer Receptors (CTE)
Table 6-24	Total Potential Hazard Index for the Swimmer Receptors (CTE)
Table 6-25	Total Potential Carcinogenic Risks for the Wader Receptors (RME)
Table 6-26	Total Potential Hazard Index for the Wader Receptors (RME)
Table 6-27	Total Potential Carcinogenic Risks for the Wader Receptors (CTE)
Table 6-28	Total Potential Hazard Index for the Wader Receptors (CTE)
Table 6-29	Total Potential Carcinogenic Risks for the Shoreline Worker Receptor (RME)
Table 6-30	Total Potential Hazard Index for the Shoreline Worker Receptor (RME)
Table 6-31	Total Potential Carcinogenic Risks for the Shoreline Worker Receptor (CTE)
Table 6-32	Total Potential Hazard Index for the Shoreline Worker Receptor (CTE)
Table 7-1	Comparison of PCB Congener Results to PCB Aroclor Results for Soil
Table 7-2	Comparison of PCB Congener Results to PCB Aroclor Results for Fringe Surface Sediment

List of Figures

Figure 1-1	Site Location Map
Figure 1-2	Site Plan and Investigation Areas
Figure 2-1	Land Use Along the Anacostia River
Figure 2-2	Conceptual Site Model - On-Site Sources, Human Health Risk Assessment
Figure 2-3	Conceptual Site Model - Off-Site Sources, Human Health Risk Assessment
Figure 3-1	Landside Investigation Area Sample Locations – Soil and Groundwater
Figure 3-2	Anacostia Park Incremental Soil Sample Locations
Figure 3-3	Anacostia Park Surface Soil Sample Locations
Figure 3-4	Background Soil and Groundwater Sample Locations
Figure 3-5	Fringe Surface Sediment and Surface Water Locations Low Tide Minus One Foot
Figure 3-6	Surficial Surface Sediment and Surface Water DOEE and Pepco Background Locations
Figure 3-7	Fish Tissue Sampling Locations on the Anacostia River
Figure 3-8	Fish Tissue Sample Locations on the Potomac River
Figure 3-9	Non-Tidal Fish Tissue Sampling Locations

List of Attachments

Attachment A	Fringe Surface Sediment and Fish Tissue Data Used in the BHHRA
Attachment B	Screening Level Evaluation of the Vapor Intrusion Pathway
Attachment C	Discussion of Key Exposure Parameters Used in the BHHRA
Attachment D	Derivation of Cooking Loss Factors
Attachment E	Exposure Point Concentration Calculations (ProUCL Input and Output)
Attachment F	Derivation of Volatilization Factors for Groundwater to Excavation Trench
Attachment G	Calculation of Groundwater-to-Surface Water Dilution and Attenuation Factor
Attachment H	Risk Calculation Spreadsheets

List of Acronyms and Abbreviations

μg/L micrograms per liter

μg/m³ microgram per cubic meter

2,3,7,8-TCDD 2,3,7,8-Tetrachlorodibenzo-*p*-dioxin 4,4'-DDD 4,4'-dichlorodiphenyldichloroethane 4,4'-DDE 4,4'-dichlorodiphenyldichloroethylene

7Q10 Lowest 7-day average streamflow that occurs on average once every 10 years

AAF Absorption Adjustment Factor ACS American Cancer Society

ADAF Age-Dependent Adjustment Factor

ADE Average Daily Exposure

Ah Aryl hydrocarbon

ARSP Anacostia River Sediment Project

ATSDR Agency for Toxic Substances and Disease Registry

BAF Bioaccumulation Factor

BaP Benzo(a)pyrene

BERA Baseline Ecological Risk Assessment

bgs Below ground surface

BHHRA Baseline Human Health Risk Assessment

BMD Benchmark Dose

BMDL Benchmark Dose Lower Bound BTV Background Threshold Value CADD Chronic Average Daily Dose

CalEPA California Environmental Protection Agency

CAS Chemical Abstracts Service

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

cm/hr Centimeters per hour COC Chemical of Concern

COPC Chemical of Potential Concern

CSF Cancer Slope Factor
CSM Conceptual Site Model
CTE Central Tendency Exposure
DAF Dermal Absorption Fraction

DC District of Columbia

DDx Dichlorodiphenyltrichloroethane, Dichlorodiphenyldichloroethylene,

Dichlorodiphenyldichloroethane

DOEE Department of Energy and Environment

DPT Direct-Push Technology
DRO Diesel Range Organics
ELCR Excess Lifetime Cancer Risk
EPC Exposure Point Concentration
FOD Frequency of Detection

FS Feasibility Study

ft² square feet

ft³/sec cubic feet per second ft/sec feet per second g/day grams per day

GLFATF Great Lakes Fish Advisory Task Force
HEAST Health Effects Assessment Summary Tables

HI Hazard Index HQ Hazard Quotient

IRIS Integrated Risk Information System

K_p Permeability ConstantLADD Lifetime Average Daily Dose

LMS Linearized Multistage

LOAEL Lowest Observed Adverse Effect Level

LWZ Lower Water-bearing Zone
m³/kg cubic meters per kilogram
MCL Maximum Contaminant Level

MDE Maryland Department of the Environment mg/cm²/hr Milligrams per square centimeter per hour

mg/cm³ Milligrams per cubic centimeter

mg/kg Milligrams per kilogram

mg/kg-day Milligrams per kilogram of body weight per day

mg/m³ Milligrams per cubic meter

MRL Minimal Risk Level MTBE Methyl tert-butyl ether

NCEA National Center for Environmental Assessment

NCP National Contingency Plan

NOAA National Oceanic and Atmospheric Administration

NOAEL No Observed Adverse Effect Level

NPS National Park Service

NRWQC National Recommended Water Quality Criteria
OSWER Office of Solid Waste and Emergency Response

PAH Polycyclic Aromatic Hydrocarbon
RBA Relative Bioavailability Factor
PCB Polychlorinated Biphenyl
PEF Particulate Emission Factor

POD Point of Departure

PPRTV Provisional Peer Reviewed Toxicity Values

QAPP Quality Assurance Project Plan

QC Quality Control

RAGS Risk Assessment Guidance for Superfund

RBSL Risk-Based Screening Level

ReP Relative Potency

RfC Reference Concentration

RfD Reference Dose

RI Remedial Investigation

RME Reasonable Maximum Exposure
RPD Relative Percent Difference

RPF Relative Potency Factor
RSL Regional Screening Level
SAB Science Advisory Board

SRC Syracuse Research Corporation
SVOC Semivolatile Organic Compound
TEF Toxicity Equivalency Factor

TEQ Toxicity Equivalence

TPH Total Petroleum Hydrocarbon

UCL Upper Confidence Limit on the Mean

UF Uncertainty Factor
URF Unit Risk Factor

USEPA United States Environmental Protection Agency

USFWS United States Fish and Wildlife Service

USGS United States Geological Survey
UWZ Upper Water-bearing Zone

VDEQ Virginia Department of Environmental Quality

VISL Vapor Intrusion Screening Level
VOC Volatile Organic Compound
WHO World Health Organization

1 Introduction

1.1 Background

AECOM has prepared this Baseline Human Health Risk Assessment (BHHRA) on behalf of Potomac Electric Power Company (Pepco) and Pepco Energy Services, Inc. (collectively "Pepco") to evaluate potential human health risks associated with Pepco's Benning Road Facility (the Site), located at 3400 Benning Road NE, Washington, DC, and a segment of the Anacostia River (the River) adjacent to the Site. The general location of the Site is shown on **Figure 1-1**. The 77-acre Site is defined by the property boundary shown on **Figure 1-2**. Together, the Site and an adjacent segment of the River are referred to herein as the "Study Area." Pepco performed the Remedial Investigation/Feasibility Study (RI/FS) pursuant to the requirements of a consent decree with the District of Columbia (DC) that was entered by the U.S. District Court for the District of Columbia on December 1, 2011 (the Consent Decree).

The RI/FS Study Area investigation consists of a "Landside" component focused on the Site itself, and a "Waterside" component focused on the shoreline and sediments in the segment of the River adjacent to and immediately downstream of the Site (aa area of approximately one-half mile of shoreline). The Landside and Waterside Investigation Areas are depicted on **Figure 1-2**.

Pepco submitted the Draft RI/FS Work Plan to the Department of Energy and Environment (DOEE) in July 2012 and made subsequent revisions to address comments from DOEE and the public. The BHHRA Work Plan was included as Appendix E of the Draft RI/FS Work Plan. DOEE provided final approval for the Work Plan in December 2012 (AECOM, 2012). During 2014, two addenda to the RI/FS Work Plan were prepared to describe supplemental Phase I RI field investigation activities; these were approved by DOEE in March and July 2014 (AECOM, 2014a, 2014b). The 2012 approved work plan and the two addenda formed the basis for the Phase I RI.

The Draft RI Report, which describes the Phase I field investigation and its findings, was finalized on February 26, 2016 (AECOM, 2016a). A preliminary BHHRA was included as Appendix Z of the Draft RI Report. The Draft RI Report was made available for public comment from March 01, 2016 through April 18, 2016. A response to public comments was prepared and released to the public in August 2016. The Draft RI Report identified several data gaps with respect to the Phase I Site characterization, background data evaluation, and human health and ecological risk assessments. Per DOEE's RI Path Forward letter of January 14, 2016, Pepco prepared three technical memoranda to further define data needs and prepare for additional site characterization. The Technical Memorandum #1 – Conceptual Site Model

(CSM) (AECOM, 2016b) provided a detailed description of the operational Site history, with a focus on the use, storage, disposal, release, and cleanup of various chemicals and waste materials, and identified data gaps and uncertainties in the Study Area characterization conducted to date as part of the RI/FS. The Technical Memorandum #2 – Refined Background Evaluation Work Plan (AECOM, 2016c) described the rationale and procedures for revising the background data evaluation originally presented in the Draft RI Report. The Technical Memorandum #3 – Baseline Human Health and Ecological Risk Assessment Work Plan (AECOM, 2016d) described the rationale and procedures for revising the preliminary BHHRA and preliminary baseline ecological risk assessment (BERA) originally presented in the Draft RI Report. The three technical memoranda were approved by DOEE in October 2016.

Work Plan Addendum #3 (AECOM, 2016e) was developed in conjunction with the three technical memoranda to detail the Phase II field investigation to address the remaining data gaps and uncertainties identified. Work Plan Addendum #3 was approved by DOEE in October 2016 and formed the basis for the Phase II RI.

A Draft Final RI Report was finalized in September 2019. The Draft Final RI Report was made available for public comment from October 4, 2019 through December 6, 2019. This Final RI Report incorporates the public comments received during the comment period.

Consistent with United States Environmental Protection Agency (USEPA) guidance (2002a, 2005a), a risk-based framework has been adopted for this RI/FS. This framework utilizes an iterative approach coupled with Site-specific information to define the conceptual site model, assess potential risks, and evaluate further actions. The use of Site-specific information is consistent with principles articulated by the National Research Council of the National Academy of Sciences (NRC, 2001) and USEPA guidance on risk assessment and risk management decision-making at contaminated sites (USEPA, 1989a, 2002a, 2005a, 2011, 2014a).

1.2 BHHRA Methodology

This revised BHHRA was performed in accordance with the DOEE approved Risk Assessment Work Plan and Addendum (AECOM, 2012, 2016d).

In the absence of DOEE-specific guidance, and as discussed with DOEE staff, the BHHRA was conducted to comply with USEPA guidance for conducting a risk assessment including, but not limited to, the following:

 Risk Assessment Guidance for Superfund (RAGS): Volume 1 - Human Health Evaluation Manual (Part A) (USEPA, 1989a);

- Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions. Office of Solid Waste and Emergency Response (OSWER) 9355.0-30. April 1991 (USEPA, 1991);
- Guidance for Data Usability in Risk Assessment (Part A) (USEPA, 1992a);
- Guidelines for Exposure Assessment (USEPA, 1992b);
- Land Use in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Remedy Selection Process (USEPA, 1995);
- Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites (USEPA, 2002b);
- Human Health Toxicity Values in Superfund Risk Assessments, OSWER Directive 9285.8-53 (USEPA, 2003a);
- RAGS: Volume I. Human Health Evaluation Manual. Part E, Supplemental Guidance for Dermal Risk Assessment (USEPA, 2004a);
- Guidelines for Carcinogen Risk Assessment (USEPA, 2005b);
- Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens (USEPA, 2005c):
- Exposure Factors Handbook (USEPA, 2011);
- Tier 3 Toxicity Value White Paper (USEPA, 2013)
- RAGS, Human Health Evaluation Manual Supplemental Guidance: Update of Standard Default Exposure Factors (USEPA, 2014a)
- ProUCL Version 5.1, Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations (USEPA, 2016);
- Regional Screening Levels (USEPA, 2018a).

The BHHRA evaluated potential human health effects using the following four-step paradigm, as identified by the USEPA (USEPA, 1989a):

- Data Evaluation and Hazard Identification
- Toxicity (dose-response) Assessment
- Exposure Assessment
- Risk Characterization

The BHHRA is organized into the following sections:

- Section 2 Site Characterization and Conceptual Site Model
- Section 3 Data Evaluation and Hazard Identification
- Section 4 Dose-Response Assessment
- Section 5 Exposure Assessment
- Section 6 Risk Characterization
- Section 7 Uncertainty Analysis
- Section 8 Summary and Conclusions
- Section 9 References

Tables and figures are presented at the end of the text. Note that tables are numbered based on the section in which they are referenced. Informational tables embedded within the text of the BHHRA are not numbered.

2 Site Characterization and Conceptual Site Model

A description of the Study Area and its setting is provided below, followed by a discussion of the human health CSM. The CSM describes potential sources, migration routes, routes of exposure, and potential receptors based on available information. The receptor/exposure pathway scenarios that are potentially complete and require further evaluation are identified. The CSM presented in this BHHRA report updates the preliminary CSM presented in the RI/FS Work Plan (AECOM, 2012).

2.1 Study Area Description

As discussed previously, the Study Area is divided into Landside and Waterside (Anacostia River) Investigation Areas, which are described below. The general Study Area location is shown on **Figure 1-1**. The Site, as defined by the property boundary on **Figure 1-2**, is located on the east side of the Anacostia River approximately 4.7 miles upstream of the confluence of the Anacostia and Potomac Rivers.

2.1.1 Landside Investigation Area

The Site has two distinct operational areas: a former power plant area to the west and the Benning Service Center to the east (see **Figure 1-2**). The Benning Service Center supports activities related to construction, operation, and maintenance of Pepco's electric power transmission and distribution system serving the Washington, DC, area. The Service Center occupies the largest part of the property (about 78%), and accommodates approximately 700 Pepco employees. Service Center employees work in maintenance and construction of Pepco's electric distribution system; system engineering; vehicle fleet maintenance and refueling; and central warehouses for all the materials, supplies, and equipment needed to operate the Pepco electrical distribution system. The Service Center also houses three electrical substations supporting Pepco's transmission and distribution system. The Benning Road Power Plant was constructed in 1906. Over the years, the power plant operated and subsequently retired several different generating units, reflecting the advances in technology and operating on different types of fuels. The power plant was shut down in 2012. Demolition and removal of the power plant building and related infrastructure commenced in 2014, and all demolition and site restoration activities were completed in May 2015. The Site will continue to be used as a Pepco Service Center.

The Site is completely surrounded by a fence with two guarded entrances, as indicated in **Figure 1-2**. The guard stations are manned 24 hours a day, 7 days a week. The majority of the Site is covered by impervious material such as concrete or asphalt. Storage areas not covered by impervious material are

covered in gravel. Railroad tracks enter the Site from the south and run to the north. The tracks were formerly used to transport coal to the power plant and are no longer active.

As shown in **Figure 2-1**, land uses in the vicinity of the 77-acre Site include a mix of commercial, residential, parkland/green space, and transportation. The Site is bordered by a DC solid waste transfer station to the north, Kenilworth Maintenance Yard, owned by the National Park Service (NPS) to the northwest, the Anacostia River to the west, Benning Road to the south, and residential areas to the east and south (across Benning Road). Major transportation corridors in the area include the Anacostia Freeway running north-south and East Capitol Street NE running east-west. The Minnesota Avenue Metrorail Station of the Washington Metropolitan Area Transit Authority light rail system is located immediately to the east of the Site.

Aquifers underneath the Site consist of saturated sand layers within the Patapsco and Patuxent Formation and include (from shallowest to deepest) the Upper Patapsco Aquifer, the Lower Patapsco Aquifer, the Upper Patuxent Aquifer, and the Lower Patuxent Aquifer. The Lower Patapsco and upper Patuxent Aquifers are separated by the thick Arundel Clay unit. The Arundel Clay has very low conductivity and acts as a regional aquitard between the Patapsco and Patuxent Formations. The subsurface investigation identified a silt-clay semi-confining layer underlying much of the Site and dividing the Patapsco Formation aquifer into an upper water-bearing zone (UWZ) and lower water-bearing zone (LWZ). The top of the silt-clay layer was encountered between 25 and 40 feet below ground surface (bgs), and the layer averaged about 6 feet in thickness.

The Site is in Ward 7 in the District of Columbia, within the 20019 zip code. Ward 7 contains a mix of residences and parkland, including Fort Mahan Park, Fort Davis Park, Fort Chaplin Park, Fort Dupont Park, Kenilworth Park and Aquatic Gardens, Watts Branch Park, Anacostia River Park, and Kingman and Heritage Islands Park. The neighborhoods to the south of the Site along the east side of the River include River Terrace, Mayfair, and Eastland Gardens. Four schools are located within a 0.25-mile radius of the Site boundary: Thomas Elementary School, Cesar Chavez Middle and High School, Benning Elementary School, and River Terrace Elementary School (Google Earth). Drinking water in the area is provided by a remote municipal source (DC Water) that originates on the upper Potomac River.

2.1.2 Waterside Investigation Area

The Anacostia River begins in Bladensburg, MD, at the confluence of its two major tributaries, the Northwest Branch and the Northeast Branch, and flows a distance of approximately 8.4 miles before discharging into the Potomac River in Washington, DC (Sullivan and Brown, 1988). The upstream portion of the River is non-tidal. Below the confluence of the Northeast and Northwest Branches, the Anacostia is

a tidal river with habitat suitable for a variety of freshwater and estuarine species, including American eel, brown bullhead, channel catfish, largemouth and smallmouth bass, carp, and sunfish. A water body-specific fish consumption advisory is in effect for the Anacostia and Potomac Rivers recommending against consumption of some species (catfish, carp, and American eel) and limited consumption of other species (e.g., largemouth bass, sunfish) (DOEE, 2016a). However, some people may not be aware of the advisory, or may choose to catch and eat river fish despite the presence of the advisory.

The public may access the River at several locations, including parks, boat docks, and launches. Anacostia Park, a 1,200-acre unit of National Capital Parks – East, stretches 5 miles along the banks of the Anacostia River between the Fredrick Douglas Memorial Bridge and the DC-Maryland line. Within the park, the Anacostia Riverwalk Trail runs along the shorelines of the River continuing beyond the north and south boundaries of the park. A public boat launch is located about 1.5 miles downstream from the Waterside Investigation Area. Dense vegetation along the east bank adjacent to the Site may limit access to the River in this area. The Langston Golf Course is located directly across the River from the Site. Kingman Island divides the main channel of the River from Kingman Lake to the west and provides recreation opportunities via pier and trail access. Based on the bathymetric survey conducted by Gahagan & Bryant Associates, Inc. for the RI in 2013, water depths in the Waterside Investigation Area range from approximately 4 to 14 feet below mean lower low water level in the channel and shallower toward the banks (see Section 3 of the RI Report). The average variation in the River's stage over a tidal cycle is approximately 3 feet.

Because of its location in the Washington metropolitan area, the majority of the watershed is highly urbanized. The Anacostia River has been the subject of numerous environmental studies, and was identified by USEPA, the Syracuse Research Corporation (SRC), and the National Oceanic and Atmospheric Administration (NOAA) as one of the most contaminated rivers in the Chesapeake Bay watershed (SRC and NOAA, 2000). The Site is one of six sites that have been identified by USEPA as potential sources of sediment contamination in the River (Fritz and Weiss, 2009).

Section 305(b) of the Federal Clean Water Act requires each state/district to monitor, assess, and report on the quality of its waters relative to designated uses established in accordance with the District's Water Quality Standards. Section 303(d) of the Act requires each state/district to list waters not meeting water quality standards and prioritize those waters for management. Reporting for these waters is submitted to USEPA every 2 years. According to the 2016 District of Columbia integrated water quality assessment report, the Anacostia River is on the District's 303(d) list of impaired waters. The impaired designated uses include fish consumption, as well as habitat for fish, other aquatic life, and wildlife due to nutrient/eutrophication biological indicators and chemical pollutants (DOEE, 2016b).

2.2 Human Health Conceptual Site Model

The human health CSM provides the framework for the human health risk assessment and is used to identify appropriate exposure pathways and receptors for evaluation in the risk assessment. The purpose of the CSM is to identify (1) potential source areas, (2) potential migration pathways of chemicals from source areas to environmental media where exposure can occur, (3) potential human receptors, and (4) potential exposure pathways by which chemical uptake into the body may occur. Potentially complete exposure pathways are identified for consideration for further evaluation in the risk assessment. For an exposure pathway to be complete, the following conditions must exist (USEPA, 1989a):

- 1. A source and mechanism of chemical release to the environment;
- 2. An environmental transport medium (e.g., air, water, soil);
- 3. A point of potential receptor contact with the medium; and
- 4. A human exposure route at the contact point (e.g., inhalation, ingestion, dermal contact).

The first step in developing the CSM is the characterization of the site setting and surrounding area. This includes characterization of current and reasonably foreseeable future land uses and potential receptors (e.g., residential, recreational, commercial/industrial). Potential exposure scenarios identifying appropriate environmental media and exposure pathways for current and reasonably foreseeable future land uses and receptors are then developed. Chemicals of Potential Concern (COPCs) are identified for each exposure pathway based on the application of risk-based screening criteria and other evaluation of the field sampling data. Each potentially complete exposure pathway for any COPC is evaluated quantitatively in the risk assessment. The CSM is meant to be a "living" model that can be updated and modified as appropriate when additional data become available.

Some receptor populations may be potentially exposed to COPCs by more than one pathway. Although there may be more than one potential exposure pathway, USEPA guidance (USEPA, 1989a) cautions that the first step is to identify reasonable exposure pathway combinations, and then to determine "whether it is likely that the same individuals would consistently face the reasonable maximum exposure by more than one pathway" [emphasis in the original]. With this in mind, the CSM is developed by constructing potential exposure scenarios and identifying the hypothetical receptors to be used in evaluating these exposures. It is important to note that the exposure scenarios are typically constructed for hypothetical receptors who are assumed to be the most frequently exposed. The receptors are not intended to represent specific individuals.

An updated preliminary human health CSM based on available data was presented in the Risk Assessment Work Plan Addendum (AECOM, 2016d). The preliminary CSM identified potential sources of

COPCs, including spills and releases, surface runoff, groundwater migration, storm sewers and outfalls, and atmospheric deposition. These sources may have resulted in impacts to environmental media, including soil, groundwater, sediment, and surface water in the River. Because of the presence of bioaccumulative chemicals, including polychlorinated biphenyls (PCBs), potential uptake into the food chain and bioaccumulation in biota including sport fish may also have occurred. Human receptor populations may subsequently contact COPCs present in these environmental media via direct contact (i.e., incidental ingestion and dermal contact) with fringe surface sediment¹ and surface water, and via indirect exposure, specifically consumption of fish tissue. **Figures 2-2** (On-Site Sources) and **2-3** (Off-Site Sources) present an updated human health CSM for the Study Area.

2.2.1 Landside Investigation Area

For the Landside Investigation Area, all direct human exposure pathways under the current scenario are judged to be incomplete or insignificant, based on both limited access and soil cover. There is tight security at the Site that limits the potential for access. The majority of the Site is covered by impervious material such as concrete or asphalt as shown on Figure 1-7 of the RI. Active storage areas not covered by impervious material are covered in gravel. Consequently, there is very little potential for individuals to trespass onto the Site and come into contact with impacted surface soils. The presence of impervious or gravel cover also limits the potential for on-Site workers to come into contact with surface soils. The facility's health and safety plan includes an employee hazard communication program and procedures that prevent or manage potential exposure to impacted subsurface soils by workers who may perform excavation activities on Site. Based on current and anticipated future Site conditions and uses, the Risk Assessment Work Plan concluded that direct current and future contact exposure pathways for on-Site soils are incomplete or insignificant (AECOM, 2012). The existing operational and institutional controls that are in place at the Site continue to provide effective exposure prevention measures. However, if any of these conditions were to change in the future, on-Site workers may potentially contact surface soil, and construction workers may contact subsurface soil via incidental ingestion, dermal contact, and inhalation of volatiles or dust derived from soil. Therefore, the Risk Assessment Work Plan Addendum (AECOM, 2016d) specified that the revised BHHRA would include an evaluation of potential future worker exposures to soil.

In the future, if Site access or security was to change and the existing soil cover removed, it is possible that recreational receptors would contact on-Site surface soil. Therefore, a future recreational user is

¹ Fringe surface sediment is sediment under water depths of a few feet or less. The surface sediment data set for the BHHRA was limited to these locations because of the greater potential for contact.

evaluated. It is assumed that future recreational exposures will be limited to the western portion of the Site next to Anacostia Avenue² (see **Figure 1-2**). This area was previously the location of the former power plant demolished between 2012 and 2015. This area of the Site remains under controlled access and Pepco has no plans to convert this area to public recreational use. Nonetheless, because this portion of the Site is the closest to the Anacostia River and the existing NPS park land located across Anacostia Avenue, DOEE directed that the BHHRA evaluate a hypothetical future exposure scenario in which this area becomes public park land or green space. The BHHRA otherwise assumes that the Site will remain industrial/commercial with secure fencing and 24-hour security to deter trespassing and will continue to be used as a service center into the foreseeable future due to the important role it serves in Pepco's electric transmission and distribution system. The available data do not suggest that historic operations have resulted in impacts to off-Site soils in residential areas. Therefore, on- and off-Site residential exposure scenarios are not evaluated.

Site groundwater is not used as a source of drinking water; thus, consumption of groundwater is not a complete exposure pathway. The depth to groundwater (UWZ) generally ranges from 9 to 16 feet bgs across the Site, with depths up to 26 feet bgs in the south-central portion of the Site (see Section 3 of the RI Report). While groundwater may be encountered if excavation depths reach an excess of 9 feet bgs, most underground utilities and other subsurface infrastructure at the Site that may require future maintenance, repair, or replacement are located at depths well above 9 feet bgs. Electric utility lines at the Site range from 3 to 8 feet bgs, which is above the shallowest depth of the UWZ. Therefore, no contact with groundwater is expected during maintenance of electric utility lines. The Metro and sewer lines are located deeper below ground surface. According to Pepco Underground, any maintenance on these lines would be performed from the inside by a designated confined-space-permitted contractor outfitted with appropriate personal protective equipment. Therefore, it is not anticipated that excavation below the water table for the purposes of utility maintenance will take place in the future. Additionally, based on experience, worker exposure to contaminated groundwater under a short-term excavation scenario typically poses minimal risk. Thus, direct contact with groundwater is considered to be an incomplete or insignificant potential exposure pathway and does not warrant further consideration in the BHHRA.

Vapor intrusion from groundwater into an excavation trench may occur; however, this potential route of exposure is anticipated to be of short duration, and any volatiles in trench air would be subject to

² The Risk Assessment Work Plan Addendum (AECOM, 2016d) also stated that recreational use of the off-Site parcel of land owned by the National Park Service (Kenilworth Maintenance Yard) would be evaluated. However, as discussed in Section 3.1.2, this area does not warrant further evaluation in the BHHRA.

windblown dispersion. Despite the short duration of the potential exposure, the potential for vapor intrusion from the UWZ into a future excavation trench was evaluated in this revised BHHRA.

Under the current use scenario, vapor intrusion into the indoor air of buildings is an incomplete exposure pathway, as there are no buildings in areas of elevated volatile organic compounds (VOCs) in groundwater. However, a screening level evaluation of the potential for vapor intrusion under a future scenario in which buildings are constructed in areas of elevated VOCs in groundwater was included in this revised BHHRA based on the results of additional groundwater sampling conducted during Phase II sampling activities.

Based on local hydrogeology and topography, Site groundwater may discharge to the Anacostia River. Therefore, the revised BHHRA includes an evaluation of the potential impacts of Site groundwater on River water and associated receptors.

The potential receptors and potentially complete exposure pathways evaluated in this BHHRA for the Landside Investigation Area are as follows:

- <u>Current/Future Construction Worker</u>. Potential direct contact (ingestion and dermal) with surface and subsurface soil and potential inhalation of soil-derived fugitive dust during utility or other construction work requiring excavation. In addition, the construction worker may be exposed to volatiles in the air of an excavation trench due to volatilization from groundwater infiltrating the trench.
- <u>Future Outdoor Industrial Worker</u>. Potential direct contact (ingestion and dermal) with surface soil and potential inhalation of surface soil-derived fugitive dust, in the event of a change in the existing Site use controls and existing on-Site soil cover in the future.
- <u>Future Indoor Industrial Worker</u>. Potential inhalation of volatile compounds in indoor air resulting from groundwater vapor intrusion.
- <u>Future Recreational Visitors</u>. Potential direct contact (ingestion and dermal) with surface soil, and potential inhalation of surface soil-derived fugitive dust in the western portion of the Site next to Anacostia Avenue (see **Figure 1-2**), if the area were to become publicly accessible in the future.

2.2.2 Waterside Investigation Area

For the Waterside Investigation Area, a number of potential human exposure pathways are potentially complete. Potential receptors include shoreline workers, anglers, and other receptors who visit the River to recreate (e.g., swimmers, waders, boaters). The potential Waterside Investigation Area receptors and how they may contact COPCs are described below and summarized in **Figure 2-2**. The potential receptors and potentially complete exposure pathways evaluated in this revised BHHRA are as follows:

- <u>Current/Future Recreational Anglers</u>. Potential direct contact with fringe surface sediment and surface water while fishing, and ingestion of fish from the Waterside Investigation Area.
- <u>Current/Future Swimmers</u>. Potential direct contact with fringe surface sediment and surface water while swimming in the Waterside Investigation Area.
- <u>Current/Future Waders</u>. Potential direct contact with fringe surface sediment and surface water while wading in the Waterside Investigation Area.
- Shoreline Workers. Potential direct contact with fringe surface sediment and surface water while
 performing maintenance, landscaping, or other activities along the shoreline of the River adjacent to
 the Site.

In addition, a current/future high-end consuming Angler scenario (i.e., potential direct contact with fringe surface sediment and surface water while fishing, and consumption of fish from the Waterside Investigation Area at a higher rate than recreational anglers) is evaluated in Section 7.3.2.2 of the uncertainty analysis.

2.3 Consideration of Background Conditions

The Anacostia River has been impacted by a variety of historical and ongoing sources of chemical, physical, and biological stressors from point and non-point sources, including National Pollutant Discharge Elimination System discharges, surface runoff, combined sewer and storm sewer outfalls, refuse disposal practices, tributary inputs, and atmospheric deposition (SRC and NOAA, 2000). The multitude of sources has resulted in diffuse distributions of some constituents, including polycyclic aromatic hydrocarbons (PAHs), metals, PCBs, and pesticides, with some localized hot spots (Wade et al., 1994; Velinsky et al., 1996; Velinsky et al., 2011). Surficial sediment concentrations have decreased over the past few decades, likely due to improved environmental practices, PCB use restrictions, and deposition of cleaner sediment (Velinsky et al., 2011). Based on fish tissue monitoring, concentrations of PCBs in tissue have also declined over the years (Pinkney, 2017³), although levels reflected by the most recent fillet sampling data from 2013 are still sufficiently elevated throughout the Anacostia and Potomac Rivers to warrant issuance of advisories warning against consumption of some species of fish (DOEE, 2016a, MDE, 2018).

The risk calculations presented in the BHHRA reflect total constituent concentrations, whether related to past Site activities or attributable to some other source. However, for purposes of evaluating responses to potential risks, it is essential to consider background information. USEPA's guidance on the role of background in the Superfund cleanup process (USEPA, 2002e) notes that a primary objective of

³ Report was originally published in September 2014 and revised in November 2017.

CERCLA risk assessments is to provide information on risks that can be effectively addressed through remedial actions. Taking into account background area information during the risk assessment process provides a basis for distinguishing risks associated with site releases from risks resulting from the presence of constituents that may have migrated into the site, or that may reflect regional conditions related to human activities (Judd et al., 2003).

USEPA (2002d) defines background as: "Substances or locations that are not influenced by the releases from a site and are usually described as naturally occurring or anthropogenic: (1) Naturally occurring substances are present in the environment in forms that have not been influenced by human activity; (2) Anthropogenic substances are natural and human-made substances present in the environment as a result of human activities (not specifically related to the CERCLA site in question)." It further defines a background reference area as: "The area where background samples are collected for comparison with samples collected on site. The reference area should have the same physical, chemical, geological, and biological characteristics as the site being investigated, but has not been affected by activities on the site."

USEPA (2002e) provides the following guidance on addressing background in the risk assessment:

Specifically, the COPCs with high background concentrations should be discussed in the risk characterization, and if data are available, the contribution of background to site concentrations should be distinguished. COPCs that have both release-related and background-related sources should be included in the risk assessment.

Therefore, consistent with USEPA guidance (2002e), the potential contribution from background has been evaluated in this BHHRA using data representative of background conditions. Appendix W of the RI Report provides the background evaluation, including the derivation of background threshold values (BTVs) and comparison with Study Area data.

3 Data Evaluation and Hazard Identification

The purpose of the hazard identification process is two-fold: (1) to evaluate the nature and extent of chemicals present in site media; and (2) to identify COPCs for further quantitative evaluation in the risk assessment. This step involves compiling and summarizing the data relevant to the risk assessment and selecting COPCs based on a series of screening steps. Section 3.1 describes the data sets that were used, including the assessment of data quality. Section 3.2 describes the hazard identification process, including the calculation of summary statistics and the COPC screening process.

3.1 Data Sets Used in BHHRA

As discussed in detail in Section 2 of the RI Report, analytical chemistry data collected between 2013 and 2018 comprise the soil, groundwater, sediment, and surface water data sets for the BHHRA. Details regarding the sampling and analysis program are found in the RI/FS Work Plan (AECOM, 2012), three addenda to the RI/FS Work Plan (AECOM, 2014a, AECOM, 2014b, AECOM, 2016e), and the RI Report and associated appendices. The fish tissue data were obtained from publicly available sources, including DOEE and United States Fish and Wildlife Service (USFWS) fish sampling programs. The data sets utilized in the BHHRA are summarized below for the Landside and Waterside evaluations. In addition, the data sets for the Anacostia Park Property adjacent to Kenilworth Maintenance Yard and background are summarized.

3.1.1 Landside Investigation Area Data

Soil and groundwater sampling were conducted over two phases, which are described in detail in the RI Report, Section 2.1 (Phase I) and Section 2.3 (Phase II). PCBs were analyzed as both congeners and Aroclors, although the vast majority of samples were analyzed as Aroclors. The FS will include details on the congener analysis, which was conducted on a limited subset of samples for forensic purposes. The data sets are summarized below. The Aroclor data were used in the evaluation of abiotic media in this BHHRA.

<u>Soil</u>

Soil sampling was conducted between February 2013 and July 2018, and consisted of surface and subsurface soil samples. As discussed in greater detail in Section 2 of the RI Report, depending on the characterization and delineation objectives, soil samples were submitted for chemical analysis, including inorganics, PCBs, pesticides, total petroleum hydrocarbon (TPH) fractions, semivolatile organic

compounds (SVOCs), and dioxins and furans. Not all chemicals were analyzed in each sample. Surface soil is defined as the ground surface to a depth of 1 foot bgs. However, several samples were collected from beneath obstructions such as concrete or asphalt, and the ground surface was considered the top of the slab. The first sample collected below the slab is therefore considered surface soil. Because subsurface excavations typically do not exceed 10 to 15 feet bgs, only subsurface soil data from samples collected to a maximum depth of 16 feet bgs were included in the BHHRA. The soil sample locations are depicted in **Figure 3-1**, and samples included in this BHHRA are listed in **Table 3-1**. The soil sample results are presented in Section 4 of the RI Report.

Groundwater

Groundwater samples were collected using Direct-Push Technology (DPT) at locations across the Site between March 2013 and March 2017. These samples were collected to characterize various target areas across the Site, and the chemical analysis was dependent on the area being investigated.

A total of 30 monitoring wells were installed as nested well pairs at 15 locations across the Site. Two monitoring wells were installed at each location, a shallow well in the UWZ and a deep well in the LWZ. Two rounds of monitoring well sampling took place, the first in November 2014 and the second between November and December 2016. Samples were analyzed for metals, dioxins and furans, pesticides, PCBs, SVOCs, VOCs, and forensics parameters, but not every sample was analyzed for the full list.

As previously noted, exposure pathways for on-Site groundwater are judged to be complete or potentially complete only for inhalation of vapors in an excavation trench, inhalation of the indoor air of a hypothetical future building, and groundwater migration to the Anacostia River. To evaluate the potential impact of groundwater on the River, groundwater data from the four monitoring wells located adjacent to the western downgradient boundary of the Site were used (MW-01, MW-02, MW-03, and MW-04), as well as MW-08 and MW-11, which are located along the northwestern and northern downgradient Site boundary. The groundwater data from these six locations have been identified as representative of the types and concentrations of chemicals that may be migrating from the Site into the Anacostia River. As discussed in the RI Report, contaminants detected in on-Site wells further from the River are not expected to contribute significantly to the potential migration to surface water pathway. Groundwater samples from both the UWZ and LWZ were used in the evaluation of groundwater migration to surface water.

The locations of the DPT borings and monitoring wells are depicted in **Figure 3-1**. Only groundwater samples from the UWZ were used in this BHHRA to evaluate the excavation trench and vapor intrusion

⁴ The forensics evaluation will be provided in the FS.

pathways. Groundwater samples included in the BHHRA are listed on **Table 3-3**. The groundwater analytical results are presented in Section 4 of the RI Report.

3.1.2 Anacostia Park Property Adjacent to Kenilworth Maintenance Yard Data

Anacostia Park Property Soil

Records provided by NPS indicate that Pepco had proposed to stage dredge spoils on a portion of the Anacostia Park property during an intake dredging project in 1967. It is not known if the dredge spoil staging activity actually took place. At DOEE's direction, Pepco conducted a field investigation in the suspected dredge spoils area on the NPS property. The area proposed for staging is located to the west of the Site and adjacent to the Anacostia River, as shown on **Figure 3-2**. Sample locations are indicated on **Figures 3-2** and **3-3** and are listed on **Table 3-1**.

With the exception of arsenic and chromium, sample results (composite and discrete) were below screening levels. As indicated in the RI Report, arsenic was detected in all 12 discrete surface soil samples at concentrations ranging from 2.3 milligrams per kilogram (mg/kg) to 15 mg/kg. Total chromium was detected in all 12 samples at concentrations ranging from 26 mg/kg to 51 mg/kg, and hexavalent chromium was detected in three samples at concentrations less than 1 mg/kg. Based on the discrete sampling results, hexavalent chromium is below its screening level, and concentrations of trivalent chromium (total chromium minus hexavalent chromium) are below its screening level. Concentrations of arsenic in Anacostia Park property soils are below the arsenic BTV of 17 mg/kg derived in Appendix W of the RI Report.

Anacostia Park Property Groundwater

Three borings were advanced by DPT in April 2017. Groundwater samples were collected from the water table aquifer in each of the three borings. The samples were analyzed for inorganics, PCBs, pesticides, TPH fractions, SVOCs, VOCs, and dioxins and furans. The analytical results are presented in Section 4 of the RI Report. As discussed in greater detail in Section 4.5 of the RI Report, inorganic concentrations are close to or below background levels, indicating that they are likely naturally occurring.

Anacostia Park Property Summary

The soil and groundwater data from the Anacostia Park Property indicate that (1) there are no adverse impacts from the alleged historical staging of dredge spoils on Anacostia Park property, and (2) groundwater transport from the Site has not impacted the subsurface conditions at Anacostia Park. Therefore, soil and groundwater at the Anacostia Park property are not further evaluated in this BHHRA.

3.1.3 Background Data for Soil and Groundwater

Soil

To support the refined background evaluation for Site soil, background soil samples were collected from 20 locations in the vicinity of the Site. The background locations were selected away from known or suspected sources of contamination and are considered to be representative of urban background conditions within northeast Washington, DC. Background surface soil samples were collected from 0 to 1 feet bgs, and subsurface soil samples were collected from 3 to 4 feet bgs. Background samples were analyzed for inorganics, PCBs (Aroclors), pesticides, dioxins and furans, TPH, SVOCs, and VOCs. The background soil sample locations are depicted in **Figure 3-4**, and samples are listed in **Table 3-2**. The analytical results are presented in Appendix W of the RI Report.

Groundwater

To support the refined background evaluation for groundwater, groundwater samples were collected via DPT drilling and temporary well sampling methods at 10 background locations in the vicinity of the Site. Consistent with the background soil sample locations, the background groundwater sample locations were selected away from known or suspected sources of contamination and are considered to be representative of urban background conditions within northeast Washington, DC. Initial background groundwater sampling was conducted from March 2 to April 20, 2017, and additional locations were sampled from August 22 to 29, 2017. Background samples were analyzed for inorganics, PCBs (Aroclors), pesticides, dioxins and furans, TPH, SVOCs, and VOCs. Background groundwater sample locations are shown on **Figure 3-4**, and the samples are listed in **Table 3-4**. The analytical results are presented in Appendix W of the RI Report.

3.1.4 Waterside Investigation Area Data

3.1.4.1 Sediment

Sediment data are available from the Waterside Investigation Area and from background locations.

Waterside Investigation Area

Sediment sampling was conducted between November 2013 and June 2017. Surface sediment samples were collected from 0 to 4 or 6 inches below sediment surface (**Figure 3-5**). Subsurface sediment samples collected at depths greater than 6 inches were not included in the risk assessment, per the approved Risk Assessment Work Plans (AECOM, 2012, 2016d).

As depicted in **Figure 3-5**, surface sediment samples were collected throughout the Waterside Investigation Area. Transects of three samples spanning the River channel were located along the length of the Waterside Investigation Area. Some samples were collected from locations close to the shoreline adjacent to the Site; others were collected mid-channel and closer to the opposite shore and under deeper water. In general, water depths along the shoreline are shallower and channel slopes more gradual on the east side of the River adjacent to the Site. USEPA (2004a) provides the following guidance regarding sediment sample locations for a human health risk assessment:

Sediment samples must be located in areas in which individuals are likely to come into direct contact with the sediments. For wading and swimming, this includes areas which are near shore and in which sediments are exposed at some time during the year. Sediments which are consistently covered by considerable amounts of water are likely to wash off before the individual reaches the shore.

Because of the greater potential for contact with surface sediment under water depths of a few feet or less, the surface sediment data set for the BHHRA was limited to these locations, referred to as fringe surface sediment locations. Fringe surface sediments were identified as locations falling within the low tide minus 1 foot area, consistent with the Draft RI Report for the Anacostia River Sediment Project (ARSP; TetraTech, 2018) and are shown on **Figure 3-5**. Additionally, only fringe surface sediment locations located on the east bank of the River were included, since these are the locations that represent potential exposures closest to the Site. The fringe surface sediment data collected by Pepco were supplemented with relevant fringe surface sediment data collected by DOEE for the ARSP. These data are reported in the ARSP RI Report (TetraTech, 2018).

Based on the combined data sets, a total of 42 fringe surface sediment samples from 32 locations were identified on the east bank (see **Table 3-5**). **Table 3-5** provides the rationale for excluding some locations from the BHHRA (either because the location is not located in a fringe area or because it is not along the east bank of the River). Of the 42 fringe surface sediment samples, all but one of the ARSP samples were analyzed for PCBs (Aroclors) and metals. A subset of fringe surface sediment samples was analyzed for VOCs (13 samples), SVOCs (33 samples), pesticides (28 samples), petroleum hydrocarbons (21 samples), and dioxins and furans (24 samples). Fringe surface sediment analytical results used in this BHHRA are presented in **Attachment A**.

Background

Pepco collected 11 background/upstream surface sediment samples and 4 duplicates (see **Table 3-6** and **Figure 3-6**). These were supplemented with 38 surface sediment samples/locations and 1 duplicate collected for the ARSP (TetraTech, 2018). The selection of the upstream Site-specific background

locations is addressed in Technical Memorandum #2 which was approved by DOEE on October 14, 2016. As part of the background evaluation for this RI, Pepco performed a further analysis of potential tidal influence to confirm that all sediment sampling locations included in the Site-specific background dataset were upstream of any influence from the Site. The details of the analysis and the results are provided in Appendix W. Pepco's analysis confirms that the background location SEDBACK20 and background locations upstream of SEDBACK20 will not be influenced by any Site-related contaminants as a result of tidal exchanges. No sampling locations downstream of SEDBACK20 were included in the dataset for the purpose of calculating site-specific background values.

Based on the combined data sets, 49 background surface sediment samples and 5 duplicates were identified. The background surface sediment samples were analyzed for PCBs VOCs, SVOCs, pesticides, petroleum hydrocarbons, and dioxins and furans. The background surface sediment data set is presented in Appendix W of the RI Report.

3.1.4.2 Surface Water

DOEE collected samples of surface water in September and October 2013 at 20 locations in the Anacostia River (10 in the Waterside Investigation Area and 10 from background locations). These locations are depicted in **Figure 3-5** (Site-adjacent) and **Figure 3-6** (background). The surface water samples were collected from approximately 1 foot above the sediment-water interface. All 20 samples were analyzed for PCBs (Aroclors), total and dissolved metals, and PAHs. A subset of 11 samples (5 in the Waterside Investigation Area and 6 from background locations) was analyzed for VOCs, SVOCs, pesticides, and dioxins and furans. **Table 3-7** lists the surface water samples included in this BHHRA. The analytical results are presented in Section 4 of the RI Report.

While surface water samples were collected by DOEE for the ARSP, only three of the sample locations (R5-05, R5-06, and R6-17⁵) are within the Waterside Investigation Area. Location R5-05 was sampled once in October 2014; sampling methods were similar to those used by Pepco. Locations R6-06 and R6-17 were sampled four times in 2016 under maximum (spring/summer) and minimum (fall/winter) river flow conditions. As the Pepco data have better spatial coverage than the DOEE data, and the collection methods for the DOEE 2016 data are dissimilar, only the Pepco data were included. The uncertainty associated with this is discussed in Section 7.

⁵ The surface water sample from location R6-17 was collected from within the Pepco Waterside Investigation Area. The sediment and pore water samples were collected upstream of Pepco and are therefore included in the background data set.

3.1.4.3 Fish Tissue Data

As agreed with DOEE, samples of fish tissue were not collected during this program (AECOM, 2012). Rather, as specified in the Risk Assessment Work Plan (AECOM, 2012), other studies conducted in the Anacostia River and the Potomac River were evaluated to determine whether relevant and appropriate fish tissue data are available.

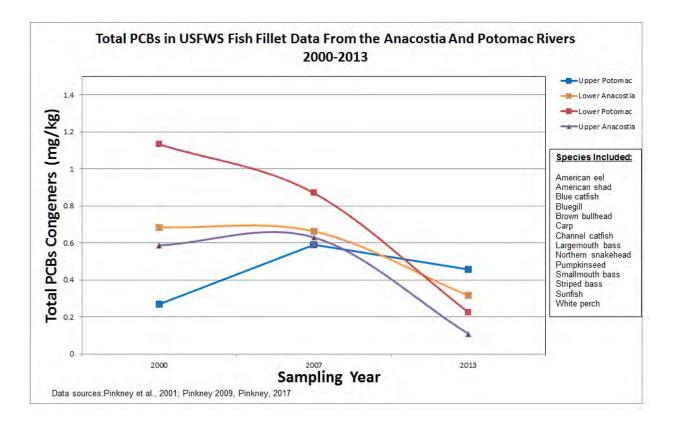
Several investigations of fish tissue chemistry have been conducted for the Anacostia and Potomac Rivers, including data summarized by Velinsky and Cummins (1996), SRC and NOAA (2000), Haywood and Buchanan (2007), Pinkney et al. (2001), and Pinkney (2009, 2017). Two sources of recent fish tissue data were identified: (1) sampling conducted in 2013 by USFWS in the District's stretch of the Anacostia and Potomac Rivers and reported in Pinkney (2017), and (2) sampling conducted by TetraTech in 2016 in the upstream non-tidal portion of the Anacostia River above the DC-Maryland state line and the northeast and northwest tributaries (TetraTech, 2018). The tissue sampling areas for each program are presented in **Figure 3-7** (Anacostia), **Figure 3-8** (Potomac), and **Figure 3-9** (Upstream Non-Tidal Anacostia), and discussed below.

The available fish tissue data were evaluated according to the following five river reaches:

- Upper Anacostia River Area (upstream of the CSX bridge); this is an approximately 3.2 mile reach, encompassing the Waterside Investigation Area (see Figure 3-7), and extending approximately 1.3 miles downstream and 1.9 miles upstream of the Benning Road bridge;
- Lower Anacostia River Area (downstream of the CSX bridge);
- Lower Potomac River (downstream of the 14th Street bridge);
- Upper Potomac River (upstream of the 14th Street bridge);
- Upstream Non-Tidal Anacostia River (north of the Maryland state line); this is upstream of the Waterside Investigation Area and was used as the background area.

The four reaches comprising the Upper and Lower Anacostia and Upper and Lower Potomac Rivers were defined in the fish tissue sampling conducted in 2013 by USFWS (Pinkney, 2017). Composite fish fillet samples from each of these four reaches were collected in support of the District's fish consumption advisories, not as part of an RI program (Pepco Benning, ARSP, or other), and therefore were not intended to assign attribution to any upland source (note: these data were also used in DOEE's ARSP).

Because the exact collection points are not specified in the Pinkney study, the samples collected in the Upper Anacostia River are assumed to reflect overall conditions within the several-mile-long river reach



that was sampled (or possibly the larger home range for some of the fish species sampled) and may not reflect the specific conditions within the Waterside Investigation Area. The same qualification applies for the fish samples collected within the Lower Anacostia and the Potomac River. Accordingly, although the tissue data for the Upper Anacostia Reach were used for this BHHRA per the direction of DOEE, there is insufficient information to make any definitive conclusions about the relationship between this fish tissue data and specific conditions within the Waterside Investigation Area. This will be discussed further as part of the uncertainty analysis.

U.S. Fish and Wildlife Tissue Data

Pinkney (2017) reported on the collection of fish tissue samples in 2013 by USFWS and DOEE in the Upper and Lower Anacostia River and Upper and Lower Potomac River sampling areas to support DOEE's fish consumption advisories. USFWS and DOEE also conducted tissue sampling in these areas in 2000 (Pinkney et al., 2001) and 2007 (Pinkney, 2017). A substantial decline in median PCB tissue concentrations was observed in all species except sunfish (Pinkney, 2017). The figure below shows tissue concentrations over time for the USFWS fillet data (all species combined) for sampling years 2000, 2007, and 2013. As shown below, concentrations in all reaches declined between 2000 and 2013. The decline does not appear to be related to differences in fish size or lipid content, as Pinkney (2017) noted that similar-sized fish were collected over the years and there was no discernable pattern in lipid content among species over time.

The 2013 USFWS tissue data were selected for evaluation in the BHHRA because these data are the most recent available, and the Upper Anacostia sampling reach includes the Waterside Investigation Area. The 2013 USFWS tissue data for the Upper and Lower Potomac and for the Lower Anacostia were also evaluated in the BHHRA to provide information regarding potential risks from fish consumption in the larger regional area. **Table 3-8** summarizes the species collected from each area.

All specimens were filleted, and the skin was left on for most species with the exception of channel and blue catfish (skin-off fillets) and American eel (skin and viscera removed, and muscle and bone included in the sample). The fillet is the principal part of the fish typically consumed by anglers, and therefore is the tissue type of greatest interest for risk assessment (USEPA, 2000; Gibson and McClafferty, 2005). Chemical analyses of the USFWS data included PCB congeners, PAHs, pesticides, polybrominated diphenyl ethers, metals, lipids, and moisture content. PCB congener analysis included a list of 119 congeners, including the 12 congeners with presumed dioxin-like effects (USEPA, 2010).

The fish tissue data were validated as part of the RI for the ARSP (TetraTech, 2018). Qualifiers were added to the data in some cases, and where the laboratory reported results below the method detection limit, results were raised to the reporting limit and qualified as not detected (U). Results between the detection limit and reporting limit were qualified as estimated (J). Therefore, in some cases, the validated

data used in this BHHRA will differ from that presented in Pinkney (2017). The validated results for the Anacostia fish fillet samples were presented in Appendix A of the ARSP RI Report (TetraTech, 2018). The analytical results used in this BHHRA are presented in **Attachment A.**⁶

DOEE Fish Tissue Data

Fish tissue samples were collected from the Upstream Non-Tidal Anacostia River in 2016 and were reported in the ARSP RI Report (TetraTech, 2018). A total of 29 fish fillet samples were collected and analyzed for dioxins and furans, PCBs, pesticides, metals, and SVOCs. Of the 29 samples, 19 were largemouth bass, six were smallmouth bass, three were striped bass, and one was a northern snakehead. The samples are listed in **Table 3-8**. The results are presented in **Attachment A**.

3.1.5 Data Quality Assessment

The data collected by AECOM as part of the RI program for the Study Area were validated by project chemists as specified in the Quality Assurance Project Plan (QAPP) (AECOM, 2012). All project data from laboratory chemical analyses were validated using criteria specified in the approved QAPP, the relevant USEPA reference methods, and USEPA's National Functional Guidelines for Inorganic and Organic Data Review (USEPA, 2008). Note that the data quality assessment performed as part of the Benning Road RI did not include the tissue data collected by other parties. TetraTech conducted Phase 2B validation of the fish tissue data sets collected by DOEE (Pinkney, 2017, TetraTech, 2018). Pinkney (2017) noted that quality assurance procedures followed included the analysis of blanks, laboratory and field replicates, and standard reference materials.

The laboratory Quality Control (QC) results for the RI samples, specified as laboratory deliverables in the QAPP, were reviewed. The method-specific QC results included method blanks, equipment blanks, laboratory control samples, matrix spikes, matrix duplicates, laboratory duplicates, field duplicates, and/or surrogates, and were summarized on QC forms, where applicable. Additional method-specific parameters and the laboratory report narratives, which detail all QC non-conformances, were also reviewed with regard to any potential impacts to the sample data usability.

Qualifiers were applied to the data due to QC non-conformances where applicable. Upon completion of the data validation of each data set, data validation reports, which summarize the sample delivery group(s) and parameter(s) reviewed, and any QC non-conformances, were prepared. In addition, the

⁶The RI Report (TetraTech, 2018) did not include all of the analytes reported in Pinkney (2017). Therefore, for those analytes, the data were taken directly from Pinkney (2017). Additionally, some of the data for two carp samples (UACA01 and LPCA01) were transposed in the 2014 Pinkney publication and were corrected based on the 2017 revised publication.

reports summarize the qualifiers applied to the data as a result of any non-conformances noted during the validation process. Data validation reports for each data set are included in Appendix S of the RI Report. A summary of the data validation and project quality assurance assessments is provided in Section 4 of the RI Report. Overall, more than 99% of the data reviewed was found to be reliable and acceptable for use in risk assessment and remedial decision-making.

Analytical data were compiled and tabulated in a database for statistical analysis. **Tables 3-1** to **3-8** identify samples included in this BHHRA for the various media, as summarized below.

Area	Matrix	Number of Samples for BHHRA
	On-Site Surface Soil (0-1 ft bgs)	291
Landside	On-Site Subsurface Soil (1 to 16 ft bgs)	623
Investigation Area	On-Site Groundwater (UWZ)	125
	On-Site Downgradient Groundwater (LWZ and UWZ)	6 LWZ wells and 6 UWZ wells
	Anacostia River Fringe Surface Sediment	42
Waterside	Anacostia River Surface Water	10
Investigation Area	Upper Anacostia River Fish Tissue - Species include blue catfish, brown bullhead, channel catfish, carp, largemouth bass, northern pike, and sunfish	7
	Background Surface Soil (0-1 ft bgs)	19
	Background Subsurface Soil (3-4 ft bgs)	19
	Background Groundwater	14
Background	Anacostia River Surface Sediment (background)	49
	Anacostia River Surface Water (background)	10
	Upstream Non-Tidal Anacostia River Fish Tissue - Species include largemouth bass, striped bass, smallmouth bass, and northern snakehead	29
	Lower Anacostia River Fish Tissue - Species include American eel, blue catfish, channel catfish, carp, largemouth bass, and sunfish	6
Regional	Lower Potomac River Fish Tissue	
	 Species include American eel, American shad, brown bullhead, blue catfish, carp, channel catfish, largemouth bass, and sunfish 	9
	Upper Potomac River Fish Tissue - Species include American eel, brown bullhead, carp, channel catfish, largemouth bass, northern snakehead, striped bass, sunfish, and	9
	white perch.	

3.2 Hazard Identification

Hazard identification is the first step in a four-step process of a BHHRA (USEPA, 1989a). As noted above, a major purpose of the hazard identification step is to identify a subset of COPCs from all chemicals detected during the investigation. These COPCs are then carried forward for quantitative evaluation in the subsequent baseline risk assessment.

The COPC screening process is intended to identify the following:

1. Chemicals that pose negligible risks and can be eliminated from further evaluation, and

2. Chemicals that merit further evaluation, either quantitatively or qualitatively, based on their potential to adversely affect humans depending on specific types of exposures.

This section describes the approach used to summarize the data and the steps followed to identify the human health COPCs. The results of the screening process are presented, and the COPCs retained in each medium for further evaluation in the BHHRA are summarized. Screening levels used in the COPC selection are described in Section 3.2.2 and are presented in **Tables 3-9** to **3-12**.

3.2.1 Summary Statistics

Summary statistics, consisting of frequency of detection, minimum and maximum detections, and arithmetic mean concentration, were calculated for detected chemicals in soil, groundwater, fringe surface sediment, surface water, and fish tissue, as shown in **Tables 3-13** to **3-21**.

When a sample and a duplicate pair were collected, they were treated as one sample for calculation of summary statistics (including maximum detection and frequency of detection). When a chemical was detected in both the sample and the duplicate, the higher concentration was used. When chemicals were not detected in either the sample or its duplicate, the higher sample-specific quantitation limits was used. When a chemical in one of the pair was reported as not detected and the chemical was detected in the other, the detected concentration was used to represent the value. The following summary statistics are presented, reflecting the rules stated above regarding sample/duplicate pairs:

- <u>Frequency of Detection</u>: The frequency of detection is reported as a ratio based on the total number of samples analyzed and the number of samples reported as detected for a specific chemical.
- <u>Maximum Detected Concentration</u>: This is the maximum detected concentration for each chemical/area/medium combination.
- Mean Detected Concentration: This is the arithmetic mean concentration for each chemical/area/medium combination based on detected results only.
- Minimum Detected Concentration: This is the minimum detected concentration for each chemical/area/medium combination.

-

⁷ In comments on the preliminary BHHRA, DOEE requested that sample/duplicate pairs be evaluated based on relative percent difference (RPD) between the parent and duplicate sample, using the average where the RPD is less than or equal to 25% and the maximum where the RPD is greater than 25%. To simplify, the maximum was conservatively used in this BHHRA.

Calculation of Totals

Total PCBs were calculated for each sample by summing the detected individual PCB Aroclor or congener results (fish tissue results only). If none of the individual PCB Aroclors/congeners were detected, the total concentration was flagged as non-detect (U-qualified) with a reporting limit equal to the maximum reporting limit of the individual PCB Aroclors/congeners in the total.

For samples with dioxin and furan results, the concentration of 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (2,3,7,8-TCDD) toxicity equivalence (TEQ) was calculated, as described in Section 4.6.1. If none of the dioxin and furan congeners were detected, the sample total was flagged as non-detect (U-qualified) and the 2,3,7,8-TCDD-TEQ concentration was set equal to the highest toxicity-weighted reporting limit.

PCB-TEQs for fish tissue were calculated for the 12 PCB congeners considered to have potential dioxin-like toxicity, as described in Section 4.6.2.2. The same method used to treat non-detected congeners in the calculation of 2,3,7,8-TCDD-TEQ concentrations was also used for PCB-TEQ.⁸

Chromium

Many metals can exist in different oxidation states; for some metals, the oxidation state can have different toxicities. This is the case for chromium. Chromium exists in two common oxidation states: trivalent chromium (chromium-3, Cr [III], or Cr+3), and hexavalent chromium (chromium-6, Cr [VI], or Cr+6). Trivalent chromium is essentially nontoxic as evidenced by its residential soil screening level of 120,000 mg/kg (USEPA, 2018a). It can be bought over-the-counter as a supplement and is included in most vitamins. Hexavalent chromium was concluded to be a human carcinogen by the inhalation route of exposure (USEPA, 2018b). Chromium is most commonly present in the environment in the trivalent state because typical conditions in the environment favor the reduction of chromium from the hexavalent to the trivalent state. Hexavalent chromium in soil is expected to be reduced to trivalent chromium by organic matter, which is facilitated by low pH (ATSDR, 2012). In addition, if hexavalent chromium is ingested, it is rapidly converted to the trivalent form after entering the stomach and is therefore not considered by USEPA to pose a cancer risk via the ingestion route of exposure (USEPA, 2018b).

Chromium (total) was detected in soil, groundwater, fringe surface sediment, surface water, and fish tissue. There is no history of using chromium at the Site, so it is likely that the form of chromium present

⁸ PCB-TEQs for fish from the tidal Anacostia and Potomac Rivers presented in the ARSP RI Report (TetraTech, 2018) did not include PCB-156, which is identified by USEPA as a dioxin-like congener (USEPA, 2010). PCB-TEQs for this BHHRA were calculated to include PCB-156. Furthermore, where co-eluting congeners included dioxin-like and non-dioxin-like congeners, the toxicity equivalency factor (TEF) for the dioxin-like congener was used. This approach is conservative and results in a marginal increase in the PCB-TEQ result.

in soil is trivalent. To verify this assumption, soil samples were collected from the Landside Investigation Area, as well as the Anacostia Park property, and analyzed for both total chromium and hexavalent chromium. The data are presented in **Table 3-22.** The percent of hexavalent chromium was calculated for each sample. The average percent hexavalent chromium was calculated in several ways, both including and excluding non-detected results, and based on the combined Landside Investigation Area and Anacostia Park data sets. The calculated averages range from less than 1% to about 1.5%. Therefore, it is assumed that hexavalent chromium is present at 1.5% of total chromium in soil for the evaluation of samples for which speciation is not available. Given the lack of history of chromium use at the Site, and the low detections in soil, it is unlikely that hexavalent chromium is present in other media at the Study Area. Therefore, total chromium is evaluated as trivalent chromium in soil, groundwater, fringe surface sediment, surface water, and fish tissue.

Arsenic

Arsenic was reported as total arsenic in the fish tissue samples. The Federal Drug Administration (FDA, 1993) estimated that 10% of the total arsenic in fish tissue is the more toxic inorganic form. Others have reported that the inorganic form usually comprises only a small fraction of total arsenic in fish and shellfish (typically less than 10%) (Schoof et al. 1999, Greene and Crecelius 2006, Karouna-Renier et al. 2007), with the remainder consisting of less toxic organic forms (ATSDR, 2007). In the analysis of the Anacostia River and Potomac River fish tissue data, Pinkney (2017) considered total arsenic concentrations that were at least 10 times the inorganic arsenic guidance value as exceedances. Therefore, while COPC selection is based on the results for total arsenic, the derivation of fish tissue exposure point concentrations (EPCs) is based on the assumption that 10% of total arsenic is inorganic and 90% is organic.

3.2.2 Selection of COPCs

COPCs are a subset of the complete set of chemicals detected at a site that are carried through the quantitative risk assessment process. The selection of COPCs identifies those chemicals observed in site media that have the most potential to be a significant contributor to human health risk (USEPA 1993a, 1989a). As stated in USEPA guidance (USEPA, 1993a):

Most risk assessments are dominated by a few compounds and a few routes of exposure. Inclusion of all detected compounds at a site in the risk assessment has minimal influence on the total risk.

Moreover, quantitative risk calculations using data from environmental media that may contain compounds present at concentrations too low to adversely affect public health have no effect on the

overall risk estimate for the site. The use of a toxicity screen allows the risk assessment to focus on the compounds and media that may make significant contributions to overall risk.

Several factors are typically considered in identifying COPCs for risk assessment, including toxicity and magnitude of detected concentrations, frequency of detection, and essential nutrient status. Whether a chemical's presence is a result of site-related activities or is an artifact of natural and/or anthropogenic activities, background conditions may also be considered, although upfront elimination of COPCs based on consistency with background is generally not performed (USEPA, 2002e).

For this BHHRA, a toxicity screening approach was used to identify COPCs by comparing the maximum concentrations of chemicals detected in each medium to conservative risk-based screening levels (RBSLs). RBSLs were selected in accordance with the Risk Assessment Work Plan and Addendum (AECOM, 2012, 2016d). In addition, essential nutrient status was considered; calcium, iron, potassium, and sodium were not identified as COPCs, as they are considered essential nutrients. The identification of appropriate RBSLs and the results of the COPC screening are discussed below on a medium-specific basis. For chemicals with RBSLs for both potential carcinogenic and noncarcinogenic effects, the lower of the two was used for screening. The selected RBSLs are presented in **Tables 3-9** to **3-12** for soil and fringe surface sediment, groundwater, surface water, and fish tissue, respectively.

3.2.2.1 Landside Investigation Area COPC Selection

Soil

The USEPA Regional Screening Levels (RSL) for industrial soil (USEPA, 2018a) were used to identify soil COPCs (see **Table 3-9**). The industrial soil RSLs are derived assuming daily year-round soil contact by an adult worker assuming incidental ingestion, dermal contact, and inhalation of soil-derived dusts and vapors for 25 years. The RSLs are based on a target risk of 1x10⁻⁶ for potential carcinogens and a target hazard quotient (HQ) of 1 for potential noncarcinogens (or a target HQ of 0.1 to account for potential additivity of chemicals with the same toxic endpoint) (USEPA, 1993a, 2018a). For screening of noncarcinogenic chemicals, the more conservative RSLs corresponding to an HQ of 0.1 were used. Use of these RSLs for screening occasional worker or recreational soil contact exposures is very conservative.

Table 3-13 presents the COPC screening results for on-Site soil. The maximum detected concentration of total chromium (400 mg/kg) is below the trivalent chromium industrial soil RSL (180,000 mg/kg). Assuming that hexavalent chromium may be present at 1.5% of total chromium (see Section 3.2.1), an

_

⁹ The RBSL for lead is derived using the Adult Lead Model (USEPA, 2003b), which uses the average soil exposure concentration in the calculation of the fetal blood lead concentration of an adult female worker. For consistency with the recommended application of the model, the average lead concentration is used in COPC screening.

estimated maximum concentration of 6 mg/kg hexavalent chromium was calculated for the samples for which speciation was not available. The estimated concentration was calculated based on the maximum total chromium concentration of 400 mg/kg multiplied by the assumed hexavalent chromium percentage of 1.5%. The estimated hexavalent chromium concentration is below the industrial soil RSL (6.3 mg/kg), and chromium is therefore not identified as a COPC for Site soils. The maximum detections of the following chemicals in on-Site soil exceeded their respective screening levels, and thus were identified as COPCs in soil:

- 2,3,7,8-TCDD-TEQ
- arsenic
- cobalt
- manganese
- nickel
- thallium
- vanadium
- PCBs
- TPH- diesel range organics (DRO) (C10-C20)

- benzo(a)pyrene
- benzo(b)fluoranthene
- dibenz(a,h)anthracene
- benzo(a)anthracene
- benzo(k)fluoranthene
- chrysene*
- indeno(1,2,3-cd)pyrene
- naphthalene

While the maximum detection of chrysene was less than its RSL, it was included as a COPC because the other potentially carcinogenic PAHs in Site soil were identified as COPCs (listed above with an asterisk *). The maximum concentrations of many of the inorganics and all of the pesticides, VOCs, and SVOCs, except for a limited number of PAHs, were below their respective RSLs. Therefore, these chemicals were not identified as COPCs and do not require further evaluation.

Groundwater

As discussed in Section 2.2.1, potentially complete exposure pathways for Site groundwater include discharge to the Anacostia River, vapor intrusion from groundwater into an excavation trench, and potential vapor intrusion into the air of a future building if it were constructed in the vicinity of VOCs detected above screening levels in groundwater. The groundwater discharge (groundwater-to-surface water) pathway is discussed in Section 5.6. COPCs for the vapor intrusion into indoor air pathway are discussed in **Attachment B.** The excavation trench pathway is discussed below.

COPCs in UWZ groundwater were selected to evaluate vapor intrusion to an excavation trench pathway; these COPCs are listed in **Table 3-14**. There are no published screening levels directly applicable to this pathway. Vapor Intrusion Screening Levels (VISLs) are applicable to indoor air and are thus overly

conservative for the excavation trench pathway. USEPA tapwater RSLs are derived assuming consumption of site-derived water as drinking water and are also conservative for the inhalation of trench air pathway. Consistent with the Risk Assessment Work Plan Addendum (AECOM, 2016d), maximum detected concentrations of VOCs were compared to the USEPA RSLs for tapwater based on a cancer risk level of 1x10⁻⁶ for potential carcinogens and a target HQ of 0.1 for potential noncarcinogens (See **Table 3-10**). The following VOCs were identified as COPCs for the excavation trench air pathway:

- bromodichloromethane
- tert-butyl alcohol
- chloroform
- methyl tert-butyl ether (MTBE)

- tetrachloroethylene
- trichloroethene
- vinyl chloride

3.2.2.2 Waterside Investigation Area COPC Selection Waterside Investigation Area Fringe Surface Sediment

The routes of potential exposure to chemicals in fringe surface sediment were considered to identify appropriate sediment RBSLs. As identified in the CSM, human receptors who visit the Anacostia River may incidentally ingest and dermally contact fringe surface sediment while recreating at the River. A comprehensive set of risk-based sediment screening levels based on occasional direct contact exposures is not available from either USEPA or DOEE. In the absence of sediment screening levels based on direct contact exposures, the USEPA RSLs for residential soil were used to identify COPCs for the recreational receptor fringe surface sediment direct contact scenarios (see **Table 3-9**). The residential soil RSLs are derived assuming daily year-round soil contact by an adult and child via incidental ingestion, dermal contact, and inhalation of soil-derived dusts and vapors for 26 years. Because exposure to fringe surface sediment is expected to be much less frequent and intensive than exposure to residential soil, the residential soil RSLs represent highly conservative screening levels for fringe surface sediment. Consistent with the approach used for soil, the RSLs corresponding to a target risk of 1x10⁻⁶ for potential carcinogens and a target HQ of 0.1 for potential noncarcinogens were used.

Table 3-15 presents the COPC screening for Waterside Investigation Area fringe surface sediment. The following COPCs were identified:

- 2,3,7,8-TCDD-TEQ
- aluminum
- antimony
- arsenic
- cobalt
- manganese
- nickel
- thallium
- vanadium

- PCBs (Aroclors)
- benzo(a)anthracene
- benzo(a)pyrene
- benzo(b)fluoranthene
- benzo(k)fluoranthene*
- chrysene*
- dibenz(a,h)anthracene
- indeno(1,2,3-cd)pyrene
- TPH (C10-C28)

While the maximum detections of benzo(k)fluoranthene and chrysene are less than their respective RSLs, they are included as COPCs because the other potentially carcinogenic PAHs in fringe surface sediment were identified as COPCs (listed above with an asterisk *).

Waterside Investigation Area Surface Water

The routes of potential exposure to chemicals in surface water were considered to identify appropriate RBSLs. As identified in the CSM, receptors who visit the River may incidentally ingest and dermally contact surface water while recreating at the River. A comprehensive set of risk-based surface water screening levels based on occasional direct contact exposures is not available from either USEPA or DOEE. In the absence of relevant surface water screening levels, the following hierarchy of surface water screening level guidance was used for COPC screening (see **Table 3-11**):

- DOEE, Title 21 of the District of Columbia Municipal Regulations, Chapter 11, Water Quality Standards. Effective November 1, 2013 (DOEE, 2013).
- 2. USEPA, National Recommended Water Quality Criteria (NRWQC) for Priority Pollutants. Value for Human Health for the consumption of organisms, accessed August 2018 (USEPA, 2018c).
- 3. USEPA, RSL for tapwater, November 2018 (USEPA, 2018a).

The DOEE water quality standards and USEPA NRWQC are based on protection of fish and shellfish that may be consumed by humans. These criteria are typically derived by relating acceptable risk-based concentrations in fish tissue to concentrations in surface water via a bioaccumulation factor (BAF). As such, the use of these criteria, as well as the RSLs for tapwater, to select COPCs for evaluating

occasional direct contact exposures to surface water is highly conservative. **Table 3-11** identifies the three sets of surface water criteria, and the criterion that was selected for screening.

Table 3-16 presents the COPC screening for Waterside Investigation Area surface water. The following COPCs were identified:

- 2,3,7,8-TCDD-TEQ
 - .,6 . 622 . 24

arsenic

cobalt

- manganese
- 4.4'-DDT

While total PCBs (Aroclors) was not detected in Waterside Investigation Area or background surface water samples, the analytical method that was used (Method 8082) achieves a detection limit of approximately 0.01 micrograms per liter (μ g/L), which is above the applicable surface water screening level of 0.000064 μ g/L for total PCBs. Therefore, total PCBs (Aroclors) was conservatively identified as a surface water COPC and carried forward in the risk calculations assuming it is present at the lowest reporting limit achieved for surface water (0.0094 μ g/L).

Fish Tissue

USEPA no longer provides default RSLs for fish tissue ingestion, and recommends they be calculated using the online RSL calculator tool (USEPA, 2018d). Therefore, fish tissue RSLs were calculated using the conservative historical default fish ingestion rate of 54 grams per day that was previously used by USEPA for RSL development. **Table 3-12** presents the fish tissue RSLs corresponding to a target risk level of 10⁻⁶ and a hazard index (HI) of 0.1. **Tables 3-17** to **3-21** present the comparison of maximum detected fish tissue concentrations in each of the five reaches to the fish RSLs. The following COPCs were selected:

	stream
2,3,7,8-TCDD-TEQ a	n-Tidal acostia
PCBs	
Total PCBs (congeners)	Χ
PCB-TEQ X X X X Inorganics X X X X Arsenic X X X X Cobalt X X X X Mercury X X X X Thallium Pesticides 4,4'-Dichlorodiphenyldichloro- Y Y Y	
Inorganics	Χ
Arsenic X X X Cobalt Mercury X X X X Thallium Pesticides 4,4'-Dichlorodiphenyldichloro- Y Y Y	Χ
Cobalt Mercury X X X X Thallium Pesticides 4,4'-Dichlorodiphenyldichloro-	
Mercury X X X X Thallium Pesticides 4,4'-Dichlorodiphenyldichloro-	Χ
Thallium Pesticides 4,4'-Dichlorodiphenyldichloro-	Χ
Pesticides 4,4'-Dichlorodiphenyldichloro-	Χ
4,4'-Dichlorodiphenyldichloro-	Χ
	Х
4,4'-Dichlorodiphenyldichloro- ethylene (DDE)	Х
Aldrin X X X	Χ
alpha-Chlordane X X X X	X b
beta-Hexachlorocyclohexane X	
cis-Nonachlor X X X	
Dieldrin X X X X	Χ
gamma-Chlordane X X X X	
Heptachlor epoxide X X X X	Χ
Hexachlorobenzene X	
Mirex X X X	
Oxychlordane X X X X	
trans-Nonachlor X X X X	

Notes:

3.2.3 COPC Summary

Table 3-23 presents a summary of the COPCs. Soil COPCs include dioxins and furans, several inorganics, PCBs, DRO, naphthalene, and potentially carcinogenic PAHs. Several VOCs were identified as COPCs for the groundwater to air excavation trench pathway and for the hypothetical future vapor intrusion to indoor air pathway. **Table 3-23** also presents a summary of the Waterside Investigation Area COPCs, which include dioxins and furans, inorganics, pesticides, PCBs, and carcinogenic PAHs. These COPCs were carried forward in the risk calculations for the BHHRA.

^a Data are not available.

^b Represents total chlordane.

4 Dose-Response Assessment

The purpose of the dose-response assessment is to identify the types of adverse health effects that may be associated with potential exposure to a chemical, and to define the relationship between the dose of a chemical and the likelihood and magnitude of an adverse effect (response) (USEPA 1989a). Combining the results of the toxicity assessment with information on the magnitude of potential exposure (developed in the exposure assessment) yields an estimate of potential risk (provided in the risk characterization).

Adverse effects are classified by USEPA as potentially carcinogenic or noncarcinogenic (i.e., potential effects other than cancer). Dose-response relationships are typically defined by USEPA for oral exposure and for exposure by inhalation. Because of the scarcity of toxicological data and established values for the dermal route of exposure, oral toxicity values are used to assess dermal exposures, with an appropriate adjustment for differences in absorption (USEPA, 2004a).

For evaluation of potential noncancer effects, USEPA has developed oral reference doses (RfDs) and inhalation reference concentrations (RfCs) for effects known or assumed to be produced through a nonlinear "mode of action" (USEPA, 2018b). Mode of action is defined as a sequence of key events and processes, starting with interaction of an agent with a cell and resulting in cancer formation. The RfDs and RfCs were developed based on the assumption that thresholds exist for certain toxic effects (such as gastrointestinal effects). The RfD is expressed in units of milligrams of a chemical per kilogram of body weight per day (mg/kg-day), and the RfC is expressed in units of milligrams of a chemical per cubic meter of air (mg/m³). In general, the RfDs and RfCs are estimates (with uncertainty spanning perhaps an order of magnitude) of a daily exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime. For evaluation of potential noncarcinogenic effects, exposures are characterized as chronic (i.e., lasting longer than 7 years) or subchronic (i.e., lasting 7 years or less). Consistent with the Science Advisory Board (SAB) recommendation cited in the soil screening-level guidance (USEPA, 2002c), a child of 1 to 6 years is considered to have a chronic exposure. The construction worker scenario evaluated in this BHHRA is a 1-year, sub-chronic exposure scenario.

¹⁰ The SAB noted that the combination of the 6-year childhood exposure with a chronic RfD may be appropriate for chemicals with toxic endpoints specific to children or with steep dose-response curves but is likely to be over-protective for most chemicals (USEPA, 1993c).

For evaluation of potential cancer effects, USEPA has characterized the weight of evidence for human carcinogenicity and developed oral slope factors and oral and inhalation unit risks (USEPA, 2018b). USEPA presents the quantitative dose-response estimates in three ways: (1) the slope factor is presented as the risk per (mg/kg-day); (2) the unit risk is the quantitative estimate in terms of either ingestion risk per µg/L of drinking water or inhalation risk per microgram per cubic meter (µg/m³) of air breathed; and (3) a chemical concentration in drinking water or air is based on predicted cancer risks of 1 in 10,000, 1 in 100,000, or 1 in 1,000,000.

The dose-response assessment is presented in six subsections. Section 4.1 describes the basis of the dose-response relationships characterized by USEPA. Section 4.2 describes the sources of toxicity values applied in this BHHRA. Section 4.3 describes the toxicity values developed by USEPA for the evaluation of potential noncarcinogenic effects. Section 4.4 describes the toxicity values developed by USEPA for the evaluation of potential carcinogenic effects. Section 4.5 discusses the use of oral toxicity values and absorption adjustment factors to estimate dermal exposure. Section 4.6 discusses specific toxicity approaches used for certain chemicals.

4.1 Basis of Dose-Response Relationships

The dose-response relationships characterized by USEPA toxicity values are often determined from studies of laboratory animals conducted under controlled conditions designed to minimize responses due to confounding variables and are conducted at relatively high dose levels to ensure that responses can be observed using as few animals as possible in the experiments. Mathematical models and uncertainty factors (UFs) are used to extrapolate the relatively high doses administered to animals to predict potential human responses at dose levels far below those tested in animals.

Humans are typically exposed to chemicals in the environment at levels much lower than those tested in animals. These low doses may be detoxified or rendered inactive by the myriad of protective mechanisms that are present in humans (Ames et al., 1987) and which may not function at the high dose levels used in animal experiments. Moreover, as noted by USEPA (1993b), "in the case of systemic toxicity, however, organic homeostatic, compensating, and adaptive mechanisms exist that must be overcome before a toxic endpoint is manifested." Therefore, the results of these animal studies may only be of limited use in accurately predicting a dose-response relationship in humans (USEPA, 1989a). In fact, many effects seen in laboratory animals at the high doses tested are not seen in human exposures to chemicals. For example, while PCBs have been demonstrated to produce tumors in animals, human epidemiological data do not support the carcinogenicity of PCBs (Shields, 2006; Golden et al. 2003, Golden and Kimbrough, 2009).

Despite these uncertainties, and with the goal of being protective of human health, USEPA assumes that the results of animal toxicity studies are predictive of potential toxicity in humans. Moreover, based on the assumption that humans are more sensitive to chemicals than laboratory animals, USEPA incorporates conservative assumptions and UFs when deriving numerical toxicity values from laboratory studies, as discussed in Sections 4.3 and 4.4. However, USEPA explicitly recognizes these extrapolations from high doses to low doses and from animal studies to predict responses in humans as uncertainties in the risk assessment process (USEPA, 1989a).

In some cases, data from human exposure to chemicals are used to develop dose-response values. However, these data also have uncertainties because often it is not possible to determine from human exposure studies whether one or more chemicals are responsible for the observed effects, and it is even more difficult to determine precise exposure levels (USEPA, 1989a). Moreover, where effects are observed in humans, they generally occur at high exposure levels (often in industrial settings), and it is difficult to predict potential human responses at the much lower dose levels that occur in environmental exposure scenarios (USEPA, 1989a).

4.2 Sources of Toxicity Data

The USEPA's (2003a) guidance regarding the relevant human health dose-response values for use in risk assessment was followed in this assessment using the following hierarchy:

- Tier 1 USEPA's Integrated Risk Information System (IRIS), an online database of the Agency's most current, verified, consensus-based toxicity values (USEPA, 2018b)
- Tier 2 USEPA's National Center for Environmental Assessment (NCEA), Superfund Health Risk
 Technical Support Center Provisional Peer Reviewed Toxicity Values (PPRTV) (USEPA, 2018e)
- Tier 3 Other sources of information, such as the PPRTV screening toxicity values, California
 Environmental Protection Agency (CalEPA), the Agency for Toxic Substances and Disease Registry
 (ATSDR) Minimal Risk Levels (MRLs), and the Health Effects Assessment Summary Tables
 (HEAST) (USEPA, 1997a), with priority given to those sources that are most current, transparent, and
 have been peer reviewed (USEPA, 2003a)

Numerical toxicity values used in this assessment are oral RfDs, oral cancer slope factors (CSFs), inhalation RfCs, and inhalation unit risk factors (URFs). **Tables 4-1** (oral/dermal) and **4-2** (inhalation) present the noncancer toxicity values used in this BHHRA, and **Tables 4-3** (oral/dermal) and **4-4** (inhalation) present the cancer toxicity values used in this BHHRA. As indicated in **Tables 4-1** through **4-4**, the majority of the toxicity values are Tier 1 values found in the IRIS database (USEPA, 2018b).

COPCs for which Tier 2 and Tier 3 dose-response values are used are listed in the table below. For many, IRIS (Tier 1) values are available for some values, as noted in the table.

Tier 2 and Tier 3 Dose-Response Values Used in the BHHRA				
COPC	Oral RfD	RfC	Oral CSF	URF
2,3,7,8-TCDD-TEQ	Tier 1 IRIS	Tier 3 CalEPA	Tier 3 CalEPA	Tier 3 CalEPA
4,4-DDD	Tier 3 PPRTV screening value	No value available	Tier 1 IRIS	Tier 3 CalEPA
4,4-DDE	Tier 3 PPRTV screening value	No value available	Tier 1 IRIS	Tier 3 CalEPA
Aluminum	Tier 2 PPRTV	Tier 2 PPRTV	No value available	No value available
Arsenic (inorganic)	Tier 1 IRIS	Tier 3 CalEPA	Tier 1 IRIS	Tier 1 IRIS
Arsenic (organic) ^a	Tier 3 ATSDR	No value available	No value available	No value available
Bromodichloromethane	Not a COPC for oral/dermal	No value available	Not a COPC for oral/dermal	Tier 3 CalEPA
Chloroform	Not a COPC for oral/dermal	Tier 3 ATSDR	Not a COPC for oral/dermal	Tier 1 IRIS
Cobalt	Tier 2 PPRTV	Tier 2 PPRTV	No value available	Tier 2 PPRTV
DRO	Tier 3 PPRTV screening value	Tier 3 PPRTV screening value	No value available	No value available
MTBE	Not a COPC for oral/dermal exposures	Tier 1 IRIS	Not a COPC for oral/dermal exposures	Tier 3 CalEPA
Mirex	Tier 1 IRIS	No value available	Tier 3 CalEPA	Tier 3 CalEPA
Naphthalene	Tier 1 IRIS	Tier 1 IRIS	No value available	Tier 3 CalEPA
Nickel	Tier 1 IRIS	Tier 3 ATSDR	No value available	Tier 3 CalEPA
Thallium	Tier 3 PPRTV screening value	No value available	No value available	No value available
Vanadium	Tier 1 IRIS	Tier 3 ATSDR	No value available	No value available
Notes: a Used in the evaluation of	of fish consumption exposur	e pathway only		

It should be noted that the Tier 2 and 3 values used in this BHHRA were also used by USEPA in RSL development (USEPA, 2018a).

When toxicity data were not available from any of the available sources, surrogates were assigned based on structurally and toxicologically similar chemicals. Surrogates were assigned as follows:

- Toxicity values for technical chlordane were used to evaluate chlordane isomers (alpha-chlordane, gamma-chlordane, cis-nonachlor, trans-nonachlor, oxychlordane)
- Toxicity values for isopropanol were used to evaluate tert-butyl alcohol

4.3 Noncarcinogenic Toxicity Assessment

Chemicals with known or potential noncarcinogenic effects are assumed to have a dose below which no adverse effect occurs or, conversely, above which an adverse effect may be seen. This dose is called the threshold dose. A conservative estimate of the true threshold dose is referred to as a No Observed Adverse Effect Level (NOAEL). The lowest dose at which an adverse effect has been observed is referred to as a Lowest Observed Adverse Effect Level (LOAEL). The NOAEL, or if not available, the LOAEL, is used as the point of departure (POD) for extrapolating from experimental data to predict a threshold level for humans. By applying UFs to the NOAEL or the LOAEL, USEPA has developed RfDs for chronic exposure to chemicals with noncarcinogenic effects (USEPA, 1997a, 2002f, 2018b).

In more recent derivations, USEPA has used a benchmark dose (BMD) approach to define the POD for an observed adverse outcome, or benchmark response, from experimental observations. The BMD approach provides a more quantitative alternative to the first step in the dose-response assessment than the current NOAEL/LOAEL process for noncancer health effects. Derivation of the BMD is a two-step process: (1) response data are modeled in the range of empirical observation; and then (2) extrapolation below the range of observation is accomplished by modeling. The POD for BMD modeling is the benchmark dose lower bound (BMDL), or the lower 95% bound on the dose/exposure associated with the benchmark response (i.e., adverse response), typically 10% above the control response. Using the BMDL accounts for the uncertainty inherent in a given study and ensures (with 95% confidence) that the target benchmark response is not exceeded. UFs are then applied to the BMDL, as in the case for the NOAEL/LOAEL approach, to derive an RfD.

In regulatory toxicity assessment, USEPA assumes that humans are as sensitive, or more sensitive, to the toxic effects of a chemical as the most sensitive species used in the laboratory studies. Moreover, the RfD or RfC is developed based on the most sensitive or critical adverse health effect observed in the study population, with the assumption that if the most critical effect is prevented, then all other potential

toxic effects are prevented. UFs are applied to the BMDL or NOAEL (or LOAEL, when a NOAEL is unavailable) for this critical effect to account for uncertainties associated with the dose-response relationship. These include using an animal study to derive a human toxicity value, extrapolating from a LOAEL to a NOAEL, extrapolating from a subchronic (partial lifetime) to a chronic lifetime exposure, and evaluating sensitive subpopulations. Generally, a 10-fold UF is used to account for each of these uncertainties, although a UF of 3 can be used where uncertainty is lower; thus, the total UF can range from 3 to 10,000, although USEPA (2002f) recommends limiting the total combined UF for a chemical to 3,000. In addition, a UF or a modifying factor of up to 10 can be used to account for inadequacies in the database or other uncertainties. The UFs for the COPCs evaluated in this risk assessment range from 3 to 3,000. USEPA's standard UFs and the modifying factors are identified below (USEPA, 1993b).

Standard Uncertainty Factors:

- Use a 10-fold factor when extrapolating from valid experimental results in studies using prolonged exposure to average healthy humans. This factor is intended to account for the variation in sensitivity among the members of the human population and is referenced as "10H."
- Use an additional 10-fold factor when extrapolating from valid results of long-term studies on
 experimental animals when results of studies of human exposure are not available or are inadequate.
 This factor is intended to account for the uncertainty involved in extrapolating from animal data to
 humans and is referenced as "10A."
- Use an additional 10-fold factor when extrapolating from less than chronic results on experimental
 animals when there are no useful long-term human data. This factor is intended to account for the
 uncertainty involved in extrapolating from less than chronic NOAELs to chronic NOAELs and is
 referenced as "10S."
- Use an additional 10-fold factor when deriving an RfD from a LOAEL instead of a NOAEL. This factor
 is intended to account for the uncertainty involved in extrapolating from LOAELs to NOAELs and is
 referenced as "10L."

The final UF is derived by multiplying the individual UFs and rounding to one significant figure. Uncertainty and modifying factors that were applied to the COPCs included in this BHHRA are listed in **Tables 4-1** and **4-2**, which range from 3 (arsenic RfD, manganese RfD) to 10,000 (DRO RfD).

The resulting RfDs are conservative, i.e., health protective, because of the frequent use of multiple uncertainty and modifying factors. Consequently, an RfD provides reasonable certainty that no noncarcinogenic health effects are expected to occur, even for sensitive individuals and if daily exposures were to occur at the RfD level for a lifetime. As noted above, RfDs and exposure doses are expressed in

mg/kg-day). The lower the RfD value, the lower the assumed threshold for effects, and the greater the assumed toxicity.

Table 4-1 summarizes the oral noncarcinogenic toxicity values (i.e., RfDs) and the corresponding critical effects for the COPCs. **Table 4-2** summarizes the inhalation noncarcinogenic toxicity values (i.e., RfCs) and the corresponding critical effects for COPCs. For each COPC, the chemical abstracts service number (CAS number), the dose-response value (RfD or RfC), and the reference for the toxicity value are presented. In addition, the USEPA confidence level in the value, the uncertainty factor, the modifying factor, the study animal, study method, target endpoint, or critical effects upon which the toxicity value is based are presented for each COPC, where available. USEPA's confidence in the toxicity value is based on confidence in the selected study and the extent of available toxicity information. Adjustments for dermal absorption are discussed in Section 4.5.

Subchronic toxicity values are applicable to the construction worker scenario for which exposures are expected to occur over a brief (e.g., 40-day) duration. Subchronic toxicity values are not generally found in IRIS. Therefore, chronic toxicity values were conservatively used to evaluate the construction worker pathway initially and were updated with subchronic toxicity values where warranted and available. The noncancer toxicity values used to evaluate oral and inhalation exposures for the construction worker scenario are presented in **Tables 4-1** and **4-2**, respectively.

4.4 Carcinogenic Toxicity Assessment

USEPA has developed carcinogen risk assessment guidelines (USEPA, 2005b) that revise and replace the previous carcinogen risk assessment guidelines (USEPA, 1986). However, the carcinogen risk assessments for many of the chemicals listed in USEPA's IRIS database, including PCBs, still follow the classification system developed in the previous guidance (USEPA, 1986). The classification system in the previous guidance was developed according to the weight of evidence from epidemiologic and animal studies:

- Group A Human Carcinogen (sufficient evidence of carcinogenicity in humans)
- Group B Probable Human Carcinogen (B1 limited evidence of carcinogenicity in humans; B2 sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans)

¹¹ PCBs and vanadium were the only COPCs with exceedances for the construction worker based on chronic toxicity values. A subchronic RfD for PCBs is available and was therefore used. No subchronic toxicity data are available for vanadium.

- Group C Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data)
- Group D Not Classifiable as to Human Carcinogenicity (inadequate or no evidence)
- Group E Evidence of Noncarcinogenicity for Humans (no evidence of carcinogenicity in adequate studies)

In the previous guidance, it was assumed that there is some finite level of risk associated with each non-zero dose. The USEPA has developed computerized models that extrapolate dose-response relations observed at the relatively high doses used in animal studies to the low dose levels encountered by humans in environmental situations. The mathematical models developed by USEPA assume no threshold and use both animal and human data (where available) to develop a potency estimate for a given chemical. The potency estimate for oral and dermal exposure, i.e., the CSF, is expressed in units of (mg/kg-day)⁻¹; the higher the CSF, the greater the carcinogenic potential.

USEPA (2005b) places greater emphasis on critically evaluating all available data from which a default linear low-dose extrapolation option may be invoked if needed in the absence of critical information. The guidance also emphasizes the consideration of mode of action data. As previously noted, mode of action is defined as a sequence of key events and processes, starting with interaction of an agent with a cell and resulting in cancer formation. Some modes of action are anticipated to be mutagenic and are assessed with a linear approach. Other modes of action may be modeled with either linear or nonlinear approaches after a rigorous analysis of available data under the guidance provided in the framework for mode of action analysis. USEPA (2005b) uses a weight of evidence narrative rather than the classification system that was used in the previous guidance. The following descriptors are recommended along with the weight of evidence narrative:

- Carcinogenic to humans this descriptor indicates strong evidence of human carcinogenicity.
- **Likely to be carcinogenic to humans** this descriptor is appropriate when the weight of evidence is adequate to demonstrate carcinogenic potential to humans.
- Suggestive evidence of carcinogenic potential this descriptor is appropriate when the weight of evidence is suggestive of carcinogenicity; a concern for potential carcinogenic effects in humans is raised, but the data are judged not sufficient for a stronger conclusion.
- Inadequate information to assess carcinogenic potential this descriptor is appropriate when available data are judged inadequate for applying one of the other descriptors.

• **Not likely to be carcinogenic to humans** – this descriptor is appropriate when the available data are considered robust for deciding that there is no basis for human hazard concern.

More than one descriptor can be used when a chemical's effects differ by dose or exposure route.

While these narrative descriptions represent important advances in carcinogen risk assessment, the approach has not generally been implemented for chemicals with toxicity values on IRIS. Therefore, the alphanumeric system is still presented on IRIS and is included here, as several COPCs remain classified under the older system.

Table 4-3 summarizes the oral toxicity information for the COPCs with presumed carcinogenic effects via the oral route of exposure. The CAS number, USEPA carcinogenicity class, the oral CSF, and the reference are provided. In addition, the study animal and route of exposure upon which the CSF is based are presented. Adjustments for dermal absorption are discussed in Section 4.5. **Table 4-4** presents the inhalation toxicity information for COPCs with presumed carcinogenic effects via the inhalation route of exposure.

4.4.1 Mutagenic Mode of Action

USEPA guidance for early life exposure to carcinogens (USEPA, 2005b) requires that potential risks from chemicals that act by a mutagenic mode of action be calculated differently than chemicals that do not act via a mutagenic mode of action. For carcinogens presumed to act via a mutagenic mode of action, dose-response values are generally based on the linearized multistage (LMS) model, which assumes that cancer risks are linear in the low-dose region (USEPA, 2005b, c). Consistent with the Cancer Guidelines and Supplemental Guidance for Assessing Susceptibility for Early-Life Exposure to Carcinogens (USEPA, 2005c), the application of age-dependent adjustment factors (ADAFs) for chemicals with a mutagenic mode of action has been used in the calculation of risk from specific chemicals, including potentially carcinogenic PAHs. While both trichloroethylene and vinyl chloride are potentially mutagenic, they are COPCs only for the excavation trench air pathway for a construction worker and the vapor intrusion to indoor air pathway for an industrial worker, and thus ADAFs do not apply. The ADAFs applied to the potentially carcinogenic PAHs are listed below:

- Ages 0-2: ADAF = 10
- Ages 2-6: ADAF = 3
- Ages 6-16: ADAF = 3
- Ages >16: ADAF = 1

Age-weighted ADAFs were calculated for the young child and older child/teen group based on the exposure durations. For the reasonable maximum exposure (RME) scenarios, the ADAFs for the entire age span of the receptor were averaged. The ADAFs used for the RME scenarios were also used for the central tendency exposure (CTE) scenarios. The derivation of the ADAFs for each age range is presented below.

Receptor Age (years)	1<7	7<19
RME Exposure Duration (years)	6	12
CTE Exposure Duration (years)	3	6
Age Range	ADAF	
0<1		
1<2	10	
2<3	3	
3<4	3	
4<5	3	
5<6	3	
6<7	3	
7<8		3
8<9		3
9<10		3
10<11		3
11<12		3
12<13		3
13<14		3
14<15		3
15<16		3
16<17		1
17<18		1
18<19		1
RME and CTE ADAF a	4.2	2.5

Notes:

4.5 Absorption Adjustment for Dermal Toxicity Values

As there are no dermal dose-response values available for the COPCs addressed in this BHHRA, oral dose-response values were used to evaluate dermal exposures. The equation for calculating dermal absorption gives rise to an absorbed dose, making it necessary to adjust the oral toxicity factor (which reflects an administered dose rather than an absorbed dose). This adjustment accounts for the gastrointestinal absorption efficiency in the critical study that forms the basis of the RfD or CSF. For

^a RME ADAF is the average of the ADAFs for the receptors assumed exposure duration, which is the same as the age span of the receptor. The RME ADAFs were also applied to the CTE scenarios.

example, when oral absorption in the critical study is essentially complete (i.e., 100%), the absorbed dose is equivalent to the administered dose, and therefore no adjustment is necessary. Adjustment is only recommended when gastrointestinal absorption is less than 50%. For organic chemicals, no adjustment is considered necessary, since their gastrointestinal absorption is generally high. Five of the inorganics evaluated in this risk assessment (antimony, manganese, mercury, nickel, and vanadium) require adjustment, as indicated in **Table 4-1**. USEPA (2004a, Exhibit 4-1) provides recommended adjustment factors for oral dose-response values.

4.6 Chemical-Specific Approaches

The toxicity assessment approach used for COPCs with specific toxicological issues is discussed in this section:

- Dioxins and Furans (Section 4.6.1)
- PCBs (Section 4.6.2)
- PAHs (Section 4.6.3)

4.6.1 Dioxins and Furans

Dioxins and furans, expressed as 2,3,7,8-TCDD-TEQ, were identified as COPCs in fringe surface sediment, surface water, and Upstream Non-Tidal Anacostia River fish tissue. The approaches used to estimate potential carcinogenic risks and noncarcinogenic hazards associated with 2,3,7,8-TCDD-TEQ are described below. Because dioxins and furans occur in complex mixtures, the toxicity of 2,3,7,8-TCDD, by far the most extensively studied of the group, is used as a reference for the other members of this family of chlorinated chemicals. Based on their ability to bind to the aryl hydrocarbon (Ah) receptor, seven 2,3,7,8-chlorinated dioxin and ten 2,3,7,8-chlorinated furan congeners are assumed to have a mechanism of toxicity similar to that of TCDD. Toxicity equivalency factors (TEFs) have been developed by the World Health Organization (WHO) (Van den Berg et al., 2006) to equate the toxicity of each dioxin-like congener to that of TCDD. TEFs have been identified for 17 dioxins and furans, ranging from 0.0003 to 1, as shown below. In December 2010, USEPA published guidance that adopts the 2005 WHO mammalian TEFs for risk assessment (USEPA, 2010).

Chemical	WHO 2005 Toxicity Equivalency Factor (TEF)			
Chlorinated dibenzo-p-dioxins				
2,3,7,8-TCDD	1			
1,2,3,7,8-PeCDD	1			
1,2,3,4,7,8-HxCDD	0.1			
1,2,3,6,7,8-HxCDD	0.1			
1,2,3,7,8,9-HxCDD	0.1			
1,2,3,4,6,7,8-HpCDD	0.01			
OCDD	0.0003			
Chlorinated dibenzofurans				
2,3,7,8-TCDF	0.1			
1,2,3,7,8-PeCDF	0.03			
2,3,4,7,8-PeCDF	0.3			
1,2,3,4,7,8-HxCDF	0.1			
1,2,3,6,7,8-HxCDF	0.1			
1,2,3,7,8,9-HxCDF	0.1			
2,3,4,6,7,8-HxCDF	0.1			
1,2,3,4,6,7,8-HpCDF	0.01			
1,2,3,4,7,8,9-HpCDF	0.01			
OCDF	0.0003			
Source: Van den Berg et al., 2006; USEPA, 2010.				

By multiplying the concentration of each dioxin-like congener in an environmental sample by its TEF and summing the results, a 2,3,7,8-TCDD-TEQ concentration can be calculated for the sample.

Due to the lack of Tier 1 or 2 toxicity factors, the CalEPA toxicity values for 2,3,7,8-TCDD were used to evaluate potential carcinogenic effects of 2,3,7,8-TCDD-TEQ via the oral, dermal, and inhalation pathways, as well as noncarcinogenic effects via the inhalation route of exposure (CalEPA, 2018). The USEPA Tier 1 RfD for TCDD was used to estimate the potential noncancer hazard associated with 2,3,7,8-TCDD-TEQ via oral and dermal exposure (USEPA, 2018b).

4.6.2 Polychlorinated Biphenyls

PCBs were identified as a COPC in soil, fringe surface sediment, surface water, and fish tissue. For abiotic media (soil, fringe surface sediment, and surface water), PCBs were evaluated as total PCBs (sum of Aroclors). For biotic media (fish tissue), PCBs were evaluated as both total PCBs (sum of congeners) and as PCB-TEQ. This approach recognizes two potential mechanisms of toxicity and the potential for enrichment of certain presumed dioxin-like congeners in biotic media (USEPA, 2010, 2018b). Therefore,

for the angler receptor who is assumed to eat fish, two separate PCB cancer risks and noncancer hazards are calculated, one for total PCBs and one for PCB-TEQ. Therefore, for fish consumption, the BHHRA presents two separate estimates of cumulative cancer risks, one based on total PCBs, which includes all COPCs except PCB-TEQ, and one based on PCB-TEQ, which includes all COPCs except total PCBs. The uncertainty associated with the PCB toxicity approaches is discussed in the uncertainty analysis (Section 7). The approaches used to estimate potential carcinogenic risks and noncarcinogenic hazards associated with PCBs are described below.

4.6.2.1 Total PCBs Approach

For the total PCBs approach, the potential cancer risks and noncancer hazards posed by PCBs were calculated using the toxicity factors published on IRIS for PCB mixtures and specific Aroclors (USEPA, 2018b). The approach for evaluating carcinogenic effects is described first, followed by noncarcinogenic effects.

Carcinogenic Effects

USEPA provides three tiers of oral CSFs for evaluation of total PCBs: (1) high risk and persistence, (2) low risk and persistence, and (3) lowest risk and persistence (USEPA, 2018b). The choice of CSF depends on the route and medium of exposure and PCB chlorine content (USEPA, 2018b), as shown below. The CSFs are derived from animal cancer bioassay studies, and because mixtures of PCBs were used, the toxicity observed is the result of the combined effects of the mixtures on the whole animal (including presumed dioxin-like effects, as discussed in the uncertainty analysis).

Scenario	Upper- Bound Slope Factor (mg/kg-day) ⁻¹	Central- Estimate Slope Factor (mg/kg-day) ⁻¹	Slope Factor Basis	Criteria for Use:
High Risk and Persistence	2	1	Several studies on carcinogenicity of Aroclor 1260 and 1254	 Food chain exposure Sediment or soil ingestion Dust or aerosol inhalation Dermal exposure, if an absorption factor has been applied Presence of dioxin-like, tumor-promoting, or persistent congeners Early-life exposure (all pathways
Low Risk and Persistence	0.4	0.3	Several studies of carcinogenicity of Aroclor 1242	 and mixtures) Ingestion of water-soluble congeners Inhalation of evaporated congeners Dermal exposure if no absorption factor has been applied
Lowest Risk and Persistence	0.07	0.04	Several studies of carcinogenicity of Aroclor 1016	Congener or isomer analyses verify that congeners with more than 4 chlorines comprise less than 0.5% of total PCBs.

Cancer risks via oral and dermal routes associated with total PCBs were evaluated as follows:

- Ingestion of soil, fringe surface sediment, and fish tissue, and dermal contact with soil and fringe surface sediment: high-risk and persistence, upper-bound CSF of 2 (mg/kg-day)⁻¹
- Ingestion of and dermal contact with surface water: low risk and persistence, upper-bound CSF of 0.4 (mg/kg-day)⁻¹

Inhalation URFs for PCBs are derived from the oral CSFs above assuming an inhalation rate of 20 mg/m³ per day and a body weight of 70 kilograms (USEPA, 2018b). Consistent with the USEPA hierarchy for assigning a PCB slope factor by exposure pathway, the high risk and persistence values are applicable to the dust inhalation pathway (USEPA, 2018b). Therefore, the high risk and persistence upper-bound CSF was used to derive the URF. The use of the upper-bound CSF for the CTE scenario is conservative, as discussed in the uncertainty analysis in Section 7 below.

Noncarcinogenic Effects

USEPA has not developed an oral RfD for PCBs as a class; ¹² however, USEPA has conducted threshold effect assessments for the following individual PCB mixtures: Aroclor 1254, 1016, and 1248. The USEPA provides an oral RfD of 2E-05 mg/kg-day for Aroclor 1254 and an oral RfD of 7E-05 mg/kg-day for Aroclor 1016. USEPA reviewed information on Aroclor 1248 but did not derive an RfD. The Aroclor oral RfDs on IRIS (USEPA, 2018b) were used to evaluate potential noncarcinogenic effects from PCBs. Although no specific guidance has been provided by USEPA or others concerning whether to use the oral RfD for Aroclor 1016 or Aroclor 1254, it is reasonable and scientifically valid to use the oral RfD for the Aroclor that most closely approximates the congener composition in the environmental media being evaluated. The RfD for Aroclor 1254 was used for this BHHRA based on the available data for Aroclor patterns in soil and sediment. PCBs in soil and River sediment samples collected adjacent to the Site were identified by Method 8082 as primarily an Aroclor 1248 and Aroclor 1260 mix, and Aroclor 1254 is midway between 1248 and 1260 in congener/homologue range.

The RfD for Aroclor 1254 of 2E-5 mg/kg-day is based on a subchronic toxicity study, with a total UF of 300, 10 for sensitive individuals, 3 for extrapolation from animals to humans, 3 for the use of a minimal LOAEL and 3 for extrapolation from a subchronic to chronic exposure duration (USEPA, 2018b). Therefore, the UF of 3 for extrapolation from subchronic to chronic exposure duration is removed to derive a subchronic RfD of 5E-5 mg/kg-day for the construction worker scenario (LOAEL of 5E-3 mg/kg-day divided by the remaining uncertainty factor of 100).

4.6.2.2 Dioxin-Like PCBs Approach

Certain PCB congeners have been identified as having a mechanism of toxicity similar to that of 2,3,7,8-TCDD (USEPA, 1996, 2010; Van den Berg et al., 2006). The designation as a "dioxin-like compound" is based on Ah receptor binding and similarities in biochemical activity and bioaccumulation potential to 2,3,7,8-TCDD. Twelve coplanar PCBs with four or more chlorines with one or no substitutions at ortho positions have been identified as having potential dioxin-like toxicity, and TEFs were developed to equate the toxicity of each dioxin-like PCB congener to that of 2,3,7,8-TCDD (Van den Berg et al., 2006). The "coplanar" PCBs lack ortho chlorines on both rings, allowing the rings to orient in the same plane, but this conformation is not rigid. USEPA's December 2010 guidance adopts the 2005 WHO mammalian TEFs for the 12 coplanar PCBs (USEPA, 2010). The TEFs for dioxin-like PCBs are shown below.

¹² An IRIS assessment of the potential noncarcinogenic effects of PCB mixtures is underway (USEPA, 2018b).

Chemical	WHO 2005 Toxicity Equivalency Factor (TEF)
Non-ortho-substituted PCBs	
3,3',4,4'-tetraCB (PCB 77)	0.0001
3,4,4',5-tetraCB (PCB 81)	0.0003
3,3',4,4',5-pentaCB (PCB 126)	0.1
3,3,'4,4',5,5'-hexaCB (PCB 169)	0.03
Mono-ortho-substituted PCBs	
2,3,3',4,4'-pentaCB (PCB 105)	0.00003
2,3,4,4',5-pentaCB (PCB 114)	0.00003
2,3',4,4',5-pentaCB (PCB 118)	0.00003
2',3,4,4',5-pentaCB (PCB 123)	0.00003
2,3,3',4,4',5-hexaCB (PCB 156)	0.00003
2,3,3',4,4',5'-hexaCB (PCB 157)	0.00003
2,3',4,4',5,5'-hexaCB (PCB 167)	0.00003
2,3,3',4,4',5,5'-heptaCB (PCB 189)	0.00003

The potential cancer risk posed by PCB-TEQ via fish consumption was evaluated in the BHHRA using the CSF for 2,3,7,8-TCDD of 130,000 (mg/kg-day)⁻¹.

Noncarcinogenic Effects

The oral RfD of 7E-10 mg/kg-day derived for 2,3,7,8-TCDD (USEPA, 2018b) was used to evaluate the potential noncarcinogenic effects of PCB-TEQ via fish consumption.

To avoid double counting of PCB risks, two separate sets of cancer risks and noncancer hazards were derived for the fish consumption scenario, with one set based on the toxicity factors for total PCBs and the other based on the toxicity factors for dioxin-like PCBs as PCB-TEQ.¹³

4.6.3 Polycyclic Aromatic Hydrocarbons

The following potentially carcinogenic PAHs were identified as COPCs in fringe surface sediment and in soil:

¹³ Summing total PCB and PCB-TEQ cancer risks overestimates the risk posed by an environmental PCB mixture, as coplanar PCBs were present in the commercial Aroclor mixture used to derive the total PCBs CSF; hence, there is "double counting" of the risk posed by the coplanar PCBs if total PCB and PCB-TEQ risks are summed.

- Benz(a)anthracene
- Benzo(a)pyrene
- Benzo(b)fluoranthene
- Benzo(k)fluoranthene

- Chrysene
- Dibenz(a,h)anthracene
- Indeno(1,2,3-cd)pyrene

Benzo(a)pyrene (BaP) is the most studied of the PAHs and the only chemical in the group for which rodent bioassay data are considered by USEPA to be adequate for estimating an oral CSF. Therefore, the carcinogenic potency of the other PAHs with presumed carcinogenic effects was evaluated relative to BaP using relative potency factors (RPFs) (USEPA, 1993d). The current USEPA RPFs for the seven potentially carcinogenic PAHs are shown below. By multiplying the BaP CSF by each of the RPFs, a PAH-specific oral CSF can be calculated. The resulting CSFs applied in the BHHRA are shown below.

Chemical	Relative Potency Factor (USEPA, 1993d)	Oral Cancer Slope Factor (mg/kg-day) ⁻¹	CSF Source
Benzo(a)pyrene	1	1	USEPA, 2018b
Benzo(a)anthracene	0.1	0.1	BaP CSF x RPF
Benzo(b)fluoranthene	0.1	0.1	BaP CSF x RPF
Benzo(k)fluoranthene	0.01	0.01	BaP CSF x RPF
Chrysene	0.001	0.001	BaP CSF x RPF
Dibenz(a,h)anthracene	1	1	BaP CSF x RPF
Indeno(1,2,3-c,d)pyrene	0.1	0.1	BaP CSF x RPF

An RfD is available from IRIS (USEPA, 2018b) for BaP. Currently, oral RfDs are not available for the other potentially carcinogenic PAHs from USEPA's hierarchy of sources (USEPA, 2003a). Therefore, oral RfDs were not assigned to the other potentially carcinogenic PAHs.

5 Exposure Assessment

The objective of the exposure assessment is to estimate the magnitude, frequency, duration, and routes of current and reasonably anticipated future human exposure to COPCs associated with the Study Area. The extent of a receptor's exposure is estimated by identifying exposure scenarios that describe the potential pathways of exposure to COPCs and the specific activities and behaviors (e.g., wading, fishing) of individuals that might lead to contact with COPCs in the environment.

USEPA guidance documents stress the importance of using data that represent the characteristics of the local population(s) and site when possible and appropriate (USEPA, 1989a, b, 1998, 2000, 2011). Default exposure assumptions, which are often intentionally conservative, may be appropriate when site-specific data are lacking, or when there is little reason to believe site conditions and/or receptor characteristics differ substantively from the default (e.g., human body weight, lifetime). Consistent with USEPA guidance and the approved Risk Assessment Work Plans (AECOM, 2012, 2016d), the exposure assessment for the Study Area utilizes both site-specific and default assumptions.

This section is organized as follows:

- Section 5.1 discusses potential exposure scenarios, based on the CSM presented in Section 2.2, including the potentially affected media and the pathways by which people may be exposed to Study Area media.
- Section 5.2 presents the methods used to quantify potential exposures for each potential exposure scenario.
- Section 5.3 identifies the exposure parameters and values used to quantify potential exposures.
- Section 5.4 presents chemical-specific parameters.
- Section 5.5 describes EPCs.
- Section 5.6 presents the groundwater-to-surface water screening evaluation.

5.1 Identification of Potential Exposure Scenarios

Exposure scenarios were developed based on the BHHRA CSM, as described in Section 2.2. Both Waterside and Landside exposure scenarios were evaluated. **Table 5-1** presents a summary of the

receptors and exposure scenarios evaluated in the BHHRA. Because of the differences in activity patterns and sensitivity to exposures, three age groups were evaluated (USEPA, 2014a):¹⁴

- Young child age 1 to 6 years (from 1 up to the 7th birthday, 1 to <7),
- Older child/teen age 7 to 18 years (from 7 up to the 19th birthday, 7 to <19), and
- Adults (>18 years of age).

For carcinogenic risk characterization, which assumes that effects are additive over a lifetime, potential risks for the young child and adult age groups were calculated separately, and then summed to estimate the total potential lifetime excess cancer risk for the receptor. For noncarcinogenic risk characterization, effects were evaluated over the period of exposure. Therefore, noncancer hazards were calculated and presented separately for the young child, older child, and adult age groups.

5.1.1 Landside Investigation Area

The Site is completely surrounded by a fence with two guarded entrances. The guard stations are manned 24 hours a day, 7 days a week. The majority of the Site is covered by impervious material such as concrete or asphalt. Therefore, contact with on-Site media is unlikely under the current scenario. However, if conditions change in the future, it is possible that receptors may be potentially exposed to on-Site media.

Eight exposure areas were defined for soil and groundwater based on current Site use, as indicated below (see **Figure 3-1**):

- Hypothetical Future Park Land /Green Space
- Warehouse and Laydown Area
- Salvage Yard and Waste Storage Area
- Stores and Fleet Maintenance Area

- Offices and Parking Lot
- Substation #7
- Transformer Shop
- Vehicle Refueling Area

As discussed in Section 2.2.1, it is assumed that future recreational exposures will be limited to the western portion of the Site next to Anacostia Avenue (see **Figure 3-1**).

¹⁴ Infants under 1 year of age are assumed to not be exposed to Study Area-related media; the potential contribution from early life exposures to lifetime risk is discussed in the uncertainty analysis.

5.1.1.1 Current/Future Construction Worker

A current and/or future construction worker (adult) may contact surface and subsurface soil during utility or other construction work requiring excavation into the subsurface. The construction worker is assumed to be exposed to soil via incidental ingestion and dermal contact as well as via inhalation of particulates and vapors from soil in outdoor air. The construction worker is also assumed to be potentially exposed to vapors migrating from the subsurface into the air of an excavation trench.

5.1.1.2 Future Outdoor Industrial Worker

It is assumed that in the future, should current Site configuration with respect to soil cover change, an industrial worker (adult) may contact surface soil. The industrial worker is assumed to be exposed to surface soil via incidental ingestion and dermal contact with surface soil, as well as inhalation of particulates and vapors from soil in outdoor air. The potential for future industrial workers to contact subsurface soil is discussed in the uncertainty analysis section.

5.1.1.3 Future Indoor Industrial Worker

It is assumed that if a future building were constructed in an area of the Site with groundwater concentrations above VISLs, a future indoor worker may be exposed via inhalation to vapors from groundwater due to vapor intrusion.

5.1.1.4 Future Recreational User

In the future, if Site access or security changes and the existing soil covers are removed, it is possible that recreational receptors will contact on-Site surface soil. Therefore, a future recreational user was evaluated (older child/teen). The recreational user is assumed to be potentially exposed to on-Site surface soil via incidental ingestion and dermal contact with surface soil, as well as inhalation of particulates and vapors from soil in outdoor air. It is assumed that future recreational exposures will be limited to the portion of the Site closest to the Anacostia River. The remainder of the Site will remain industrial/commercial with secure fencing and 24-hour security to deter trespassing. The Site will continue to be used as a service center into the foreseeable future due to the important role it serves in Pepco's electric transmission and distribution system.

5.1.2 Waterside Investigation Area

The public may access the Anacostia River at several locations, including parks, boat docks, and launches (**Figure 2-1**). Anacostia Park, a 1,200-acre unit of National Capital Parks – East, stretches 5 miles along the banks of the Anacostia River between the Fredrick Douglas Memorial Bridge and the DC-Maryland line. Within the park, the Anacostia Riverwalk Trail runs along the shoreline of the River,

continuing beyond the north and south boundaries of the park. A public boat launch is located about 1.5 miles downstream from the Study Area.

Most of the eastern shoreline adjacent to the Site is stabilized with either sheet pile or rock wall. Dense vegetation along much of the shoreline adjacent to the Site may limit access in this area. Kingman Island divides the Anacostia Channel from Kingman Lake to the west and provides recreation opportunities via pier and trail access. The western shoreline is uniformly stabilized with a continuous rock wall with dense tree cover throughout.

As shown in **Figure 2-2**, recreational and worker exposure scenarios were identified in the CSM as potentially complete and warranting further evaluation. The receptors and applicable exposure pathways are summarized below.

5.1.2.1 Recreational Angler

The recreational angler (adult, older child/teen, young child) was assumed to be potentially exposed to COPCs via direct contact (incidental ingestion and dermal contact) with fringe surface sediment and surface water while fishing in the Waterside Investigation Area. It was also assumed that anglers keep and eat fish they catch in the Waterside Investigation Area and bring fish home to share with other members of the household (adult, older child/teen, young child).

Based on the survey results presented in Gibson and McClafferty (2005), some anglers may supplement a sizeable fraction of their diet with river fish. In addition to evaluating a recreational angler exposure scenario, the BHHRA also considers an exposure scenario involving a high-end consuming angler who fishes year-round and consumes two fish meals per week of Anacostia River fish in the uncertainty analysis (Section 7).

5.1.2.2 Swimmer/Wader

In addition to angling, visitors (adult, older child/teen, young child) to the River may wade, swim, boat, or engage in other activities that bring them into contact with river media. It was assumed that recreational receptors, including swimmers and waders, are exposed to COPCs via direct contact (incidental ingestion and dermal contact) with fringe surface sediment and surface water while wading or swimming in the Waterside Investigation Area. Potential exposures during boating are expected to be similar to those during wading and therefore were not evaluated separately.

5.1.2.3 Shoreline Workers

It was assumed that shoreline workers are exposed to COPCs via direct contact (incidental ingestion and dermal contact) with fringe surface sediment and surface water while working along the shore of the River next to the Site.

5.2 Quantification of Potential Exposures

To estimate human health risk from COPCs at the Site, it is necessary to estimate the potential exposure dose for each COPC. The exposure dose is estimated for each COPC for each exposure pathway by which the receptor is assumed to be exposed. Exposure dose equations combine the estimates of COPC concentrations in the environmental medium of interest with assumptions regarding the type and magnitude of each receptor's potential exposure to provide a numerical estimate of the exposure dose (intake). The exposure dose is defined as the amount of COPC taken into the receptor and is expressed in units of milligrams of COPC per kilogram of body weight per day (mg/kg-day) (USEPA, 1989a).

Exposure doses are defined differently for potential carcinogenic and noncarcinogenic effects. The chronic daily intake is used to estimate a receptor's potential average daily dose from exposure to a COPC with noncarcinogenic effects. According to USEPA (1989a), the chronic daily intake should be calculated by averaging the exposure dose over the period of time for which the receptor is assumed to be exposed. Therefore, the averaging period is the same as the exposure duration for COPCs with noncarcinogenic effects. For COPCs with potential carcinogenic effects, however, the chronic daily intake is calculated by averaging the exposure dose over the receptor's assumed lifetime (70 years). Therefore, the averaging period is the same as the receptor's assumed lifetime. The standardized equations for estimating a receptor's intake (both chronic and lifetime) are presented below. Receptor-specific parameters are discussed in Section 5.3.

5.2.1 Estimating Potential Exposures to COPCs in Soil or Fringe Surface Sediment

The following equations were used to calculate the estimated exposures to COPCs in soil or fringe surface sediment (USEPA, 1989a, 2004a).

Intake (lifetime and chronic) following incidental ingestion of soil or sediment (mg/kg-day):

$$Intake = \frac{CS \times IR_S \times FI \times EF \times ED \times AAF_o \times CF}{BW \times AT}$$

where:

Intake = intake (mg/kg-day)

CS = soil/fringe surface sediment concentration (mg/kg – dry weight)

IR_s = ingestion rate of fringe surface soil/sediment (mg/day)

FI = fraction ingested from Study Area (unitless)

EF = exposure frequency (days/year)

ED = exposure duration (year)

AAF_o = oral absorption adjustment factor (chemical-specific) (unitless)¹⁵

CF = unit conversion factor $(kg/10^6 \text{ mg})$

BW = body weight (kilograms)
AT = averaging time (days)

Intake (lifetime and chronic) following dermal contact with soil or fringe surface sediment (mg/kg-day):

$$Intake = \frac{CS \times SA \times AF \times EF \times ED \times DAF \times CF}{BW \times AT}$$

where:

Intake = intake (mg/kg-day)

CS = soil/fringe surface sediment concentration (mg/kg – dry weight)

SA = exposed skin surface area (cm²/day)

AF = skin adherence factor (mg/cm²)

EF = exposure frequency (days/year)

ED = exposure duration (year)

DAF = dermal absorption fraction (chemical-specific) (unitless)

CF = unit conversion factor (kg /10⁶ mg)

BW = body weight (kilograms)
AT = averaging time (days)

5.2.2 Estimating Potential Exposures to COPCs in Air

The following equation is used to calculate the estimated exposure from COPCs in outdoor air, excavation trench air, or indoor air.

Average daily exposure (lifetime and chronic) following inhalation of COPC (mg/m³):

$$ADE = \frac{CA \times ET \times EF \times ED}{AT}$$

where:

ADE = average daily exposure (mg/m^3)

¹⁵ The term AAF is synonymous with the term Relative Bioavailability Factor (RBA).

CA = air concentration (mg/m 3)

ET = exposure time (hours/day)

EF = exposure frequency (days/year)

ED = exposure duration (year)

AT = averaging time (hours)

5.2.3 Estimating Potential Exposures to COPCs in Surface Water

The following equations were used to calculate the estimated exposures to COPCs in surface water (USEPA 1989a, 2004a).

Intake (lifetime and chronic) following incidental ingestion of surface water (mg/kg-day):

$$Intake = \frac{CW \ x \ IR_W \ x \ ET \ x \ EF \ x \ ED}{BW \ x \ AT}$$

where:

Intake = intake (mg/kg-day)

CW = water concentration (mg/L)

 IR_W = ingestion rate of water (L/hour)

ET = exposure time (hours/day)

EF = exposure frequency (days/year)

ED = exposure duration (year)
BW = body weight (kilograms)

AT = averaging time (days)

Calculation of the dose from dermal exposure to surface water follows USEPA guidance (2004a), which differentiates between organic and inorganic chemicals, as presented below. The following equations are used to estimate the dermally absorbed dose following dermal contact with surface water.

Dermally absorbed dose (lifetime and chronic) following dermal contact with surface water (mg/kg-day):

$$DAD = \frac{DA_{event}EF \ x \ EV \ x \ ED \ x \ SA}{BW \ x \ AT}$$

where:

DAD = dermally absorbed dose (mg/kg-day)

DA_{event} = absorbed dose per event (mg/cm²-event)

EF = exposure frequency (days/year) EV = event frequency (1 event/day)

ED = exposure duration (years)

SA = body surface area (cm²)

BW = body weight (kilograms)

AT = averaging time (days)

The calculation of the dose absorbed per unit area per event (DA_{event}) for inorganics or highly ionized organics is as follows:

$$DA_{event} = K_p \ x \ CW \ x \ ET \ x \ CF$$

where:

DA_{event} = absorbed dose per event (mg/cm²-event)

CW = concentration in water (mg/L)

 K_p = permeability constant (cm/hour)

ET = exposure time (hours/event)

CF = conversion factor (L/1000 cm³)

The calculation of DA_{event} for organics is as follows:

If ET < t*, then:

$$DA_{event} = 2FA \times K_p \times CW \times CF \sqrt{\frac{6T \times ET}{\pi}}$$

If $ET > t^*$, then:

$$DA_{event} = FA \ x \ K_p \ x \ CW \ x \ CF \ x \ \left[\frac{ET}{1+B} + 2T \left(\frac{1+3B+3B^2}{(1+B^2)} \right) \right]$$

where:

t* = time to steady state (hour)

DA_{event} = absorbed dose per event (mg/cm²-event)

FA = fraction absorbed water (dimensionless)

 K_p = permeability constant (cm/hour) CW = concentration in water (mg/L) CF = conversion factor (L/1000 cm³)

T = lag time per event (hours/event)

ET = exposure time (hours/event)

B = dimensionless ratio of the K_p of a chemical through the stratum corneum relative to its K_p across the viable epidermis

5.2.4 Estimating Potential Exposures to COPCs in Fish Tissue

The following equation is used to calculate the estimated exposures to COPCs via fish consumption (USEPA, 1989a).

Intake (lifetime and chronic) following fish consumption (mg/kg-day):

$$\frac{Intake = Cf \ x \ FCR \ x \ FI \ x \ (1 - Loss)x \ EF \ x \ ED}{AT \ x \ BW}$$

where:

Intake = intake (mg/kg-day)

Cf = concentration in fish tissue (mg/kg - wet weight)

FCR = fish consumption rate (kg/day)

FI = fraction ingested from Study Area

Loss = preparation/cooking loss (unitless)

EF = exposure frequency (days/year)

ED = exposure duration (years)

BW = body weight (kilograms)

AT = averaging time (days)

5.3 Receptor-Specific Exposure Parameters

This section identifies the receptor-specific exposure parameters that were used to estimate exposure doses for the potential receptors in the BHHRA. As described in the Risk Assessment Work Plan, both RME and CTE scenarios were evaluated. The CTE uses average exposure parameters to calculate an average exposure to an individual. The RME provides an estimate of the upper range of exposure in a population (the 90th percentile or greater of expected exposure, consistent with USEPA, 1992b) and is based on a combination of the upper-bound and central estimates of exposure parameters. As stated in the RAGS Part A (USEPA, 1989a):

Actions at Superfund sites should be based on an estimate of the RME expected to occur under both current and future land-use conditions. The reasonable maximum exposure is defined here as the highest exposure that is reasonably expected to occur at a site. RMEs are estimated for individual pathways.

It is not appropriate to set all RME exposure factor inputs to upper-percentile values, inasmuch as the resulting exposure estimates may exceed RMEs for the population of interest (USEPA, 2004b). The intent of the RME is to estimate a conservative exposure case that is above the average case but still within the range of possible exposures (USEPA, 1989b, 1992b). The purpose of evaluating both CTE and RME scenarios in the BHHRA is to provide risk managers and stakeholders with an estimate of the range of risks from average to upper-bound.

There are a number of parameters for which site-specific data are critical, and use of default exposure assumptions, such as those provided in USEPA risk assessment guidance documents (USEPA, 1989a, 2011, 2014a), may overestimate or underestimate site-specific conditions. For example, recreational exposures at a river depend on factors such as water quality, land and waterway use, public access, and fishery characteristics, as well as demographics of the population. For parameters such as fish consumption rate, exposure frequency, and the duration of exposure events, use of site-specific information promotes development of exposure parameter values that are realistic. For the Benning Road BHHRA, local fish consumption studies, water quality and fishery information, land use and recreation information, and demographic data were considered.

Tables 5-2, 5-3, 5-4, 5-5, and **5-6** present the exposure parameter values used to quantitatively estimate potential risks from exposures to soil, excavation trench air, fringe surface sediment, surface water, and fish tissue, respectively. Exposure factors used in the screening level evaluation of the vapor intrusion to indoor air pathway are those recommended in USEPA (2014a). In accordance with guidance (USEPA, 1989a), the assumptions are intended to capture exposures under both current and future Study Area conditions. The conceptual site model was developed taking into consideration the existing parks, walking trails, boat docks, and fishing activity within the Waterside Investigation Area, as well as potential improvements to these resources. However, it is possible that recreational use could increase at a level higher than assumed here. Therefore, a discussion of the potential for increased exposure in the future is provided in the uncertainty analysis (Section 7). Uncertainties associated with the selected exposure parameters are also discussed in the uncertainty analysis.

A description of each Landside receptor evaluated in the BHHRA is provided in Section 5.3.1 and of each Waterside receptor in Section 5.3.2. The technical basis for the following exposure parameters used in the BHHRA is discussed in **Attachment C**:

- Fish Consumption Exposure Parameters
- Fringe Surface Sediment Ingestion Rates
- Surface Water Ingestion Rates
- Body Surface Areas Exposed

- Skin Adherence Factors
- Exposure Frequency
- Exposure Duration
- Body Weight

5.3.1 Landside Receptors

Landside receptors are assumed to be potentially exposed to soil and groundwater and include potential future recreational visitors and workers.

5.3.1.1 Current/Future Construction Worker

It is assumed that current and future construction workers performing subsurface excavations for utility repair or other construction work may be exposed to COPCs via the following pathways:

- Direct contact (incidental ingestion and dermal contact) with soil (surface and subsurface)
- Inhalation of particulates derived from soil in outdoor air (no volatile COPCs were identified in soil)
- Inhalation of vapors from groundwater in an excavation trench

5.3.1.2 Future Outdoor Industrial Worker

It is assumed that the future outdoor industrial worker may be exposed to COPCs in surface soil via the following pathways:

- Direct contact (incidental ingestion and dermal contact) with surface soil
- Inhalation of particulates derived from surface soil in outdoor air (no volatile COPCs were identified in soil)

5.3.1.3 Future Indoor Industrial Worker

It is assumed that the future indoor industrial worker may be exposed via inhalation to volatile COPCs resulting from groundwater vapor intrusion to indoor air.

5.3.1.4 Future Recreational Visitor

It is assumed that the future recreational visitor (older child/teen, age 7 to <19) may be exposed to COPCs in surface soil in via the following pathways:

- Direct contact (incidental ingestion and dermal contact) with surface soil
- Inhalation of particulates derived from surface soil in outdoor air (no volatile COPCs were identified in soil)

5.3.2 Waterside Receptors

Waterside receptors are assumed to be potentially exposed to Anacostia River media adjacent to the Site (fringe surface sediment, surface water, and fish tissue). Both recreational and worker receptors were considered, as described below.

5.3.2.1 Angler

Angler receptors are defined as those individuals who consume self-caught fish from the Anacostia River in spite of the consumption advisories. Adults and older children/teenagers (7 to <19 years old) are assumed to fish in the Waterside Investigation Area and consume their catch. These anglers are assumed to share self-caught fish with other members of their household.

Anglers can fish from various locations along the shoreline, including parks, bulkheads, bridges, boat launches, and docks, as well as from boats. Anglers are not expected to contact surface water or fringe surface sediment on days when they fish from bridges or bulkheads. However, on days when anglers fish from areas such as mudflats or accessible shoreline, they may be exposed to COPCs in fringe surface sediment and surface water.

A number of parameters were used to calculate the potential risk from consumption of fish, including consumption rate, species, tissue type consumed, fraction ingested from the Waterside Investigation Area, preparation and cooking methods, and years of fishing at the Site. In selecting appropriate fish consumption exposure parameters, USEPA guidance (USEPA, 1989a, b, 1998, 2000, 2011) discusses the importance of considering site-specific factors, including water quality, public access, abundance of desirable species, and proximity of other desirable water bodies, as well as characteristics of the angling population.

The Anacostia River is a tidal river with habitat suitable for a variety of freshwater and estuarine species, including American eel, brown bullhead, channel catfish, largemouth and smallmouth bass, carp, and sunfish. Angling has been observed from shore and boat. A water body-specific fish consumption advisory is in effect for the Anacostia and Potomac Rivers recommending against consumption of some species (catfish, carp, and American eel) and limited consumption of other species (e.g., largemouth bass and sunfish) due to PCBs and pesticides (DOEE, 2016a). However, some people may not be aware of the advisory, or may choose to catch and eat river fish despite the presence of the advisory.

To aid in the development of appropriate fish consumption exposure parameters, available local and regional angler studies were consulted. The fish consumption rate and fraction ingested exposure

parameters used in the BHHRA are discussed in **Attachment D**. Cooking loss factors, which are chemical-specific parameters, are discussed in Section 5.4.4.

It is assumed that the current/future angler receptor may be exposed to COPCs via:

- Consumption of fish caught in the Anacostia River within the Waterside Investigation Area
- Direct contact (incidental ingestion and dermal contact) with fringe surface sediment in the Waterside Investigation Area
- Direct contact (incidental ingestion and dermal contact) with River surface water in the Waterside Investigation Area

5.3.2.2 Swimmer

Recreational users of the Anacostia River may occasionally swim in the River within the Waterside Investigation Area, although this is expected to be an infrequent activity. The swimmer receptor includes the young child (1 to <7 years), older child/teen (7 to <19 years), and adults (>18 years). Given visible deterrents, including the presence of trash and debris along the shoreline and floating in the water, the generally urban setting, including combined sewer overflows and lack of designated swimming spots along the River, as well as pathogen loadings, ¹⁶ the frequency and duration of swimming is expected to be low under both current and future conditions.

It is assumed that the current/future swimmer may be exposed to COPCs via:

- Direct contact (i.e., incidental ingestion and dermal contact) with fringe surface sediment within the Waterside Investigation Area
- Direct contact (i.e., incidental ingestion and dermal contact) with River surface water within the Waterside Investigation Area

5.3.2.3 Wader

Recreational users of the Anacostia River may occasionally wade along the River's edge in the Waterside Investigation Area. This includes individuals who may boat and contact fringe surface sediment and surface water while entering and exiting their boat (e.g., canoe, kayak, scull), as well as a variety of other activities, such as general play, dog walking, bird watching, etc. Waders include the young child (1 to <7 years), older child/teen (7 to <19 years), and adults (>18 years).

¹⁶ The presence of high levels of pathogens in the Anacostia is the primary reason the River is not considered safe for swimming (DOEE, 2008, 2014b).

It is assumed that the current/future wader may be exposed to COPCs via:

- Direct contact (incidental ingestion and dermal contact) with fringe surface sediment within the Waterside Investigation Area
- Direct contact (incidental ingestion and dermal contact) with River surface water within the Waterside
 Investigation Area

5.3.2.4 Shoreline Worker

Workers, including NPS employees, may perform outdoor activities such as trash collection, shoreline maintenance, or other activities that bring them into contact with fringe surface sediment and surface water along the edge of the River adjacent to the Waterside Investigation Area. The worker receptor is assumed to be an adult. It is assumed that the current/future worker may be exposed to COPCs via:

- Direct contact (incidental ingestion and dermal contact) with fringe surface sediment within the Waterside Investigation Area
- Direct contact (incidental ingestion and dermal contact) with River surface water within the Waterside
 Investigation Area

5.4 Chemical-Specific Parameters

The chemical-specific dermal and oral absorption, dermal water absorption, and preparation/cooking loss parameters identified in the equations presented in Section 5.2 are described below.

5.4.1 Dermal Absorption Fractions

The dermal absorption fraction (DAF) accounts for lower absorption through the skin. USEPA chemical-specific DAFs were used where available (USEPA, 2004a). The DAFs for COPCs in soil and fringe surface sediment were compiled from RAGS Part E (USEPA, 2004a) and are presented in **Table 5-7**.

5.4.2 Oral Absorption Adjustment Factors

Absorption adjustment factors (AAFs), or relative bioavailability factors (RBAs), are used in risk assessment to account for absorption differences between humans exposed to substances in environmental situations and experimental animals in the laboratory studies used to derive doseresponse values. Support for use of AAFs is provided in USEPA guidance (1989a, 1992b). The AAF is the ratio between the estimated human absorption factor for the specific medium and route of exposure, and the known or estimated absorption factor for the laboratory study from which the dose-response value was derived.

AAF = (<u>fraction absorbed in humans for the environmental exposure</u>) (fraction absorbed in the dose-response study)

The use of an AAF allows the risk assessor to make appropriate adjustments if the efficiency of absorption between environmental exposure and experimental exposure is known or expected to differ because of physiological effects and/or matrix or vehicle effects. When the dose-response curve is based on administered dose data, and if it is estimated that the fraction absorbed from the site-specific exposure is the same as the fraction absorbed in the laboratory study, then the AAF is 1. In the absence of detailed toxicological information on every chemical, it has been common practice for risk assessors to use a default oral AAF value of 1. However, use of AAFs in standard risk assessment calculations can provide more accurate and more realistic estimates of potential human health risk.

For all soil and fringe surface sediment COPCs except arsenic, a conservative default oral AAF value of 1 was used, which is consistent with the approach used by USEPA in the derivation of RSLs (USEPA, 2018a). For arsenic, USEPA's default oral AAF/RBA of 0.6 was used, which is also consistent with the derivation of soil RSLs (USEPA, 2012, 2018a). The default oral AAFs are presented in **Table 5-7**. The uncertainty associated with using default absorption factors is discussed in the uncertainty analysis.

5.4.3 Dermal Water Parameters

The estimation of exposure resulting from incidental dermal contact with surface water requires the use of a dermal permeability constant (K_p) in units of centimeters per hour (cm/hr). This method assumes that the behavior of chemicals dissolved in water is described by Fick's Law. In Fick's Law, the steady-state flux of the solute across the skin (in milligrams per square centimeter per hour [mg/cm²/hr]) equals the permeability constant (K_p, cm/hr) multiplied by the concentration difference of the solute across the membrane (in milligrams per cubic centimeter [mg/cm³]). This approach is discussed by USEPA (USEPA, 1989b, 2004a).

The K_p values were obtained from USEPA (2004a) Exhibit B-3. In addition to the K_p , several other parameters are necessary to calculate dermal dose from exposure to organic chemicals in water. These parameters, also obtained from USEPA (2004a) Exhibit B-3, include the ratio of the permeability coefficient of a chemical through the stratum corneum relative to its permeability coefficient across the viable epidermis (B, dimensionless), lag time (τ , hours/event), and time to steady state (t^* , hours).¹⁷

¹⁷ The spreadsheets that accompany RAGS Part E (USEPA, 2004a) (available on USEPA's website https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part-e) were used to obtain the specific numerical values for the dermal water dose parameters, as the printed version shows 0.0 for small values.

Consistent with USEPA guidance (2004a, 2018a), dermal contact with surface water was not evaluated for COPCs that are outside the effective predictive domain of the regression model used to derive K_p values, including 2,3,7,8-TCDD-TEQ, 4,4-DDT, and PCBs. These COPCs are discussed qualitatively in the uncertainty analysis.

Table 5-8 presents the dermal water parameters used in the BHHRA.

5.4.4 Preparation/Cooking Loss

Preparation and cooking procedures can modify the amount of COPC ingested by fish consumers (USEPA, 2000). Numerous studies have demonstrated the loss of chemicals such as PCBs and other organic chemicals from fish tissues during preparation and cooking (e.g., Bayen et al., 2005; Hori et al., 2005; Moya et al., 1998; Schecter et al., 1998; Zabik et al., 1994, 1995a, 1995b, 1996; Skea et al., 1979). Cooking loss factors have been included in HHRAs for several sediment sites, including the Housatonic River (Weston, 2005), Lower Fox River (RETEC, 2002), and Kalamazoo River (CDM, 2003). In addition, a preparation and cooking loss factor of 50% for PCBs is used in the derivation of consumption advisories for the Great Lakes (Protocol for a Uniform Great Lakes Sport Fish Consumption Advisory, GLFATF, 1993).

While there is variability and uncertainty in the amount of chemical that is lost during preparation and cooking, the default assumption that no chemical is lost is overly conservative. An assumption of 0% loss represents consumption of a raw, untrimmed fish, since even consuming the cooking juices is unlikely to result in 100% of all of the chemical lost. Consistent with the intent of using an upper-bound (e.g., 90th percentile) value for the RME scenario, a lower 10th percentile on the range of cooking loss factors represents an RME estimate for cooking loss. **Attachment D** presents the calculation of selected percentiles of cooking loss factors for COPCs in fish tissue based on a review of the literature. As shown in **Table 5-9**, the 10th percentile values were used for the RME scenario, and median values were used for the CTE scenario. **Attachment D** presents the derivation of the cooking loss values.

5.5 Exposure Point Concentrations

Exposure points are located where potential receptors may contact COPCs at or from the Study Area. The concentration of COPCs in the environmental medium that receptors may contact must be estimated in order to determine the magnitude of potential exposure. The estimation of EPCs in media evaluated in this BHHRA is discussed below. Both measured and modeled EPCs are discussed where applicable.

5.5.1 Measured EPCs

Per the approved Risk Assessment Work Plans (AECOM, 2012, 2016d), the EPC is defined as the 95% upper confidence limit on the mean (UCL) (USEPA, 2002b) for the RME scenario, and the mean for the CTE scenario.¹⁸

UCLs were calculated using USEPA's ProUCL software (ProUCL Version 5.1, USEPA, 2016). Reporting limits for non-detected data were entered into ProUCL at the full reporting limit. ProUCL identifies the appropriate method with which to estimate the concentrations of the non-detect results rather than simply substituting a value such as the detection limit or one-half the detection limit. The UCL recommended by ProUCL was selected as the EPC, unless the recommended UCL was based on the H-statistic 19 or exceeded the maximum detected concentration, in which case an alternate UCL was selected (USEPA, 2002b).

Based on information presented in the ProUCL guidance (USEPA, 2015) regarding minimum sample size and frequency of detection, UCLs were calculated when at least 10 samples and at least six detected results were available. While ProUCL version 5.1 recommends a minimum of 10 samples with six detected values to calculate reliable UCLs, the guidance recognizes that this may not always be possible due to resource or other restraints and allows the user best professional judgment when determining the validity of the calculations. Due to the small size of the fish tissue data sets for the tidal Anacostia River and the Potomac River, UCLs were calculated when at least four detected results were available. For the other data sets, UCLs were calculated when at least 10 samples and six detected results were available.

The input to and the output from the ProUCL program are presented in Attachment E.

Soil and Groundwater

Exposure areas are the discrete areas over which a specific exposure pattern is expected to occur over the duration of exposure. As noted in Section 5.1.1, eight exposure areas were defined for soil and groundwater. EPCs are presented in the following tables:

The mean of detected concentrations was used when frequency of detection (FOD) was 100%, and the Kaplan Meyer mean (which includes non-detects) was used when the FOD was less than 100%. When the Kaplan-Meier mean could not be calculated due to an insufficient number of detections, then the arithmetic mean of the detected results was selected.

ProUCL computes and outputs UCLs based on the H-statistic for historical reasons only, and notes in the output that "the H-statistic often results in unstable (both high and low) values of UCL95" (USEPA, 2015). Further, the guidance states that "it is therefore recommended to avoid the use of H-statistic based 95% UCLs," and recommends use of non-parametric statistics.

- Surface soil **Table 5-10** (RME) and **5-11** (CTE)
- Soil (0 to 16 feet bgs) **Table 5-12** (RME) and **5-13** (CTE)
- Groundwater (UWZ) Table 5-14 (RME) and 5-15 (CTE)

Fringe Surface Sediment

The Waterside Investigation Area was evaluated as one exposure area for fringe surface sediment. **Tables 5-16** and **5-17** present the RME and CTE fringe surface sediment EPCs, respectively.

Surface Water

As described in Section 3.1.4.2 and depicted in **Figure 3-5**, 10 surface water samples were collected in the Waterside Investigation Area. Because river water is continuously moving, all of the Waterside Investigation Area samples were included in the calculation of the surface water EPCs. **Tables 5-18** and **5-19** present the RME and CTE surface water EPCs, respectively.

Fish Tissue

Anglers' species preferences, species abundance, and feeding guilds were considered in developing tissue EPCs. Based on the angler surveys, the species that is most preferred for consumption is catfish (Gibson and McClafferty, 2005; OpinionWorks, 2012). Catfish have historically been abundant in the DC area waters (MDNR, 2016). In addition to catfish, other species have been reported to be consumed by local anglers, including largemouth bass, striped bass, bullhead, sunfish, and occasionally carp. Thus, the BHHRA evaluated a mixed fish diet scenario that assumed consumption of multiple species representing various feeding guilds and habitats based on angler preferences and available tissue data for each River reach evaluated. This species mix included bottom feeders (carp, catfish, eel), predators (largemouth bass), sunfish, and northern snakehead. Little consumption of carp and eel was reported by anglers (Gibson and McClafferty, 2005). Thus, including these bottom-dwelling species, which generally have high tissue concentrations of lipophilic chemicals including PCBs, results in a conservative mixed fish EPC for the BHHRA. The uncertainty analysis provides an evaluation of a catfish only diet.

EPCs were calculated for each of the five river reaches identified in Section 3.1.4.3 and shown in **Figures 3-7** to **3-9**:

- Upper Anacostia River Area (upstream of the CSX bridge); includes the Waterside Investigation Area, and extends approximately 1.3 miles downstream and 1.9 miles upstream of the Benning Road bridge;
- Lower Anacostia River Area (downstream of the CSX bridge);

- Lower Potomac River (downstream of the 14th Street bridge);
- Upper Potomac River (upstream of the 14th Street bridge);
- Upstream Non-Tidal Anacostia River (north of the Maryland state line); upstream of the Waterside Investigation Area; background area

Tables 5-20 and **5-21** present the RME and CTE fish tissue EPCs, respectively. Mixed diet EPCs were calculated using the available fish species in each reach. Alternative fish diets are evaluated in the uncertainty analysis, as well as consumption of other biota. The available data suggest that crabbing and crab consumption is limited in the Anacostia River. Only six of the 247 DC area anglers interviewed during the 2004 survey reported consuming crab (Gibson and McClafferty, 2005). In addition, blue crabs are not typically present in the Anacostia River (NOAA, 2012).

5.5.2 Modeled EPCs

Fugitive Dust

EPCs for COPCs in fugitive dust (outdoor air) were predicted by combining soil EPCs (calculated as discussed in Section 5.5.1) with particulate emission factors (PEFs) calculated in accordance with USEPA guidance (2002c). PEFs were conservatively calculated based on the total size of the Site (77 acres).

The PEF of 5.7 x 10⁸ cubic meters per kilogram (m³/kg) for outdoor industrial workers and recreational visitors (see **Table 5-22**) was calculated in accordance with USEPA guidance (2002c) using default inputs for a wind-driven/non-excavation scenario and climate inputs representative of Philadelphia, which is the closest city with data available from USEPA (2002c, Exhibit 5-2). The PEF of 8.2 x 10⁵ m³/kg for construction workers (see **Table 5-23**) was calculated using default inputs for an unpaved road traffic scenario (USEPA 2002c, Exhibit 5-2). The PEF model takes into account the number of days per year with precipitation of at least 0.01 inches. Based on information from the University of North Carolina, Southeast Regional Climate Center,²⁰ the annual average number of days per year with at least 0.01 inches of precipitation, measured at the Ronald Reagan Washington National Airport in Washington, DC, is 107 days.

Outdoor air EPCs for the non-excavation scenarios are presented in **Tables 5-24** (RME) and **5-25** (CTE). Outdoor air EPCs for the excavation scenario are presented in **Tables 5-26** (RME) and **5-27** (CTE).

²⁰ https://sercc.com/climateinfo/historical/meanprecip.html

Groundwater Volatilization to Air

Excavation trench air concentrations of COPCs resulting from volatilization from groundwater infiltrating an excavation trench were modeled using a Virginia Department of Environmental Quality (VDEQ) model (VDEQ, 2018). The model for groundwater less than 15 feet bgs was used, with modifications, as discussed in **Attachment F**. The trench air concentrations were used to evaluate the current/future construction worker receptor. Trench air EPCs are presented in **Tables 5-28** (RME) and **5-29** (CTE).

Estimated concentrations of COPCs in indoor air under a potential future vapor intrusion evaluation were estimated using USEPA's VISL calculator in **Attachment B**.

5.6 Groundwater-to-Surface Water Evaluation

Groundwater in the area of the Site discharges to the adjacent Anacostia River. The BHHRA included an evaluation of the potential impact of Site groundwater on the River by comparing estimated in-stream concentrations of chemicals entering the river via groundwater flow from the Site to applicable surface water screening levels. Six nearshore monitoring wells located at the downgradient edge of the Site (MW-01, MW-02, MW-03, MW-04, MW-08, and MW-11) were used to estimate potential Site-related chemicals in groundwater that may be migrating to the River. As discussed in the RI Report, the wells further from the River are not expected to contribute significantly to the potential migration to surface water pathway. The calculation of in-stream concentrations of groundwater chemicals and comparison to surface water screening levels is described below.

5.6.1 Dilution Attenuation Factor Calculation

Groundwater discharges from the Site to the River were calculated for the UWZ and LWZ at the six pairs of nested waterfront wells, from which dilution attenuation factors were computed. Groundwater flux was computed using Darcy's Law: Q = KIA, where "Q" is discharge in cubic feet per second (ft³/sec), "K" is hydraulic conductivity in feet per second (ft/sec), "I" is hydraulic gradient (unitless), and "A" is the area through which the groundwater flows in square feet (ft²). For waterfront wells in which aquifer testing was conducted during the RI (MW-01, MW-03, and MW-11), the average calculated K value was used for the wells' hydraulic conductivity. For wells in which aquifer testing was not conducted, the geometric mean of hydraulic conductivities from the three nearest aquifer-tested wells was used. A local hydraulic gradient was calculated for each well using the slope of the plane formed by the low-tide groundwater level in the well and the groundwater levels in two upgradient wells (three-point problem approach using USEPA's online tool, USEPA, 2018f). A unique cross-sectional area was computed for each well based on water-bearing zone thickness at the well (upper or lower) and a length of boundary segment through which groundwater flows to the River.

The dilution attenuation factors were calculated by dividing the groundwater discharges for each waterfront well by the 7-day, 10-year low streamflow (7Q10) of the River adjacent to the Site (13.9 ft³/sec), estimated using the United States Geological Survey (USGS) Maryland StreamStats application, an online GIS tool for estimating stream flows at ungauged locations (USGS, 2018). The 7Q10 is the lowest 7-day average streamflow that occurs on average once every 10 years.

5.6.2 Instream Surface Water Concentration Calculation

The instream concentrations for each chemical detected in the waterfront wells was calculated by multiplying the groundwater concentrations by the corresponding dilution attenuation factor. The nearshore wells were sampled in November 2014, and samples were analyzed for dioxins and furans, metals, pesticides, PCBs, SVOCs, and VOCs. As discussed in the Risk Assessment Work Plan Addendum (AECOM, 2016d), a number of the elevated constituent concentrations detected during the initial sampling, including dioxins and furans, were attributed to turbidity in the groundwater samples. The turbidity was suspected to be due in part to inadequate well development at the time of monitoring well installation. Therefore, the wells were re-developed and resampled using low-flow methods. The 2016 samples were analyzed for a sub-set of the chemicals analyzed in 2014 and varied by well. For the nearshore wells included in the groundwater to surface water evaluation, the following were analyzed in 2016:²¹

MW-01A: PAHs, dioxins and furans, VOCs

MW-01B: PAHs. VOCs

MW-02A: PAHs, VOCs

MW-02B: PAHs

MW-03A/B: no analysis relevant to BHHRA

MW-04A: dioxins and furans

• MW-04B: pesticides

MW-08A: no analysis relevant to BHHRA

MW-08B: pesticides

MW-11A: dioxins and furans, pesticides, VOCs

MW-11B: dioxins and furans, VOCs

To provide a complete analysis of the potential for groundwater discharge to surface water, the most recent data point for each well and chemical was used to estimate in-stream concentrations.

Table 5-30 presents the groundwater concentrations and estimated instream concentrations for each of the waterfront wells. The dilution attenuation factor calculations are provided in **Attachment G**.

²¹ Only analysis methods used in the BHHRA are listed; for example, PCB congeners, PAHs via method ID-0016, and forensics parameters are not included.

5.6.3 Comparison to Surface Water Screening Levels

The same groundwater-to-surface water screening levels used for COPC selection were also used in the surface water evaluation (see Section 3.2.2). The DOEE water quality standards and USEPA national recommended water quality criteria are based on protection of fish and shellfish that may be consumed by humans. As previously noted, these criteria are typically derived by relating acceptable risk-based concentrations in fish tissue to concentrations in surface water via a BAF. Therefore, they are appropriate screening levels for evaluating the potential impact of Site groundwater on the Anacostia River.

As shown in **Table 5-30**, none of the estimated in-stream concentrations of chemicals in either the UWZ or LWZ exceed their respective surface water screening levels. In summary, based on the results of this screening-level evaluation, Site groundwater is not adversely impacting the Anacostia River.

6 Risk Characterization

The potential risk to human health associated with exposure to COPCs in environmental media at the Study Area was evaluated in the risk characterization step of the risk assessment process. Risk characterization is the process in which the dose-response information (Section 4) is integrated with quantitative estimates of human exposure derived in the Exposure Assessment (Section 5). The result is a quantitative estimate of the likelihood that humans will experience any adverse health effects given the exposure assumptions made. Two general types of health risk are characterized for each potential exposure pathway considered: potential carcinogenic risk and potential noncarcinogenic hazard. Potential carcinogenic risk is evaluated by averaging exposure over a normal human lifetime, which, based on USEPA guidance (1989a), is assumed to be 70 years.²² Potential noncarcinogenic hazard is evaluated by averaging exposure over the total exposure period.

Characterization of the potential health effects of potential carcinogenic and noncarcinogenic chemicals is approached in very different ways. The difference in approaches arises from the conservative assumption that substances with possible carcinogenic action proceed by a no-threshold mechanism, whereas other toxic actions may have a threshold, i.e., a dose below which few individuals would be expected to respond. Thus, under the no-threshold assumption, it is necessary to calculate a risk, but for chemicals with a threshold, it is possible to simply characterize an exposure as above or below the threshold. In risk assessment, that threshold is termed a reference dose or reference concentration. Reference doses and cancer slope factors were discussed in Section 4. The approach to carcinogenic risk characterization is presented in Section 6.1, and the approach to noncarcinogenic risk characterization is presented in Section 6.2. The risk characterization results are presented in Section 6.3. Potential carcinogenic risks and noncarcinogenic hazard indices are presented in the text and tables using one significant figure. Section 6.4 discusses potential chemicals of concern (COCs), and Section 6.5 addresses background conditions in relation to risk. The risk calculations are presented in Attachment H and summarized in tables in this section.

More up-to-date "lifetimes" of 75 years (males), 80 years (females), and 78 years (males and females) are provided in the USEPA's updated Exposure Factors Handbook (2011), which would lower cancer risk estimates by approximately 7% (males only), 13% (females only), and 10% (males and females combined). However, USEPA (2014a) has retained the default of 70 years pending additional evaluation by NCEA.

²³ Based on standard practice for number rounding, risk estimates for which the first digit after the decimal place was equal to or greater than 5 were rounded up (e.g., 1.5 x 10⁻⁴ rounds to 2 x 10⁻⁴), and risk estimates for which the digit after the decimal place was less than 5 were rounded down (e.g., a hazard index of 1.4 rounds to 1).

6.1 Carcinogenic Risk Characterization

The purpose of carcinogenic risk characterization is to estimate the upper-bound likelihood that a human receptor will develop cancer in his or her lifetime as a result of exposure to a chemical in an environmental medium. This likelihood is a function of the dose of a chemical (described in the Exposure Assessment) and the CSF (described in the Dose-Response Assessment) for that chemical.

The American Cancer Society (ACS) estimates that the lifetime probability of contracting cancer in the U.S. is 1 in 3 based on data from 2012 to 2014 (ACS, 2018). The Excess Lifetime Cancer Risk (ELCR) associated with estimated exposures at a site is the likelihood, over and above the lifetime probability, that an individual will develop cancer in his or her lifetime due to those site exposures. The cancer risk is expressed as a probability (e.g., 10-6, or 1 in one million). An ELCR of 10-6 indicates that an individual would have a 1 in one million chance of developing cancer in addition to the 1 in 3 chance estimated by the ACS. The relationship between the ELCR and the estimated lifetime average daily dose (LADD) or average daily exposure (ADE) of a chemical may be expressed as:

If the product of the CSF and the LADD is much greater than 1, the ELCR approaches 1 (i.e., 100 percent probability). If the product is less than 0.01 (1 chance in 100), the equation can be closely approximated by:

- Oral/Dermal: ELCR = LADD (mg/kg-day) x CSF (mg/kg-day)⁻¹
- ELCR = Lifetime ADE (mg/m³) x URF (μg/mg³)⁻¹ x 1,000 μg/mg

The product of the CSF/URF and the LADD/ADE is unitless and provides an upper-bound estimate of the potential carcinogenic risk associated with a receptor's exposure to a chemical or an exposure pathway for each receptor. Current USEPA risk assessment guidelines assume that cancer risks are additive or cumulative. Pathway- and area-specific risks are summed to estimate the total potential cancer risk for each receptor.

USEPA has established target risk levels under the National Contingency Plan (NCP) (USEPA, 1990). Target risk levels refer to levels of cancer risk or hazard indices that are deemed acceptable by the USEPA or other regulatory agencies. These are levels below which the potential for adverse effects to humans are assumed to be negligible or inconsequential. The NCP establishes a target cancer risk range of 10⁻⁶ to 10⁻⁴ and a target HI of less than or equal to 1 (USEPA, 1990). The USEPA subsequently clarified that, "Where the cumulative carcinogenic site risk to an individual based on reasonable maximum exposure for both current and future land use is less than 10⁻⁴, and the non-carcinogenic hazard quotient

is less than 1, action generally is not warranted, unless there are adverse environmental impacts" (USEPA, 1991). Potential COCs are identified in this BHHRA, per DOEE request, as those COPCs with individual cancer risks greater than 1 x 10^{-6} . The identified COCs are discussed and summarized in Section 6.4.

6.2 Noncarcinogenic Risk Characterization

The potential for adverse noncarcinogenic health effects is estimated for each receptor by comparing the chronic average daily dose (CADD) for each COPC with the RfD for that COPC. The resulting ratio, which is unitless, is known as the HQ for that chemical. The HQ is calculated using the following equations:

- Oral/dermal: HQ = CADD (mg/kg-day) ÷ RfD (mg/kg-day)
- Inhalation: HQ = ADE (mg/m³) ÷ RfC (mg/m³)

The target HQ is defined as an HQ of less than or equal to 1 (USEPA, 1989a). When the HQ is less than or equal to 1, the RfD or RfC has not been exceeded, and no adverse noncarcinogenic effects are expected. If the HQ is greater than 1, there may be a potential for adverse noncarcinogenic health effects to occur; however, the magnitude of the HQ cannot be directly equated to a probability or effect level.

The total HI is calculated for each exposure pathway by summing the HQs for each individual chemical. The total HI is calculated for each potential receptor by summing the HIs for each pathway associated with the receptor. If the total HI is greater than 1 for any receptor, a more detailed evaluation of potential noncarcinogenic effects based on specific target organs/health endpoints is performed (USEPA, 1989a).

A summary of all HIs for each receptor group is presented in this section and compared to the target HI of 1. The tables summarizing the per COPC HI show both the total HI and the highest HI by target endpoint; the tables presented in **Attachment H** also show the HI for each target endpoint. The summary tables embedded in the text of Section 6.3 present the highest target organ HI. Each COPC that has an HI above 1 for a particular receptor and for a particular target endpoint is designated a COC. If the cumulative target endpoint HIs for a receptor are less than 1, then no further evaluation or action is recommended to address potential noncarcinogenic hazards (carcinogenic risks must also be considered as discussed above). COPCs having a cumulative target endpoint HI for a receptor greater than 1 are also identified as COCs.

6.3 Risk Characterization Results

The results of the risk characterization are presented below for Landside receptors and Waterside receptors. The risk calculations, including the COPC-specific risks calculated for each receptor, medium,

and exposure pathway, are presented in **Attachment H** for both the RME and CTE scenarios. **Attachment H** also presents the calculation of HI by target endpoint.

6.3.1 Landside Receptors

Risk characterization results for Landside receptors are presented below.

6.3.1.1 Current/Future Construction Worker

The construction worker receptor is assumed to be exposed to COPCs in soil via incidental ingestion and dermal contact, and via inhalation from particulates derived from soil as well as volatiles infiltrating an excavation trench from groundwater. The risk characterization results for the construction worker receptor are presented in **Tables 6-1** through **6-4** as follows:

- Table 6-1 Total Potential Carcinogenic Risks for Construction Worker Receptor, RME
- Table 6-2 Total Potential Hazard Index for Construction Worker Receptor, RME
- Table 6-3 Total Potential Carcinogenic Risks for Construction Worker Receptor, CTE
- Table 6-4 Total Potential Hazard Index for Construction Worker Receptor, CTE

As shown in **Tables 6-1** and **6-3**, the total potential carcinogenic risks are within or below the USEPA target risk range of 10⁻⁴ to 10⁻⁶ for the RME and CTE scenarios. As shown in **Tables 6-2** and **6-4**, total potential noncarcinogenic hazards are above the USEPA target HI of 1 for the RME scenario in the warehouse and laydown area, the salvage yard and waste storage space, and the transformer shop. While the total HI in the potential future park land/green space exceeds 1, target endpoint HIs do not exceed 1. Total HIs are below 1 under the CTE scenario. The cumulative RME and CTE cancer risks and noncancer hazards for the construction worker receptor are summarized in the following table.

Cumulative Risks/Hazards for Current/Future Construction Worker								
	Can	cer	Noncancer ^a					
Exposure Area	RME	CTE	RME	CTE				
Hypothetical Future Park Land/Green Space	2E-08	8E-09	1	0.3				
Warehouse and Laydown Area	4E-07	7E-08	3	0.5				
Salvage Yard and Waste Storage Area	5E-07	1E-07	0.7	0.1				
Stores and Fleet Maintenance Area	9E-08	3E-08	0.2	0.07				
Offices and Parking Lot	4E-07	8E-08	0.8	0.2				
Substation #7	3E-07	3E-08	0.5	0.08				
Transformer Shop	2E-06	7E-07	1.6	0.5				
Vehicle Refueling Area	4E-08	1E-08	0.2	0.08				

Notes:

Blue highlighting indicates that cumulative risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

Yellow highlighting indicates that cumulative risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1.

The only COPC with a potential cancer risk greater than 10⁻⁶ is total PCBs under the RME scenario for the transformer shop, driven by direct-contact with soil.

As indicated in the risk calculation tables in **Attachment H**, target endpoint-specific HIs exceed 1 in two areas:

- Warehouse and laydown area. A target endpoint HI of 3 for respiratory effects from inhalation of particulates from soil was calculated for the warehouse and laydown area. The majority of the HI is due to inhalation of vanadium in soil fugitive dust. The RfC for vanadium is the ATSDR MRL for chronic exposure, which is defined as exposure durations greater than or equal to 1 year (a subchronic RfC for vanadium is not available). Therefore, the inhalation HI for vanadium is conservative and likely an overestimate of the potential hazard from short-term (40-day) inhalation exposure to soil during an excavation event in the warehouse and laydown area.
- <u>Transformer shop</u>. A target endpoint HI of 1.6 for eye, nails, and immune effects from ingestion and dermal contact with soil was calculated for the transformer shop, due to total PCBs. The HI for total PCBs is based on the subchronic RfD.

The target endpoint evaluation indicates that no other COPCs drive the exceedance of an HI of 1 on a target endpoint basis.

^a Highest target endpoint HI.

6.3.1.2 Future Outdoor Industrial Worker

The outdoor worker receptor is assumed to be exposed to COPCs in surface soil via incidental ingestion and dermal contact, and via inhalation from particulates derived from surface soil. The risk characterization results for the outdoor industrial worker receptor are presented in **Tables 6-5** through **6-8** as follows:

- Table 6-5 Total Potential Carcinogenic Risks for Outdoor Industrial Worker Receptor, RME
- Table 6-6 Total Potential Hazard Index for Outdoor Industrial Worker Receptor, RME
- Table 6-7 Total Potential Carcinogenic Risks for Outdoor Industrial Worker Receptor, CTE
- Table 6-8 Total Potential Hazard Index for Outdoor Industrial Worker Receptor, CTE

As shown in **Tables 6-5** and **6-7**, the total potential carcinogenic risks are within or below the USEPA target risk range of 10⁻⁴ to 10⁻⁶ for the RME and CTE scenarios with the exception of the transformer shop. As shown in **Tables 6-6** and **6-8**, the total potential noncarcinogenic hazards are below 1 with the exception of the transformer shop. The cumulative RME and CTE cancer risks and noncancer hazards for the outdoor industrial receptor are summarized in the following table.

Cumulative Risks/Hazards for Future Outdoor Industrial Worker							
	Can	ncer	None	cancer ^a			
Exposure Area	RME	CTE	RME	CTE			
Hypothetical Future Park Land/Green Space	1E-06	1E-07	0.3	0.1			
Warehouse and Laydown Area	2E-05	1E-06	1	0.2			
Salvage Yard and Waste Storage Area	1E-05	1E-06	0.3	0.05			
Stores and Fleet Maintenance Area	4E-06	4E-07	0.08	0.03			
Offices and Parking Lot	3E-06	4E-07	0.03	0.01			
Substation #7	2E-05	6E-07	0.3	0.02			
Transformer Shop	2E-03	3E-05	124	8			
Vehicle Refueling Area	1E-06	1E-07	0.03	0.01			

Notes:

Blue highlighting indicates that cumulative cancer risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

Yellow highlighting indicates that cumulative risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1.

COPCs with potential risks greater than 1x10⁻⁶ or a target endpoint HI above 1 under the RME scenario include:

^a Highest target endpoint HI.

СОРС	Risk/ HI	Warehouse and Laydown Area	Salvage Yard and Storage Area	Stores and Fleet Maintenance Area	Substation #7	Transformer Shop
2,3,7,8-	Risk		4E-06			
TCDD-TEQ	HI					
Araonia	Risk	1E-05	4E-06	2E-06	1E-05	
Arsenic	HI					
Total DCDa	Risk	5E-06	2E-06		4E-06	2E-03
Total PCBs	H		-	1		124

Notes:

Blue highlighting indicates that risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

Yellow highlighting indicates that risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1.

While the total potential cancer risk in the offices and parking lot area exceeds 10⁻⁶, there are no individual COPCs with cancer risks greater than 10⁻⁶.

Under the CTE scenario, the only COPC with a potential cancer risk greater than 10⁻⁶ or an HI greater than 1 is total PCBs in the transformer shop, driven by direct-contact with soil. The target endpoint evaluation presented in **Attachment H** indicates that no other COPCs drive the exceedance of an HI of 1 on a target endpoint basis under the RME or CTE scenario.

The RME EPC of 2,013 mg/kg for total PCBs in the transformer shop area is based on 48 surface soil samples with total PCB concentrations ranging from less than 1 mg/kg to 8,800 mg/kg,²⁴ an average of 189 mg/kg, and a median value of 0.09 mg/kg. The next highest surface soil concentration of total PCBs (130 mg/kg) occurred at location SUSDP21-3M. Removal of the elevated total PCB value from the EPC derivation results in an RME EPC of 25 mg/kg, a cancer risk of 2x10⁻⁵, and an HI of 1.5. Because the estimated cancer risk and noncancer hazard in this area driven by elevated concentrations detected at a single sampling location out of 48 total samples, the results are associated with a high degree of uncertainty.

The RME surface soil EPC of 5.1 mg/kg for total PCBs in the substation #7 area is based on 13 surface soil samples. This EPC is the maximum detected concentration from location SUSDP20 in 2013. The next highest concentration of 0.42 mg/kg from location SUS201F results in an estimated cancer risk of 1x10⁻⁷,

24

⁻⁻ Indicates that cancer risk is less than or equal to 10^{-6} or HI is less than or equal to 1.

²⁴ This concentration was detected in surface soil sample SUSDP21-3G, which had an elevated concentration of Aroclor-1248 (2,500 mg/kg initial analysis and 8,800 mg/kg in re-analysis). The higher concentration was used in the EPC derivation.

an order of magnitude below 1x10⁻⁶. Therefore, the estimated cancer risk, which is driven by one elevated concentration, is associated with a high degree of uncertainty.

While potential risks associated with arsenic exceed 10⁻⁶, arsenic concentrations in soil are consistent with background in several areas of the Site, as further discussed in Section 6.5.

6.3.1.3 Future Indoor Industrial Worker

A future indoor industrial worker was evaluated for potential exposures to VOCs resulting from groundwater vapor intrusion into indoor air of a potential future building, as shown in **Attachment B**. Based on the screening level evaluation and maximum detected groundwater concentrations, potential cancer risks are within or below the USEPA target risk range of 10⁻⁴ to 10⁻⁶. The total HI is greater than 1 along the southern boundary. Total potential risks and HI values are indicated in the table below. COPCs with potential risks greater than 1x10⁻⁶ or a target endpoint HI above 1 are indicated with highlighting in the tables below:

	Potential Cancer Risk							
COPC	Southern Boundary ^a	Northern Boundary (DP-60)	Downgradient Perimeter (TA19C1, TA19C2)	MW05A				
Chloroform	4E-07	4E-06	ND	2E-07				
Tetrachloroethylene	7E-06	7E-09	5E-07	2E-07				
Trichloroethylene	6E-06	ND	8E-07	3E-07				
Vinyl Chloride	2E-06	ND	ND	ND				
Total	2E-05	4E-06	1E-06	8E-07				

Notes:

ND – Not detected.

Blue highlighting indicates that the cumulative potential risk is within USEPA's target risk range of 10⁻⁶ to 10⁻⁴

(a) Wells with exceedances: DPA3, DPA4, DPA5, DPB10, DPB3, DPB5, DPB6, DPB7, DPB9, DPC4, DPC5, DPC7, MW09A, SUSDP09.

	Potential Noncancer Hazard Index (HI)							
COPC	Southern Boundary ^a	Northern Boundary (DP-60)	Downgradient Perimeter (TA19C1, TA19C2)	MW05A				
Chloroform	0.0005	0.005	ND	0.0003				
Tetrachloroethylene	2	0.002	0.1	0.06				
Trichloroethylene	2	ND	0.3	0.1				
Vinyl Chloride	0.01	ND	ND	ND				
Total	4	0.007	0.4	0.2				

Notes:

ND - Not detected.

Yellow highlighting indicates that the target endpoint HI exceeds one.

(a) Wells with exceedances: DPA3, DPA4, DPA5, DPB10, DPB3, DPB5, DPB6, DPB7, DPB9, DPC4, DPC5, DPC7, MW09A, SUSDP09.

6.3.1.4 Future Recreational Visitor

The recreational visitor receptor is assumed to be exposed to COPCs in surface soil via incidental ingestion and dermal contact, and via inhalation from particulates derived from surface soil. The recreational visitor is assumed to be potentially exposed to COPCs only in the hypothetical future park land/green space area. The risk characterization results for the recreational visitor receptor are presented in **Tables 6-9** through **6-12** as follows:

- Table 6-9 Total Potential Carcinogenic Risks for Recreational Visitor Receptor, RME
- Table 6-10 Total Potential Hazard Index for Recreational Visitor Receptor, RME
- Table 6-11 Total Potential Carcinogenic Risks for Recreational Visitor Receptor, CTE
- Table 6-12 Total Potential Hazard Index for Recreational Visitor Receptor, CTE

As shown in **Tables 6-9** and **6-11**, the total potential carcinogenic risks are below 10⁻⁶ for both the RME and CTE scenarios. As shown in **Tables 6-10** and **6-12**, the total potential noncarcinogenic hazards are below 1. The cumulative RME and CTE cancer risks and noncancer hazards for the recreational visitor are summarized in the following table.

Cumulative Risks/Hazards for Future Recreational Visitor Receptor Hypothetical Future Park Land/Green Space						
	Older Child/Teen					
Receptor	Cancer	Noncancer ^a				
Recreational Visitor (RME)	7E-08	0.04				
Recreational Visitor (CTE)	7E-09	0.009				
Notes: a Highest target endpoint HI.						

6.3.2 Waterside Receptors

Risk characterization results for Waterside receptors are presented below.

6.3.2.1 Angler Receptor

The angler receptor is assumed to be exposed to COPCs in fringe surface sediment and surface water via incidental ingestion and dermal contact and to COPCs from ingestion of fish caught from the Upper Anacostia River. As described in Section 5.5.1, the evaluation of fish consumption risks considered a mixed fish diet; a catfish only diet is considered in the uncertainty analysis.

The risk characterization results for the angler receptor are presented in **Tables 6-13** through **6-16** for the Upper Anacostia River. To provide additional context, risk characterization results are also presented in **Tables 6-17** through **6-20** for the following four additional regional river reaches: the Lower Anacostia, the Upper Potomac, the Lower Potomac, and the Upstream Non-Tidal Anacostia River (background). The results are presented in the following tables:

- Table 6-13 Total Potential Carcinogenic Risks for Angler Receptor, RME
- Table 6-14 Total Potential Hazard Index for Angler Receptor, RME
- Table 6-15 Total Potential Carcinogenic Risks for Angler Receptor, CTE
- Table 6-16 Total Potential Hazard Index for Angler Receptor, CTE
- Table 6-17 Total Potential Carcinogenic Risks for Angler Receptor, RME, Regional
- Table 6-18 Total Potential Hazard Index for Angler Receptor, RME, Regional
- Table 6-19 Total Potential Carcinogenic Risks for Angler Receptor, CTE, Regional
- Table 6-20 Total Potential Hazard Index for Angler Receptor, CTE, Regional

Note that exposure to fringe surface sediment and surface water were not evaluated for the regional reaches, as these areas are outside the boundary of the Waterside Investigation Area. Further, as indicated in Tables 6-13 to 6-16, these pathways are minor contributors to total risk for the angler receptor.

As shown in these tables, the total potential carcinogenic risks (RME and CTE) are within the USEPA target risk range of 10⁻⁴ to 10⁻⁶ for all of the recreational angler scenarios except for the RME scenario for the Upper Potomac River reach. The total potential HI for the RME recreational angler exceeds the target noncancer HI of 1 for all reaches except for the Upstream Non-Tidal Anacostia River, as discussed further below. The exceedance of the noncancer target HI of 1 is due to PCBs in fish tissue (based on both total PCBs for eye, nail, and immune effects and PCB-TEQ for reproductive and developmental effects). The potential carcinogenic risks and noncarcinogenic hazards posed by direct contact with fringe surface sediment and surface water are within or below USEPA's target risk levels.

For the young child age group, which has the highest noncancer hazards, the highest RME target endpoint HI for the Upper Anacostia is 4 and is driven by total PCBs. RME target endpoint HIs for regional reaches range from 0.6 (Upstream Non-Tidal Anacostia River) to 10 (Upper Potomac, driven by total PCBs). The highest RME target endpoint HI for the downstream, Lower Anacostia River reach is 5 and is driven by PCBs. Using CTE assumptions, the noncancer HIs for all age groups and areas are at or below 1. The target endpoint evaluation provided in **Attachment H** indicates that no other COPCs drive the exceedance of an HI of 1 on a target endpoint basis.

The cumulative RME and CTE cancer risks and noncancer hazards for the recreational angler receptor are summarized in the following tables. The cumulative risks/hazards are presented separately by area for total PCBs and PCB-TEQ.

Cumulative Risks/Hazards for Recreational Angler Receptor (RME)								
	Can	cer		Noncance	er ^a			
Receptor	Adult/ Young Child	Older Child/Teen	Adult	Young Child	Older Child/Teen			
Anacostia River ^b								
Upper Anacostia (Total PCBs)	4E-05	2E-05	2	3	2			
Upper Anacostia (PCB-TEQ)	2E-05	9E-06	0.4	0.7	0.4			
Background River Reaches ^c								
Upstream Non-Tidal Anacostia (Total PCBs)	7E-06	3E-06	0.4	0.6	0.4			
Upstream Non-Tidal Anacostia (PCB-TEQ)	8E-06	3E-06	0.4	0.6	0.4			
Regional River Reaches °								
Lower Anacostia (Total PCBs)	7E-05	3E-05	3	5	3			
Lower Anacostia (PCB-TEQ)	9E-05	4E-05	2	3	2			

Cumulative Risks/Hazards for Recreational Angler Receptor (RME)							
	Can	cer	Noncancer ^a				
Receptor	Adult/ Older Young Child Child/Teen		Adult	Young Child	Older Child/Teen		
Lower Potomac (Total PCBs)	6E-05	2E-05	1	2	1		
Lower Potomac (PCB-TEQ)	6E-05	3E-05	0.7	1	0.7		
Upper Potomac (Total PCBs)	2E-04	7E-05	9	10	9		
Upper Potomac (PCB-TEQ)	2E-04	1E-04	6	9	5		

Notes:

Blue highlighting indicates that cumulative risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

Yellow highlighting indicates that cumulative risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1.

^c Includes consumption of a mixed fish diet.

Cumulative Risks/Hazards for Recreational Angler Receptor (CTE)							
	Can	cer	Noncancer ^a				
Receptor	Adult/Young Child	Older Child/Teen	Adult	Young Child	Older Child/Teen		
Anacostia River ^b							
Upper Anacostia (Total PCBs)	2E-06	1E-06	0.2	0.3	0.2		
Upper Anacostia (PCB-TEQ)	1E-06	5E-07	0.03	0.06	0.04		
Background Area ^c							
Upstream Non-Tidal Anacostia (Total PCBs)	5E-07	2E-07	0.08	0.1	0.03		
Upstream Non-Tidal Anacostia (PCB-TEQ)	5E-07	3E-07	0.08	0.1	0.03		
Regional Reaches ^c							
Lower Anacostia (Total PCBs)	3E-06	2E-06	0.3	0.5	0.4		
Lower Anacostia (PCB-TEQ)	4E-06	2E-06	0.2	0.3	0.2		
Lower Potomac (Total PCBs)	2E-06	1E-06	0.2	0.3	0.2		
Lower Potomac (PCB-TEQ)	2E-06	1E-06	0.08	0.1	0.08		
Upper Potomac (Total PCBs)	5E-06	2E-06	0.5	0.7	0.5		
Upper Potomac (PCB-TEQ)	7E-06	3E-06	0.3	0.5	0.4		

Notes:

Blue highlighting indicates that cumulative risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

COPCs with potential risks greater than 1x10⁻⁶ or an HI above 1 under the RME scenario based on the combined adult and child for cancer and the child for non-cancer include:

^a Highest target endpoint HI.

^b Includes incidental ingestion and dermal contact with fringe surface sediment and surface water, and consumption of a mixed fish diet. Upper Anacostia encompasses the Waterside Investigation Area (**See Figure 3-7**).

^a Highest target endpoint HI.

^b Includes incidental ingestion and dermal contact with fringe surface sediment and surface water, and consumption of a mixed fish diet. Upper Anacostia encompasses the Waterside Investigation Area (see **Figure 3-7**).

^c Includes consumption of a mixed fish diet.

COPCs with Risks Greater than 10 ⁻⁶ and Hazards above 1 RME Scenario							
СОРС	Risk/ HI	Upper Anacostiaª	Lower Anacostia ^b	Upper Potomac ^b	Lower Potomac ^b	Upstream Non-Tidal Anacostia ^b	
PCBs and Dioxins							
Total DCDa	Risk	3E-05	5E-05	1E-04	2E-05	3E-06	
Total PCBs	HI	3	5	14	2		
DOD TEO	Risk	1E-05	7E-05	2E-04	3E-05	4E-06	
PCB-TEQ	HI		3	9		-	
2,3,7,8-TCDD-TEQ	Risk	2E-06		-	-	-	
Pesticides							
4,4-DDE	Risk			4E-06			
Dieldrin	Risk	5E-06	1E-05	2E-05	5E-06		
Heptachlor epoxide	Risk		2E-06				
Inorganics							
Arsenic	Risk		2E-06	3E-06	3E-05		

Notes

Blue highlighting indicates that risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

Under the CTE scenario, total PCBs (in fish tissue) exceeds 1x10⁻⁶ in the Upper Anacostia (but is less than 1x10⁻⁵). Total PCBs and PCB-TEQ (in fish tissue) exceeds 1x10⁻⁶ in the Lower Anacostia and the Upper Potomac, as indicated below. All CTE HIs are below 1.

⁻⁻ Indicates that cancer risk is less than or equal to 10⁻⁶ or HI is less than or equal to 1. Risk is presented for the sum of the adult and the young child, and the HI is presented for the young child. The older child/teen risk and HI values are lower.

Yellow highlighting indicates that cancer risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1.

^a Upper Anacostia encompasses the Waterside Investigation Area (see **Figure 3-7**). Potential cancer risks and noncancer hazards include fish consumption and direct contact with fringe surface sediment and surface water.

^b Potential risks and hazards include fish consumption only.

COPCs with Risks Greater than 10 ⁻⁶ and Hazards above 1 CTE Scenario							
COPC Risk Upper Lower Upper Lower Non-Tidal Anacostia Anacostia Anacostia							
PCBs and Dioxins							
Total PCBs	Risk	2E-06	3E-06	4E-06			
PCB-TEQ	Risk		3E-06	6E-06	-	-	

Notes:

Blue highlighting indicates that risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

6.3.2.2 Swimmer Receptor

The swimmer receptor is assumed to be exposed to COPCs in fringe surface sediment and surface water via incidental ingestion and dermal contact (all three age groups). The risk characterization results for the swimmer receptor are presented in **Tables 6-21** through **6-24** as follows:

- Table 6-21 Total Potential Carcinogenic Risks for Swimmer Receptor, RME
- Table 6-22 Total Potential Hazard Index for Swimmer Receptor, RME
- Table 6-23 Total Potential Carcinogenic Risks for Swimmer Receptor, CTE
- Table 6-24 Total Potential Hazard Index for Swimmer Receptor, CTE

As shown in **Tables 6-21** and **6-23**, the total potential carcinogenic risks are within or below the USEPA target risk range of 10⁻⁶ to 10⁻⁴ for the RME and CTE scenarios. As shown in **Tables 6-22** and **6-24**, the total potential noncarcinogenic hazards are below the USEPA target HI of 1 for the RME and CTE scenarios. The cumulative RME and CTE cancer risks and noncancer hazards for the swimmer receptor are summarized in the following table.

⁻⁻ Indicates that cancer risk is less than or equal to 10⁻⁶. Risk is presented for the sum of the adult and the young child. The older child/teen risk is lower.

^a Upper Anacostia encompasses the Waterside Investigation Area (see **Figure 3-7**). Potential cancer risks and noncancer hazards include fish consumption and direct contact with fringe surface sediment and surface water. Potential risks and hazards are driven by fish consumption.

^b Potential risks include fish consumption only.

Cumulative Risks/Hazards for Swimmer Receptor							
	Cancer Noncancer ^a						
Receptor	Adult/Young Child	<u> </u>		Young Child	Older Child/Teen		
Swimmer (RME)	2E-06	7E-07	0.03	0.08	0.03		
Swimmer (CTE)	9E-08	7E-08	0.001	0.008	0.003		

Notes:

Blue highlighting indicates that cumulative risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

There are no COPCs with an individual risk greater than 10⁻⁶ or an HI greater than 1.

6.3.2.3 Wader Receptor

The wader receptor is assumed to be exposed to COPCs in fringe surface sediment and surface water via incidental ingestion and dermal contact (all three age groups). The risk characterization results for the wader receptor are presented in **Tables 6-25** through **6-28**, as follows:

- Table 6-25 Total Potential Carcinogenic Risks for Wader Receptor, RME
- Table 6-26 Total Potential Hazard Index for Wader Receptor, RME
- Table 6-27 Total Potential Carcinogenic Risks for Wader Receptor, CTE
- Table 6-28 Total Potential Hazard Index for Wader Receptor, CTE

As shown in **Tables 6-25** and **6-27**, the total potential carcinogenic risks are within or below the USEPA target risk range of 10⁻⁴ to 10⁻⁶ for the RME and CTE scenarios. As shown in **Tables 6-26** and **6-28**, the total potential noncarcinogenic hazards are below the USEPA target HI of 1 for the RME and CTE scenarios. The cumulative RME and CTE cancer risks and noncancer hazards for the wader receptor are summarized in the following table.

Cumulative Risks/Hazards for Wader Receptor					
	Can	cer	Noncancer ^a		
Receptor	Adult/Young Child	Older Child/Teen	Adult	Young Child	Older Child/Teen
Wader (RME)	4E-06	1E-06	0.04	0.2	0.05
Wader (CTE)	2E-07	1E-07	0.004	0.02	0.006

Notes:

Blue highlighting indicates that cumulative risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴. ^a Highest target endpoint HI.

^a Highest target endpoint HI.

The only COPC with a potential risk greater than 10⁻⁶ is 2,3,7,8-TCDD-TEQ for the adult/child receptor RME scenario. The potential risk is driven by direct contact with fringe surface sediment. There are no COPCs with an HI greater than 1.

6.3.2.4 Shoreline Worker Receptor

The shoreline worker receptor is assumed to be exposed to COPCs in fringe surface sediment and surface water via incidental ingestion and dermal contact (adult age group). The risk characterization results for the wader receptor are presented in **Tables 6-17** through **6-20**, as follows:

- Table 6-29 Total Potential Carcinogenic Risks for Shoreline Worker Receptor, RME
- Table 6-30 Total Potential Hazard Index for Shoreline Worker Receptor, RME
- Table 6-31 Total Potential Carcinogenic Risks for Shoreline Worker Receptor, CTE
- Table 6-32 Total Potential Hazard Index for Shoreline Worker Receptor, CTE

As shown in **Tables 6-29** and **6-31**, the total potential carcinogenic risks are within or below the USEPA target risk range of 10⁻⁴ to 10⁻⁶ for the RME and CTE scenarios. As shown in **Tables 6-30** and **6-32**, the total potential noncarcinogenic hazards are below the USEPA target HI of 1 for the RME and CTE scenarios. The cumulative RME and CTE cancer risks and noncancer hazards for the shoreline worker receptor are summarized in the following table.

Cumulative Risks/Hazards for Shoreline Worker Receptor			
Cancer		Noncancer ^a	
Receptor	Adult	Adult	
Shoreline Worker (RME)	4E-06	0.09	
Shoreline Worker (CTE)	1E-07	0.008	

Notes

Blue highlighting indicates that cumulative risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

^a Highest target endpoint HI.

The only COPC with a potential risk greater than 10⁻⁶ is 2,3,7,8-TCDD-TEQ under the RME scenario. The potential risk is driven by direct contact with fringe surface sediment. There are no COPCs with an HI greater than 1.

6.4 Potential COCs

Per DOEE's request, potential COCs are identified in this BHHRA as those COPCs with individual cancer risks greater than 1 x 10⁻⁶ or a target endpoint HI greater than 1.

6.4.1 Landside Investigation Area

The table below presents the potential COCs with potential risks greater than 10⁻⁶ or a target endpoint HI of 1 for the Landside Investigation Area; the hazard value representing the highest target endpoint HI is presented.

		Landside Investigation Area				
Potential COC	Risk/HI	Warehouse and Laydown Area	Salvage Yard and Storage Area	Stores and Fleet Maintenance Area	Substation #7	Transformer Shop
2,3,7,8-TCDD-TEQ	Risk		4E-06 ^a			
Arsenic	Risk	1E-05	4E-06 ^a	2E-06 ^a	1E-05ª	
Vanadium	HI	3 ^b				
Total PCBs	Risk	5E-06 ^a	2E-06 ^a		4E-6 ^a	2E-03ª
	HI					124 ^a 1.6 ^b

Notes:

Blue highlighting indicates that risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

As shown in the table above, arsenic in on-Site soil was found to pose a potential risk in excess of 10⁻⁶, however, the background evaluation (see Section 6.5) found that arsenic concentrations in on-Site soil are consistent with background. Therefore, arsenic is not identified as a potential Landside soil COC.

Based on the conservative screening level evaluation of the vapor intrusion pathway, the following table presents the COCs identified for the potential future scenario in which a building is constructed along the southern or northern property boundary. The hazard value representing the highest target endpoint HI is presented.

⁻⁻ Indicates that cancer risk is less than or equal to 10^{-6} or HI is less than or equal to 1.

Yellow highlighting indicates that risk exceeds 10^{-4} or the target endpoint HI exceeds 1.

^a Future outdoor industrial worker surface soil (0-1 foot bgs).

^b Current/future construction worker soil (0-16 feet bgs).

COPC	Risk/HI	Potential COCs for the Future Vapor Intrusion Pathway ^a			
		Southern Boundary (a)	Northern Boundary (DP-60)		
Chloroform	Risk		4E-06		
Tetrachloroethylene	Risk	7E-06			
	HI	2			
Trichloroethylene	Risk	6E-06			
	HI	2			
Vinyl Chloride	Risk	2E-06			

Notes:

Blue highlighting indicates that risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

Yellow highlighting indicates that risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1.

6.4.2 Waterside Investigation Area

The table below presents the potential COCs with potential risks greater than 10⁻⁶ or a target endpoint HI of 1 for the Upper Anacostia River and the Waterside Investigation Area; the hazard value representing the highest target endpoint HI is presented.

		Fish Tissue ^a	Fringe Surface Sediment	
Potential COC	Risk/HI	Upper Anacostia	Pepco Waterside Investigation Area	
2,3,7,8-TCDD-TEQ	Risk		2E-06 ^a 3E-06 ^{b,c}	
Total PCBs	Risk	3E-05		
Total PCBS	HI 3			
PCB-TEQ	Risk	1E-05		
Dieldrin	Risk	5E-06		

Notes:

Blue highlighting indicates that risk exceeds 10^{-6} but is less than or equal to 10^{-4} .

Yellow highlighting indicates that risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1.

- ^a Current/future recreational angler.
- ^b Current/future shoreline worker.
- ^c Current/future wader.

⁻⁻ Indicates that cancer risk is less than or equal to 10^{-6} or HI is less than or equal to 1.

^a Future outdoor industrial worker.

⁻⁻ Indicates that cancer risk is less than or equal to 10^{-6} or HI is less than or equal to 1. Risk is presented for the sum of the adult and the young child, and the HI is presented for the young child. The older child/teen risk and HI values are lower.

The potential COCs for all receptors and exposure scenarios are summarized in the following table.

Landside		Waterside	
Soil	Groundwater (Vapor Intrusion)	Fringe Surface Sediment	Upper Anacostia Fish Tissue
X ^a		Х	
X p			
Χc			
X d			Х
			X
			Х
	Xe		
	X ^f		
	X ^f		
	X ^f		
	Soil Xa Xb Xc	Soil Groundwater (Vapor Intrusion) Xa Xb Xc Xd Xe Xf Xf Xf	Soil Groundwater (Vapor Intrusion) Xa Xb Xc Xd Xe Xf Xf

Notes:

Blue highlighting indicates that risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

Yellow highlighting indicates that risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1.

Highlighting indicates that cumulative risks exceed 10-4 or the target endpoint HIs exceed one.

- ^a Salvage yard and storage area, surface soil.
- ^b Warehouse and laydown area, salvage yard and storage area, stores and fleet maintenance area, substation #7. Surface soil.
- ^c Warehouse and laydown area, soil (0-16 feet bgs).
- ^d Warehouse and laydown area, surface soil. Transformer shop, soil (0-16 feet bgs).
- e Northern boundary.
- f Southern boundary.

6.5 Evaluation of Background and Regional Fish Tissue Data

6.5.1 Background Evaluation

Accounting for background area information is integral to evaluating risks posed by the release of hazardous substances in the Study Area. USEPA (2002e) notes that a primary objective of CERCLA risk assessments is to provide information on risks that can be effectively addressed through remedial actions. USEPA (2002e) states, "Specifically, the COPCs with high background concentrations should be discussed in the risk characterization, and if data are available, the contribution of background to site concentrations should be distinguished." Taking background area information into account during the risk assessment process informs the understanding of risks associated with site releases, as opposed to risks resulting from the presence of constituents that may have migrated into the site, or that may reflect regional conditions related to human activities (Judd et al. 2003).

USEPA (2002d) defines background as: "Substances or locations that are not influenced by the releases from a site and are usually described as naturally occurring or anthropogenic: (1) Naturally occurring substances are present in the environment in forms that have not been influenced by human activity; (2) Anthropogenic substances are natural and human-made substances present in the environment as a result of human activities (not specifically related to the CERCLA site in question)." It further defines a background reference area as: "The area where background samples are collected for comparison with samples collected on site. The reference area should have the same physical, chemical, geological, and biological characteristics as the site being investigated, but has not been affected by activities on the site." Based on these definitions, the most appropriate data sets from which to obtain information on background and reference information are those collected from areas that have similar characteristics to the environment of the Site and the Anacostia River.

Appendix W of the RI Report describes the methodology of the refined background evaluation for each environmental medium. The refined background evaluation methodology includes both graphical and statistical evaluations. Graphical evaluation includes boxplots, probability plots, and index plots. Statistical analyses include distribution testing, outlier testing, calculation of background threshold value (BTV) statistics, and population tests. Outliers were removed prior to calculating BTVs and running population tests, as described in Appendix W of the RI Report. The 95% upper tolerance limit was selected as the BTV statistic. A two-sample hypothesis test was conducted for each COPC for which sufficient data were available. The tests selected for each COPC was determined by the distributions of the Study Area and background data sets. Appendix W provides results for the COPCs included in the background evaluation; this section summarizes the results for potential COCs in Landside Investigation Area soil and Anacostia River fringe surface sediment.

<u>Soil</u>

2,3,7,8-TCDD-TEQ, total PCBs, and arsenic were identified as potential COCs in surface soil, and total PCBs and vanadium were identified as potential COCs in combined surface and subsurface soil (0 to 16 feet bgs).

The maximum detected concentrations of arsenic in the salvage yard and waste storage area and the stores and fleet maintenance yard are below the BTV of 17 mg/kg, indicating that levels of arsenic in these areas are likely to be consistent with background. Arsenic concentrations in the warehouse and laydown area exceed the BTV. However, the results of the two-sample hypothesis test indicate that Site arsenic concentrations are not greater than background concentrations, which is further supported by the boxplot comparisons provided in Appendix W of the RI Report. Therefore, the background evaluation

supports the conclusion that arsenic concentrations on Site are background related and that arsenic is not a Site COC.

Concentrations of 2,3,7,8-TCDD-TEQ, total PCBs, and vanadium exceed BTVs, and the results of the hypothesis tests indicate that Site concentrations of 2,3,7,8-TCDD-TEQ and vanadium are greater than or equal to background. Hypothesis testing could not be conducted on total PCBs due to low frequency of detection in background.

Anacostia River

Sediment and fish tissue in the Anacostia River have been affected by ongoing and historic sources of contamination, as well as stormwater discharges, sewage overflows, and other permitted discharges. These sources contribute to the cumulative exposure of human and ecological receptors in the Anacostia River. The surface sediment background evaluation is discussed below.

As discussed in Section 3.1.4.1, Pepco performed an analysis of potential tidal influence to confirm that all sediment sampling locations included in the Site-specific background dataset were upstream of any potential influence from the Site. The details of the analysis and the results are provided in Appendix W. Pepco's analysis confirms that the background location SEDBACK 20 and background locations upstream of SEDBACK 20 will not be influenced by any Site-related contaminants as a result of tidal exchanges. No sampling locations downstream of SEDBACK 20 were included in the dataset for the purpose of calculating site-specific background values.

BTVs were derived for surface sediment in Appendix W of the RI Report. 2,3,7,8-TCDD-TEQ was identified as a potential COC in this BHHRA based on a potential risk of 3x10⁻⁶ for the wader adult/child and of 2x10⁻⁶ for the shoreline worker potentially exposed to fringe surface sediment. Both the maximum detected concentration (0.0007 mg/kg) and the 95% UCL (0.0002 mg/kg) exceed the BTV of 0.00001 mg/kg). The results of the hypothesis tests indicate that Waterside Investigation Area concentrations of 2,3,7,8-TCDD-TEQ in surface sediment are greater than or equal to background.

6.5.2 Regional Area Fish Tissue Evaluation

The available tissue data are insufficient for calculation of background statistics. Therefore, BTVs were not derived for fish tissue. Appendix W of the RI Report provides a graphical comparison of fish tissue concentrations between the Upper Anacostia reach and regional reaches:

 Upper Anacostia River Area (upstream of the CSX bridge); includes the Waterside Investigation Area, and extends approximately 1.3 miles downstream and 1.9 miles upstream of Benning Road

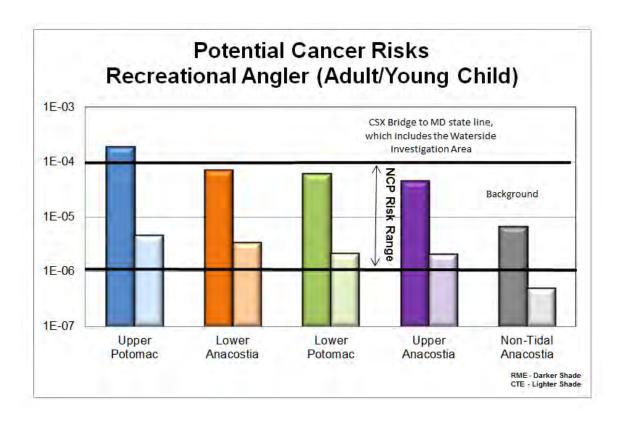
- Lower Anacostia River Area (downstream of the CSX bridge);
- Lower Potomac River (downstream of the 14th Street bridge);
- Upper Potomac River (upstream of the 14th Street bridge);
- Upstream Non-Tidal Anacostia River (north of the Maryland state line); upstream of the Waterside Investigation Area; background area

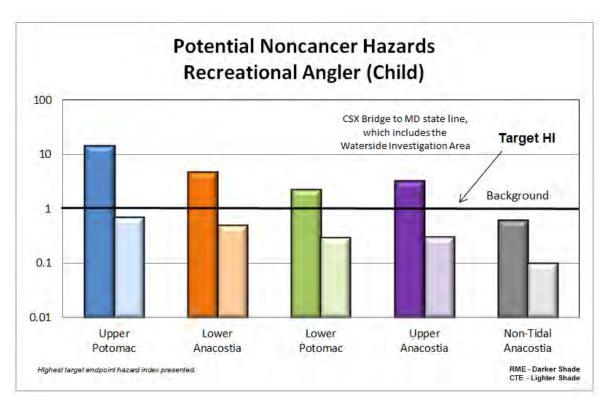
In addition to the graphical comparison of fish tissue concentrations, potential fish consumption risks and hazards were calculated for a background river reach (Upstream Non-Tidal Anacostia) and three nearby regional river reaches (Lower Anacostia, Lower Potomac, Upper Potomac) to provide important context for the Upper Anacostia fish consumption risks and hazards. Potential risks exceed 10⁻⁴ for fish consumption in the Upper Potomac reach primarily due to PCBs, and in the Lower Potomac reach primarily due to PCBs and arsenic. The HI exceeds 1 in the Potomac River reaches and in the Lower Anacostia reach due to PCBs. For comparative purposes, the table below presents the chemicals with potential risks greater than 10⁻⁶ or a target endpoint HI of 1 for each of these river reaches; the hazard value representing the highest target endpoint HI is presented. As shown, all of the chemicals identified as potential COCs in the Upper Anacostia reach for fish consumption are also identified in other river reaches in the region, and in many cases, at higher risk and hazard levels. These results are indicative of a regional impact on fish tissue body burdens that may be attributable, at least in part, to sources other than sediment within the Upper Anacostia River reach or the Waterside Investigation Area in particular.

		Fish Tissue ^a RME Scenario					
Chemical	Risk/ HI		Background Area				
		Lower Anacostia	Lower Potomac	Upper Potomac	Upstream Non- Tidal Anacostia		
Arsenic	Risk	2E-06	3E-05	3E-06			
	Risk	5E-05	2E-05	1E-04	3E-06		
Total PCBs	Н	5	2	14			
DOD TEO	Risk	7E-05	3E-05	2E-04	4E-06		
PCB-TEQ	Н	3		9			
4,4-DDE	Risk			4E-06			
Dieldrin	Risk	1E-05	5E-06	2E-05			
Heptachlor epoxide	Risk	2E-06					

Notes:

Blue highlighting indicates that cumulative risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.


Potential risks and hazards were highest in the Upper Potomac River and lowest in the Upstream Non-Tidal Anacostia River. Potential risks and hazards for the Upper Anacostia fall within the range of potential risks and hazards in the regional reaches (i.e., Potomac River, Upstream Non-Tidal Anacostia, and Lower Anacostia), as indicated in the graphs below.


⁻⁻ Indicates that risk is less than or equal to 10⁻⁶ or HI is less than or equal to 1. Risk is presented for the sum of the adult and the young child, and the HI is presented for the young child. The older child/teen risk and HI values are lower.

Yellow Highlighting indicates that cumulative risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1.

^a Current/future recreational angler.

7 Uncertainty Analysis

Within any of the four steps of the human health risk assessment process, assumptions must be made due to a lack of absolute scientific knowledge. Some of the assumptions are supported by considerable scientific evidence, while others have less support. Every assumption introduces some degree of uncertainty into the risk assessment process. Regulatory risk assessment methodology requires that conservative assumptions be made throughout the risk assessment to ensure that risks are not underestimated. Therefore, when all of the conservative assumptions and approaches are combined, it is more likely that risk results are overestimated rather than underestimated.

The assumptions that introduce the greatest amount of uncertainty in this risk assessment are discussed in this section. The assumptions for which there is not enough information available to assign a numerical value to the uncertainty, and thus cannot be factored into the calculation of risk, are discussed in qualitative terms. In some cases, alternate assumptions are available that are as plausible as the assumptions used in the BHHRA. In some of these cases, the uncertainty is evaluated quantitatively. These uncertainties may also be incorporated into the risk management process during the development of remediation goals, as part of the Feasibility Study. Section 7.1 discusses uncertainty related to data evaluation and COPC selection. Section 7.2 discusses uncertainties related to the toxicity assessment. Section 7.3 discusses uncertainties related to the exposure assessment. Lastly, Section 7.4 discusses uncertainties related to the risk characterization.

7.1 Data Evaluation and COPC Selection

7.1.1 Adequacy and Quality of Analytical Data

The data collected as part of the Study Area RI between 2012 and 2017, as well as biological tissue data from the Anacostia River collected under other agency programs, serve as the basis for the BHHRA. Multiple media were sampled using a sound conceptual understanding of Study Area conditions. As new information was generated, the CSM was refined and used to guide subsequent data gathering efforts. Thus, while it was not possible to sample every location at the Study Area, the extensive soil, groundwater, sediment, and surface water data collected, combined with the knowledge of source areas and potential migration pathways, provide a high degree of confidence that the range of impacts and environmental conditions have been characterized. However, the fish fillet data set for the Upper Anacostia River (which includes the Waterside Investigation Area) is small (seven composite samples). These data may not be representative of the Waterside Investigation Area because of the uncertainty

associated with fish home ranges, where the samples were collected within the reach, and bioaccumulation into fish. The uncertainty associated with the limited fish fillet data set is discussed below and in in Section 7.1.2.

Generally, in the site characterization phase of the site assessment, knowledge of past and current use of the study area is used to guide investigations and determine which parameters are analyzed and what analytical methods are employed for the detection of chemicals in the relevant environmental media at the site. While the suite of analytes for this BHHRA included multiple chemical groups, including metals, VOCs, SVOCs, PAHs, pesticides, PCBs, and dioxins and furans, it is possible that chemicals not sampled for may be present at the Study Area. Should this be the case, Study Area risks may be incomplete depending on the nature of the chemicals not included in the sample analyses. Given the high degree of historical knowledge of Site operations and the CSM, it is unlikely that significant concentrations of other chemicals are present. Therefore, it is likely that the primary chemicals of human health concern at the Study Area have been captured in the data set used for the BHHRA.

The fish tissue data set forming the basis of the BHHRA is small; only 7 fillet samples are available for the Upper Anacostia. Fewer than 10 samples are available in each of the Upper and Lower Potomac and Lower Anacostia areas. Furthermore, these data were collected in 2013 and may not be representative of current conditions, as concentrations have been generally declining over time (see graphic in Section 3.1.4.3).

As noted previously, the Pepco 2013 surface water data were used in the BHHRA and were not supplemented with DOEE data. The uncertainty associated with this is low, as surface water is a minor contributor to total risk (i.e., less than 10⁻⁶ and an HI of 1). The risk assessment for the ARSP also did not identify any potential risks associated with surface water in Reach 456 (the reach that encompasses the Waterside Investigation Area) greater than 10⁻⁶ or an HI of 1 (TetraTech, 2018).

As discussed in Section 3.1, laboratory results collected under the Pepco RI program were subjected to data validation conducted in accordance with the approved QAPP (AECOM, 2012) prior to use in the BHHRA. Where necessary, qualifiers were applied to the data due to quality control non-conformances. The vast majority of the data generated were found to be reliable and acceptable for use in risk assessment and remedial decision-making. Out of over 550,000 validated results, only about 500 (less than 0.1%) were rejected and deemed not usable for project decisions. These rejected result values were removed from the database used for the risk assessments. TetraTech conducted Phase 2B validation of the fish tissue data sets collected by DOEE (Pinkney, 2017, TetraTech, 2018). Pinkney (2017) noted that quality assurance procedures followed included the analysis of blanks, laboratory and field replicates, and

standard reference materials. The DOEE fringe surface sediment sample results used in this BHHRA were also validated by TetraTech (2018).

The use of laboratory J-qualified data adds some uncertainty to the risk assessment by definition, as the true concentration lies between the method detection limit and the sample quantitation limit. However, the estimated value given for each J qualified result is considered the best estimate of the true concentration, and was therefore used in risk calculations (USEPA, 1989a).

Given that the vast majority of the Study Area data were determined to be valid and acceptable for use in the risk assessments, there is a high degree of confidence in the quality of the data used in the BHHRA for soil, groundwater, fringe surface sediment, and surface water. This reduced uncertainty translates to a high degree of confidence in the use of the project data in risk-based decision-making. There is a higher degree of uncertainty associated with the fish tissue data set due to the small size and other considerations as discussed below.

7.1.2 Representativeness of Fish Tissue Data

There is uncertainty associated with the tissue data used to estimate potential fish consumption risk. The fish tissue samples collected in 2013 in the Upper Anacostia River sampling area (from the CSX railroad bridge up to the Maryland state line) may not be representative of the Waterside Investigation Area. The Upper Anacostia River sampling area of approximately 3.2 miles extends approximately 1.3 miles downstream and 1.9 miles upstream of Benning Road (Figure 3-7), and these data were not collected to evaluate contaminant sources, but rather for monitoring fish tissue contaminant levels and changes over time (Pinkney, 2017). Fish specimens caught throughout this area were combined to create one composite sample per species to represent the Upper Anacostia River sampling area. Fish species vary in how far they will travel for food and spawning; for example, sunfish typically have a small home range (e.g., 0.23 to 1.12 hectares; Fish and Savitz [1983]), whereas brown bullhead have been found to have a home range of up to 1.3 miles in the Anacostia River (Sakaris et al., 2005). Based on the sample design as well as varying home ranges of the species sampled, the concentrations of contaminants detected in the fish tissue composite samples are expected to represent conditions throughout the approximately 3.2-mile Upper Anacostia River sampling area (see Figure 3-7), but they are not necessarily representative of conditions in the Waterside Investigation Area, an area of approximately one-half mile of shoreline.

7.1.3 Analysis for PCBs via Aroclor versus Congeners

The BHHRA was conducted using available PCB congener data for fish tissue. Per the approved RI work plan, PCB Aroclor analysis was performed, and the Aroclor data were used in the BHHRA for soil,

groundwater, fringe surface sediment, and surface water. The Aroclor data set is more extensive than the congener data set for the Study Area. However, due to differences in the analytical methods, the use of Aroclor versus congener data represents a potential source of uncertainty in the BHHRA. A subset of soil, groundwater, and fringe surface sediment samples were analyzed for both Aroclors and congeners, allowing for comparison of the two sets of PCB concentrations, as discussed below.

7.1.3.1 Soil

A total of 31 Site soil samples (14 surface and 17 subsurface) were analyzed for both PCB Aroclors and congeners. The ratio of total PCB congeners to total PCB Aroclors ranged from less than 1 (i.e., total concentration was higher based on Aroclor data) to 59, with an average of 5 and a median of 1.5 (**Table 7-1**). These data suggest that the concentration of total PCBs based on the sum of congeners would generally be higher than the sum of Aroclors for soil samples at the Site.

Potential risks/hazards for total PCB Aroclors exceeded 10⁻⁶ or HI of 1 in surface soil in four areas for the future outdoor industrial worker (the warehouse and laydown area, substation #7, the salvage yard and waste storage area, and the transformer shop). If it were assumed that total PCB concentrations are on average 5 times higher than Aroclor concentrations in surface soil, the stores and fleet maintenance area would also be identified with total PCB risks greater than 10⁻⁶ (but less than 10⁻⁵).

Potential risks and hazards for the hypothetical future recreational visitor associated with total PCBs in surface soil would remain well below 10⁻⁶ and an HI of 1 even, assuming a 5-fold increase in total PCB concentrations above detected levels of PCB Aroclors.

Potential risks and hazards for total PCB Aroclors exceeded 10⁻⁶ and an HI of 1 only in the transformer shop soil (0 to 16 feet bgs) for the construction worker. No additional exceedances would be identified based on a 5-fold increase in total PCB concentrations.

7.1.3.2 Groundwater

Monitoring wells were sampled and analyzed for PCB Aroclors in November 2014 and were mostly non-detect, with detections below the USEPA Maximum Contaminant Level (MCL) of 0.5 μ g/L (USEPA, 2018g). Samples were collected and analyzed for PCB congeners in December 2014 and December 2016. PCB congeners were detected at relatively low concentrations, with total PCBs well below the MCL of 0.5 μ g/L. Therefore, the uncertainty associated with the analytical method for PCBs in groundwater is low, particularly given that the only potential exposures to groundwater at the Site include inhalation of volatile COPCs and discharge to surface water, with considerable dilution between groundwater and surface water.

7.1.3.3 Fringe Surface Sediment

Sixteen fringe surface sediment samples from the Waterside Investigation Area were analyzed for both PCB Aroclors and PCB congeners (nine samples collected by TetraTech for the ARSP and seven samples collected by Pepco). The ratio of total PCB congeners to total PCB Aroclors ranged from less than 1 to 6.2, with an average of 2.3 and median of 2.1 (**Table 7-2**). Potential risks/hazards associated with total PCB Aroclors in fringe surface sediment did not exceed 10-6 or an HI of 1 for any receptor. Even assuming that total PCB congeners are present at as much as 6 times the total Aroclor concentration, potential risks and hazards would not exceed 10-6 or an HI of 1.

In summary, the use of PCB totals based on Aroclors results in some uncertainty in the risks and hazards presented in this BHHRA for abiotic media; however, the available data suggest that the risk assessment conclusions would not change substantially if congener data were used.

7.1.4 Adequacy of the COPC Selection Process

Not all chemicals detected in a study area are selected as COPCs for quantitative analysis for several reasons. Some chemicals may be present at levels below conservative screening levels. Others may be present at concentrations below sample detection limits. A USEPA review of the results of many risk assessments demonstrates that, in most cases, risks are attributable to a select few chemicals, and that many of the chemicals quantitatively evaluated do not contribute significantly to total risk estimates (USEPA, 1993a).

COPCs identified for evaluation in the BHHRA were described in Section 3. A total of 43 COPCs were identified for quantitative evaluation in the BHHRA, as presented in **Table 3-23**. As discussed in Section 3, the goal of the COPC selection is to include those chemicals that are the most toxic, prevalent, and environmentally persistent in the quantitative portion of the risk assessment. The screening process used to select COPCs for evaluation is intended to: (1) identify with a high degree of certainty those chemicals that can be safely eliminated from further evaluation because their contribution to total site risk is negligible; and (2) identify those chemicals that merit further evaluation (either quantitatively or qualitatively) based on their potential to adversely affect humans depending on specific types of exposures.

The approved COPC screening process for the BHHRA followed a logical approach based on comparison to RBSLs. The use of conservative screening levels, including risk-based concentrations deemed by USEPA to be acceptable for residential exposure to soil (as a surrogate for intermittent exposure to fringe surface sediment), ensures that the chemicals excluded from further evaluation would contribute negligibly to total risk. Therefore, not quantitatively evaluating the excluded chemicals will not

measurably affect the numerical estimates of hazard or risk and, thus, will not affect remedial decision-making.

In the COPC selection process, it was assumed that only those chemicals detected are actually present. However, uncertainty can arise if the detection limits for chemicals that were not detected exceed the applicable screening levels. For example, PCBs were identified as a COPC for soil, fringe surface sediment, and fish tissue. PCBs were not detected in surface water using Method 8082, which has a nominal reporting limit of 0.010 μ g/L. While this reporting limit is above the PCB national and DOEE water quality criterion for consumption of water and organisms (6.4E-05 μ g/L), it is below the RSL for tap water consumption (0.044 μ g/L). As previously discussed, use of the tap water RSLs to select COPCs for evaluating occasional surface water contact is highly conservative. However, as a conservative measure in this BHHRA, PCBs were identified as a surface water COPC and included in the risk calculations using the lowest reporting limit as a proxy EPC.

7.2 Dose-Response Assessment

The purpose of the dose-response assessment is to identify the types of adverse health effects a chemical may potentially cause and to define the relationship between the dose of a chemical and the likelihood or magnitude of an adverse effect (response). Risk assessment methodologies typically divide potential health effects of concern into two general categories: effects with a threshold (noncarcinogenic) and effects assumed to be without a threshold (potentially carcinogenic), although there is increasing scientific evidence that many carcinogens also act via a threshold mechanism. Toxicity assessments for both of these types of effects share many of the same sources of uncertainty. To compensate for these uncertainties, USEPA has developed toxicity values that are biased to overestimate rather than underestimate human health risks. Several of the more important sources of uncertainty and the resulting biases are discussed below.

7.2.1 Animal-to-Human Extrapolation in Noncarcinogenic Dose-Response Evaluation

For many chemicals, animal studies provide the only reliable information on which to base an estimate of adverse human health effects. Oral RfDs are available for 33 COPCs, the majority of which are based on animal studies. RfDs for 2,3,7,8-TCDD-TEQ, inorganic arsenic, cobalt, manganese, and methyl mercury are based on human studies. Inhalation RfCs are available for 24 COPCs, of which 15 are based on animal studies. Extrapolation from animals to humans introduces a great deal of uncertainty into the risk characterization; where human studies are available, uncertainty is reduced. In most instances, it is not known how differently a human may react to the chemical compared to the animal species used to test the chemical. If a chemical's fate and the mechanisms by which it causes adverse effects are known in

both animals and humans, uncertainty is reduced. When the fate and mechanism for the chemical are unknown, uncertainty increases.

The procedures used to extrapolate from animals to humans involve conservative assumptions and incorporate uncertainty factors such that overestimation of effects in humans is more likely than underestimation. When data are available from several species, the lowest dose that elicits effects in the most sensitive species is used for the calculation of the RfD. Uncertainty factors are applied to this dose, generally of 1 to 10 each, to account for intraspecies variability, interspecies variability, study duration, and/or extrapolation of a low effect level to a no effect level. Thus, most reference doses used in risk assessment are 100- to 10,000-fold lower than the lowest effect level found in laboratory animals. Uncertainty factors for chronic toxicity values included in this risk assessment range from 3 (arsenic and manganese RfDs) to 10,000 (DRO RfD), as shown in **Tables 4-1** and **4-3**.

Nevertheless, because the fate of a chemical can differ in animals and humans, it is possible that animal experiments will not reveal an adverse effect that would manifest itself in humans. This can result in an underestimation of the effects in humans. The opposite may also be true: effects observed in animals may not be observed in humans, resulting in an overestimation of potential adverse human health effects.

7.2.2 Evaluation of Carcinogenic Dose-Response

Significant uncertainties exist in estimating dose-response relationships for potential carcinogens. These are due to experimental and epidemiologic variability, as well as uncertainty in extrapolating both from animals to humans and from high to low doses. Three major issues affect the validity of toxicity assessments used to estimate potential excess lifetime cancer risks: (1) the selection of a study (i.e., data set, animal species, matrix in which the chemical is administered to the animal) upon which to base the calculations, (2) the conversion of the animal dose used to an equivalent human dose, and (3) the mathematical model used to extrapolate from experimental observations at high doses to the very low doses potentially encountered in the environment. CSFs are available for 29 of the COPCs, and inhalation unit risk factors are available for 38 COPCs.

7.2.2.1 Study Selection

Study selection involves the identification of a data set (experimental species and specific study) that provides sufficient, well-documented dose-response information to enable the derivation of a valid CSF. Human data (e.g., from epidemiological studies) are preferable to animal data, although adequate human data sets are relatively rare. Therefore, it is often necessary to develop dose-response information from a laboratory species, ideally one that biologically resembles humans (e.g., with respect to metabolism, physiology, and pharmacokinetics), and where the route of administration is similar to the expected mode

of human exposure (e.g., inhalation and ingestion). It is also important to note that when multiple valid studies are available, the USEPA generally bases CSFs on the one study and site that show the most significant increase in tumor incidence with increasing dose. In some cases, this selection is made in spite of significant decreases of tumor incidence in other organs and total tumor incidence with increasing dose. Consequently, the current study selection criteria are likely to lead to overestimation of potential cancer risks in humans.

For example, the oral cancer slope factors for PCBs are based on rat studies, and USEPA (2018d) has classified PCBs as a "B2" carcinogen. Under the 1986 cancer classification scheme (USEPA, 1986), B2 carcinogens are defined as probably carcinogenic to humans based on evidence in animals, but with little or no human data. While PCBs have been demonstrated to produce tumors in animals, several studies have interpreted human epidemiological data as negative for carcinogenicity (Shields, 2006, Golden et al., 2003, Golden and Kimbrough, 2009). USEPA (2018d) has classified human data on the carcinogenicity of PCBs as inadequate.

7.2.2.2 Interspecies Dose Conversion

Only the CSF for inorganic arsenic and the URFs for arsenic and trichloroethylene are based on human studies. For CSFs/URFs based on animal studies, the USEPA derivation of human equivalent doses by conversion of doses administered to experimental animals requires the assumption that humans and animals are equally sensitive to the toxic effects of a substance, if the same dose per unit body surface area is absorbed by each species, and the mechanism of toxicity is the same. Although such an assumption may hold for direct-acting genotoxicants, it is not necessarily applicable to many indirect-acting carcinogens and likely overestimates potential risk by a factor of 6 to 12, depending on the study species (USEPA, 1992c). Further assumptions for dose conversions involve standardized scaling factors to account for differences between humans and experimental animals with respect to life span, body size, breathing rates, and other physiological parameters. In addition, evaluation of risks associated with one route of administration (e.g., inhalation) when tests in animals involve a different route (e.g., ingestion) requires additional assumptions with corresponding additional uncertainties.

7.2.2.3 High-to-Low Dose Extrapolation

The concentration of chemicals to which humans are potentially exposed in the environment is usually much lower than the levels used in the studies from which dose-response relationships are developed. Estimating potential health effects, therefore, requires the use of models that allow extrapolation of health effects from high experimental doses in animals to low environmental doses. These models are generally statistical in character and have an uncertain biological basis. Thus, the use of a model for dose extrapolation introduces uncertainty in the dose-response estimate. In addition, these models contain

assumptions that may also introduce a large amount of uncertainty. Generally, the models have been developed to err on the side of overestimating rather than underestimating potential health risks.

Many of the USEPA CSFs/URFs listed in IRIS are derived using the upper 95% confidence limit of the slope predicted by the LMS model used to extrapolate low dose risk from high dose experimental data. USEPA recognizes that this method produces very conservative risk estimates, and that other mathematical models may exist. USEPA states that the upper-bound estimate generated by the LMS model leads to a plausible upper limit to the risk that is consistent with some of the proposed mechanisms of carcinogenesis. The true risk, however, is unknown and may be as low as zero.

The LMS model is very conservative, as it assumes strict linearity between the lowest dose that produced an effect and zero dose. According to USEPA (1989a), "Because the slope factor is often an upper 95th percentile confidence limit of the probability of response based on experimental animal data used in the multistage model, the carcinogenic risk estimate will generally be an upper-bound estimate. This means that USEPA is reasonably confident that the 'true risk' will not exceed the risk estimate derived through use of this model and is likely to be less than that predicted."

Moreover, the body has mechanisms to detoxify chemicals, especially at low doses, and mechanisms to repair damage if it should occur. Therefore, many scientists believe a number of chemicals cause cancer only above a "threshold" dose (as reviewed in Bradley, 1996). Consequently, the assumption that there is some probability of harm to human health at any level of exposure is very conservative and is expected to result in overestimates of risk, especially when coupled with the use of an upper-bound estimate of cancer potency.

USEPA's current carcinogen risk assessment guidelines (USEPA, 2005b) emphasize mode of action data, and recognize that some carcinogens may act in a nonlinear fashion. Therefore, it is recognized that some carcinogens may have a threshold dose below which effects would not be seen. For example, a threshold for carcinogenic activity has been demonstrated for chloroform and was used as the basis for USEPA's development of dose-response values for chloroform (USEPA, 2018b).

7.2.3 Potential Contribution from Early-Life Exposures to Lifetime Risk

Benzo(a)pyrene (and the six other potentially carcinogenic PAH COPCs), are assumed to act via a mutagenic mode of action. Potential cancer risks for these COPCs were adjusted upward using ADAFs to ensure that the potential contributions from early life exposures are not underestimated. Additionally, trichloroethylene and vinyl chloride are considered to be mutagenic, but are COPCs only for worker (adult) exposure pathways. Therefore, adjustments were not necessary because there are no assumed

childhood exposures. For vinyl chloride, the cancer toxicity values based on exposure during adulthood were used.

PCBs are not assumed to exert carcinogenic effects via mutagenic activity. For pre-conception and in-utero life stages, exposure to bioaccumulative COPCs, such as PCBs, would be primarily through the mother's diet, as would exposure of nursing infants. If women of childbearing age, pregnant, or breastfeeding mothers consume large amounts of Anacostia River fish, they could potentially expose the unborn child or nursing infant to lipophilic COPCs and/or bioaccumulative COPCs (e.g., PCBs).

7.2.4 Dioxin-Like Toxicity

Certain PCB congeners have been identified as having a mechanism of toxicity similar to that of 2,3,7,8-TCDD (Van den Berg et al., 2006; USEPA, 2010). The designation as a "dioxin-like compound" is based on Ah receptor binding and similarities in biochemical activity and bioaccumulation potential. Twelve coplanar PCBs with four or more chlorines with one or no substitutions at ortho positions have been identified as having dioxin-like toxicity, and TEFs have been developed to equate the toxicity of each dioxin-like PCB congener to that of 2,3,7,8-TCDD (USEPA, 2010). The "coplanar" PCBs lack ortho chlorines on both rings, allowing the rings to orient in the same plane, but this conformation is not rigid. USEPA's December 2010 guidance adopts the 2005 WHO mammalian TEFs for the 12 coplanar PCBs, but also notes that when exposures are to a single chemical or class of chemicals such as PCBs, the use of the PCB cancer slope factors is sufficient (USEPA, 2010).

However, there is the potential for dioxin-like PCB congeners to preferentially bioaccumulate due to their resistance to metabolism and biodegradation. Therefore, USEPA guidance (1996, 2010) identifies a supplemental approach for evaluating the potential risks posed by PCBs that focuses on the 12 coplanar PCBs that are structurally similar to 2,3,7,8-TCDD and have the capacity to bind to the Ah receptor. The evaluation of the 12 dioxin-like PCBs (referred to as PCB-TEQ) is most applicable to estimating exposure via dietary uptake, because the TEFs are primarily based on oral uptake studies, often through the diet (Van den Berg et al., 2006). There is greater uncertainty in applying TEFs to other exposure pathways and abiotic media due to differences in bioavailability and fate. For the evaluation of the fish ingestion pathway, the potential cancer risks and noncancer hazards posed by PCBs were evaluated as PCB-TEQ, as well as total PCBs. This approach recognizes two potential mechanisms of toxicity and the potential for enrichment of certain presumed dioxin-like congeners in fish tissue.

7.2.4.1 Uncertainty in Application of TEFs to PCBs

The TEFs for dioxin-like PCBs were developed based on a database of laboratory studies in which the relative potency of a test chemical was compared to a reference chemical, usually 2,3,7,8-TCDD. There is

uncertainty in the assumption that a subset of PCB congeners exerts toxicity in a manner similar to that of 2,3,7,8-TCDD. Dioxins and furans are rigidly planar molecules with centrally located oxygen atom(s), while PCBs are never truly coplanar and lack the central oxygen atoms. In addition, PCBs that are approximate stereoisomers of dioxin/furan Ah receptor agonists bind the receptor much more weakly than strong Ah receptor agonists such as dioxins and furans. Even with the most favorable chlorination pattern, the affinity of PCBs for the Ah receptor is not nearly that of potent dioxin/furans. Only a handful of Ah receptor agonists have been tested for human Ah receptor affinity even though marked species differences have been demonstrated. For example, 2,3,7,8-TCDD's and other potent agonist's affinity for the human Ah receptor is 10-fold less than the receptor affinity in ultra-sensitive animal models (Ema et al., 1994; Fan et al., 2009; Flaveny and Perdew, 2009; Zeiger et al., 2001; Westerink et al., 2008).

The National Research Council of the National Academy of Sciences (NRC, 2006) has stated that

Depending on the system examined, the estimated affinity of binding of TCDD (and related compounds) to the human AHR [aryl hydrocarbon receptor] is about 10-fold lower than that observed to the AHR from "responsive" rodent species and is comparable to that observed to the AHR from "nonresponsive" mouse strains.

More recent studies have indicated that the difference may be even greater. Westerink et al. (2008) compared CYP1A activity (a cytochrome P450 enzyme) in rat H4IIE cells and human HepG2 cells for an extensive array of chemicals, including 2,3,7,8-TCDD and most dioxin-like PCBs. The investigators found that for PCB 126 (regarded as the most potent of the PCBs assigned TEFs), the rat was three orders of magnitude more sensitive to induction of liver enzyme activity than humans. Carlson et al. (2009) investigated whether the difference in relative potency of PCB 126 between rats and humans, as measured by induction of CYP1A1, was also true for other Ah receptor-regulated genes that could be important to toxic effects subsequent to Ah receptor binding. They found that 47 human genes responding in a dose-response manner consistent with the TEF concept were more than 100 times less sensitive than 79 similarly responding rat genes.

It should also be recognized that the relative potency (ReP) database used to derive TEFs is now over 10 years old; studies have been published since 2004 that may change the range and percentiles of RePs for many dioxin-like congeners including PCB 126 (Peters et al., 2006; Sutter et al.; 2010, Trnovec et al., 2013; van Ede, 2014; Larsson et al., 2015; van Ede et al., 2016). Van Ede et al. (2014, 2016) conclude that human in vitro-derived RePs for PCB 126, which has the highest TEF of the dioxin-like PCBs, are significantly lower (one to two orders of magnitude) than the present WHO-TEF, and a re-evaluation of this TEF for human health risk assessment is warranted.

Finally, summing TEF-based risks with risks posed by the non-dioxin-like congeners is in essence double-counting PCB risk, and was therefore not done in this BHHRA. The Aroclor mixtures upon which the PCB high risk and persistence CSF is based included dioxin-like PCBs (Cogliano, 1998; Mayes et al., 1998). Thus, the results of these whole animal studies represent the sum of the toxicities of all of the congeners present and their various mechanisms of actions and interactions, including both the dioxin-like and other toxicities. Several studies comparing these risk calculation methods have concluded that the evaluation of PCBs in fish tissue as total PCBs using the CSFs for PCB mixtures is sufficiently protective (Chaudhuri et al., 2003; Keenan and Samuelian, 2005; Bodishbaugh et al., 2003; Ruffle et al., 2016). The approach used in this BHHRA of calculating and presenting two separate sets of PCB risk and hazard estimates addresses the uncertainty associated with the different measures of toxicity while avoiding the problem of double-counting when dioxin-like and non-dioxin-like risk estimates are summed.

7.2.5 Tier 3 Toxicity Values

There is somewhat more uncertainty associated with the toxicity values from Tier 3 sources due to the variability of peer-review and consensus among scientists on the best estimate of toxicity. The majority of COPCs have Tier 1 or 2 toxicity values. A summary of the COPCs for which Tier 3 toxicity data were used is provided below.

Tier 3 Dose-Response Values Used in the BHHRA					
COPC	Toxicity Factor Type	Source			
2,3,7,8-TCDD-TEQ	RfC, Oral CSF, URF	CalEPA			
4,4-DDD	Oral RfD PPRTV screening value URF CalEPA				
4,4-DDE	Oral RfD URF	PPRTV screening value CalEPA			
Arsenic, inorganic	RfC	CalEPA			
Arsenic, organic	Oral RfD	ATSDR			
Bromodichloromethane	URF	CalEPA			
Chloroform	RfC	ATSDR			
DRO	Oral RfD, RfC	PPRTV screening value			
Mirex	Oral CSF, URF	CalEPA			
MTBE	URF	CalEPA			
Naphthalene	URF	CalEPA			
Nickel	RfC	ATSDR			
INICKEI	URF	CalEPA			
Thallium	Oral RfD	PPRTV screening value			
Vanadium	RfC	ATSDR			

The uncertainty associated with the use of Tier 3 toxicity values is on the high side due to uncertainty in modes of action and adequacy of the toxicity data sets. Despite this conservatism, with the exception of 2,3,7,8-TCDD-TEQ in surface soil for the outdoor industrial worker, potential risks and hazards calculated using Tier 3 toxicity values are below 10⁻⁶ and an HI of 1. Thus, the impact of the uncertainty in the toxicity values used is not expected to be significant.

7.3 Exposure Assessment

The exposure assessment process is inherently uncertain, as assumptions must be made about individuals' behaviors and choices that bring them into contact with site media. Human behaviors are inherently variable, and as such, the assumptions used to characterize exposure are often conservative to ensure that risks to individuals with potential high-end exposures are not underestimated. Furthermore, it can be difficult to characterize exposures under future conditions. Because of uncertainty and variability in quantifying human behavior, the Superfund risk assessment process can lead to the use of less site-specific assumptions as a method to ensure conservatism.

Exposure assessment consists of three basic steps: (1) development of exposure scenario assumptions, (2) estimation of exposure point concentrations, and (3) estimation of human dose. The uncertainty associated with each of these steps, as well as the fish consumption pathway in particular, is discussed below.

7.3.1 Exposure Scenario Assumptions

Exposure scenarios in a risk assessment are selected to be representative of potential exposures to COPCs in media that human receptors may come into contact with based on current and reasonably foreseeable land use. These exposure scenarios were developed for a hypothetical receptor, but one that would represent the RME scenario. Therefore, exposure levels were assumed for these receptors that are greater than expected to typically occur in an actual population. It has been noted that the use of multiple health protective factors to address uncertainty can result in overestimating risk through compounding conservatism (Cullen, 1994; Burmaster and Harris, 1993; Nichols and Zeckhauser, 1988). Consequently, CTE scenarios were also explored to provide an estimate of exposures more likely to represent average exposures and put RME risk estimates into context.

When estimating human doses (i.e., intakes and external exposures) from potential exposure to various media containing COPCs, several assumptions are made. Uncertainty may exist, for example, in assumptions concerning the range of typical rates of ingestion, frequency, and duration of exposure, and bioavailability of the chemicals in the medium. Typically, when limited information is available to establish these assumptions or there are uncertainties associated with projecting future exposures, a conservative

estimate of potential exposure is employed to ensure that a potentially exposed individual's risk is not underestimated. USEPA's default exposure assumptions for the RME scenario are intended to be conservative and representative of an individual on the upper end of the range of possible exposures (e.g., someone who frequently contacts affected environmental media at an upper-bound intake rate for many years). Moreover, it is often assumed that contact is with environmental media containing some of the highest chemical concentrations for the entire exposure duration used in the risk assessment, due to both statistical handling of the data and the assumption that concentrations do not change over time, despite natural recovery processes that tend to reduce environmental concentrations. Depending on the number of upper-bound assumptions employed, the probability of the potential exposure scenario occurring can be very low, as discussed further in Section 7.4.2.

This section discusses uncertainty associated with some of the key exposure assumptions selected for the BHHRA, and potential impact on risk estimates. Potential uncertainties associated with exposure frequency for the Anacostia River in the vicinity of the Waterside Investigation Area are described below. Consumption of fish represents the largest source of potential risk, and the associated uncertainties are discussed in Section 7.3.2.

Waterside Investigation Area Exposure Frequencies

The surface water and sediment exposure frequencies used in the BHHRA were developed taking into consideration the existing parks, walking trails, boat docks, and fishing activity within the Waterside Investigation Area, as well as potential improvements in these resources. However, it is possible that River use in the future could increase to a level higher than assumed in the BHHRA. As previously noted, direct contact with surface water and sediment are minor contributors to total risks and hazards when compared to potential fish consumption risks and hazards, as discussed below. Therefore, an increase in exposure frequencies for surface water and sediment is unlikely to result in changes to the conclusions of this BHHRA.

7.3.2 Fish Consumption Pathway

A number of parameters are used to estimate risk from consumption of fish, including consumption rate, species, body parts consumed, fraction ingested from the site, preparation and cooking methods, and years of fishing at the site. In selecting appropriate fish consumption rates, USEPA guidance (USEPA, 1989b, 2011) discusses the importance of considering site-specific factors, including water quality, public access, abundance of desirable species, and availability of other desirable water bodies, as well as characteristics of the angling population. Some of the major areas of uncertainty associated with key

variables for assessing risk from consumption of fish, and implications for risk results, are discussed below.

7.3.2.1 Fish Consumption Rate

Data from angler surveys that included the Anacostia River were used to characterize fishing practices and consumption behaviors of anglers who fish at the River. Using these data instead of default assumptions or studies of other water bodies reduces uncertainty in the estimated fish consumption rates. However, as these studies were not conducted for the purpose of estimating fish consumption rates for use in human health risk assessment, there is some uncertainty in the reliability of the data for estimating long-term consumption rates.

Based on Site-specific survey data, RME and CTE fish consumption rates of 20 and 10 grams per day (g/day), respectively, were estimated for the adult recreational angler who eats his or her catch from the Waterside Investigation Area. Although there is currently a fish consumption advisory, it is possible that fish consumption rates would increase in the event the advisory is lifted. Additional improvements in the River could also lead to increased fish consumption in the future. Therefore, to provide perspective on these fish consumption rates, several alternate fish consumption rates are discussed below.

- 7.5 g/day, which is equivalent to a one half-pound fish meal per month. This rate has been used at
 other sediment sites to provide risk information to the public and decision-makers on potential risks
 associated with consumption of various types of recreationally caught fish/crabs (e.g., Lower
 Duwamish Waterway). One meal per month is also a common target level of consumption used in
 setting consumption advisories.
- 22 g/day, which is the fish/shellfish consumption rate used by USEPA to derive water quality criteria protective of the general public, as well as the average sport angler (USEPA, 2014b). The 22 g/day rate is based on per capita intake of freshwater and estuarine finfish and shellfish by the general population and represents the 90th percentile of US freshwater and estuarine finfish and shellfish consumption by the general population based on the 2003 to 2010 National Health and Nutrition Examination Survey (USEPA, 2014b).
- 32 g/day, which is used by DOEE and Maryland Department of the Environment (MDE) to set fish consumption advisory levels that allow for a one half-pound fish meal per week.
- **65 g/day**, which is the 98th percentile rate reported by DC area anglers (Gibson and McClafferty, 2005). This corresponds to eating two self-caught fish meals per week year-round.

The alternate rates are summarized in the following table, including the corresponding number of fish meals per year (assuming a fish meal equates to a conservative half-pound of fish) and the ratio of the alternate rate to the rate used in this BHHRA for the RME adult angler.

Fish Ingestion Rates – Adult Angler					
Ingestion Rate (g/day)	Fish Meals per Year Basis		Ratio of Alternate Rate to BHHRA RME Rate		
7.5	12	One fish meal per month	0.4		
10	16	BHHRA CTE rate	0.5		
20	32	BHHRA RME rate	1		
22	35	90th percentile of US freshwater & estuarine finfish and shellfish consumption by the general population	1.1		
32	52	Advisory rate of one fish meal per week	1.6		
65	104	98th percentile of DC area anglers consuming fish	3.25		

Using the alternative consumption rates, potential risks from fish consumption could be less than the risks calculated in this BHHRA to as much as 6.5-fold higher (taking into account the site-specific fraction ingested factor of 0.5 as discussed in Section 7.3.2.3). If the fish consumption were to increase to one meal per week (32 g/day) potential risks and hazards could increase by 60%. Potential risks for an adult/young child angler would increase (from 4x10⁻⁴ to about 6x10⁻⁵), but would still be within the risk range. The HI would continue to exceed one. Therefore, the increase would not substantially impact the conclusions of this BHHRA.

The consumption rate of 65 g/day is based on the Gibson and McClafferty survey. However, it should be noted that the survey was conducted in 2004 by Virginia Tech researchers during warm weather months when fishing is highest and represents fish consumption from both the Potomac and Anacostia Rivers; both of these factors likely lead to overestimates of consumption of Anacostia River fish or the Waterside Investigation Area. An analysis of the potential risks/hazards for a high-end consuming angler for whom a large fraction of his or her diet is Anacostia River fish is discussed in Section 7.3.2.2, below.

7.3.2.2 High-End Consuming Angler Scenario

Based on the survey results presented in Gibson and McClafferty (2005), some anglers supplement a sizeable fraction of their diet with river fish. An analysis of a high-end consuming angler who fishes year-

round and consumes two fish meals per week of Anacostia River fish is presented below. As noted in Section 7.3.2.1, the consumption rates based on the survey may be overestimated due to upward biases in the survey. Potential risks/hazards for the high-end consuming angler were calculated using a multiplier from the recreational risks/hazards and are summarized below.

Parameter	Recreational Angler	High-End Consuming Angler	Recreational Consumption to High-End Consumption Multiplier
RME Adult			
Consumption Rate (g/day)	20	65	3.25
Fraction of Dieta	0.5	1	2
		Overall:	6.5
RME Child			
Consumption Rate (g/day)	7	21	3
Fraction of Diet	0.5	1	2
		Overall:	6
Combined RME Adult/Child			6.38 ^b

Notes:

The total risks/hazards for the high-end consuming angler who consumes a mixed fish diet are summarized in the following table along with the results for the recreational angler for comparison. Cancer risks are shown for the young child/adult and noncancer hazards for the young child angler.

^a Fraction of mixed fish diet from Waterside Investigation Area.

^b Weighted average assuming 6 years as a child and 6.5 years as an adult. Used as multiplier for potential carcinogenic effects.

Cumulative Risks/Hazards for Consumption of Fish (RME)					
	Cancer (Adult	/Young Child)	Noncancer (Young Child) ^a		
Receptor	High-end	Recreational	High End	Recreational Young Child	
Anacostia River ^b					
Upper Anacostia (Total PCBs)	2.7E-04	4.2E-05	19.2	3.2	
Upper Anacostia (PCB-TEQ)	1.4E-04	2.2E-05	4.4	0.73	
Background Area b					
Upstream Non-Tidal Anacostia (Total PCBs)	4.3E-05	6.7E-06	3.7	0.61	
Upstream Non-Tidal Anacostia (PCB-TEQ)	5.0E-05	7.9E-06	3.7	0.61	
Regional Reaches ^b					
Lower Anacostia (Total PCBs)	4.5E-04	7.1E-05	28	4.7	
Lower Anacostia (PCB-TEQ)	5.8E-04	9.1E-05	18	3.0	
Lower Potomac (Total PCBs)	3.9E-04	6.1E-05	14	2.3	
Lower Potomac (PCB-TEQ)	4.1E-04	6.5E-05	7.2	1.2	
Upper Potomac (Total PCBs)	1.1E-03	1.8E-04	84	14	
Upper Potomac (PCB-TEQ)	1.6E-03	2.5E-04	55	9.1	

Notes:

Blue highlighting indicates that cumulative risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

Yellow highlighting indicates that cumulative risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1.

As shown, the estimated total risks/hazards for the high-end consuming angler are 6- to 6.5-fold higher than for the recreational angler. Potential cancer risks and noncancer hazards for the high-end consuming angler exceed USEPA's risk thresholds in all reaches, except for cancer risk for the Upstream Non-Tidal Anacostia River reach. The highest potential total PCB risks for the high-end consuming angler are in the Upper Potomac, the same as for the recreational angler.

7.3.2.3 Fraction Ingested for Fish

There is uncertainty in the RME assumption that half of the recreational angler's self-caught fish comes from the Waterside Investigation Area and half comes from other locations. Similarly, there is uncertainty

^a Highest target endpoint HI.

^b Includes consumption of a mixed fish diet. Upper Anacostia encompasses the Waterside Investigation Area (**See Figure 3-7**).

in the CTE assumption that 25% of the recreational angler's catch comes from the Waterside Investigation Area. However, given the relatively small portion of river shoreline adjacent to the Site relative to the length of the Anacostia River (less than 6%), the presence of undergrowth limiting access in the vicinity of the Site, and the proximity of other fishable water bodies, including the upstream reaches in Maryland, the Potomac River, and Chesapeake Bay, it is likely that even those anglers who live near the Study Area fish at multiple water bodies in the surrounding area. Thus, use of fraction ingested factor of 50% for the RME and 25% for the CTE is reasonable.

7.3.2.4 Cooking Loss

Loss of hydrophobic COPCs upon cooking is a recognized phenomenon that can have a significant effect on the calculated COPC exposure dose from tissue consumption by humans. Losses vary with cooking method (e.g., broil, bake, pan fry), preparation method (e.g., trimmed/untrimmed, skin-on/skin-off), and species. Based on available guidance and literature on chemical loss of PCBs and pesticides from preparation and cooking of fish, the following cooking loss factors were derived in **Attachment D** based on a literature review:

		Number of	Cooking Loss Factor		
COPC	Number of Studies ^a	Data Points	10th Percentile RME	Median CTE	
Total PCBs	14	79	0.13	0.30	
Dioxins, furans, and coplanar PCBs	4	12	0.29	0.48	
DDx	10	70	0.10	0.32	

Notes:

DDx = dichlorodiphenyltrichloroethane, dichlorodiphenyldichloroethylene, and dichlorodiphenyldichloroethane a See **Attachment D** for study references.

The studies on loss of PCBs from fish tissue due to preparation and cooking report little to no loss to as much as 74% loss. However, most of the studies reported some loss, with a median of 30%. For dioxins, furans, and coplanar PCBs, cooking loss ranged from 28% to 63%. Median losses by cooking method ranged from 29% (boil/poach) to 57% (bake/roast), with an overall median of 48%. For DDx, cooking loss ranged from 3% to 80%. Median losses by cooking method ranged from 22% (boil/poach) to 45% (smoke), with a median of 32% when all DDx data are combined regardless of cooking method. Cooking loss for other pesticides was assumed to be similar to DDx. Therefore, the DDx cooking loss factors were applied to the remaining pesticide COPCs.

The amount of chemical mass loss varied within and between studies, which is likely due to a variety of factors, such as cooking time, temperature, tissue preparation (skinning and trimming) and fillet geometry, lipid content, initial chemical concentration, analytical method, and extraction efficiency, which are not consistently controlled for across the various studies. Based on the available data, the use of the 10th percentile cooking loss value for the RME and the median cooking loss value for the CTE is reasonable and conservative, and the cooking loss parameter is not expected to be a major source of uncertainty in the BHHRA.

7.3.2.5 Consumption of Other Fish Species

The BHHRA assumed that the angler consumes a mixed diet comprising multiple species that reside in the Anacostia River (i.e., American eel, catfish, carp, largemouth bass, northern snakehead, and sunfish). The species included in the EPC for each River reach was based on the available samples for that reach and was calculated as a pooled EPC combining the samples without assigning any percentages to specific species. For example, in the Upper Anacostia Reach, there are seven available fish fillet samples consisting of brown bullhead, blue catfish, carp, channel catfish, largemouth bass, northern snakehead, and sunfish. The EPC was calculated as the 95% UCL of these seven samples.

However, the species consumed by anglers varies and depends on a variety of factors, such as:

- Season of the year
- Water quality characteristics, including temperature, dissolved oxygen, and turbidity
- · Fishery characteristics, including habitat and species abundance
- Angler characteristics, including fishing method, bait, and species preferences

Some anglers have preferences for particular species and may limit their consumption to those species; it is also possible that different ratios of the available species are consumed. This section addresses the potential risks from alternate consumption practices, such as single-species diets and alternate mixed fish diets.

The table below presents the total cancer risks and noncancer hazards (calculated in **Attachment H**) for the RME angler based on a range of potential consumption practices. For illustrative purposes, estimated risks and hazards are based on total PCBs and are shown for the Upper Anacostia River, which includes the Waterside Investigation Area. Seven fish fillet samples are available for the Upper Anacostia, as noted above.

Potential Risk and Hazard for Total PCBs for Baseline and Alternate Fish Diets					
Fish Diet	RME Angler (Cancer) Upper Anacostia		RME Angler (Noncancer) Upper Anacostia		
	Child	Adult	Child	Adult	
	Ва	seline Diet			
Mixed species diet (7 samples)	1.1E-05	2.2E-05	3.2	2.0	
	Alte	rnative Diets			
100% catfish (2 samples)	7.8E-06	1.6E-05	2.3	1.4	
100% carp (1 sample)	2.1E-05	4.2E-05	6.1	3.7	
100% largemouth bass (1 sample)	3.7E-06	7.5E-06	1.1	0.65	
100% sunfish (1 sample)	1.3E-06	2.6E-06	0.38	0.23	
100% northern snakehead (1 sample)	1.5E-06	3.1E-06	0.45	0.27	
50% catfish & 50% largemouth bass (3 samples)	5.7E-06	1.2E-05	1.7	1.0	

For the catfish single-species diet, the higher of the channel and blue catfish concentration (channel catfish sample) was used to represent catfish in the alternative diet evaluation. For the other single-species diets, the detected concentration was used. For the mixed catfish/largemouth bass diet, the detected concentration in largemouth bass was averaged with the maximum catfish concentration. The estimation of potential risks for alternate diets are based on very small data sets, one each for carp, largemouth bass, sunfish, and northern snakehead, and two for catfish. Therefore, the same uncertainties discussed in Section 7.1.2 regarding the size (and age) of the fish tissue data set apply to the analysis of single-species diets presented here.

The baseline mixed diet falls within the range of the alternate diets. The risks and hazards associated with a 100% catfish diet or a mixed catfish/largemouth bass diet are lower than the baseline mixed fish diet. As discussed in Section 7.3.2.1, angler survey data indicate a preference for catfish. Therefore, the baseline mixed fish diet may overestimate potential risks and hazards to most anglers.

7.3.2.6 Fish Tissue Type Consumed

The BHHRA assumed that only the fish fillet was consumed, as this is the body part typically consumed by most anglers (USEPA, 2000; Gibson and McClafferty, 2005). However, some anglers may consume the whole fish or additional parts besides just the fillet (e.g., use the head and carcass in soup or stock).

Because whole body concentrations for lipophilic chemicals are usually higher than fillet concentrations, risks may be underestimated for those who consume more than just the fillet. Whole body fish tissue data are not available from the Pinkney data sets (Pinkney, 2017) for the Upper and Lower Anacostia River or the Upper and Lower Potomac River. Samples of fillet and whole body fish tissue were collected from the Upstream Non-Tidal Anacostia. The ratio of whole body to fillet concentrations for total PCBs in those samples ranged from 3.3 to 13.6, as follows, by species:

	Ratio of Whole Body to Fillet Concentration for Total PCBs					
Species	Number of Samples	Minimum Ratio	Maximum Ratio	Mean Ratio		
Largemouth bass	19	3.4 to 1	11.7 to 1	5.7 to 1		
Smallmouth bass	6	4.2 to 1	9.2 to 1	5.7 to 1		
Striped bass	3	3.3 to 1	4.5 to 1	3.8 to 1		
Northern snakehead	1	13.6				

The ratio of whole body to fillet concentrations reported in the literature varies by species and lipid content, ranging from 1 to 1 to 1.5 to 1 for fish with high lipid content (e.g., lake trout, carp) to 3 to 1 to 5 to 1 or more for species with low lipid content (e.g., bass, pike, perch) (Skinner et al., 2009; Burman and Rygwelski, 2006; Amrhein et al., 1999). Thus, depending on species, estimated whole body fish consumption risks may be higher than the fillet-based risks estimated in the BHHRA.

7.3.2.7 Consumption of Other Biota

It is possible that other biota present in the Anacostia River besides fish, such as turtles, ducks, frogs, etc., are consumed.²⁵ However, due to the lack of data on consumption of other aquatic species or waterfowl, this potential exposure pathway was not evaluated quantitatively in the BHHRA. The angler surveys revealed little crabbing or crab consumption on the Anacostia River. Based on available data, fish are the primary target of Anacostia River anglers. Not evaluating consumption of other biota in the BHHRA is unlikely to have resulted in the omission of a significant route of exposure to this population.

7.3.3 Estimation of Exposure Point Concentrations

The data used to calculate the EPCs were assumed to be representative of general area conditions. Sample locations were selected based on several factors, including prior knowledge of source areas,

²⁵ Due to low salinity levels in the River in the vicinity of the Site, crabs are not expected to be present (NOAA, 2012).

potential migration patterns, and ensuring adequate spatial coverage. Nevertheless, due to spatial and temporal variability, as well as sampling and analytical limitations, there is uncertainty in the EPCs used to estimate current conditions in environmental media. Key uncertainties are discussed below.

Exposure to COPCs is best estimated by the arithmetic mean concentration (USEPA 1989a, 2002b). Because of the uncertainty associated with estimating the true average concentration, USEPA's guidance states that "the 95 percent upper confidence limit of the arithmetic mean should be used for this [the average] variable" (USEPA, 2002b). This statistic provides a conservative upper-bound estimate of the average chemical concentration in an environmental medium. The EPCs used in the BHHRA represent the lower of either the maximum detected concentration or the 95% UCL of the arithmetic mean for the RME scenario and the mean for the CTE scenario (USEPA, 2002b). The use of the UCL (or maximum detection) reduces uncertainty that EPC will understate the true average concentration.

Fish Tissue EPCs

There is substantial uncertainty in the tissue EPCs due to limited sample sizes (e.g., six in the Lower Anacostia and seven in the Upper Anacostia). The use of composite tissue samples, which are comprised of multiple individual specimens, addresses some of the uncertainty associated with small sample sizes. However, the representativeness of the fish tissue EPCs remains uncertain due to the limited tissue data set, and the age of the data set in view of the fact that fish tissue concentrations have been declining over time and the data set does not reflect subsequent improvements, such as may be attributable to recent major reductions in CSOs discharges to the Anacostia River.

Fringe Sediment EPCs

There is uncertainty in the characterization of fringe surface sediment data for the evaluation of direct contact exposures. Per the approved work plan, the top 6 inches of fringe sediment were assumed to be the point of exposure for human contact with sediment. However, it is possible that sediment at depths greater than the top 6 inches or within the deeper part of the channel may be transported to fringe surface sediment as a result of erosion, currents, and/or mixing processes. The concentrations of some COPCs in deeper sediment and farther into the channel are not substantially different from or are generally lower than concentrations in fringe surface sediment. For some other COPCs, concentrations in deeper sediments are generally higher than at the surface. For COPCs with concentrations that are greater at depth, the use of the fringe surface sediment data to estimate current and future EPCs may underestimate direct contact risks if the deeper sediments migrate to the fringe surface sediment in the future. On the other hand, for COPCs with concentrations that change little or are lower at depth, the use of fringe surface sediment data does not underestimate potential direct contact risks.

Soil and Groundwater EPCs

Soil and groundwater sampling at the Site were extensive and included delineation to RBSLs. Based on the large sample sizes and sampling areas, the uncertainty associated with soil and groundwater EPCs is considered low. It was assumed that the future outdoor industrial worker and the hypothetical future recreational visitor are exposed to soils that are currently located at a depth of 0 to 1 foot bgs or immediately below existing slab. However, it is possible that in the future, subsurface soils could be brought to the surface, making them accessible to contact by these receptors, as discussed below.

A review of the EPCs for surface soil (**Table 5-10**) and soil (0 to 16 feet bgs, **Table 5-12**) indicates that for the hypothetical future park land/green space area, soil EPCs are the same as surface soil EPCs (where the maximum detected concentration was from surface soil) or lower than surface soil EPCs (due to a larger data set and calculation of UCL), with one exception. The soil EPC for manganese is just under 2-fold higher than the surface soil EPC; however, the HIs associated with manganese are less than 0.05, and even if doubled, would not exceed 1. Therefore, in this area, potential risks and hazards for both receptors would be the similar to those calculated in the BHHRA based on surface soil EPCs.

Similarly, over 50% of soil EPCs in the remaining areas (outdoor industrial worker exposure only) are the same as or lower than surface soil EPCs. About 10% of the soil EPCs ranged from 1.1 to 1.7 times higher than the surface soil-only EPCs. About 30% of the soil EPCs ranged from about 2 times higher than the surface soil EPCs to about 15 times higher, and only 5% of soil EPCs were more than 15 times greater than surface soil EPCs. No soil EPCs were more than 20 times higher than surface soil EPCs. The majority of cases where soil EPCs were greater than 2 times the surface soil EPCs were for PAHs or DRO in the warehouse and laydown area, the salvage yard and waste storage area, the stores and maintenance area, the offices and parking lot area, and the transformer shop. Therefore, in these areas, it is possible that if subsurface soils are brought to the surface, potential risks and hazards associated with PAHs and DRO could be more than 2 times higher than predicted in the BHHRA based on surface soil EPCs. It should be noted, however, that if subsurface soils were brought to the surface in the future, it would likely be in combination with other Site work and re-grading that would result in mixing the excavated soil, such that the use of current EPCs to model this hypothetical situation is highly uncertain.

It is assumed that the EPCs used in the risk assessment based on current conditions will remain constant for the assumed exposure duration for an industrial or recreational scenario; this is typically a period of 25 to 26 years. However, it is well known that chemicals in the environment are subject to natural attenuation and biodegradation processes. Organic chemicals are naturally degraded in the environment by a variety of processes (i.e., photodegradation, microbial activity, hydrolysis, etc.). At sediment sites, deposition of

cleaner sediment is an important process by which constituent concentrations in surface sediment are reduced over time. USEPA recognizes the validity and utility of natural attenuation and biodegradation as a remedial option and has published guidance for its site-specific implementation (USEPA, 1997b; 2005a). Environmental half-lives vary for specific chemicals based on environmental conditions (i.e., presence of bacteria, pH, exposures to sunlight and oxygen), and there are respected literature sources of such information. However, environmental degradation has not been accounted for in the calculation of potential risks and hazards in the Study Area. Current concentrations in Study Area media (soil, groundwater, fringe surface sediment, surface water, and fish tissue) were assumed to remain unchanged into the future for the exposure durations evaluated in the BHHRA (i.e., up to 26 years).

7.3.4 Estimation of Exposure Dose

7.3.4.1 Soil and Fringe Surface Sediment

As discussed in Section 5.4, AAFs/RBAs are used in risk assessment to account for absorption differences between humans exposed to substances in environmental situations and experimental animals in the laboratory studies used to derive dose-response values. Support for use of AAFs/RBAs is provided in USEPA guidance (USEPA, 1989a).

Oral bioavailability is a measure of the degree to which a chemical may be systemically absorbed following ingestion, and dermal bioavailability is a measure of the degree to which a chemical may absorb through the skin and into the blood stream. Some chemicals are absorbed almost completely (100% bioavailability) when ingested in pure form. Other chemicals may pass through the body largely unabsorbed. Thus, the amount that is absorbed is both uncertain and variable. As a result, USEPA's default assumptions regarding absorption are conservative and intended to apply to most sites and exposure conditions. Key factors that influence bioavailability include:

- <u>Physical characteristics of the chemical</u>. In general, as the lipophilicity of a chemical increases, its absorption across the gastrointestinal tract increases.
- The rate at which chemicals dissociate from soil or sediment in the gut. Soil/sediment-bound
 chemicals, particularly inorganics, are usually absorbed to a lesser degree than chemicals in pure
 form. The reduced absorption is a result of hydrophobic attraction between the chemical and soil
 matrix.
- Soil/sediment aging. Aging results in the migration of the chemical into the interior of the soil or sediment particle so that less remains on the exterior surface. This sequestration or aging of the chemical over time reduces the accessibility of a chemical when ingested or dermally contacted by

humans because the chemical is bound in the soil/sediment matrix and not extracted by stomach acid or skin moisture.

Therefore, for chemicals that have been immobilized in soil or sediment by the aging process, the total concentration of the chemical may be a poor indicator of its current relative toxicity. The assumption of 100% oral bioavailability of chemicals in aged soil or sediment is unlikely and has likely resulted in an overestimation of potential risks from incidental ingestion of soil and fringe surface sediments.

While there is uncertainty associated with the use of default DAFs for evaluating dermal exposures, the assumptions and method used are more likely to overestimate than underestimate potential exposures. Further, potential dermal contact risks associated with fringe surface sediment and soil are low (near or below 10⁻⁶ cancer risk and below an HI of 1). Therefore, the use of the default approach has minimal impact on the conclusions of the BHHRA.

7.3.4.2 Surface Water

The quantification of potential noncancer hazards and cancer risks associated with the surface water pathway followed Exhibit 1-2 in the USEPA RAGS Part E guidance (2004a). Specifically, if dermal assessment was not recommended in USEPA RAGS Part E (2004a), no further evaluation of the dermal pathway was conducted for that COPC. Dermal assessment is not recommended for chemicals with a very large or very small octanol-water partition coefficient value. These chemicals are considered to be outside of the "Effective Prediction Domain," which means that an appropriate K_P value cannot be predicted by the statistical model (USEPA, 2004a). Based on the guidance, the dermal contact pathway associated with 2,3,7,8-TCDD-TEQ, total PCBs, and 4,4-DDT in surface water is considered to be negligible. Given the relatively low concentrations and potential risks/hazards associated with the incidental ingestion pathway, any potential exposure via dermal contact is expected to be negligible.

7.4 Risk Characterization

The potential risk of adverse human health effects is characterized based on estimated potential exposures and potential dose-response relationships. The following areas of uncertainty are introduced in this phase of the risk assessment: the evaluation of potential exposure to multiple chemicals, the combination of upper-bound exposure estimates with upper-bound toxicity estimates, the risks to sensitive populations, and the characterization of background risks.

7.4.1 Risk from Multiple Chemicals

Once potential exposure to and potential risk from each COPC are estimated, the total upper-bound potential risk posed for each receptor is determined by combining the estimated potential health risk from each of the COPCs. Presently, potential carcinogenic effects are added unless evidence exists indicating that the COPCs interact synergistically (a combined effect that is greater than a simple addition of potential individual effects) or antagonistically (a combined effect that is less than a simple addition of potential individual effects) with each other.

For noncarcinogenic effects, the HI should only be summed for chemicals that have the same or similar target endpoints (USEPA, 1989a). The target endpoint is defined as the most sensitive noncarcinogenic health effect used to derive the RfD, RfC or other suitable toxicity value (USEPA, 1989a). Again, there is little evidence to suggest whether those COPCs associated with a common target endpoint are additive, synergistic, antagonistic, or independent in terms of mechanism of action. Whether assuming additivity leads to an underestimation or overestimation of risk is unknown. In this risk assessment, it was assumed that HQs from COPCs with the same target endpoint are additive (e.g., all the HQs from the COPCs with neurological effects are added together). As shown in **Table 4-1**, there is limited overlap in the target endpoints for the COPCs in this BHHRA, suggesting this is a minor area of uncertainty.

Further, PCBs are the dominant COPC driving exceedances of the noncancer target HI of 1. Total PCBs contribute over 99% of the cumulative hazard for the outdoor industrial worker in the transformer shop area (the only area with an HQ greater than 1 for PCBs in soil). Total PCBs contributes approximately 85% of the cumulative noncancer hazard for the angler receptors that consume fish (all age groups) and contact fringe surface sediment and surface water (adult and older child only) in the Anacostia.

7.4.2 Combination of Several Upper-Bound Assumptions

Generally, the goal of a risk assessment is to estimate an upper-bound potential exposure and risk. Most of the assumptions about exposure and toxicity used in this evaluation are representative of statistical upper-bounds or even maxima for each parameter. The result of combining several such upper-bound assumptions is that the final estimate of potential exposure or potential risk is extremely conservative (health-protective).

This is best illustrated by a simple example. Assume that potential risk depends on three variables (soil consumption rate, exposure duration, and CSF). The mean, upper 95% bound and maximum are available for each variable. One way to generate a conservative estimate of potential risk is to multiply the upper 95% bounds of the three parameters in this example. Doing so assumes that the 5% of the people who are most sensitive to the potential carcinogenic effects of a COPC will also ingest soil at a rate that

exceeds the rate for 95% of the population and will do so at the same residence for the number of years that represents only 5% of the population. The consequence of combining these assumptions is that the estimated potential risk is representative of 0.0125% of the population $(0.05 \times 0.05 \times 0.05 \times 0.05 = 0.000125 \times 100 = 0.0125\%)$. Put another way, these serial assumptions overestimate risks for 99.99% of the population or 9,999 out 10,000 people. Thus, the majority of people will have a much lower level of potential risk. The very conservative nature of the potential risks estimated by the risk assessment process is not generally recognized. In reality, the estimates are more conservative than outlined above because more than three upper 95% assumptions are usually used to estimate potential risks.

Alternatively, if the CTE estimate is considered, whereby a single upper 95% assumption of the cancer slope factor is combined with average (50th percentile) assumptions for exposure point concentration and soil ingestion rate, the resulting estimates of potential CTE risk still over-predict the risk to nearly 99% of the potentially exposed population $(0.05 \times 0.5 \times 0.5 = 0.0125 \times 100 = 1.25\%)$. This is a conservative and health-protective approach that substantially overestimates the "average" level and even the reasonable maximum level of potential risk.

The risk assessment approach used here employed upper 95% bounds or maxima for most RME exposure and toxicity assumptions. Thus, it produces estimates of potential risk two to three orders of magnitude greater than the risk experienced by the average member of the potentially exposed populations. The CTE scenarios used average estimates of exposure and concentration where possible, but still used the conservative toxicity values, including the use of the upper-bound CSF for PCBs rather than the central-estimate slope factor; thus, even the CTE risk estimates are likely to overestimate risk.

7.4.3 Risks to Sensitive Populations

The health risks estimated in the risk characterization apply to the receptors whose activities and locations were described in the exposure assessment. Some people will always be more sensitive than the average person, and therefore will be at greater risk. Dose-response values used to calculate hazard and risk, however, are frequently derived to account for additional sensitivity of subpopulations (e.g., the uncertainty factor of 10 used to account for intraspecies differences). In addition, as previously discussed, the selection of the study upon which a cancer slope factor is based often involves the most sensitive species and tumor site. Therefore, it is unlikely that this source of uncertainty contributes significantly to the overall uncertainty of the risk assessment.

7.4.4 Characterization of Background

As discussed in Section 6.4, fish consumption risks exceed the target HI of 1 due to PCBs throughout the Anacostia River, including the upstream non-tidal portion of the River. These findings suggest that there

are multiple sources of PCBs in the Anacostia River, including upstream of the tidal influence of the Waterside Investigation Area. As stated in guidance, "the presence of high background concentrations of hazardous substances, pollutants, and contaminants found at a site is a factor that should be considered in risk assessment and risk management" (USEPA, 2002e).

There is uncertainty in the characterization of background risks posed by PCBs in fish tissue. A general decline in PCB tissue concentrations over time has been observed in the reach of the Anacostia River within the District (Pinkney, 2017). In summary, while there is some uncertainty in the extent to which background contributes to the Study Area risk, the inclusion of background conditions in the risk assessment results means that the calculated risk cannot be attributed solely, or even primarily, to Siterelated constituents.

7.5 Summary of Uncertainty in BHHRA

The assumptions made in the various steps of the BHHRA for the Study Area introduce uncertainty in the results. While the use of assumptions could potentially lead to underestimates of potential risk, the use of numerous conservative (i.e., protective of human health) assumptions, as was done here, more likely overestimates potential risks. Assumptions regarding media concentrations, exposures, and toxicity used in this BHHRA were generally representative of statistical upper-bounds. The result of combining several such upper-bound assumptions is that the final estimate of potential exposure and/or potential risk/hazard is very conservative, and may lie at the extreme upper end, or even above, the distribution of risks in the actual exposed population. Elevated levels of PCBs are present in fish tissue throughout the region, suggesting that a significant portion of the estimated risk is actually a reflection of regional conditions. The results of the BHHRA for the Study Area should be carefully interpreted considering the uncertainty and conservatism associated with the analysis, especially when risk management decisions are made.

8 Summary and Conclusions

This BHHRA was performed for the Study Area located in Washington, DC, in accordance with the approved Risk Assessment Work Plan and Addendum (AECOM, 2012, 2016d) and applicable guidance. The assessment utilized relevant data from Pepco's Landside and Waterside RI activities conducted between January 2013 and July 2018, and DOEE's ARSP (TetraTech, 2018). Based on a Site-specific CSM that considered potential sources, migration pathways, and affected media, the potential routes of exposure to COPCs were identified taking into consideration current and future land uses. Health-protective assumptions and approaches were used to provide a conservative assessment of potential human health risks. The results of the BHHRA will be used to help inform the need for any additional evaluation and/or remedial action at the Study Area.

8.1 Summary of BHHRA for the Study Area

This section summarizes the approach and results of the BHHRA, which was conducted in accordance with the four-step paradigm recommended by USEPA (1989a):

- 1. Data evaluation and hazard identification
- 2. Toxicity assessment
- 3. Exposure assessment
- 4. Risk characterization

A summary of each of the four steps is presented below.

8.1.1 Data Evaluation and Hazard Identification

The soil, groundwater, sediment, and surface water data collected between 2013 and 2018 in accordance with the DOEE-approved RI/FS Work Plan and addenda (AECOM, 2012, AECOM, 2014a, AECOM, 2014b, AECOM, 2016e) were used in the BHHRA. The RI samples were analyzed for a broad range of chemicals, including inorganics, PCBs, dioxins and furans, pesticides, TPH, VOCs, and SVOCs. The BHHRA data set was augmented with composite samples of fish tissue collected in the Anacostia River under separate DOEE programs. Additionally, the BHHRA fringe surface sediment data set was augmented with fringe surface sediment data collected by DOEE for the ARSP. The combination of these field investigations provided the following BHHRA data set:

	Number of Abiotic Media Samples for the BHHRA		
Matrix	Study Area	Background	
Surface soil (0-1 ft bgs)	291	19	
Subsurface soil (1 to 16 ft bgs)	623	19	
Groundwater	125	14	
Fringe surface sediment (0 to 6 inches)	42	42	
Surface water	10	10	

	Number of Biotic Media (Tissue) Samples for the BHHRA					
Species	CSX Bridge to MD State Line			Background		
(fillet)	Upper Tidal Anacostia	Lower Tidal Anacostia	Lower Potomac	Upper Potomac	Upstream Non-Tidal Anacostia	
American eel		1	2	1		
American shad			1			
Brown bullhead	1		1	1		
Catfish (blue)	1	1	1			
Catfish (channel)	1	1	1	1		
Common carp	1	1	1	1		
Largemouth bass	1	1	1	1	19	
Northern snakehead	1	-		1	1	
Smallmouth bass					6	
Striped bass				1	3	
Sunfish	1	1	1	1		
White perch				1		
Total	7	6	9	9	29	

The RI data underwent review and validation in accordance with the QAPP and USEPA guidance, and over 99% were found to be reliable and acceptable for use in risk assessment and remedial decision-making.

Based on a conservative screening process, 43 COPCs were identified for further evaluation in the BHHRA. For soil in the Landside Investigation Area, the COPCs included 2,3,7,8-TCDD-TEQ, several inorganics, PCBs, PAHs, and DRO. For groundwater, the only potentially complete exposure pathways identified were vapor intrusion from groundwater into an excavation trench for a construction worker, vapor intrusion from groundwater into the air of a building under a hypothetical future scenario, and discharge to the Anacostia River. Several VOCs, including MTBE, trichloroethylene, tetrachloroethylene, and vinyl chloride, were identified as COPCs in groundwater for the excavation trench pathway. Trichloroethylene, tetrachloroethylene, chloroform, and vinyl chloride were identified as COPCs for the vapor intrusion to indoor air pathway. No exceedances of surface water criteria were identified for groundwater potentially discharging into the Anacostia River after taking into consideration conservative DAFs.

For the Waterside Investigation Area, the COPCs in fringe surface sediment included 2,3,7,8-TCDD-TEQ, several inorganics, PCBs, PAHs, and DRO. COPCs in surface water included 2,3,7,8-TCDD-TEQ, several inorganics, 4,4-DDT, and PCBs. COPCs in Upper and Lower Anacostia fish tissue included arsenic, mercury, pesticides, and PCBs. Of the COPCs identified for fish tissue in the Upper and Lower Anacostia, only arsenic and PCBs were also identified as COPCs for fringe surface sediment and surface water. It should also be noted that several of the chemicals identified as COPCs are also present in upstream, lateral, and atmospheric sources that contribute to the Anacostia River.

8.1.2 Dose-Response Assessment

The dose-response values used in the BHHRA were identified in accordance with USEPA guidance (USEPA, 2003a, 2013). Both cancer and noncancer dose-response values were identified for oral and inhalation exposures. USEPA's DAFs (USEPA, 2004a) were used to evaluate dermal exposures to COPCs in fringe surface sediment and soil.

The majority of dose-response values used in the BHHRA were obtained from the USEPA's primary source of toxicity values, which is the IRIS database (USEPA, 2018b). The selection of dose-response values for COPCs lacking Tier 1 toxicity values followed USEPA's hierarchy of alternative sources of toxicity values (USEPA, 2003a, 2013).

8.1.3 Exposure Assessment

Based on the CSM and consideration of current and future conditions in the Landside Investigation Area, contact with on-Site media is unlikely under the current scenario. Groundwater is not used for drinking water, and direct contact with soil is unlikely based on the limited Site access, tight security, and presence of pavement and/or soil cover across most of the Site. The existing operational and institutional controls

in place will continue to provide effective exposure prevention measures in the future. However, in the unlikely event that conditions change in the future, it is possible that receptors may be potentially exposed to on-Site media. Eight exposure areas have been defined for soil and groundwater based on current Site use, as indicated below (see **Figure 3-1**):

- Hypothetical Future Park Land /Green Space
- Warehouse and Laydown Area
- Salvage Yard and Waste Storage Area
- Stores and Fleet Maintenance Area
- Offices and Parking Lot
- Substation #7
- Transformer Shop
- Vehicle Refueling Area

The Waterside Investigation Area was evaluated as one exposure area for direct contact exposures to fringe surface sediment and to surface water. The Upper Anacostia River (upstream of the CSX bridge to the Maryland state line), which includes the Waterside Investigation Area, was evaluated for potential exposure via consumption of fish. Four regional reaches were also evaluated for potential exposure via fish consumption, including the Lower Anacostia River, the Upper Potomac River (upstream of the 14th Street bridge), the Lower Potomac River (downstream of the 14th Street bridge, and the Upstream Non-Tidal Anacostia River background reach (north of the Maryland state line).

Based on the human health CSM developed for the Study Area, the following potential receptors and exposure pathways were identified for quantitative evaluation:

Landside Receptors:

- Current/future construction workers who may be exposed via incidental ingestion of and/or dermal
 contact with soil (0 to 16 feet bgs) via inhalation of fugitive dust derived from soil, and via inhalation of
 vapors from groundwater in an excavation trench.
- Future outdoor industrial workers who may be exposed via incidental ingestion of and/or dermal contact with surface soil and via inhalation of fugitive dust derived from surface soil.

- Future indoor industrial workers who may be exposed to VOCs in indoor air resulting from groundwater vapor intrusion, should a building be constructed in an area with volatile COCs in the future.
- Hypothetical future recreational visitors who may be exposed via incidental ingestion of and/or dermal contact with surface soil and via inhalation of fugitive dust derived from surface soil.

Waterside Receptors:

- Anglers who may be exposed via incidental ingestion of and dermal contact with fringe surface sediment and surface water, and via consumption of Upper Anacostia River fish.
- Swimmers and waders who may be exposed via incidental ingestion of and/or dermal contact with fringe surface sediment and surface water within the Waterside Investigation Area.
- Shoreline workers who may be exposed via incidental ingestion of and/or dermal contact with fringe surface sediment and surface water adjacent to the Site.

The BHHRA also included a screening-level evaluation of the potential impact of Site groundwater on the River by comparing estimated in-stream concentrations of chemicals detected in groundwater to applicable surface water screening levels.

Consistent with the approved Risk Assessment Work Plan and Addendum (AECOM, 2012, 2016d), the BHHRA evaluated both RME and CTE scenarios to provide information on a range of potential exposures and risks. Realistic but appropriately conservative exposure parameter values were selected to represent potential exposures under both current and future Site uses. Site-specific information on land uses, populations, and activities were considered in the identification of relevant exposure scenarios and representative parameter assumptions. This included review of available angler surveys to gather information on angler behaviors and consumption practices.

The lower of the 95% UCL of the arithmetic mean and the maximum concentration was used as the exposure point concentration for the RME scenarios, and the mean was used in the evaluation of the CTE scenarios. While PCBs were not detected in surface water, PCBs were conservatively included in the risk calculations for potential surface water exposures using the lowest reporting limit achieved as a proxy EPC.

8.1.4 Risk Characterization

The risk characterization results are discussed below for the Landside and Waterside Investigation Areas, as well as background and regional reaches. For each receptor, the cumulative carcinogenic risks are

compared to the USEPA acceptable risk range of 10⁻⁴ to 10⁻⁶. The cumulative noncancer hazards for each receptor are compared to the USEPA goal of protection of an HI of 1 (per target endpoint).

8.1.4.1 Landside Scenarios

The cumulative RME and CTE cancer risks and noncancer hazards for the landside receptors are summarized in the following table.

Landside Receptors – C	umulative F	Risks/Hazar	ds	
F A	Can	cer	Nonca	ancer ^a
Exposure Area	RME	CTE	RME	CTE
Current/Future Construction Worker (Adult)				
Hypothetical Future Park Land/Green Space	2E-08	8E-09	1	0.3
Warehouse and Laydown Area	4E-07	7E-08	3	0.5
Salvage Yard and Waste Storage Area	5E-07	1E-07	0.7	0.1
Stores and Fleet Maintenance Area	9E-08	3E-08	0.2	0.07
Offices and Parking Lot	4E-07	8E-08	0.8	0.2
Substation #7	3E-07	3E-08	0.5	0.08
Transformer Shop	2E-06	7E-07	1.6	0.5
Vehicle Refueling Area	4E-08	1E-08	0.2	0.08
Future Outdoor Industrial Worker (Adult)				
Hypothetical Future Park Land/Green Space	1E-06	1E-07	0.3	0.1
Warehouse and Laydown Area	2E-05	1E-06	1	0.2
Salvage Yard and Waste Storage Area	1E-05	1E-06	0.3	0.05
Stores and Fleet Maintenance Area	4E-06	4E-07	0.08	0.03
Offices and Parking Lot	3E-06	4E-07	0.03	0.01
Substation #7	2E-05	6E-07	0.3	0.02
Transformer Shop	2E-03	3E-05	124	8
Vehicle Refueling Area	1E-06	1E-07	0.03	0.01
Future Indoor Industrial Worker (Adult)				
Southern Boundary	2E-5		2	
Northern Boundary	4E-6	b	0.005	b
Downgradient Perimeter	1E-6		0.3	
MW05A	8E-7		0.1	

Landside Receptors – Cumulative Risks/Hazards								
Exposure Area	Can	cer	Noncancer ^a					
Future Recreational Visitor (Older child/teen)								
Hypothetical Future Park Land/Green Space 7E-08 7E-09 0.04 0.009								

Blue highlighting indicates that risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

Yellow highlighting indicates that risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1.

The total potential carcinogenic risks for all Landside receptors are within or below the USEPA target risk range of 10⁻⁴ to 10⁻⁶ with the exception of the RME future outdoor industrial worker exposed to surface soil in the transformer shop area. The total potential risk of 2x10⁻³ is driven by PCBs; all COPCs with potential carcinogenic risk greater than 10⁻⁶ are identified as COCs, as presented in Section 8.2.3.

Target endpoint HIs are below 1 for all Landside receptors under the RME scenario with the following exceptions:

- RME construction worker inhalation of vanadium as particulates from soil (surface and subsurface) in the warehouse and laydown area; HI of 3 based on respiratory effects.
- RME construction worker ingestion and dermal contact with PCBs in soil (surface and subsurface) in the transformer shop area; HI of 1.6 based on eye, nail, and immune effects.
- RME outdoor industrial worker ingestion and dermal contact with PCBs in surface soil in the transformer shop area; HI of 124 based on eye, nail, and immune effects.
- RME future indoor industrial worker inhalation of tetrachloroethylene, trichloroethylene, and vinyl chloride along the southern property boundary.

8.1.4.2 Waterside Scenarios

The cumulative RME and CTE cancer risks and noncancer hazards for the waterside receptors are summarized in the following table.

^a Highest target endpoint HI

^b CTE scenario was not included for the screening level vapor intrusion evaluation.

Waterside Receptors – Cumulative Ri	Waterside Receptors – Cumulative Risks/Hazards										
Firmanius Area	Car	ncer	Nonca	ncer ^a							
Exposure Area	RME	CTE	RME	CTE							
Swimmer Adult/Young Child ^a											
Waterside Investigation Area (Direct Contact) ^b	2E-06	9E-08	0.08	0.008							
Wader Adult/Young Child	a										
Waterside Investigation Area (Direct Contact) ^b	4E-06	2E-07	0.2	0.02							
Shoreline Worker											
Waterside Investigation Area (Direct Contact) ^b	4E-06	1E-07	0.09	0.008							
Recreational Angler Adult/Young	Child a,c										
Anacostia River ^c											
(Fish Consumption and Direct Contact)											
Upper Anacostia (Total PCBs)	4E-05	2E-06	3	0.3							
Upper Anacostia (PCB-TEQ)	2E-05	1E-06	0.7	0.06							

Blue highlighting indicates that risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

Yellow highlighting indicates that risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1. The highest target endpoint HI is shown.

Potential cancer risks in the Waterside Investigation Area do not exceed 10⁻⁴. The HI exceeds 1 only for the recreational fish consumption pathway. The potential cumulative carcinogenic risk for the RME adult/child recreational angler who is assumed to contact fringe surface sediment and surface water within the Waterside Investigation Area and eat fish caught adjacent to the Site every year for 26 years is 4x10⁻⁵ (based on total PCBs). Under the CTE scenario, the potential cumulative risk for the adult/child recreational angler is equal to 2x10⁻⁶. The highest target endpoint HI for the RME young child recreational angler is 3 and is driven by PCBs in fish tissue (based on total PCBs for eye, nail, and immune effects). Using CTE assumptions, the noncancer HIs for all age groups are below 1. All COPCs with potential carcinogenic risk greater than 10⁻⁶ or HI greater than 1 are identified as COCs, as presented in Section 8.2.3.

^a Cancer risks for the swimmer, wader, and angler represent the combined adult and child, and noncancer hazards represent the child only. See Section 6 tables for age-specific risks/hazards.

^b Includes incidental ingestion and dermal contact with fringe surface sediment and surface water.

^c Includes incidental ingestion and dermal contact with fringe surface sediment and surface water, and consumption of a mixed fish diet. The Upper Anacostia encompasses the Waterside Investigation Area (see **Figure 3-7**).

8.1.4.3 Background and Regional River Reaches

The fish consumption RME and CTE cancer risks and noncancer hazards are summarized in the following table.

Regional and Background Reaches- Fish Consumption Risks/Hazards										
Recreational Angler Adult/You Ckground Area Fish Consumption) Ipstream Non-Tidal Anacostia (Total PCBs) Ipstream Non-Tidal Anacostia (PCB-TEQ) Igional Reaches In Consumption) In Consumption (Total PCBs)	Cano	er ^a	Noncancer ^a							
Exposure Area	RME CTE RME CTE ng Child 5E-07 0.6 0 8E-06 5E-07 0.6 0 7E-05 3E-06 5 0									
Recreational Angler Adult/You	ng Child									
Background Area ^b										
(Fish Consumption)										
Upstream Non-Tidal Anacostia (Total PCBs)	7E-06	5E-07	0.6	0.1						
Upstream Non-Tidal Anacostia (PCB-TEQ)	8E-06	5E-07	0.6	0.1						
Regional Reaches ^b										
(Fish Consumption)										
Lower Anacostia (Total PCBs)	7E-05	3E-06	5	0.5						
Lower Anacostia (PCB-TEQ)	9E-05	4E-06	3	0.3						
Lower Potomac (Total PCBs)	6E-05	2E-06	2	0.3						
Lower Potomac (PCB-TEQ)	6E-05	2E-06	1	0.1						
Upper Potomac (Total PCBs)	2E-04	5E-06	10	0.7						
Upper Potomac (PCB-TEQ)	2E-04	7E-06	9	0.5						

Notes:

Blue highlighting indicates that risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

Yellow highlighting indicates that risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1. The highest target endpoint HI is shown.

The potential cumulative carcinogenic risks for the RME adult/child recreational angler who eats fish from river reaches other than the Upper Anacostia (Waterside Investigation Area) are 2x10⁻⁴ for the Upper Potomac, 6x10⁻⁵ for the Lower Potomac, and 7x10⁻⁶ for the Upstream Non-Tidal Anacostia background (based on total PCBs). In the Lower Anacostia River, potential cumulative carcinogenic risk for the RME adult/child recreational angler is 7x10⁻⁵ (based on total PCBs). In all of these fish consumption scenarios, potential risks are driven mainly by PCBs, with 4,4-DDE, dieldrin, heptachlor epoxide, and arsenic contributing to a lesser extent in select areas.

The total potential HI for the RME recreational angler in the background and regional reaches exceeds the target noncancer HI of 1 except for the Upstream Non-Tidal Anacostia background reach. The exceedance of the noncancer target HI of 1 is due to PCBs in fish tissue (based on both total PCBs for

^a Cancer risks represent the combined adult and child, and noncancer hazards represent the child only. See Section 6 tables for age-specific risks/hazards.

^b Includes consumption of a mixed fish diet only.

^c CTE scenario was not included for the high-end consuming angler scenario.

eye, nail, and immune effects and PCB-TEQ for reproductive and developmental effects). For the young child age group, which has the highest noncancer hazards, RME HIs for the background and regional reaches range from 0.6 (Upstream Non-Tidal Anacostia) to 10 (Upper Potomac, total PCBs). Using CTE assumptions, the noncancer HIs for all age groups and areas are below 1.

As discussed in Section 7.3.2, potential risks and hazards for the recreational receptor are dependent on the species consumed. For example, based on consumption of a diet including catfish only (which is a preferred species based on local angler surveys), the HI for the young child in the Upper Anacostia decreases by almost 30%, and based on consumption of largemouth bass only, decreases to an acceptable HI of 1.

As noted in 7.3.2.2, potential risks and hazards for the high-end consuming angler exceed a cancer risk level of 10⁻⁴ in all but the Upstream Non-Tidal Anacostia River reach, where the cancer risk is within USEPA's risk range. The HI exceeds 1 for all reaches. As for the recreational angler, the highest potential total PCB risks for the high-end consuming angler are in the Upper Potomac.

8.2 Conclusions

The conclusions of the BHHRA for the Study Area are described in this section.

8.2.1 Landside Investigation Area

Potential exposures to on-Site surface and subsurface soils are currently incomplete due to perimeter fencing, round-the-clock Site security, and the presence of pavement or gravel across the vast majority of the Site. The current lack of access to soil is expected to continue into the foreseeable future. However, the potential for future direct contact exposures to surface and subsurface soil was evaluated. It was also assumed that a construction worker may be potentially exposed via inhalation of vapors from groundwater in an excavation trench. The total potential carcinogenic risk and noncarcinogenic hazards for all Landside receptor scenarios are within or below the USEPA target risk range of 10⁻⁴ to 10⁻⁶ and below a target endpoint-specific HI of 1 with the exception of the following:

- RME construction worker in the warehouse and laydown area due to vanadium in soil
- RME construction worker in the transformer shop due to total PCBs in soil
- RME future outdoor industrial worker in the transformer shop due to total PCBs in soil
- RME future indoor industrial worker due to chloroform along the northern boundary and tetrachloroethylene, trichloroethylene, and vinyl chloride in groundwater along the southern property boundary

The Landside receptor scenarios with risks above or within the risk range of 10⁻⁶ to 10⁻⁴ or with HIs above 1 were described above in Section 8.1.4.1, and include direct contact with soil (2,3,7,8-TCDD-TEQ, vanadium, total PCBs) and inhalation of VOCs in indoor air (future building scenario only)

Migration of chemicals in Site groundwater to the Anacostia River was also evaluated. In-stream concentrations of chemicals detected in groundwater at the downgradient edge of the property were modeled using conservative dilution attenuation factors. No modeled in-stream concentrations exceeded state and federal surface water screening levels, which indicates that Site groundwater is not adversely impacting the Anacostia River.

8.2.2 Waterside Investigation Area

- None of the potential cumulative receptor carcinogenic risks for the recreational angler exceed the upper end of USEPA's target risk range of 10⁻⁶ to 10⁻⁴ for the Waterside Investigation Area for the RME scenario. Recreational angler risks within the risk range of 10⁻⁶ to 10⁻⁴ were described above in Section 8.1.4.2. Noncarcinogenic hazards for the recreational angler exceed USEPA's target of an HI of 1 for consumption of Upper Anacostia River fish, as well as consumption of fish from the Upper Potomac River and Lower Potomac and Lower Anacostia Rivers for the RME scenario. The HI is less than 1 for the Upstream Non-Tidal Anacostia River (background area). The HI for fish consumption is less than 1 for all receptors in all areas under the CTE scenario.
- Potential human health risks to recreational receptors and workers posed by direct contact with fringe surface sediment and surface water in the Waterside Investigation Area are within or below USEPA's target risk levels. Potential risks within the risk range of 10⁻⁶ to 10⁻⁴ were described above in Section 8.1.4.2 and direct contact with fringe surface sediment (2,3,7,8-TCDD-TEQ).
- PCBs in fish tissue are the dominant COPC and medium driving potential risk; other COPCs
 contribute much less to cumulative risk. PCBs in fish tissue were evaluated separately as total PCBs
 and as PCB-TEQ. There was little difference between estimated fish consumption cancer risks based
 on total PCBs and PCB-TEQ. The potential noncancer hazards based on PCB-TEQ were generally
 lower than corresponding noncancer hazards based on total PCBs.
- Fish consumption hazards estimated using data collected from sampling locations throughout the tidal Anacostia and Potomac Rivers exceed the noncancer target HI of 1; these findings suggest multiple sources of PCBs in the River.

As noted in Section 7.1.2, the COPC concentrations detected in the fish tissue composite samples likely represent conditions throughout the approximately 3.2-mile Upper Anacostia River sampling area and may not be representative of conditions in the Waterside Investigation Area.

8.2.3 Potential COCs

COPCs with a potential risk above 1 x 10⁻⁶ are summarized in the tables below.

		La	Landside Investigation Area - Soil					
Potential COC	Risk/HI	Warehouse and Laydown Area			Transformer Shop			
2,3,7,8-TCDD-TEQ	Risk	1	4E-06 ^a		1			
Vanadium	HI	3^{b}						
	Risk	5E-06 ^a	2E-06 ^a	4E-6ª	2E-03 ^a			
Total PCBs	НІ				124 ^a 1.6 ^b			

Notes:

-- Indicates that risk is less than or equal to 10⁻⁶ or HI is less than or equal to 1.

Blue highlighting indicates that risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

Yellow highlighting indicates that risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1.

^b Current/future construction worker soil (0-16 feet bgs).

		Landside Investigation Area - Fut	ure Vapor Intrusion Pathway ^a
COPC	Risk/HI	Southern Boundary	Northern Boundary (DP-60)
Chloroform	Risk		4E-06
Totrophloropthylono	Risk	7E-06	
Tetrachloroethylene	HI	2	
Trichloroothylono	Risk	6E-06	
Trichloroethylene	HI	2	
Vinyl Chloride	Risk	2E-06	

Notes:

Blue highlighting indicates that risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

Yellow highlighting indicates that risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1.

^a Future outdoor industrial worker surface soil (0-1 foot bgs).

⁻⁻ Indicates that risk is less than or equal to 10^{-6} or HI is less than or equal to 1.

^a Future indoor industrial worker, assuming buildings are constructed in these areas.

		Fish Tissue ^a	Fringe Surface Sediment
Potential COC	Risk/HI	Upper Anacostia	Pepco Waterside Investigation Area
2,3,7,8-TCDD-TEQ	Risk		2E-06 ^a 3E-06 ^{b,c}
Total PCBs	Risk	3E-05	-
Total PCBS	НІ	3	
PCB-TEQ	Risk	1E-05	-
Dieldrin	Risk	5E-06	

-- Indicates that risk is less than or equal to 10^{-6} or HI is less than or equal to 1. Blue highlighting indicates that risk exceeds 10^{-6} but is less than or equal to 10^{-4} . Yellow highlighting indicates that risk exceeds 10^{-4} or the target endpoint HI exceeds 1.

Potential fish consumption risks and hazards were also calculated for the background and other regional river reaches to provide important context for the Upper Anacostia area. For comparative purposes, the table below presents the chemicals with potential risks greater than 10⁻⁶ or a target endpoint HI of 1; the hazard value representing the highest target endpoint HI is presented. All of the chemicals identified as potential COCs in the Upper Anacostia area for fish consumption are also identified in the regional river reaches, and in many cases, at higher risk and hazard levels. These results are indicative of a regional impact on fish tissue body burdens that may be attributable, at least in part, to sources other than sediment within the Upper Anacostia River reach or the Waterside Investigation Area in particular.

^a Current/future recreational angler.

^b Current/future shoreline worker.

^c Current/future wader.

			Fis	h Tissue ^a	
Chemical	Risk/ HI		Regional Reach	es	Background Area
		Lower Anacostia	Lower Potomac	Upper Potomac	Non-tidal Anacostia
Arsenic	Risk	2E-06	3E-05	3E-06	
T-4-L DOD-	Risk	5E-05	2E-05	1E-04	3E-06
Total PCBs	Н	5	2	14	
DOD TEO	Risk	7E-05	3E-05	2E-04	4E-06
PCB-TEQ	Н	3		9	
4,4-DDE	Risk			4E-06	
Dieldrin	Risk	1E-05	5.0E-06	2E-05	
Heptachlor epoxide	Risk	2E-06			

Blue highlighting indicates that cumulative risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

As with all risk assessments, assumptions have been made about variables and processes that are not fully known, such as human behavior, chemical toxicity, or environmental concentrations. While the use of assumptions leads to uncertainty, it is important to note that the assumptions and approaches used in this BHHRA are conservative, such that risks are much more likely to be overestimated than underestimated. In addition, information regarding risks associated with conditions in background and other regional areas should be carefully considered in risk management decision-making for the Study Area.

⁻⁻ Indicates that risk is less than or equal to 10⁻⁶ or HI is less than or equal to 1.

Yellow Highlighting indicates that cumulative risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1.

^a Current/future recreational angler.

9 References

- ACS. 2018. Cancer Facts & Figures 2018. American Cancer Society. Available at: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures-2018.html
- AECOM. 2012. Remedial Investigation and Feasibility Study Work Plan. Final. Benning Road Facility. Prepared for Pepco Holdings, Inc. December 28, 2012.
- AECOM. 2014a. Benning Road Facility RI/FS Work Plan Addendum #1 Monitoring Well Installation Activities. March 2014.
- AECOM. 2014b. Benning Road Facility RI/FS Work Plan Addendum #2 Cooling Tower Concrete Basins Soil Sampling Activities. July 2014.
- AECOM. 2016a. Remedial Investigation Report. Draft. Benning Road Facility. Prepared for Pepco Holdings, Inc. February.
- AECOM. 2016b. Technical Memorandum #1. Conceptual Site Model. Prepared for Pepco Holdings, Inc. October.
- AECOM. 2016c. Technical Memorandum #2. Refined Background Evaluation Work Plan. Prepared for Pepco Holdings, Inc. October.
- AECOM. 2016d. Technical Memorandum #3. Baseline Human Health and Ecological Risk Assessment Work Plan Addendum. Prepared for Pepco Holdings, Inc. October.
- AECOM. 2016e. Remedial Investigation and Feasibility Study Work Plan Addendum #3 Additional Field Investigation. Prepared for Pepco Holdings, Inc. October.
- Ames, BN, R Magaw, and LS Gold. 1987. Ranking Possible Carcinogenic Hazards. Science. 236:271 273.
- Amrhein, JF, CA Stow, and J Wible. 1999. Whole-Fish versus Filet Polychlorinated-Biphenyl Concentrations: An Analysis using Classification and Regression Tree Models. Environmental Toxicology and Chemistry, 18(8): 1817–1823.
- ATSDR. 2007. Agency for Toxic Substances and Disease Registry. Toxicological Profile for Arsenic. August.
- ATSDR. 2012. Toxicological Profile for Chromium. U.S. Department of Health and Human Services. Public Health Service, Agency for Toxic Substances and Disease Registry, September.
- Bayen, Stéphane, Philip Barlow, Hian Kee Lee, and Jeffrey Philip Obbard. 2005. "Effect of Cooking on the Loss of Persistent Organic Pollutants from Salmon." *Journal of Toxicology and Environmental Health*, Part A, 68:253-265.

- Bodishbaugh DF, ML Moore, and KL Godtfredsen. 2003. Congener composition of environmental PCB mixtures: An empirical analysis. SETAC Conference, November 11, 2003. Society of Environmental Toxicology and Chemistry, Pensacola, FL.
- Bradley, LJN. 1996. New Toxicology Data for Chloroform: Implications for the Pulp and Paper Industry. Proceedings of the International Environmental Conference of the Technical Association of the Pulp and Paper Industry.
- Burman, B and KR Rygwelski. 2006. Derivation of a Hypothetical Lake Michigan Lake Trout Fish Consumption Criteria for PCBs. Appendix 3.4.1, Results of the Lake Michigan Mass Balance Project: Polychlorinated Biphenyls Modeling Report. US Environmental Protection Agency, Office of Research and Development. EPA-600/R-04/167, December.
- Burmaster, DE and RH Harris. 1993. The magnitude of compounding conservatism in Superfund risk assessments. Risk Analysis 13:131-134.
- CalEPA. 2018. OEHHA Toxicity Criteria Database. California Environmental Protection Agency, Office of Environmental Health Hazard Assessment. [URL: http://oehha.ca.gov/chemicals]
- Carlson, EA, C McCulloch, A, Koganti, S Goodwin, T Sutter, and J Silkworth. 2009. Divergent Transcriptomic Responses to Aryl Hydrocarbon Receptor Agonists Between Rat and Human Primary Hepatocytes. Toxicol Sciences 112(1):257-272.
- CDM. 2003. Final (Revised) Baseline Human Health Risk Assessment Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site (BHHRA). Prepared on behalf of the MDEQ Remediation and Redevelopment Division. May 2003.
- Chaudhuri, IS, J Bleiler, P Hugh, and B Williams. 2003. Risk Assessment of PCBs Based on Dioxin Equivalency and Total Aroclors. Organohalogen Compounds, Volumes 60-65, Dioxin 2003. Boston, MA.
- Cogliano, VJ. 1998. Assessing the Cancer Risk from Environmental PCBs. Environ. Health Perspectives 106(6):317-323.
- Cullen, AC. 1994. Measures of compounding conservatism in probabilistic risk assessment. Risk Anal. 14(4):389-93.
- DOEE. 2013. Title 21 of the District of Columbia Municipal Regulations, Chapter 11, Water Quality Standards. Effective November 1, 2013.
- DOEE. 2016a. 2016 District of Columbia Fish Consumption Advisory. https://doee.dc.gov/service/fishing-district
- DOEE. 2016b. District of Columbia Water Quality Assessment. 2016 Integrated Report to the USEPA and Congress Pursuant to Sections 305(b) and 303(d) Clean Water Act. Water Quality Division. September.
- Ema, M, N Matsushita, K Sogawa, T Ariyama, J Inazawa, T Nemoto, M Ota, M Oshimura, and Y Fuji-Kuriyama. 1994. Human aryl hydrocarbon receptor: functional expression and chromosomal assignment to 7p21. J Biochem. 116(4):845-851.

- Fan, MQ, AR Bell, DR Bell, S Clode, A Fernandes, PM Foster, JR Fry, T Jiang, G Loizou, A MacNicoll, BG Miller, M Rose, O Shaikh-Omar, L Tran, and S White. 2009. Recombinant expression of aryl hydrocarbon receptor for quantitative ligand-binding analysis. Anal Biochem. 15;384(2):279-287.
- FDA. 1993. Guidance Document for Arsenic in Shellfish. U.S. Department of Health and Human Services, Public Health Service, Office of Seafood (HFS-416),200 C Street, SW, Washington, DC 20204.
- Fish, P and J Savitz. 1983. Variations in Home Ranges of Largemouth Bass, Yellow Perch, Bluegills, and Pumpkinseeds in an Illinois Lake. Transactions of the American Fisheries Society, 112/2a: 147–153.
- Flaveny, CA and GH Perdew. 2009. Transgenic Humanized AHR Mouse Reveals Differences between Human and Mouse AHR Ligand Selectivity. Mol Cell Pharmacol. 1(3):119-123.
- Fritz, F and C Weiss. 2009. Anacostia River: Summary of Six Possible Sources of Sediment Contamination. Memorandum prepared by USEPA Region 3, Assistant Regional Counsels. October 21, 2009.
- Gibson, JC and JA McClafferty. 2005. Chesapeake Bay Angler Interviews: Identifying Populations at Risk for Consuming Contaminated Fish in Three Regions of Concern. Blacksburg, VA: Virginia Polytechnic Institute and State University. Final Report CMI-HDD-05-01.
- GLFATF. 1993. Protocol for a Uniform Great Lakes Sport Fish Consumption Advisory. Great Lakes Fish Advisory Task Force. September.
- Golden, R and R Kimbrough. 2009. Weight of evidence evaluation of potential human cancer risks from exposure to polychlorinated biphenyls: an update based on studies published since 2003. Crit. Rev. Toxicol. 39:299-331.
- Golden R, J Doull, W Waddell, and J Mandel. 2003. Potential human cancer risks from exposure to PCBs: a tale of two evaluations. Crit. Rev. Toxicol. 33:543–580.
- Greene, R and E Crecelius. 2006. Total and Inorganic Arsenic in Mid-Atlantic Marine Fish and Shellfish and Implications for Fish Advisories. Integ Env Asst Mgt. 2(4):344-354.
- Haywood, HC and C Buchanan. 2007. Total maximum daily loads of polychlorinated biphenyls (PCBs) for tidal portions of the Potomac and Anacostia rivers in the District of Columbia, Maryland, and Virginia. Interstate Commission on the Potomac River Basin. ICPRB Report 07-7. Rockville, MD. October 2007.
- Hori, Tsuguhide, Reiko Nakagawa, Kazuhiro Tobiishi, Takao lida, Tomoaki Tsutsumi, Kumiko Sasaki, and Masatake Toyoda. 2005. "Effects of Cooking on Concentrations of Polychlorinated Dibenzo-P-Dioxins and Related Compounds in Fish and Meat". Journal of Agricultural and Food Chemistry 53:8820-8828.
- Judd, NL, JR Karr, WC Griffith, and EM Faustman. 2003. Challenges in defining background levels for human and ecological risk assessments. Human Ecol Risk Assess 9:1623-1632.
- Karouna-Renier, Natalie K, RA Snyder, JG Allison, MG Wagner, K Ranga Rao. 2007. Accumulation of organic and inorganic contaminants in shellfish collected in estuarine waters near Pensacola, Florida: Contamination profiles and risks to human consumers. Environmental Pollution 145:474-488.
- Keenan, R and JH Samuelian. 2005. "Is TEQ Enrichment of PCBs in Fish Tissue a Common Phenomenon?" Conference Proceedings of Dioxin 2005. Toronto, Ontario. pp. 1763-1765.

- Larsson, M, M van den Berg, P Brenerova, M van Duursen, K van Ede, C Lohr, S Luecke-Johansson, M Machala, S Neser, K Pencikova, L Poellinger, D Schrenk, S Strapakova, J Vondracek, and PL Andersson. 2015. Consensus Toxicity Factors for Polychlorinated Dibenzo-p-dioxins, Dibenzofurans, and Biphenyls Combining in Silico Models and Extensive in Vitro Screening of AhR-Mediated Effects in Human and Rodent Cells. Chem. Res. Toxicol. 28 (4): 641–650.
- Mayes, BA, EE McConnell, BH Nel, JJ Brunner, SB Hamilton, TM Sullivan, AC Perters, MJ Ryan, JD Toft, AW Singer, JF Brown, RG Menton, and JA Moore. 1998. Comparative carcinogenicity in Sprague-Dawley rats of the polychlorinated biphenyl mixture Aroclors 1016, 1242, 1254, and 1260. Toxicol. Sci. 41:62-76.
- MDE. 2018. Fish Consumption Advisory Map. Accessed September 2018. https://mdewin64.mde.state.md.us/WSA/FCA/index.html
- MDNR. 2016. 2015 Fishery Management Plans. Report to the Legislative Committees. Prepared by Maryland Department of Natural Resources. Fishing and Boating Services. Fishery Management Plan. December 2016. Section 9: Maryland Catfish Species.
- Moya, J, G Garrahan, TM Poston, and GS Durell. 1998. Effects of Cooking on Levels of PCBs in the Fillets of Winter Flounder. Bull. Environ. Contam. Toxicol. 60:845-851.
- Nichols, AL and RJ Zeckhauser. 1988. The perils of prudence: how conservative risk assessment distort regulation. Regul. Toxicol. Pharmacol. 8:61-75.
- NOAA. 2012. Blue crab fish facts. National Oceanic and Atmospheric Administration. Chesapeake Bay Office. Updated August 2012. http://chesapeakebay.noaa.gov/fish-facts/blue-crab
- NRC. 2001. A Risk-Management Strategy for PCB-Contaminated Sediments. Committee on Remediation of PCB-Contaminated Sediments, Board on Environmental Studies and Toxicology, Division on Life and Earth Studies, National Research Council. National Academies Press, Washington, DC.
- NRC. 2006. Health Risks from Dioxins and Related Compounds. Evaluation of the EPA Reassessment. Committee on EPA's Exposure and Human Health Reassessment of TCDD and Related Compounds. Board on Environmental Studies and Toxicology. Division on Earth and Life Studies. National Research Council of the National Academies. The National Academies Press. Washington, DC.
- OpinionWorks. 2012. Addressing the Risk: Understanding the Changing Anglers' Attitudes about the Dangers of Consuming Anacostia River Fish.
- Peters, AK, PE Leonards, B Zhao, A Bergman, MS Denison, and M Van den Berg. 2006. Determination of in vitro relative potency (REP) values for mono-ortho polychlorinated biphenyls after purification with active charcoal. Toxicology Letters 165, 230-241.
- Pinkney, AE, CA Dobony, and PD Brown. 2001. Analysis of Contaminant Concentrations in Fish Tissue Collected from the Waters of the District of Columbia. Final Report. CBFO-C01-01. U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, MD. August 2001.
- Pinkney, AE. 2009. Analysis of Contaminant Concentrations in Fish Tissue Collected from the Waters of the District of Columbia. Final Report. CBFO-C08-03. U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, MD. March 2009.

- Pinkney, AE. 2017. Analysis of contaminant concentrations in fish tissue collected from the waters of the District of Columbia. Final Report. CBFO-C14-03. U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, MD. September 2014. Revised November 2017.
- RETEC, 2002. Final Baseline Human Health and Ecological Risk Assessment: Lower Fox River and Green Bay, Wisconsin Remedial Investigation and Feasibility Study. Prepared for Wisconsin Department of Natural Resources.
- Ruffle, B, R Kennedy, and G Kirkwood-Cohen. 2016. "Risk Assessment of PCBs in Fish Tissue". Platform presentation at 32nd Annual International Conference on Soils, Sediments, Water, and Energy. Amherst, Massachusetts. October 18, 2016.
- Sakaris, PC, RV Jesien, and AE Pinkney. 2005. Brown Bullhead as an Indicator Species: Seasonal Movement Patterns and Home Ranges within the Anacostia River, Washington, DC. Transactions of the American Fisheries Society 134: 1262-1270.
- Schecter, Arnold, Michael Dellarco, Olaf Papke, and James Olson. 1998. "A Comparison of Dioxins, Dibenzofurans and Coplanar PCBs in Uncooked and Broiled Ground Beef, Catfish and Bacon." Chemosphere 37:1723-1730.
- Schoof, RA, LJ Yost, J Eickhoff, EA Crecelius, DW Cragin, DM Meacher, and DB Menzel. 1999. A market basket survey of inorganic arsenic in food. Food Chem Toxicol 37(8):839-46.
- Shields, PG. 2006. Understanding Population and Individual Risk Assessment: The Case of Polychlorinated Biphenyls. Cancer Epidemiol Biomarkers Prev 15(5):830-839. May 2006.
- Skea, JC, HA Simonin, EJ Harris, S Jackling, and JJ Spagnoli. 1979. Reducing levels of mirex, aroclor 1254, and DDE by trimming and cooking Lake Ontario brown trout (Salmo trutta L.) and smallmouth bass (Micropterus dolomieui lacepede). J Great Lakes Res. 5(2):153-159.
- Skinner, LC, B Trometer, A Gudlewski, B Buanno, and J Bourbon. 2009. Data Report for Residues of Organic Chemicals and Four Metals in Edible Tissues and Whole Fish for Fish Taken from the Buffalo River, New York. Prepared by NYSDEC, US Fish and Wildlife, and USEPA. October.
- SRC and NOAA. 2000. Interpretive summary of existing data relevant to potential contaminants of concern within the Anacostia River watershed. Syracuse Research Corporation, North Syracuse, NY and National Oceanic and Atmospheric Administration, Seattle, WA. June.
- Sullivan, MP and WE Brown, 1988. The Tidal Anacostia Model Documentation of the hydrodynamics and water quality parameters. Prepared for the DC Dept. of Consumer and Reg. Affairs by the Metropolitan Washington Council of Governments, Washington, DC.
- Sutter, CH, S Bodreddigari, TR Sutter, EA Carlson, and JB Silkworth. 2010. Analysis of the CYP1a1 mRNA dose-response in human keratinocytes indicates that relative potencies of dioxins, furans, and PCBs are species and congener specific. Toxicol. Sci. 118, 704-715.
- TetraTech. 2018. Draft Remedial Investigation Report. Anacostia River Sediment Project. Washington, D.C. Prepared for District of Columbia, Department of Energy and Environment. Prepared by TetraTech, Sterling, VA. March 30.

- Trnovec, T, TA Jusko, E Šovcíková, K Lancz, J Chovancová, H Patayová, L Palkovicová, B Drobná, P Langer, M Van den Berg, L Dedik, and S Wimmerová. 2013. Relative effect potency estimates of dioxin-like activity for dioxins, furans, and dioxin-like PCBs in adults based on two thyroid outcomes. Environ. Health Perspect. 121, 886-892.
- USEPA. 1986. Guidelines for Carcinogen Risk Assessment. Federal Register 51 (Federal Register 51(185):33992–34003. Available from: http://www.epa.gov/ncea/raf/.
- USEPA. 1989a. Risk Assessment Guidance for Superfund: Volume I. Human Health Evaluation Manual (Part A). Interim Final. Office of Emergency and Remedial Response. U.S. Environmental Protection Agency, Washington, D.C. EPA 540/1-89/002.
- USEPA. 1989b. Assessing Human Health Risks from Chemically Contaminated Fish and Shellfish: A Guidance Manual. EPA/503-8-89-002. US Environmental Protection Agency, Washington, DC.
- USEPA. 1990. National Oil and Hazardous Substances Pollution Contingency Plan. Final Rule. 55FR8666. March 8.
- USEPA. 1991. Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions. OSWER Directive #9355.0-30. April.
- USEPA. 1992a. Guidance for Data Usability in Risk Assessments (Part A). PB92 963356 [online]. Office of Emergency and Remedial Response, US Environmental Protection Agency, Washington, DC.
- USEPA. 1992b. Guidelines for Exposure Assessment. Federal Register 57(104):22888-22938. US Environmental Protection Agency, Washington, DC.
- USEPA. 1992c. Draft Report: a Cross-Species Scaling Factor for Carcinogen Risk Assessment Based on Equivalence of mg/kg³/4/day. Federal Register 57(109):24152-24173.
- USEPA. 1993a. Selecting Exposure Routes and Contaminants of Concern by Risk-based Screening. EPA/903/R-93-001. Hazardous Waste Management Division, US Environmental Protection Agency Region 3, Philadelphia, PA.
- USEPA. 1993b. Reference Dose (RfD): Description and Use in Health Risk Assessments, Background Document 1A. March 15, 1993. [https://www.epa.gov/iris/reference-dose-rfd-description-and-use-health-risk-assessments]
- USEPA. 1993c. An SAB Report: Superfund Site Health Risk Assessment Guidelines. EPA-SAB-EHC-93-007. Science Advisory Board, US Environmental Protection Agency, Washington, DC.
- USEPA. 1993d. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons. Office of Research and Development. EPA/600/R-93/0-89. July.
- USEPA. 1995. Land Use in the CERCLA Remedy Selection Process. Memorandum from Elliott P. Laws to regional EPA directors. OSWER directive no. 9355.8-04. US Environmental Protection Agency, Washington, DC.
- USEPA. 1996. PCBs: Cancer Dose-Response Assessment and Application to Environmental Mixtures. EPA/600/P-96/001F. Office of Pollution Prevention and Toxics, US Environmental Protection Agency, Washington, DC.

- USEPA. 1997a. Health Effects Assessment Summary Tables (HEAST). EPA 540-R-94-020. Office of Research and Development, US Environmental Protection Agency, Washington, DC.
- USEPA. 1997b. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action and Underground Storage Tank Sites. EPA OSWER Directive 9200.4-17. Interim Final. December 1, 1997.
- USEPA. 1998. EPA Guidance for Conducting Fish and Wildlife Consumption Surveys. EPA 823-B-98-007. Office of Water, US Environmental Protection Agency, Washington, DC.
- USEPA. 2000. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories. Volume 2: Risk assessment and fish consumption limits. Third ed. EPA 823-B-00-008. US Environmental Protection Agency, Washington, DC.
- USEPA. 2002a. Principles for Managing Contaminated Sediment Risks at Hazardous Waste Sites.

 OSWER Directive 9285.6-08. Memorandum from M. Horinko dated February 12, 2002. Office of Solid Waste and Emergency Response, US Environmental Protection Agency, Washington, DC.
- USEPA. 2002b. Calculating Upper Confidence Limits For Exposure Point Concentrations at Hazardous Waste Sites. Office of Emergency and Remedial Response, US Environmental Protection Agency, Washington, DC.
- USEPA. 2002c. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24. Office of Solid Waste and Emergency Response, US Environmental Protection Agency, Washington, DC.
- USEPA. 2002d. Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites. EPA 540-R-01-003. OSWER 9285.8-41. Office of Emergency and Remedial Response, US Environmental Protection Agency, Washington, DC.
- USEPA. 2002e. Role of Background in the CERCLA Cleanup Program. OSWER 9285.6-07P. Office of Solid Waste and Emergency Response, Office of Emergency and Remedial Response, US Environmental Protection Agency, Washington, DC.
- USEPA. 2002f. A Review of the Reference Dose and Reference Concentration Processes. Prepared for the Risk Assessment Forum by Reference Dose/Reference Concentration Technical Panel. EPA/630/P-02/002F. Final Report. December.
- USEPA. 2003a. Human Health Toxicity Values in Superfund Risk Assessments. Office of Superfund Remediation and Technology Innovation. OSWER Directive 9285.8-53. December 5, 2003.
- USEPA. 2003b. Recommendations of the Technical Review Workgroup for Lead for an Approach to Assessing Risks Associated with Adult Exposures to Lead in Soil. Final. EPA-540-R-03-001. January.
- USEPA. 2004a. Risk assessment guidance for Superfund: volume 1—Human health evaluation manual (Part E, supplemental guidance for dermal risk assessment). Final, July 2004. EPA/540/R/99/005. Office of Emergency and Remedial Response, US Environmental Protection Agency, Washington, DC.
- USEPA. 2004b. Example Exposure Scenarios. EPA/600/R-03/036. Center for Environmental Assessment, US Environmental Protection Agency, Washington, DC.

- USEPA. 2005a. Contaminated Sediment Remediation Guidance for Hazardous Waste Sites. OSWER 9355.0-85. EPA-540-R-05-012. US Environmental Protection Agency, Office of Solid Waste and Emergency Response Washington, DC.
- USEPA. 2005b. Guidelines for Carcinogen Risk Assessment. EPA/630/P-03/001F. Risk Assessment Forum, US Environmental Protection Agency, Washington, DC.
- USEPA. 2005c. Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens. EPA/630/R/03/003F. Risk Assessment Forum, US Environmental Protection Agency, Washington, DC.
- USEPA. 2008. National Functional Guidelines for Superfund Organic Methods Data Review. Office of Superfund Remediation and Technology Innovation, US Environmental Protection Agency, Washington, DC. OSWER 9240.1-48. June.
- USEPA. 2010. Recommended Toxicity Equivalence Factors (TEFs) for Human Health Risk Assessments of 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Dioxin-Like Compounds. Risk Assessment Forum, Washington, DC. EPA/600/R-10/005. December.
- USEPA. 2011. Exposure Factors Handbook: 2011 edition. EPA/600/R-09-052F. National Center for Environmental Assessment, US Environmental Protection Agency, Washington, DC.
- USEPA. 2012. Recommendations for Default Value for Relative Bioavailability of Arsenic in Soil. OSWER Directive 9200.1-113. USEPA, December 2012.
- USEPA. 2013. Tier 3 Toxicity Value White Paper. Regional Tier 3 Toxicity Value Workgroup, OSWER Human Health Regional Risk Assessors Forum. OSWER 9285.8-86. May 16, 2013.
- USEPA. 2014a. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors. OSWER Directive 9200.1-120. Assessment and Remediation Division, Office of Superfund Remediation and Technology Innovation, US Environmental Protection Agency, Washington, DC. February 6, 2014.
- USEPA. 2014b. Estimated Fish Consumption Rates for the U.S. Population and Selected Subpopulations (NHANES 2003-2010), Final Report, EPA-820-R-14-002.
- USEPA. 2015. ProUCL Version 5.1. Technical Guide. Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. EPA/600/R-07/041. October. U.S. Environmental Protection Agency. Office of Research and Development. Washington, DC. October.
- USEPA. 2016. ProUCL Version 5.1. Statistical Software ProUCL 5.1.00 for Environmental Applications for Data Sets with and without Nondetect Observations. May.
- USEPA. 2018a. Regional Screening Level (RSL) Master Table, November 2018 [online]. US
 Environmental Protection Agency. Available from: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables
- USEPA. 2018b. Integrated Risk Information System (IRIS) database [online]. Environmental Criteria and Assessment Office, US Environmental Protection Agency, Washington, DC. Available from: http://www.epa.gov/ngispgm3/iris.

- USEPA. 2018c. National Recommended Water Quality Criteria. Human Health Criteria Table. Consumption of organisms only. Accessed August 2018. https://www.epa.gov/wqc/national-recommended-water-quality-criteria-human-health-criteria-table.
- USEPA. 2018d. Regional Screening Level (RSL) Calculator. US Environmental Protection Agency. Available from https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search. Accessed July 2018.
- USEPA. 2018e. Provisional Peer Reviewed Toxicity Values (PPRTVs). Superfund Health Risk Technical Support Center, National Center for Environmental Assessment (NCEA), U.S. Environmental Protection Agency, Cincinnati, OH. https://hhpprtv.ornl.gov/. Accessed July 2018.
- USEPA. 2018f. EPA On-line Tools for Site Assessment Calculation. Hydraulic Gradient -- Magnitude and Direction. https://www3.epa.gov/ceampubl/learn2model/part-two/onsite/gradient4plus-ns.html. Accessed 10/6/18.
- USEPA. 2018g. National Primary Drinking Water Regulations. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations. Accessed August 2018.
- USGS. 2018. U.S. Geological Survey. National Water Information System: Web Interface. Surface Water Monthly Statistics for Northeast Branch Anacostia River at Riverdale, Maryland. USGS 01649500. https://streamstats.usgs.gov/ss/. Accessed 10/6/18.
- Van den Berg, M, LS Birnbaum, M Denison, M De Vito, W Farland, M Feeley, H Fiedler, H Hakansson, A Hanberg, L Haws, M Rose, S Safe, D Schrenk, C Tohyama, A Tritscher, J Tuomisto, M Tysklind, N Walker, RE and Peterson. 2006. The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds. Toxicological Sciences 2006 93(2):223-241; doi:10.1093/toxsci/kfl055.
- van Ede, K. 2014. Uncertainties in Risk Assessment of Dioxin-Like Compounds. Gildeprint Drukkerij, Enschede, The Netherlands. ISBN: 978-90-393-6213-6.
- van Ede, K. MB van Duursen, and M van den Berg. 2016. Evaluation of relative effect potencies (REPs) for dioxin-like compounds to derive systemic or human-specific TEFs to improve human risk assessment. Arch Toxicol. 2016 Jun;90(6):1293-305.
- VDEQ. 2018. Virginia Unified Risk Assessment Model VURAM 2.0 User's Guide for Risk Assessors. Virginia Department of Environmental Quality.
- Velinsky, DJ, and JD Cummins. 1996. Distribution of Chemical Contaminants in 1993-1995 Wild Fish Species in the District of Columbia. ICPRB Report 96-1. Interstate Commission on the Potomac River Basin, Rockville, MD.
- Velinsky, DJ GF Riedel, JTF Ashley, and JC Cornwell, 2011. Historical Contamination of the Anacostia River, Washington, DC. Environ. Monit. Assess. 183:307-328.
- Wade, TL, DJ Velinksy, E Reinharz, and CE Schlekat. 1994. Tidal river sediments in the Washington, D.C. Area. II Distribution and sources of organic contaminants. Estuaries 17:304-320.
- Westerink, W M, JC Stevenson, and WG Schoonen. 2008. Pharmacologic profiling of human and rat cytochrome P450 1A1 and 1A2 induction and competition. Arch Toxicol. 2008;82(12):909-21.

- Weston. 2005. Human Health Risk Assessment GE/Housatonic River Site. Rest of River. Prepared for US Army Corps of Engineers and USEPA Region 1. Volume IV, Appendix C. Consumption of Fish and Waterfowl Human Health Risk Assessment. February.
- Zabik, ME, MJ Zabik, and H Humphrey. 1994. Assessment of Contaminants in Five Species of Great Lakes Fish at the Dinner Table. Final Report to the Great Lakes Protection Fund, Chicago, Illinois. March.
- Zabik, ME, MJ Zabik, AM Booren, M Nettles, JH Song, R Welch, and H Humphrey. 1995a. Pesticides and total polychlorinated biphenyls in Chinook salmon and carp harvested from the Great Lakes: Effects of skin-on and skin off processing and selected cooking methods. J. Agric. Food Chem. 43:993-1001.
- Zabik, ME, MJ Zabik, AM Booren, S Daubenmire, MA Pascall, R Welch, and H Humphrey. 1995b. Pesticides and total polychlorinated biphenyls residues in raw and cooked walleye and white bass harvested from the Great Lakes. Bull. Environ. Contam. Toxicol. 54: 396-402.
- Zabik, ME, AM Booren, MJ Zabik, R Welch, and H Humphrey. 1996. Pesticide residues, PCBs and PAHs in baked, charbroiled, salt boiled, and smoked Great Lakes lake trout. Food Chem. 55 (3): 231-239.
- Zeiger, M, R Haag, J Höckel, D Schrenk, and HJ Schmitz. 2001. Inducing effects of dioxin-like polychlorinated biphenyls on CYP1A in the human hepatoblastoma cell line HepG2, the rat hepatoma cell line H4IIE, and rat primary hepatocytes: comparison of relative potencies. Toxicol Sci. 2001 63(1):65-73.

Tables

Table 3-1 Soil Samples Used in the BHHRA Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Sample Area Sample Location Sample 10 Substance (ree) (ree) Avaccasia Plank Property KMY02 SUSSMY00000 S150016 N WP62-0018 Sufficie 0 1								0	O D	E 15 11
Pancoscia Park Property MAYGG SUSKANYGOON P192018 PD SUSKANYGOON P192018 PD SUSKANYGOON P192018 PD SUSKANYGOON P192018 Surface O 1	Sample Area	Sample Location	Sample ID	Sample Date	Sample Type	Parent Sample	Task Code	Surface or Subsurface	Start Depth (feet)	
Annecosite Park Property MATYGS SUSKANYDOOR 1150016 F D SUSKANYDOOR SUSKANYDOOR 1150016 N WPR-2018 Surface 0 1	Anacostia Park Property	KMY02	SUSKMY0200N	5/15/2018	N		WP#3-2018	Surface	0	1
Anacossis Park Property MAPYOS SUSKANYORON 1912018 N WPR-2018 Surface 0 1	1 ,								0	1
Anacossia Park Property AMPO/D SUSAMPORDON S152018 N WPR-2018 Surface 0 1 Anacossia Park Property AMPO/D SUSAMPORDON S152018 N WPR-2018 Surface 0 1 Anacossia Park Property AMPO/D SUSAMPORDON S152018 N WPR-2018 Surface 0 1 Anacossia Park Property AMPO/D SUSAMPORDON S152018 N WPR-2018 Surface 0 1 Anacossia Park Property AMPO/D SUSAMPORDON S152018 N WPR-2018 Surface 0 1 Anacossia Park Property AMPO/D SUSAMPORDON S152018 N WPR-2018 Surface 0 1 Anacossia Park Property AMPO/D SUSAMPORDON S152018 N WPR-2018 Surface 0 1 Anacossia Park Property AMPO/D SUSAMPORDON S152018 N WPR-2018 Surface 0 1 Anacossia Park Property AMPO/D SUSAMPORDON S152018 N WPR-2018 Surface 0 1 Anacossia Park Property AMPO/D SUSAMPORDON S152018 N WPR-2018 Surface 0 1 Anacossia Park Property AMPO/D SUSAMPORDON S152018 N WPR-2018 Surface 0 1 Anacossia Park Property AMPO/D SUSAMPORDON S152018 N WPR-2018 Surface 0 1 Anacossia Park Property AMPO/D SUSAMPORDON S152018 N WPR-2018 Surface 0 1 Anacossia Park Property AMPO/D SUSAMPORDON S152018 N WPR-2017 Surface 0 1 Anacossia Park Property AMPO/D SUSAMPORDON S152017 N WPR-2017 Surface 0 1 Anacossia Park Property AMPO/D SUSAMPORDON S152017 N WPR-2017 Surface 0 1 Anacossia Park Property AMPO/D SUSAMPORDON S152017 N WPR-2017 Surface 0 1 Anacossia Park Property AMPO/D SUSAMPORDON S152017 N WPR-2017 Surface 0 1 Anacossia Park Property AMPO/D SUSAMPORDON SUS						SUSKMY0300N				
Anacostal Park Property ANYOTO SUSAN/POTON SUSAN/POTON Anacostal Park Property ANYOB SUSAN/POTON S										
Annexeste Park Property AMYOS										1
Anacosala Park Property AMV790 SUSAN/PM000N 5152018 N WPPS-2018 Surface 0 1 Anacosala Park Property AMV710 SUSAN/PM000N 5152018 N WPPS-2018 Surface 0 1 Anacosala Park Property AMV713 SUSAN/PM000N 5152018 N WPPS-2018 Surface 0 1 Anacosala Park Property AMV713 SUSAN/PM000N 5152018 N WPPS-2018 Surface 0 1 Anacosala Park Property AMV713 SUSAN/PM000N 5152018 N WPPS-2018 Surface 0 1 Anacosala Park Property AMV700 SUSAN/PM0000N A122017 N WPPS-2017 Surface 0 1 Anacosala Park Property AMV7002 SUSAN/PM0020N A122017 N WPPS-2017 Surface 0 1 Anacosala Park Property AMV7002 SUSAN/PM0020N A122017 N WPPS-2017 Surface 0 1 Anacosala Park Property AMV7003 SUSAN/PM0020N A132017 N WPPS-2017 Surface 0 1 Anacosala Park Property AMV7003 SUSAN/PM0020N A132017 N WPPS-2017 Surface 0 1 Anacosala Park Property AMV7003 SUSAN/PM0020N A132017 N WPPS-2017 Surface 0 1 Anacosala Park Property AMV7003 SUSAN/PM0030N A132017 N WPPS-2017 Surface 0 1 Anacosala Park Property AMV7003 SUSAN/PM0030N A132017 N WPPS-2017 Surface 0 1 Anacosala Park Property AMV7003 SUSAN/PM0030N A132017 N WPPS-2017 Surface 0 1 Anacosala Park Property AMV7003 SUSAN/PM0030N A132017 N WPPS-2017 Surface 0 1 Anacosala Park Property AMV7003 SUSAN/PM0030N A132017 N WPPS-2017 Subsurface 0 1 Anacosala Park Property AMV7003 SUSAN/PM0030N A132017 N WPPS-2017 Subsurface 1 1 Anacosala Park Property AMV7003 SUSAN/PM0030N A132017 N WPPS-2017 Subsurface 1 1 Anacosala Park Property AMV7003 SUSAN/PM0030N A132017 N WPPS-2017 Subsurface 1 1 Anacosala Park Property AMV7003 SUSAN/PM0030N A132017 N WPPS-2017 Subsurface 1 1 Anacosala Park Property AMV7003 SUSAN/PM0030N A132017 N WPPS-2017 Subsurface 1 1 Anacosala Park Proper										
Annocate Park Property MAY10 SUSKNY100N 5152018 N WPR2-2018 Surface 0 1 Annocate Park Property MAY12 SUSKNY100N 5152018 N WPR2-2018 Surface 0 1 Annocate Park Property MAY14 SUSKNY100N 5152018 N WPR2-2018 Surface 0 1 Annocate Park Property MAY14 SUSKNY100N 5152018 N WPR2-2018 Surface 0 1 Annocate Park Property MAY14 SUSKNY100N 5152018 N WPR2-2018 Surface 0 1 Annocate Park Property MAY14 SUSKNY100N 5152018 N WPR2-2018 Surface 0 1 Annocate Park Property MAY14 SUSKNY100N 4152017 N WPR2-2018 Surface 0 1 Annocate Park Property MAY14 SUSKNY100N 4152017 N WPR2-2017 Surface 0 1 Annocate Park Property MAY14 SUSKNY100N 4152017 N WPR2-2017 Surface 0 1 Annocate Park Property MAY14 SUSKNY100N 4152017 N WPR2-2017 Surface 0 1 Annocate Park Property MAY14 SUSKNY100N 4152017 N WPR2-2017 Surface 0 1 Annocate Park Property MAY14 SUSKNY100N 4152017 N WPR2-2017 Surface 0 1 Annocate Park Property MAY14 SUSKNY100N 4152017 N WPR2-2017 Surface 0 1 Annocate Park Property MAY14 SUSKNY100N 4152017 N WPR2-2017 Surface 0 1 Annocate Park Property MAY14 SUSKNY100N SUSKNY100N MAY14 MAY14										· ·
Annocasia Park Property MAY12 SUSKMY100N ST52018 N WP63-2018 Surface 0 1										
Anacossia Part Property										
Anacossia Park Property MAPY-14 SUSKMY-1400N 91/50218 N WPPS-2018 Surface 0 1 Anacossia Park Property MAPY-DU01 SUSMPSM0000N 4/122017 N WPPS-2017 Surface 0 1 Anacossia Park Property MAPY-DU01 SUSMPSM0000N 4/122017 N WPPS-2017 Surface 0 1 Anacossia Park Property MAPY-DU03 SUSMPSM0000N 4/122017 N WPPS-2017 Surface 0 1 Anacossia Park Property MAPY-DU03 SUSMPSM0000N 4/132017 N WPPS-2017 Surface 0 1 Anacossia Park Property MAPY-DU03 SUSMPSM0000N 4/132017 N WPPS-2017 Surface 0 1 Anacossia Park Property MAPY-DU03 SUSMPSM0000N 4/132017 N WPPS-2017 Surface 0 1 Anacossia Park Property MAPY-DU03 SUSMPSM0000N 4/132017 N WPPS-2017 Surface 0 1 Anacossia Park Property MAPY-DU03 SUSMPSM00000N 4/132017 N WPPS-2017 Surface 0 1 Anacossia Park Property MAPY-DU03 SUSMPSM00000N 4/132017 FD SUSMPSM0000N WPPS-2017 Surface 0 1 Anacossia Park Property MAPY-DU01 DPSMPS9010N 4/22017 FD SUSMPSM0000N WPPS-2017 Sufface 0 1 Anacossia Park Property MAPY-DU01 DPSMPS9010N 4/22017 N WPPS-2017 Subsurface 0 1 Anacossia Park Property MAPY-DU01 DPSMPS9010N 4/220017 N WPPS-2017 Subsurface 0 1 Anacossia Park Property MAPY-DU01 DPSMPS9010N 4/220017 N WPPS-2017 Subsurface 0 1 Anacossia Park Property MAPY-DU01 DPSMPS9010N 4/220017 N WPPS-2017 Subsurface 0 1 Anacossia Park Property MAPY-DU01 DPSMPS9010N 4/220017 N WPPS-2017 Subsurface 0 1 Anacossia Park Property MAPY-DU01 DPSMPS9010N 4/220017 N WPPS-2017 Subsurface 0 1 Anacossia Park Property MAPY-DU02 DPSMPS9010N 4/212017 N WPPS-2017 Subsurface 0 1 Anacossia Park Property MAPY-DU03 Subsurface 0 1 Anacossia Park Property MAPY-DU03 Subsurface 0 1 Anacossia Park Property MAPY-DU03 DPSMPS9010N 4/212017 N WPPS-2017 Subsurface 0 1 Anacossia Park Prop										
Ancossia Park Property AMV-DUD1 SUSNAMSM000N A1222017 N WPR9-2018 Surface 0 1 Anacossia Park Property AMV-DUD2 SUSNAMSM000N A1222017 N WPR9-2017 Surface 0 1 Anacossia Park Property AMV-DUD2 SUSNAMSM000N A1222017 N WPR9-2017 Surface 0 1 Anacossia Park Property AMV-DUD3 SUSNAMSM000N A1222017 N WPR9-2017 Surface 0 1 Anacossia Park Property AMV-DUD3 SUSNAMSM000N A1322017 N WPR9-2017 Surface 0 1 Anacossia Park Property AMV-DUD3 SUSNAMSM000N A1322017 N WPR9-2017 Surface 0 1 Anacossia Park Property AMV-DUD3 SUSNAMSM000N A1322017 N WPR9-2017 Surface 0 1 Anacossia Park Property AMV-DUD3 SUSNAMSM000N A1322017 FD SUSNAMSM000N WPR9-2017 Surface 0 1 Anacossia Park Property AMV-DUD3 SUSNAMSM000N A1322017 FD SUSNAMSM000N WPR9-2017 Surface 0 1 Anacossia Park Property AMV-DUD1 DESNESO15N A2222017 N WPR9-2017 Subsurface 5 6 Anacossia Park Property AMV-DUD1 DESNESO15N A2222017 N WPR9-2017 Subsurface 10 11 Anacossia Park Property AMV-DUD1 DESNESO15N A2222017 N WPR9-2017 Subsurface 10 11 Anacossia Park Property AMV-DUD2 DESNESO5N A2222017 N WPR9-2017 Subsurface 10 11 Anacossia Park Property AMV-DUD2 DESNESO5N A2212017 N WPR9-2017 Subsurface 10 11 Anacossia Park Property AMV-DUD2 DESNESO5N A2212017 N WPR9-2017 Subsurface 10 11 Anacossia Park Property AMV-DUD2 DESNESO5N A2212017 N WPR9-2017 Subsurface 10 11 Anacossia Park Property AMV-DUD2 DESNESO5N A2212017 N WPR9-2017 Subsurface 10 11 Anacossia Park Property AMV-DUD2 DESNESO5N A2212017 N WPR9-2017 Subsurface 10 11 Anacossia Park Property AMV-DUD2 DESNESO5N A2212017 N WPR9-2017 Subsurface 10 11 Anacossia Park Property AMV-DUD2 DESNESOSN A2212017 N WPR9-2017 Subsurface 10 11 Anacossia Park Property AMV-DUD2 DESNESOSN A										
Anacosta Park Property MAY-DUG1 SUSNPSM0000N 4/12/2017 N WPR9-2017 Surface 0 1										· ·
Anacoscia Park Property KMY-DU03 SUSNPSMI0000N 4/12/2017 N WPP3-2017 Surface 0 1 Anacoscia Park Property KMY-DU03 SUSNPSMI0000N 4/13/2017 N WPP3-2017 Surface 0 1 Anacoscia Park Property KMY-DU03 SUSNPSMI0000NI 4/13/2017 N WPP3-2017 Surface 0 1 Anacoscia Park Property KMY-DU03 SUSNPSMI0000NI 4/13/2017 N WPP3-2017 Surface 0 1 Anacoscia Park Property KMY-DU03 SUSNPSMI0000NI 4/13/2017 N WPP3-2017 Surface 0 1 Anacoscia Park Property KMY-DU03 SUSNPSMI0000NI 4/13/2017 N WPP3-2017 Surface 0 1 Anacoscia Park Property KMY-DU03 SUSNPSMI0000NI 4/13/2017 PD SUSNPSMI0000N WPP3-2017 Surface 0 1 Anacoscia Park Property KMY-DU01 DPSNPSMI000NI 4/20/2017 N WPP3-2017 Subsurface 5 6 Anacoscia Park Property KMY-DU01 DPSNPSMI015N 4/20/2017 N WPP3-2017 Subsurface 1 1 Anacoscia Park Property KMY-DU01 DPSNPSMI015N 4/20/2017 N WPP3-2017 Subsurface 1 1 Anacoscia Park Property KMY-DU01 DPSNPSMI015N 4/20/2017 N WPP3-2017 Subsurface 1 1 Anacoscia Park Property KMY-DU01 DPSNPSMI015N 4/20/2017 N WPP3-2017 Subsurface 1 1 Anacoscia Park Property KMY-DU02 DPSNPSMI015N 4/20/2017 N WPP3-2017 Subsurface 1 1 Anacoscia Park Property KMY-DU02 DPSNPSMI015N 4/20/2017 N WPP3-2017 Subsurface 1 1 Anacoscia Park Property KMY-DU02 DPSNPSMI015N 4/21/2017 N WPP3-2017 Subsurface 1 1 Anacoscia Park Property KMY-DU02 DPSNPSMI015N 4/21/2017 N WPP3-2017 Subsurface 1 1 Anacoscia Park Property KMY-DU02 DPSNPSMI015N 4/21/2017 N WPP3-2017 Subsurface 1 1 Anacoscia Park Property KMY-DU03 DPSNPSMI015N 4/21/2017 N WPP3-2017 Subsurface 1 1 Anacoscia Park Property KMY-DU03 DPSNPSMI015N 4/21/2017 N WPP3-2017 Subsurface 1 1 Anacoscia Park Property KMY-DU03 DPSNPSMI015N 4/21/2017 N WPP3-2017 Subsurface 5 6 Anacoscia Park										
Anacossia Park Property Monty-Qu03 SUSNPSMI00300N 4/13/2017 N WPR3-2017 Surface 0 1 Anacossia Park Property Monty-Qu03 SUSNPSMI00300NI 4/13/2017 N WPR3-2017 Surface 0 1 Anacossia Park Property Monty-Qu03 SUSNPSMI00300NI 4/13/2017 N WPR3-2017 Surface 0 1 Anacossia Park Property Monty-Qu03 SUSNPSMI00300NI 4/13/2017 N WPR3-2017 Surface 0 1 Anacossia Park Property Monty-Qu03 SUSNPSMI00300NI 4/13/2017 FD SUSNPSMI00300N WPR3-2017 Surface 0 1 Anacossia Park Property Monty-Qu03 SUSNPSMI00300NI 4/13/2017 FD SUSNPSMI00300N WPR3-2017 Surface 0 1 Anacossia Park Property Monty-Qu01 PPSMPS0100N 4/20/2017 N WPR3-2017 Subsourface 5 6 Anacossia Park Property Monty-Qu01 PPSMPS010N 4/20/2017 N WPR3-2017 Subsourface 5 6 Anacossia Park Property Monty-Qu01 PPSMPS010N 4/21/2017 N WPR3-2017 Subsourface 5 6 Anacossia Park Property Monty-Qu02 PPSMPS010N 4/21/2017 N WPR3-2017 Subsourface 10 11 Anacossia Park Property Monty-Qu02 PPSMPS010N 4/21/2017 N WPR3-2017 Subsourface 10 11 Anacossia Park Property Monty-Qu02 PPSMPS010N 4/21/2017 N WPR3-2017 Subsourface 10 11 Anacossia Park Property Monty-Qu03 PPSMPS010N 4/21/2017 N WPR3-2017 Subsourface 10 11 Anacossia Park Property Monty-Qu03 PPSMPS010N 4/21/2017 N WPR3-2017 Subsourface 10 11 Anacossia Park Property Monty-Qu03 PPSMPS010N 4/21/2017 N WPR3-2017 Subsourface 10 11 Anacossia Park Property Monty-Qu03 PPSMPS030N 4/21/2017 N WPR3-2017 Subsourface 10 11 Anacossia Park Property Monty-Qu03 PPSMPS030N 4/21/2017 N WPR3-2017 Subsourface 10 11 Anacossia Park Property Monty-Qu03 PPSMPS030N 4/21/2017 N WPR3-2017 Subsourface 10 11 Anacossia Park Property Monty-Qu03 PPSMPS030N 4/21/2017 N WPR3-2017 Subsourface 10 11 Anacossia Park Property Monty-Qu03 PPSMP										
Annocosia Part Property KMY-QU35 SUSNPSM03000N2 4/13/2017 N WPPS-2017 Surface 0 1										
Annocosia Park Property Monty-Du03 SUSNPSM03000N2 4/13/2017 N WPR3-2017 Surface 0 1										
Anacostale Park Property MMY-DU03 SUSNPSM03000N 4/13/2017 N Surface 0 1										
Anacostia Park Property KMY-DU03 SUSNPSM0300R1 4/13/2017 FD SUSNPSM0300N WP3-2017 Surface 0 1 Anacostia Park Property KMY-DU01 DPSNPS010SN 4/13/2017 N WP3-2017 Subsurface 0 1 Anacostia Park Property KMY-DU01 DPSNPS010SN 4/20/2017 N WP3-2017 Subsurface 1 0 11 Anacostia Park Property KMY-DU01 DPSNPS011SN 4/20/2017 N WP3-2017 Subsurface 1 0 11 Anacostia Park Property KMY-DU01 DPSNPS011SN 4/20/2017 N WP3-2017 Subsurface 1 16 Anacostia Park Property KMY-DU02 DPSNPS011SN 4/20/2017 N WP3-2017 Subsurface 1 16 Anacostia Park Property KMY-DU02 DPSNPS012SN 4/21/2017 N WP3-2017 Subsurface 1 16 Anacostia Park Property KMY-DU02 DPSNPS012SN 4/21/2017 N WP3-2017 Subsurface 1 16 Anacostia Park Property KMY-DU02 DPSNPS021SN 4/21/2017 N WP3-2017 Subsurface 1 16 Anacostia Park Property KMY-DU03 DPSNPS021SN 4/21/2017 N WP3-2017 Subsurface 1 16 Anacostia Park Property KMY-DU03 DPSNPS031SN 4/21/2017 N WP3-2017 Subsurface 1 16 Anacostia Park Property KMY-DU03 DPSNPS031SN 4/21/2017 N WP3-2017 Subsurface 1 16 Anacostia Park Property KMY-DU03 DPSNPS031SN 4/21/2017 N WP3-2017 Subsurface 1 16 Anacostia Park Property KMY-DU03 DPSNPS031SN 4/21/2017 N WP3-2017 Subsurface 1 16 Anacostia Park Property KMY-DU03 DPSNPS031SN 4/21/2017 N WP3-2017 Subsurface 1 16 Anacostia Park Property KMY-DU03 DPSNPS031SN 4/21/2017 N WP3-2017 Subsurface 1 16 Anacostia Park Property KMY-DU03 DPSNPS031SN 4/21/2017 N WP3-2017 Subsurface 1 16 Anacostia Park Property KMY-DU03 DPSNPS031SN 4/21/2017 N WP3-2017 Subsurface 1 16 Anacostia Park Property KMY-DU03 DPSNPS031SN 4/21/2017 N WP3-2017 Subsurface 1 16 Anacostia Park Property KMY-DU03 DPSNPS031SN 4/21/2017 N WP3-2017 Subsurface 1 16 Anacostia Park Property KMY-DU03 DPSNPS031SN 4/21/2017	_ ' '									
Anacostia Park Property KMY-DU03 SUSNPSM03000R2 4132017 FD SUSNPSM0300N WP83-2017 Subsurface 0 1 Anacostia Park Property KMY-DU01 DPSNPS010N 4202017 N WP83-2017 Subsurface 1 1 Anacostia Park Property KMY-DU01 DPSNPS011N 4202017 N WP83-2017 Subsurface 1 1 Anacostia Park Property KMY-DU01 DPSNPS011N 4202017 N WP83-2017 Subsurface 1 1 Anacostia Park Property KMY-DU01 DPSNPS012NN 4202017 N WP83-2017 Subsurface 1 5 16 Anacostia Park Property KMY-DU02 DPSNPS020SN 4212017 N WP83-2017 Subsurface 1 6 11 Anacostia Park Property KMY-DU02 DPSNPS021SN 4212017 N WP83-2017 Subsurface 1 6 11 Anacostia Park Property KMY-DU02 DPSNPS021SN 4212017 N WP83-2017 Subsurface 1 6 16 Anacostia Park Property KMY-DU03 DPSNPS021SN 4212017 N WP83-2017 Subsurface 1 6 16 Anacostia Park Property KMY-DU03 DPSNPS031SN 4212017 N WP83-2017 Subsurface 1 6 11 Anacostia Park Property KMY-DU03 DPSNPS031SN 4212017 N WP83-2017 Subsurface 1 6 16 Anacostia Park Property KMY-DU03 DPSNPS031SN 4212017 N WP83-2017 Subsurface 1 6 16 Future Park/Green SE2 SBS0200N 1/25/2017 N WP83-2017 Sufface 0 3 1 Future Park/Green SUSDP01 SUS0100N 2/42013 N PPsa61-2013 Surface 0 3 1 Future Park/Green SUSDP01 SUS0100N 2/42013 N PPsa61-2013 Surface 0 3 3 1 Future Park/Green SUSDP02 SUS0200N 2/42013 N PPsa61-2013 Subsurface 0 1 Future Park/Green DP36 DPS3610N 6/32013 N PPsa62-2013 Subsurface 0 1 Future Park/Green DP36 DPS3610N 6/32013 N PPsa62-2013 Subsurface 0 5 10.5 Future Park/Green SB2 SBS0200-60N 1/25/2017 N WP83-2017 Subsurface 0 5 10.5 Future Park/Green SB2 SBS0200-60N 1/25/2017 N WP83-2017 Subsurface 0 5 10.5 Future Park/Green SB2 SBS0200-60N 1/25/2017 N WP83-2017 Subsurface 0 5 10.5 Future Park/Green SB										
Anacosta Park Property MAY-DUOI DPSNPS0106N A/20/2017 N WPR3-2017 Subsurface 5 6 Anacosta Park Property MAY-DUOI DPSNPS0116N A/20/2017 N WPR3-2017 Subsurface 10 11 Anacosta Park Property KMY-DUOI DPSNPS0116N A/20/2017 N WPR3-2017 Subsurface 15 16 Anacosta Park Property KMY-DUOI DPSNPS02016N A/21/2017 N WPR3-2017 Subsurface 15 16 Anacosta Park Property KMY-DUOI DPSNPS02016N A/21/2017 N WPR3-2017 Subsurface 10 11 Anacosta Park Property KMY-DUOI DPSNPS0216N A/21/2017 N WPR3-2017 Subsurface 10 11 Anacosta Park Property KMY-DUOI DPSNPS0216N A/21/2017 N WPR3-2017 Subsurface 15 16 Anacosta Park Property KMY-DUOI DPSNPS0316N A/21/2017 N WPR3-2017 Subsurface 15 16 Anacosta Park Property KMY-DUOI DPSNPS0316N A/21/2017 N WPR3-2017 Subsurface 15 16 Anacosta Park Property KMY-DUOI DPSNPS0316N A/21/2017 N WPR3-2017 Subsurface 15 16 Future Park/Green SUSDP01 SUS0100N 24/2013 N WPR3-2017 Subsurface 15 16 Future Park/Green SUSDP01 SUS0100N 24/2013 N PR0-2017 Subsurface 0.33 1 Future Park/Green SUSDP01 SUS0100N 24/2013 N PR0-2013 Surface 0.33 1 Future Park/Green SUSDP02 SUS0200N 24/2013 N PR0-2013 Surface 0.33 0.83 Future Park/Green SUSDP02 SUS0200N 24/2013 N PR0-2013 Subsurface 0.5 5 Future Park/Green DP36 DPS3610N S/20/2013 N PR0-2013 Subsurface 4.5 5.5 Future Park/Green DP36 DPS3610N S/20/2013 N PR0-2013 Subsurface 4.5 5.5 Future Park/Green DP36 DPS3610N S/20/2013 N PR0-2013 Subsurface 4.5 5.5 Future Park/Green SS2 SBS002016N 1/25/2017 N WPR3-2017 Subsurface 4.5 5.5 Future Park/Green SS2 SBS002016N 1/25/2017 N WPR3-2017 Subsurface 5 10.5 Future Park/Green SS2 SBS002016N 1/25/2017 N WPR3-2017 Subsurface 5 10.5 Future Park/Green SS2 SBS002016N 1/25/									1	
Anacosta Park Property KMY-DUID DPSNPS0110N 4/20/2017 N WP83-2017 Subsurface 10 11						SUSNPSMI0300N				
Anacosta Park Property MAY-DU02 DPSNP60205N 4/21/2017 N WP#3-2017 Subsurface 15 16 Anacosta Park Property MAY-DU02 DPSNP60205N 4/21/2017 N WP#3-2017 Subsurface 10 11 Anacosta Park Property MAY-DU02 DPSNP60210N 4/21/2017 N WP#3-2017 Subsurface 10 11 Anacosta Park Property MAY-DU02 DPSNP60215N 4/21/2017 N WP#3-2017 Subsurface 15 16 Anacosta Park Property MAY-DU02 DPSNP60215N 4/21/2017 N WP#3-2017 Subsurface 5 6 Anacosta Park Property MAY-DU03 DPSNP60315N 4/21/2017 N WP#3-2017 Subsurface 5 6 Anacosta Park Property MAY-DU03 DPSNP60315N 4/21/2017 N WP#3-2017 Subsurface 5 6 Anacosta Park Property MAY-DU03 DPSNP60315N 4/21/2017 N WP#3-2017 Subsurface 15 16 Future Park/Green SSE SSE0200N 4/21/2013 N WP#3-2017 Subsurface 15 16 Future Park/Green SUSDP01 SUS0100N 2/4/2013 N Phase1-2013 Surface 0.33 1 Future Park/Green SUSDP01 SUS0100N 2/4/2013 N Phase1-2013 Surface 0.33 1 Future Park/Green SUSDP02 SUS0200N 2/4/2013 N Phase1-2013 Surface 0.33 0.83 Future Park/Green SUSDP02 SUS0200N 2/4/2013 N Phase1-2013 Surface 0.33 0.83 Future Park/Green SUSDP02 SUS0200N 2/4/2013 N Phase2-2013 Subsurface 0.5 5.5 Future Park/Green DP36 DPS3610N 5/20/2013 N Phase2-2013 Subsurface 4.5 5.5 Future Park/Green DP36 DPS3610N 5/20/2013 N Phase2-2013 Subsurface 4.5 5.5 Future Park/Green DP36 DPS3610N 5/20/2013 N Phase2-2013 Subsurface 4.5 5.5 Future Park/Green SB2 SB502014N 1/25/2017 N WP#3-2017 Subsurface 5 10.5 Future Park/Green SB2 SB502014N 1/25/2017 N WP#3-2017 Subsurface 5 10.5 Future Park/Green SB2 SB502014N 1/25/2017 N WP#3-2017 Subsurface 5 10.5 Future Park/Green SB2 SB502014N 1/25/2017 N WP#3-2017 Subsurface 5 10.5 Future Park/Green SUSDP01 DPS0110N 5/20/2013										
Annacosile Park Property KMY-DU02 DPSNPS0205N 42/1/2017 N WP83-017 Subsurface 5 6 1 Annacosile Park Property KMY-DU02 DPSNPS02015N 42/1/2017 N WP83-017 Subsurface 10 11 Annacosile Park Property KMY-DU02 DPSNPS02015N 42/1/2017 N WP83-017 Subsurface 15 16 Annacosile Park Property KMY-DU03 DPSNPS0305N 42/1/2017 N WP83-017 Subsurface 16 16 Annacosile Park Property KMY-DU03 DPSNPS0305N 42/1/2017 N WP83-017 Subsurface 10 11 Annacosile Park Property KMY-DU03 DPSNPS0305N 42/1/2017 N WP83-017 Subsurface 10 11 Annacosile Park Property KMY-DU03 DPSNPS0315N 42/1/2017 N WP83-017 Subsurface 15 16 Annacosile Park Property KMY-DU03 DPSNPS0315N 42/1/2017 N WP83-017 Subsurface 15 16 Annacosile Park Property KMY-DU03 DPSNPS0315N 42/1/2017 N WP83-017 Subsurface 15 16 Annacosile Park Property KMY-DU03 DPSNPS0315N 42/1/2017 N WP83-017 Sufface 0 1 Annacosile Park Property KMY-DU03 DPSNPS0315N 42/1/2017 N WP83-017 Sufface 0 3 1 Annacosile Park Property KMY-DU03 DPSNPS0315N 42/1/2013 N PPase1-2013 Surface 0 3 1 Annacosile Park Property KMY-DU03 DPSNPS0315N 24/2/2013 N PPase1-2013 Surface 0 3 1 Annacosile Park Property KMY-DU03 DPSNPS0315N 24/2/2013 N PPase1-2013 Surface 0 3 1 Annacosile Park Property KMY-DU03 DPSNPS0315N 5/2/2/2013 N PPase2-2017 Surface 0 1 Annacosile Park Property KMY-DU03 DPSNPS0315N 5/2/2/2013 N PPase2-2017 Surface 0 1 Annacosile Park Property KMY-DU03 DPSNPS0315N 5/2/2/2013 N PPase2-2013 Subsurface 0 1 Annacosile Park Property KMY-DU03 DPSNPS0315N 5/2/2/2013 N PPase2-2013 Subsurface 0 1 Annacosile Park Property KMY-DU03 DPSNPS0315N 5/2/2/2013 N PPase2-2013 Subsurface 0 1 Annacosile Park Property KMY-DU03 DPSNPS0315N 5/2/2/2013 N PPase2-2013 Subsurface 0	1 ,									
Anacossia Park Property KMY-DU02 DPSNPS0210N 4/21/2017 N WP83-2017 Subsurface 10 11 Anacossia Park Property KMY-DU03 DPSNPS030SN 4/21/2017 N WP83-2017 Subsurface 15 16 Anacossia Park Property KMY-DU03 DPSNPS030SN 4/21/2017 N WP83-2017 Subsurface 5 6 Anacossia Park Property KMY-DU03 DPSNPS030SN 4/21/2017 N WP83-2017 Subsurface 10 11 Anacossia Park Property KMY-DU03 DPSNPS031SN 4/21/2017 N WP83-2017 Subsurface 15 16 Anacossia Park Property KMY-DU03 DPSNPS031SN 4/21/2017 N WP83-2017 Subsurface 15 16 Future Park/Green SB2 SBS0200N 1/25/2017 N WP83-2017 Subsurface 0 1 Future Park/Green SUSDP01 SUS0100N 2/4/2013 N Phsse1-2013 Surface 0.33 1 Future Park/Green SUSDP01 SUS0100R 2/4/2013 N Phsse1-2013 Surface 0.33 1 Future Park/Green SUSDP02 SUS0200N 1/25/2017 N WP83-2017 Surface 0.33 0.83 Future Park/Green SUSDP02 SUS0200N 1/25/2017 N WP83-2017 Surface 0 1 Future Park/Green SUSDP02 SUS0200N 1/25/2017 N WP83-2017 Surface 0 1 Future Park/Green SUSDP04 SUS020N 1/25/2017 N WP83-2017 Surface 0 1 Future Park/Green DP36 DP53610N S1/202013 N Phsse2-2013 Subsurface 0 1 Future Park/Green DP36 DP53610N S1/202013 N Phsse2-2013 Subsurface 0 1 Future Park/Green DP36 DP53615N S1/202013 N Phsse2-2013 Subsurface 0 1 Future Park/Green SP32 SBS0200-10 1/25/2017 N WP83-2017 Subsurface 1 2 Future Park/Green SP32 SBS0200-10 1/25/2017 N WP83-2017 Subsurface 1 2 Future Park/Green SP32 SBS0200-10 1/25/2017 N WP83-2017 Subsurface 5 1 Future Park/Green SP32 SBS0200-10 1/25/2017 N WP83-2017 Subsurface 5 1 Future Park/Green SP32 SBS0200-10 N PS00-10 N PP3-2017 Subsurface 5 1 Future Park/Green SUSDP01 DP50110N S/20/2013 N PP3-20-2013 Subsurface 5 1 Future P										
Anacosila Park Property KMY-DU02 DPSNP802015N 42/12/017 N WP83-017 Subsurface 15 16 Anacosila Park Property KMY-DU03 DPSNP803016N 4/2/12/017 N WP83-017 Subsurface 5 6 Anacosila Park Property KMY-DU03 DPSNP803016N 4/2/12/017 N WP83-017 Subsurface 10 11 Anacosila Park Property KMY-DU03 DPSNP803018N 4/2/12/017 N WP83-017 Subsurface 10 11 Future Park/Green SE2 SBS0200N 1/25/2017 N WP83-017 Subsurface 0 1 Future Park/Green SUSDP01 SUSDP02										
Anacosta Park Property MMY-DU03 DPSNPS030SN 42/12017 N WPR3-2017 Subsurface 5 6 Anacosta Park Property MMY-DU03 DPSNPS031SN 42/12017 N WPR3-2017 Subsurface 15 16 16 16 16 16 16 16										
Anacosta Park Property MMY-DU03 DPSNPS0310N 421/2017 N WPR3-2017 Subsurface 10 11	1 ,									
Anacostia Partik Property KMY-DU03 DPSNP50315N 4/21/2017 N WPR3-2017 Surface 0 1										
Future Park/Green SB2 SBS0200N 1/25/2017 N WP93-2017 Surface 0 1										
Future Park/Green SUSDPO1 SUS0100N 24/2013 N Phaset-2013 Surface 0.33 1										
Future Park/Green SUSDP01 SUS0100N 24/2013 FD SUS0100N Phase1-2013 Surface 0.33 1.										
Future Park/Green						0110040011				
Future Park/Green						SUS0100N				
Future Park/Green DP36 DP3605N 5/17/2013 N Phase2-2013 Subsurface 4.5 5.5										
Future Park/Green DP36 DP3610N 5/20/2013 N Phase2-2013 Subsurface 9.5 10.5										
Future Park/Green DP36 DPS3610N2 6/13/2013 N Phase2-2013 Subsurface 9.5 10.5										
Future Park/Green										
Future Park/Green										
Future Park/Green SB2 SBS0202-65N 1/26/2017 N WP#3-2017 Subsurface 2 5										
Future Park/Green SB2 SBS0205-10N 1/26/2017 N WP#3-2017 Subsurface 5 10										
Future Park/Green SB2 SBS0210-15N 1/26/2017 N WP#3-2017 Subsurface 10 15										
Future Park/Green										
Future Park/Green SUSDP01 DPS0110N 5/20/2013 N Phase2-2013 Subsurface 9.5 10.5										
Future Park/Green SUSDP01 DPS0110N2 6/13/2013 N Phase2-2013 Subsurface 9.5 10.5 Future Park/Green SUSDP01 DPS0115N 5/20/2013 N Phase2-2013 Subsurface 14 15 Future Park/Green SUSDP02 DPS0205N 5/14/2013 N Phase2-2013 Subsurface 4.5 5.5 Future Park/Green SUSDP02 DPS0210N 5/20/2013 N Phase2-2013 Subsurface 9.5 10.5 Future Park/Green SUSDP02 DPS0210N2 6/13/2013 N Phase2-2013 Subsurface 9.5 10.5 Future Park/Green SUSDP02 DPS0215N2 6/13/2013 N Phase2-2013 Subsurface 9.5 10.5 Future Park/Green SUSDP02 DPS0215N2 6/13/2013 N Phase2-2013 Subsurface 14.5 15.5 Future Park/Green SUSDP02 DPS0215N2 6/13/2013 N WP#3-2017 Subsurface 14.5 15.5 Future Park/Gr										
Future Park/Green SUSDP01 DPS0115N 5/20/2013 N Phase2-2013 Subsurface 14 15										
Future Park/Green SUSDP02 DPS0205N 5/14/2013 N Phase2-2013 Subsurface 4.5 5.5 Future Park/Green SUSDP02 DPS0210N 5/20/2013 N Phase2-2013 Subsurface 9.5 10.5 Future Park/Green SUSDP02 DPS0215N 6/13/2013 N Phase2-2013 Subsurface 9.5 10.5 Future Park/Green SUSDP02 DPS0215N 5/20/2013 N Phase2-2013 Subsurface 9.5 10.5 Future Park/Green SUSDP02 DPS0215N2 6/13/2013 N Phase2-2013 Subsurface 14.5 15.5 Future Park/Green SUSDP02 DPS0215N2 6/13/2013 N Phase2-2013 Subsurface 14.5 15.5 Future Park/Green SUSDP02 DPS0215N2 6/13/2013 N Phase2-2013 Subsurface 14.5 15.5 Future Park/Green SUSDP02 DPS02F01N 1/25/2017 N WP#3-2017 Subsurface 1 2 Future Park/Gree										
Future Park/Green SUSDP02 DPS0210N 5/20/2013 N Phase2-2013 Subsurface 9.5 10.5 Future Park/Green SUSDP02 DPS0210N2 6/13/2013 N Phase2-2013 Subsurface 9.5 10.5 Future Park/Green SUSDP02 DPS0215N 5/20/2013 N Phase2-2013 Subsurface 14.5 15.5 Future Park/Green SUSDP02 DPS0215N2 6/13/2013 N Phase2-2013 Subsurface 14.5 15.5 Future Park/Green SUSDP02 DPS02F01N 1/25/2017 N WP#3-2017 Subsurface 1 2 Future Park/Green SUSDP02 DPS02F02-05N 1/25/2017 N WP#3-2017 Subsurface 1 2 Future Park/Green SUSDP02 DPS02F02-05N 1/25/2017 N WP#3-2017 Subsurface 1 2 Future Park/Green SUSDP02 DPS02F01N 1/25/2017 N WP#3-2017 Subsurface 0 1 Maintenance										
Future Park/Green SUSDP02 DPS0210N2 6/13/2013 N Phase2-2013 Subsurface 9.5 10.5 Future Park/Green SUSDP02 DPS0215N 5/20/2013 N Phase2-2013 Subsurface 14.5 15.5 Future Park/Green SUSDP02 DPS02F01N 1/25/2017 N Phase2-2013 Subsurface 14.5 15.5 Future Park/Green SUSDP02 DPS02F01N 1/25/2017 N WP#3-2017 Subsurface 1 2 Future Park/Green SUSDP02 DPS02F02-05N 1/25/2017 N WP#3-2017 Subsurface 1 2 Future Park/Green SUSDP02 DPS02F02-05N 1/25/2017 N WP#3-2017 Subsurface 1 2 Future Park/Green SUSDP02 DPS02F01N 1/25/2017 N WP#3-2017 Subsurface 1 2 Future Park/Green SUSDP02 DPS02F01N 1/25/2017 N WP#3-2017 Subsurface 0 1 Maintenance SUS181										
Future Park/Green SUSDP02 DPS0215N 5/20/2013 N Phase2-2013 Subsurface 14.5 15.5 Future Park/Green SUSDP02 DPS0215N2 6/13/2013 N Phase2-2013 Subsurface 14.5 15.5 Future Park/Green SUSDP02 DPS02F01N 1/25/2017 N WP#3-2017 Subsurface 1 2 Future Park/Green SUSDP02 DPS02F02-05N 1/25/2017 N WP#3-2017 Subsurface 1 2 Future Park/Green SUSDP02 DPS02F02-05N 1/25/2017 N WP#3-2017 Subsurface 1 2 Future Park/Green SUSDP02 DPS02F02-05N 1/25/2017 N WP#3-2017 Subsurface 1 2 5 Future Park/Green SUSDP02 DPS02F02-05N 1/25/2017 N WP#3-2017 Subsurface 1 2 5 0 1 1 0 1 0 1 0 1 1 0 1 0 1										
Future Park/Green SUSDP02 DPS0215N2 6/13/2013 N Phase2-2013 Subsurface 14.5 15.5 Future Park/Green SUSDP02 DPS02F01N 1/25/2017 N WP#3-2017 Subsurface 1 2 Future Park/Green SUSDP02 DPS02F02-05N 1/25/2017 N WP#3-2017 Subsurface 2 5 Maintenance SUS181A SUS181A00N 1/25/2017 N WP#3-2017 Sufface 0 1 Maintenance SUS181B SUS181B00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181C SUS181C00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181C SUS181B00ON 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181E SUS181B0ON 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181F SUS181FON 1/25/2017<					1					
Future Park/Green SUSDP02 DPS02F01N 1/25/2017 N WP#3-2017 Subsurface 1 2 Future Park/Green SUSDP02 DPS02F02-05N 1/25/2017 N WP#3-2017 Subsurface 2 5 Maintenance SUS181A SUS181A00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181B SUS181B00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181C SUS181C0NN 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181C SUS181C0NN 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181D SUS181B100NN 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181F SUS181F0NN 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181B SUS181B0NN 1/25/2017 <										
Future Park/Green SUSDP02 DPS02F02-05N 1/25/2017 N WP#3-2017 Subsurface 2 5 Maintenance SUS181A SUS181A00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181B SUS181B00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181C SUS181C0N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181C SUS181C0N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181D SUS181C0NN 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181E SUS181E0NN 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181G SUS181F0NN 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181B SUS181G0NN 1/25/2017 N										
Maintenance SUS181A SUS181A00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181B SUS181B00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181C SUS181C00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181C SUS181C00N 1/25/2017 FD SUS181C00N WP#3-2017 Surface 0 1 Maintenance SUS181D SUS181B00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181E SUS181E00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181G SUS181F00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181G SUS181G00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUSDP15 SUS1500N 2/6/2013										
Maintenance SUS181B SUS181B00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181C SUS181C00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181C SUS181C00N 1/25/2017 FD SUS181C00N WP#3-2017 Surface 0 1 Maintenance SUS181D SUS181D00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181E SUS181B00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181G SUS181G00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181H SUS181G00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181H SUS181										
Maintenance SUS181C SUS181C00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181C SUS181C00R 1/25/2017 FD SUS181C00N WP#3-2017 Surface 0 1 Maintenance SUS181DD SUS181D0N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181E SUS181E00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181F SUS181F00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181G SUS181G00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181H SUS181H00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUSDP15 SUS15500N 2/6/2013 N Phase1-2013 Surface 0.17 1 Maintenance SUSDP15-1C SUS15F00N 1/30/2017 </td <td></td>										
Maintenance SUS181C SUS181C00R 1/25/2017 FD SUS181C00N WP#3-2017 Surface 0 1 Maintenance SUS181D SUS181D00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181E SUS181E00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181F SUS181F00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181G SUS181G00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181H SUS181H00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUSDP15 SUS1500N 2/6/2013 N Phase1-2013 Surface 0.17 1 Maintenance SUSDP15 SUS1500N 1/30/2017 N WP#3-2017 Surface 0 1 Maintenance SUSDP15-1C SUS151C00N 8/14/2017 <td></td>										
Maintenance SUS181D SUS181D00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181E SUS181E00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181F SUS181F00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181G SUS181G00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181H SUS181H00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUSDP15 SUS1500N 2/6/2013 N Phase1-2013 Surface 0.17 1 Maintenance SUSDP15 SUS15F00N 1/30/2017 N WP#3-2017 Surface 0 1 Maintenance SUSDP15-1C SUS151C00N 8/14/2017 N WP#3-2017 Surface 0 1 Maintenance SUSDP15-1G SUS151G00N 8/15/2017 N						SUS181C00N				
Maintenance SUS181E SUS181E00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181F SUS181F00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181G SUS181G00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181H SUS181H00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUSDP15 SUS1500N 2/6/2013 N Phase1-2013 Surface 0.17 1 Maintenance SUSDP15 SUS15F00N 1/30/2017 N WP#3-2017 Surface 0 1 Maintenance SUSDP15-1C SUS151C00N 8/14/2017 N WP#3-2017 Surface 0 1 Maintenance SUSDP15-1G SUS151G00N 8/15/2017 N WP#3-2017 Surface 0 1						222.2.200.1				
Maintenance SUS181F SUS181F00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181G SUS181G00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181H SUS181H00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUSDP15 SUS1500N 2/6/2013 N Phase1-2013 Surface 0.17 1 Maintenance SUSDP15 SUS15F00N 1/30/2017 N WP#3-2017 Surface 0 1 Maintenance SUSDP15-1C SUS151G00N 8/14/2017 N WP#3-2017 Surface 0 1 Maintenance SUSDP15-1G SUS151G00N 8/15/2017 N WP#3-2017 Surface 0 1										
Maintenance SUS181G SUS181G00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUS181H SUS181H00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUSDP15 SUS1500N 2/6/2013 N Phase1-2013 Surface 0.17 1 Maintenance SUSDP15 SUS15F00N 1/30/2017 N WP#3-2017 Surface 0 1 Maintenance SUSDP15-1C SUS151C00N 8/14/2017 N WP#3-2017 Surface 0 1 Maintenance SUSDP15-1G SUS151G00N 8/15/2017 N WP#3-2017 Surface 0 1										
Maintenance SUS181H SUS181H00N 1/25/2017 N WP#3-2017 Surface 0 1 Maintenance SUSDP15 SUS1500N 2/6/2013 N Phase1-2013 Surface 0.17 1 Maintenance SUSDP15 SUS15F00N 1/30/2017 N WP#3-2017 Surface 0 1 Maintenance SUSDP15-1C SUS151C00N 8/14/2017 N WP#3-2017 Surface 0 1 Maintenance SUSDP15-1G SUS151G00N 8/15/2017 N WP#3-2017 Surface 0 1										
Maintenance SUSDP15 SUS1500N 2/6/2013 N Phase1-2013 Surface 0.17 1 Maintenance SUSDP15 SUS15F00N 1/30/2017 N WP#3-2017 Surface 0 1 Maintenance SUSDP15-1C SUS151C00N 8/14/2017 N WP#3-2017 Surface 0 1 Maintenance SUSDP15-1G SUS151G00N 8/15/2017 N WP#3-2017 Surface 0 1										
Maintenance SUSDP15 SUS15F00N 1/30/2017 N WP#3-2017 Surface 0 1 Maintenance SUSDP15-1C SUS151C00N 8/14/2017 N WP#3-2017 Surface 0 1 Maintenance SUSDP15-1G SUS151G00N 8/15/2017 N WP#3-2017 Surface 0 1										
Maintenance SUSDP15-1C SUS151C00N 8/14/2017 N WP#3-2017 Surface 0 1 Maintenance SUSDP15-1G SUS151G00N 8/15/2017 N WP#3-2017 Surface 0 1										
Maintenance SUSDP15-1G SUS151G00N 8/15/2017 N WP#3-2017 Surface 0 1										
ul maintenance i SUSDP16 I SUS1600N I 2/6/2013 I N I - I Phase1-2013 I Surface I 0.5 I 1	Maintenance	SUSDP16	SUS1600N	2/6/2013	N		Phase1-2013	Surface	0.5	1

Table 3-1 Soil Samples Used in the BHHRA Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

0	0	Occupie ID	Owner to Barr	Sample	Barret Carret	Total Octo	Surface or	Start Depth	
Sample Area	Sample Location	Sample ID	Sample Date	Туре	Parent Sample	Task Code	Subsurface	(feet)	(feet)
Maintenance	SUSDP17	SUS1700N	2/6/2013	N		Phase1-2013	Surface	0.5	1
Maintenance	SUSDP18	SUS1800N	2/6/2013	N		Phase1-2013	Surface	0	1
Maintenance	SUSDP18	SUS18F00N	1/26/2017	N		WP#3-2017	Surface	0	1
Maintenance	SUSDP19-7NW	SUS197NW00N	4/5/2018	N		WP#3-2018	Surface	0	1
Maintenance	SUSDP48	SUS4800N	1/26/2017	N	011040001	WP#3-2017	Surface	0	1
Maintenance	SUSDP48	SUS4800R	1/26/2017	FD	SUS4800N	WP#3-2017	Surface	0	1
Maintenance	SUSDP48	SUS48F00N	1/26/2017	N		WP#3-2017	Surface	0	1
Maintenance	SUSDP48-1C	SUS481C00N	8/15/2017	N		WP#3-2017	Surface	0	1
Maintenance	SUSDP48-2E	SUS482E00N	1/30/2018	N		WP#3-2018	Surface	0	1
Maintenance	SUSDP49	SUS4900N	1/26/2017	N		WP#3-2017	Surface	0	1
Maintenance	SUSDP49-1C	SUS491C00N	8/11/2017	N		WP#3-2017	Surface	0	1
Maintenance	SUSDP49-1E	SUS491E00N	8/11/2017	N		WP#3-2017	Surface	0	1
Maintenance	SUSDP51	SUS5100N	1/26/2017	N		WP#3-2017	Surface	0	1
Maintenance	SUSDP51	SUS51F00N	1/26/2017	N		WP#3-2017	Surface	0	1
Maintenance	SUSDP52	SUS5200N	1/26/2017	N		WP#3-2017	Surface	0	1
Maintenance	SUSDP65	SUS6500N	1/30/2018	N		WP#3-2018	Surface	0	1
Maintenance	DP32	DPS3210N	4/1/2013	N		Phase2-2013	Subsurface	9.5	10.5
	DP32	DPS3210R	4/1/2013	FD	DPS3210N	Phase2-2013	Subsurface	9.5	10.5
Maintenance	DP32 DP45				DP33210IN				
Maintenance		DPS4503N	5/23/2013	N		Phase2-2013	Subsurface	2.5	3.5
Maintenance	DP45	DPS4510N	6/4/2013	N		Phase2-2013	Subsurface	9.5	10.5
Maintenance	DP45	DPS4515N	6/4/2013	N		Phase2-2013	Subsurface	14.5	15.5
Maintenance	SUSDP15	DPS1504N	5/21/2013	N		Phase2-2013	Subsurface	3.5	4.5
Maintenance	SUSDP15	DPS1510N	6/6/2013	N		Phase2-2013	Subsurface	9.5	10.5
Maintenance	SUSDP15	DPS1515N	6/10/2013	N		Phase2-2013	Subsurface	14.5	15.5
Maintenance	SUSDP15	DPS15F01N	1/30/2017	N		WP#3-2017	Subsurface	1	2
Maintenance	SUSDP15	DPS15F02-05N	1/30/2017	N		WP#3-2017	Subsurface	2	5
Maintenance	SUSDP15	DPS15F05-10N	2/2/2017	N		WP#3-2017	Subsurface	5	10
Maintenance	SUSDP15	DPS15F10-15N	2/2/2017	N		WP#3-2017	Subsurface	10	15
Maintenance	SUSDP15-1C	DPS151C01N	8/14/2017	N		WP#3-2017	Subsurface	1	2
Maintenance	SUSDP15-1C	DPS151C01R	8/14/2017	FD	DPS151C01N	WP#3-2017	Subsurface	1	2
					DESISTECTION				
Maintenance	SUSDP15-1C	DPS151C02N	8/14/2017	N		WP#3-2017	Subsurface	2	3
Maintenance	SUSDP15-1C	DPS151C03N	8/14/2017	N		WP#3-2017	Subsurface	3	4
Maintenance	SUSDP15-1C	DPS151C05N	8/22/2017	N		WP#3-2017	Subsurface	5	6
Maintenance	SUSDP15-1C	DPS151C06N	8/22/2017	N		WP#3-2017	Subsurface	6	7
Maintenance	SUSDP15-1C	DPS151C07N	8/22/2017	N		WP#3-2017	Subsurface	7	8
Maintenance	SUSDP15-1C	DPS151C08N	8/22/2017	N		WP#3-2017	Subsurface	8	9
Maintenance	SUSDP15-1C	DPS151C09N	8/22/2017	N		WP#3-2017	Subsurface	9	10
Maintenance	SUSDP15-1C	DPS151C10N	8/22/2017	N		WP#3-2017	Subsurface	10	11
Maintenance	SUSDP15-1G	DPS151G01N	8/15/2017	N		WP#3-2017	Subsurface	1	2
Maintenance	SUSDP15-1G	DPS151G05N	8/30/2017	N		WP#3-2017	Subsurface	5	6
Maintenance	SUSDP15-1G	DPS151G06N	8/30/2017	N		WP#3-2017	Subsurface	6	7
Maintenance	SUSDP15-1G	DPS151G07N	8/30/2017	N		WP#3-2017	Subsurface	7	8
Maintenance	SUSDP15-1G	DPS151G08N	8/30/2017	N		WP#3-2017	Subsurface	8	9
Maintenance		DPS151G06N DPS151G09N		N			Subsurface		10
	SUSDP15-1G		8/30/2017			WP#3-2017		9	
Maintenance	SUSDP15-1G	DPS151G10N	8/30/2017	N		WP#3-2017	Subsurface	10	11
Maintenance	SUSDP16	DPS1605N	5/15/2013	N		Phase2-2013	Subsurface	4.5	5.5
Maintenance	SUSDP16	DPS1610N	6/10/2013	N		Phase2-2013	Subsurface	9.5	10.5
Maintenance	SUSDP16	DPS1615N	6/10/2013	N		Phase2-2013	Subsurface	14.5	15.5
Maintenance	SUSDP16	DPS1615R	6/10/2013	FD	DPS1615N	Phase2-2013	Subsurface	14.5	15.5
Maintenance	SUSDP17	DPS1705N	5/23/2013	N		Phase2-2013	Subsurface	4.5	5.5
Maintenance	SUSDP17	DPS1710N	6/11/2013	N		Phase2-2013	Subsurface	9.5	10.5
Maintenance	SUSDP17	DPS1715N	6/11/2013	N		Phase2-2013	Subsurface	14	15
Maintenance	SUSDP18	DPS1803N	5/23/2013	N		Phase2-2013	Subsurface	2.5	3.5
Maintenance	SUSDP18	DPS1810N	6/4/2013	N		Phase2-2013	Subsurface	9.5	10.5
Maintenance	SUSDP18	DPS18F01N	1/26/2017	N		WP#3-2017	Subsurface	1	2
Maintenance	SUSDP18	DPS18F02-05N	1/26/2017	N		WP#3-2017	Subsurface	2	5
Maintenance	SUSDP19-7NW	DPS197NW01N	4/5/2018	N		WP#3-2017 WP#3-2018	Subsurface	1	2
		DPS197NW01N DPS197NW02N							
Maintenance	SUSDP19-7NW		4/5/2018	N		WP#3-2018	Subsurface	2	3
Maintenance	SUSDP19-7NW	DPS197NW03N	4/5/2018	N		WP#3-2018	Subsurface	3	4
Maintenance	SUSDP19-7NW	DPS197NW04N	4/5/2018	N		WP#3-2018	Subsurface	4	5
Maintenance	SUSDP48	DPS48F01N	1/26/2017	N		WP#3-2017	Subsurface	1	2
Maintenance	SUSDP48	DPS48F01R	1/26/2017	FD	DPS48F01N	WP#3-2017	Subsurface	1	2
Maintenance	SUSDP48	DPS48F02-05N	1/26/2017	N		WP#3-2017	Subsurface	2	5
Maintenance	SUSDP48	DPS48F02-05R	1/26/2017	FD	DPS48F02-05N	WP#3-2017	Subsurface	2	5
Maintenance	SUSDP48	DPS48F05-10N	1/27/2017	N	2	WP#3-2017	Subsurface	5	10
Maintenance	SUSDP48	DPS48F10-15N	1/27/2017	N		WP#3-2017	Subsurface	10	15
	SUSDP48-1C	DPS481C01N	8/15/2017			WP#3-2017 WP#3-2017			2
Maintenance		DE040TUUIN	0/10/2017	N	1	VV F#3-2U1/	Subsurface	1	. 2

Table 3-1 Soil Samples Used in the BHHRA Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

				Sample			Surface or	Start Depth	End Depth
Sample Area	Sample Location	Sample ID	Sample Date	Type	Parent Sample	Task Code	Subsurface	(feet)	(feet)
Maintenance	SUSDP48-1G	DPS481G01N	8/16/2017	N		WP#3-2017	Subsurface	1	2
Maintenance	SUSDP48-2E	DPS482E01N	1/30/2018	N		WP#3-2018	Subsurface	1	2
Maintenance	SUSDP49	DPS4901N	8/11/2017	N		WP#3-2017	Subsurface	1	2
Maintenance	SUSDP49	DPS4901R	8/11/2017	FD	DPS4901N	WP#3-2017	Subsurface	1	2
Maintenance	SUSDP49	DPS4902N	8/11/2017	N		WP#3-2017	Subsurface	2	3
Maintenance	SUSDP49-1C	DPS491C01N	8/11/2017	N		WP#3-2017	Subsurface	1	2
Maintenance	SUSDP49-1C SUSDP49-1E	DPS491C02N DPS491E01N	8/11/2017 8/11/2017	N N		WP#3-2017 WP#3-2017	Subsurface Subsurface	1	3 2
Maintenance Maintenance	SUSDP49-1E SUSDP49-1E	DPS491E01N DPS491E02N	8/11/2017	N		WP#3-2017 WP#3-2017	Subsurface	2	3
Maintenance	SUSDP49-1E	DPS491E02N	8/11/2017	N		WP#3-2017 WP#3-2017	Subsurface	3	4
Maintenance	SUSDP49-1E	DPS491E04N	8/11/2017	N		WP#3-2017	Subsurface	4	5
Maintenance	SUSDP51	DPS51F01N	1/26/2017	N		WP#3-2017	Subsurface	1	2
Maintenance	SUSDP51	DPS51F02-05N	1/26/2017	N		WP#3-2017	Subsurface	2	5
Maintenance	SUSDP51	DPS51F05-10N	1/27/2017	N		WP#3-2017	Subsurface	5	10
Maintenance	SUSDP51	DPS51F10-15N	1/27/2017	N		WP#3-2017	Subsurface	10	15
Maintenance	SUSDP64	DPS6401N	8/10/2017	N		WP#3-2017	Subsurface	1	2
Maintenance	SUSDP65	DPS6501N	1/30/2018	N		WP#3-2018	Subsurface	1	2
Offices/Parking	SUS19-2E	SUS192E00N	3/22/2017	N		WP#3-2017	Surface	0	1
Offices/Parking	SUSDP09	SUS0900N	2/5/2013	N		Phase1-2013	Surface	0	1
Offices/Parking	SUSDP14	SUS1400N	2/6/2013	N		Phase1-2013	Surface	0.17	1
Offices/Parking	SUSDP19	SUS1900N	2/6/2013	N		Phase1-2013	Surface	0.83	1
Offices/Parking	SUSDP19	SUS19F00N	1/30/2017	N		WP#3-2017	Surface	0	1
Offices/Parking	SUSDP19-1A	SUS191A00N	2/1/2017	N		WP#3-2017	Surface	0	1
Offices/Parking	SUSDP19-1B	SUS191B00N	2/1/2017	N		WP#3-2017	Surface	0	1
Offices/Parking	SUSDP19-1C	SUS191C00N	1/27/2017	N	01104040001	WP#3-2017	Surface	0	1
Offices/Parking	SUSDP19-1C SUSDP19-1D	SUS191C00R SUS191D00N	1/27/2017 8/22/2017	FD N	SUS191C00N	WP#3-2017 WP#3-2017	Surface Surface	0	1
Offices/Parking Offices/Parking	SUSDP19-1D	SUS191G00N	2/1/2017	N		WP#3-2017 WP#3-2017	Surface	0	1
Offices/Parking	SUSDP19-1H	SUS191H00N	2/1/2017	N		WP#3-2017 WP#3-2017	Surface	0	1
Offices/Parking	SUSDP19-2D	SUS191100N SUS192D00N	3/22/2017	N		WP#3-2017	Surface	0	1
Offices/Parking	SUSDP19-2D	SUS192D00R	3/22/2017	FD	SUS192D00N	WP#3-2017	Surface	0	1
Offices/Parking	SUSDP19-2M	SUS192M00N	3/23/2017	N	00010220011	WP#3-2017	Surface	0	1
Offices/Parking	SUSDP19-2N	SUS192N00N	3/23/2017	N		WP#3-2017	Surface	0	1
Offices/Parking	SUSDP19-2O	SUS192000N	3/23/2017	N		WP#3-2017	Surface	0	1
Offices/Parking	SUSDP19-2P	SUS192P00N	3/23/2017	N		WP#3-2017	Surface	0	1
Offices/Parking	SUSDP19-3S	SUS193S00N	8/24/2017	N		WP#3-2017	Surface	0	1
Offices/Parking	SUSDP19-3V	SUS193V00N	8/24/2017	N		WP#3-2017	Surface	0	1
Offices/Parking	SUSDP19-4N	SUS194N00N	1/26/2018	N		WP#3-2018	Surface	0	1
Offices/Parking	SUSDP19-4NW	SUS194NW00N	2/1/2018	N		WP#3-2018	Surface	0	1
Offices/Parking	SUSDP19-4W	SUS194W00N	2/1/2018	N		WP#3-2018	Surface	0	1
Offices/Parking	SUSDP19-5N	SUS195N00N	2/21/2018	N		WP#3-2018	Surface	0	1
Offices/Parking	SUSDP19-5NW	SUS195NW00N	2/21/2018	N		WP#3-2018	Surface	0	1
Offices/Parking Offices/Parking	SUSDP19-5W	SUS195W00N SUS196N00N	2/21/2018	N N		WP#3-2018	Surface	0	1
Offices/Parking Offices/Parking	SUSDP19-6N SUSDP19-6NW	SUS196NW00N	3/15/2018 3/15/2018	N N		WP#3-2018 WP#3-2018	Surface Surface	0	1
Offices/Parking	SUSDP19-6W	SUS196W00N	3/16/2018	N		WP#3-2018	Surface	0	1
Offices/Parking	SUSDP19-6W SUSDP19-7N	SUS197N00N	4/5/2018	N N		WP#3-2018 WP#3-2018	Surface	0	1
Offices/Parking	SUSDP19-7W	SUS197W00N	4/5/2018	N		WP#3-2018	Surface	0	1
Offices/Parking	SUSDP53	SUS53F00N	1/31/2017	N		WP#3-2017	Surface	0	1
Offices/Parking	SUSDP09	DPS0905N	5/17/2013	N		Phase2-2013	Subsurface	4.5	5.5
Offices/Parking	SUSDP09	DPS0910N	6/11/2013	N		Phase2-2013	Subsurface	9.5	10.5
Offices/Parking	SUSDP09	DPS0915N	6/11/2013	N		Phase2-2013	Subsurface	14.5	15.5
Offices/Parking	SUSDP14	DPS1403N	5/22/2013	N		Phase2-2013	Subsurface	2.5	3.5
Offices/Parking	SUSDP14	DPS1410N	6/6/2013	N		Phase2-2013	Subsurface	9.5	10.5
Offices/Parking	SUSDP14	DPS1415N	6/6/2013	N		Phase2-2013	Subsurface	14.5	15.5
Offices/Parking	SUSDP19	DPS1902N	5/23/2013	N		Phase2-2013	Subsurface	1.5	2.5
Offices/Parking	SUSDP19	DPS1902R	5/23/2013	FD	DPS1902N	Phase2-2013	Subsurface	1.5	2.5
Offices/Parking	SUSDP19	DPS1910N	6/5/2013	N		Phase2-2013	Subsurface	9.5	10.5
Offices/Parking	SUSDP19	DPS1915N	6/5/2013	N	DDC4045N	Phase2-2013	Subsurface	14.5	15.5
Offices/Parking	SUSDP19	DPS1915R	6/5/2013	FD	DPS1915N	Phase2-2013	Subsurface	14.5	15.5
Offices/Parking Offices/Parking	SUSDP19	DPS19F01N	1/30/2017	N		WP#3-2017	Subsurface	1	2
Offices/Parking	SUSDP19 SUSDP19	DPS19F02-05N DPS19F05-10N	1/30/2017 2/8/2017	N N		WP#3-2017 WP#3-2017	Subsurface Subsurface	5	5 10
Offices/Parking Offices/Parking	SUSDP19 SUSDP19	DPS19F05-10N DPS19F10-15N	2/8/2017	N N		WP#3-2017 WP#3-2017	Subsurface Subsurface	10	10
Offices/Parking	SUSDP19-1A	DPS19F10-15N	2/1/2017	N		WP#3-2017 WP#3-2017	Subsurface	2	3
Offices/Parking	SUSDP19-1A	DPS191A10N	2/8/2017	N		WP#3-2017 WP#3-2017	Subsurface	10	11
Offices/Parking	SUSDP19-1A	DPS191A15N	2/8/2017	N		WP#3-2017 WP#3-2017	Subsurface	15	16
	00001 10 1/1	DPS191B02N	2/1/2017	N		WP#3-2017	Subsurface	2	3

Table 3-1 Soil Samples Used in the BHHRA Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

				Sample			Surface or	Start Depth	End Depth
Sample Area	Sample Location	Sample ID	Sample Date	Type	Parent Sample	Task Code	Subsurface	(feet)	(feet)
Offices/Parking	SUSDP19-1B	DPS191B10N	2/8/2017	N		WP#3-2017	Subsurface	10	11
Offices/Parking	SUSDP19-1B	DPS191B15N	2/8/2017	N		WP#3-2017	Subsurface	15	16
Offices/Parking	SUSDP19-1C	DPS191C10N	2/8/2017	N		WP#3-2017	Subsurface	10	11
Offices/Parking	SUSDP19-1C SUSDP19-1C	DPS191C15N	2/8/2017 1/27/2017	N N		WP#3-2017 WP#3-2017	Subsurface	15	16
Offices/Parking	SUSDP19-1C SUSDP19-1C	SUS191C02N	1/27/2017	FD	SUS191C02N	WP#3-2017 WP#3-2017	Subsurface Subsurface	2 2	3
Offices/Parking Offices/Parking	SUSDP19-1D	SUS191C02R DPS191D01N	8/22/2017	N N	505191C02N	WP#3-2017 WP#3-2017	Subsurface	1	2
Offices/Parking	SUSDP19-1D	DPS191D01R	8/22/2017	FD	DPS191D01N	WP#3-2017	Subsurface	1	2
Offices/Parking	SUSDP19-1D	DPS191D02N	8/22/2017	N	DI OTOTOOTIV	WP#3-2017	Subsurface	2	3
Offices/Parking	SUSDP19-1D	DPS191D03N	8/22/2017	N		WP#3-2017	Subsurface	3	4
Offices/Parking	SUSDP19-1D	DPS191D04N	8/22/2017	N		WP#3-2017	Subsurface	4	5
Offices/Parking	SUSDP19-1D	DPS191D05N	8/22/2017	N		WP#3-2017	Subsurface	5	6
Offices/Parking	SUSDP19-1F	DPS191F01N	8/22/2017	N		WP#3-2017	Subsurface	1	2
Offices/Parking	SUSDP19-1F	DPS191F02N	8/22/2017	N		WP#3-2017	Subsurface	2	3
Offices/Parking	SUSDP19-1F	DPS191F03N	8/22/2017	N		WP#3-2017	Subsurface	3	4
Offices/Parking	SUSDP19-1F	DPS191F04N	8/22/2017	N		WP#3-2017	Subsurface	4	5
Offices/Parking	SUSDP19-1G	DPS191G02N	2/1/2017	N		WP#3-2017	Subsurface	2	3
Offices/Parking	SUSDP19-1G	DPS191G10N	2/8/2017	N		WP#3-2017	Subsurface	10	11
Offices/Parking	SUSDP19-1G	DPS191G15N	2/8/2017	N		WP#3-2017	Subsurface	15	16
Offices/Parking	SUSDP19-1H	DPS191H02N	2/1/2017	N		WP#3-2017	Subsurface	2	3
Offices/Parking	SUSDP19-1H	DPS191H10N	2/8/2017	N		WP#3-2017	Subsurface	10	11
Offices/Parking	SUSDP19-1H	DPS191H15N	2/8/2017	N		WP#3-2017	Subsurface	15	16
Offices/Parking	SUSDP19-2D	DPS192D01N	8/17/2017	N		WP#3-2017	Subsurface	1	2
Offices/Parking	SUSDP19-2D	DPS192D02N	8/17/2017	N		WP#3-2017	Subsurface	2	3
Offices/Parking	SUSDP19-2D	DPS192D03N	8/17/2017	N		WP#3-2017 WP#3-2017	Subsurface	3	4
Offices/Parking Offices/Parking	SUSDP19-2D	DPS192D04N DPS192D05N	8/17/2017	N N		WP#3-2017 WP#3-2017	Subsurface Subsurface	5	5 6
Offices/Parking	SUSDP19-2D SUSDP19-2M	DPS192M03N	8/17/2017 8/16/2017	N		WP#3-2017 WP#3-2017	Subsurface	3	4
Offices/Parking	SUSDP19-2M SUSDP19-2M	DPS192M03R	8/16/2017	FD	DPS192M03N	WP#3-2017 WP#3-2017	Subsurface	3	4
Offices/Parking	SUSDP19-2M	DPS192M04N	8/16/2017	N	DI 3192100314	WP#3-2017	Subsurface	4	5
Offices/Parking	SUSDP19-2M	DPS192M05N	8/16/2017	N		WP#3-2017	Subsurface	5	6
Offices/Parking	SUSDP19-2M	SUS192M02N	3/23/2017	N		WP#3-2017	Subsurface	2	3
Offices/Parking	SUSDP19-2N	SUS192N02N	3/23/2017	N		WP#3-2017	Subsurface	2	3
Offices/Parking	SUSDP19-2O	DPS192O03N	8/23/2017	N		WP#3-2017	Subsurface	3	4
Offices/Parking	SUSDP19-2O	DPS192O04N	8/23/2017	N		WP#3-2017	Subsurface	4	5
Offices/Parking	SUSDP19-2O	DPS192O05N	8/23/2017	N		WP#3-2017	Subsurface	5	6
Offices/Parking	SUSDP19-2O	DPS192O06N	3/28/2018	N		WP#3-2018	Subsurface	6	7
Offices/Parking	SUSDP19-2O	DPS192O07N	3/28/2018	N		WP#3-2018	Subsurface	7	8
Offices/Parking	SUSDP19-2O	DPS192O10N	3/28/2018	N		WP#3-2018	Subsurface	10	11
Offices/Parking	SUSDP19-2O	DPS192O11N	3/28/2018	N		WP#3-2018	Subsurface	11	12
Offices/Parking	SUSDP19-2O	SUS192002N	3/23/2017	N		WP#3-2017	Subsurface	2	3
Offices/Parking	SUSDP19-2P	DPS192P03N	8/17/2017	N		WP#3-2017	Subsurface	3	4
Offices/Parking	SUSDP19-2P	DPS192P04N	8/17/2017	N		WP#3-2017	Subsurface	4	5
Offices/Parking Offices/Parking	SUSDP19-2P SUSDP19-2P	DPS192P05N SUS192P02N	8/17/2017 3/23/2017	N N		WP#3-2017 WP#3-2017	Subsurface Subsurface	5 2	6
Offices/Parking	SUSDP19-3F	DPS193F01N	8/18/2017	N		WP#3-2017	Subsurface	1	2
Offices/Parking	SUSDP19-3F	DPS193F02N	8/18/2017	N		WP#3-2017	Subsurface	2	3
Offices/Parking	SUSDP19-3F	DPS193F03N	8/18/2017	N		WP#3-2017	Subsurface	3	4
Offices/Parking	SUSDP19-3F	DPS193F04N	8/18/2017	N		WP#3-2017	Subsurface	4	5
Offices/Parking	SUSDP19-3F	DPS193F05N	8/18/2017	N		WP#3-2017	Subsurface	5	6
Offices/Parking	SUSDP19-3S	DPS193S01N	8/24/2017	N		WP#3-2017	Subsurface	1	2
Offices/Parking	SUSDP19-3S	DPS193S01R	8/24/2017	FD	DPS193S01N	WP#3-2017	Subsurface	1	2
Offices/Parking	SUSDP19-3S	DPS193S02N	8/24/2017	N		WP#3-2017	Subsurface	2	3
Offices/Parking	SUSDP19-3S	DPS193S03N	8/24/2017	N		WP#3-2017	Subsurface	3	4
Offices/Parking	SUSDP19-3S	DPS193S04N	8/24/2017	N		WP#3-2017	Subsurface	4	5
Offices/Parking	SUSDP19-3S	DPS193S05N	8/24/2017	N		WP#3-2017	Subsurface	5	6
Offices/Parking	SUSDP19-3V	DPS193V01N	8/24/2017	N		WP#3-2017	Subsurface	1	2
Offices/Parking	SUSDP19-3V	DPS193V02N	8/24/2017	N		WP#3-2017	Subsurface	2	3
Offices/Parking	SUSDP19-3V	DPS193V03N	8/24/2017	N		WP#3-2017	Subsurface	3	4
Offices/Parking	SUSDP19-3V	DPS193V04N	8/24/2017	N		WP#3-2017	Subsurface	4	5
Offices/Parking	SUSDP19-3V	DPS193V05N	8/24/2017	N		WP#3-2017	Subsurface	5	6
Offices/Parking	SUSDP19-3X	DPS193X01N	8/18/2017	N		WP#3-2017	Subsurface	1	2
Offices/Parking Offices/Parking	SUSDP19-3X SUSDP19-3X	DPS193X02N DPS193X03N	8/18/2017 8/18/2017	N N		WP#3-2017 WP#3-2017	Subsurface Subsurface	3	3 4
Offices/Parking Offices/Parking	SUSDP19-3X SUSDP19-3X	DPS193X03N DPS193X04N	8/18/2017	N N		WP#3-2017 WP#3-2017	Subsurface	4	5
Offices/Parking Offices/Parking	SUSDP19-3X	DPS193X04N DPS193X05N	8/18/2017	N N		WP#3-2017 WP#3-2017	Subsurface	5	6
Offices/Parking	SUSDP19-3X SUSDP19-4N	DPS194N01N	1/26/2018	N		WP#3-2017 WP#3-2018	Subsurface	1	2
Offices/Parking						**1 "0 2010	Japaunace		

Table 3-1 Soil Samples Used in the BHHRA Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

	Sample Area	Samula Lagation	Comple ID	Samula Data	Sample	Darent Comple	Took Code	Surface or Subsurface	Start Depth	
├		Sample Location	Sample ID	Sample Date	Туре	Parent Sample	Task Code		(feet)	(feet)
-	Offices/Parking	SUSDP19-4N	DPS194N02R	1/26/2018	FD	DPS194N02N	WP#3-2018	Subsurface	2	3
	Offices/Parking	SUSDP19-4N	DPS194N03N	1/26/2018	N		WP#3-2018	Subsurface	3	4
	Offices/Parking	SUSDP19-4N	DPS194N04N	1/26/2018	N		WP#3-2018	Subsurface	4	5
	Offices/Parking	SUSDP19-4N	DPS194N05N	1/26/2018	N		WP#3-2018	Subsurface	5	6
	Offices/Parking	SUSDP19-4N	DPS194N06N	3/28/2018	N		WP#3-2018	Subsurface	6	7
	Offices/Parking	SUSDP19-4N	DPS194N07N	3/28/2018	N		WP#3-2018	Subsurface	7	8
	Offices/Parking	SUSDP19-4N	DPS194N10N	3/28/2018	N		WP#3-2018	Subsurface	10	11
	Offices/Parking	SUSDP19-4N	DPS194N11N	3/28/2018	N		WP#3-2018	Subsurface	11	12
	Offices/Parking	SUSDP19-4NW	DPS194NW01N	2/1/2018	N		WP#3-2018	Subsurface	1	2
	Offices/Parking	SUSDP19-4NW	DPS194NW02N	2/1/2018	N		WP#3-2018	Subsurface	2	3
	Offices/Parking	SUSDP19-4NW	DPS194NW03N	2/1/2018	N		WP#3-2018	Subsurface	3	4
 	Offices/Parking	SUSDP19-4NW	DPS194NW04N	2/1/2018	N		WP#3-2018	Subsurface	4	5
-	Offices/Parking	SUSDP19-4NW	DPS194NW05N	2/1/2018	N		WP#3-2018	Subsurface	5	6
 										
L	Offices/Parking	SUSDP19-4NW	DPS194NW06N	3/28/2018	N		WP#3-2018	Subsurface	6	7
	Offices/Parking	SUSDP19-4NW	DPS194NW07N	3/28/2018	N		WP#3-2018	Subsurface	7	8
	Offices/Parking	SUSDP19-4NW	DPS194NW10N	3/28/2018	N		WP#3-2018	Subsurface	10	11
	Offices/Parking	SUSDP19-4NW	DPS194NW11N	3/28/2018	N		WP#3-2018	Subsurface	11	12
	Offices/Parking	SUSDP19-4W	DPS194W01N	2/1/2018	N		WP#3-2018	Subsurface	1	2
	Offices/Parking	SUSDP19-4W	DPS194W01R	2/1/2018	FD	DPS194W01N	WP#3-2018	Subsurface	1	2
	Offices/Parking	SUSDP19-4W	DPS194W02N	2/1/2018	N		WP#3-2018	Subsurface	2	3
	Offices/Parking	SUSDP19-4W	DPS194W03N	2/1/2018	N		WP#3-2018	Subsurface	3	4
	Offices/Parking	SUSDP19-4W	DPS194W04N	2/1/2018	N		WP#3-2018	Subsurface	4	5
	Offices/Parking	SUSDP19-4W	DPS194W05N	2/1/2018	N		WP#3-2018	Subsurface	5	6
	Offices/Parking	SUSDP19-5N	DPS195N01N	2/21/2018	N		WP#3-2018	Subsurface	1	2
	Offices/Parking	SUSDP19-5N	DPS195N01N DPS195N02N	2/21/2018	N		WP#3-2018	Subsurface	2	3
 	•									
	Offices/Parking	SUSDP19-5N	DPS195N03N	2/21/2018	N		WP#3-2018	Subsurface	3	4
	Offices/Parking	SUSDP19-5N	DPS195N04N	2/21/2018	N		WP#3-2018	Subsurface	4	5
	Offices/Parking	SUSDP19-5N	DPS195N05N	2/21/2018	N		WP#3-2018	Subsurface	5	6
	Offices/Parking	SUSDP19-5NW	DPS195NW01N	2/21/2018	N		WP#3-2018	Subsurface	1	2
	Offices/Parking	SUSDP19-5NW	DPS195NW02N	2/21/2018	N		WP#3-2018	Subsurface	2	3
	Offices/Parking	SUSDP19-5NW	DPS195NW03N	2/21/2018	N		WP#3-2018	Subsurface	3	4
	Offices/Parking	SUSDP19-5NW	DPS195NW04N	2/21/2018	N		WP#3-2018	Subsurface	4	5
	Offices/Parking	SUSDP19-5NW	DPS195NW05N	2/21/2018	N		WP#3-2018	Subsurface	5	6
	Offices/Parking	SUSDP19-5W	DPS195W01N	2/21/2018	N		WP#3-2018	Subsurface	1	2
	Offices/Parking	SUSDP19-5W	DPS195W02N	2/21/2018	N		WP#3-2018	Subsurface	2	3
	Offices/Parking	SUSDP19-5W	DPS195W03N	2/21/2018	N		WP#3-2018	Subsurface	3	4
	Offices/Parking	SUSDP19-5W	DPS195W04N	2/21/2018	N		WP#3-2018	Subsurface	4	5
	Offices/Parking	SUSDP19-6N	DPS196N01N	3/15/2018	N		WP#3-2018	Subsurface	1	2
	Offices/Parking	SUSDP19-6N	DPS196N02N	3/15/2018	N		WP#3-2018	Subsurface	2	3
	Offices/Parking	SUSDP19-6N	DPS196N03N	3/15/2018	N		WP#3-2018	Subsurface	3	4
	Offices/Parking	SUSDP19-6N	DPS196N04N	3/15/2018	N		WP#3-2018	Subsurface	4	5
	Offices/Parking	SUSDP19-6NW	DPS196NW01N	3/15/2018	N		WP#3-2018	Subsurface	1	2
	Offices/Parking	SUSDP19-6NW	DPS196NW02N	3/15/2018	N		WP#3-2018	Subsurface	2	3
	Offices/Parking	SUSDP19-6NW	DPS196NW03N	3/16/2018	N		WP#3-2018	Subsurface	3	4
	Offices/Parking	SUSDP19-6NW	DPS196NW04N	3/16/2018	N		WP#3-2018	Subsurface	4	5
	Offices/Parking	SUSDP19-6NW	DPS196NW05N	3/16/2018	N		WP#3-2018	Subsurface	5	6
	Offices/Parking	SUSDP19-6W	DPS196W01N	3/16/2018	N		WP#3-2018	Subsurface	1	2
	Offices/Parking	SUSDP19-6W	DPS196W02N	3/16/2018	N		WP#3-2018	Subsurface	2	3
-	Offices/Parking	SUSDP19-6W	DPS196W03N	3/16/2018	N		WP#3-2018	Subsurface	3	4
 	Offices/Parking	SUSDP19-6W SUSDP19-7N	DPS196W03N	4/5/2018	N		WP#3-2016 WP#3-2018	Subsurface	1	2
										
 	Offices/Parking	SUSDP19-7N	DPS197N02N	4/5/2018	N	DDO407NOON	WP#3-2018	Subsurface	2	3
L	Offices/Parking	SUSDP19-7N	DPS197N02R	4/5/2018	FD	DPS197N02N	WP#3-2018	Subsurface	2	3
	Offices/Parking	SUSDP19-7N	DPS197N03N	4/5/2018	N		WP#3-2018	Subsurface	3	4
	Offices/Parking	SUSDP19-7N	DPS197N04N	4/5/2018	N		WP#3-2018	Subsurface	4	5
	Offices/Parking	SUSDP19-7W	DPS197W01N	4/5/2018	N		WP#3-2018	Subsurface	1	2
	Offices/Parking	SUSDP19-7W	DPS197W02N	4/5/2018	N		WP#3-2018	Subsurface	2	3
	Offices/Parking	SUSDP19-7W	DPS197W03N	4/5/2018	N		WP#3-2018	Subsurface	3	4
	Offices/Parking	SUSDP19-7W	DPS197W04N	4/5/2018	N		WP#3-2018	Subsurface	4	5
	Offices/Parking	SUSDP19-7W	DPS197W05N	4/5/2018	N		WP#3-2018	Subsurface	5	6
	Offices/Parking	SUSDP53	DPS53F01N	1/31/2017	N		WP#3-2017	Subsurface	1	2
	Offices/Parking	SUSDP53	DPS53F02-05N	1/31/2017	N		WP#3-2017	Subsurface	2	5
 	Offices/Parking	SUSDP53	DPS53F05-10N	2/2/2017	N		WP#3-2017 WP#3-2017	Subsurface	5	10
 		SUSDP53								
 	Offices/Parking		DPS53F10-15N	2/2/2017	N		WP#3-2017	Subsurface	10	15
1	Salvage	SUS10-1A	SUS101A00N	1/27/2017	N		WP#3-2017	Surface	0	1
1	Salvage	SUS10-1B	SUS101B00N	1/25/2017	N		WP#3-2017	Surface	0	1
<u> </u>	Salvage	SUS10-1B	SUS101B00R	1/25/2017	FD	SUS101B00N	WP#3-2017	Surface	0	1
	Salvage	SUS10-1C	SUS101C00N	1/25/2017	N		WP#3-2017	Surface	0	1
11	Salvage	SUS10-1D	SUS101D00N	1/25/2017	N		WP#3-2017	Surface	0	1

Table 3-1 Soil Samples Used in the BHHRA Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

				Sample			Surface or	Start Depth	End Depth
Sample Area	Sample Location	Sample ID	Sample Date	Туре	Parent Sample	Task Code	Subsurface	(feet)	(feet)
Salvage	SUS10-1E	SUS101E00N	1/25/2017	N		WP#3-2017	Surface	0	1
Salvage	SUS10-1F	SUS101F00N	1/27/2017	N		WP#3-2017	Surface	0	1
Salvage	SUS10-1G	SUS101G00N	1/27/2017	N		WP#3-2017	Surface	0	1
Salvage	SUS10-1H	SUS101H00N	1/27/2017	N		WP#3-2017	Surface	0	1
Salvage	SUS10-1H	SUS101H00N2	2/3/2017	N		WP#3-2017	Surface	0	1
Salvage	SUS10-2A SUS10-2B	SUS102A00N SUS102B00N	3/23/2017 3/23/2017	N N		WP#3-2017 WP#3-2017	Surface Surface	0	1
Salvage Salvage	SUS10-2D	SUS102B00N SUS102D00N	3/23/2017	N		WP#3-2017 WP#3-2017	Surface	0	1
Salvage	SUS10-2E	SUS102E00N	3/23/2017	N		WP#3-2017 WP#3-2017	Surface	0	1
Salvage	SUS10-2F	SUS102F00N	3/22/2017	N		WP#3-2017	Surface	0	1
Salvage	SUS10-2L	SUS102L00N	3/22/2017	N		WP#3-2017	Surface	0	1
Salvage	SUS10-2M	SUS102M00N	3/22/2017	N		WP#3-2017	Surface	0	1
Salvage	SUS10-2N	SUS102N00N	3/22/2017	N		WP#3-2017	Surface	0	1
Salvage	SUS10-2O	SUS102000N	3/22/2017	N		WP#3-2017	Surface	0	1
Salvage	SUS10-2P	SUS102P00N	3/23/2017	N		WP#3-2017	Surface	0	1
Salvage	SUS12-1B	SUS121B00N	1/25/2017	N		WP#3-2017	Surface	0	1
Salvage	SUS12-1D	SUS121D00N	1/25/2017	N		WP#3-2017	Surface	0	1
Salvage	SUS12-1F	SUS121F00N	1/25/2017	N		WP#3-2017	Surface	0	1
Salvage	SUS12-1H	SUS121H00N	1/25/2017	N		WP#3-2017	Surface	0	1
Salvage	SUS44-1A	SUS441A00N	1/27/2017	N		WP#3-2017	Surface (a)	1.5	2.5
Salvage	SUS44-1B	SUS441B00N	1/27/2017	N		WP#3-2017	Surface (a)	1.5	2.5
Salvage	SUS44-1C	SUS441C00N	1/25/2017	N		WP#3-2017	Surface (a)	1.5	2.5
Salvage	SUS44-1E	SUS441E00N	1/25/2017	N		WP#3-2017	Surface (a)	1.5	2.5
Salvage	SUS44-1F	SUS441F00N	1/25/2017	N		WP#3-2017	Surface (a)	1.5	2.5
Salvage	SUS44-1G	SUS441G00N	1/25/2017	N		WP#3-2017	Surface (a)	1.5	2.5
Salvage	SUSDP10	SUS1000N	2/5/2013	N		Phase1-2013	Surface	0.5	1
Salvage	SUSDP10	SUS10F00N	1/27/2017	N		WP#3-2017	Surface	0	1
Salvage	SUSDP10-3F	SUS103F00N	8/8/2017	N		WP#3-2017	Surface	0	1
Salvage	SUSDP10-3G	SUS103G00N	8/8/2017	N		WP#3-2017	Surface	0	1
Salvage	SUSDP10-3X	SUS103X00N	8/8/2017	N		WP#3-2017	Surface	0	1
Salvage	SUSDP10-3X	SUS103X00R	8/8/2017	FD	SUS103X00N	WP#3-2017	Surface	0	1
Salvage	SUSDP10-4NW	SUS104NW00N	1/30/2018	N		WP#3-2018	Surface	0	1
Salvage	SUSDP12	SUS1200N	2/6/2013	N		Phase1-2013	Surface	0	1
Salvage	SUSDP12 SUSDP12-1A	SUS12F00N SUS121A00N	1/26/2017 1/25/2017	N N		WP#3-2017 WP#3-2017	Surface Surface	0	1
Salvage Salvage	SUSDP12-1A	SUS121A00N2	8/10/2017	N		WP#3-2017 WP#3-2017	Surface	0	1
Salvage	SUSDP12-1A	SUS121A00N2	1/25/2017	FD	SUS121A00N	WP#3-2017 WP#3-2017	Surface	0	1
Salvage	SUSDP12-1C	SUS121C00N	1/25/2017	N	30312170011	WP#3-2017	Surface	0	1
Salvage	SUSDP12-1C	SUS121C00N2	8/10/2017	N		WP#3-2017	Surface	0	1
Salvage	SUSDP12-1E	SUS121E00N	1/25/2017	N		WP#3-2017	Surface	0	1
Salvage	SUSDP12-1E	SUS121E00N2	8/11/2017	N		WP#3-2017	Surface	0	1
Salvage	SUSDP12-1E	SUS121E00R2	8/11/2017	FD	SUS121E00N2	WP#3-2017	Surface	0	1
Salvage	SUSDP12-1G	SUS121G00N	1/25/2017	N		WP#3-2017	Surface	0	1
Salvage	SUSDP12-1G	SUS121G00N2	8/11/2017	N		WP#3-2017	Surface	0	1
Salvage	SUSDP12-2K	SUS122K00N	1/30/2018	N		WP#3-2018	Surface	0	1
Salvage	SUSDP12-3A	SUS123A00N	2/1/2018	N		WP#3-2018	Surface	0	1
Salvage	SUSDP43	SUS43F00N	1/26/2017	N		WP#3-2017	Surface	0	1
Salvage	SUSDP43-2J	SUS432J00N	8/8/2017	N		WP#3-2017	Surface	0	1
Salvage	SUSDP43-2M	SUS432M00N	8/9/2017	N		WP#3-2017	Surface	0	1
Salvage	SUSDP43-3P	SUS433P00N	1/30/2018	N		WP#3-2018	Surface	0	1
Salvage	SUSDP43-3T	SUS433T00N	1/30/2018	N		WP#3-2018	Surface	0	1
Salvage	SUSDP43-4SW	SUS434SW00N	2/23/2018	N		WP#3-2018	Surface	0	1
Salvage	SUSDP43-5NW	SUS435NW00N	3/15/2018	N		WP#3-2018	Surface	0	1
Salvage	SUSDP44	SUS44F00N	1/27/2017	N		WP#3-2017	Surface (a)	1.5	2.5
Salvage	SUSDP44-1D	SUS441D00N	1/25/2017	N		WP#3-2017	Surface (a)	1.5	2.5
Salvage	SUSDP44-1H	SUS441H00N	1/27/2017	N		WP#3-2017	Surface (a)	1.5	2.5
Salvage	SUSDP50	SUS5000N	1/26/2017	N		WP#3-2017	Surface	0	1
Salvage	SUSDP50-2A	SUS502A00N SUS503A00N	8/8/2017	N		WP#3-2017	Surface	0	1
Salvage Salvage	SUSDP50-3A	DPS2604N	1/30/2018	N		WP#3-2018	Surface	0	1
Salvage Salvage	DP26		3/28/2013	N		Phase2-2013 Phase2-2013	Subsurface Subsurface	3.5	4.5
	DP26 SUSDP10	DPS2614N DPS1005N	3/29/2013 5/15/2013	N N		Phase2-2013 Phase2-2013	Subsurface	13.5 4.5	14.5 5.5
Salvage Salvage	SUSDP10	DPS1005N DPS1010N	6/10/2013	N	+	Phase2-2013 Phase2-2013	Subsurface	9.5	10.5
Salvage Salvage	SUSDP10	DPS1010N DPS1015N	6/10/2013	N	 	Phase2-2013 Phase2-2013	Subsurface	14.5	15.5
Salvage	SUSDP10	DPS1015N DPS10F01N	1/27/2017	N	 	WP#3-2017	Subsurface	14.5	2
Salvage	SUSDP10	DPS10F01N	1/27/2017	N		WP#3-2017 WP#3-2017	Subsurface	2	5
Salvage	SUSDP10-3F	DPS103F01N	8/8/2017	N		WP#3-2017	Subsurface	1	2
Salvage	SUSDP10-3G	DPS103G01N	8/8/2017	N		WP#3-2017	Subsurface	1	2

Table 3-1 Soil Samples Used in the BHHRA Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

				Sample			Surface or	Start Depth	End Dept
Sample Area	Sample Location	Sample ID	Sample Date	Type	Parent Sample	Task Code	Subsurface	(feet)	(feet)
Salvage	SUSDP10-3G	DPS103G02N	8/8/2017	N		WP#3-2017	Subsurface	2	3
Salvage	SUSDP10-3X	DPS103X01N	8/8/2017	N		WP#3-2017	Subsurface	1	2
Salvage	SUSDP10-3X	DPS103X02N	8/8/2017	N		WP#3-2017	Subsurface	2	3
Salvage	SUSDP10-3X	DPS103X03N	8/8/2017	N		WP#3-2017	Subsurface	3	4
Salvage	SUSDP10-3X	DPS103X04N	8/8/2017	N		WP#3-2017	Subsurface	4	5
Salvage	SUSDP10-4E	DPS104E01N	2/1/2018 2/1/2018	N FD	DPS104E01N	WP#3-2018	Subsurface	1 1	2
Salvage Salvage	SUSDP10-4E SUSDP10-4NW	DPS104E01R DPS104NW01N	1/30/2018	N N	DPS104E01N	WP#3-2018 WP#3-2018	Subsurface Subsurface	1	2
Salvage	SUSDP10-4NW	DPS104NW02N	1/30/2018	N		WP#3-2018 WP#3-2018	Subsurface	2	3
Salvage	SUSDP10-4NW	DPS104NW03N	1/30/2018	N		WP#3-2018	Subsurface	3	4
Salvage	SUSDP12	DPS1205N	6/13/2013	N		Phase2-2013	Subsurface	4.5	5.5
Salvage	SUSDP12	DPS1210N	6/13/2013	N		Phase2-2013	Subsurface	9.5	10.5
Salvage	SUSDP12	DPS1215N	6/13/2013	N		Phase2-2013	Subsurface	14.5	15.5
Salvage	SUSDP12	DPS12F01N	1/26/2017	N		WP#3-2017	Subsurface	1	2
Salvage	SUSDP12	DPS12F02-05N	1/26/2017	N		WP#3-2017	Subsurface	2	5
Salvage	SUSDP12	DPS12F05-10N	1/30/2017	N		WP#3-2017	Subsurface	5	10
Salvage	SUSDP12	DPS12F10-15N	1/30/2017	N		WP#3-2017	Subsurface	10	15
Salvage	SUSDP12	DPS12F15N	1/30/2017	N		WP#3-2017	Subsurface	14.5	15.5
Salvage	SUSDP12-1A	DPS121A01N	8/10/2017	N		WP#3-2017	Subsurface	1	2
Salvage	SUSDP12-1A	DPS121A01R	8/10/2017	FD	DPS121A01N	WP#3-2017	Subsurface	1	2
Salvage	SUSDP12-1A	DPS121A02N	8/10/2017	N	DI GIZIMOIN	WP#3-2017	Subsurface	2	3
Salvage	SUSDP12-1A	DPS121A03N	8/10/2017	N		WP#3-2017	Subsurface	3	4
Salvage	SUSDP12-1A	DPS121A04N	8/10/2017	N		WP#3-2017	Subsurface	4	5
Salvage	SUSDP12-1A	DPS121A10N	8/23/2017	N		WP#3-2017	Subsurface	10	11
Salvage	SUSDP12-1A	DPS121A11N	8/23/2017	N		WP#3-2017	Subsurface	11	12
Salvage	SUSDP12-1A	DPS121A12N	8/23/2017	N		WP#3-2017	Subsurface	12	13
Salvage	SUSDP12-1A	DPS121A13N	8/23/2017	N		WP#3-2017	Subsurface	13	14
Salvage	SUSDP12-1A	DPS121A14N	8/23/2017	N		WP#3-2017	Subsurface	14	15
Salvage	SUSDP12-1C	DPS121C01N	8/10/2017	N		WP#3-2017	Subsurface	1	2
Salvage	SUSDP12-1C	DPS121C02N	8/10/2017	N		WP#3-2017	Subsurface	2	3
Salvage	SUSDP12-1C	DPS121C03N	8/10/2017	N		WP#3-2017	Subsurface	3	4
Salvage	SUSDP12-1C	DPS121C04N	8/10/2017	N		WP#3-2017	Subsurface	4	5
Salvage	SUSDP12-1C	DPS121C05N	8/23/2017	N		WP#3-2017	Subsurface	5	6
Salvage	SUSDP12-1C	DPS121C10N	8/23/2017	N		WP#3-2017	Subsurface	10	11
Salvage	SUSDP12-1C	DPS121C11N	8/23/2017	N		WP#3-2017	Subsurface	11	12
Salvage	SUSDP12-1E	DPS121E01N	8/11/2017	N		WP#3-2017	Subsurface	1	2
Salvage	SUSDP12-1E	DPS121E02N	8/11/2017	N		WP#3-2017	Subsurface	2	3
Salvage	SUSDP12-1E	DPS121E03N	8/11/2017	N		WP#3-2017	Subsurface	3	4
Salvage	SUSDP12-1E	DPS121E04N	8/11/2017	N		WP#3-2017	Subsurface	4	5
Salvage	SUSDP12-1E	DPS121E10N	8/23/2017	N		WP#3-2017	Subsurface	10	11
Salvage	SUSDP12-1E	DPS121E11N	8/23/2017	N		WP#3-2017	Subsurface	11	12
Salvage	SUSDP12-1E	DPS121E12N	8/23/2017	N		WP#3-2017	Subsurface	12	13
Salvage	SUSDP12-1E	DPS121E13N	8/23/2017	N		WP#3-2017	Subsurface	13	14
Salvage	SUSDP12-1E	DPS121E14N	8/23/2017	N		WP#3-2017	Subsurface	14	15
Salvage	SUSDP12-1G	DPS121G01N	8/11/2017	N		WP#3-2017	Subsurface	1	2
Salvage	SUSDP12-1G	DPS121G02N	8/11/2017	N		WP#3-2017	Subsurface	2	3
Salvage	SUSDP12-1G	DPS121G03N	8/11/2017	N		WP#3-2017	Subsurface	3	4
Salvage	SUSDP12-1G	DPS121G04N	8/11/2017	N		WP#3-2017	Subsurface	4	5
Salvage	SUSDP12-1G	DPS121G10N	8/23/2017	N		WP#3-2017	Subsurface	10	11
Salvage	SUSDP12-1G	DPS121G11N	8/23/2017	N		WP#3-2017	Subsurface	11	12
Salvage	SUSDP12-1G	DPS121G11R	8/23/2017	FD	DPS121G11N	WP#3-2017	Subsurface	11	12
Salvage	SUSDP12-1G	DPS121G12N	8/23/2017	N		WP#3-2017	Subsurface	12	13
Salvage	SUSDP12-1G	DPS121G13N	8/23/2017	N		WP#3-2017	Subsurface	13	14
Salvage	SUSDP12-1G	DPS121G14N	8/23/2017	N		WP#3-2017	Subsurface	14	15
Salvage	SUSDP12-2K	DPS122K01N	1/30/2018	N		WP#3-2018	Subsurface	1	2
Salvage	SUSDP12-3A	DPS123A01N	2/1/2018	N		WP#3-2018	Subsurface	1	2
Salvage	SUSDP12-3A	DPS123A02N	2/1/2018	N		WP#3-2018	Subsurface	2	3
Salvage	SUSDP12-3A	DPS123A10N	3/28/2018	N		WP#3-2018	Subsurface	10	11
Salvage	SUSDP43	DPS4304N	5/17/2013	N		Phase2-2013	Subsurface	3.5	4.5
Salvage	SUSDP43	DPS4310N	6/7/2013	N		Phase2-2013	Subsurface	9.5	10.5
Salvage	SUSDP43	DPS4315N	6/7/2013	N		Phase2-2013	Subsurface	14.5	15.5
Salvage	SUSDP43	DPS43F01N	1/26/2017	N		WP#3-2017	Subsurface	1	2
Salvage	SUSDP43	DPS43F02-05N	1/26/2017	N		WP#3-2017	Subsurface	2	5
Salvage	SUSDP43	DPS43F05-10N	1/30/2017	N		WP#3-2017	Subsurface	5	10
Salvage	SUSDP43	DPS43F10-15N	1/30/2017	N		WP#3-2017	Subsurface	10	15
Salvage	SUSDP43-2J	DPS432J01N	8/8/2017	N		WP#3-2017	Subsurface	1	2
Salvage	SUSDP43-2J	DPS432J02N	8/8/2017	N		WP#3-2017	Subsurface	2	3
Salvage	SUSDP43-2J	DPS432J03N	8/8/2017	N		WP#3-2017	Subsurface	3	4

Table 3-1 Soil Samples Used in the BHHRA Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

				0			0	044 D41	F. 15
Sample Area	Sample Location	Sample ID	Sample Date	Sample Type	Parent Sample	Task Code	Surface or Subsurface	Start Depth (feet)	End Depth (feet)
Salvage	SUSDP43-2J	DPS432J04N	8/8/2017	N		WP#3-2017	Subsurface	4	5
Salvage	SUSDP43-2M	DPS432M01N	8/9/2017	N		WP#3-2017	Subsurface	1	2
Salvage	SUSDP43-2M	DPS432M02N	8/9/2017	N		WP#3-2017	Subsurface	2	3
Salvage	SUSDP43-2M	DPS432M03N	8/9/2017	N		WP#3-2017	Subsurface	3	4
Salvage	SUSDP43-2M	DPS432M04N	8/9/2017	N		WP#3-2017	Subsurface	4	5
Salvage	SUSDP43-3A	DPS433A01N	8/10/2017	N		WP#3-2017	Subsurface	1	2
Salvage	SUSDP43-3A	DPS433A02N	8/10/2017	N		WP#3-2017	Subsurface	2	3
Salvage	SUSDP43-3A	DPS433A03N	8/10/2017	N		WP#3-2017	Subsurface	3	4
Salvage	SUSDP43-3A SUSDP43-3P	DPS433A04N DPS433P01N	8/10/2017 1/30/2018	N N		WP#3-2017 WP#3-2018	Subsurface Subsurface	1	5 2
Salvage Salvage	SUSDP43-3P	DPS433P01N DPS433P02N	1/30/2018	N N		WP#3-2016 WP#3-2018	Subsurface	2	3
Salvage	SUSDP43-3F SUSDP43-3T	DPS433F02N DPS433T01N	1/30/2018	N N		WP#3-2018	Subsurface	1	2
Salvage	SUSDP43-4NW	DPS434NW01N	2/23/2018	N		WP#3-2018	Subsurface	1	2
Salvage	SUSDP43-4NW	DPS434NW02N	2/23/2018	N		WP#3-2018	Subsurface	2	3
Salvage	SUSDP43-4SW	DPS434SW01N	2/23/2018	N		WP#3-2018	Subsurface	1	2
Salvage	SUSDP43-4SW	DPS434SW02N	2/23/2018	N		WP#3-2018	Subsurface	2	3
Salvage	SUSDP43-5NW	DPS435NW01N	3/15/2018	N		WP#3-2018	Subsurface	1	2
Salvage	SUSDP44	DPS4403N	5/21/2013	N		Phase2-2013	Subsurface	2.5	3.5
Salvage	SUSDP44	DPS4410N	6/10/2013	N		Phase2-2013	Subsurface	9.5	10.5
Salvage	SUSDP44	DPS4415N	6/10/2013	N		Phase2-2013	Subsurface	14.5	15.5
Salvage	SUSDP44	DPS44F01N	1/27/2017	N		WP#3-2017	Subsurface	2.5	3.5
Salvage	SUSDP44	DPS44F01R	1/27/2017	FD	DPS44F01N	WP#3-2017	Subsurface	2.5	3.5
Salvage	SUSDP44	DPS44F02-05N	1/27/2017	N		WP#3-2017	Subsurface	3.5	5
Salvage	SUSDP44	DPS44F02-05R	1/27/2017	FD	DPS44F02-05N	WP#3-2017	Subsurface	3.5	5
Salvage	SUSDP44-1D	DPS441D01N	8/9/2017	N		WP#3-2017	Subsurface	1	2
Salvage	SUSDP44-1D	DPS441D02N	8/9/2017	N		WP#3-2017	Subsurface	2	3
Salvage	SUSDP44-1D	DPS441D03N	8/9/2017	N		WP#3-2017	Subsurface	3	4
Salvage	SUSDP44-1H	DPS441H02N	8/9/2017	N		WP#3-2017	Subsurface	2	3
Salvage	SUSDP44-1H	DPS441H03N	8/9/2017	N		WP#3-2017	Subsurface	3	4
Salvage	SUSDP44-2N	DPS442N01N	8/9/2017	N		WP#3-2017	Subsurface	1	2
Salvage	SUSDP44-2N	DPS442N02N	8/9/2017	N		WP#3-2017	Subsurface	2	3
Salvage	SUSDP44-2N	DPS442N02R	8/9/2017	FD	DPS442N02N	WP#3-2017	Subsurface	2	3
Salvage	SUSDP50	DPS5001N	8/10/2017	N	DD0=00411	WP#3-2017	Subsurface	1	2
Salvage	SUSDP50	DPS5001R	8/10/2017	FD	DPS5001N	WP#3-2017	Subsurface	1	2
Salvage	SUSDP50	DPS5002N	8/10/2017	N N		WP#3-2017	Subsurface	2	3
Salvage	SUSDP50-2A SUSDP50-2A	DPS502A01N DPS502A02N	8/15/2017 8/8/2017	N N		WP#3-2017 WP#3-2017	Subsurface Subsurface	2	3
Salvage Salvage	SUSDP50-2A	DPS502A02N DPS503A01N	1/30/2018	N		WP#3-2017 WP#3-2018	Subsurface	1	2
Substation #7	SUS201A	SUS201A00N	1/27/2017	N		WP#3-2017	Surface	0	1
Substation #7	SUS201A	SUS201B00N	1/27/2017	N		WP#3-2017	Surface	0	1
Substation #7	SUS201B	SUS201B00R	1/27/2017	FD	SUS201B00N	WP#3-2017	Surface	0	1
Substation #7	SUS201C	SUS201C00N	1/27/2017	N	00020120014	WP#3-2017	Surface	0	1
Substation #7	SUS201D	SUS201D00N	2/2/2017	N		WP#3-2017	Surface	0	1
Substation #7	SUS201E	SUS201E00N	1/27/2017	N		WP#3-2017	Surface	0	1
Substation #7	SUS201F	SUS201F00N	1/27/2017	N		WP#3-2017	Surface	0	1
Substation #7	SUS201G	SUS201G00N	1/27/2017	N		WP#3-2017	Surface	0	1
Substation #7	SUS201H	SUS201H00N	1/27/2017	N		WP#3-2017	Surface	0	1
Substation #7	SUS25	SUS2500N	2/7/2013	N		Phase1-2013	Surface	0.5	1
Substation #7	SUSDP20	SUS2000N	2/7/2013	N		Phase1-2013	Surface	0.42	1
Substation #7	SUSDP20	SUS20F00N	1/27/2017	N		WP#3-2017	Surface	0	1
Substation #7	SUSDP23	SUS2300N	2/7/2013	N		Phase1-2013	Surface	0.5	1
Substation #7	SUSDP24	SUS2400N	2/7/2013	N		Phase1-2013	Surface	0	1
Substation #7	DP33	DPS3315N	4/4/2013	N		Phase2-2013	Subsurface	14	16
Substation #7	DP34	DPS3405N	3/13/2013	N		Phase2-2013	Subsurface	4.5	5.5
Substation #7	SUSDP20	DPS2005N	5/30/2013	N		Phase2-2013	Subsurface	4.5	5.5
Substation #7	SUSDP20	DPS2010N	6/12/2013	N		Phase2-2013	Subsurface	9.5	10.5
Substation #7	SUSDP20	DPS20F01N	1/27/2017	N		WP#3-2017	Subsurface	1	2
Substation #7	SUSDP20	DPS20F02-05N	1/27/2017	N		WP#3-2017	Subsurface	2	5
Substation #7	SUSDP23	DPS2305N	5/28/2013	N		Phase2-2013	Subsurface	4.5	5.5
Substation #7	SUSDP23	DPS2310N	6/12/2013	N		Phase2-2013	Subsurface	9.5	10.5
Substation #7	SUSDP23 SUSDP24	DPS2315N	6/12/2013	N N		Phase2-2013	Subsurface	14.5	15.5
Substation #7		DPS2405N	5/20/2013	N ED	DDC240EN	Phase2-2013	Subsurface	4.5	5.5
Substation #7 Substation #7	SUSDP24 SUSDP24	DPS2405R DPS2410N	5/20/2013 6/4/2013	FD N	DPS2405N	Phase2-2013 Phase2-2013	Subsurface Subsurface	4.5 9.5	5.5 10.5
Substation #7 Substation #7	SUSDP24 SUSDP24	DPS2410N DPS2410R	6/4/2013	FD	DPS2410N	Phase2-2013 Phase2-2013	Subsurface		
Substation #7 Substation #7	SUSDP24 SUSDP24	DPS2410R DPS2415N	6/4/2013	N N	DF32410IN	Phase2-2013 Phase2-2013	Subsurface Subsurface	9.5 14.5	10.5 15.5
	JUJUP24	DI 32413IN						14.3	
ransformer Shop	SUS21-1A	SUS211A00N	1/27/2017	N		WP#3-2017	Surface	0	1

Table 3-1 Soil Samples Used in the BHHRA Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

				Sample			Surface or	Start Depth	End Depth
Sample Area	Sample Location	Sample ID	Sample Date	Type	Parent Sample	Task Code	Subsurface	(feet)	(feet)
Transformer Shop	SUS21-1E	SUS211E00N	1/27/2017	N		WP#3-2017	Surface	0	1
Transformer Shop	SUS21-1F	SUS211F00N	1/27/2017	N		WP#3-2017	Surface	0	1
Transformer Shop	SUS21-1G	SUS211G00N	1/27/2017	N		WP#3-2017	Surface	0	1
Transformer Shop	SUS21-1H	SUS211H00N	1/27/2017	N		WP#3-2017	Surface	0	1
Transformer Shop	SUS21-2D	SUS212D00N	3/23/2017	N		WP#3-2017	Surface	0	1
Transformer Shop	SUS21-2E	SUS212E00N	3/23/2017	N		WP#3-2017	Surface	0	1
Transformer Shop Transformer Shop	SUS21-2I SUS21-2J	SUS212I00N SUS212J00N	3/22/2017 3/22/2017	N N		WP#3-2017 WP#3-2017	Surface Surface	0	1
Transformer Shop	SUS21-2L	SUS212L00N	3/22/2017	N		WP#3-2017 WP#3-2017	Surface	0	1
Transformer Shop	SUS21-2M	SUS212M00N	3/22/2017	N		WP#3-2017 WP#3-2017	Surface	0	1
Transformer Shop	SUS21-2N	SUS212N00N	3/22/2017	N		WP#3-2017	Surface	0	1
Transformer Shop	SUSDP21	SUS2100N	2/7/2013	N		Phase1-2013	Surface (a)	1	1.75
Transformer Shop	SUSDP21	SUS21F00N	1/27/2017	N		WP#3-2017	Surface	0	1
Transformer Shop	SUSDP21-1C	SUS211C00N	1/27/2017	N		WP#3-2017	Surface	0	1
Transformer Shop	SUSDP21-1C	SUS211C00N2	8/24/2017	N		WP#3-2017	Surface	0	1
Transformer Shop	SUSDP21-3G	SUS213G00N	8/28/2017	N		WP#3-2017	Surface	0	1
Transformer Shop	SUSDP21-3M	SUS213M00N	8/28/2017	N		WP#3-2017	Surface	0	1
Transformer Shop	SUSDP21-3Q	SUS213Q00N	8/24/2017	N		WP#3-2017	Surface	0	1
Transformer Shop	SUSDP21-5W	SUS215W00N	1/26/2018	N		WP#3-2018	Surface	0	1
Transformer Shop	SUSDP21-6W	SUS216W00N	2/21/2018	N		WP#3-2018	Surface	0	1
Transformer Shop	SUSDP22	SUS2200N	6/13/2013	N		Phase1-2013	Surface	0.5	1
Transformer Shop	SUSDPGD21-C3	SUSGD21C300N	7/2/2018	N		WP#3-2018	Surface	0	1
Transformer Shop	SUSDPGD21-C5 SUSDPGD21-D1	SUSGD21C500N SUSGD21D100N	5/31/2018	N N		WP#3-2018 WP#3-2018	Surface	0	1
Transformer Shop Transformer Shop	SUSDPGD21-D1	SUSGD21D100N SUSGD21E100N	5/30/2018 5/30/2018	N N		WP#3-2018 WP#3-2018	Surface Surface	0	1
Transformer Shop	SUSDPGD21-F1	SUSGD21F100N	5/30/2018	N		WP#3-2018 WP#3-2018	Surface	0	1
Transformer Shop	SUSDPGD21-F1	SUSGD21G100N	4/4/2018	N		WP#3-2018	Surface	0	1
Transformer Shop	SUSDPGD21-G2	SUSGD21G200N	4/4/2018	N		WP#3-2018	Surface	0	1
Transformer Shop	SUSDPGD21-H1	SUSGD21H100N	3/14/2018	N		WP#3-2018	Surface	0	1
Transformer Shop	SUSDPGD21-H2	SUSGD21H200N	3/14/2018	N		WP#3-2018	Surface	0	1
Transformer Shop	SUSDPGD21-I1	SUSGD21I100N	2/20/2018	N		WP#3-2018	Surface	0	1
Transformer Shop	SUSDPGD21-I2	SUSGD21I200N	2/20/2018	N		WP#3-2018	Surface	0	1
Transformer Shop	SUSDPGD21-J1	SUSGD21J100N	1/24/2018	N		WP#3-2018	Surface	0	1
Transformer Shop	SUSDPGD21-J2	SUSGD21J200N	1/24/2018	N		WP#3-2018	Surface	0	1
Transformer Shop	SUSDPGD21-K1	SUSGD21K100N	1/24/2018	N		WP#3-2018	Surface	0	1
Transformer Shop	SUSDPGD21-K1.5	SUSGD21K1.500N	1/26/2018	N		WP#3-2018	Surface	0	1
Transformer Shop	SUSDPGD21-K2	SUSGD21K200N	1/24/2018	N		WP#3-2018	Surface	0	1
Transformer Shop	SUSDPGD21-L1	SUSGD21L100N	2/20/2018	N		WP#3-2018	Surface	0	1
Transformer Shop Transformer Shop	SUSDPGD21-L2 SUSDPGD21-M1	SUSGD21L200N SUSGD21M100N	2/20/2018 3/14/2018	N N		WP#3-2018 WP#3-2018	Surface Surface	0	1
Transformer Shop	SUSDPGD21-M1	SUSGD21M100N SUSGD21M200N	3/14/2018	N		WP#3-2018 WP#3-2018	Surface	0	1
Transformer Shop	SUSDPGD21-N1	SUSGD21N100N	4/4/2018	N		WP#3-2018	Surface	0	1
Transformer Shop	SUSDPGD21-N2	SUSGD21N200N	4/4/2018	N		WP#3-2018	Surface	0	1
Transformer Shop	SUSDPGD21-P1	SUSGD21P100N	5/30/2018	N		WP#3-2018	Surface	0	1
Transformer Shop	SUSDPGD21-R1	SUSGD21R100N	1/23/2018	N		WP#3-2018	Surface	0	1
Transformer Shop	SUSDPGD21-R1	SUSGD21R100R	1/23/2018	FD	SUSGD21R100N	WP#3-2018	Surface	0	1
Transformer Shop	SUSDPGD21-R2	SUSGD21R200N	1/23/2018	N		WP#3-2018	Surface	0	1
Transformer Shop	SUSDPGD21-S1	SUSGD21S100N	1/23/2018	N		WP#3-2018	Surface	0	1
Transformer Shop	SUSDPGD21-S2	SUSGD21S200N	1/24/2018	N		WP#3-2018	Surface	0	1
Transformer Shop	DP35	DPS3515N	3/28/2013	N		Phase2-2013	Subsurface	14.5	15.5
Transformer Shop	DP46	DPS4605N	5/22/2013	N		Phase2-2013	Subsurface	4.5	5.5
Transformer Shop	DP46	DPS4610N	6/5/2013	N		Phase2-2013	Subsurface	9.5	10.5
Transformer Shop	DP46	DPS4615N	6/5/2013	N		Phase2-2013	Subsurface	14.5	15.5
Transformer Shop Transformer Shop	DP47	DPS4702N	5/28/2013	N		Phase2-2013	Subsurface	1.5	2.5
Transformer Shop	DP47 DP47	DPS4710N DPS4715N	6/5/2013 6/5/2013	N N		Phase2-2013 Phase2-2013	Subsurface Subsurface	9.5 14	10.5 15
Transformer Shop	SUSDP21	DPS4715N DPS21F01N	1/27/2017	N N		WP#3-2017	Subsurface	14	2
Transformer Shop	SUSDP21	DPS21F01N DPS21F02-05N	1/27/2017	N		WP#3-2017 WP#3-2017	Subsurface	2	5
Transformer Shop	SUSDP21	DPS21F05-10N	2/2/2017	N		WP#3-2017	Subsurface	5	10
Transformer Shop	SUSDP21-1C	DPS211C01N	8/24/2017	N		WP#3-2017	Subsurface	1	2
Transformer Shop	SUSDP21-1C	DPS211C02N	8/24/2017	N		WP#3-2017	Subsurface	2	3
Transformer Shop	SUSDP21-1C	DPS211C03N	8/24/2017	N		WP#3-2017	Subsurface	3	4
Transformer Shop	SUSDP21-3A	DPS213A01N	8/25/2017	N		WP#3-2017	Subsurface	1	2
Transformer Shop	SUSDP21-3A	DPS213A02N	8/25/2017	N		WP#3-2017	Subsurface	2	3
Transformer Shop	SUSDP21-3G	DPS213G01N	8/28/2017	N		WP#3-2017	Subsurface	1	2
Transformer Shop	SUSDP21-3G	DPS213G02N	8/28/2017	N		WP#3-2017	Subsurface	2	3
Transformer Shop	SUSDP21-3M	DPS213M01N	8/28/2017	N		WP#3-2017	Subsurface	1	2
Transformer Shop	SUSDP21-3M	DPS213M02N	8/28/2017	N		WP#3-2017	Subsurface	2	3

Table 3-1 Soil Samples Used in the BHHRA Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Comple Area	Sample Legation	Sample ID	Samula Data	Sample	Descrit Comple	Took Code	Surface or	Start Depth	End Depth
Sample Area Transformer Shop	Suspection Suspection	DPS213M03N	8/28/2017	Type N	Parent Sample	Task Code WP#3-2017	Subsurface Subsurface	(feet)	(feet)
Transformer Shop	SUSDP21-3M	DPS213M04N	8/28/2017	N		WP#3-2017	Subsurface	4	5
Transformer Shop	SUSDP21-3T	DPS213T01N	8/25/2017	N		WP#3-2017	Subsurface	1	2
Transformer Shop	SUSDP21-3T	DPS213T02N	8/25/2017	N		WP#3-2017	Subsurface	2	3
Transformer Shop	SUSDP21-3T	DPS213T03N	8/25/2017	N		WP#3-2017	Subsurface	3	4
Transformer Shop	SUSDP21-3V	DPS213V01N	8/25/2017	N		WP#3-2017	Subsurface	1	2
Transformer Shop	SUSDP21-5W	DPS215W01N	1/26/2018	N		WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDP21-5W	DPS215W02N	1/26/2018	N		WP#3-2018	Subsurface	2	3
Transformer Shop	SUSDP21-6W	DPS216W01N	2/21/2018	N		WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDP21-6W	DPS216W01R	2/21/2018	FD	DPS216W01N	WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDP22	DPS2203N	5/22/2013	N		Phase2-2013	Subsurface	2.5	3.5
Transformer Shop Transformer Shop	SUSDP22 SUSDP22	DPS2210N DPS2215N	6/12/2013 6/12/2013	N N		Phase2-2013 Phase2-2013	Subsurface Subsurface	9.5 14.5	10.5 15.5
Transformer Shop	SUSDPGD21-C3	DPSGD21C301N	7/2/2018	N		WP#3-2018	Subsurface	14.5	2
Transformer Shop	SUSDPGD21-C3	DPSGD21C301N	7/2/2018	N		WP#3-2018	Subsurface	2	3
Transformer Shop	SUSDPGD21-C3	DPSGD21C303N	7/2/2018	N		WP#3-2018	Subsurface	3	4
Transformer Shop	SUSDPGD21-C5	DPSGD21C501N	5/31/2018	N		WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-C5	DPSGD21C502N	5/31/2018	N		WP#3-2018	Subsurface	2	3
Transformer Shop	SUSDPGD21-C5	DPSGD21C503N	5/31/2018	N		WP#3-2018	Subsurface	3	4
Transformer Shop	SUSDPGD21-C5	DPSGD21C504N	5/31/2018	N		WP#3-2018	Subsurface	4	5
Transformer Shop	SUSDPGD21-D1	DPSGD21D101N	5/30/2018	N		WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-D1	DPSGD21D102N	5/30/2018	N		WP#3-2018	Subsurface	2	3
Transformer Shop	SUSDPGD21-D1	DPSGD21D103N	5/30/2018	N		WP#3-2018	Subsurface	3	4
Transformer Shop	SUSDPGD21-D1	DPSGD21D104N	5/30/2018	N		WP#3-2018	Subsurface	4	5
Transformer Shop	SUSDPGD21-E1	DPSGD21E101N	5/30/2018	N		WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-E1	DPSGD21E102N	5/30/2018	N		WP#3-2018	Subsurface	2	3
Transformer Shop	SUSDPGD21-E1	DPSGD21E103N	5/30/2018	N		WP#3-2018	Subsurface	3	4
Transformer Shop Transformer Shop	SUSDPGD21-E1 SUSDPGD21-F1	DPSGD21E104N DPSGD21F101N	5/30/2018 5/30/2018	N N		WP#3-2018 WP#3-2018	Subsurface Subsurface	1	5 2
Transformer Shop	SUSDPGD21-F1	DPSGD21F101N DPSGD21F102N	5/30/2018	N		WP#3-2018	Subsurface	2	3
Transformer Shop	SUSDPGD21-F1	DPSGD21F103N	5/30/2018	N		WP#3-2018	Subsurface	3	4
Transformer Shop	SUSDPGD21-F1	DPSGD21F104N	5/30/2018	N		WP#3-2018	Subsurface	4	5
Transformer Shop	SUSDPGD21-G1	DPSGD21G101N	4/4/2018	N		WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-G1	DPSGD21G102N	4/4/2018	N		WP#3-2018	Subsurface	2	3
Transformer Shop	SUSDPGD21-G1	DPSGD21G103N	4/4/2018	N		WP#3-2018	Subsurface	3	4
Transformer Shop	SUSDPGD21-G1	DPSGD21G104N	4/4/2018	N		WP#3-2018	Subsurface	4	5
Transformer Shop	SUSDPGD21-G1	DPSGD21G105N	4/4/2018	N		WP#3-2018	Subsurface	5	6
Transformer Shop	SUSDPGD21-G2	DPSGD21G201N	4/4/2018	N		WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-G2	DPSGD21G202N	4/4/2018	N		WP#3-2018	Subsurface	2	3
Transformer Shop	SUSDPGD21-H1	DPSGD21H101N	3/14/2018	N		WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-H1	DPSGD21H102N	3/14/2018	N		WP#3-2018	Subsurface	2	3
Transformer Shop	SUSDPGD21-H2	DPSGD21H201N	3/14/2018	N		WP#3-2018	Subsurface	1	2
Transformer Shop Transformer Shop	SUSDPGD21-H2 SUSDPGD21-I1	DPSGD21H202N DPSGD21I101N	3/14/2018 2/20/2018	N N		WP#3-2018 WP#3-2018	Subsurface Subsurface	1	3 2
Transformer Shop	SUSDPGD21-I1	DPSGD21I101R	2/20/2018	FD	DPSGD21I101N	WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-I1	DPSGD21I102N	2/20/2018	N	DI GODZIIIOIN	WP#3-2018	Subsurface	2	3
Transformer Shop	SUSDPGD21-I1	DPSGD21I103N	2/20/2018	N		WP#3-2018	Subsurface	3	4
Transformer Shop	SUSDPGD21-I2	DPSGD21I201N	2/20/2018	N		WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-I2	DPSGD21I202N	2/20/2018	N		WP#3-2018	Subsurface	2	3
Transformer Shop	SUSDPGD21-J1	DPSGD21J101N	1/24/2018	N		WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-J1	DPSGD21J101R	1/24/2018	FD	DPSGD21J101N	WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-J1	DPSGD21J102N	1/24/2018	N		WP#3-2018	Subsurface	2	3
Transformer Shop	SUSDPGD21-J1	DPSGD21J103N	1/24/2018	N		WP#3-2018	Subsurface	3	4
Transformer Shop	SUSDPGD21-J1	DPSGD21J104N	1/24/2018	N		WP#3-2018	Subsurface	4	5
Transformer Shop	SUSDPGD21-J1	DPSGD21J105N	1/24/2018	N		WP#3-2018	Subsurface	5	6
Transformer Shop	SUSDPGD21-J2	DPSGD21J201N	1/24/2018	N		WP#3-2018	Subsurface	1	2
Transformer Shop Transformer Shop	SUSDPGD21-J2	DPSGD21J202N	1/24/2018	N		WP#3-2018	Subsurface	2	3
Transformer Shop	SUSDPGD21-J2 SUSDPGD21-K1	DPSGD21J203N DPSGD21K101N	1/24/2018 1/24/2018	N N		WP#3-2018 WP#3-2018	Subsurface Subsurface	3	2
Transformer Shop	SUSDPGD21-K1	DPSGD21K101N DPSGD21K102N	1/24/2018	N		WP#3-2018 WP#3-2018	Subsurface	2	3
Transformer Shop	SUSDPGD21-K1	DPSGD21K102N DPSGD21K103N	1/24/2018	N		WP#3-2018	Subsurface	3	4
Transformer Shop	SUSDPGD21-K1	DPSGD21K103N	1/24/2018	N		WP#3-2018	Subsurface	4	5
Transformer Shop	SUSDPGD21-K1	DPSGD21K105N	1/24/2018	N		WP#3-2018	Subsurface	5	6
Transformer Shop	SUSDPGD21-K1.5	DPSGD21K1.501N	1/26/2018	N		WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-K1.5	DPSGD21K1.502N	1/26/2018	N		WP#3-2018	Subsurface	2	3
Transformer Shop	SUSDPGD21-K1.5	DPSGD21K1.503N	1/26/2018	N		WP#3-2018	Subsurface	3	4
Transformer Shop	SUSDPGD21-K1.5	DPSGD21K1.504N	1/26/2018	N		WP#3-2018	Subsurface	4	5
	SUSDPGD21-K2	DPSGD21K201N	1/24/2018	N	1	WP#3-2018	Subsurface	1	2

Table 3-1 Soil Samples Used in the BHHRA Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

				Sample			Surface or	Start Depth	End Depth
Sample Area	Sample Location	Sample ID	Sample Date	Type	Parent Sample	Task Code	Subsurface	(feet)	(feet)
Transformer Shop	SUSDPGD21-K2	DPSGD21K202N	1/24/2018	N	r aront campic	WP#3-2018	Subsurface	2	3
Transformer Shop	SUSDPGD21-L1	DPSGD21L101N	2/20/2018	N		WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-L1	DPSGD21L102N	2/20/2018	N		WP#3-2018	Subsurface	2	3
Transformer Shop	SUSDPGD21-L1	DPSGD21L103N	2/20/2018	N		WP#3-2018	Subsurface	3	4
Transformer Shop	SUSDPGD21-L1	DPSGD21L104N	2/20/2018	N		WP#3-2018	Subsurface	4	5
Transformer Shop	SUSDPGD21-L2	DPSGD21L201N	2/20/2018	N	DD00D0410041	WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-L2	DPSGD21L201R	2/20/2018	FD N	DPSGD21L201N	WP#3-2018	Subsurface	1 2	2
Transformer Shop Transformer Shop	SUSDPGD21-L2 SUSDPGD21-L2	DPSGD21L202N DPSGD21L203N	2/20/2018 2/20/2018	N		WP#3-2018 WP#3-2018	Subsurface Subsurface	3	4
Transformer Shop	SUSDPGD21-L2	DPSGD21L204N	2/20/2018	N		WP#3-2018	Subsurface	4	5
Transformer Shop	SUSDPGD21-M1	DPSGD21M101N	3/14/2018	N		WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-M1	DPSGD21M101R	3/14/2018	FD	DPSGD21M101N	WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-M1	DPSGD21M102N	3/14/2018	N		WP#3-2018	Subsurface	2	3
Transformer Shop	SUSDPGD21-M1	DPSGD21M103N	3/14/2018	N		WP#3-2018	Subsurface	3	4
Transformer Shop	SUSDPGD21-M1	DPSGD21M104N	3/14/2018	N		WP#3-2018	Subsurface	4	5
Transformer Shop	SUSDPGD21-M2	DPSGD21M201N	3/14/2018	N		WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-M2	DPSGD21M201R	3/14/2018	FD	DPSGD21M201N	WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-M2	DPSGD21M202N	3/14/2018	N		WP#3-2018	Subsurface	2	3
Transformer Shop Transformer Shop	SUSDPGD21-M2 SUSDPGD21-M2	DPSGD21M203N DPSGD21M204N	3/14/2018 3/14/2018	N N		WP#3-2018 WP#3-2018	Subsurface Subsurface	3 4	4 5
Transformer Shop	SUSDPGD21-W2	DPSGD21N101N	4/4/2018	N		WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-N1	DPSGD21N101N	4/4/2018	N		WP#3-2018	Subsurface	2	3
Transformer Shop	SUSDPGD21-N1	DPSGD21N103N	4/4/2018	N		WP#3-2018	Subsurface	3	4
Transformer Shop	SUSDPGD21-N2	DPSGD21N201N	4/4/2018	N		WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-N2	DPSGD21N201R	4/4/2018	FD	DPSGD21N201N	WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-N2	DPSGD21N202N	4/4/2018	N		WP#3-2018	Subsurface	2	3
Transformer Shop	SUSDPGD21-P1	DPSGD21P101N	5/30/2018	N		WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-P1	DPSGD21P101R	5/30/2018	FD	DPSGD21P101N	WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-P1	DPSGD21P102N	5/30/2018	N		WP#3-2018	Subsurface	2	3
Transformer Shop Transformer Shop	SUSDPGD21-R1	DPSGD21R101N	1/23/2018	N		WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-R1 SUSDPGD21-R1	DPSGD21R102N DPSGD21R103N	1/23/2018 1/23/2018	N N		WP#3-2018 WP#3-2018	Subsurface Subsurface	3	3 4
Transformer Shop	SUSDPGD21-R1	DPSGD21R103N	1/23/2018	N		WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-R2	DPSGD21R201N	1/23/2018	N		WP#3-2018	Subsurface	2	3
Transformer Shop	SUSDPGD21-R2	DPSGD21R203N	1/23/2018	N		WP#3-2018	Subsurface	3	4
Transformer Shop	SUSDPGD21-S1	DPSGD21S101N	1/23/2018	N		WP#3-2018	Subsurface	1	2
Transformer Shop	SUSDPGD21-S1	DPSGD21S102N	1/23/2018	N		WP#3-2018	Subsurface	2	3
Transformer Shop	SUSDPGD21-S2	DPSGD21S201N	1/24/2018	N		WP#3-2018	Subsurface	1	2
Vehicle Refueling	AST3A-1A	AST3A1A00N	8/2/2017	N		WP#3-2017	Surface	0	1
Vehicle Refueling	SUSDP37	SUS37F00N	1/25/2017	N		WP#3-2017	Surface	0	1
Vehicle Refueling Vehicle Refueling	SUSDP39 DP28	SUS39F00N DPS2808N	1/25/2017 4/2/2013	N N		WP#3-2017 Phase2-2013	Surface Subsurface	7.5	1 8.5
Vehicle Refueling Vehicle Refueling	DP29	DPS2910N	4/2/2013	N		Phase2-2013	Subsurface	9	11
Vehicle Refueling	DP38	DPS3805N	5/16/2013	N		Phase2-2013	Subsurface	4.5	5.5
Vehicle Refueling	DP38	DPS3810N	5/22/2013	N		Phase2-2013	Subsurface	9.5	10.5
Vehicle Refueling	DP38	DPS3815N	5/22/2013	N		Phase2-2013	Subsurface	14	15
Vehicle Refueling	SUSDP37	DPS3703N	5/16/2013	N		Phase2-2013	Subsurface	2.5	3.5
Vehicle Refueling	SUSDP37	DPS3710N	5/23/2013	N		Phase2-2013	Subsurface	9.5	10.5
Vehicle Refueling	SUSDP37	DPS3710N2	6/10/2013	N		Phase2-2013	Subsurface	9.5	10.5
Vehicle Refueling	SUSDP37	DPS3715N	5/23/2013	N		Phase2-2013	Subsurface	14.5	15.5
Vehicle Refueling Vehicle Refueling	SUSDP37 SUSDP37	DPS37F01N DPS37F02-05N	1/25/2017 1/25/2017	N N		WP#3-2017 WP#3-2017	Subsurface Subsurface	2	2 5
Vehicle Refueling Vehicle Refueling	SUSDP37 SUSDP39	DPS37F02-05N DPS3903N	5/17/2013	N N		Phase2-2013	Subsurface	2.5	3.5
Vehicle Refueling	SUSDP39	DPS3903N DPS3910N	5/22/2013	N		Phase2-2013	Subsurface	9.5	10.5
Vehicle Refueling	SUSDP39	DPS3915N	5/22/2013	N		Phase2-2013	Subsurface	14.5	15.5
Vehicle Refueling	SUSDP39	DPS39F01N	1/25/2017	N		WP#3-2017	Subsurface	1	2
Vehicle Refueling	SUSDP39	DPS39F02-05N	1/25/2017	N		WP#3-2017	Subsurface	2	5
Vehicle Refueling	SUSDP39	DPS39F05-10N	1/26/2017	N		WP#3-2017	Subsurface	5	10
Vehicle Refueling	SUSDP39	DPS39F10-15N	1/26/2017	N		WP#3-2017	Subsurface	10	15
Warehouse	SUS05-1D	SUS05ID00N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUS05-1F SUS061C	SUS05IF00N SUS061C00N	1/24/2017 3/13/2017	N N		WP#3-2017 WP#3-2017	Surface	0	1
Warehouse Warehouse	SUS061C SUS061D	SUS061C00N SUS061D00N	3/13/2017	N N		WP#3-2017 WP#3-2017	Surface Surface	0	1
Warehouse	SUS061D SUS061E	SUS061E00N	3/13/2017	N		WP#3-2017 WP#3-2017	Surface	0	1
Warehouse	SUS061G	SUS061G00N	3/13/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUS08-1A	SUS081A00N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUS08-1B	SUS081B00N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUS08-1B	SUS081B00N2	2/3/2017	N		WP#3-2017	Surface	0	1

Table 3-1 Soil Samples Used in the BHHRA Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

				Sample			Surface or	Start Depth	End Depth
Sample Area	Sample Location	Sample ID	Sample Date	Туре	Parent Sample	Task Code	Subsurface	(feet)	(feet)
Warehouse	SUS08-1C	SUS081C00N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUS08-1D	SUS081D00N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUS08-1D	SUS081D00N2	6/29/2018	N		WP#3-2018	Surface	0	1
Warehouse	SUS08-1F	SUS081F00N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUS08-1G	SUS081G00N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse Warehouse	SUS08-1H SUS08-1H	SUS081H00N SUS081H00N2	1/24/2017 6/29/2018	N N		WP#3-2017 WP#3-2018	Surface Surface	0	1
Warehouse	SUS08-1H SUS08-1H	SUS081H00N2 SUS081H00R2	6/29/2018	N N		WP#3-2018 WP#3-2018	Surface	0	1
Warehouse	SUS08-2A	SUS082A00N	3/22/2017	N		WP#3-2016 WP#3-2017	Surface	0	1
Warehouse	SUS08-2B	SUS082B00N	3/22/2017	N		WP#3-2017 WP#3-2017	Surface	0	1
Warehouse	SUS08-2F	SUS082F00N	3/22/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUS08-2F	SUS082F00R	3/22/2017	FD	SUS082F00N	WP#3-2017 WP#3-2017	Surface	0	1
Warehouse	SUS08-2H	SUS082H00N	3/22/2017	N	0000021 0014	WP#3-2017	Surface	0	1
Warehouse	SUS08-2I	SUS082I00N	3/22/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUS08-2I	SUS082I00R	3/22/2017	FD	SUS082I00N	WP#3-2017	Surface	0	1
Warehouse	SUS08-2J	SUS082J00N	3/22/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUS08-2J	SUS082J00R	3/22/2017	FD	SUS082J00N	WP#3-2017	Surface	0	1
Warehouse	SUS08-2N	SUS082N00N	3/22/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUS08-2O	SUS082000N	3/23/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUS08-2P	SUS082P00N	3/22/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUSDP03	SUS0300N	2/4/2013	N		Phase1-2013	Surface	0.5	1
Warehouse	SUSDP04	SUS0400N	2/4/2013	N		Phase1-2013	Surface	0	1
Warehouse	SUSDP04	SUS04F00N	1/25/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUSDP05	SUS0500N	2/4/2013	N		Phase1-2013	Surface	0	1
Warehouse	SUSDP05	SUS05F00N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUSDP05-1C	SUS051C00N2	7/31/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUSDP05-1C	SUS05IC00N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUSDP05-1E	SUS051E00N2	7/31/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUSDP05-1E	SUS05IE00N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUSDP05-1G	SUS051G00N2	7/31/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUSDP05-1G	SUS05IG00N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUSDP05-2M	SUS052M00N	2/1/2018	N		WP#3-2018	Surface	0	1
Warehouse	SUSDP06	SUS0600N	2/5/2013	N		Phase1-2013	Surface	0	1
Warehouse	SUSDP06	SUS06F00N	3/13/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUSDP07	SUS0700N	2/5/2013	N		Phase1-2013	Surface	0	1
Warehouse	SUSDP08	SUS0800N	2/5/2013	N		Phase1-2013	Surface	0	1
Warehouse	SUSDP08	SUS0800N2	6/29/2018	N		WP#3-2018	Surface	0	1
Warehouse	SUSDP08	SUS08F00N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUSDP08-1E	SUS081E00N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUSDP08-1E	SUS081E00N2	6/29/2018	N		WP#3-2018	Surface	0	1
Warehouse	SUSDP08-1E	SUS081E00R	1/24/2017	FD	SUS081E00N	WP#3-2017	Surface	0	1
Warehouse	SUSDP08-2G	SUS082G00N	3/22/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUSDP08-3I	SUS083I00N	8/2/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUSDP08-3K	SUS083K00N	8/3/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUSDP11	SUS1100N	2/5/2013	N		Phase1-2013	Surface	0	1
Warehouse	SUSDP11	SUS11F00N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	SUSDP11-1A	SUS111A00N	2/22/2018	N		WP#3-2018	Surface	0	1
Warehouse	SUSDP11-1B	SUS111B00N	3/16/2018	N		WP#3-2018	Surface	0	1
Warehouse	SUSDP11-1H	SUS111H00N	3/16/2018	N		WP#3-2018	Surface	0	1
Warehouse	SUSDP11-2A	SUS112A00N	3/16/2018	N		WP#3-2018	Surface	0	1
Warehouse	SUSDP11-2D	SUS112D00N	4/5/2018	N		WP#3-2018	Surface	0	1
Warehouse	SUSDP11-2N	SUS112N00N	4/6/2018	N		WP#3-2018	Surface	0	1
Warehouse	SUSDP13	SUS1300N	2/5/2013	N		Phase1-2013	Surface	0	1
Warehouse	SUSDP41 SUSDPCT16-1C	SUS41F00N	1/24/2017 2/1/2018	N	-	WP#3-2017	Surface	0	1
Warehouse	SUSDPCT16-1C	SUSCT161C00N SUSCT161E00N	2/1/2018	N N	 	WP#3-2018 WP#3-2018	Surface Surface	0	1
Warehouse Warehouse	SUSDPCT16-1E SUSDPCT16-1G	SUSCT161E00N	2/1/2018	N		WP#3-2018 WP#3-2018	Surface	0	1
Warehouse	SUSDPCT16-1G SUSDPCT16-2E	SUSCT161G00N SUSCT162E00N	2/1/2018	N	1	WP#3-2018 WP#3-2018	Surface	0	1
Warehouse	SUSDPCT16-2E	SUSCT162E00N SUSCT162I00N	2/22/2018	N		WP#3-2018 WP#3-2018	Surface	0	1
Warehouse	SUSDPCT16-2M	SUSCT162M00N	2/22/2018	N	 	WP#3-2018 WP#3-2018	Surface	0	1
Warehouse	SUSDPCT16-3Q	SUSCT163Q00N	6/29/2018	N	 	WP#3-2018 WP#3-2018	Surface	0	1
Warehouse	SUSDPCT16-3Q	SUSCT163Q00N SUSCT163Q00R	6/29/2018	N		WP#3-2018 WP#3-2018	Surface	0	1
Warehouse	SUSDPCT16-3R	SUSCT163Q00K SUSCT163R00N	5/31/2018	N		WP#3-2018 WP#3-2018	Surface	0	1
Warehouse	SUSDPCT16-3R	SUSCT163R00N SUSCT163S00N	3/15/2018	N	 	WP#3-2018 WP#3-2018	Surface	0	1
Warehouse	SUSDPCT16-4W	SUSCT163300N SUSCT164W00N	4/6/2018	N	+	WP#3-2018 WP#3-2018	Surface	0	1
Warehouse	TA1A1	SUSTAIAI00N	1/24/2017	N		WP#3-2016 WP#3-2017	Surface	0	1
Warehouse	TA1A3	SUSTAIA300N	1/24/2017	N		WP#3-2017 WP#3-2017	Surface	0	1
Warehouse	TA1A7	SUSTAIA700N	1/24/2017	N		WP#3-2017	Surface	0	1

Table 3-1 Soil Samples Used in the BHHRA Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Sample Area	Sample Location	Sample ID	Sample Date	Sample Type	Parent Sample	Task Code	Surface or Subsurface	Start Depth (feet)	End Depth (feet)
Warehouse	TA1A9	SUSTAIA900N	1/24/2017	N	·	WP#3-2017	Surface	0	1
Warehouse	TA1C1	SUSTAICI00N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	TA1C3	SUSTAIC300N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	TA1C4	SUSTA1C400N2	6/29/2018	N		WP#3-2018	Surface	0	1
Warehouse	TA1C4	SUSTAIC400N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	TA1C5	SUSTA1C500N2	6/29/2018	N		WP#3-2018	Surface	0	1
Warehouse	TA1C5	SUSTAIC500N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	TA1C7	SUSTAI C700N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	TA1C9	SUSTAIC900N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	TA1E1	SUSTA1E100N2	6/29/2018	N		WP#3-2018	Surface	0	1
Warehouse	TA1E1	SUSTAIEI00N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	TA1E10	SUSTA1E1000N	8/8/2017	N		WP#3-2017	Surface	0	1
Warehouse	TA1E10	SUSTA1E1000R	8/8/2017	FD	SUSTA1E1000N	WP#3-2017	Surface	0	1
Warehouse	TA1-E11	SUSTA1E1100N	1/30/2018	N		WP#3-2018	Surface	0	1
Warehouse	TA1-E11	SUSTA1E1100R	1/30/2018	FD	SUSTA1E1100N	WP#3-2018	Surface	0	1
Warehouse	TA1E3	SUSTAIE300N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	TA1E4	SUSTAIE400N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	TA1E5	SUSTAIE500N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	TA1E7	SUSTALE700N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	TA1E9	SUSTA1E900N2	6/29/2018	N		WP#3-2018	Surface	0	1
Warehouse	TA1E9	SUSTALE900N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	TA1F4	SUSTA1F400N2	6/29/2018	N		WP#3-2018	Surface	0	1
Warehouse	TA1F4	SUSTAIF400N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	TA1F5	SUSTAIF500N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	TA1G1	SUSTAIGI00N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	TA1G10	SUSTA1G1000N	8/4/2017	N		WP#3-2017	Surface	0	1
Warehouse	TA1G3	SUSTAIG300N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	TA1G5	SUSTAIG500N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	TA1G7	SUSTAIG700N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	TA1G9	SUSTA1G900N2	6/29/2018	N		WP#3-2018	Surface	0	1
Warehouse	TA1G9	SUSTAIG900N	1/24/2017	N		WP#3-2017	Surface	0	1
Warehouse	TA1H9	SUSTA1H0900N	8/4/2017	N		WP#3-2017	Surface	0	1
Warehouse	CT16SO9G	CT16S09G-12	3/1/2017	N		WP#3-2017	Subsurface	1	2
Warehouse	CT16SO9H	CT16S09H01N	8/4/2017	N		WP#3-2017	Subsurface	1	3
Warehouse	CT16SO9H	CT16SO9H02N	8/4/2017	N		WP#3-2017	Subsurface	2	
Warehouse	CT16SO9I CT16SO9I	CT16SO9I01N CT16SO9I02N	8/4/2017 8/4/2017	N N		WP#3-2017 WP#3-2017	Subsurface Subsurface	2	3
Warehouse								4	
Warehouse	CT16SO9I DP27	CT16SO9I04N DPS2707N	8/4/2017	N N		WP#3-2017	Subsurface		5 7.5
Warehouse Warehouse	DP27 DP40	DPS2707N DPS4003N	3/26/2013 5/20/2013	N N		Phase2-2013 Phase2-2013	Subsurface Subsurface	6.5 2.5	3.5
Warehouse	DP40	DPS4003N DPS4010N	5/28/2013	N		Phase2-2013	Subsurface	9.5	10.5
Warehouse	DP40	DPS4010N2	6/10/2013	N		Phase2-2013	Subsurface	9.5	10.5
Warehouse	DP40	DPS4015N	5/28/2013	N		Phase2-2013	Subsurface	14.5	15.5
Warehouse	DP42	DPS4205N	5/21/2013	N		Phase2-2013	Subsurface	4.5	5.5
Warehouse	DP42	DPS4210N	5/29/2013	N		Phase2-2013	Subsurface	9.5	10.5
Warehouse	DP42	DPS4215N	5/29/2013	N		Phase2-2013	Subsurface	14.5	15.5
Warehouse	SB3	SBS0303N	3/13/2013	N		Phase2-2013	Subsurface	2.5	3.5
Warehouse	SBS0303N-North	SB50303N-NORTH	2/15/2017	N		WP#3-2017	Subsurface	3	3.5
Warehouse	SUSDP03	DPS0305N	5/14/2013	N		Phase2-2013	Subsurface	4.5	5.5
Warehouse	SUSDP03	DPS0310N	5/21/2013	N		Phase2-2013	Subsurface	9.5	10.5
Warehouse	SUSDP03	DPS0310N2	6/11/2013	N		Phase2-2013	Subsurface	9.5	10.5
Warehouse	SUSDP03	DPS0310R	5/21/2013	FD	DPS0310N	Phase2-2013	Subsurface	9.5	10.5
Warehouse	SUSDP03	DPS0315N	5/21/2013	N		Phase2-2013	Subsurface	14.5	15.5
Warehouse	SUSDP04	DPS0403N	5/15/2013	N		Phase2-2013	Subsurface	2.5	3.5
Warehouse	SUSDP04	DPS0410N	5/20/2013	N		Phase2-2013	Subsurface	9.5	10.5
Warehouse	SUSDP04	DPS0415N	5/20/2013	N		Phase2-2013	Subsurface	14.5	15.5
Warehouse	SUSDP04	DPS04F01N	1/25/2017	N		WP#3-2017	Subsurface	1	2
Warehouse	SUSDP04	DPS04F01R	1/25/2017	FD	DPS04F01N	WP#3-2017	Subsurface	1	2
Warehouse	SUSDP04	DPS04F02-05N	1/25/2017	N		WP#3-2017	Subsurface	2	5
Warehouse	SUSDP04	DPS04F10-15N	1/27/2017	N		WP#3-2017	Subsurface	10	15
Warehouse	SUSDP04-1A	DPS041A02N	8/1/2017	N		WP#3-2017	Subsurface	2	3
Warehouse	SUSDP04-1A	DPS041A03N	8/1/2017	N		WP#3-2017	Subsurface	3	4
Warehouse	SUSDP04-1A	DPS041A04N	8/1/2017	N		WP#3-2017	Subsurface	4	5
Warehouse	SUSDP04-1C	DPS041C02N	8/1/2017	N		WP#3-2017	Subsurface	2	3
Warehouse	SUSDP04-1C	DPS041C03N	8/1/2017	N		WP#3-2017	Subsurface	3	4
Warehouse	SUSDP04-1C	DPS041C04N	8/1/2017	N		WP#3-2017	Subsurface	4	5
Warehouse	SUSDP04-1E	DPS041E02N	8/1/2017	N		WP#3-2017	Subsurface	2	3
Warehouse	SUSDP04-1E	DPS041E03N	8/1/2017	N		WP#3-2017	Subsurface	3	4

Table 3-1 Soil Samples Used in the BHHRA Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Sar	mple Area	Sample Location	Sample ID	Sample Date	Sample Type	Parent Sample	Task Code	Surface or Subsurface	Start Depth (feet)	End Depth (feet)
Wa	arehouse	SUSDP04-1E	DPS041E04N	8/1/2017	N		WP#3-2017	Subsurface	4	5
Wa	arehouse	SUSDP04-1G	DPS041G02N	8/1/2017	N		WP#3-2017	Subsurface	2	3
Wa	arehouse	SUSDP04-1G	DPS041G03N	8/1/2017	N		WP#3-2017	Subsurface	3	4
Wa	arehouse	SUSDP04-1G	DPS041G04N	8/1/2017	N		WP#3-2017	Subsurface	4	5
Wa	arehouse	SUSDP04-1G	DPS041G05N	8/1/2017	N		WP#3-2017	Subsurface	5	6
Wa	arehouse	SUSDP04-2I	DPS042I02N	2/1/2018	N		WP#3-2018	Subsurface	2	3
Wa	arehouse	SUSDP05	DPS0505N	5/15/2013	N		Phase2-2013	Subsurface	4.5	5.5
Wa	arehouse	SUSDP05	DPS0505N2	6/12/2013	N		Phase2-2013	Subsurface	4.5	5.5
Wa	arehouse	SUSDP05	DPS0510N	5/21/2013	N		Phase2-2013	Subsurface	9.5	10.5
Wa	arehouse	SUSDP05	DPS0515N	5/21/2013	N		Phase2-2013	Subsurface	14.5	15.5
Wa	arehouse	SUSDP05	DPS05F01N	1/24/2017	N		WP#3-2017	Subsurface	1	2
Wa	arehouse	SUSDP05	DPS05F02-05N	1/24/2017	N		WP#3-2017	Subsurface	2	5
Wa	arehouse	SUSDP05-1C	DPS051C01N	7/31/2017	N		WP#3-2017	Subsurface	1	2
Wa	arehouse	SUSDP05-1E	DPS051E01N	7/31/2017	N		WP#3-2017	Subsurface	1	2
Wa	arehouse	SUSDP05-1G	DPS051G01N	7/31/2017	N		WP#3-2017	Subsurface	1	2
Wa	arehouse	SUSDP05-1G	DPS051G02N	7/31/2017	N		WP#3-2017	Subsurface	2	3
Wa	arehouse	SUSDP05-2M	DPS052M01N	2/1/2018	N		WP#3-2018	Subsurface	1	2
Wa	arehouse	SUSDP06	DPS0605N	5/15/2013	N		Phase2-2013	Subsurface	4.5	5.5
	arehouse	SUSDP06	DPS0610N	5/22/2013	N		Phase2-2013	Subsurface	9.5	10.5
Wa	arehouse	SUSDP06	DPS0615N	5/22/2013	N		Phase2-2013	Subsurface	14.5	15.5
Wa	arehouse	SUSDP06	DPS06F01N	3/13/2017	N		WP#3-2017	Subsurface	1	2
Wa	arehouse	SUSDP06	DPS06F02-05N	3/13/2017	N		WP#3-2017	Subsurface	2	5
Wa	arehouse	SUSDP07	DPS0705N	5/15/2013	N		Phase2-2013	Subsurface	4.5	5.5
Wa	arehouse	SUSDP07	DPS0710N	5/22/2013	N		Phase2-2013	Subsurface	9.5	10.5
Wa	arehouse	SUSDP07	DPS0715N	5/22/2013	N		Phase2-2013	Subsurface	14.5	15.5
Wa	arehouse	SUSDP07	DPS0715N2	6/12/2013	N		Phase2-2013	Subsurface	14.5	15.5
Wa	arehouse	SUSDP08	DPS0803N	5/15/2013	N		Phase2-2013	Subsurface	2.5	3.5
Wa	arehouse	SUSDP08	DPS0810N	5/23/2013	N		Phase2-2013	Subsurface	9.5	10.5
Wa	arehouse	SUSDP08	DPS0815N	5/23/2013	N		Phase2-2013	Subsurface	14.5	15.5
Wa	arehouse	SUSDP08	DPS08F01N	1/24/2017	N		WP#3-2017	Subsurface	1	2
Wa	arehouse	SUSDP08	DPS08F02-05N	1/24/2017	N		WP#3-2017	Subsurface	2	5
Wa	arehouse	SUSDP08	DPS08F05-10N	1/24/2017	N		WP#3-2017	Subsurface	5	10
Wa	arehouse	SUSDP08	DPS08F10-15N	1/24/2017	N		WP#3-2017	Subsurface	10	15
Wa	arehouse	SUSDP08-1E	DPS081E01N	8/2/2017	N		WP#3-2017	Subsurface	1	2
Wa	arehouse	SUSDP08-1E	DPS081E01R	8/2/2017	FD	DPS081E01N	WP#3-2017	Subsurface	1	2
Wa	arehouse	SUSDP08-2G	DPS082G01N	8/3/2017	N		WP#3-2017	Subsurface	1	2
Wa	arehouse	SUSDP08-2G	DPS082G01R	8/3/2017	FD	DPS082G01N	WP#3-2017	Subsurface	1	2
Wa	arehouse	SUSDP11	DPS1105N	5/14/2013	N		Phase2-2013	Subsurface	4.5	5.5
Wa	arehouse	SUSDP11	DPS1110N	5/28/2013	N		Phase2-2013	Subsurface	9.5	10.5
Wa	arehouse	SUSDP11	DPS1115N	5/28/2013	N		Phase2-2013	Subsurface	14.5	15.5
Wa	arehouse	SUSDP11	DPS11F01N	1/25/2017	N		WP#3-2017	Subsurface	1	2
Wa	arehouse	SUSDP11	DPS11F02-05N	1/25/2017	N		WP#3-2017	Subsurface	2	5
Wa	arehouse	SUSDP11	DPS11F05-10N	1/25/2017	N		WP#3-2017	Subsurface	5	10
Wa	arehouse	SUSDP11-1A	DPS111A01N	2/22/2018	N		WP#3-2018	Subsurface	1	2
Wa	arehouse	SUSDP11-1A	DPS111A02N	2/22/2018	N		WP#3-2018	Subsurface	2	3
Wa	arehouse	SUSDP11-1A	DPS111A03N	2/22/2018	N		WP#3-2018	Subsurface	3	4
Wa	arehouse	SUSDP11-1A	DPS111A04N	2/22/2018	N		WP#3-2018	Subsurface	4	5
Wa	arehouse	SUSDP11-1A	DPS111A05N	2/22/2018	N		WP#3-2018	Subsurface	5	6
Wa	arehouse	SUSDP11-1A	DPS111A06N	3/28/2018	N		WP#3-2018	Subsurface	6	7
Wa	arehouse	SUSDP11-1B	DPS111B01N	3/16/2018	N		WP#3-2018	Subsurface	1	2
Wa	arehouse	SUSDP11-1B	DPS111B02N	3/16/2018	N		WP#3-2018	Subsurface	2	3
	arehouse	SUSDP11-1B	DPS111B03N	3/16/2018	N		WP#3-2018	Subsurface	3	4
Wa	arehouse	SUSDP11-1B	DPS111B04N	3/16/2018	N		WP#3-2018	Subsurface	4	5
Wa	arehouse	SUSDP11-1B	DPS111B05N	3/16/2018	N		WP#3-2018	Subsurface	5	6
Wa	arehouse	SUSDP11-1H	DPS111H01N	3/16/2018	N		WP#3-2018	Subsurface	1	2
Wa	arehouse	SUSDP11-1H	DPS111H02N	3/16/2018	N		WP#3-2018	Subsurface	2	3
Wa	arehouse	SUSDP11-1H	DPS111H03N	3/16/2018	N		WP#3-2018	Subsurface	3	4
Wa	arehouse	SUSDP11-1H	DPS111H04N	3/16/2018	N		WP#3-2018	Subsurface	4	5
Wa	arehouse	SUSDP11-1H	DPS111H05N	3/16/2018	N		WP#3-2018	Subsurface	5	6
Wa	arehouse	SUSDP11-2A	DPS112A01N	3/16/2018	N		WP#3-2018	Subsurface	1	2
Wa	arehouse	SUSDP11-2A	DPS112A02N	3/16/2018	N		WP#3-2018	Subsurface	2	3
Wa	arehouse	SUSDP11-2A	DPS112A03N	3/16/2018	N		WP#3-2018	Subsurface	3	4
Wa	arehouse	SUSDP11-2A	DPS112A04N	3/16/2018	N		WP#3-2018	Subsurface	4	5
Wa	arehouse	SUSDP11-2A	DPS112A05N	3/16/2018	N		WP#3-2018	Subsurface	5	6
Wa	arehouse	SUSDP11-2D	DPS112D01N	4/5/2018	N		WP#3-2018	Subsurface	1	2
Wa	arehouse	SUSDP11-2N	DPS112N01N	4/6/2018	N		WP#3-2018	Subsurface	1	2
Wa	arehouse	SUSDP11-2N	DPS112N02N	4/6/2018	N		WP#3-2018	Subsurface	2	3
W:	arehouse	SUSDP13	DPS1305N	5/20/2013	N		Phase2-2013	Subsurface	4.5	5.5

Table 3-1 Soil Samples Used in the BHHRA Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Warehouse S Warehouse SUS Warehouse	nple Location SUSDP13 SUSDP13 SUSDP41 SUSDP61-1C SUSDPC116-1C	Sample ID DPS1310N DPS1315N DPS4115N DPS41 15N DPS41701N DPS41F01N DPS41F05-10N DPS41F05-10N DPS41F10-15N DPCT161C01N DPCT161C01N DPCT161G01N DPCT161G02N DPCT161G03N DPCT161G04N DPCT161G04N	Sample Date 5/29/2013 5/29/2013 5/29/2013 5/24/2013 5/24/2013 1/24/2017 1/24/2017 1/24/2017 1/24/2017 1/24/2017 2/1/2018 2/1/2018 2/1/2018 2/1/2018 2/1/2018	Type N N N N N N N N N N N N N N N N N N N		Phase2-2013 Phase2-2013 Phase2-2013 Phase2-2013 Phase2-2013 WP#3-2017 WP#3-2017 WP#3-2017 WP#3-2017	Subsurface	9.5 14.5 9.5 14.5 2.5 1 2 5	10.5 15.5 10.5 15.5 3.5 2 5 10
Warehouse S Warehouse S Warehouse S Warehouse S Warehouse S Warehouse SUS Warehouse	SUSDP41 SUSDP41 SUSDP41 SUSDP41 SUSDP41 SUSDP41 SUSDP41 SUSDP41 SUSDP41 SDPCT16-1C SDPCT16-1C SDPCT16-1G SDPCT16-1G SDPCT16-1G SDPCT16-1G SDPCT16-1G SDPCT16-1G SDPCT16-1G	DPS41 10N DPS41 15N DPS4103N DPS41601N DPS41F02-05N DPS41F05-10N DPS41F10-15N DPCT161C04N DPCT161C04N DPCT161G01N DPCT161G01N DPCT161G01N DPCT161G01N DPCT161G03N	5/24/2013 5/24/2013 5/22/2013 1/24/2017 1/24/2017 1/24/2017 1/24/2017 2/1/2018 2/1/2018 2/1/2018 2/1/2018	N N N N N N N N N N N N N N N N N N N		Phase2-2013 Phase2-2013 Phase2-2013 WP#3-2017 WP#3-2017 WP#3-2017 WP#3-2017	Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface	9.5 14.5 2.5 1 2	10.5 15.5 3.5 2 5
Warehouse S Warehouse S Warehouse S Warehouse S Warehouse SUS	SUSDP41 SUSDP41 SUSDP41 SUSDP41 SUSDP41 SUSDP41 SUSDP41 SDPCT16-1C SDPCT16-1C SDPCT16-1E SDPCT16-1E SDPCT16-1G SDPCT16-1G SDPCT16-1G	DPS41 15N DPS4103N DPS41F01N DPS41F02-05N DPS41F02-05N DPS41F05-10N DPCT161C01N DPCT161C04N DPCT161E01N DPCT161G01N DPCT161G01N DPCT161G02N DPCT161G02N	5/24/2013 5/22/2013 1/24/2017 1/24/2017 1/24/2017 1/24/2017 2/1/2018 2/1/2018 2/1/2018 2/1/2018	N N N N N N		Phase2-2013 Phase2-2013 WP#3-2017 WP#3-2017 WP#3-2017 WP#3-2017	Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface	14.5 2.5 1 2 5	15.5 3.5 2 5 10
Warehouse S Warehouse S Warehouse S Warehouse S Warehouse SUS	SUSDP41 SUSDP41 SUSDP41 SUSDP41 SUSDP41 SUSDP41 SDPCT16-1C SDPCT16-1C SDPCT16-1E SDPCT16-1G SDPCT16-1G SDPCT16-1G SDPCT16-1G	DPS4103N DPS41F01N DPS41F02-05N DPS41F05-10N DPS41F10-15N DPCT161C01N DPCT161C04N DPCT161E01N DPCT161G01N DPCT161G01N DPCT161G03N	5/22/2013 1/24/2017 1/24/2017 1/24/2017 1/24/2017 2/1/2018 2/1/2018 2/1/2018 2/1/2018	N N N N N		Phase2-2013 WP#3-2017 WP#3-2017 WP#3-2017 WP#3-2017	Subsurface Subsurface Subsurface Subsurface Subsurface Subsurface	2.5 1 2 5	3.5 2 5 10
Warehouse S Warehouse S Warehouse S Warehouse SUS	SUSDP41 SUSDP41 SUSDP41 SUSDP41 SUSDP41 SDPCT16-1C SDPCT16-1C SDPCT16-1E SDPCT16-1G SDPCT16-1G SDPCT16-1G SDPCT16-1G	DPS41F01N DPS41F02-05N DPS41F05-10N DPS41F10-15N DPCT161C01N DPCT161C04N DPCT161E01N DPCT161G01N DPCT161G01N DPCT161G03N	1/24/2017 1/24/2017 1/24/2017 1/24/2017 1/24/2017 2/1/2018 2/1/2018 2/1/2018 2/1/2018	N N N N N		WP#3-2017 WP#3-2017 WP#3-2017 WP#3-2017	Subsurface Subsurface Subsurface Subsurface	1 2 5	2 5 10
Warehouse S Warehouse S Warehouse SUS	SUSDP41 SUSDP41 SUSDP41 SUSDP41 SDPCT16-1C SDPCT16-1E SDPCT16-1E SDPCT16-1G SDPCT16-1G SDPCT16-1G	DPS41F02-05N DPS41F05-10N DPS41F10-15N DPCT161C01N DPCT161C04N DPCT161E01N DPCT161G01N DPCT161G01N DPCT161G03N	1/24/2017 1/24/2017 1/24/2017 2/1/2018 2/1/2018 2/1/2018 2/1/2018	N N N N		WP#3-2017 WP#3-2017 WP#3-2017	Subsurface Subsurface Subsurface	2 5	5 10
Warehouse S Warehouse SUS	SUSDP41 SUSDP41 SDPCT16-1C SDPCT16-1C SDPCT16-1E SDPCT16-1E SDPCT16-1G SDPCT16-1G SDPCT16-1G	DPS41F05-10N DPS41F10-15N DPCT161C01N DPCT161C04N DPCT161E01N DPCT161G01N DPCT161G02N DPCT161G03N	1/24/2017 1/24/2017 2/1/2018 2/1/2018 2/1/2018 2/1/2018	N N N		WP#3-2017 WP#3-2017	Subsurface Subsurface	5	5 10
Warehouse SUS	SUSDP41 SDPCT16-1C SDPCT16-1C SDPCT16-1E SDPCT16-1G SDPCT16-1G SDPCT16-1G SDPCT16-1G	DPS41F10-15N DPCT161C01N DPCT161C04N DPCT161E01N DPCT161G01N DPCT161G02N DPCT161G03N	1/24/2017 2/1/2018 2/1/2018 2/1/2018 2/1/2018	N N N		WP#3-2017	Subsurface		
Warehouse SUS	SDPCT16-1C SDPCT16-1C SDPCT16-1E SDPCT16-1G SDPCT16-1G SDPCT16-1G SDPCT16-1G	DPCT161C01N DPCT161C04N DPCT161E01N DPCT161G01N DPCT161G02N DPCT161G03N	2/1/2018 2/1/2018 2/1/2018 2/1/2018	N N				10	15
Warehouse SUS	SDPCT16-1C SDPCT16-1E SDPCT16-1G SDPCT16-1G SDPCT16-1G SDPCT16-1G	DPCT161C04N DPCT161E01N DPCT161G01N DPCT161G02N DPCT161G03N	2/1/2018 2/1/2018 2/1/2018	N		WP#3-2018	0 1 /		10
Warehouse SUS	SDPCT16-1E SDPCT16-1G SDPCT16-1G SDPCT16-1G SDPCT16-1G	DPCT161E01N DPCT161G01N DPCT161G02N DPCT161G03N	2/1/2018 2/1/2018				Subsurface	1	2
Warehouse SUS	SDPCT16-1E SDPCT16-1G SDPCT16-1G SDPCT16-1G SDPCT16-1G	DPCT161E01N DPCT161G01N DPCT161G02N DPCT161G03N	2/1/2018 2/1/2018			WP#3-2018	Subsurface	4	5
Warehouse SUS	SDPCT16-1G SDPCT16-1G SDPCT16-1G	DPCT161G02N DPCT161G03N				WP#3-2018	Subsurface	1	2
Warehouse SUS	SDPCT16-1G SDPCT16-1G	DPCT161G03N	2/1/2018	N		WP#3-2018	Subsurface	1	2
Warehouse SUS	SDPCT16-1G SDPCT16-1G	DPCT161G03N		N		WP#3-2018	Subsurface	2	3
Warehouse SUS	SDPCT16-1G		2/1/2018	N		WP#3-2018	Subsurface	3	4
Warehouse SUS			2/1/2018	N		WP#3-2018	Subsurface	4	5
Warehouse SUS		DPSCT162E01N	2/22/2018	N		WP#3-2018	Subsurface	1	2
Warehouse SUS	SDPCT16-2E	DPSCT162E04N	2/22/2018	N		WP#3-2018	Subsurface	4	5
Warehouse SUS	JSDPCT16-2I	DPSCT162I01N	2/22/2018	N		WP#3-2018	Subsurface	1	2
Warehouse SUS	SDPCT16-2M	DPSCT162M01N	2/22/2018	N		WP#3-2018	Subsurface	1	2
Warehouse SUS	SDPCT16-2M	DPSCT162M02N	2/22/2018	N		WP#3-2018	Subsurface	2	3
Warehouse SUS Warehouse SUSI Warehouse SUSI	SDPCT16-2M	DPSCT162M03N	2/22/2018	N		WP#3-2018	Subsurface	3	4
Warehouse SUS	SDPCT16-2M	DPSCT162M04N	2/22/2018	N		WP#3-2018	Subsurface	4	5
Warehouse SUS	SDPCT16-3R	DPSCT163R01N	5/31/2018	N		WP#3-2018	Subsurface	1	2
Warehouse SUS Warehouse SUSI Warehouse SUSI	SDPCT16-3R	DPSCT163R02N	5/31/2018	N		WP#3-2018	Subsurface	2	3
Warehouse SUS Warehouse SUS Warehouse SUS Warehouse SUS Warehouse SUS Warehouse SUSI Warehouse SUSI Warehouse SUSI	SDPCT16-3R	DPSCT163R03N	5/31/2018	N		WP#3-2018	Subsurface	3	4
Warehouse SUS Warehouse SUS Warehouse SUS Warehouse SUS Warehouse SUSI Warehouse SUSI Warehouse SUSI	SDPCT16-3R	DPSCT163R03R	5/31/2018	FD	DPSCT163R03N	WP#3-2018	Subsurface	3	4
Warehouse SUS Warehouse SUS Warehouse SUS Warehouse SUS Warehouse SUSI Warehouse SUSI	SDPCT16-3R	DPSCT163R04N	5/31/2018	N	DI COTTOCICOIT	WP#3-2018	Subsurface	4	5
Warehouse SUS Warehouse SUS Warehouse SUS Warehouse SUSI Warehouse SUSI	SDPCT16-3S	DPSCT163S01N	3/15/2018	N		WP#3-2018	Subsurface	1	2
Warehouse SUS Warehouse SUS Warehouse SUS Warehouse SUSI	SDPCT16-3S	DPSCT163S02N	3/15/2018	N		WP#3-2018	Subsurface	2	3
Warehouse SUS Warehouse SUSI Warehouse SUSI	SDPCT16-3S	DPSCT163S03N	3/15/2018	N		WP#3-2018	Subsurface	3	4
Warehouse SUSI Warehouse SUSI	SDPCT16-3S	DPSCT163S04N	3/15/2018	N		WP#3-2018	Subsurface	4	5
Warehouse SUSI	SDPCT16-4W	DPSCT164W01N	4/6/2018	N		WP#3-2018	Subsurface	1	2
	SDPCT16-4W	DPSCT164W02N	4/6/2018	N		WP#3-2018	Subsurface	2	3
	SDPCT16-4W	DPSCT164W03N	4/6/2018	N		WP#3-2018	Subsurface	3	4
	SDPCT16-4W	DPSCT164W04N	4/6/2018	N		WP#3-2018	Subsurface	4	5
Warehouse	TA1E0	DPSTA1E0001N	8/1/2017	N		WP#3-2017	Subsurface	1	2
Warehouse	TA1E0	DPSTA1E0001N	8/1/2017	N		WP#3-2017	Subsurface	2	3
Warehouse	TA1E0	DPSTA1E0002N DPSTA1E0003N	8/1/2017	N		WP#3-2017	Subsurface	3	4
Warehouse		DPSTA1E0003N	7/31/2017	N		WP#3-2017 WP#3-2017	Subsurface	1	2
		DPSTA1E1001N	8/8/2017	N		WP#3-2017	Subsurface	1	2
Warehouse	TA1E1	DPSTATE1001N DPSTA1E0901N	8/3/2017	N		WP#3-2017	Subsurface	1	2
	TA1E1 TA1E10	DPSTA1E0901N DPSTA1G1001N	8/4/2017	N		WP#3-2017 WP#3-2017	Subsurface	1	2
	TA1E1 TA1E10 TA1E9	DPSTATGT001N DPSTA1G0901N	8/4/2017	N		WP#3-2017 WP#3-2017	Subsurface	1	2
	TA1E1 TA1E10 TA1E9 TA1G10		8/4/2017	N		WP#3-2017 WP#3-2017	Subsurface	2	3
Warehouse	TA1E1 TA1E10 TA1E9	DPSTA1G0902N	8/4/2017	N		WP#3-2017 WP#3-2017	Subsurface	1	2

Notes:

FD = Field duplicate.

N = Normal sample

Soil samples collected at depths greater than 16 feet bgs were not included in the BHHRA data set.

(a) Sample collected beneath an obstruction (e.g., concrete or pavement). Sample depth measured from top of slab. Sample was collected immediately below slab and is therefore considered surface soil for potential future exposures.

Exposure Areas:

Maintenance: Stores and Fleet Maintenance Area

Offices/Parking: Offices and Parking Lot
Future Park/Green Hypothetical Future Park Land/Green Space Salvage: Salvage Yard and Waste Storage Area Substation #7: Substation #7

Transformer Shop: Transformer Shop
Vehicle Refueling: Vehicle Refueling Area
Warehouse: Warehouse and Laydown Area

Table 3-2 Background Soil Samples Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Sample Area	Sample Location	Sample ID	Sample Date	Sample Type	Parent Sample	Task Code	Surface or Subsurface	Start Depth (feet)	End Depth (feet)
Background	SOBACK01	SOBACK0100N	2/28/2017	N		WP#3-2017-BACK	Surface	0	1
Background	SOBACK01	SOBACK0103N	2/28/2017	N		WP#3-2017-BACK	Subsurface	3	4
Background	SOBACK02	SOBACK0200N	2/28/2017	N		WP#3-2017-BACK	Surface	0	1
Background	SOBACK02	SOBACK0203N	2/28/2017	N		WP#3-2017-BACK	Subsurface	3	4
Background	SOBACK03	SOBACK0300N	3/2/2017	N		WP#3-2017-BACK	Surface	0	1
Background	SOBACK03	SOBACK0303N	3/2/2017	N		WP#3-2017-BACK	Subsurface	3	4
Background	SOBACK04/ DPBACK04	SOBACK0400N	4/5/2017	N		WP#3-2017-BACK	Surface	0	1
Background	SOBACK04/ DPBACK04	SOBACK0403N	4/5/2017	N		WP#3-2017-BACK	Subsurface	3	4
Background	SOBACK05/ DPBACK15	SOBACK0500N	4/5/2017	N		WP#3-2017-BACK	Surface	0	1
Background	SOBACK05/ DPBACK15	SOBACK0503N	4/5/2017	N		WP#3-2017-BACK	Subsurface	3	4
Background	SOBACK06	SOBACK0600N	2/28/2017	N		WP#3-2017-BACK	Surface	0	1
Background	SOBACK06	SOBACK0603N	2/28/2017	N		WP#3-2017-BACK	Subsurface	3	4
Background	SOBACK07	SOBACK0700N	2/27/2017	N		WP#3-2017-BACK	Surface	0	1
Background	SOBACK07	SOBACK0703N	2/27/2017	N		WP#3-2017-BACK	Subsurface	3	4
Background	SOBACK08/ DPBACK12	SOBACK0800N	4/5/2017	N		WP#3-2017-BACK	Surface	0	1
Background	SOBACK08/ DPBACK12	SOBACK0803N	4/5/2017	N		WP#3-2017-BACK	Subsurface	3	4
Background	SOBACK09	SOBACK0900N	3/6/2017	N		WP#3-2017-BACK	Surface	0	1
Background	SOBACK09	SOBACK0903N	3/6/2017	N		WP#3-2017-BACK	Subsurface	3	4
Background	SOBACK11	SOBACK1100N	4/7/2017	N		WP#3-2017-BACK	Surface	0	1
Background	SOBACK11	SOBACK1103N	4/7/2017	N		WP#3-2017-BACK	Subsurface	3	4
Background	SOBACK12/DPBACK09	SOBACK1200N	4/4/2017	N		WP#3-2017-BACK	Surface	0	1
Background	SOBACK12/DPBACK09	SOBACK1203N	4/4/2017	N		WP#3-2017-BACK	Subsurface	3	4
Background	SOBACK13	SOBACK1300N	4/5/2017	N		WP#3-2017-BACK	Surface	0	1
Background	SOBACK13	SOBACK1303N	4/5/2017	N		WP#3-2017-BACK	Subsurface	3	4
Background	SOBACK14	SOBACK1400N	3/3/2017	N		WP#3-2017-BACK	Surface	0	1
Background	SOBACK14	SOBACK1400R	3/3/2017	FD	SOBACK1400N	WP#3-2017-BACK	Surface	0	1
Background	SOBACK14	SOBACK1403N	3/3/2017	N		WP#3-2017-BACK	Subsurface	3	4
Background	SOBACK15	SOBACK1500N	2/27/2017	N		WP#3-2017-BACK	Surface	0	1
Background	SOBACK15	SOBACK1503N	2/27/2017	N		WP#3-2017-BACK	Subsurface	3	4
Background	SOBACK16	SOBACK1600N	2/27/2017	N		WP#3-2017-BACK	Surface	0	1
Background	SOBACK16	SOBACK1600R	2/27/2017	FD	SOBACK1600N	WP#3-2017-BACK	Surface	0	1
Background	SOBACK16	SOBACK1603N	2/27/2017	N		WP#3-2017-BACK	Subsurface	3	4
Background	SOBACK17/ DPBACK05	SOBACK1700N	2/28/2017	N		WP#3-2017-BACK	Surface	0	1
Background	SOBACK17/ DPBACK05	SOBACK1703N	2/28/2017	N		WP#3-2017-BACK	Subsurface	3	4
Background	SOBACK18/ DPBACK13	SOBACK1800N	4/5/2017	N		WP#3-2017-BACK	Surface	0	1
Background	SOBACK18/ DPBACK13	SOBACK1803N	4/5/2017	N		WP#3-2017-BACK	Subsurface	3	4
Background	SU-BK-01	SU-BK-0100N	4/4/2017	N		WP#3-2017-BACK	Surface	0	1
Background	SU-BK-01	SU-BK-0103N	4/4/2017	N		WP#3-2017-BACK	Subsurface	3	4
Background	SU-BK-02	SU-BK-0200N	4/4/2017	N		WP#3-2017-BACK	Surface	0	1
Background	SU-BK-02	SU-BK-0203N	4/4/2017	N		WP#3-2017-BACK	Subsurface	3	4

Notes:
Soil samples collected at depths greater than 16 feet bgs were not included in the BHHRA data set.

FD = Field duplicate. N = Normal sample

Table 3-3 Groundwater Samples Used in the BHHRA Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Sample Area	Aquifer	Sample Location	Sample ID	Sample Date	Sample Type	Parent Sample	Task Code	Start Depth (feet)	End Depth (feet)
Anacostia Park Property	UPPER	KMY-DU01	DPWNPS0108-12N	4/20/2017	N		WP#3-2017	8	12
Anacostia Park Property	UPPER	KMY-DU02	DPWNPS0210-14N	4/21/2017	N		WP#3-2017	10	14
Anacostia Park Property	UPPER	KMY-DU03	DPWNPS0315-19N	4/21/2017	N		WP#3-2017	15	19
Future Park/Green	UPPER	DP36	DPW3612-17N	5/20/2013	N		Phase2-2013	12	17
Future Park/Green	UPPER	MW01A	MW01AN	11/5/2014	N		Phase3-2014	10	35
Future Park/Green	UPPER	MW01A	MW01A122216N	12/22/2016	N		WP#3-2016	10	35
Future Park/Green	UPPER	MW01A	MW01A122216R	12/22/2016	FD	MW01A122216N	WP#3-2016	10	35
Future Park/Green	UPPER	MW02A	MW02AN	11/5/2014	N		Phase3-2014	8	28
Future Park/Green	UPPER	MW02A	MW02AN2	12/19/2014	N		Phase3-2014	8	28
Future Park/Green	UPPER	MW02A	MW02A122216N	12/22/2016	N		WP#3-2016	8	28
Future Park/Green	UPPER	MW03A	MW03AN	11/4/2014	N		Phase3-2014	10	25
Future Park/Green	UPPER	MW03A	MW03A122116N	12/21/2016	N		WP#3-2016	10	25
Future Park/Green	UPPER	MW04A	MW04AN	11/4/2014	N		Phase3-2014	6	26
Future Park/Green	UPPER	MW04A	MW04AN2	12/19/2014	N		Phase3-2014	6	26
Future Park/Green	UPPER	MW04A	MW04A122116N	12/21/2016	N		WP#3-2016	6	26
Future Park/Green	UPPER	SUSDP01	DPW0112-15N	5/20/2013	N		Phase2-2013	12	15
Future Park/Green	UPPER	SUSDP01	DPW0112-15N2	6/13/2013	N		Phase2-2013	12	15
Future Park/Green	UPPER	SUSDP02	DPW0212-17N	5/20/2013	N		Phase2-2013	12	17
Future Park/Green	UPPER	SUSDP02	DPW0212-17N2	6/13/2013	N		Phase2-2013	12	17
Future Park/Green	UPPER	TA19A1	DPWTA19A115-20N	3/20/2017	N		WP#3-2017	15	20
Future Park/Green	UPPER	TA19A2	DPWTA19A215-20N	3/20/2017	N		WP#3-2017	15	20
Future Park/Green	UPPER	TA19A2	DPWTA19A215-20N	3/20/2017	N	1	WP#3-2017 WP#3-2017	15	20
Future Park/Green	UPPER	TA19A3	DPWTA19A315-20N	2/7/2017	N	1	WP#3-2017 WP#3-2017	15	20
Future Park/Green Future Park/Green	UPPER	TA19B3	DPWTA19B315-20N	2/8/2017	N N		WP#3-2017 WP#3-2017	15	20
Future Park/Green		TA19C1	DPWTA19C115-20N	2/8/2017	N N	1	WP#3-2017 WP#3-2017	15	20
	UPPER								
Future Park/Green	UPPER	TA19C3	DPWTA19C315-20N	2/7/2017	N		WP#3-2017	15	20
Future Park/Green	UPPER	TA19D1	DPWTA19D115-20N	3/3/2017	N		WP#3-2017	15	20
Future Park/Green	UPPER	TA19D3	DPWTA19D315-20N	3/8/2017	N		WP#3-2017	15	20
Future Park/Green	UPPER	TA19E1	DPWTA19E115-20N	2/7/2017	N		WP#3-2017	15	20
Future Park/Green	UPPER	TA19E2	DPWTA19E215-20N	2/7/2017	N		WP#3-2017	15	20
Future Park/Green	LOWER (a)	MW01B	MW01B122216N	12/22/2016	N		WP#3-2016	40	52
Future Park/Green	LOWER (a)	MW01B	MW01BN	11/5/2014	N		Phase3-2014	40	52
Future Park/Green	LOWER (a)	MW02B	MW02B122216N	12/22/2016	N		WP#3-2016	38	53
Future Park/Green	LOWER (a)	MW02B	MW02BN	11/5/2014	N		Phase3-2014	38	53
Future Park/Green	LOWER (a)	MW03B	MW03B122116N	12/21/2016	N		WP#3-2016	40	50
Future Park/Green	LOWER (a)	MW03B	MW03BN	11/4/2014	N		Phase3-2014	40	50
Future Park/Green	LOWER (a)	MW04B	MW04B122116N	12/21/2016	N		WP#3-2016	34	44
Future Park/Green	LOWER (a)	MW04B	MW04BN	11/4/2014	N		Phase3-2014	34	44
Maintenance	UPPER	DP45	DPW4515-20N	6/4/2013	N		Phase2-2013	15	20
Maintenance	UPPER	DP56	DPW5615-20N	2/3/2017	N		WP#3-2017	15	20
Maintenance	UPPER	DP57	DPW5715-20N	2/3/2017	N		WP#3-2017	15	20
Maintenance	UPPER	DP57	DPW5715-20R	2/3/2017	FD	DPW5715-20N	WP#3-2017	15	20
Maintenance	UPPER	DP58	DPW5815-20N	2/6/2017	N		WP#3-2017	15	20
Maintenance	UPPER	DP59	DPW5915-20N	2/3/2017	N		WP#3-2017	15	20
Maintenance	UPPER	DP60	DPW6015-20N	2/6/2017	N		WP#3-2017	15	20
Maintenance	UPPER	DPD5	DPWD525-30N	4/18/2014	N		Phase3-2014	25	30
Maintenance	UPPER	DPD6	DPWD630-35N	4/17/2014	N		Phase3-2014	30	35
Maintenance	UPPER	MW13A	MW13AN	11/3/2014	N		Phase3-2014	8	20
Maintenance	UPPER	MW13A	MW13A122016N	12/20/2016	N		WP#3-2016	8	20
Maintenance	UPPER	SUSDP15	DPW1520-25N	6/6/2013	N	1	Phase2-2013	20	25
Maintenance	UPPER	SUSDP16	DPW1615-20N	6/10/2013	N	1	Phase2-2013	15	20
Maintenance	UPPER	SUSDP16	DPW1615-20R	6/10/2013	FD	DPW1615-20N	Phase2-2013	15	20
Maintenance	UPPER	SUSDP16 SUSDP17	DPW1615-20R DPW1713-18N	6/11/2013	N N	DI WIDIO-ZUN	Phase2-2013	13	18
Maintenance	UPPER	SUSDP17 SUSDP18	DPW1713-18N DPW1815-20N	6/4/2013	N		Phase2-2013 Phase2-2013	15	20
						1			
Maintenance	UPPER	SUSDP52	DPW5215-20N	2/3/2017	N		WP#3-2017	15	20
Offices/Parking	UPPER	DP55	DPW5515-20N	2/2/2017	N	DDMEETE COV.	WP#3-2017	15	20
Offices/Parking	UPPER	DP55	DPW5515-20R	2/2/2017	FD	DPW5515-20N	WP#3-2017	15	20
Offices/Parking	UPPER	DPA2	DPWA220-25N	4/17/2014	N		Phase3-2014	20	25
Offices/Parking	UPPER	DPA2	DPWA220-25R	4/17/2014	FD	DPWA220-25N	Phase3-2014	20	25
Offices/Parking	UPPER	DPA3	DPWA325-30N	4/16/2014	N		Phase3-2014	25	30
Offices/Parking	UPPER	DPA4	DPWA425-30N	4/16/2014	N		Phase3-2014	25	30
Offices/Parking	UPPER	DPA5	DPWA525-30N	4/16/2014	N		Phase3-2014	25	30
Offices/Parking	UPPER	DPA5	DPWA525-30R	4/16/2014	FD	DPWA525-30N	Phase3-2014	25	30
Offices/Parking	UPPER	DPB10	DPWB1025-30N	4/17/2014	N	<u> </u>	Phase3-2014	25	30
Offices/Parking	UPPER	DPB11	DPWB1125-30N	4/17/2014	N		Phase3-2014	25	30
Offices/Parking	UPPER	DPB12	DPWB1225-30N	4/17/2014	N		Phase3-2014	25	30
Offices/Parking	UPPER	DPB2	DPWB220-25N	4/17/2014	N		Phase3-2014	20	25
Offices/Parking	UPPER	DPB3	DPWB325-30N	4/16/2014	N		Phase3-2014	25	30
	UPPER	DPB5	DPWB525-30N	4/16/2014	N	1	Phase3-2014	25	30
Offices/Parking				4/16/2014	N	 	Phase3-2014	25	30
Offices/Parking Offices/Parking	UPPER	DPB6	DPWB625-30N	4/10/2014					
Offices/Parking	UPPER UPPER	DPB6 DPB7	DPWB625-30N DPWB730-35N						35
<u> </u>	UPPER UPPER UPPER	DPB6 DPB7 DPB9	DPWB625-30N DPWB730-35N DPWB925-30N	4/16/2014 4/16/2014 4/17/2014	N N		Phase3-2014 Phase3-2014	30 25	35 30

Table 3-3 Groundwater Samples Used in the BHHRA Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

						Sample			Start Depth	End Depth
	Sample Area	Aquifer	Sample Location	Sample ID	Sample Date	Type	Parent Sample	Task Code	(feet)	(feet)
	Offices/Parking	UPPER	DPC4	DPWC425-30N	4/16/2014	N		Phase3-2014	25	30
	Offices/Parking	UPPER	DPC5	DPWC525-30N	4/16/2014	N		Phase3-2014	25	30
	Offices/Parking	UPPER	DPC7	DPWC730-35N DPWC830-35N	4/17/2014	N		Phase3-2014	30	35
	Offices/Parking	UPPER	DPC8		4/17/2014	N		Phase3-2014	30	35
	Offices/Parking	UPPER	DPC9	DPWC930-35N	4/18/2014	N		Phase3-2014	30	35
	Offices/Parking	UPPER	DPD7	DPWD730-35N MW09AN	4/17/2014	N		Phase3-2014	30	35 38
	Offices/Parking Offices/Parking	UPPER UPPER	MW09A MW09A	MW09AN2	11/3/2014 12/19/2014	N N		Phase3-2014 Phase3-2014	18 18	38
	•	UPPER	MW09A	MW09AN2 MW09A122116N	12/19/2014	N N		WP#3-2016	18	38
	Offices/Parking Offices/Parking	UPPER	MW12A	MW12AN	11/3/2014	N N		Phase3-2014	9	29
	Offices/Parking Offices/Parking	UPPER	MW12A	MW12AN2	12/19/2014	N N		Phase3-2014 Phase3-2014	9	29
	Offices/Parking	UPPER	MW12A	MW12A122016N	12/19/2014	N		WP#3-2016	9	29
	Offices/Parking	UPPER	SUSDP09	DPW0925-30N	6/11/2013	N		Phase2-2013	25	30
	Offices/Parking	UPPER	SUSDP14	DPW1423-28N	6/6/2013	N		Phase2-2013	23	28
	Offices/Parking	UPPER	SUSDP19	DPW1915-20N	6/5/2013	N		Phase2-2013	15	20
	Salvage	UPPER	DP26	DPW26(25-30)N	3/29/2013	N		Phase2-2013	25	30
	Salvage	UPPER	DP61	DPW6115-20N	2/6/2017	N		WP#3-2017	15	20
	Salvage	UPPER	DP62	DPW6215-20N	2/6/2017	N		WP#3-2017	15	20
	Salvage	UPPER	DP62	DPW6215-20R	2/6/2017	FD	DPW6215-20N	WP#3-2017	15	20
	Salvage	UPPER	DP63	DPW6315-20N	2/6/2017	N	DI WOZIO ZOIY	WP#3-2017	15	20
	Salvage	UPPER	SUSDP10	DPW1015-20N	6/10/2013	N		Phase2-2013	15	20
	Salvage	UPPER	SUSDP12	DPW1215-20N	6/13/2013	N		Phase2-2013	15	20
	Salvage	UPPER	SUSDP43	DPW4315-20N	6/6/2013	N		Phase2-2013	15	20
	Salvage	UPPER	SUSDP44	DPW4413-18N	6/10/2013	N		Phase2-2013	13	18
	Substation #7	UPPER	DP33	DPW33(27-32)N	4/4/2013	N		Phase2-2013	27	32
	Substation #7	UPPER	MW14A	MW14AN	11/3/2014	N		Phase3-2014	7	27
	Substation #7	UPPER	MW14A	MW14A122016N	12/20/2016	N		WP#3-2016	7	27
	Substation #7	UPPER	MW15A	MW15AN	11/3/2014	N		Phase3-2014	28	38
	Substation #7	UPPER	MW15A	MW15A122116N	12/21/2016	N		WP#3-2016	28	38
	Substation #7	UPPER	SUSDP20	DPW2015-20N	6/12/2013	N		Phase2-2013	13	20
	Substation #7	UPPER	SUSDP23	DPW2323-28N	6/12/2013	N		Phase2-2013	23	28
	Substation #7	UPPER	SUSDP24	DPW2415-20N	6/4/2013	N		Phase2-2013	15	20
	Substation #7	UPPER	SUSDP24	DPW2415-20R	6/4/2013	FD	DPW2415-20N	Phase2-2013	15	20
	Transformer Shop	UPPER	DP35	DPW3515N	3/28/2013	N		Phase2-2013	14	16
	Transformer Shop	UPPER	DP46	DPW4615-20N	6/5/2013	N		Phase2-2013	15	20
	Transformer Shop	UPPER	DP47	DPW4710-15N	6/5/2013	N		Phase2-2013	10	15
	Transformer Shop	UPPER	DP54	DPW5415-20N	2/2/2017	N		WP#3-2017	15	20
	Transformer Shop	UPPER	SUSDP22	DPW2215-20N	6/12/2013	N		Phase2-2013	15	20
	Vehicle Refueling	UPPER	DP28	DPW2821N	4/2/2013	N		Phase2-2013	20	22
	Vehicle Refueling	UPPER	DP28	DPW2821R	4/2/2013	FD	DPW2821N	Phase2-2013	20	22
	Vehicle Refueling	UPPER	DP38	DPW3815-20N	5/23/2013	N		Phase2-2013	15	20
	Vehicle Refueling	UPPER	MW06A	MW06AN	11/4/2014	N		Phase3-2014	8	28
	Vehicle Refueling	UPPER	MW06A	MW06AR	11/4/2014	FD	MW06AN	Phase3-2014	8	28
	Vehicle Refueling	UPPER	MW06A	MW06A122116N	12/21/2016	N		WP#3-2016	8	28
	Vehicle Refueling	UPPER	MW06A	MW06A122116R	12/21/2016	FD	MW06A122116N	WP#3-2016	8	28
 	Vehicle Refueling	UPPER	SUSDP37	DPW3713-18N	5/23/2013	N		Phase2-2013	13	18
1	Vehicle Refueling	UPPER	SUSDP37	DPW3725-30N	5/23/2013	N		Phase2-2013	25	30
 	Vehicle Refueling	UPPER UPPER	SUSDP39 DP30	DPW3913-18N	5/22/2013	N		Phase2-2013	13 27	18 29
 	Warehouse Warehouse	UPPER	DP30 DP31	DPW3028N DPW3120N	4/3/2013 4/1/2013	N N		Phase2-2013 Phase2-2013	19.5	29
 	Warehouse	UPPER	DP31 DP40	DPW3120N DPW4015-20N	5/28/2013	N N		Phase2-2013 Phase2-2013	19.5	20.5
 		1								
 	Warehouse Warehouse	UPPER UPPER	DP42 DPA1	DPW4220-25N DPWA120-25N	5/29/2013 4/17/2014	N N		Phase2-2013 Phase3-2014	20 20	25 25
 	Warehouse	UPPER	MW05A	MW05AN	11/4/2014	N		Phase3-2014	10	20
 	Warehouse	UPPER	MW05A	MW05ANB	11/4/2014	FD	MW05AN	Phase3-2014	10	20
 	Warehouse	UPPER	MW05A	MW05A122116N	12/21/2014	N N	NIMCOANN	WP#3-2016	10	20
1	Warehouse	UPPER	MW07A	MW07AN	11/5/2014	N		Phase3-2014	8	28
1	Warehouse	UPPER	MW07A	MW07AR	11/5/2014	FD	MW07AN	Phase3-2014	8	28
 	Warehouse	UPPER	MW07A	MW07AN2	12/19/2014	N N	IVIVVO/AIN	Phase3-2014	8	28
1	Warehouse	UPPER	MW07A	MW07AN2 BACKUP	12/19/2014	N		Phase3-2014	8	28
1	Warehouse	UPPER	MW07A	MW07A122016N	12/19/2014	N		WP#3-2016	8	28
1	Warehouse	UPPER	MW08A	MW08AN	11/10/2014	N		Phase3-2014	10	25
1	Warehouse	UPPER	MW08A	MW08A122116N	12/21/2016	N		WP#3-2016	10	25
1	Warehouse	UPPER	MW10A	MW10AN	11/4/2014	N		Phase3-2014	10	30
		U		MW11AN	11/4/2014	N	l	Phase3-2014		42

February 2020

Table 3-3 Groundwater Samples Used in the BHHRA Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Sample Area	Aquifer	Sample Location	Sample ID	Sample Date	Sample Type	Parent Sample	Task Code	Start Depth (feet)	End Depth (feet)
Warehouse	UPPER	MW11A	MW11AN2	12/19/2014	N		Phase3-2014	27	42
Warehouse	UPPER	MW11A	MW11A122216N	12/22/2016	N		WP#3-2016	27	42
Warehouse	UPPER	SUSDP03	DPW0310-15N	5/21/2013	N		Phase2-2013	10	15
Warehouse	UPPER	SUSDP04	DPW0415-20N	5/20/2013	N		Phase2-2013	15	20
Warehouse	UPPER	SUSDP05	DPW0514-19N	5/21/2013	N		Phase2-2013	14	19
Warehouse	UPPER	SUSDP05	DPW0514-19R	5/21/2013	FD	DPW0514-19N	Phase2-2013	14	19
Warehouse	UPPER	SUSDP06	DPW0614.5-19.5N	5/23/2013	N		Phase2-2013	14.5	19.5
Warehouse	UPPER	SUSDP07	DPW0720-25N	5/22/2013	N		Phase2-2013	20	25
Warehouse	UPPER	SUSDP08	DPW0815-25N	5/24/2013	N		Phase2-2013	15	25
Warehouse	UPPER	SUSDP11	DPW1110-15N	5/28/2013	N		Phase2-2013	10	15
Warehouse	UPPER	SUSDP13	DPW1310-15N	5/29/2013	N		Phase2-2013	10	15
Warehouse	UPPER	SUSDP41	DPW41 15-25N	5/24/2013	N		Phase2-2013	15	25
Warehouse	LOWER (a)	MW08B	MW08B122116N	12/21/2016	N		WP#3-2016	50	60
Warehouse	LOWER (a)	MW08B	MW08BN	11/5/2014	N		Phase3-2014	50	60
Warehouse	LOWER (a)	MW08B	MW08BN2	12/19/2014	N		Phase3-2014	50	60
Warehouse	LOWER (a)	MW08B	MW08BR	11/5/2014	FD	MW08BN	Phase3-2014	50	60
Warehouse	LOWER (a)	MW11B	MW11B122216N	12/22/2016	N		WP#3-2016	50	62
Warehouse	LOWER (a)	MW11B	MW11BN	11/4/2014	N		Phase3-2014	50	62

Notes: FD = Field duplicate.

N = Normal sample

(a) Data from lower aquifer used only in the evaluation of groundwater migration to surface water. Data collected in 2016 were used where available. Otherwise, data collected in 2014 was used. such that for each chemical and well combination, the most recent data point was used.

Exposure Areas:

RI Report - BHHRA

Maintenance: Stores and Fleet Maintenance Area

Offices/Parking: Offices and Parking Lot
Future Park/Green Hypothetical Future Park Land/Green Space

Salvage: Salvage Yard and Waste Storage Area

Substation #7: Substation #7 Transformer Shop: Transformer Shop Vehicle Refueling: Vehicle Refueling Area Warehouse: Warehouse and Laydown Area

FINAL Benning Road Facility

Table 3-4 Background Groundwater Samples Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

				Sample				Start Depth	End Depth
Sample Area	Sample Location	Sample ID	Sample Date	Type	Parent Sample	Task Code	Aquifer	(feet)	(feet)
Background	DPBACK10	DPWBACK1016-20N	8/30/2017	N		WP#3-2017-BACK	UPPER	16	20
Background	DPBACK14	DPWBACK1415-19N	3/8/2017	N		WP#3-2017-BACK	UPPER	15	19
Background	DPBACK16	DPWBACK1620-24N	8/29/2017	N		WP#3-2017-BACK	UPPER	20	24
Background	SOBACK04/ DPBACK04	DPWBACK0420-24N	8/22/2017	N		WP#3-2017-BACK	UPPER	20	24
Background	SOBACK05/ DPBACK15	DPWBACK1524-28N	8/28/2017	N		WP#3-2017-BACK	UPPER	24	28
Background	SOBACK08/ DPBACK12	DPWBACK1221-25N	4/18/2017	N		WP#3-2017-BACK	UPPER	21	25
Background	SOBACK10/DPBACK01	DPWBACK0105-09N	3/7/2017	N		WP#3-2017-BACK	UPPER	5	9
Background	SOBACK12/DPBACK09	DPWBACK0916-20N	4/18/2017	N		WP#3-2017-BACK	UPPER	16	20
Background	SOBACK17/ DPBACK05	DPWBACK0513-17N	3/2/2017	N		WP#3-2017-BACK	UPPER	13	17
Background	SOBACK17/ DPBACK05	DPWBACK0513-17R	3/2/2017	FD	DPWBACK0513-17N	WP#3-2017-BACK	UPPER	13	17
Background	SOBACK18/ DPBACK13	DPWBACK1306-10N	4/19/2017	N		WP#3-2017-BACK	UPPER	6	10

Notes:

FD = Field duplicate.

N = Normal sample

Table 3-5
Surface Sediment Samples and Identification of Fringe Sediment Samples used in BHHRA
Benning Road Facility RI/FS Project
3400 Benning Rd, N.E., Washington DC 20019

Sample Area	Sample	Sample ID	Selected for HHRA?	Sample Date	Sample	Parent Sample	Tack Codo	Start Depth	End Depth (feet)
Sample Area Waterside	Location SED1.5B	Sample ID SED1.5B00N		11/6/2013	Type N	Parent Sample	Task Code Phase2-2013	(feet)	(reet) 0.5
Waterside	SED1.5B SED1.5C	SED1.5B00N SED1.5C00AN	No (a) Yes	6/21/2017	N		WP#3-2017 Waterside	0	0.33
Waterside	SED1.5C	SED1.5C00AN	Yes	6/21/2017	FD	SED1.5C00AN	WP#3-2017 Waterside	0	0.33
Waterside	SED10A	SED10A00N	No (b)	11/11/2013	N	OLD 1.5000AIN	Phase2-2013	0	0.55
Waterside	SED10R	SED10B00N	No (a)	11/11/2013	N		Phase2-2013	0	0.5
Waterside	SED10C	SED10C00N	Yes	11/11/2013	N		Phase2-2013	0	0.5
Waterside	SED1A	SED1A00N	No (b)	11/6/2013	N		Phase2-2013	0	0.5
Waterside	SED1B	SED1B00N	No (a)	11/6/2013	N		Phase2-2013	0	0.5
Waterside	SED1C	SED1C00N	Yes	11/7/2013	N		Phase2-2013	0	0.5
Waterside	SED2.5B	SED2.5B00N	Yes	11/7/2013	N		Phase2-2013	0	0.5
Waterside	SED2A	SED2A00N	No (a)	11/6/2013	N		Phase2-2013	0	0.5
Waterside	SED2B	SED2B00N	No (a)	11/5/2013	N		Phase2-2013	0	0.5
Waterside	SED2C	SED2C00N	Yes	11/6/2013	N		Phase2-2013	0	0.5
Waterside	SED3.5B	SED3.5B00N	No (a)	11/12/2013	N		Phase2-2013	0	0.5
Waterside	SED3A	SED3A00N	No (b)	11/7/2013	N		Phase2-2013	0	0.5
Waterside	SED3B	SED3B00N	No (a)	11/8/2013	N		Phase2-2013	0	0.5
Waterside	SED3C	SED3C00N	No (a)	11/7/2013	N		Phase2-2013	0	0.5
Waterside	SED3C	SED3C00R	No (a)	11/7/2013	FD	SED3C00N	Phase2-2013	0	0.5
Waterside	SED4.5B	SED4.5B00N	No (a)	11/8/2013	N		Phase2-2013	0	0.5
Waterside	SED4A	SED4A00N	No (b)	11/12/2013	N		Phase2-2013	0	0.5
Waterside	SED4B	SED4B00N	No (a)	11/12/2013	N		Phase2-2013	0	0.5
Waterside	SED4B	SED4B00R	No (a)	11/12/2013	FD	SED4B00N	Phase2-2013	0	0.5
Waterside	SED4C	SED4C00N	Yes	11/12/2013	N		Phase2-2013	0	0.5
Waterside	SED5.5B	SED5.5B00N	No (a)	11/12/2013	N		Phase2-2013	0	0.5
Waterside	SED5A	SED5A00N	No (b)	11/8/2013	N		Phase2-2013	0	0.5
Waterside	SED5B	SED5B00AN	No (a)	6/20/2017	N		WP#3-2017 Waterside	0	0.33
Waterside	SED5B	SED5B00N	No (a)	11/8/2013	N		Phase2-2013	0	0.5
Waterside	SED5C	SED5C00N	No (a)	11/11/2013	N		Phase2-2013	0	0.5
Waterside	SED6.5D	SED6.5D00EN	Yes	6/9/2017	N		WP#3-2017 Waterside	0	0.33
Waterside	SED6.5D	SED6.5D00N	Yes	11/25/2013	N		Phase2-2013	0	0.5
Waterside	SED6.5E	SED6.5E00EN	Yes	6/8/2017	N		WP#3-2017 Waterside	0	0.33
Waterside	SED6.5E	SED6.5E00N	Yes	11/25/2013	N		Phase2-2013	0	0.5
Waterside	SED6A	SED6A00EN	No (b)	6/8/2017	N		WP#3-2017 Waterside	0	0.33
Waterside	SED6A	SED6A00N	No (b)	11/13/2013	N		Phase2-2013	0	0.5
Waterside	SED6B	SED6B00EN	No (a)	6/8/2017	N		WP#3-2017 Waterside	0	0.33
Waterside	SED6B	SED6B00N	No (a)	11/13/2013	N		Phase2-2013	0	0.5
Waterside	SED6B	SED6B00R	No (a)	11/13/2013	FD	SED6B00N	Phase2-2013	0	0.5
Waterside	SED6C	SED6C00EN	Yes	6/7/2017	N		WP#3-2017 Waterside	0	0.33
Waterside	SED6C	SED6C00N	Yes	11/14/2013	N		Phase2-2013	0	0.5
Waterside	SED7.5D	SED7.5D00EN	Yes	6/9/2017	N		WP#3-2017 Waterside	0	0.33
Waterside	SED7.5D	SED7.5D00N	Yes	11/25/2013	N		Phase2-2013	0	0.5
Waterside	SED7.5E	SED7.5E00EN	Yes	6/8/2017	N		WP#3-2017 Waterside	0	0.33
Waterside	SED7.5E	SED7.5E00N	Yes	11/25/2013	N		Phase2-2013	0	0.5
Waterside	SED7A	SED7A00EN	No (b)	6/9/2017	N		WP#3-2017 Waterside	0	0.33
Waterside	SED7A	SED7A00N	No (b)	11/13/2013	N		Phase2-2013	0	0.5
Waterside	SED7B	SED7B00EN	No (a)	6/7/2017	N		WP#3-2017 Waterside	0	0.33
Waterside	SED7B	SED7B00N	No (a)	11/13/2013	N		Phase2-2013	0	0.5
Waterside	SED7B	SED7B00R	No (a)	11/13/2013	FD	SED7B00N	Phase2-2013	0	0.5
Waterside	SED7D	SED7D00EN	Yes	6/9/2017	N		WP#3-2017 Waterside	0	0.33
Waterside	SED7D	SED7D00N	Yes	11/25/2013	N		Phase2-2013	0	0.5
Waterside	SED7E	SED7E00AN	Yes	6/22/2017	N		WP#3-2017 Waterside	0	0.33
Waterside	SED7E	SED7E00EN	Yes	6/8/2017	N		WP#3-2017 Waterside	0	0.33
Waterside	SED7E	SED7E00N	Yes	11/25/2013	N		Phase2-2013	0	0.5
Waterside	SED7F	SED7F00EN	Yes	6/8/2017	N		WP#3-2017 Waterside	0	0.33
Waterside	SED7F	SED7F00N	Yes	11/25/2013	N		Phase2-2013	0	0.5
Waterside	SED7G	SED7G00N	Yes	1/30/2014	N		Phase2-2013	0	0.5
Waterside	SED8.5B	SED8.5B00N	No (a)	11/13/2013	N		Phase2-2013	0	0.5
Waterside	SED8A	SED8A00EN	No (b)	6/9/2017	N		WP#3-2017 Waterside	0	0.33
Waterside	SED8A	SED8A00N	No (b)	11/13/2013	N		Phase2-2013	0	0.5
Waterside	SED8B	SED8B00EN	No (a)	6/9/2017	N		WP#3-2017 Waterside	0	0.33
Waterside	SED8B	SED8B00N	No (a)	11/13/2013	N		Phase2-2013	0	0.5
Waterside	SED8C	SED8C00EN	Yes	6/7/2017	N		WP#3-2017 Waterside	0	0.33
Waterside	SED8C	SED8C00N	Yes	11/14/2013	N		Phase2-2013	0	0.5
Waterside	SED8C	SED8C00R	Yes	11/14/2013	FD	SED8C00N	Phase2-2013	0	0.5
Waterside	SED9.5B	SED9.5B00N	Yes	11/11/2013	N		Phase2-2013	0	0.5
Waterside	SED9A	SED9A00N	No (b)	11/11/2013	N		Phase2-2013	0	0.5

Table 3-5 Surface Sediment Samples and Identification of Fringe Sediment Samples used in BHHRA Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

	Sample		Selected for		Sample			Start Depth	End Depth
Sample Area	Location	Sample ID	HHRA?	Sample Date	Type	Parent Sample	Task Code	(feet)	(feet)
Waterside	SED9B	SED9B00N	No (a)	11/11/2013	N	,	Phase2-2013	0	0.5
Waterside	SED9C	SED9C00N	Yes	11/11/2013	N		Phase2-2013	0	0.5
Waterside	WSED1	WSED100N	No (a)	11/15/2013	N		Phase2-2013	0	0.5
Waterside	WSED1	WSED100R	No (a)	11/15/2013	FD	WSED100N	Phase2-2013	0	0.5
Waterside	WSED2	WSED200N	No (a)	11/15/2013	N		Phase2-2013	0	0.5
Waterside	R5-03	RI-R5-03-SS	Yes	7/25/2014	N		DOEE_Phase1	0	0.5
Waterside	R5-04	RI-R5-04-SS	No (a)	7/28/2014	N		DOEE_Phase1	0	0.5
Waterside	R5-05	RI-R5-05-SS	Yes	7/30/2014	N		DOEE_Phase1	0	0.5
Waterside	R5-06	RI-R5-06-SS	No (a)	4/30/2015	N		DOEE_Phase1	0	0.5
Waterside	R5-08	P2-R5-08-SS	No (a)	6/9/2016	N		DOEE_Phase2	0	0.5
Waterside	R5-09	P2-R5-09-SS	Yes	6/28/2016	N		DOEE_Phase2	0	0.5
Waterside	R6-01	RI-R6-01-SS	No (a)	8/5/2014	N		DOEE_Phase1	0	0.5
Waterside	R6-02	RI-R6-02-SS	No (a)	7/28/2014	N		DOEE_Phase1	0	0.5
Waterside	R6-03	RI-R6-03-SS	No (a)	7/28/2014	N		DOEE_Phase1	0	0.5
Waterside	R6-04	RI-R6-04-SS	Yes	7/28/2014	N		DOEE_Phase1	0	0.5
Waterside	R6-04	RI-R6-80-SS	Yes	7/28/2014	FD	RI-R6-04-SS	DOEE_Phase1	0	0.5
Waterside	R6-05	RI-R6-05-SS	Yes	8/4/2014	N		DOEE_Phase1	0	0.5
Waterside	R6-06	RI-R6-06-SS	Yes	8/4/2014	N		DOEE_Phase1	0	0.5
Waterside	R6-06	RI-R6-100-SS	Yes	8/4/2014	FD	RI-R6-06-SS	DOEE_Phase1	0	0.5
Waterside	R6-07	RI-R6-07-SS	No (b)	7/30/2014	N		DOEE_Phase1	0	0.5
Waterside	R6-18	RI-R6-18-SS	Yes	4/30/2015	N		DOEE_Phase1	0	0.5
Waterside	R6-21	RI-R6-21-SS	Yes	4/29/2015	N		DOEE_Phase1	0	0.5
Waterside	R6-22	RI-R6-22-SS	Yes	4/30/2015	N		DOEE_Phase1	0	0.5
Waterside	R6-23	RI-R6-23-SS	Yes	4/30/2015	N		DOEE_Phase1	0	0.5
Waterside	R6-30	P2-R6-30-SS	Yes	6/9/2016	N		DOEE_Phase2	0	0.5
Waterside	R6-30	P2-R6-40-SS	Yes	6/9/2016	FD	P2-R6-30-SS	DOEE_Phase2	0	0.5
Waterside	R6-31	P2-R6-31-SS	Yes	6/28/2016	N		DOEE_Phase2	0	0.5
Waterside	R6-32	P2-R6-32-SS	Yes	6/28/2016	N		DOEE_Phase2	0	0.5
Waterside	R6-33	P2-R6-33-SS	Yes	6/28/2016	N		DOEE_Phase2	0	0.5

Notes:

N = Normal sample FD = Field duplicate

(a) - Not located within fringe sediment area (mean low tide minus one).

(b) - Within fringe sediment area, but on bank opposite Pepco.

Table 3-6 Background Surface Sediment Samples Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Sample Area Background Background	Sample Location SEDBACK1 SEDBACK2 SEDBACK2 SEDBACK3 SEDBACK4 SEDBACK5 SEDBACK5 SEDBACK6	Sample ID SEDBACK100N SEDBACK200N SEDBACK200R SEDBACK300N SEDBACK400N	Source Pepco Phase I Pepco Phase I Pepco Phase I Pepco Phase I	Sample Date 12/3/2013 12/3/2013	Sample Type N N	Parent Sample	Depth Interval (feet) 0-0.5
Background	SEDBACK1 SEDBACK2 SEDBACK2 SEDBACK3 SEDBACK4 SEDBACK5 SEDBACK5	SEDBACK100N SEDBACK200N SEDBACK200R SEDBACK300N SEDBACK400N	Pepco Phase I Pepco Phase I Pepco Phase I	12/3/2013 12/3/2013	N	Parent Sample	
Background	SEDBACK2 SEDBACK3 SEDBACK4 SEDBACK5 SEDBACK5	SEDBACK200N SEDBACK200R SEDBACK300N SEDBACK400N	Pepco Phase I Pepco Phase I	12/3/2013			
Background Background Background Background Background Background Background Background	SEDBACK2 SEDBACK3 SEDBACK4 SEDBACK5 SEDBACK5	SEDBACK200R SEDBACK300N SEDBACK400N	Pepco Phase I				0-0.5
Background Background Background Background Background Background Background	SEDBACK3 SEDBACK4 SEDBACK5 SEDBACK5	SEDBACK300N SEDBACK400N		12/3/2013	FD	SEDBACK200N	0-0.5
Background Background Background Background Background Background	SEDBACK4 SEDBACK5 SEDBACK5	SEDBACK400N	i opoo i nasc i	11/15/2013	N	3LDBACK200N	0-0.5
Background Background Background Background Background	SEDBACK5 SEDBACK5		Pepco Phase I	11/14/2013	N		0-0.5
Background Background Background Background	SEDBACK5	SEDBACK500N	Pepco Phase I	11/14/2013	N		0-0.5
Background Background Background		SEDBACK500R	Pepco Phase I	11/14/2013	FD	SEDBACK500N	0-0.5
Background Background		SEDBACK600N	Pepco Phase I	11/15/2013	N		0-0.5
	SEDBACK16	SEDBACK1600N	Pepco Phase II	6/12/2017	N		0-0.33
Background	SEDBACK17	SEDBACK1700N	Pepco Phase II	6/12/2017	N		0-0.33
Dackground	SEDBACK18	SEDBACK1800N	Pepco Phase II	6/12/2017	N		0-0.33
Background	SEDBACK19	SEDBACK1900N	Pepco Phase II	6/13/2017	N		0-0.33
Background	SEDBACK19	SEDBACK1900R	Pepco Phase II	6/13/2017	FD	SEDBACK1900N	0-0.33
Background	SEDBACK20	SEDBACK2000N	Pepco Phase II	6/13/2017	N		0-0.33
Background	SEDBACK20	SEDBACK2000R	Pepco Phase II	6/13/2017	FD	SEDBACK2000N	0-0.33
Background	R6-13	RI-R6-13-SS	DOEE Phase I	7/31/2014	N		0-0.5
Background	R6-14	RI-R6-14-SS	DOEE Phase I	7/31/2014	N		0-0.5
Background	R6-15	RI-R6-15-SS	DOEE Phase I	7/31/2014	N		0-0.5
Background	R6-16	RI-R6-16-SS	DOEE Phase I	7/31/2014	N		0-0.5
Background	R6-17	RI-R6-17-SS	DOEE Phase I	7/31/2014	N		0-0.5
Background	R7-01	RI-R7-01-SS	DOEE Phase I	8/1/2014	N		0-0.5
Background	R7-02	RI-R7-02-SS	DOEE Phase I	8/1/2014	N		0-0.5
Background	R7-03	RI-R7-03-SS	DOEE Phase I	8/1/2014	N		0-0.5
Background	R7-04	RI-R7-04-SS	DOEE Phase I	8/1/2014	N		0-0.5
Background	R7-05	RI-R7-05-SS	DOEE Phase I	8/6/2014	N		0-0.5
Background	R7-06	RI-R7-06-SS	DOEE Phase I	8/6/2014	N		0-0.5
Background	R7-07	RI-R7-07-SS	DOEE Phase I	8/6/2014	N		0-0.5
Background	R7-08	RI-R7-08-SS	DOEE Phase I	8/6/2014	N		0-0.5
Background	R7-09	RI-R7-09-SS	DOEE Phase I	8/7/2014	N		0-0.5
Background	R7-10 R7-11	RI-R7-10-SS RI-R7-11-SS	DOEE Phase I	8/7/2014	N N		0-0.5
Background			DOEE Phase I	8/7/2014			0-0.5
Background Background	R7-12 R7-13	RI-R7-12-SS RI-R7-13-SS	DOEE Phase I	8/7/2014 8/7/2014	N N		0-0.5 0-0.5
Background	R7-13	RI-R7-13-SS RI-R7-14-SS	DOEE Phase I	8/8/2014	N N		0-0.5
Background	R7-14	RI-R7-15-SS	DOEE Phase I	8/8/2014	N		0-0.5
Background	R7-16	RI-R7-16-SS	DOEE Phase I	8/8/2014	N		0-0.5
Background	R7-10	RI-R7-17-SS	DOEE Phase I	8/8/2014	N		0-0.5
Background	R7-17	RI-R7-18-SS	DOEE Phase I	8/7/2014	N		0-0.5
Background	R7-19	RI-R7-19-SS	DOEE Phase I	8/7/2014	N	 	0-0.5
Background	R7-20	RI-R7-20-SS	DOEE Phase I	8/7/2014	N		0-0.5
Background	R7-20	RI-R7-20-SS	DOEE Phase I	8/7/2014	FD	RI-R7-20-SS	0-0.5
Background	R7-21	RI-R7-21-SS	DOEE Phase I	8/7/2014	N	1 20 00	0-0.5
Background	R7-22	RI-R7-22-SS	DOEE Phase I	8/11/2014	N	1	0-0.5
Background	R7-23	RI-R7-23-SS	DOEE Phase I	8/6/2014	N	1	0-0.5
Background	R6-51	P2-R6-51-SS	DOEE Phase II	6/9/2016	N		0-0.5
Background	R7-27	P2-R7-27-SS	DOEE Phase II	6/9/2016	N		0-0.5
Background	R7-28	P2-R7-28-SS	DOEE Phase II	6/24/2016	N		0-0.5
Background	R7-32	P2-R7-32-SS	DOEE Phase II	6/9/2016	N		0-0.5
Background	R7-34	P2-R7-34-SS	DOEE Phase II	6/24/2016	N		0-0.5
Background	R7-35	P2-R7-35-SC-0.00-0.50	DOEE Phase II	7/22/2016	N		0-0.5
Background	R7-38	P2-R7-38-SS	DOEE Phase II	6/24/2016	N		0-0.5
Background	R7-39	P2-R7-39-SS	DOEE Phase II	6/24/2016	N		0-0.5
Background	R7-41	P2-R7-41-SS	DOEE Phase II	6/9/2016	N		0-0.5
Background	R7-42	P2-R7-42-SS	DOEE Phase II	6/9/2016	N		0-0.5
			<u> </u>				

Notes:
DOEE = Department of Energy and Environment

N = Normal sample

FD = Field duplicate

Sources:

Pepco collected Site-specific background sediment samples during the Phase I and Phase II field investigations. Sediment samples were collected by Tetra Tech on behalf of DOEE to support Phase I and Phase II of the Anacostia River Sediment Project.

Table 3-7
Surface Water Samples Used in the BHHRA
Benning Road Facility RI/FS Project
3400 Benning Rd, N.E., Washington DC 20019

				Sample	Parent		Sample Depth
Sample Area	Sample Location	Sample ID	Sample Date	Туре	Sample	Task Code	(feet)
Background	SUWBACK1	SUWBACK1N	10/3/2013	N		Phase2-2013	0.5
Background	SUWBACK11	SUWBACK11N	9/25/2013	N		Phase2-2013	6.1
Background	SUWBACK12	SUWBACK12N	9/25/2013	N		Phase2-2013	1.8
Background	SUWBACK13	SUWBACK13N	9/25/2013	N		Phase2-2013	11.9
Background	SUWBACK15	SUWBACK15N	9/25/2013	N		Phase2-2013	5.15
Background	SUWBACK2	SUWBACK2N	10/3/2013	N		Phase2-2013	0.5
Background	SUWBACK3	SUWBACK3N	9/26/2013	N	Phase2-2013		1.5
Background	SUWBACK4	SUWBACK4N	9/26/2013	N		Phase2-2013	7.6
Background	SUWBACK5	SUWBACK5N	9/26/2013	N		Phase2-2013	5.1
Background	SUWBACK6	SUWBACK6N	9/26/2013	N		Phase2-2013	1.8
Waterside Area	SUW10B	SUW10BN	9/26/2013	Ν		Phase2-2013	7.3
Waterside Area	SUW1B	SUW1BN	9/23/2013	Ν		Phase2-2013	12.8
Waterside Area	SUW2B	SUW2BN	9/23/2013	Ν		Phase2-2013	5.3
Waterside Area	SUW3C	SUW3CN	9/23/2013	Ν		Phase2-2013	5.8
Waterside Area	SUW4B	SUW4BN	9/24/2013	N		Phase2-2013	5.7
Waterside Area	SUW5C	SUW5CN	9/24/2013	N		Phase2-2013	3.6
Waterside Area	SUW6B	SUW6BN	9/24/2013	N		Phase2-2013	9.8
Waterside Area	SUW6B	SUW6BR	9/24/2013	FD	SUW6BN	Phase2-2013	9.8
Waterside Area	SUW7B	SUW7BN	9/24/2013	N		Phase2-2013	5.6
Waterside Area	SUW8B	SUW8BN	9/24/2013	N		Phase2-2013	7.9
Waterside Area	SUW9C	SUW9CN	9/25/2013	N		Phase2-2013	1.8

Notes:

N = Normal sample FD = Field duplicate

Table 3-8
Fish Tissue Samples Used in the BHHRA
Benning Road Facility RI/FS Project
3400 Benning Rd, N.E., Washington DC 20019

Upper Tidal Anacostia (a)	Sample Area	Sample ID	Species	Sample Date	Sample Type	Task Code
Upper Tidal Anacostia (a)						
Upper Tidal Anacostia (a)	Adjacent to Bennin		T=	1		
UACA01						USFWS/Pinkney
Anacostia (a) UACC01	Upper Tidal					•
UALB01						
UANS01 Northern snakehead 9/26/2013 N USFWS/Pinkn UASF01 Sunfish 9/23/2013 N USFWS/Pinkn VISFWS/Pinkn	-					
Other Areas UASF01 Sunfish 9/23/2013 N USFWS/Pinkn Lower Tidal Anacostia LAAE01 American eel 9/26/2013 N USFWS/Pinkn Lower Tidal Anacostia LABC01 Biue catfish 9/26/2013 N USFWS/Pinkn LACC01 Channel catfish 9/26/2013 N USFWS/Pinkn LALB01 Largemouth bass 9/26/2013 N USFWS/Pinkn LASF01 Sunfish 9/26/2013 N USFWS/Pinkn LASF01 Sunfish 9/26/2013 N USFWS/Pinkn LPAE01 American eel 9/23/2013 N USFWS/Pinkn LPAE02 American eel 9/23/2013 N USFWS/Pinkn LPAS01 American shad 4/30/2013 N USFWS/Pinkn LPCO1 Biue catfish 9/30/2013 N USFWS/Pinkn LPCA01 Carp 9/23/2013 N USFWS/Pinkn LPEC01 Channel catfish 9/23/2013 N USFWS/Pinkn LPSF01	<u>-</u>					
LAAE01	-					
LARE01		UASF01	Sunfish	9/23/2013	N	USFWS/Pinkney
Lower Tidal Anacostia	Other Areas					
LACA01						USFWS/Pinkney
Anacostia	Lower Tidal					USFWS/Pinkney
LACC01 Channel catrish 9/26/2013 N USFWS/Pinkn LAB01 Largemouth bass 9/26/2013 N USFWS/Pinkn LASF01 Sunfish 9/26/2013 N USFWS/Pinkn LPAE01 American eel 9/23/2013 N USFWS/Pinkn LPAE02 American eel 9/23/2013 N USFWS/Pinkn LPAE02 American shad 4/30/2013 N USFWS/Pinkn LPAE01 American shad 4/30/2013 N USFWS/Pinkn LPAE01 Brown bullhead 9/23/2013 N USFWS/Pinkn LPAE01 Brown bullhead 9/23/2013 N USFWS/Pinkn LPAE01 Blue catfish 9/30/2013 N USFWS/Pinkn LPCA01 Carp 9/23/2013 N USFWS/Pinkn LPLE01 Largemouth bass 9/23/2013 N USFWS/Pinkn LPLE01 Largemouth bass 9/23/2013 N USFWS/Pinkn UPSF01 Sunfish 9/26/2016 (O) N USFWS/Pinkn UPCA01 Carp 9/24/2013 N USFWS/Pinkn UPSF01 Sunfish 9/24/2016						USFWS/Pinkney
LASF01 Sunfish 9/26/2013 N USFWS/Pinkn	71114003114					USFWS/Pinkney
LPAE01						
LPAE02		LASF01	Sunfish	9/26/2013		USFWS/Pinkney
LPAS01		LPAE01	American eel	9/23/2013		USFWS/Pinkney
LPBB01 Brown bullhead 9/23/2013 N USFWS/Pinkn		LPAE02	American eel	9/23/2013		USFWS/Pinkney
LPBC01 Blue catfish 9/30/2013 N USFWS/Pinkn		LPAS01	American shad	4/30/2013		USFWS/Pinkney
LPCA01 Carp 9/23/2013 (M) N USFWS/Pinkn			Brown bullhead			USFWS/Pinkney
LPCA01 Carp 9/23/2013 (M) 9/26/2016 (O) N USFWS/Pinkn	Lower Potomac	LPBC01	Blue catfish		N	USFWS/Pinkney
LPCC01 Channel catfish 9/23/2013 N USFWS/Pinkn	Lower r otomae	I DCA01	Carp	9/23/2013 (M)	N	LISEWS/Dinkney
LPLB01			·			•
LPSF01 Sunfish 9/23/2013 (M) 9/26/2016 (O) N USFWS/Pinkn			Channel catfish	9/23/2013		USFWS/Pinkney
UPAE01		LPLB01	Largemouth bass		N	USFWS/Pinkney
UPAE01		I DSE01	Sunfieh	9/23/2013 (M)	N	LISEWS/Dinkney
UPBB01 Brown bullhead 9/24/2013 N USFWS/Pinkn UPCA01 Carp 9/24/2013 N USFWS/Pinkn UPCC01 Channel catfish 9/24/2013 N USFWS/Pinkn UPLB01 Largemouth bass 9/24/2013 N USFWS/Pinkn UPNS01 Northern snakehead 5/13/2013 N USFWS/Pinkn UPSB01 Striped bass 5/9/2013 N USFWS/Pinkn UPSF01 Sunfish 9/24/2013 N USFWS/Pinkn UPWP01 White perch 5/9/2013 N USFWS/Pinkn P2-IC-008-GTA Largemouth bass 8/3/2016 N DOEE_Phase P2-IC-009-GT1A Largemouth bass 8/3/2016 N DOEE_Phase P2-IC-010-GT1A Striped bass 8/12/2016 N DOEE_Phase P2-IC-010-GT3A Striped bass 8/12/2016 N DOEE_Phase		Li Oi Oi	Odililoli	9/26/2016 (O)	11	OSI WO/I IIIKIIE
Upper Potomac UPCA01 Carp 9/24/2013 N USFWS/Pinkn Upper Potomac UPLB01 Largemouth bass 9/24/2013 N USFWS/Pinkn UPNS01 Northern snakehead 5/13/2013 N USFWS/Pinkn UPSB01 Striped bass 5/9/2013 N USFWS/Pinkn UPSF01 Sunfish 9/24/2013 N USFWS/Pinkn UPWP01 White perch 5/9/2013 N USFWS/Pinkn UPSF01 White perch 5/9/2013 N USFWS/Pinkn UPSF01 White perch 5/9/2013 N USFWS/Pinkn UPSF01 White perch 5/9/2013 N USFWS/Pinkn P2-IC-008-GTA Largemouth bass 8/3/2016 N DOEE_Phase P2-IC-009-GT1A Largemouth bass 8/3/2016 N DOEE_Phase P2-IC-010-GT1A Striped bass 8/12/2016 N DOEE_Phase P2-IC-010-GT3A Striped bass 8/12/2016 N DOEE_Phase		UPAE01	American eel	9/24/2013		USFWS/Pinkney
Upper Potomac UPCC01 Channel catfish 9/24/2013 N USFWS/Pinkn Upper Potomac UPLB01 Largemouth bass 9/24/2013 N USFWS/Pinkn UPNS01 Northern snakehead 5/13/2013 N USFWS/Pinkn UPSB01 Striped bass 5/9/2013 N USFWS/Pinkn UPSF01 Sunfish 9/24/2013 N USFWS/Pinkn UPWP01 White perch 5/9/2013 N USFWS/Pinkn P2-IC-008-GTA Largemouth bass 8/3/2016 N DOEE_Phase P2-IC-009-GT1A Largemouth bass 8/3/2016 N DOEE_Phase P2-IC-010-GT2A Largemouth bass 8/3/2016 N DOEE_Phase P2-IC-010-GT3A Striped bass 8/12/2016 N DOEE_Phase P2-IC-010-GT3A Striped bass 8/12/2016 N DOEE_Phase		UPBB01	Brown bullhead	9/24/2013	N	USFWS/Pinkney
Upper Potomac UPLB01 Largemouth bass 9/24/2013 N USFWS/Pinkn UPNS01 Northern snakehead 5/13/2013 N USFWS/Pinkn UPSB01 Striped bass 5/9/2013 N USFWS/Pinkn UPSF01 Sunfish 9/24/2013 N USFWS/Pinkn UPWP01 White perch 5/9/2013 N USFWS/Pinkn P2-IC-008-GTA Largemouth bass 8/3/2016 N DOEE_Phase P2-IC-009-GT1A Largemouth bass 8/3/2016 N DOEE_Phase P2-IC-010-GT2A Largemouth bass 8/3/2016 N DOEE_Phase P2-IC-010-GT3A Striped bass 8/12/2016 N DOEE_Phase P2-IC-010-GT3A Striped bass 8/12/2016 N DOEE_Phase		UPCA01		9/24/2013		USFWS/Pinkney
UPNS01 Northern snakehead 5/13/2013 N USFWS/Pinkn UPSB01 Striped bass 5/9/2013 N USFWS/Pinkn UPSF01 Sunfish 9/24/2013 N USFWS/Pinkn UPWP01 White perch 5/9/2013 N USFWS/Pinkn P2-IC-008-GTA Largemouth bass 8/3/2016 N DOEE_Phase P2-IC-009-GT1A Largemouth bass 8/3/2016 N DOEE_Phase P2-IC-009-GT2A Largemouth bass 8/3/2016 N DOEE_Phase P2-IC-010-GT1A Striped bass 8/12/2016 N DOEE_Phase P2-IC-010-GT3A Striped bass 8/12/2016 N DOEE_Phase		UPCC01	Channel catfish	9/24/2013		USFWS/Pinkney
UPSB01 Striped bass 5/9/2013 N USFWS/Pinkn UPSF01 Sunfish 9/24/2013 N USFWS/Pinkn UPWP01 White perch 5/9/2013 N USFWS/Pinkn P2-IC-008-GTA Largemouth bass 8/3/2016 N DOEE_Phase P2-IC-009-GT1A Largemouth bass 8/3/2016 N DOEE_Phase P2-IC-009-GT2A Largemouth bass 8/3/2016 N DOEE_Phase P2-IC-010-GT1A Striped bass 8/12/2016 N DOEE_Phase P2-IC-010-GT2A Striped bass 8/12/2016 N DOEE_Phase P2-IC-010-GT3A Striped bass 8/12/2016 N DOEE_Phase	Upper Potomac					USFWS/Pinkney
UPSF01 Sunfish 9/24/2013 N USFWS/Pinkn UPWP01 White perch 5/9/2013 N USFWS/Pinkn P2-IC-008-GTA Largemouth bass 8/3/2016 N DOEE_Phase P2-IC-009-GT1A Largemouth bass 8/3/2016 N DOEE_Phase P2-IC-009-GT2A Largemouth bass 8/3/2016 N DOEE_Phase P2-IC-010-GT1A Striped bass 8/12/2016 N DOEE_Phase P2-IC-010-GT2A Striped bass 8/12/2016 N DOEE_Phase P2-IC-010-GT3A Striped bass 8/12/2016 N DOEE_Phase				5/13/2013		USFWS/Pinkney
UPWP01 White perch 5/9/2013 N USFWS/Pinkn P2-IC-008-GTA Largemouth bass 8/3/2016 N DOEE_Phase P2-IC-009-GT1A Largemouth bass 8/3/2016 N DOEE_Phase P2-IC-009-GT2A Largemouth bass 8/3/2016 N DOEE_Phase Indian Creek P2-IC-010-GT1A Striped bass 8/12/2016 N DOEE_Phase P2-IC-010-GT2A Striped bass 8/12/2016 N DOEE_Phase P2-IC-010-GT3A Striped bass 8/12/2016 N DOEE_Phase						USFWS/Pinkney
P2-IC-008-GTA						USFWS/Pinkney
Upstream Non-Tidal Anacostia - Indian Creek P2-IC-010-GT2A Largemouth bass 8/3/2016 N DOEE_Phase P2-IC-009-GT2A Largemouth bass 8/3/2016 N DOEE_Phase P2-IC-010-GT1A Striped bass 8/12/2016 N DOEE_Phase P2-IC-010-GT2A Striped bass 8/12/2016 N DOEE_Phase P2-IC-010-GT3A Striped bass 8/12/2016 N DOEE_Phase		UPWP01	White perch	5/9/2013	N	USFWS/Pinkney
Upstream Non-Tidal Anacostia - Indian Creek P2-IC-010-GT2A		P2-IC-008-GTA	Largemouth bass	8/3/2016	N	DOEE_Phase2
Tidal Anacostia - Indian Creek P2-IC-010-GT1A Striped bass 8/12/2016 N DOEE_Phase P2-IC-010-GT2A Striped bass 8/12/2016 N DOEE_Phase P2-IC-010-GT3A Striped bass 8/12/2016 N DOEE_Phase P2-IC-010-GT3A Striped bass 8/12/2016 N DOEE_Phase		P2-IC-009-GT1A	Largemouth bass	8/3/2016	N	DOEE_Phase2
Tidal Anacostia - Indian Creek P2-IC-010-GT1A Striped bass 8/12/2016 N DOEE_Phase P2-IC-010-GT2A Striped bass 8/12/2016 N DOEE_Phase P2-IC-010-GT3A Striped bass 8/12/2016 N DOEE_Phase		P2-IC-009-GT2A	Largemouth bass	8/3/2016	N	DOEE_Phase2
P2-IC-010-GT2A Striped bass 8/12/2016 N DOEE_Phase P2-IC-010-GT3A Striped bass 8/12/2016 N DOEE_Phase			<u> </u>			DOEE_Phase2
P2-IC-010-GT3A Striped bass 8/12/2016 N DOEE_Phase	indian Creek					DOEE_Phase2
			<u>'</u>			
L Unstroom Non I P2-NFR-007-GTA Hargemouth bass I 8/3/2016 I N I DOFF Phase	Unetroom Non	P2-NEB-007-GTA	Largemouth bass	8/3/2016	N	DOEE_Phase2
9555						DOEE_Phase2
 			-			DOEE_Phase2

Table 3-8
Fish Tissue Samples Used in the BHHRA
Benning Road Facility RI/FS Project
3400 Benning Rd, N.E., Washington DC 20019

Sample Area	Sample ID	Species	Sample Date	Sample Type	Task Code
	P2-NWB-001-GT1A	Largemouth bass	8/8/2016	N	DOEE_Phase2
	P2-NWB-001-GT2A	Largemouth bass	8/8/2016	N	DOEE_Phase2
	P2-NWB-002-GT1A	Largemouth bass	8/9/2016	N	DOEE_Phase2
	P2-NWB-200-GTA	Largemouth Bass	8/9/2016	FD (b)	DOEE_Phase2
	P2-NWB-002-GT2A	Largemouth bass	8/9/2016	N	DOEE_Phase2
	P2-NWB-002-GT3A	Largemouth bass	8/9/2016	N	DOEE_Phase2
	P2-NWB-003-GTA	Northern snakehead	8/16/2016	N	DOEE_Phase2
Hanton and Nam	P2-NWB-004-GT1A	Largemouth bass	8/12/2016	N	DOEE_Phase2
Upstream Non- Tidal Anacostia -	P2-NWB-004-GT2A	Largemouth bass	8/12/2016	N	DOEE_Phase2
Northwest Branch	P2-NWB-013-GT1A	Largemouth bass	8/10/2016	N	DOEE_Phase2
Trontinoot Branen	P2-NWB-013-GT2A	Largemouth bass	8/10/2016	N	DOEE_Phase2
	P2-NWB-013-GT3A	Largemouth bass	8/10/2016	N	DOEE_Phase2
	P2-NWB-014-GTA	Smallmouth bass	8/4/2016	N	DOEE_Phase2
	P2-NWB-015-GTA	Smallmouth bass	8/5/2016	N	DOEE_Phase2
	P2-NWB-016-GTA	Smallmouth bass	8/4/2016	N	DOEE_Phase2
	P2-NWB-017-GTA	Smallmouth bass	8/4/2016	N	DOEE_Phase2
	P2-NWB-018-GT1A	Smallmouth bass	8/4/2016	N	DOEE_Phase2
	P2-NWB-018-GT2A	Smallmouth bass	8/4/2016	N	DOEE_Phase2
Upstream Non-	P2-PB-005-GT1A	Largemouth bass	8/15/2016	N	DOEE_Phase2
Tidal Anacostia -	P2-PB-005-GT2A	Largemouth bass	8/15/2016	N	DOEE_Phase2
Paint Branch	P2-PB-006-GTA	Largemouth bass	8/3/2016	N	DOEE_Phase2

Notes:

FD = Field Duplicate

M = Metals

N = Normal sample

O = Organics

(b) - Duplicate of P2-NWB-002-GT1A.

⁽a) - The samples collected in the Upper Anacostia River are assumed to reflect overall conditions within the several mile long river reach that was sampled (or the possibly larger home range for some of the fish species sampled), and may not reflect the specific conditions within the Waterside Investigation Area.

Table 3-9 Sediment and Soil Screening Levels Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

	1	Sediment		Soil	
					- \
CAC Number	Chamiaal	Residential RSL (a	1)	Industrial RSL (a	1)
CAS Number	Chemical	(mg/kg)		mg/kg	
79-00-5	1,1,2-Trichloroethane	0.15		0.63	
92-52-4	1,1'-Biphenyl	4.7		20	
87-61-6	1,2,3-Trichlorobenzene	6.3		93	
95-94-3	1,2,4,5-Tetrachlorobenzene	2.3		35	
107-06-2	1,2-Dichloroethane	0.46		2	
DFTEQ-HH	2,3,7,8-TCDD-TEQ	0.0000048	(b)	0.000022	(b)
78-93-3	2-Butanone	2700		19000	
91-57-6	2-Methylnaphthalene	24		300	
95-48-7	2-Methylphenol	320		4100	
72-54-8	4,4'-DDD	0.19		2.5	
72-55-9	4,4'-DDE	2		9.3	
50-29-3	4,4'-DDT	1.9		8.5	
108-10-1	4-Methyl-2-pentanone	3300		14000	
106-44-5	4-Methylphenol	630		8200	
83-32-9	Acenaphthene	360		4500	
208-96-8	Acenaphthylene	360	(c)	4500	(c)
67-64-1	Acetone	6100		67000	
98-86-2	Acetophenone	780		12000	
309-00-2	Aldrin	0.039		0.18	
7429-90-5	Aluminum	7700		110000	-
120-12-7	Anthracene	1800		23000	
7440-36-0	Antimony	3.1		47	
7440-38-2	Arsenic	0.68		3	
7440-39-3	Barium	1500		22000	
100-52-7	Benzaldehyde	170		820	
56-55-3	Benzo(a)anthracene	1.1		21	-
50-32-8	Benzo(a)pyrene	0.11		2.1	
205-99-2	Benzo(b)fluoranthene	1.1		21	
191-24-2	Benzo(g,h,i)perylene	180	(d)	2300	(d)
207-08-9	Benzo(k)fluoranthene	11	(u)	210	(u)
65-85-0	Benzoic Acid	25000		330000	
7440-41-7	Beryllium	16		230	
319-85-7	beta-BHC	0.3		1.3	
117-81-7	bis-(2-Ethylhexyl)phthalate	39		160	
85-68-7	Butylbenzylphthalate	290		1200	
7440-43-9	Cadmium	7.1		98	
7440-43-9	Calcium	EN		EN	
	Caprolactam	3100		40000	
105-60-2	•		(-)	3000	(-)
86-74-8 7440-47-3	Carbazole Chromium, total/trivalent	240	(e)		(e)
18540-29-9	Chromium, hexavalent	12,000 0.3		180,000 6.3	
218-01-9	Chrysene cis-Chlordane	110	(£)	2100 7.7	(£)
5103-71-9 12789-03-6		1.7	(f)		(f)
	Chlordane (Technical)	1.7	(f)	7.7	(f)
7440-48-4	Cobalt	2.3		35	
7440-50-8	Copper	310		4700	
57-12-5	Cyanide	2.3		15	
110-82-7	Cyclohexane	650		2700	
319-86-8	delta-BHC	0.086	(g)	0.36	(g)
53-70-3	Dibenzo(a,h)anthracene	0.11		2.1	

Table 3-9 Sediment and Soil Screening Levels Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

		Sediment		Soil	
		Residential RSL (٥)		٠,
CAC Normalis and	Chamiaal		a)	Industrial RSL (a	1)
CAS Number	Chemical	(mg/kg)		mg/kg	
132-64-9	Dibenzofuran	7.3		100	
60-57-1	Dieldrin	0.034	4.)	0.14	
C10C20	Diesel Range Organics (C10-C20)	96	(h)	440	(h)
84-66-2	Diethylphthalate	5100		66000	
131-11-3	Dimethylphthalate	5100	(i)	66000	(i)
84-74-2	Di-n-butylphthalate	630	. ,	8200	
117-84-0	Di-n-octylphthalate	63		820	
959-98-8	Endosulfan I	47	(j)	700	(j)
33213-65-9	Endosulfan II	47	(j)	700	(j)
1031-07-8	Endosulfan Sulfate	47	(j)	700	(j)
72-20-8	Endrin	1.9	()/	25	(1)
7421-93-4	Endrin aldehyde	1.9	(k)	25	(k)
53494-70-5	Endrin ketone	1.9	(k)	25	(k)
100-41-4	Ethylbenzene	5.8	(11)	25	(14)
206-44-0	Fluoranthene	240		3000	
86-73-7	Fluorene	240		3000	
58-89-9	gamma-BHC (Lindane)	0.57		2.5	
8006-61-9	Gasoline Range Organics (C6-C10)	8.2	(I)	42	(I)
	<u> </u>	0.13	(1)	0.63	(1)
76-44-8	Heptachlor				
1024-57-3	Heptachlor Epoxide	0.07		0.33	
193-39-5	Indeno(1,2,3-cd)pyrene	1.1		21	
7439-89-6	Iron	5500		82000	
78-59-1	Isophorone	570		2400	
98-82-8	Isopropylbenzene	190		990	
7439-92-1	Lead	400	()	800	, ,
XYLMP	m, p-Xylene	55	(m)	240	(m)
7439-95-4	Magnesium	EN		EN	
7439-96-5	Manganese	180	(n)	2600	(n)
7439-97-6	Mercury	2.3	(o)	35	(o)
72-43-5	Methoxychlor	32		410	
108-87-2	Methylcyclohexane	650	(p)	2700	(p)
75-09-2	Methylene Chloride	35		320	
91-20-3	Naphthalene	3.8		17	
7440-02-0	Nickel	150		2200	
C20C36	Oil Range Organics (C20-C36)	23000	(q)	350000	(q)
95-47-6	o-Xylene	65		280	
1336-36-3	Total PCBs	0.12	(r)	0.97	(r)
85-01-8	Phenanthrene	1800	(s)	23000	(s)
108-95-2	Phenol	1900		25000	
7440-09-7	Potassium	EN		EN	
129-00-0	Pyrene	180		2300	
7782-49-2	Selenium	39		580	
7440-22-4	Silver	39		580	
7440-23-5	Sodium	EN		EN	
127-18-4	Tetrachloroethylene	8.1		39	
7440-28-0	Thallium	0.078		1.2	
108-88-3	Toluene	490		4700	
5103-74-2	trans-Chlordane	1.7	(f)	7.7	(f)
7440-62-2	Vanadium	39		580	
1330-20-7	Xylenes (total)	58		250	
7440-66-6	Zinc	2300		35000	

Table 3-9

Sediment and Soil Screening Levels Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

		Sediment	Soil
		Residential RSL (a)	Industrial RSL (a)
CAS Number	Chemical	(mg/kg)	mg/kg

Notes:

CAS - Chemical Abstracts Service.

EN - Essential Nutrient.

NA - Not Available; no appropriate surrogate.

RSL - Regional Screening Level.

USEPA - United States Environmental Protection Agency.

(a) USEPA Regional Screening Level Table. (Target Risk =1E-06; Target Hazard Quotient=0.1). November 2018. https://www.epa.gov/risk/regional-screening-levels-rsls

Residential value used for sediment, industrial value used for soil.

- (b) Value for 2,3,7,8-Tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD).
- (c) Value for acenaphthene
- (d) Value for pyrene.
- (e) Value for fluorene.
- (f) Value for chlordane.
- (g) Value for alpha-BHC.
- (h) Value for total petroleum hydrocarbons (aliphatic medium). THQ of 1 used to account for uncertainty in toxicity data.
- (i) Value for diethylphthalate.
- (j) Value for endosulfan.
- (k) Value for endrin.
- (I) Value for total petroleum hydrocarbons (aromatic low).
- (m) Value for m-xylenes.
- (n) Value for manganese, non-diet.
- (o) Value for mercuric chloride.
- (p) Value for cyclohexane.
- (q) Value for total petroleum hydrocarbons (aliphatic high).
- (r) Value for Aroclor-1254.
- (s) Value for anthracene.

Table 3-10
Groundwater Screening Levels for the Volatilization to Excavation Trench Air Pathway
Benning Road Facility RI/FS Project
3400 Benning Rd, N.E., Washington DC 20019

		Tapwater RSL (a)
CAS Number	Chemical	(ug/L)
75-35-4	1,1-Dichloroethene	28
78-93-3	2-Butanone	560
591-78-6	2-Hexanone	3.8
108-10-1	4-Methyl-2-pentanone	630
67-64-1	Acetone	1400
71-43-2	Benzene	0.46
75-27-4	Bromodichloromethane	0.13
75-65-0	Butyl alcohol, tert-	14 (b)
75-15-0	Carbon Disulfide	81
108-90-7	Chlorobenzene	7.8
67-66-3	Chloroform	0.22
74-87-3	Chloromethane	19
156-59-2	cis-1,2-Dichloroethylene	3.6
124-48-1	Dibromochloromethane	0.87
108-20-3	Diisopropyl ether	150
XYLMP	m, p-Xylene	19 (c)
1634-04-4	Methyl tert-Butyl Ether (MTBE)	14
75-09-2	Methylene Chloride	11
91-20-3	Naphthalene	0.17
95-47-6	o-Xylene	19 (c)
994-05-8	Tertiary-Amyl Methyl Ether	41 (d)
127-18-4	Tetrachloroethylene	4.1
108-88-3	Toluene	110
156-60-5	trans-1,2-Dichloroethene	36
79-01-6	Trichloroethene	0.28
75-01-4	Vinyl Chloride	0.019
1330-20-7	Xylenes (total)	19

Notes:

CAS - Chemical Abstracts Service.

RSL - Regional Screening Level.

USEPA - United States Environmental Protection Agency.

(a) USEPA Regional Screening Level Table.

(Target Risk =1E-06; Target Hazard Quotient=0.1). November 2018. Value for tapwater. https://www.epa.gov/risk/regional-screening-levels-rsls

- (b) Value for Methyl tert-Butyl Ether.
- (c) Value for xylenes.
- (d) Value for isopropanol.

		DOEE Class D Surface Water Criteria (a)	NRWQC, Human Health, Organism only (b)	Tapwater RSL (c)	Selected (d)	
CAS Number	Chemical	(ug/L)	(ug/L)	(ug/L)	(ug/L)	
71-55-6	1,1,1-Trichloroethane	NA	200000	800	200000	NRWQC
79-34-5	1,1,2,2-Tetrachloroethane	4	3	0.076	4	DOEE
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	NA	NA	1000	1000	RSL
79-00-5	1,1,2-Trichloroethane	16	8.9	0.041	16	DOEE
92-52-4 75-34-3	1,1'-Biphenyl 1,1-Dichloroethane	NA NA	NA NA	0.083 2.8	0.083 2.8	RSL RSL
75-34-3 75-35-4	1,1-Dichloroethane	7100	20000	28	7100	DOEE
87-61-6	1,2,3-Trichlorobenzene	NA	NA NA	0.7	0.7	RSL
95-94-3	1,2,4,5-Tetrachlorobenzene	1.1	0.03	0.17	1.1	DOEE
120-82-1	1,2,4-Trichlorobenzene	70	0.076	0.4	70	DOEE
96-12-8	1,2-Dibromo-3-chloropropane	NA	NA	0.00033	0.00033	RSL
106-93-4	1,2-Dibromoethane	NA	NA	0.0075	0.0075	RSL
95-50-1	1,2-Dichlorobenzene	1300	3000	30	1300	DOEE
107-06-2	1,2-Dichloroethane	37	650	0.17	37	DOEE
78-87-5	1,2-Dichloropropane	15	31	0.82	15	DOEE
541-73-1	1,3-Dichlorobenzene	960	10	0.48 (g)	960	DOEE
106-46-7 123-91-1	1,4-Dichlorobenzene 1,4-Dioxane	190 NA	900 NA	0.48 0.46	190 0.46	RSL
90-12-0	1-Methylnaphthalene	NA NA	NA NA	1.1	1.1	RSL
108-60-1	2,2'-oxybis(1-Chloropropane)	65000	4000	71	65000	DOEE
58-90-2	2,3,4,6-Tetrachlorophenol	NA	NA	24	24	RSL
1746-01-6	2,3,7,8-TCDD	0.000000051	5.1E-09	0.0000012	0.00000051	DOEE
DFTEQ-HH	2,3,7,8-TCDD-TEQ	0.000000051 (z	5.1E-09 (z)	0.00000012 (z)	0.000000051	DOEE
95-95-4	2,4,5-Trichlorophenol	3600	600	120	3600	DOEE
88-06-2	2,4,6-Trichlorophenol	2.4	2.8	1.2	2.4	DOEE
120-83-2	2,4-Dichlorophenol	290	60	4.6	290	DOEE
105-67-9	2,4-Dimethylphenol	850	3000	36	850	DOEE
51-28-5	2,4-Dinitrophenol	5300	300	3.9	5300	DOEE
121-14-2 606-20-2	2,4-Dinitrotoluene 2,6-Dinitrotoluene	3.4 NA	1.7 NA	0.24 0.049	3.4 0.049	DOEE
78-93-3	2-Butanone	NA NA	NA NA	560	560	RSL RSL
91-58-7	2-Chloronaphthalene	1600	1000	75	1600	DOEE
95-57-8	2-Chlorophenol	150	800	9.1	150	DOEE
591-78-6	2-Hexanone	NA	NA	3.8	3.8	RSL
91-57-6	2-Methylnaphthalene	NA	NA	3.6	3.6	RSL
95-48-7	2-Methylphenol	NA	NA	93	93	RSL
88-74-4	2-Nitroaniline	NA	NA	19	19	RSL
88-75-5	2-Nitrophenol	NA	NA	580 (h)	580	RSL
91-94-1	3,3'-Dichlorobenzidine	0.028	0.15	0.13	0.028	DOEE
99-09-2 72-54-8	3-Nitroaniline 4,4'-DDD	NA 0.00031	NA 0.00012	3.8 (i) 0.0063	3.8 0.00031	RSL
72-54-8 72-55-9	4,4'-DDE	0.00031	0.00012	0.0063	0.00031	DOEE
50-29-3	4,4'-DDT	0.00022	0.000018	0.23	0.00022	DOEE
534-52-1	4,6-Dinitro-2-methylphenol	280	30	0.15	280	DOEE
101-55-3	4-Bromophenyl-phenylether	NA	NA	NA	NA	
59-50-7	4-Chloro-3-methylphenol	NA	2000	140	2000	NRWQC
106-47-8	4-Chloroaniline	NA	NA	0.37	0.37	RSL
7005-72-3	4-Chlorophenyl-phenylether	NA	NA	NA	NA	
108-10-1	4-Methyl-2-pentanone	NA	NA	630	630	RSL
106-44-5	4-Methylphenol	NA NA	NA NA	190	190	RSL
100-01-6	4-Nitroaniline	NA NA	NA NA	3.8	3.8	RSL
100-02-7	4-Nitrophenol	NA 000	NA 00	580 (h)	580	RSL
83-32-9 208-96-8	Acenaphthene Acenaphthylene	990 NA	90 NA	53 53 (i)	990 53	DOEE RSL
67-64-1	Acetone	NA NA	NA NA	53 (j) 1400	1400	RSL
98-86-2	Acetophenone	NA NA	NA NA	190	190	RSL
309-00-2	Aldrin	0.00005	0.00000077	0.00092	0.00005	DOEE
319-84-6	alpha-BHC	0.0049	0.00039	0.0072	0.0049	DOEE
7429-90-5	Aluminum	NA	NA	2000	2000	RSL
120-12-7	Anthracene	40000	400	180	40000	DOEE
7440-36-0	Antimony	640	640	0.78	640	DOEE
7440-38-2	Arsenic	0.14	0.14	0.052	0.14	DOEE
1912-24-9	Atrazine	NA NA	NA NA	0.3	0.3	RSL
7440-39-3	Barium	NA NA	NA NA	380	380	RSL
100-52-7	Benzaldehyde Benzene	NA 51	NA 16	19 0.46	19 51	RSL
71-43-2 56-55-3	Benzene Benzo(a)anthracene	0.018	0.0013	0.46	0.018	DOEE
50-32-8	Benzo(a)pyrene	0.018	0.0013	0.03	0.018	DOEE
205-99-2	Benzo(b)fluoranthene	0.018	0.0013	0.025	0.018	DOEE
191-24-2	Benzo(g,h,i)perylene	NA NA	NA NA	12 (k)	12	RSL
	10 // /	0.018	0.013	2.5	0.018	DOEE

		DOEE Class D Surface Water Criteria (a)	NRWQC, Human Health, Organism only (b)	Tapwater RSL (c)	Selected (d)	
CAS Number	Chemical	(ug/L)	(ug/L)	(ug/L)	(ug/L)	
65-85-0	Benzoic Acid	NA	NA	7500	7500	RSL
7440-41-7	Beryllium	NA	NA	2.5	2.5	RSL
319-85-7	beta-BHC	0.017	0.014	0.025	0.017	DOEE
111-91-1	bis-(2-chloroethoxy)methane	NA	NA	5.9	5.9	RSL
111-44-4	bis-(2-Chloroethyl)ether	0.53	2.2	0.014	0.53	DOEE
117-81-7	bis-(2-Ethylhexyl)phthalate	2.2	0.37	5.6	2.2	DOEE
74-97-5	Bromochloromethane	NA	NA	8.3	8.3	RSL
75-27-4	Bromodichloromethane	17	27	0.13	17	DOEE
75-25-2	Bromoform	140	120	3.3	140	DOEE
74-83-9	Bromomethane Butyl alcohol, tert-	1500 NA	10000 NA	0.75 14 (ac	1500	DOEE
75-65-0 85-68-7	Butylbenzylphthalate	1900	0.1	14 (ac	1900	RSL DOEE
7440-43-9	Cadmium	NA	NA	0.92	0.92	RSL
7440-70-2	Calcium	EN	EN	EN	EN	NOL
105-60-2	Caprolactam	NA NA	NA NA	990	990	RSL
86-74-8	Carbazole	NA NA	NA NA	29 (aa		RSL
75-15-0	Carbon Disulfide	NA	NA NA	81	81	RSL
56-23-5	Carbon Tetrachloride	1.6	5	0.46	1.6	DOEE
108-90-7	Chlorobenzene	1600	800	7.8	1600	DOEE
75-00-3	Chloroethane	NA	NA	2100	2100	RSL
67-66-3	Chloroform	470	2000	0.22	470	DOEE
74-87-3	Chloromethane	NA	NA	19	19	RSL
18540-29-9	Chromium, hexavalent	NA	NA	0.035	0.035	RSL
7440-47-3	Chromium, total/trivalent	NA	NA	2200	2200	RSL
218-01-9	Chrysene	0.018	0.13	25	0.018	DOEE
156-59-2	cis-1,2-Dichloroethylene	10000 (e	4000 (e)	3.6	10000	DOEE
10061-01-5	cis-1,3-Dichloropropene	21 (f)		0.47 (f)	21	DOEE
5103-71-9	cis-Chlordane	0.00081	0.00032	0.02 (I)	0.00081	DOEE
7440-48-4	Cobalt	NA	NA	0.6	0.6	RSL
7440-50-8	Copper	NA	NA	80	80	RSL
57-12-5	Cyanide	NA NA	400	0.15	400	NRWQC
110-82-7	Cyclohexane	NA NA	NA NA	1300	1300	RSL
319-86-8	delta-BHC	NA 0.040	NA 0.00040	0.0072 (m)		RSL
53-70-3 132-64-9	Dibenzo(a,h)anthracene Dibenzofuran	0.018 NA	0.00013 NA	0.025 0.79	0.018 0.79	DOEE RSL
132-65-0	Dibenzothiophene	NA NA	NA NA	6.5	6.5	RSL
124-48-1	Dibromochloromethane	13	21	0.87	13	DOEE
75-71-8	Dichlorodifluoromethane	NA	NA NA	20	20	RSL
60-57-1	Dieldrin	0.000054	0.0000012	0.0018	0.000054	DOEE
C10C20	Diesel Range Organics (C10-C20)	NA	NA	100 (n)		RSL
84-66-2	Diethylphthalate	44000	600	1500	44000	DOEE
108-20-3	Diisopropyl ether	NA	NA	150	150	RSL
131-11-3	Dimethylphthalate	1100000	2000	1500 (o)	1100000	DOEE
84-74-2	Di-n-butylphthalate	4500	30	90	4500	DOEE
117-84-0	Di-n-octylphthalate	NA	NA	20	20	RSL
959-98-8	Endosulfan I	89	30	10 (p)	89	DOEE
33213-65-9	Endosulfan II	89	40	10 (p)	89	DOEE
1031-07-8	Endosulfan Sulfate	89	40	10 (p)	89	DOEE
72-20-8	Endrin	0.06	0.03	0.23	0.06	DOEE
7421-93-4	Endrin aldehyde	0.3	1	0.23 (q)	0.3	DOEE
53494-70-5	Endrin ketone	NA	NA	0.23 (q)		RSL
100-41-4	Ethylbenzene	2100	130	1.5	2100	DOEE
637-92-3	Ethyl-Tert-Butyl-Ether	NA 140	NA 20	NA 80	NA 440	D0==
206-44-0	Fluoranthene Fluorene	140	20	80	140	DOEE
86-73-7 58-89-9	gamma-BHC (Lindane)	5300 1.8	70 4.4	29 0.042	5300 1.8	DOEE
8006-61-9	Gasoline Range Organics (C6-C10)	1.8 NA	4.4 NA	3.3 (r)	3.3	DOEE RSL
76-44-8	Heptachlor	0.000079	0.0000059	0.0014	0.000079	DOEE
1024-57-3	Heptachlor Epoxide	0.000079	0.000039	0.0014	0.000079	DOEE
118-74-1	Hexachlorobenzene	0.00039	0.000032	0.0098	0.000039	DOEE
87-68-3	Hexachlorobutadiene	18	0.00	0.14	18	DOEE
77-47-4	Hexachlorocyclo-pentadiene	1100	4	0.041	1100	DOEE
67-72-1	Hexachloroethane	3.3	0.1	0.33	3.3	DOEE
193-39-5	Indeno(1,2,3-cd)pyrene	0.018	0.0013	0.25	0.018	DOEE
7439-89-6	Iron	EN	EN	1400	EN	
78-59-1	Isophorone	960	1800	78	960	DOEE
98-82-8	Isopropylbenzene	NA	NA	45	45	RSL
7439-92-1	Lead	NA	NA	15	15	RSL
XYLMP	m, p-Xylene	NA	NA	19 (s)	19	RSL
7439-95-4	Magnesium	EN	EN	EN	EN	
7439-96-5	Manganese	100	100	43	100	DOEE
7439-97-6	Mercury	0.15	NA	0.57 (t)	0.15	DOEE
72-43-5	Methoxychlor	NA	0.02	3.7	0.02	NRWQC
79-20-9	Methyl Acetate	NA	NA	2000	2000	RSL
	Methyl tert-Butyl Ether (MTBE)	NAFINAL	NA	14	¹⁴ Febr	

Bland Road Facilities RI Report - BHHRA

		DOEE Class D Surface Water Criteria (a)		NRWQC, Humar Health, Organism only (b)		Tapwater RSL (c)	Selected (d)	
CAS Number	Chemical	(ug/L)		(ug/L)		(ug/L)		(ug/L)	
108-87-2	Methylcyclohexane	NA		NA		1300	(u)	1300	RSL
75-09-2	Methylene Chloride	590		1000		11	, ,	590	DOEE
91-20-3	Naphthalene	NA		NA		0.17		0.17	RSL
7440-02-0	Nickel	4600		4600	4600			4600	DOEE
98-95-3	Nitrobenzene	690		600		0.14		690	DOEE
621-64-7	N-Nitroso-di-n-propylamine	0.51		0.51		0.011		0.51	DOEE
86-30-6	N-Nitrosodiphenylamine	6		6		12		6	DOEE
111-84-2	Nonane	NA		NA		0.53		0.53	RSL
C20C36	Oil Range Organics (C20-C36)	NA		NA		6000	(v)	6000	RSL
95-47-6	o-Xylene	NA		NA		19		19	RSL
87-86-5	Pentachlorophenol	3		0.04		0.041		3	DOEE
85-01-8	Phenanthrene	NA		NA		180	(x)	180	RSL
108-95-2	Phenol	860000		300000		580		860000	DOEE
7440-09-7	Potassium	EN		EN		EN		EN	
129-00-0	Pyrene	4000		30		12		4000	DOEE
7782-49-2	Selenium	4200		4200		10		4200	DOEE
7440-22-4	Silver	65000		NA		9.4		65000	DOEE
7440-23-5	Sodium	EN		EN		EN		EN	
100-42-5	Styrene	NA		NA		120		120	RSL
994-05-8	Tertiary-Amyl Methyl Ether	NA		NA		41	(ab)	41	RSL
127-18-4	Tetrachloroethylene	3.3		29		4.1		3.3	DOEE
7440-28-0	Thallium	0.47		0.47		0.02		0.47	DOEE
108-88-3	Toluene	15000		520		110		15000	DOEE
1336-36-3	Total PCBs	0.000064		0.000064		0.044	(w)	0.000064	DOEE
8001-35-2	Toxaphene	0.00028		0.00071		0.071		0.00028	DOEE
156-60-5	trans-1,2-Dichloroethene	10000		4000		36		10000	DOEE
10061-02-6	trans-1,3-Dichloropropene	21	(f)	12	(f)	0.47	(f)	21	DOEE
5103-74-2	trans-Chlordane	0.00081		0.00032		0.02	(1)	0.00081	DOEE
79-01-6	Trichloroethene	30		7		0.28		30	DOEE
75-69-4	Trichlorofluoromethane	NA		NA		520		520	RSL
7440-62-2	Vanadium	NA		NA		8.6		8.6	RSL
75-01-4	Vinyl Chloride	2.4		1.6		0.019		2.4	DOEE
1330-20-7	Xylenes (total)	NA		NA		19		19	RSL
7440-66-6	Zinc	26000		26000		600		26000	DOEE

See next page for notes.

		DOEE Class D Surface Water Criteria (a)	NRWQC, Human Health, Organism only (b)	Tapwater RSL (c)	Selected (d)
CAS Number	Chemical	(ug/L)	(ug/L)	(ug/L)	(ug/L)

Notes:

CAS - Chemical Abstracts Service.

DOEE - District Department of Energy and Environment.

EN - Essential Nutrient.

NA - Not Available from this source.

NRWQC - National Recommended Water Quality Criteria.

RSL - Regional Screening Level.

USEPA - United States Environmental Protection Agency.

- (a) DOEE, Title 21 of the District of Columbia Municipal Regulations, Chapter 11, Water Quality Standards. Rule 21-1104, Standards. Effective 11/1/2013. https://www.dcregs.dc.gov/Common/DCMR/SectionList.aspx?SectionNumber=21-1104
- (b) USEPA, National Recommended Water Quality Criteria for Priority Pollutants. Value for Human Health for the consumption of organisms. Accessed 8/2018. https://www.epa.gov/wqc/national-recommended-water-quality-criteria-human-health-criteria-table.
- (c) USEPA Regional Screening Level Table. (Target Risk =1E-06; Target Hazard Quotient=0.1). November 2018. Value for tapwater. https://www.epa.gov/risk/regional-screening-levels-rsls
- (d) Selected screening level is the lower of the DOEE criteria, where available. If a DOEE criteria is not available, the NRWQC is used. Where neither is available, the tapwater RSL is selected.
- (e) Value for trans-1,2-Dichloroethene.
- (f) Value for 1,3-dichloropropene.
- (g) Value for 1,4-dichlororobenzene.
- (h) Value for phenol.
- (i) Value for 4-nitroaniline.
- (j) Value for acenaphthene
- (k) Value for pyrene.
- (I) Value for chlordane.
- (m) Value for alpha-BHC.
- (n) Value for total petroleum hydrocarbons (aliphatic medium). THQ of 1 used to account for uncertainty in toxicity data.
- (o) Value for diethylphthalate.
- (p) Value for endosulfan.
- (q) Value for endrin.
- (r) Value for total petroleum hydrocarbons (aromatic low).
- (s) Value for m-xylenes.
- (t) Value for mercuric chloride.
- (u) Value for cyclohexane.
- (v) Value for total petroleum hydrocarbons (aliphatic high).
- (w) Value for polychlorinated biphenyls, low risk.
- (x) Value for anthracene.
- (y) Value for benzo(a)pyrene.
- (z) Value for 2,3,7,8-Tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD).
- (aa) Value for fluorene.
- (ab) Value for isopropanol.
- (ac) Value for methyl tert-Butyl Ether (MTBE).

Table 3-12 Fish Tissue Screening Levels Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Chemical	CAS	Fish Tissue RSL (a) (mg/kg)		Notes/Surrogates
Dioxins	DETEC IIII	0.005.00		0.07044 11 11 4 11 1
2,3,7,8-TCDD-TEQ Metals	DFTEQ-HH	3.20E-08	С	2,3,7,8-tetrachlorodibenzo(p)dioxin
Aluminum	7429-90-5	1.54E+02	nc	1
Arsenic	7440-38-2	2.77E-03	C	
Barium	7440-39-3	3.09E+01	nc	
Cadmium	7440-43-9	1.54E-01	nc	
Calcium	7440-70-2	EN		Essential nutrient
Chromium	7440-47-3	2.32E+02	nc	Trivalent chromium (b)
Cobalt	7440-48-4	4.63E-02	nc	,
Copper	7440-50-8	6.18E+00	nc	
Iron	7439-89-6	1.08E+02	nc	Essential nutrient
Lead	7439-92-1	NSL		
Magnesium	7439-95-4	EN		Essential nutrient
Manganese	7439-96-5	2.16E+01	nc	
Mercury	7439-97-6	1.54E-02	nc	methyl mercury
Nickel	7440-02-0	3.09E+00	nc	Soluble salts
Potassium	7440-09-7	EN		Essential nutrient
Selenium	7782-49-2	7.72E-01	nc	For antial posteriors
Sodium	7440-23-5	EN		Essential nutrient
Thallium	7440-28-0	1.54E-03	nc	Soluble salts
Vanadium	7440-62-2	7.79E-01	nc	
Zinc Pesticides	7440-66-6	4.63E+01	nc	
1,2,3,4-Tetrachlorobenzene	634-66-2	4.63E-02	nc	1,2,4,5-TETRACHLOROBENZENE
1,2,4,5-Tetrachlorobenzene	95-94-3	4.63E-02	nc	1,2,4,3-1ETRACHEOROBENZENE
2,4'-DDD	53-19-0	NSL	110	No appropriate surrogate (c)
2,4'-DDE	3424-82-6	NSL		No appropriate surrogate (c)
2,4'-DDT	789-02-6	NSL		No appropriate surrogate (c)
4,4'-DDD	72-54-8	4.63E-03	С	3 17
4,4'-DDE	72-55-9	1.22E-02	С	
4,4'-DDT	50-29-3	1.22E-02	С	
Aldrin	309-00-2	2.45E-04	С	
Alpha-BHC	319-84-6	6.60E-04	С	
alpha-Chlordane	5103-71-9	1.19E-02	С	Chlordane (d)
beta-BHC	319-85-7	2.31E-03	С	
Chlordane	CHLORDANE_ALL	1.19E-02	С	
Chlorpyrifos	2921-88-2	1.54E-01	nc	
cis-Nonachlor	5103-73-1	1.19E-02	С	Chlordane (d)
delta-BHC Dieldrin	319-86-8	6.60E-04	С	Alpha-BHC
Endosulfan II	60-57-1 33213-65-9	2.60E-04 9.27E-01	nc	Endosulfan
Endosulian ii Endrin	72-20-8	4.63E-02	nc	Endosulian
gamma-Chlordane	5566-34-7	1.19E-02	C	Chlordane (d)
gamma-BHC (Lindane)	58-89-9	3.78E-03	С	
Hepatchlor	76-44-8	9.24E-04	С	
Heptachlor epoxide	1024-57-3	4.57E-04	С	
Hexachlorobenzene	118-74-1	2.60E-03	С	
Mirex	2385-85-5	2.31E-04	С	
Oxychlordane	27304-13-8	1.19E-02	С	Chlordane (d)
Pentachloroanisole	1825-21-4	NSL		
trans-Nonachlor	39765-80-5	1.19E-02	С	Chlordane (d)
Semivolatile Organic Compounds				
2,3,5-Trimethylnaphthalene	2245-38-7	NSL		
1-Methylnaphthalene	90-12-0	1.43E-01	С	
1-Methylphenanthrene	832-69-9	4.63E+01	nc	Anthracene
2,6-Dimethylnaphthalene	581-42-0	6.18E-01	nc	2-Methylnaphthalene
2-Methylnaphthalene	91-57-6	6.18E-01	nc	
Acenaphthene	83-32-9	9.27E+00	nc	A second the con-
Acenaphthylene	208-96-8	9.27E+00	nc	Acenaphthene
Anthracene	120-12-7	4.63E+01	nc	
Benzo(a)anthracene	56-55-3	4.16E-02	С	
Benzo(a)pyrene	50-32-8	4.16E-03	С	
Benzo(b)fluoranthene	205-99-2	4.16E-02	С	
Benzo(k)fluoranthene	207-08-9	4.16E-01	С	

February 2020

Table 3-12 Fish Tissue Screening Levels Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Chemical	CAS	Fish Tissue RSL (a) (mg/kg)		Notes/Surrogates
Benzoic Acid	65-85-0	6.18E+02	nc	
Biphenyl	92-52-4	5.20E-01	С	
C1-dibenzothiophenes	DBZTPC1	NSL		
C1-fluoranthenes/pyrenes	FLPYC1	NSL		
C1-fluorenes	FLUORC1	NSL		
C1-naphthalenes	NPHC1	NSL		
C1-phenanthrenes/anthracenes	PHANC1	NSL		
C2-dibenzothiophenes	DBZTPC2	NSL		
C2-fluorenes	FLUORC2	NSL		
C2-naphthalenes	NPHC2	NSL		
C2-phenanthrenes/anthracenes	PHANC2	NSL		
C3-dibenzothiophenes	DBZTPC3	NSL		
C3-fluorenes	FLUORC3	NSL		
C3-naphthalenes	NPHC3	NSL		
C3-phenanthrenes/anthracenes	PHANC3	NSL		
C4-naphthalenes	NPHC4	NSL		
C4-phenanthrenes/anthracenes	PHANC4	NSL		
Chrysene	218-01-9	4.16E+00	С	
Dibenzo(a,h)anthracene	53-70-3	4.16E-03	С	
Dibenzothiophene	132-65-0	1.54E+00	nc	
Diethylphthalate	84-66-2	1.24E+02	nc	
Di-n-octylphthalate	117-84-0	1.54E+00	nc	
Fluoranthene	206-44-0	6.18E+00	nc	
Fluorene	86-73-7	6.18E+00	nc	
Indeno(1,2,3-cd)pyrene	193-39-5	4.16E-02	С	
Naphthalene	91-20-3	3.09E+00	nc	
Perylene	198-55-0	4.63E+00	nc	Pyrene
Phenanthrene	85-01-8	4.63E+01	nc	Anthracene
Phenol	108-95-2	4.63E+01	nc	
Pyrene	129-00-0	4.63E+00	nc	
Polybrominated Diphenyl Ethers				
Total PBDEs	RA_TOT_PBDE	NSL		
Polychlorinated Biphenyls				
Total PCBs	1336-36-3	2.08E-03	С	Aroclor 1254/PCB High Risk
PCB-TEQ	PCB-TEQ	3.20E-08	С	2,3,7,8-tetrachlorodibenzo(p)dioxin

Notes:

c - Value is based on carcinogenic effects.

CAS - Chemical Abstracts Service.

EN - Essential nutrient.

mg/kg - milligram per kilogram.

nc - Value is based on noncarcinogenic effects.

NSL - No Screening Level.

PBDE - Polybrominated Diphenyl Ether.

PCB - Polychlorinated Biphenyl.

RSL - Regional Screening Level.

- (a) Fish tissue screening levels are equal to the USEPA Regional Screening Levels (RSLs) for fish tissue, calculated using USEPA's RSL calculator based on a fish ingestion rate of 54 g/day, a target risk level of 1x10-6 for carcinogens and a target hazard quotient of 0.1 for noncarcinogens. Accessed on July 2018.
- (b) Hexavalent chromium was not identified as a constituent of concern associated with sites along the Anacostia River Therefore chromium was evaluated as trivalent chromium. See Table 3.2 in Remedial Investigation Work Plan: Anacostia River Sediment Project, Washington D.C., prepared for the Department of Energy and the Environment. June 2014.
- (c) Letter from Superfund Technical Support Center to Marian Olsen dated February 25, 2015. Approval of Surrogates for Multiple Chemicals. 2,4'-DDT, 2,4'-DDD and 2,4'-DDE.
- (d) Letter from Superfund Technical Support Center to Marian Olsen dated April 9, 2015. Approval of Surrogates for Multiple Chemicals. Cis- and trans-nonachlor and oxychlordane.

Table 3-13
Occurrence, Distribution and Selection of Chemicals of Potential Concern in On-Site Soil
Benning Road Facility RI/FS Project
3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future Medium: Soil Exposure Medium: Soil

Exposure Point ⁽⁶⁾	Cas Number	Chemical	Maximum ⁽¹⁾ Concentration	Units	Location of Maximum Concentration	Detection Frequency	Screening Toxicity Value ⁽⁴⁾	COPC Flag (Y/N)	Rationale for Selection or Deletion ⁽⁵⁾
Pepco	Dioxins and Fura	ans							
Site	DFTEQ-HH	2,3,7,8-TCDD-TEQ	4.84E-04	4.84E-04 mg/kg SUS10-2B (0		81 / 81	2.20E-05	Υ	ASL
	Inorganics								
	7429-90-5	Aluminum	3.70E+04 J	mg/kg	SUSDP08-1E (0 - 1 ft)	119 / 119	1.10E+05	N	BSL
	7440-36-0	Antimony	1.10E+01	mg/kg	TA1E1 (0 - 1 ft)	85 / 118	4.70E+01	N	BSL
	7440-38-2	Arsenic	1.90E+02 J	mg/kg	SUSDP08-1E (0 - 1 ft)	119 / 119	3.00E+00	Υ	ASL
	7440-39-3	Barium	2.40E+03	mg/kg	DP42 (9.5 - 10.5 ft)	119 / 119	2.20E+04	N	BSL
	7440-41-7	Beryllium	1.90E+00 J-	mg/kg	SUSDP43 (3.5 - 4.5 ft)	119 / 119	2.30E+02	N	BSL
	7440-43-9	Cadmium	7.10E+00 J	mg/kg	SUSDP01 (0.33 - 1 ft)	111 / 119	9.80E+01	N	BSL
	7440-70-2	Calcium	1.50E+05	mg/kg	SUSDP23 (0.5 - 1 ft)	119 / 119	EN	N	EN
	7440-47-3	Chromium, Total	4.00E+02 J	mg/kg	SUSDP08-1E (0 - 1 ft)	130 / 130	1.80E+05	N	BSL
	18540-29-9	Chromium, Hexavalent	6.00E-01	mg/kg	SUS08-1D (0 - 1 ft)	3 / 11	6.30E+00	N	BSL
	7440-48-4	Cobalt	2.40E+02	mg/kg	TA1G9 (0 - 1 ft)	119 / 119	3.50E+01	Υ	ASL
	7440-50-8	Copper	2.70E+03 J	mg/kg	SUSDP08-1E (0 - 1 ft)	119 / 119	4.70E+03	N	BSL
	7439-89-6	Iron	7.80E+04	mg/kg	TA1E1 (0 - 1 ft)	119 / 119	8.20E+04	N	BSL
	7439-92-1	Lead	5.40E+03	mg/kg	SUSDP19 (9.5 - 10.5 ft)	119 / 119	8.00E+02	N	BSL
	7439-95-4	Magnesium	7.60E+04	mg/kg	SUSDP23 (0.5 - 1 ft)	119 / 119	EN	N	EN
	7439-96-5	Manganese	6.60E+03	mg/kg	SUSDP08-1E (0 - 1 ft)	119 / 119	2.60E+03	Υ	ASL
	7439-97-6	Mercury	2.20E+00	mg/kg	DP42 (14.5 - 15.5 ft)	102 / 119	3.50E+01	N	BSL
	7440-02-0	Nickel	8.00E+03	mg/kg	TA1G9 (0 - 1 ft)	119 / 119	2.20E+03	Υ	ASL
	7440-09-7	Potassium	2.40E+03	mg/kg	SUS08-1G (0 - 1 ft)	119 / 119	EN	N	EN
	7782-49-2	Selenium	9.10E+00	mg/kg	TA1E1 (0 - 1 ft)	103 / 119	5.80E+02	N	BSL
	7440-22-4	Silver	6.10E-01	mg/kg	TA1C5 (0 - 1 ft)	89 / 119	5.80E+02	N	BSL
	7440-23-5	Sodium	1.30E+03	mg/kg	TA1G9 (0 - 1 ft)	114 / 119	EN	N	EN
	7440-28-0	Thallium	1.60E+00	mg/kg	DP42 (9.5 - 10.5 ft)	88 / 119	1.20E+00	Υ	ASL
	7440-62-2	Vanadium	4.20E+04	mg/kg	TA1E1 (0 - 1 ft)	125 / 125	5.80E+02	Υ	ASL
	7440-66-6	Zinc	3.00E+03 J	mg/kg	SUSDP08-1E (0 - 1 ft)	119 / 119	3.50E+04	N	BSL
	PCBs					•	•		
	1336-36-3	Total PCBs	8.80E+03	mg/kg	SUSDP21-3G (0 - 1 ft)	463 / 579	9.70E-01	Υ	ASL
	Pesticides								
	72-54-8	4,4'-DDD	2.30E-03 J	mg/kg	SUSDP19 (1.5 - 2.5 ft)	13 / 25	2.50E+00	N	BSL
	72-55-9	4,4'-DDE	5.80E-02	mg/kg	SUSDP08 (2.5 - 3.5 ft)	15 / 25	9.30E+00	N	BSL
	50-29-3	4,4'-DDT	8.30E-02	mg/kg	SUSDP18 (0 - 1 ft)	15 / 24	8.50E+00	N	BSL
	309-00-2	Aldrin	5.00E-03 J	mg/kg	SUSDP10 (0.5 - 1 ft)	6 / 24	1.80E-01	N	BSL
	319-85-7	beta-BHC	2.30E-03 J	mg/kg	SUSDP10 (0.5 - 1 ft)	3 / 25	1.30E+00	N	BSL
	5103-71-9	cis-Chlordane	6.50E-03	mg/kg	SUSDP08 (2.5 - 3.5 ft)	10 / 25	7.70E+00	N	BSL
	319-86-8	delta-BHC	7.50E-03 J	mg/kg	SUSDP10 (0.5 - 1 ft)	4 / 25	3.60E-01	N	BSL
	60-57-1	Dieldrin	9.40E-03 J	mg/kg	SUSDP18 (0 - 1 ft)	10 / 25	1.40E-01	N	BSL
	959-98-8	Endosulfan I	1.40E-03 J	mg/kg	SUSDP08 (0 - 1 ft)	4 / 25	7.00E+02	N	BSL
	33213-65-9	Endosulfan II	1.50E-02	mg/kg	SUSDP18 (0 - 1 ft)	8 / 24	7.00E+02	N	BSL
	1031-07-8	Endosulfan Sulfate	7.20E-03 J	mg/kg	SUSDP10 (0.5 - 1 ft)	17 / 24	7.00E+02	N	BSL
	72-20-8	Endrin	2.60E-02	mg/kg	SUSDP08 (0 - 1 ft)	14 / 24	2.50E+01	N	BSL

Table 3-13
Occurrence, Distribution and Selection of Chemicals of Potential Concern in On-Site Soil
Benning Road Facility RI/FS Project
3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future Medium: Soil Exposure Medium: Soil

Exposure Point ⁽⁶⁾	Cas Number	Chemical	Maximum ⁽¹⁾ Concentration	Units	Location of Maximum Concentration	Detection Frequency	Screening Toxicity Value ⁽⁴⁾	COPC Flag (Y/N)	Rationale for Selection or Deletion ⁽⁵⁾
	7421-93-4	Endrin aldehyde	2.20E-03	mg/kg	SUSDP19 (1.5 - 2.5 ft)	5/24	2.50E+01	N	BSL
	53494-70-5	Endrin ketone	1.20E-02	mg/kg	SUS25 (0.5 - 1 ft)	5 / 24	2.50E+01	N	BSL
	58-89-9	gamma-BHC (Lindane)	2.90E-03	mg/kg	SUSDP19 (1.5 - 2.5 ft)	8 / 25	2.50E+00	N	BSL
	76-44-8	Heptachlor	2.90E-03	mg/kg	SUSDP10 (0.5 - 1 ft)	4 / 25	6.30E-01	N	BSL
	1024-57-3	Heptachlor Epoxide	2.20E-02	mg/kg	SUSDP49 (0 - 1 ft)	14 / 25	3.30E-01	N	BSL
	72-43-5	Methoxychlor	3.60E-02	mg/kg	SUSDP19 (1.5 - 2.5 ft)	12 / 24	4.10E+02	N	BSL
	5103-74-2	trans-Chlordane	1.50E-02	mg/kg	SUSDP11 (0 - 1 ft), SUSDP08 (2.5 - 3.5 ft)	10 / 25	7.70E+00	N	BSL
	Petroleum Comp	oounds							
	C10C20	Diesel Range Organics (C10-C20)	1.10E+04	mg/kg	SUSDPCT16-2M (2 - 3 ft)	71 / 181	4.40E+02	Υ	ASL
	8006-61-9	Gasoline Range Organics (C6-C10)	3.80E+01	mg/kg	SB3 (2.5 - 3.5 ft)	8 / 143	4.20E+01	N	BSL
	C20C36	Oil Range Organics (C20-C36)	1.70E+04	mg/kg	SB3 (2.5 - 3.5 ft)	123 / 181	3.50E+05	N	BSL
	SVOCs								
	92-52-4	1,1'-Biphenyl	3.20E-02	mg/kg	DP26 (3.5 - 4.5 ft)	5 / 19	2.00E+01	N	BSL
	95-94-3	1,2,4,5-Tetrachlorobenzene	9.60E-03	mg/kg	SUSDP18 (0 - 1 ft)	1 / 19	3.50E+01	N	BSL
	91-57-6	2-Methylnaphthalene	1.20E-01	mg/kg	DP27 (6.5 - 7.5 ft)	12 / 19	3.00E+02	N	BSL
	95-48-7	2-Methylphenol	1.30E-02	mg/kg	SUSDP09 (0 - 1 ft)	1 / 19	4.10E+03	N	BSL
	106-44-5	4-Methylphenol	2.60E-02	mg/kg	SUSDP09 (0 - 1 ft)	2/19	8.20E+03	N	BSL
	83-32-9	Acenaphthene	2.40E+02	mg/kg	SUSDP43-3P (1 - 2 ft)	360 / 519	4.50E+03	N	BSL
	208-96-8	Acenaphthylene	9.50E+00	mg/kg	SUSDP19-4N (3 - 4 ft)	350 / 519	4.50E+03	N	BSL
	98-86-2	Acetophenone	5.30E-02	mg/kg	SUSDP02 (0.33 - 0.83 ft)	6 / 19	1.20E+04	N	BSL
	120-12-7	Anthracene	4.80E+02	mg/kg	SUSDP19-6W (2 - 3 ft)	416 / 519	2.30E+04	N	BSL
	100-52-7	Benzaldehyde	1.70E-01 J	mg/kg	SUSDP02 (0.33 - 0.83 ft)	10 / 19	8.20E+02	N	BSL
	56-55-3	Benzo(a)anthracene	7.20E+02	mg/kg	SUSDP19-6W (2 - 3 ft)	446 / 519	2.10E+01	Y	ASL
	50-32-8	Benzo(a)pyrene	6.40E+02	mg/kg	SUSDP19-6W (2 - 3 ft)	432 / 519	2.10E+00	Y	ASL
	205-99-2	Benzo(b)fluoranthene	5.10E+02	mg/kg	SUSDP43-3P (1 - 2 ft)	438 / 519	2.10E+01	Y	ASL
	191-24-2	Benzo(g,h,i)perylene	3.80E+02	mg/kg	SUSDP19-6W (2 - 3 ft)	430 / 519	2.30E+03	N	BSL
	207-08-9	Benzo(k)fluoranthene	5.70E+02	mg/kg	SUSDP19-6W (2 - 3 ft)	422 / 519	2.10E+02	Y	ASL
	117-81-7	bis-(2-Ethylhexyl)phthalate	2.30E-01	mg/kg		15 / 19	1.60E+02	N	BSL
	85-68-7	Butylbenzylphthalate	1.30E-01 J	mg/kg	SUSDP01 (0.33 - 1 ft), SUSDP02 (0.33 - 0.83 ft)	11 / 19	1.20E+03	N	BSL
	86-74-8	Carbazole	2.60E-01	mg/kg	SUSDP19 (0.83 - 1 ft)	11 / 19	3.00E+03	N	BSL
	218-01-9	Chrysene	6.20E+02	mg/kg	SUSDP19-6W (2 - 3 ft)	446 / 519	2.10E+03	Υ	cPAH (7)
	84-74-2	Di-n-butylphthalate	3.20E-01	mg/kg	SUSDP02 (0.33 - 0.83 ft)	2/19	8.20E+03	N	BSL
	53-70-3	Dibenzo(a,h)anthracene	1.00E+02	mg/kg	SUSDP19-6W (2 - 3 ft)	379 / 519	2.10E+00	Y	ASL
	132-64-9	Dibenzofuran	1.20E-01 J	mg/kg	SUSDP19 (0.83 - 1 ft)	8 / 19	1.00E+02	N	BSL
	84-66-2	Diethylphthalate	2.80E-02	mg/kg	·	7 / 19	6.60E+04	N	BSL
	131-11-3	Dimethylphthalate	2.10E-01	mg/kg		2/19	6.60E+04	N	BSL
	206-44-0	Fluoranthene	1.50E+03	mg/kg	SUSDP43-3P (1 - 2 ft), SUSDP19-6W (2 - 3 ft)	456 / 519	3.00E+03	N	BSL
	86-73-7	Fluorene	2.70E+02	mg/kg	SUSDP19-6W (2 - 3 ft)	365 / 519	3.00E+03	N	BSL
	193-39-5	Indeno(1,2,3-cd)pyrene	3.80E+02	mg/kg	SUSDP19-6W (2 - 3 ft)	432 / 519	2.10E+01	Υ	ASL

Table 3-13

Occurrence, Distribution and Selection of Chemicals of Potential Concern in On-Site Soil Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future Medium: Soil Exposure Medium: Soil

Exposure Point ⁽⁶⁾	Chemical		Maximum ⁽¹⁾ Concentration		Location of Maximum Concentration	Detection Frequency	Screening Toxicity Value ⁽⁴⁾	COPC Flag (Y/N)	Rationale for Selection or Deletion ⁽⁵⁾	
	91-20-3	Naphthalene	1.30E+02	mg/kg	SUSDP43-3P (1 - 2 ft)	341 / 519	1.70E+01	Υ	ASL	
	85-01-8	Phenanthrene	1.70E+03	mg/kg	SUSDP43-3P (1 - 2 ft)	445 / 519	2.30E+04	N	BSL	
	108-95-2	Phenol	1.10E-01	1.10E-01	mg/kg	SUSDP02 (0.33 - 0.83 ft)	4 / 21	2.50E+04	N	BSL
	129-00-0	Pyrene	1.20E+03	mg/kg	SUSDP19-6W (2 - 3 ft)	456 / 519	2.30E+03	N	BSL	
	VOCs									
	79-00-5 1,1,2-Trichloroethane		6.30E-03	mg/kg	SUSDP15 (0.17 - 1 ft)	1 / 74	6.30E-01	N	BSL	
	87-61-6	1,2,3-Trichlorobenzene	2.10E-03 J	mg/kg	SUSDP04 (0 - 1 ft)	1 / 74	9.30E+01	N	BSL	
	107-06-2	1,2-Dichloroethane	2.30E-03 J	mg/kg	SUSDP15 (0.17 - 1 ft)	1 / 74	2.00E+00	N	BSL	
	78-93-3	2-Butanone	1.20E-02	mg/kg	SUSDP12 (14.5 - 15.5 ft)	1 / 69	1.90E+04	N	BSL	
	108-10-1	4-Methyl-2-pentanone	2.10E-03 J	mg/kg	SUSDP15 (0.17 - 1 ft)	1 / 74	1.40E+04	N	BSL	
	67-64-1	Acetone	5.80E-02	mg/kg	SUSDP12 (14.5 - 15.5 ft)	14 / 70	6.70E+04	N	BSL	
	110-82-7	Cyclohexane	2.30E-03 J	mg/kg	SUSDP12 (14.5 - 15.5 ft)	1 / 74	2.70E+03	N	BSL	
	100-41-4	Ethylbenzene	3.10E-03 J	mg/kg	SUSDP02 (0.33 - 0.83 ft)	2/74	2.50E+01	N	BSL	
	98-82-8	Isopropylbenzene	7.70E-04 J	mg/kg	SUSDP39 (2.5 - 3.5 ft)	1 / 74	9.90E+02	N	BSL	
	108-87-2	Methylcyclohexane	6.10E-03	mg/kg	SUSDP12 (14.5 - 15.5 ft)	1 / 74	2.70E+03	N	BSL	
	75-09-2	Methylene Chloride	1.20E-03 J	mg/kg	SUSDP10 (14.5 - 15.5 ft)	1 / 74	3.20E+02	N	BSL	
	XYLMP	m, p-Xylene	2.00E-02	mg/kg	SUSDP02 (0.33 - 0.83 ft)	4 / 74	2.40E+02	N	BSL	
	95-47-6	o-Xylene	1.30E-02	mg/kg	SUSDP02 (0.33 - 0.83 ft)	4 / 74	2.80E+02	N	BSL	
	127-18-4	Tetrachloroethylene	4.20E-03 J	mg/kg	SUSDP39 (2.5 - 3.5 ft)	2/74	3.90E+01	N	BSL	
	108-88-3	Toluene	1.40E-03 J	mg/kg	SUSDP02 (0.33 - 0.83 ft)	2/74	4.70E+03	N	BSL	
	1330-20-7	Xylenes (total)	3.30E-02	mg/kg	SUSDP02 (0.33 - 0.83 ft)	4 / 69	2.50E+02	N	BSL	

Notes:

- (1) Minimum/maximum detected concentration and associated data flags.
 - J = The chemical was positively identified; however, the associated numerical value is an estimated concentration.
 - +/- = Indicates the result may be biased high/low.
- (2) Lab Reporting Detection Limits (RDLs) are shown where the frequency of detection is less than 100%.
- (3) Maximum detected concentration used for screening, except for lead for which the mean detected concentration is used.
- (4) Screening levels are equal to the USEPA Regional Screening Level (RSL) for industrial soil based on a target risk level of 1x10-6 for carcinogens and a target hazard quotient of 0.1 for noncarcinogens (November 2018)

See Table 3-9 for screening levels and surrogates used.

Although iron has a USEPA RSL for soil, iron is considered an essential nutrient and is not further evaluated.

The average concentration of lead is used for comparison to the screening level, consistent with USEPA guidance.

(5) Rationale Codes:

Selection Reason: Above Screening Level (ASL)

Deletion Reason: Below Screening Level (BSL); Essential Nutrient (EN)

- (6) Soil data represent the 0 to 16 feet depth interval.
- (7) All seven potentially carcinogenic PAH compounds were retained as COPCs if one or more was identified as a COPC.

Definitions:

PCB - Polychlorinated Biphenyl

SVOC - Semivolatile Organic Compound

TCDD-TEQ - Dioxin Toxic Equivalence

VOC - Volatile Organic Compound

CAS - Chemical Abstracts Service

cPAH - Carcinogenic Polycyclic Aromatic Hydrocarbon

mg/kg - milligrams per kilogram

Table 3-14

Occurrence, Distribution and Selection of Chemicals of Potential Concern in Groundwater for the Volatilization to Excavation Trench Air Pathway Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Groundwater

Exposure Point	Cas Number	Chemical	Minimum ⁽¹⁾ Concentration	Maximum ⁽¹⁾ Concentration	Average Detected Concentration	Units	Location of Maximum Concentration	Detection Frequency	Range of Reporting Limits ⁽²⁾	Concentration Used for Screening (3)	Screening Toxicity Value ⁽⁴⁾	COPC Flag (Y/N)	Rationale for Selection or Deletion ⁽⁵⁾
Upper													
Zone	75-35-4	1,1-Dichloroethene	7.20E-01 J	7.20E-01 J	7.20E-01	ug/L	MW09A	1 / 114	1 - 1	7.20E-01	2.80E+01	N	BSL
	78-93-3	2-Butanone	7.40E-01 J	2.10E+01	7.50E+00	ug/L	MW09A	6 / 91	5 - 5	2.10E+01	5.60E+02	N	BSL
	591-78-6	2-Hexanone	4.70E-01 J	4.70E-01 J	4.70E-01	ug/L	MW09A	1 / 91	5 - 5	4.70E-01	3.80E+00	N	BSL
	108-10-1	4-Methyl-2-pentanone	6.40E-01 J	6.40E-01 J	6.40E-01	ug/L	MW09A	1 / 91	5 - 5	6.40E-01	6.30E+02	N	BSL
	67-64-1	Acetone	2.70E+00 J	7.30E+01	8.10E+00	ug/L	DP58 (15 - 20 ft)	33 / 91	5 - 5	7.30E+01	1.40E+03	Ν	BSL
	71-43-2	Benzene	2.10E-01 J	2.70E-01 J	2.50E-01	ug/L	MW09A	3 / 91	1 - 1	2.70E-01	4.60E-01	N	BSL
	75-27-4	Bromodichloromethane	3.60E-01 J	2.60E+00	1.50E+00	ug/L	DP60 (15 - 20 ft)	2/91	1 - 1	2.60E+00	1.30E-01	Υ	ASL
	75-65-0	Butyl alcohol, tert-	1.10E+02 J-	1.10E+02 J-	1.10E+02	ug/L	DP58 (15 - 20 ft)	1 / 34	40 - 800	1.10E+02	1.40E+01	Υ	ASL
	75-15-0	Carbon Disulfide	4.60E-01 J	1.50E+00	8.90E-01	ug/L	DP58 (15 - 20 ft)	9 / 91	1 - 1	1.50E+00	8.10E+01	N	BSL
	67-66-3	Chloroform	2.20E-01 J	1.50E+01	1.80E+00	ug/L	DP60 (15 - 20 ft)	18 / 91	1 - 1	1.50E+01	2.20E-01	Y	ASL
	156-59-2	cis-1,2-Dichloroethylene	3.40E-01 J	2.30E+01	6.40E+00	ug/L	DPB7	26 / 114	1 - 1	2.30E+01	3.60E+00	N	NIT
	108-20-3	Diisopropyl ether	2.90E-01 J	6.30E-01 J	4.20E-01	ug/L	TA19C1 (15 - 20 ft)	3 / 34	1 - 20	6.30E-01	1.50E+02	N	BSL
	XYLMP	m, p-Xylene	2.70E-01 J	5.60E-01 J	4.40E-01	ug/L	SUSDP06 (14.5 - 19.5 ft)	4/91	1 - 2	5.60E-01	1.90E+01	Ν	BSL
	1634-04-4	Methyl tert-Butyl Ether (MTBE)	2.10E-01 JJ	4.80E+01	4.70E+00	ug/L	DP45 (15 - 20 ft)	51 / 91	1 - 1	4.80E+01	1.40E+01	Υ	ASL
	75-09-2	Methylene Chloride	2.00E-01 J	4.90E-01 J	3.10E-01	ug/L	SUSDP02 (12 - 17 ft)	5/91	1 - 1	4.90E-01	1.10E+01	Ν	BSL
	95-47-6	o-Xylene	1.10E-01 J	2.40E-01 J	1.60E-01	ug/L	SUSDP06 (14.5 - 19.5 ft)	4 / 91	1 - 1	2.40E-01	1.90E+01	N	BSL
	994-05-8	Tertiary-Amyl Methyl Ether	2.00E-01 J	1.30E+00 J	5.50E-01	ug/L	DP57 (15 - 20 ft)	4 / 34	1 - 20	1.30E+00	4.10E+01	N	BSL
	127-18-4	Tetrachloroethylene	1.80E-01 J	4.70E+02	5.80E+01	ug/L	DPB7	54 / 114	1 - 1	4.70E+02	4.10E+00	Υ	ASL
	108-88-3	Toluene	1.50E-01 J	2.10E+00	4.30E-01	ug/L	SUSDP06 (14.5 - 19.5 ft)	33 / 91	1 - 1	2.10E+00	1.10E+02	N	BSL
	156-60-5	trans-1,2-Dichloroethene	2.20E-01 J	2.20E-01 J	2.20E-01	ug/L	MW09A	1 / 114	1 - 1	2.20E-01	3.60E+01	N	BSL
	79-01-6	Trichloroethene	1.70E-01 J	4.10E+01	9.10E+00	ug/L	MW09A	28 / 114	1 - 1	4.10E+01	2.80E-01	Υ	ASL
	75-01-4	Vinyl Chloride	5.30E+00	5.30E+00	5.30E+00	ug/L	MW09A	1 / 114	1 - 1	5.30E+00	1.90E-02	Υ	ASL
	1330-20-7	Xylenes (total)	1.10E-01	8.00E-01	4.00E-01	ug/L	SUSDP06 (14.5 - 19.5 ft)	6 / 91	1 - 2	8.00E-01	1.90E+01	N	BSL

Notes:

- (1) Minimum/maximum detected concentration and associated data flags.
 - J = The chemical was positively identified; however, the associated numerical value is an estimated concentration.
 - +/- = Indicates the result may be biased high/low.
- (2) Lab Reporting Detection Limits (RDLs) are shown where the frequency of detection is less than 100%.
- (3) Maximum detected concentration used for screening.
- (4) Screening levels are equal to the USEPA Regional Screening Level (RSL) for tapwater based on a target risk level of 1x10⁶ for carcinogens and a target hazard quotient of 0.1 for noncarcinogens (November 2018). See Table 3-10 for screening levels and surrogates used.
- (5) Rationale Codes:

Selection Reason: Above Screening Level (ASL)

Deletion Reason: Below Screening Level (BSL), No Inhalation Toxicity Data (NIT)

Definitions:

CAS - Chemical Abstracts Service COPC - Chemical of Potential Concern

PCB TEQ - Polychlorinated Biphenyl Toxicity Equivalence

TCDD TEQ - Dioxin Toxic Equivalence

Table 3-15 Occurrence, Distribution and Selection of Chemicals of Potential Concern in Fringe Surface Sediment Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Sediment

Exposure Medium: Surface Sediment

Exposure Point ⁽⁶⁾	Cas Number	Chemical	Minimum ⁽¹⁾ Concentration	Maximum ⁽¹⁾ Concentration	Average Detected Concentration	Units	Location of Maximum Concentration	Detection Frequency	Range of Reporting Limits ⁽²⁾	Concentration Used for Screening (3)	Screening Toxicity Value ⁽⁴⁾	COPC Flag (Y/N)	Rationale for Selection or Deletion ⁽⁵⁾
	Dioxins and Furan	s											
	DFTEQ-HH	2,3,7,8-TCDD-TEQ	7.12E-07	7.07E-04	7.25E-05	mg/kg	SED7F (0 - 0.5 ft)	24 / 24	-	7.07E-04	4.80E-06	Υ	ASL
	Inorganics												
Pepco	7429-90-5	Aluminum	2.40E+03	1.55E+04	8.07E+03	mg/kg	R6-04 (0 - 0.5 ft)	41 / 41	-	1.55E+04	7.70E+03	Υ	ASL
Waterside	7440-36-0	Antimony	2.70E-01 J-	4.30E+01	1.93E+00	mg/kg	SED7F (0 - 0.33 ft)	41 / 41	-	4.30E+01	3.10E+00	Υ	ASL
Area	7440-38-2	Arsenic	1.90E+00	1.70E+01 J-	5.56E+00	mg/kg	SED7.5E (0 - 0.5 ft) SED7.5E (0 - 0.33 ft)	41 / 41	-	1.70E+01	6.80E-01	Y	ASL
	7440-39-3	Barium	1.70E+01	1.50E+02 J-	8.14E+01	mg/kg	SED7.5E (0 - 0.5 ft)	41 / 41	-	1.50E+02	1.50E+03	N	BSL
	7440-41-7	Beryllium	1.50E-01	2.20E+00	1.01E+00	mg/kg	SED7.5E (0 - 0.5 ft)	41 / 41	-	2.20E+00	1.60E+01	N	BSL
	7440-43-9	Cadmium	3.50E-01	5.20E+00 J-	1.64E+00	mg/kg	SED7.5E (0 - 0.5 ft)	41 / 41	-	5.20E+00	7.10E+00	N	BSL
	7440-70-2	Calcium	1.40E+03 J-	1.70E+04	3.43E+03	mg/kg	SED7G (0 - 0.5 ft)	41 / 41	-	1.70E+04	EN	N	EN
	7440-47-3	Chromium	1.80E+01 J+	8.00E+01 J-	3.82E+01	mg/kg	SED7.5D (0 - 0.5 ft)	41 / 41	-	8.00E+01	1.20E+04	N	BSL
	7440-48-4	Cobalt	4.90E+00	3.20E+01 J-	1.51E+01	mg/kg	SED7.5E (0 - 0.5 ft)	41 / 41	-	3.20E+01	2.30E+00	Y	ASL
	7440-50-8	Copper	2.10E+01	2.40E+02	7.05E+01	mg/kg	SED7.5E (0 - 0.5 ft)	41 / 41	-	2.40E+02	3.10E+02	N	BSL
	57-12-5	Cyanide	1.80E-01 J	4.90E+00	1.01E+00	mg/kg	R6-18 (0 - 0.5 ft)	11 / 13	0.14 - 0.17	4.90E+00	2.30E+00	Y	ASL
	7439-89-6	Iron	7.50E+03	3.30E+04	1.96E+04	mg/kg	SED6C (0 - 0.33 ft)	41 / 41	-	3.30E+04	5.50E+03	N	EN
	7439-92-1	Lead	3.60E+01 J	3.20E+02	9.07E+01	mg/kg	SED7F (0 - 0.5 ft)	41 / 41	-	9.07E+01	4.00E+02	N	BSL
	7439-95-4	Magnesium	1.80E+03 J	1.20E+04	3.27E+03	mg/kg	SED7G (0 - 0.5 ft)	41 / 41	-	1.20E+04	EN	N	EN
	7439-96-5	Manganese	8.60E+01	4.30E+02	2.10E+02	mg/kg	SED6C (0 - 0.33 ft)	41 / 41	-	4.30E+02	1.80E+02	Υ	ASL
	7439-97-6	Mercury	4.10E-02	6.90E-01 J	2.18E-01	mg/kg	SED7.5E (0 - 0.5 ft)	41 / 41	-	6.90E-01	2.30E+00	N	BSL
	7440-02-0	Nickel	1.50E+01	1.60E+02 J-	5.07E+01	mg/kg	SED7F (0 - 0.5 ft)	41 / 41	-	1.60E+02	1.50E+02	Υ	ASL
	7440-09-7	Potassium	2.30E+02	1.90E+03	9.64E+02	mg/kg	R6-18 (0 - 0.5 ft)	41 / 41	-	1.90E+03	EN	N	EN
	7782-49-2	Selenium	3.40E-02 J	2.75E+00 J	9.52E-01	mg/kg	R6-30 (0 - 0.5 ft)	41 / 41	-	2.75E+00	3.90E+01	N	BSL
	7440-22-4	Silver	8.30E-02	3.50E+00 J-	6.94E-01	mg/kg	SED7F (0 - 0.5 ft)	41 / 41	-	3.50E+00	3.90E+01	N	BSL
	7440-23-5	Sodium	7.40E+01	4.20E+02	1.78E+02	mg/kg	SED7G (0 - 0.5 ft)	41 / 41	-	4.20E+02	EN	N	EN
	7440-28-0	Thallium	3.70E-02 J	6.30E-01	2.10E-01	mg/kg	SED7.5E (0 - 0.5 ft)	41 / 41	-	6.30E-01	7.80E-02	Υ	ASL
	7440-62-2	Vanadium	2.10E+01	4.40E+02	8.70E+01	mg/kg	SED7F (0 - 0.5 ft)	41 / 41	-	4.40E+02	3.90E+01	Y	ASL
	7440-66-6	Zinc	9.70E+01 J+	6.30E+02	2.69E+02	mg/kg	SED7F (0 - 0.5 ft)	41 / 41	-	6.30E+02	2.30E+03	N	BSL
	Pesticides												
	72-54-8	4,4'-DDD	1.90E-03 J	1.20E-02 J	4.60E-03	mg/kg	SED7F (0 - 0.5 ft)	28 / 28	-	1.20E-02	1.90E-01	N	BSL
	72-55-9	4,4'-DDE	2.80E-03 J	3.00E-02 J	8.27E-03	mg/kg	SED8C (0 - 0.5 ft)	27 / 28	0.0013 - 0.0013	3.00E-02	2.00E+00	N	BSL
	50-29-3	4,4'-DDT	8.60E-04 J	7.00E-02	8.70E-03	mg/kg	R6-05 (0 - 0.5 ft)	17 / 28	0.000044 - 0.0013	7.00E-02	1.90E+00	N	BSL
	309-00-2	Aldrin	1.30E-04 J	7.60E-04 J	4.57E-04	mg/kg	SED8C (0 - 0.5 ft)	16 / 28	0.000041 - 0.0013	7.60E-04	3.90E-02	N	BSL
	319-85-7	beta-BHC	5.00E-04 J	3.90E-03 J	1.37E-03	mg/kg	R6-05 (0 - 0.5 ft)	7 / 28	0.000087 - 0.0013	3.90E-03	3.00E-01	N	BSL
	5103-71-9	cis-Chlordane	1.70E-03 J	1.60E-02	8.20E-03	mg/kg	SED8C (0 - 0.33 ft)	15 / 15	-	1.60E-02	1.70E+00	N	BSL
	319-86-8	delta-BHC	3.00E-04 J	5.50E-03 J	1.50E-03	mg/kg	SED7F (0 - 0.5 ft)	11 / 28	0.000053 - 0.0013	5.50E-03	8.60E-02	N	BSL
	60-57-1	Dieldrin	4.10E-04 J	1.40E-02 J	2.80E-03	mg/kg	R6-04 (0 - 0.5 ft)	20 / 28	0.00004 - 0.0012	1.40E-02	3.40E-02	N	BSL
	959-98-8	Endosulfan I	3.70E-04 J	1.50E-03 J	8.50E-04	mg/kg	SED7G (0 - 0.5 ft)	5 / 28	0.000025 - 0.0013	1.50E-03	4.70E+01	N	BSL
	33213-65-9	Endosulfan II	2.30E-04 J	6.80E-03	1.90E-03	mg/kg	R6-04 (0 - 0.5 ft)	16 / 28	0.00012 - 0.0013	6.80E-03	4.70E+01	N	BSL
	1031-07-8	Endosulfan Sulfate	2.50E-04 J	1.10E-02	2.76E-03	mg/kg	R6-05 (0 - 0.5 ft)	16 / 27	0.00005 - 0.0012	1.10E-02	4.70E+01	N	BSL
	72-20-8	Endrin	3.60E-04 J	2.20E-02 J	5.50E-03	mg/kg	SED7F (0 - 0.5 ft)	19 / 28	0.00073 - 0.0013	2.20E-02	1.90E+00	N	BSL

Table 3-15 Occurrence, Distribution and Selection of Chemicals of Potential Concern in Fringe Surface Sediment Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Sediment

Exposure Medium: Surface Sediment

Exposure Point ⁽⁶⁾	Cas Number	Chemical	Minimum ⁽¹⁾ Concentration	Maximum ⁽¹⁾ Concentration	Average Detected Concentration	Units	Location of Maximum Concentration	Detection Frequency	Range of Reporting Limits ⁽²⁾	Concentration Used for Screening (3)	Screening Toxicity Value ⁽⁴⁾	COPC Flag (Y/N)	Rationale for Selection or Deletion ⁽⁵⁾
	7421-93-4	Endrin aldehyde	1.70E-04 J	1.50E-03 J	8.30E-04	mg/kg	R6-05 (0 - 0.5 ft)	13 / 28	0.000082 - 0.0013	1.50E-03	1.90E+00	N	BSL
Pepco	53494-70-5	Endrin ketone	1.80E-03 J	8.00E-03 J	3.60E-03	mg/kg	SED7F (0 - 0.5 ft)	5 / 14	0.00073 - 0.0013	8.00E-03	1.90E+00	N	BSL
Waterside	58-89-9	gamma-BHC (Lindane)	1.10E-04 J	1.60E-03 J	5.30E-04	mg/kg	SED7G (0 - 0.5 ft)	14 / 28	0.000074 - 0.0013	1.60E-03	5.70E-01	N	BSL
Area	12789-03-6	Chlordane (Technical)	4.20E-02 J	8.40E-02	5.80E-02	mg/kg	R6-04 (0 - 0.5 ft)	8/9	0.00015 - 0.00015	8.40E-02	1.70E+00	N	BSL
	76-44-8	Heptachlor	4.80E-04 J	3.30E-03 J	1.14E-03	mg/kg	R6-04 (0 - 0.5 ft)	15 / 28	0.000034 - 0.0013	3.30E-03	1.30E-01	N	BSL
	1024-57-3	Heptachlor Epoxide	4.40E-04 J	6.50E-03 J	1.90E-03	mg/kg	R6-05 (0 - 0.5 ft)	27 / 28	0.000047 - 0.000047	6.50E-03	7.00E-02	N	BSL
	72-43-5	Methoxychlor	7.00E-03 J	2.30E-02 J	1.50E-02	mg/kg	SED7F (0 - 0.5 ft)	6 / 14	0.00073 - 0.0012	2.30E-02	3.20E+01	N	BSL
	5103-74-2	trans-Chlordane	1.90E-03	1.40E-02	9.40E-03	mg/kg	SED6C (0 - 0.33 ft)	11 / 15	0.00073 - 0.0012	1.40E-02	1.70E+00	N	BSL
	SVOCs												
	91-57-6	2-Methylnaphthalene	9.20E-03 J	7.40E-02	5.00E-02	mg/kg	SED6.5E (0 - 0.5 ft)	5/6	0.27 - 0.27	7.40E-02	2.40E+01	N	BSL
	106-44-5	4-Methylphenol	5.50E-02 J	1.10E-01 J	8.30E-02	mg/kg	SED7G (0 - 0.5 ft)	2/6	0.3 - 1.3	1.10E-01	6.30E+02	N	BSL
	83-32-9	Acenaphthene	8.90E-03 J	4.30E-01	6.08E-02	mg/kg	R6-05 (0 - 0.5 ft)	26 / 32	0.032 - 0.27	4.30E-01	3.60E+02	N	BSL
	208-96-8	Acenaphthylene	1.70E-02 J	1.20E-01	6.10E-02	mg/kg	R5-03 (0 - 0.5 ft)	29 / 32	0.15 - 0.24	1.20E-01	3.60E+02	N	BSL
	98-86-2	Acetophenone	2.70E-02 J	4.40E-02 J	3.40E-02	mg/kg	SED6.5E (0 - 0.5 ft)	3/6	0.32 - 1.3	4.40E-02	7.80E+02	N	BSL
	120-12-7	Anthracene	4.70E-02 J	8.60E-01	1.43E-01	mg/kg	R6-05 (0 - 0.5 ft)	32 / 32	-	8.60E-01	1.80E+03	N	BSL
	100-52-7	Benzaldehyde	5.70E-02 J	1.90E-01 J	9.40E-02	mg/kg	SED7G (0 - 0.5 ft)	4/6	0.3 - 1.3	1.90E-01	1.70E+02	N	BSL
	56-55-3	Benzo(a)anthracene	1.60E-01	2.30E+00	5.90E-01	mg/kg	R6-05 (0 - 0.5 ft)	32 / 32	-	2.30E+00	1.10E+00	Y	ASL
	50-32-8	Benzo(a)pyrene	1.60E-01	2.00E+00	6.50E-01	mg/kg	R6-05 (0 - 0.5 ft)	32 / 32	-	2.00E+00	1.10E-01	Y	ASL
	205-99-2	Benzo(b)fluoranthene	2.90E-01	2.60E+00	9.70E-01	mg/kg	R6-05 (0 - 0.5 ft)	32 / 32	-	2.60E+00	1.10E+00	Y	ASL
	191-24-2	Benzo(g,h,i)perylene	1.70E-01	1.70E+00	7.10E-01	mg/kg	R6-05 (0 - 0.5 ft)	32 / 32	-	1.70E+00	1.80E+02	N	BSL
	207-08-9	Benzo(k)fluoranthene	9.60E-02 J	9.60E-01	3.55E-01	mg/kg	R6-05 (0 - 0.5 ft)	32 / 32	-	9.60E-01	1.10E+01	Y	cPAH (7)
	65-85-0	Benzoic acid	7.50E-01 J	1.20E+00 J	1.00E+00	mg/kg	R6-18 (0 - 0.5 ft) R6-04 (0 - 0.5 ft)	7 / 13	0.13 - 0.7	1.20E+00	2.50E+04	N	BSL
	117-81-7	bis-(2-Ethylhexyl)phthalate	5.50E-01	1.00E+01	1.95E+00	mg/kg	R6-21 (0 - 0.5 ft)	19 / 19	-	1.00E+01	3.90E+01	N	BSL
	85-68-7	Butylbenzylphthalate	5.90E-02 J	2.50E+00	3.30E-01	mg/kg	R6-32 (0 - 0.5 ft)	11 / 19	0.052 - 1.3	2.50E+00	2.90E+02	N	BSL
	105-60-2	Caprolactam	3.90E-01 J	3.90E-01 J	3.90E-01	mg/kg	SED8C (0 - 0.5 ft)	1/6	1 - 6.8	3.90E-01	3.10E+03	N	BSL
	86-74-8	Carbazole	6.00E-02 J	2.50E-01	1.10E-01	mg/kg	SED7G (0 - 0.5 ft)	6/6	-	2.50E-01	2.40E+02	N	BSL
	218-01-9	Chrysene	2.70E-01	2.40E+00	8.76E-01	mg/kg	R6-05 (0 - 0.5 ft)	32 / 32	-	2.40E+00	1.10E+02	Υ	cPAH (7)
	53-70-3	Dibenzo(a,h)anthracene	4.00E-02 J	4.70E-01	1.50E-01	mg/kg	R6-05 (0 - 0.5 ft)	30 / 32	0.037 - 0.13	4.70E-01	1.10E-01	Υ	ASL
	132-64-9	Dibenzofuran	4.20E-02 J	1.10E-01 J	7.60E-02	mg/kg	SED7G (0 - 0.5 ft)	2/6	0.3 - 1.3	1.10E-01	7.30E+00	N	BSL
	84-66-2	Diethylphthalate	4.80E-02 J	1.20E-01 J	8.40E-02	mg/kg	SED8C (0 - 0.5 ft)	2 / 19	0.034 - 1.3	1.20E-01	5.10E+03	N	BSL
	84-74-2	Di-n-butylphthalate	2.30E-02 J	5.60E-02 J	4.00E-02	mg/kg	R6-32 (0 - 0.5 ft)	3 / 19	0.039 - 1.3	5.60E-02	6.30E+02	N	BSL
	117-84-0	Di-n-octylphthalate	1.50E-01 J	4.00E-01 J	3.00E-01	mg/kg	R6-18 (0 - 0.5 ft)	4 / 19	0.033 - 1.3	4.00E-01	6.30E+01	N	BSL
	206-44-0	Fluoranthene	3.20E-01	6.00E+00	1.40E+00	mg/kg	R6-05 (0 - 0.5 ft)	32 / 32	-	6.00E+00	2.40E+02	N	BSL
	86-73-7	Fluorene	2.20E-02 J	4.10E-01	7.20E-02	mg/kg	R6-05 (0 - 0.5 ft)	27 / 32	0.059 - 0.27	4.10E-01	2.40E+02	N	BSL
	193-39-5	Indeno(1,2,3-cd)pyrene	1.20E-01	1.40E+00	5.70E-01	mg/kg	R6-05 (0 - 0.5 ft)	32 / 32	-	1.40E+00	1.10E+00	Y	ASL
	91-20-3	Naphthalene	1.30E-02 J	1.30E-01	4.60E-02	mg/kg	R6-05 (0 - 0.5 ft)	21 / 32	0.0058 - 0.27	1.30E-01	3.80E+00	N	BSL
	85-01-8	Phenanthrene	1.90E-01 J	4.40E+00	6.18E-01	mg/kg	R6-05 (0 - 0.5 ft)	32 / 32	-	4.40E+00	1.80E+03	N	BSL
	108-95-2	Phenol	3.40E-02 J	4.10E-02 J	3.80E-02	mg/kg	R6-31 (0 - 0.5 ft)	2 / 19	0.0073 - 0.27	4.10E-02	1.90E+03	N	BSL
	129-00-0	Pyrene	3.40E-01	4.00E+00	1.10E+00	mg/kg	R6-05 (0 - 0.5 ft)	32 / 32	-	4.00E+00	1.80E+02	N	BSL

Table 3-15 Occurrence, Distribution and Selection of Chemicals of Potential Concern in Fringe Surface Sediment Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Sediment

Exposure Medium: Surface Sediment

Exposure Point ⁽⁶⁾	Cas Number	Chemical	Minimum ⁽¹⁾ Concentration	Maximum ⁽¹⁾ Concentration	Average Detected Concentration	Units	Location of Maximum Concentration	Detection Frequency	Range of Reporting Limits ⁽²⁾	Concentration Used for Screening (3)	Screening Toxicity Value ⁽⁴⁾	COPC Flag (Y/N)	Rationale for Selection or Deletion ⁽⁵⁾
	VOCs												
Pepco	78-93-3	2-Butanone	1.20E-02	1.20E-02	1.20E-02	mg/kg	SED2C (0 - 0.5 ft)	1/6	0.0058 - 0.014	1.20E-02	2.70E+03	Ν	BSL
Waterside	67-64-1	Acetone	5.50E-02	5.50E-02	5.50E-02	mg/kg	SED2C (0 - 0.5 ft)	1/6	0.023 - 0.057	5.50E-02	6.10E+03	Ν	BSL
Area	TPH												
	C10C20	Diesel Range Organics (C10-C20)	4.80E+01	2.20E+02 J	9.10E+01	mg/kg	SED7E (0 - 0.33 ft)	11 / 11	-	2.20E+02	9.60E+01	Y	ASL
	C20C36	Oil Range Organics (C20-C36)	4.20E+02	1.10E+03	6.60E+02	mg/kg	SED7E (0 - 0.33 ft)	11 / 11	-	1.10E+03	2.30E+04	Ν	BSL
	PCBs												
	1336-36-3	Total PCBs	2.20E-02	1.90E+00	4.47E-01	mg/kg	SED7.5E (0 - 0.5 ft)	41 / 41	-	1.90E+00	1.20E-01	Y	ASL

Notes:

- (1) Minimum/maximum detected concentration and associated data flags.
 - J = The chemical was positively identified; however, the associated numerical value is an estimated concentration.
 - +/- = Indicates the result may be biased high/low.
- (2) Lab Reporting Detection Limits (RDLs) are shown where the frequency of detection is less than 100%.
- (3) Maximum detected concentration used for screening, except for lead for which the mean detected concentration is used.
- (4) Sediment screening levels are equal to the USEPA Regional Screening Levels (RSLs) for residential soil based on a target risk level of 1x10 -6 for carcinogens and a target hazard quotient of 0.1 for noncarcinogens (November 2018). See Table 3-9 for screening levels and surrogates used. Although iron has a USEPA RSL for soil, iron is considered an essential nutrient and is not further evaluated.
- (5) Rationale Codes:
 - Selection Reason: Above Screening Level (ASL)
 - Deletion Reason: Below Screening Level (BSL); Essential Nutrient (EN)
- (6) Sediment data represent fringe sediment from the 0 to 0.5 foot below ground surface depth interval.
- (7) All seven potentially carcinogenic PAH compounds were retained as COPCs if one or more was identified as a COPC.

Definitions:

CAS - Chemical Abstracts Service

COPC - Chemical of Potential Concern

cPAH - Carcinogenic Polycyclic Aromatic Hydrocarbon

EN - Essential Nutrient

ft - Feet

mg/kg - milligrams per kilogram

PAH - Polycyclic Aromatic Hydrocarbon

PCB - Polychlorinated Biphenyl

SVOC - Semivolatile Organic Compound

TCDD-TEQ - Dioxin Toxic Equivalence TPH - Total Petroleum Hydrocarbon

VOC - Volatile Organic Compound

Table 3-16 Occurrence, Distribution and Selection of Chemicals of Potential Concern in Surface Water Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Surface Water
Exposure Medium: Surface Water

Exposure Point	Cas Number	Chemical	Minimum ⁽¹⁾ Concentration	Maximum ⁽¹⁾ Concentration	Average Detected Concentration	Units	Location of Maximum Concentration	Detection Frequency	Range of Reporting Limits ⁽²⁾	Concentration Used for Screening (3)	Screening Toxicity Value ⁽⁴⁾	COPC Flag (Y/N)	Rationale for Selection or Deletion ⁽⁵⁾
	Dioxins and												
	DFTEQ-HH	2,3,7,8-TCDD-TEQ	2.40E-07	6.12E-07	4.08E-07	ug/L	SUW3C	5/5	-	6.12E-07	5.10E-08	Υ	ASL
	Inorganics												
Pepco	7429-90-5	Aluminum	2.30E+02	5.70E+02	3.90E+02	ug/L	SUW3C	10 / 10	-	5.70E+02	2.00E+03	N	BSL
Waterside	7440-36-0	Antimony	5.40E-01 J	8.10E-01 J	6.20E-01	ug/L	SUW6B	10 / 10	-	8.10E-01	6.40E+02	N	BSL
Area	7440-38-2	Arsenic	4.80E-01 J	1.20E+00 J	7.80E-01	ug/L	SUW4B SUW6B	10 / 10	-	1.20E+00	1.40E-01	Y	ASL
	7440-39-3	Barium	3.30E+01	4.10E+01	3.70E+01	ug/L	SUW1B	10 / 10	-	4.10E+01	3.80E+02	N	BSL
	7440-41-7	Beryllium	3.80E-02 J	1.00E-01 J	6.50E-02	ug/L	SUW3C	10 / 10	-	1.00E-01	2.50E+00	N	BSL
	7440-70-2	Calcium	1.40E+04	1.90E+04	1.60E+04	ug/L	SUW1B	10 / 10	-	1.90E+04	EN	N	EN
	7440-47-3	Chromium	2.30E+00	3.60E+00	3.00E+00	ug/L	SUW3C SUW6B	10 / 10	-	3.60E+00	2.20E+03	N	BSL
	7440-48-4	Cobalt	8.00E-01	1.10E+00	9.80E-01	ug/L	SUW10B SUW3C SUW6B	10 / 10	-	1.10E+00	6.00E-01	Y	ASL
	7440-50-8	Copper	2.90E+00	5.80E+00	4.00E+00	ug/L	SUW4B	10 / 10	-	5.80E+00	8.00E+01	N	BSL
	7439-89-6	Iron	7.40E+02	1.40E+03	1.10E+03	ug/L	SUW3C	10 / 10	-	1.40E+03	EN	N	EN
	7439-92-1	Lead	2.10E+00	3.20E+00	2.70E+00	ug/L	SUW4B	10 / 10	-	3.20E+00	1.50E+01	N	BSL
	7439-95-4	Magnesium	3.80E+03	5.70E+03	4.70E+03	ug/L	SUW1B	10 / 10	-	5.70E+03	EN	N	EN
	7439-96-5	Manganese	1.20E+02	1.70E+02	1.40E+02	ug/L	SUW10B	10 / 10	-	1.70E+02	1.00E+02	Υ	ASL
	7440-02-0	Nickel	2.40E+00	3.20E+00	2.80E+00	ug/L	SUW3C SUW4B	10 / 10	-	3.20E+00	4.60E+03	N	BSL
	7440-09-7	Potassium	3.10E+03	3.80E+03	3.40E+03	ug/L	SUW1B	10 / 10	-	3.80E+03	EN	N	EN
	7782-49-2	Selenium	5.00E-01 J	8.60E-01 J	6.80E-01	ug/L	SUW2B	2 / 10	5 - 5	8.60E-01	4.20E+03	N	BSL
	7440-23-5	Sodium	1.50E+04	1.90E+04	1.70E+04	ug/L	SUW1B SUW7B	10 / 10	-	1.90E+04	EN	N	EN
	7440-28-0	Thallium	1.50E-02 J	1.10E-01 J	4.90E-02	ug/L	SUW1B	10 / 10	-	1.10E-01	4.70E-01	N	BSL
	7440-62-2	Vanadium	1.40E+00	2.70E+00	2.20E+00	ug/L	SUW6B	10 / 10	-	2.70E+00	8.60E+00	N	BSL
	7440-66-6	Zinc	6.90E+00	3.10E+01	1.20E+01	ug/L	SUW1B	10 / 10	-	3.10E+01	2.60E+04	N	BSL

Table 3-16 Occurrence, Distribution and Selection of Chemicals of Potential Concern in Surface Water Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Surface Water Exposure Medium: Surface Water

Exposure Point	Cas Number	Chemical	Minimum ⁽¹⁾ Concentration	Maximum ⁽¹⁾ Concentration	Average Detected Concentration	Units	Location of Maximum Concentration	Detection Frequency	Range of Reporting Limits ⁽²⁾	Concentration Used for Screening (3)	Screening Toxicity Value ⁽⁴⁾	COPC Flag (Y/N)	Rationale for Selection or Deletion ⁽⁵⁾
	Pesticides												
	50-29-3	4,4'-DDT	1.10E-03 J	1.60E-03	1.30E-03	ug/L	SUW1B	5/5	i	1.60E-03	2.20E-04	Υ	ASL
	SVOCs												
	91-57-6	2-Methylnaphthalene	1.60E-02 J	1.60E-02 J	1.60E-02	ug/L	SUW3C	1/5	0.19 - 0.22	1.60E-02	3.60E+00	N	BSL
	120-12-7	Anthracene	1.80E-02 J	1.80E-02 J	1.80E-02	ug/L	SUW4B	1 / 10	0.19 - 0.27	1.80E-02	4.00E+04	N	BSL
	117-81-7	bis-(2-Ethylhexyl)phthalate	1.40E+00 J	2.20E+00	1.90E+00	ug/L	SUW10B SUW6B	3/5	1.9 - 1.9	2.20E+00	2.20E+00	N	BSL
	85-68-7	Butylbenzylphthalate	8.60E-01 J	8.60E-01 J	8.60E-01	ug/L	SUW6B	1/5	0.96 - 1.1	8.60E-01	1.90E+03	N	BSL
	86-74-8	Carbazole	3.70E-02 J	3.70E-02 J	3.70E-02	ug/L	SUW3C	1/5	0.19 - 0.22	3.70E-02	2.90E+01	N	BSL
	84-74-2	Di-n-butylphthalate	5.10E-01 J	5.10E-01 J	5.10E-01	ug/L	SUW6B	1/5	0.96 - 1.1	5.10E-01	4.50E+03	N	BSL
	206-44-0	Fluoranthene	1.90E-02 J	3.60E-02 J	3.00E-02	ug/L	SUW3C	6/10	0.19 - 0.21	3.60E-02	1.40E+02	N	BSL
	129-00-0	Pyrene	2.10E-02 J	3.80E-02 J	3.00E-02	ug/L	SUW1B	4 / 10	0.19 - 0.21	3.80E-02	4.00E+03	N	BSL
	VOCs												
	75-15-0	Carbon Disulfide	4.00E-01 J	4.00E-01 J	4.00E-01	ug/L	SUW6B	1/5	1 - 1	4.00E-01	8.10E+01	N	BSL
	108-88-3	Toluene	1.50E-01 J	1.50E-01 J	1.50E-01	ug/L	SUW10B	1/5	1 - 1	1.50E-01	1.50E+04	N	BSL
	PCBs												
	PCB	Total PCBs (7)	Not detected	Not detected	Not detected	ug/L	NA	0/10	-	9.40E-03	6.40E-05	Υ	ASL

- (1) Minimum/maximum detected concentration and associated data flags.
 - J = The chemical was positively identified; however, the associated numerical value is an estimated concentration only.
- (2) Lab Reporting Detection Limits (RDLs) are shown where the frequency of detection is less than 100%.
- (3) Maximum detected concentration used for screening.
- (4) Surface water screening levels were selected based on the following hierarchy:
- 1. District Department of the Environment. Title 21 of the District of Columbia Municipal Regulations, Chapter 11, Water Quality Standards. Effective November 1, 2013.
- 2. USEPA National Recommended Water Quality Criteria for Priority Pollutants. Value for Human Health for the consumption of organisms. 2009.
- 3. USEPA Regional Screening Level (RSL) for Tapwater based on a target risk level of 1x10⁶ for carcinogens and target hazard quotient of 0.1 for noncarcinogens (November 2018).
- See Table 3-11 for surface water screening levels and surrogates used.
- (5) Rationale Codes:

Selection Reason: Above Screening Level (ASL)

Deletion Reason: Below Screening Level (BSL); Essential Nutrient (EN)

(6) PCBs was not detected in surface water via Method 8082; the lowest reporting limit of 0.0094 ug/L was used for screening.

Definitions:

CAS - Chemical Abstracts Service

PCB - Polychlorinated biphenyl

EN - Essential Nutrient.

COPC - Chemical of Potential Concern SVOC - Semivolatile organic compound TCDD-TEQ - Dioxin Toxic Equivalence

ug/L - microgram per liter

VOC - Volatile organic compound

NA - Not Available

Table 3-17 Occurrence, Distribution and Selection of Chemicals of Potential Concern in Fish Tissue - Upper Anacostia River Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Fish Tissue

Exposure Medium: Fish Tissue (fillet)

Exposure Point	CAS Number	Chemical	Minimum Detected Concentration ¹	Maximum Detected Concentration ¹	Average Detected Concentration ²	Units	Species with Maximum Concentration	Detection Frequency	Range of Reporting Limits	Concentration Used for Screening ³	Screening Toxicity Value ⁴	COPC Flag (Y/N)	Rationale for Selection or Deletion ⁵
	Inorganics		_										
	7429-90-5	Aluminum	1.40E+00	1.50E+00	1.45E+00	mg/kg	Sunfish	2/7	0.4 - 0.5	1.50E+00	1.54E+02	N	BSL
Upper	7440-39-3	Barium	1.61E-02	1.92E-01	7.04E-02	mg/kg	Brown bullhead	7/7		1.92E-01	3.09E+01	N	BSL
Anacostia ⁸	7440-70-2	Calcium	1.31E+02	5.08E+02	2.62E+02	mg/kg	Carp	7/7		5.08E+02	EN	N	EN
	7440-48-4	Cobalt	7.00E-03	1.90E-02	1.26E-02	mg/kg	Brown bullhead	5/7	0.004 - 0.004	1.90E-02	4.63E-02	N	BSL
	7440-50-8	Copper	1.55E-01	7.77E-01	2.81E-01	mg/kg	Carp	7/7		7.77E-01	6.18E+00	N	BSL
	7439-89-6	Iron	2.30E+00	3.52E+01	8.10E+00	mg/kg	Carp	7/7		3.52E+01	1.08E+02	N	BSL
	7439-92-1	Lead	5.00E-03	2.10E-02	1.20E-02	mg/kg	Brown bullhead	5/7	0.004 - 0.004	2.10E-02	NSL	N	NSL
	7439-95-4	Magnesium	2.24E+02	2.84E+02	2.49E+02	mg/kg	Largemouth bass	7/7		2.84E+02	EN	N	EN
	7439-96-5	Manganese	9.57E-02	5.83E-01	2.32E-01	mg/kg	Sunfish	7/7		5.83E-01	2.16E+01	N	BSL
	7439-97-6	Mercury	3.30E-02	2.36E-01	1.08E-01	mg/kg	Largemouth bass	7/7		2.36E-01	1.54E-02	Y	ASL
	7440-02-0	Nickel	1.10E-01	1.70E-01	1.30E-01	mg/kg	Sunfish	3/7	0.04 - 0.05	1.70E-01	3.09E+00	N	BSL
	7782-49-2	Selenium	2.60E-01	5.40E-01	3.45E-01	mg/kg	Carp	4/7	0.18 - 0.19	5.40E-01	7.72E-01	N	BSL
	7440-23-5	Sodium	3.51E+02	7.20E+02	5.21E+02	mg/kg	Sunfish	7/7		7.20E+02	EN	N	EN
	7440-66-6	Zinc	4.68E+00	1.28E+01	7.89E+00	mg/kg	Carp	7/7		1.28E+01	4.63E+01	N	BSL
	Pesticides												
	634-66-2	1,2,3,4-Tetrachlorobenzene	8.70E-05	1.46E-04	1.20E-04	mg/kg	Sunfish	3/7	0.000048 - 0.0000494	1.46E-04	4.63E-02	N	BSL
	95-94-3	1,2,4,5-Tetrachlorobenzene	2.84E-04	1.18E-03	5.45E-04	mg/kg	Carp	6/7	0.0000487 - 0.0000487	1.18E-03	4.63E-02	N	BSL
	53-19-0	2,4'-DDD	1.69E-04	2.66E-03	9.02E-04	mg/kg	Carp	6/7	0.0000502 - 0.0000502	2.66E-03	NSL	N	NSL
	3424-82-6	2,4'-DDE	1.33E-04	1.09E-02	5.19E-03	mg/kg	Channel catfish	6/7	0.0000494 - 0.0000494	1.09E-02	NSL	N	NSL
	789-02-6	2,4'-DDT	1.12E-04	1.83E-03	6.34E-04	mg/kg	Carp	7/7		1.83E-03	NSL	N	NSL
	72-54-8	4,4'-DDD	9.20E-04	2.19E-02	5.47E-03	mg/kg	Carp	7/7		2.19E-02	4.63E-03	Y	ASL
	72-55-9	4,4'-DDE	3.46E-03	4.43E-02	1.56E-02	mg/kg	Carp	7/7		4.43E-02	1.22E-02	Y	ASL
	50-29-3	4,4'-DDT	2.10E-04	1.25E-03	5.28E-04	mg/kg	Channel catfish	4/7	0.000048 - 0.0000502	1.25E-03	1.22E-02	N	BSL
	309-00-2	Aldrin	5.60E-05	3.82E-04	1.84E-04	mg/kg	Northern snakehead	5/7	0.0000494 - 0.0000502	3.82E-04	2.45E-04	Y	ASL
	319-84-6	Alpha-BHC	5.40E-05	1.42E-04	1.05E-04	mg/kg	Blue catfish	7/7		1.42E-04	6.60E-04	N	BSL
	5103-71-9	alpha-Chlordane	1.23E-03	3.10E-02	9.58E-03	mg/kg	Carp	7/7	-	3.10E-02	1.19E-02	Y	ASL
	319-85-7	beta-BHC	5.18E-04	8.94E-04	6.66E-04	mg/kg	Blue catfish	7/7	-	8.94E-04	2.31E-03	N	BSL
	2921-88-2	Chlorpyrifos	1.17E-04	8.24E-04	4.71E-04	mg/kg	Carp	2/7	0.0000434 - 0.0000502	8.24E-04	1.54E-01	N	BSL
	5103-73-1	cis-Nonachlor	1.29E-03	1.29E-02	4.13E-03	mg/kg	Carp	7/7		1.29E-02	1.19E-02	Y	ASL
	319-86-8	delta-BHC	7.00E-05	7.00E-05	7.00E-05	mg/kg	Carp	1/7	0.0000434 - 0.0000502	7.00E-05	6.60E-04	N	BSL
	60-57-1	Dieldrin	1.03E-03	8.49E-03	2.89E-03	mg/kg	Carp	7/7		8.49E-03	2.60E-04	Y	ASL
	72-20-8	Endrin	4.40E-05	2.80E-04	1.40E-04	mg/kg	Carp	3/7	0.000048 - 0.0000494	2.80E-04	4.63E-02	N	BSL
	5566-34-7	gamma-Chlordane	2.17E-04	9.19E-03	3.47E-03	mg/kg	Channel catfish	7/7		9.19E-03	1.19E-02	Y	Chlordane (5)
	58-89-9	gamma-BHC (Lindane)	6.00E-05	8.20E-05	7.30E-05	mg/kg	Channel catfish	3/7	0.0000483 - 0.0000502	8.20E-05	3.78E-03	N	BSL
	1024-57-3	Heptachlor epoxide	3.57E-04	3.69E-03	1.31E-03	mg/kg	Carp	7/7		3.69E-03	4.57E-04	Y	ASL
	118-74-1	Hexachlorobenzene	1.26E-04	9.99E-04	3.11E-04	mg/kg	Carp	7/7		9.99E-04	2.60E-03	N	BSL
	2385-85-5	Mirex	5.10E-05	5.41E-04	2.27E-04	mg/kg	Carp	5/7	0.0000494 - 0.0000502	5.41E-04	2.31E-04	Y	ASL
	27304-13-8	Oxychlordane	6.35E-04	4.82E-03	1.82E-03	mg/kg	Carp	7/7		4.82E-03	1.19E-02	Y	Chlordane (5)
	1825-21-4	Pentachloroanisole	6.90E-05	8.15E-04	2.60E-04	mg/kg	Carp	7/7		8.15E-04	NSL	N	NSL
	39765-80-5	trans-Nonachlor	2.94E-03	3.00E-02	1.07E-02	mg/kg	Carp	7/7		3.00E-02	1.19E-02	Y	Chlordane (5)

Table 3-17 Occurrence, Distribution and Selection of Chemicals of Potential Concern in Fish Tissue - Upper Anacostia River Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Fish Tissue

Exposure Medium: Fish Tissue (fillet)

Exposure Point	CAS Number	Chemical	Minimum Detected Concentration ¹	Maximum Detected Concentration ¹	Average Detected Concentration ²	Units	Species with Maximum Concentration	Detection Frequency	Range of Reporting Limits	Concentration Used for Screening ³	Screening Toxicity Value ⁴	COPC Flag (Y/N)	Rationale for Selection or Deletion ⁵
	Semivolatile Organic	Compounds											
	2245-38-7	2,3,5-Trimethylnaphthalene	1.07E-03	7.59E-03	3.67E-03	mg/kg	Carp	6/7	0.000988 - 0.000988	7.59E-03	NSL	N	NSL
Upper	90-12-0	1-Methylnaphthalene	1.01E-03	1.88E-02	5.70E-03	mg/kg	Carp	6/7	0.000988 - 0.000988	1.88E-02	1.43E-01	N	BSL
Anacostia ⁸	581-42-0	2,6-Dimethylnaphthalene	1.12E-03	1.15E-02	4.71E-03	mg/kg	Carp	6/7	0.000988 - 0.000988	1.15E-02	6.18E-01	N	BSL
	91-57-6	2-Methylnaphthalene	7.00E-04	2.33E-02	6.33E-03	mg/kg	Carp	7/7		2.33E-02	6.18E-01	N	BSL
	83-32-9	Acenaphthene	1.38E-03 J+	7.80E-03	3.25E-03	mg/kg	Carp	5/7	0.000988 - 0.00101	7.80E-03	9.27E+00	N	BSL
	208-96-8	Acenaphthylene	4.00E-04 J	2.70E-03	1.37E-03	mg/kg	Carp	5/7	0.000988 - 0.00101	2.70E-03	9.27E+00	N	BSL
	120-12-7	Anthracene	1.34E-03	5.80E-03	3.10E-03	mg/kg	Carp	4/7	0.000974 - 0.00101	5.80E-03	4.63E+01	N	BSL
	92-52-4	Biphenyl	1.02E-03	4.00E-03	1.99E-03	mg/kg	Carp	5/7	0.000988 - 0.00101	4.00E-03	5.20E-01	N	BSL
	DBZTPC1	C1-dibenzothiophenes	1.87E-03	2.15E-03	1.98E-03	mg/kg	Carp	3/7	0.000974 - 0.00101	2.15E-03	NSL	N	NSL
	FLPYC1	C1-fluoranthenes/pyrenes	1.10E-03	4.70E-03	2.45E-03	mg/kg	Carp	3/7	0.000869 - 0.00101	4.70E-03	NSL	N	NSL
	FLUORC1	C1-fluorenes	1.22E-03	1.02E-02	4.28E-03	mg/kg	Carp	6/7	0.00101 - 0.00101	1.02E-02	NSL	N	NSL
	NPHC1	C1-naphthalenes	1.17E-03	4.21E-02	1.13E-02	mg/kg	Carp	7/7		4.21E-02	NSL	N	NSL
	PHANC1	C1-phenanthrenes/anthracenes	5.00E-04 J	3.10E-03	1.66E-03	mg/kg	Carp	5/7	0.000988 - 0.00101	3.10E-03	NSL	N	NSL
	DBZTPC2	C2-dibenzothiophenes	1.31E-03	1.31E-03	1.31E-03	mg/kg	Brown bullhead	1/7	0.000869 - 0.00101	1.31E-03	NSL	N	NSL
	FLUORC2	C2-fluorenes	1.15E-03	6.80E-03	2.91E-03	mg/kg	Carp	5/7	0.000988 - 0.00101	6.80E-03	NSL	N	NSL
	NPHC2	C2-naphthalenes	1.01E-03	3.76E-02	1.32E-02	mg/kg	Carp	7/7	-	3.76E-02	NSL	N	NSL
	PHANC2	C2-phenanthrenes/anthracenes	5.00E-04 J	3.30E-03	1.53E-03	mg/kg	Carp	5/7	0.000988 - 0.00101	3.30E-03	NSL	N	NSL
	DBZTPC3	C3-dibenzothiophenes	9.90E-04	9.90E-04	9.90E-04	mg/kg	Brown bullhead	1/7	0.000869 - 0.00101	9.90E-04	NSL	N	NSL
	FLUORC3	C3-fluorenes	1.00E-03	3.80E-03	2.07E-03	mg/kg	Carp	5/7	0.000988 - 0.00101	3.80E-03	NSL	N	NSL
	NPHC3	C3-naphthalenes	1.60E-03	2.26E-02	9.10E-03	mg/kg	Carp	7/7	-	2.26E-02	NSL	N	NSL
	PHANC3	C3-phenanthrenes/anthracenes	1.05E-03	8.80E-03	3.97E-03	mg/kg	Carp	5/7	0.000988 - 0.00101	8.80E-03	NSL	N	NSL
	NPHC4	C4-naphthalenes	2.26E-03	1.22E-02	5.43E-03	mg/kg	Carp	6/7	0.000988 - 0.000988	1.22E-02	NSL	N	NSL
	PHANC4	C4-phenanthrenes/anthracenes	9.80E-04	9.80E-04	9.80E-04	mg/kg	Brown bullhead	1/7	0.000869 - 0.00101	9.80E-04	NSL	N	NSL
	218-01-9	Chrysene	1.28E-03	1.31E-03	1.30E-03	mg/kg	Brown bullhead	3/7	0.000974 - 0.00101	1.31E-03	4.16E+00	N	BSL
	132-65-0	Dibenzothiophene	9.60E-04	1.69E-03	1.30E-03	mg/kg	Carp	3/7	0.000974 - 0.00101	1.69E-03	1.54E+00	N	BSL
	206-44-0	Fluoranthene	1.29E-03 J+	6.96E-03	3.57E-03	mg/kg	Brown bullhead	6/7	0.000988 - 0.000988	6.96E-03	6.18E+00	N	BSL
	86-73-7	Fluorene	1.30E-03 J+	7.20E-03 J+	3.10E-03	mg/kg	Carp	6/7	0.000988 - 0.000988	7.20E-03	6.18E+00	N	BSL
	91-20-3	Naphthalene	2.40E-03	1.08E-02	4.45E-03	mg/kg	Carp	7/7	-	1.08E-02	3.09E+00	N	BSL
	85-01-8	Phenanthrene	1.83E-03 J+	1.05E-02	4.51E-03	mg/kg	Carp	6/7	0.000988 - 0.000988	1.05E-02	4.63E+01	N	BSL
	129-00-0	Pyrene	1.15E-03	3.37E-03	2.44E-03	mg/kg	Brown bullhead	3/7	0.000974 - 0.00101	3.37E-03	4.63E+00	N	BSL
	Polybrominated Diph												
	RA_TOT_PBDE	Total PBDEs	6.57E-03	9.94E-02	3.11E-02	mg/kg	Carp	7/7		9.94E-02	NSL	N	NSL

Table 3-17

Occurrence, Distribution and Selection of Chemicals of Potential Concern in Fish Tissue - Upper Anacostia River Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Medium: Fish Tissue Exposure Medium: Fish Tissue (fillet)

Exposure Point	CAS Number	Chemical	Minimum Detected Concentration ¹	Maximum Detected Concentration ¹	Average Detected Concentration ²	Units	Species with Maximum Concentration	Detection Frequency	Range of Reporting Limits	Concentration Used for Screening ³	Screening Toxicity Value ⁴	COPC Flag (Y/N)	Rationale for Selection or Deletion ⁵
Upper	Polychlorinated Bipher	nyls											
Anacostia ⁸	1336-36-3	Total PCBs (Congeners)	4.16E-02	6.81E-01	1.92E-01	mg/kg	Carp	7/7		6.81E-01	2.08E-03	Y	ASL
	PCB-TEQ	PCB-TEQ	1.17E-07	5.33E-06	1.30E-06	mg/kg	Largemouth bass	7/7		5.33E-06	3.20E-08	Y	ASL
												i	

Notes:

(1) Minimum/maximum detected concentration and associated data flags.

J = The chemical was positively identified; however, the associated numerical value is an estimated concentration.

+/- = Indicates the result may be biased high/low.

(2) Average of detected results.

(3) Maximum detected concentration used for screening.

(4) Fish tissue screening levels are equal to the USEPA Regional Screening Levels (RSLs) for fish tissue, calculated using USEPA's RSL calculator based on a target risk level of 1x10-6 for carcinogens and a target hazard quotient of 0.1 for noncarcinogens. Accessed July 2018. See Table 3-12 for screening levels and surrogates used.

(5) Rationale Codes:

Selection Reason: Above Screening Level (ASL)

Deletion Reason: Below Screening Level (BSL); Essential Nutrient (EN); No Screening Level (NSL)

(6) All chlordane isomer compounds were retained as COPCs if one or more was identified as a COPC.

(7) Range of detection limits for constituents with nondetects. Presented with minimum followed by maximum nondetect concentration.

(8) The samples collected in the Upper Anacostia River are assumed to reflect overall conditions within the several mile long river reach that was sampled (or the possibly larger home range for some of the fish species sampled), and may not reflect the specific conditions within the Waterside Investigation Area.

Definitions:

CAS - Chemical Abstracts Service COPC - Chemical of Potential Concern

EN - Essential Nutrient

mg/kg - milligrams per kilogram

NSL - No Screening Level

PBDE - Polybrominated diphenyl ethers

PCB - Polychlorinated Biphenyl

TEQ - Toxicity Equivalence

Table 3-18 Occurrence, Distribution and Selection of Chemicals of Potential Concern in Fish Tissue - Lower Anacostia River Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Fish Tissue Exposure Medium: Fish Tissue (fillet)

Exposure Point	CAS Number	Chemical	Minimum Detected Concentration ¹	Maximum Detected Concentration ¹	Average Detected Concentration ²	Units	Species with Maximum Concentration	Detection Frequency	Range of Reporting Limits ⁶	Concentration Used for Screening ³	Screening Toxicity Value ⁴	COPC Flag (Y/N)	Rationale for Selection or Deletion ⁵
	Inorganics												
	7429-90-5	Aluminum	4.00E-01	1.90E+00	1.15E+00	mg/kg	American eel	2/6	0.4 - 0.6	1.90E+00	1.54E+02	Z	BSL
Lower	7440-38-2	Arsenic	2.45E-01	2.45E-01	2.45E-01	mg/kg	Carp	1/6	0.091 - 0.245	2.45E-01	2.77E-03	Y	ASL
Anacostia	7440-39-3	Barium	1.18E-02	1.14E+00	2.14E-01	mg/kg	American eel	6/6		1.14E+00	3.09E+01	Ν	BSL
	7440-43-9	Cadmium	1.60E-02	1.60E-02	1.60E-02	mg/kg	American eel	1/6	0.004 - 0.006	1.60E-02	1.54E-01	Ν	BSL
	7440-70-2	Calcium	7.10E+01	5.80E+03	1.15E+03	mg/kg	American eel	6/6		5.80E+03	EN	Ν	EN
	7440-47-3	Chromium	8.00E-02	8.00E-02	8.00E-02	mg/kg	American eel	1/6	0.04 - 0.06	8.00E-02	2.32E+02	N	BSL
	7440-48-4	Cobalt	6.00E-03	3.20E-02	1.45E-02	mg/kg	American eel	4/6	0.004 - 0.004	3.20E-02	4.63E-02	N	BSL
	7440-50-8	Copper	1.72E-01	5.03E-01	2.90E-01	mg/kg	Carp	6/6		5.03E-01	6.18E+00	N	BSL
	7439-89-6	Iron	1.70E+00	9.80E+00	4.18E+00	mg/kg	Carp	6/6		9.80E+00	1.08E+02	N	BSL
	7439-92-1	Lead	5.00E-03	3.70E-01	8.24E-02	mg/kg	American eel	5/6	0.004 - 0.004	3.70E-01	NSL	N	NSL
	7439-95-4	Magnesium	2.30E+02	3.00E+02	2.52E+02	mg/kg	American eel	6/6		3.00E+02	EN	N	EN
	7439-96-5	Manganese	1.00E-01	4.56E+00	9.49E-01	mg/kg	American eel	6/6		4.56E+00	2.16E+01	N	BSL
	7439-97-6	Mercury	2.50E-02	1.10E-01	7.20E-02	mg/kg	Largemouth bass	6/6		1.10E-01	1.54E-02	Υ	ASL
	7440-02-0	Nickel	5.00E-02	1.00E-01	7.00E-02	mg/kg	Sunfish	3/6	0.04 - 0.06	1.00E-01	3.09E+00	N	BSL
	7782-49-2	Selenium	2.60E-01	3.90E-01	3.28E-01	mg/kg	Carp	4/6	0.18 - 0.19	3.90E-01	7.72E-01	N	BSL
	7440-23-5	Sodium	4.10E+02	7.10E+02	5.48E+02	mg/kg	American eel	6/6		7.10E+02	EN	N	EN
	7440-66-6	Zinc	3.87E+00	3.60E+01	1.42E+01	mg/kg	Carp	6/6		3.60E+01	4.63E+01	N	BSL
	Pesticides							X (d)					
	634-66-2	1,2,3,4-Tetrachlorobenzene	5.60E-05	4.32E-04	2.47E-04	mg/kg	Carp	3/6	0.0000494 - 0.000432	4.32E-04	4.63E-02	N	BSL
	95-94-3	1,2,4,5-Tetrachlorobenzene	5.98E-04	4.95E-03	1.69E-03	mg/kg	American eel	5/6	0.0000502 - 0.0000502	4.95E-03	4.63E-02	N	BSL
	53-19-0	2,4'-DDD	2.49E-04	8.53E-03	2.36E-03	mg/kg	Carp	6/6		8.53E-03	NSL	N	NSL
	3424-82-6	2,4'-DDE	1.19E-03	2.78E-02	9.89E-03	mg/kg	Carp	4/6	0.00005 - 0.0001	2.78E-02	NSL	N	NSL
	789-02-6	2,4'-DDT	4.22E-04	2.80E-03	1.01E-03	mg/kg	Carp	5/6	0.0001 - 0.0001	2.80E-03	NSL	N	NSL
	72-54-8	4,4'-DDD	9.50E-04	3.32E-02	1.08E-02	mg/kg	American eel	6/6		3.32E-02	4.63E-03	Y	ASL
	72-55-9	4,4'-DDE	2.96E-03	1.01E-01	3.63E-02	mg/kg	American eel	6/6		1.01E-01	1.22E-02	Y	ASL
	50-29-3	4,4'-DDT	5.00E-05	4.57E-03	1.28E-03	mg/kg	American eel	6/6		4.57E-03	1.22E-02	N	BSL
	309-00-2	Aldrin	7.30E-05	6.17E-04 J+	2.77E-04	mg/kg	Carp	4/6	0.0000472 - 0.0001	6.17E-04	2.45E-04	Y	ASL
	319-84-6	Alpha-BHC	1.56E-04	6.36E-04	3.22E-04	mg/kg	Blue catfish	4/6	0.0000494 - 0.0001	6.36E-04	6.60E-04	N	BSL
	5103-71-9	alpha-Chlordane	9.57E-04	5.27E-02	1.89E-02	mg/kg	American eel	6/6		5.27E-02	1.19E-02	Y	ASL
	319-85-7	beta-BHC	6.70E-05	8.56E-04	4.95E-04	mg/kg	Channel catfish	6/6		8.56E-04	2.31E-03	N	BSL
	2921-88-2	Chlorpyrifos	1.52E-04	1.79E-03	7.71E-04	mg/kg	American eel	4/6	0.0000472 - 0.0000478	1.79E-03	1.54E-01	N	BSL
	5103-73-1	cis-Nonachlor	1.09E-03	2.60E-02	8.54E-03	mg/kg	American eel	5/6	0.00005 - 0.00005	2.60E-02	1.19E-02	Y	ASL
	319-86-8	delta-BHC	2.16E-04	2.16E-04	2.16E-04	mg/kg	Blue catfish	1/6	0.0000472 - 0.0001	2.16E-04	6.60E-04	N	BSL
	60-57-1	Dieldrin	7.53E-04	1.78E-02	6.21E-03	mg/kg	American eel	6/6		1.78E-02	2.60E-04	Y	ASL
	33213-65-9	Endosulfan II	9.20E-05	1.90E-03	9.96E-04	mg/kg	Blue catfish	2/6	0.0000472 - 0.0001	1.90E-03	9.27E-01	N	BSL
	72-20-8	Endrin	1.14E-04	3.27E-03	1.15E-03	mg/kg	Blue catfish	4/6	0.0000472 - 0.0000494	3.27E-03	4.63E-02	N	BSL
	5566-34-7	gamma-Chlordane	1.46E-04	2.61E-02	1.09E-02	mg/kg	Carp	5/6	0.00005 - 0.00005	2.61E-02	1.19E-02	Y	ASL
	58-89-9	gamma-BHC (Lindane)	1.32E-04	1.62E-04	1.42E-04	mg/kg	Carp	4/6	0.0000472 - 0.0000478	1.62E-04	3.78E-03	N	BSL
	76-44-8	Hepatchlor	5.20E-05 J+	4.55E-04	1.89E-04	mg/kg	Blue catfish	5/6	0.0000472 - 0.0000472	4.55E-04	9.24E-04	N	BSL
	1024-57-3	Heptachlor epoxide	1.92E-04 J+	5.36E-03	2.35E-03	mg/kg	American eel	6/6		5.36E-03	4.57E-04	Y	ASL
	118-74-1	Hexachlorobenzene	1.95E-04	2.02E-03	8.79E-04	mg/kg	American eel	6/6		2.02E-03	2.60E-03	N	BSL
	2385-85-5	Mirex	7.70E-05	4.96E-04	2.94E-04	mg/kg	Blue catfish	4/6	0.0000472 - 0.0000478	4.96E-04	2.31E-04	Y	ASL
	27304-13-8	Oxychlordane	3.74E-04	1.43E-02	4.20E-03	mg/kg	American eel	5/6	0.00005 - 0.00005	1.43E-02	1.19E-02	Υ	ASL
	1825-21-4	Pentachloroanisole	8.80E-05	1.12E-03	5.22E-04	mg/kg	Carp	6/6		1.12E-03	NSL	N	NSL
	39765-80-5	trans-Nonachlor	1.65E-04	8.02E-02	1.97E-02	mg/kg	American eel	6/6		8.02E-02	1.19E-02	Y	ASL

Table 3-18 Occurrence, Distribution and Selection of Chemicals of Potential Concern in Fish Tissue - Lower Anacostia River Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Fish Tissue

Exposure Medium: Fish Tissue (fillet)

Exposure Point	CAS Number	Chemical	Minimum Detected Concentration ¹	Maximum Detected Concentration ¹	Average Detected Concentration ²	Units	Species with Maximum Concentration	Detection Frequency	Range of Reporting Limits ⁶	Concentration Used for Screening ³	Screening Toxicity Value ⁴	COPC Flag (Y/N)	Rationale for Selection or Deletion ⁵
	Semivolatile Organi	c Compounds											
	2245-38-7	2,3,5-Trimethylnaphthalene	9.80E-04	7.31E-03	2.82E-03	mg/kg	Carp	4/6	0.000956 - 0.002	7.31E-03	NSL	N	NSL
	90-12-0	1-Methylnaphthalene	7.00E-04	2.66E-02	7.17E-03	mg/kg	Carp	5/6	0.002 - 0.002	2.66E-02	1.43E-01	N	BSL
Lower	832-69-9	1-Methylphenanthrene	1.54E-03	2.18E-03	3.73E-03	mg/kg	Carp	2/6	0.000943 - 0.002	2.18E-03	4.63E+01	N	BSL
Anacostia	581-42-0	2,6-Dimethylnaphthalene	1.14E-03	1.11E-02	3.73E-03	mg/kg	Carp	4/6	0.000956 - 0.002	1.11E-02	6.18E-01	N	BSL
	91-57-6	2-Methylnaphthalene	7.00E-04 J	2.12E-02	5.17E-03	mg/kg	Carp	6/6		2.12E-02	6.18E-01	N	BSL
	83-32-9	Acenaphthene	2.58E-03 J+	3.88E-02	1.34E-02	mg/kg	Carp	5/6	0.000956 - 0.000956	3.88E-02	9.27E+00	N	BSL
	208-96-8	Acenaphthylene	7.00E-04 J	8.05E-03	3.21E-03	mg/kg	Carp	4/6	0.000956 - 0.002	8.05E-03	9.27E+00	N	BSL
	120-12-7	Anthracene	1.07E-03	1.91E-02	6.75E-03	mg/kg	Carp	4/6	0.000956 - 0.002	1.91E-02	4.63E+01	N	BSL
	92-52-4	Biphenyl	2.94E-03	2.94E-03	2.94E-03	mg/kg	Carp	1/6	0.000943 - 0.002	2.94E-03	5.20E-01	N	BSL
	DBZTPC1	C1-dibenzothiophenes	1.57E-03	5.13E-03	3.39E-03	mg/kg	American eel	3/6	0.000943 - 0.000987	5.13E-03	NSL	N	NSL
	FLPYC1	C1-fluoranthenes/pyrenes	6.73E-03	6.73E-03	6.73E-03	mg/kg	American eel	1/6	0.000943 - 0.001	6.73E-03	NSL	N	NSL
	FLUORC1	C1-fluorenes	1.39E-03	1.67E-02	6.45E-03	mg/kg	Carp	5/6	0.000987 - 0.000987	1.67E-02	NSL	N	NSL
	NPHC1	C1-naphthalenes	1.43E-03	4.78E-02	1.15E-02	mg/kg	Carp	6/6		4.78E-02	NSL	N	NSL
	PHANC1	C1-phenanthrenes/anthracenes	1.08E-03	8.49E-03	3.68E-03	mg/kg	Carp	4/6	0.000943 - 0.000956	8.49E-03	NSL	N	NSL
	DBZTPC2	C2-dibenzothiophenes	1.80E-03	4.17E-03	2.99E-03	mg/kg	American eel	2/6	0.000943 - 0.001	4.17E-03	NSL	N	NSL
	FLUORC2	C2-fluorenes	8.00E-04	1.45E-02	4.98E-03	mg/kg	Carp	5/6	0.000987 - 0.000987	1.45E-02	NSL	N	NSL
	NPHC2	C2-naphthalenes	1.03E-03	4.71E-02	1.18E-02	mg/kg	Carp	6/6		4.71E-02	NSL	N	NSL
	PHANC2	C2-phenanthrenes/anthracenes	0.0005 J	7.99E-03	3.78E-03	mg/kg	Carp	4/6	0.000956 - 0.001	7.99E-03	NSL	N	NSL
	DBZTPC3	C3-dibenzothiophenes	2.32E-03	3.68E-03	3.00E-03	mg/kg	American eel	2/6	0.000943 - 0.001	3.68E-03	NSL	N	NSL
	FLUORC3	C3-fluorenes	1.29E-03	2.33E-03	1.81E-03	mg/kg	Blue catfish	2/6	0.000956 - 0.002	2.33E-03	NSL	N	NSL
	NPHC3	C3-naphthalenes	1.80E-03	2.78E-02	9.06E-03	mg/kg	Carp	6/6		2.78E-02	NSL	N	NSL
	PHANC3	C3-phenanthrenes/anthracenes	9.00E-04 J	1.48E-02	6.67E-03	mg/kg	American eel	5/6	0.001 - 0.001	1.48E-02	NSL	N	NSL
	NPHC4	C4-naphthalenes	1.28E-03	3.04E-02	8.70E-03	mg/kg	Carp	6/6		3.04E-02	NSL	N	NSL
	PHANC4	C4-phenanthrenes/anthracenes	5.00E-04	3.85E-03	1.41E-03	mg/kg	American eel	4/6	0.001 - 0.001	3.85E-03	NSL	N	NSL
	218-01-9	Chrysene	1.44E-03	1.44E-03	1.44E-03	mg/kg	Carp	1/6	0.000943 - 0.002	1.44E-03	4.16E+00	N	BSL
	132-65-0	Dibenzothiophene	3.64E-03	3.64E-03	3.64E-03	mg/kg	Carp	1/6	0.000943 - 0.002	3.64E-03	1.54E+00	N	BSL
	206-44-0	Fluoranthene	9.00E-04 J+	7.14E-03	2.73E-03	mg/kg	Carp	5/6	0.000956 - 0.000956	7.14E-03	6.18E+00	N	BSL
	86-73-7	Fluorene	1.01E-03 J+	1.80E-02	4.98E-03	mg/kg	Carp	5/6	0.002 - 0.002	1.80E-02	6.18E+00	N	BSL
	91-20-3	Naphthalene	4.33E-03	6.83E-02	2.03E-02	mg/kg	Carp	6/6		6.83E-02	3.09E+00	N	BSL
	198-55-0	Perylene	3.00E-04 J+	3.00E-04	3.00E-04	mg/kg	Largemouth bass	1/6	0.000956 - 0.002	3.00E-04	4.63E+00	N	BSL
	85-01-8	Phenanthrene	1.30E-03 J+	1.57E-02	4.31E-03	mg/kg	Carp	6/6		1.57E-02	4.63E+01	N	BSL
	129-00-0	Pyrene	3.58E-03	3.58E-03	3.58E-03	mg/kg	Carp	1/6	0.000943 - 0.002	3.58E-03	4.63E+00	N	BSL
	Polybrominated Dip												
	RA_TOT_PBDE	Total PBDEs	5.14E-03	5.82E-02	2.66E-02	mg/kg	Carp	6/6		5.82E-02	NSL	N	NSL
	Polychlorinated Bip												
	1336-36-3	Total PCBs (Congeners)	4.11E-02	6.45E-01	3.17E-01	mg/kg	American eel	6/6		6.45E-01	2.08E-03	Y	ASL
	PCB-TEQ	PCB-TEQ	1.18E-07	1.80E-05	8.15E-06	mg/kg	Blue catfish	6/6		1.80E-05	3.20E-08	Υ	ASL
otes:								<u> </u>		Definitions:			

Notes:

- (1) Minimum/maximum detected concentration and associated data flags.
 - J = The chemical was positively identified; however, the associated numerical value is an estimated concentration.
 - +/- = Indicates the result may be biased high/low.
- (2) Average of detected results.
- (3) Maximum detected concentration used for screening.
- (4) Fish tissue screening levels are equal to the USEPA Regional Screening Levels (RSLs) for fish tissue, calculated using USEPA's RSL calculator based on a
 - target risk level of 1x10-6 for carcinogens and a target hazard quotient of 0.1 for noncarcinogens. Accessed July 2018. See Table 3-12 for screening levels and surrogates used.
- (5) Rationale Codes:
 - Selection Reason: Above Screening Level (ASL)
 - Deletion Reason: Below Screening Level (BSL); Essential Nutrient (EN); No Screening Level (NSL)
- (6) Range of detection limits for constituents with nondetects. Presented with minimum followed by maximum nondetect concentration.

Definitions:

CAS - Chemical Abstracts Service

COPC - Chemical of Potential Concern

EN - Essential Nutrient

mg/kg - milligrams per kilogram

NSL - No Screening Level

PBDE - Polybrominated diphenyl ethers

PCB - Polychlorinated Biphenyl

TEQ - Toxicity Equivalence

Table 3-19 Occurrence, Distribution and Selection of Chemicals of Potential Concern in Fish Tissue - Upper Potomac River Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Fish Tissue

Exposure Medium: Fish Tissue (fillet)

Exposure Point	CAS Number	Chemical	Minimum Detected Concentration ¹	Maximum Detected Concentration ¹	Average Detected Concentration ²	Units	Species with Maximum Concentration	Detection Frequency	Range of Reporting Limits	Concentration Used for Screening ³	Screening Toxicity Value ⁴	COPC Flag (Y/N)	Rationale for Selection or Deletion ⁵
	Metals		<u> </u>	•	l .				<u> </u>				•
	7429-90-5	Aluminum	4.00E-01	1.00E+00	6.00E-01	mg/kg	American eel	3/9	0.3 - 0.5	1.00E+00	1.54E+02	N	BSL
Upper	7440-38-2	Arsenic	1.12E-01	8.46E-01	3.54E-01	mg/kg	Striped bass	5/9	0.095 - 0.108	8.46E-01	2.77E-03	Υ	ASL
Potomac	7440-39-3	Barium	1.54E-02	1.58E-01	5.48E-02	mg/kg	American eel	9/9	-	1.58E-01	3.09E+01	N	BSL
	7440-70-2	Calcium	6.45E+01	2.98E+03	5.48E+02	mg/kg	American eel	9/9	-	2.98E+03	EN	N	EN
	7440-47-3	Chromium	7.00E-02	1.60E-01	1.20E-01	mg/kg	Largemouth bass	2/9	0.03 - 0.05	1.60E-01	2.32E+02	Ν	BSL
	7440-48-4	Cobalt	5.00E-03	1.70E-02	9.10E-03	mg/kg	Brown bullhead	7/9	0.004 - 0.005	1.70E-02	4.63E-02	N	BSL
	7440-50-8	Copper	1.51E-01	7.44E-01	3.34E-01	mg/kg	Carp	9/9	-	7.44E-01	6.18E+00	N	BSL
	7439-89-6	Iron	2.40E+00	2.25E+01	5.93E+00	mg/kg	Carp	9/9	-	2.25E+01	1.08E+02	N	BSL
	7439-92-1	Lead	8.00E-03	3.60E-02	1.80E-02	mg/kg	American eel	3/9	0.003 - 0.005	3.60E-02	NSL	N	NSL
	7439-95-4	Magnesium	2.21E+02	2.87E+02	2.53E+02	mg/kg	Largemouth bass	9/9	-	2.87E+02	EN	N	EN
	7439-96-5	Manganese	9.77E-02	1.80E+00	3.48E-01	mg/kg	American eel	9/9	-	1.80E+00	2.16E+01	N	BSL
	7439-97-6	Mercury	5.00E-02	2.41E-01	1.23E-01	mg/kg	Largemouth bass	9/9	-	2.41E-01	1.54E-02	Υ	ASL
	7440-02-0	Nickel	5.00E-02	5.30E-01	2.10E-01	mg/kg	Sunfish	4/9	0.04 - 0.06	5.30E-01	3.09E+00	Ν	BSL
	7782-49-2	Selenium	2.70E-01	6.00E-01	4.10E-01	mg/kg	White perch	6/9	0.19 - 0.32	6.00E-01	7.72E-01	N	BSL
	7440-23-5	Sodium	4.62E+02	6.80E+02	5.46E+02	mg/kg	White perch	9/9	-	6.80E+02	EN	N	EN
	7440-66-6	Zinc	5.17E+00	3.18E+01	1.28E+01	mg/kg	Carp	9/9	-	3.18E+01	4.63E+01	N	BSL
	Pesticides												
	634-66-2	1,2,3,4-Tetrachlorobenzene	1.42E-04	7.23E-04	4.33E-04	mg/kg	Largemouth bass	X (d)	0.0000492 - 0.0000502	7.23E-04	4.63E-02	N	BSL
	95-94-3	1,2,4,5-Tetrachlorobenzene	3.31E-04	4.41E-03	2.54E-03	mg/kg	Largemouth bass	8/9	0.0000497 - 0.0000497	4.41E-03	4.63E-02	N	BSL
	53-19-0	2,4'-DDD	7.00E-05	4.18E-03	1.49E-03	mg/kg	Carp	8/9	0.0000497 - 0.0000497	4.18E-03	NSL	Ν	NSL
	3424-82-6	2,4'-DDE	5.50E-05	1.17E-01	2.26E-02	mg/kg	Striped bass	6/9	0.0000492 - 0.00005	1.17E-01	NSL	Ν	NSL
	789-02-6	2,4'-DDT	1.54E-04	9.96E-03	2.43E-03	mg/kg	American eel	7/9	0.0000494 - 0.0000497	9.96E-03	NSL	N	NSL
	72-54-8	4,4'-DDD	2.91E-04	5.16E-02	1.03E-02	mg/kg	Striped bass	9/9	-	5.16E-02	4.63E-03	Υ	ASL
	72-55-9	4,4'-DDE	4.16E-03	2.43E-01	6.24E-02	mg/kg	American eel	9/9	-	2.43E-01	1.22E-02	Y	ASL
	50-29-3	4,4'-DDT	7.20E-05	7.06E-03	1.75E-03	mg/kg	American eel	9/9	-	7.06E-03	1.22E-02	Ν	BSL
	309-00-2	Aldrin	6.70E-05	1.20E-03	3.59E-04	mg/kg	American eel	5/9	0.0000492 - 0.0000502	1.20E-03	2.45E-04	Υ	ASL
	319-84-6	Alpha-BHC	5.10E-05	2.00E-04	1.30E-04	mg/kg	American eel	2/9	0.0000492 - 0.0000502	2.00E-04	6.60E-04	N	BSL
	5103-71-9	alpha-Chlordane	2.05E-04	5.37E-02	1.23E-02	mg/kg	Striped bass	9/9	-	5.37E-02	1.19E-02	Y	ASL
	319-85-7	beta-BHC	6.00E-05	2.74E-03	6.91E-04	mg/kg	Striped bass	9/9	-	2.74E-03	2.31E-03	Υ	ASL
	2921-88-2	Chlorpyrifos	7.20E-05	1.40E-03	4.28E-04	mg/kg	American eel	8/9	0.0000497 - 0.0000497	1.40E-03	1.54E-01	N	BSL
	5103-73-1	cis-Nonachlor	1.02E-04	2.22E-02	4.35E-03	mg/kg	American eel	8/9	0.0000497 - 0.0000497	2.22E-02	1.19E-02	Y	ASL
	319-86-8	delta-BHC	6.90E-05	4.05E-04	1.84E-04	mg/kg	Largemouth bass	6/9	0.0000499 - 0.00005	4.05E-04	6.60E-04	N	BSL
	60-57-1	Dieldrin	3.45E-04	3.78E-02	7.28E-03	mg/kg	Striped bass	9/9	-	3.78E-02	2.60E-04	Υ	ASL
	33213-65-9	Endosulfan II	5.10E-05	1.76E-02	4.18E-03	mg/kg	American eel	6/9	0.0000492 - 0.0000502	1.76E-02	9.27E-01	N	BSL
	72-20-8	Endrin	7.20E-05	2.24E-02	3.85E-03	mg/kg	Striped bass	6/9	0.0000492 - 0.00005	2.24E-02	4.63E-02	N	BSL
	5566-34-7	gamma-Chlordane	5.70E-05	8.76E-03	2.85E-03	mg/kg	American eel	8/9	0.0000497 - 0.0000497	8.76E-03	1.19E-02	Υ	Chlordane (6)
	58-89-9	gamma-BHC (Lindane)	5.60E-05	1.63E-04	1.07E-04	mg/kg	Striped bass, White perch	6/9	0.00005 - 0.0000502	1.63E-04	3.78E-03	N	BSL
	76-44-8	Hepatchlor	9.20E-05	5.29E-04	2.41E-04	mg/kg	American eel	3/9	0.0000492 - 0.0000502	5.29E-04	9.24E-04	N	BSL
	1024-57-3	Heptachlor epoxide	2.13E-04	6.90E-03	1.97E-03	mg/kg	Striped bass	9/9	-	6.90E-03	4.57E-04	Υ	ASL
	118-74-1	Hexachlorobenzene	4.71E-04	3.50E-03	1.62E-03	mg/kg	Striped bass	4/9	0.0000492 - 0.00005	3.50E-03	2.60E-03	Υ	ASL
	2385-85-5	Mirex	6.40E-05	7.85E-04	3.32E-04	mg/kg	American eel	4/9	0.0000492 - 0.00005	7.85E-04	2.31E-04	Υ	ASL
	27304-13-8	Oxychlordane	1.18E-04	9.85E-03	1.87E-03	mg/kg	American eel	9/9	-	9.85E-03	1.19E-02	Υ	Chlordane (6)
	1825-21-4	Pentachloroanisole	5.20E-05	1.28E-03	4.82E-04	mg/kg	Striped bass	7/9	0.0000494 - 0.0000496	1.28E-03	NSL	Ν	NSL
	39765-80-5	trans-Nonachlor	1.37E-03	6.26E-02	1.18E-02	mg/kg	American eel	8/9	0.0000497 - 0.0000497	6.26E-02	1.19E-02	Υ	Chlordane (6)

Table 3-19

Occurrence, Distribution and Selection of Chemicals of Potential Concern in Fish Tissue - Upper Potomac River Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Fish Tissue

Exposure Medium: Fish Tissue (fillet)

r Chemical	Minimum Detected Concentration ¹	Maximum Detected Concentration ¹	Average Detected Concentration ²	Units	Species with Maximum Concentration	Detection Frequency	Range of Reporting Limits	Concentration Used for Screening ³	Screening Toxicity Value ⁴	COPC Flag (Y/N)	Rationale for Selection or Deletion ⁵
Organic Compounds											
2,3,5-Trimethylnaphthalene	1.09E-03	1.09E-03	1.09E-03	mg/kg	Channel catfish	1/9	0.000985 - 0.001	1.09E-03	NSL	N	NSL
1-Methylnaphthalene	2.25E-03 J+	3.14E-03 J+	2.69E-03	mg/kg	Channel catfish	4/9	0.000985 - 0.000999	3.14E-03	1.43E-01	N	BSL
1-Methylphenanthrene	1.33E-03 J+	1.33E-03 J+	1.33E-03	mg/kg	Striped bass	1/9	0.000985 - 0.001	1.33E-03	4.63E+01	N	BSL
2,6-Dimethylnaphthalene	1.52E-03	1.52E-03	1.52E-03	mg/kg	Channel catfish	1/9	0.000985 - 0.001	1.52E-03	6.18E-01	N	BSL
2-Methylnaphthalene	2.13E-03 J+	3.78E-03 J+	3.01E-03	mg/kg	Striped bass	4/9	0.000985 - 0.000999	3.78E-03	6.18E-01	N	BSL
Acenaphthene	1.48E-03 J+	1.56E-02	8.20E-03	mg/kg	American eel	5/9	0.000985 - 0.000996	1.56E-02	9.27E+00	N	BSL
Acenaphthylene	1.42E-03	5.07E-03	2.75E-03	mg/kg	Striped bass	4/9	0.000985 - 0.000999	5.07E-03	9.27E+00	N	BSL
Anthracene	1.75E-03	8.44E-03	4.00E-03	mg/kg	Striped bass	4/9	0.000985 - 0.000999	8.44E-03	4.63E+01	N	BSL
Benzo(b)fluoranthene	1.79E-03 J+	1.79E-03 J+	1.79E-03	mg/kg	Striped bass	1/9	0.000985 - 0.001	1.79E-03	4.16E-02	N	BSL
Biphenyl	1.73E-03	1.73E-03	1.73E-03	mg/kg	Brown bullhead	1/9	0.000985 - 0.001	1.73E-03	5.20E-01	N	BSL
C1-dibenzothiophenes	1.05E-03	3.09E-03	2.07E-03	mg/kg	American eel	2/9	0.000985 - 0.000999	3.09E-03	NSL	N	NSL
C1-fluoranthenes/pyrenes	2.80E-03	1.25E-02	6.94E-03	mg/kg	American eel	4/9	0.000985 - 0.000999	1.25E-02	NSL	N	NSL
C1-fluorenes	1.11E-03	3.07E-03	1.97E-03	mg/kg	American eel	8/9	0.000992 - 0.000992	3.07E-03	NSL	N	NSL
C1-naphthalenes	1.02E-03 J+	6.41E-03 J+	3.49E-03	mg/kg	Channel catfish	8/9	0.000992 - 0.000992	6.41E-03	NSL	N	NSL
C1-phenanthrenes/anthracenes	1.65E-03	3.21E-03	2.41E-03	mg/kg	Striped bass	3/9	0.000985 - 0.000999	3.21E-03	NSL	N	NSL
C2-dibenzothiophenes	5.11E-03	5.11E-03	5.11E-03	mg/kg	American eel	1/9	0.000985 - 0.001	5.11E-03	NSL	N	NSL
C2-fluorenes	1.15E-03	4.51E-03	2.56E-03	mg/kg	American eel	4/9	0.000985 - 0.000999	4.51E-03	NSL	N	NSL
C2-naphthalenes	1.52E-03	5.88E-03	3.68E-03	mg/kg	Channel catfish	5/9	0.000985 - 0.000996	5.88E-03	NSL	N	NSL
C2-phenanthrenes/anthracenes	1.06E-03	3.59E-03	2.31E-03	mg/kg	Striped bass	4/9	0.000985 - 0.000999	3.59E-03	NSL	N	NSL
C3-dibenzothiophenes	2.15E-03	2.15E-03	2.15E-03	mg/kg	American eel	1/9	0.000985 - 0.001	2.15E-03	NSL	N	NSL
C3-fluorenes	1.06E-03	3.77E-03	2.37E-03	mg/kg	American eel	3/9	0.000985 - 0.000999	3.77E-03	NSL	N	NSL
C3-naphthalenes	1.91E-03	6.09E-03	3.64E-03	mg/kg	American eel	5/9	0.000985 - 0.000996	6.09E-03	NSL	N	NSL
C3-phenanthrenes/anthracenes	2.04E-03	4.34E-02	1.96E-02	mg/kg	American eel	5/9	0.000985 - 0.000999	4.34E-02	NSL	N	NSL
C4-naphthalenes	2.66E-03	2.87E-03	2.77E-03	mg/kg	Carp	2/9	0.000985 - 0.001	2.87E-03	NSL	N	NSL
C4-phenanthrenes/anthracenes	1.12E-03	4.43E-03	2.57E-03	mg/kg	American eel	4/9	0.000985 - 0.000999	4.43E-03	NSL	N	NSL
Dibenzothiophene	1.02E-03 J+	1.02E-03 J+	1.02E-03	mg/kg	Channel catfish	1/9	0.000985 - 0.001	1.02E-03	1.54E+00	N	BSL
Fluoranthene	1.38E-03 J+	3.84E-03 J+	2.79E-03	mg/kg	American eel	5/9	0.000985 - 0.000996	3.84E-03	6.18E+00	N	BSL
Fluorene	2.74E-03 J+	2.93E-03 J+	2.85E-03	mg/kg	Carp	3/9	0.000985 - 0.001	2.93E-03	6.18E+00	N	BSL
Naphthalene	2.48E-03 J+	8.25E-03 J+	4.11E-03	mg/kg	Brown bullhead	9/9	-	8.25E-03	3.09E+00	N	BSL
Phenanthrene	1.11E-03 J+	5.68E-03 J+	3.42E-03	mg/kg	Channel catfish	7/9	0.000992 - 0.000996	5.68E-03	4.63E+01	N	BSL
Pyrene	1.08E-03 J+	1.58E-03 J+	1.40E-03	mg/kg	Carp	3/9	0.000985 - 0.001	1.58E-03	4.63E+00	N	BSL
ed Diphenyl Ethers	•					•					
E Total PBDEs	1.09E-03	7.77E-02	2.27E-02	mg/kg	Striped bass	9/9	-	7.77E-02	NSL	N	NSL
ed Biphenyls											
Total PCBs (Congeners)	3.15E-02	1.61E+00	4.59E-01	mg/kg	Striped bass	9/9	-	1.61E+00	2.08E-03	Y	ASL
PCB-TEQ	1.97E-06	5.65E-05	1.48E-05	mg/kg	Striped bass	9/9	-	5.65E-05	3.20E-08	Υ	ASL
							and the first term of the firs	0.102 52 1.012 100 1.002 01 1.002 000 1.002 01 1	and the congression of the congr	Single State	and the state of t

Occurrence, Distribution and Selection of Chemicals of Potential Concern in Fish Tissue - Upper Potomac River Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Medium: Fish Tissue Exposure Medium: Fish Tissue (fillet)

Exposure Point	CAS Number	Chemical	Minimum Detected Concentration ¹	Maximum Detected Concentration 1	Average Detected Concentration ²	Units	Species with Maximum Concentration	Detection Frequency	Range of Reporting Limits	Concentration Used for Screening ³	Screening Toxicity Value ⁴	COPC Flag (Y/N)	Rationale for Selection or Deletion ⁵
-------------------	---------------	----------	---	----------------------------------	---	-------	---	------------------------	---------------------------	---	---	-----------------------	---

Notes:

- (1) Minimum/maximum detected concentration and associated data flags.
- J = The chemical was positively identified; however, the associated numerical value is an estimated concentration.
- +/- = Indicates the result may be biased high/low.
- (2) Average of detected results.
- (3) Maximum detected concentration used for screening.
- (4) Fish tissue screening levels are equal to the USEPA Regional Screening Levels (RSLs) for fish tissue, calculated using USEPA's RSL calculator based on a target risk level of 1x10⁻⁶ for carcinogens and a target hazard quotient of 0.1 for noncarcinogens. Accessed July 2018. See Table 3-12 for screening levels and surrogates used.
- (5) Rationale Codes:

Selection Reason: Above Screening Level (ASL)

Deletion Reason: Below Screening Level (BSL); Essential Nutrient (EN); No Screening Level (NSL)

- (6) All chlordane isomer compounds were retained as COPCs if one or more was identified as a COPC.
- (7) Range of detection limits for constituents with nondetects. Presented with minimum followed by maximum nondetect concentration.

Definitions:

CAS - Chemical Abstracts Service
COPC - Chemical of Potential Concern

EN - Essential Nutrient

mg/kg - milligrams per kilogram

NSL - No Screening Level

PBDE - Polybrominated diphenyl ethers

PCB - Polychlorinated Biphenyl

TEQ - Toxicity Equivalence

Occurrence, Distribution and Selection of Chemicals of Potential Concern in Fish Tissue - Lower Potomac River Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Fish Tissue

Exposure Medium: Fish Tissue (fillet)

Exposure Point	CAS Number	Chemical	Minimum Detected Concentration ¹	Maximum Detected Concentration ¹	Average Detected Concentration ²	Units	Species with Maximum Concentration	Detection Frequency	Range of Reporting Limits	Concentration Used for Screening ³	Screening Toxicity Value ⁴	COPC Flag (Y/N)	Rationale for Selection or Deletion ⁵
	Inorganics				•								
	7429-90-5	Aluminum	7.00E-01	5.20E+01	1.30E+01	mg/kg	American eel	5/9	0.4 - 0.5	5.20E+01	1.54E+02	N	BSL
Lower	7440-38-2	Arsenic	1.92E-01	3.71E+00	1.95E+00	mg/kg	American Shad	2/9	0.089 - 0.167	3.71E+00	2.77E-03	Υ	ASL
Potomac	7440-39-3	Barium	1.84E-02	7.12E-01	1.48E-01	mg/kg	American eel	9/9	-	7.12E-01	3.09E+01	N	BSL
	7440-43-9	Cadmium	1.10E-02	1.10E-02	1.10E-02	mg/kg	American eel	1/9	0.004 - 0.005	1.10E-02	1.54E-01	N	BSL
	7440-70-2	Calcium	9.22E+01	5.44E+03	1.32E+03	mg/kg	American eel	9/9	-	5.44E+03	EN	N	EN
	7440-47-3	Chromium	5.00E-02	6.00E-02	6.00E-02	mg/kg	American eel	2/9	0.04 - 0.07	6.00E-02	2.32E+02	N	BSL
	7440-48-4	Cobalt	4.00E-03	2.20E-02	1.10E-02	mg/kg	American eel	8/9	0.004 - 0.004	2.20E-02	4.63E-02	N	BSL
	7440-50-8	Copper	1.85E-01	1.10E+00	3.66E-01	mg/kg	American Shad	9/9	-	1.10E+00	6.18E+00	N	BSL
	7439-89-6	Iron	2.10E+00	1.77E+01	6.06E+00	mg/kg	American Shad	9/9	-	1.77E+01	1.08E+02	N	BSL
	7439-92-1	Lead	4.00E-03	6.00E-02	2.20E-02	mg/kg	American eel	5/9	0.004 - 0.005	6.00E-02	NSL	N	NSL
	7439-95-4	Magnesium	2.37E+02	2.85E+02	2.65E+02	mg/kg	American eel	9/9	-	2.85E+02	EN	N	EN
	7439-96-5	Manganese	1.63E-01	3.68E+00	8.95E-01	mg/kg	American eel	9/9	-	3.68E+00	2.16E+01	N	BSL
	7439-97-6	Mercury	3.70E-02	1.43E-01	8.31E-02	mg/kg	Largemouth bass	9/9	-	1.43E-01	1.54E-02	Y	ASL
	7440-02-0	Nickel	8.00E-02	1.10E-01	8.80E-02	mg/kg	Sunfish	5/9	0.04 - 0.05	1.10E-01	3.09E+00	N	BSL
	7782-49-2	Selenium	2.50E-01	3.50E-01	3.10E-01	mg/kg	Carp	4/9	0.18 - 0.33	3.50E-01	7.72E-01	N	BSL
	7440-23-5	Sodium	3.24E+02	9.26E+02	6.39E+02	mg/kg	American Shad	9/9	-	9.26E+02	EN	N	EN
	7440-66-6	Zinc	4.49E+00	2.77E+01	1.28E+01	mg/kg	American eel	9/9	-	2.77E+01	4.63E+01	N	BSL
	Pesticides							X (d)					L
	634-66-2	1,2,3,4-Tetrachlorobenzene	6.90E-05	1.25E-04	9.70E-05	mg/kg	American eel	2/9	0.0000491 - 0.0000791	1.25E-04	4.63E-02	N	BSL
	95-94-3	1,2,4,5-Tetrachlorobenzene	2.93E-04	4.63E-03	2.83E-03	mg/kg	American eel	8/9	0.0000501 - 0.0000501	4.63E-03	4.63E-02	N	BSL
	53-19-0	2,4'-DDD	2.07E-04	4.15E-03	1.34E-03	mg/kg	American eel	9/9	-	4.15E-03	NSL	N	NSL
	3424-82-6	2,4'-DDE	1.24E-04	1.97E-04	1.61E-04	mg/kg	Blue catfish	2/9	0.0000494 - 0.0000791	1.97E-04	NSL	N	NSL
	789-02-6	2,4'-DDT	4.49E-04	6.12E-03	1.94E-03	mg/kg	American eel	9/9	-	6.12E-03	NSL	N	NSL
	72-54-8	4,4'-DDD	4.52E-04	1.40E-02	3.46E-03	mg/kg	American eel	9/9	-	1.40E-02	4.63E-03	Υ	ASL
	72-55-9	4,4'-DDE	2.43E-03	6.01E-02	1.71E-02	mg/kg	American eel	9/9	-	6.01E-02	1.22E-02	Y	ASL
	50-29-3	4,4'-DDT	1.04E-04	6.16E-03	1.05E-03	mg/kg	American eel	9/9	-	6.16E-03	1.22E-02	N	BSL
	309-00-2	Aldrin	5.50E-05	2.12E-04	1.33E-04	mg/kg	American Shad	7/9	0.0000497 - 0.0000501	2.12E-04	2.45E-04	N	BSL
	319-84-6	Alpha-BHC	6.40E-05	4.13E-04	1.50E-04	mg/kg	American eel	6/9	0.0000491 - 0.00005	4.13E-04	6.60E-04	N	BSL
	5103-71-9	alpha-Chlordane	4.17E-04	2.41E-02	5.71E-03	mg/kg	American eel	9/9	-	2.41E-02	1.19E-02	Υ	ASL
	319-85-7	beta-BHC	2.71E-04	8.86E-04	4.74E-04	mg/kg	American eel	9/9	-	8.86E-04	2.31E-03	N	BSL
	2921-88-2	Chlorpyrifos	6.30E-05	6.42E-04	3.14E-04	mg/kg	American eel	6/9	0.0000496 - 0.0000501	6.42E-04	1.54E-01	N	BSL
	5103-73-1	cis-Nonachlor	4.97E-04	1.07E-02	2.75E-03	mg/kg	American eel	9/9	-	1.07E-02	1.19E-02	N	BSL
	319-86-8	delta-BHC	5.60E-05	7.60E-05	6.40E-05	mg/kg	Brown bullhead	5/9	0.0000491 - 0.0000791	7.60E-05	6.60E-04	N	BSL
	60-57-1	Dieldrin	6.80E-04	1.48E-02	3.82E-03	mg/kg	American eel	9/9	-	1.48E-02	2.60E-04	Y	ASL
	33213-65-9	Endosulfan II	9.50E-05	1.11E-03	5.36E-04	mg/kg	American Shad	3/9	0.0000494 - 0.0000791	1.11E-03	9.27E-01	N N	BSL
	72-20-8	Endrin	7.80E-05	8.18E-04	2.31E-04	mg/kg	American eel	8/9	0.0000501 - 0.0000501	8.18E-04	4.63E-02	N	BSL
	5566-34-7	gamma-Chlordane	3.84E-04	9.43E-03	3.13E-03	mg/kg	American eel	8/9	0.0000496 - 0.0000496	9.43E-03	1.19E-02	Y	Chlordane (6)
	58-89-9	gamma-BHC (Lindane)	5.10E-05	3.09E-04	1.12E-04	mg/kg	American eel	7/9	0.0000494 - 0.00005	3.09E-04	3.78E-03	N N	BSL
	76-44-8	Hepatchlor	8.30E-05	1.64E-04	1.21E-04	mg/kg	American eel	3/9	0.0000496 - 0.0000791	1.64E-04	9.24E-04	N	BSL
	1024-57-3	Heptachlor epoxide	4.14E-04	5.60E-03	1.37E-03	mg/kg	American eel	9/9	-	5.60E-03	4.57E-04	Y	ASL
	118-74-1	Hexachlorobenzene	6.40E-05	1.96E-03	6.59E-04	mg/kg	American eel	8/9	0.0000501 - 0.0000501	1.96E-03	2.60E-03	N N	BSL
	2385-85-5	Mirex	5.80E-05	2.10E-04	1.33E-04	mg/kg	American eel	4/9	0.0000301 - 0.0000301	2.10E-04	2.31E-04	N	BSL
	27304-13-8	Oxychlordane	5.80E-05 5.23E-04	7.25E-03	1.68E-03	mg/kg	American eel	9/9		7.25E-03	1.19E-02	Y	Chlordane (6)

Occurrence, Distribution and Selection of Chemicals of Potential Concern in Fish Tissue - Lower Potomac River Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Fish Tissue

Exposure Medium: Fish Tissue (fillet)

	CAS Number	Chemical	Minimum Detected Concentration 1	Maximum Detected Concentration ¹	Average Detected Concentration ²	Units	Species with Maximum Concentration	Detection Frequency	Range of Reporting Limits	Concentration Used for Screening ³	Screening Toxicity Value ⁴	COPC Flag (Y/N)	Rationale for Selection or Deletion ⁵
	1825-21-4	Pentachloroanisole	6.50E-05	8.36E-04	3.37E-04	mg/kg	American eel	9/9	-	8.36E-04	NSL	N	NSL
	39765-80-5	trans-Nonachlor	1.23E-03	3.58E-02	7.81E-03	mg/kg	American eel	9/9	-	3.58E-02	1.19E-02	Υ	ASL
/er	Semivolatile Organic	Compounds											
omac	90-12-0	1-Methylnaphthalene	1.01E-03 J+	4.41E-03	2.20E-03	mg/kg	Carp	5/9	0.000987 - 0.001	4.41E-03	1.43E-01	N	BSL
	2245-38-7	2,3,5-Trimethylnaphthalene	3.00E-03	3.00E-03	3.00E-03	mg/kg	Carp	1/9	0.000982 - 0.00158	3.00E-03	NSL	Ν	NSL
Ų	581-42-0	2,6-Dimethylnaphthalene	1.12E-03 J+	4.32E-03	2.72E-03	mg/kg	Carp	2/9	0.000987 - 0.00158	4.32E-03	6.18E-01	Ν	BSL
Ų	91-57-6	2-Methylnaphthalene	1.03E-03 J+	4.72E-03 J+	2.96E-03	mg/kg	American Shad	4/9	0.000987 - 0.00158	4.72E-03	6.18E-01	Ν	BSL
	83-32-9	Acenaphthene	3.13E-03	3.08E-02	1.28E-02	mg/kg	American Shad	3/9	0.000987 - 0.00101	3.08E-02	9.27E+00	N	BSL
	208-96-8	Acenaphthylene	1.03E-03	1.46E-03	1.28E-03	mg/kg	Blue catfish	3/9	0.000987 - 0.00158	1.46E-03	9.27E+00	N	BSL
Ų	120-12-7	Anthracene	1.05E-03 J+	2.42E-03 J+	1.80E-03	mg/kg	Blue catfish	4/9	0.000987 - 0.00158	2.42E-03	4.63E+01	Ν	BSL
	92-52-4	Biphenyl	1.13E-03	1.31E-03	1.22E-03	mg/kg	Carp	2/9	0.000987 - 0.00158	1.31E-03	5.20E-01	N	BSL
	DBZTPC1	C1-dibenzothiophenes	1.71E-03	1.71E-03	1.71E-03	mg/kg	Carp	1/9	0.000982 - 0.00158	1.71E-03	NSL	N	NSL
Ų	FLPYC1	C1-fluoranthenes/pyrenes	3.26E-03	3.26E-03	3.26E-03	mg/kg	American eel	1/9	0.000982 - 0.00101	3.26E-03	NSL	N	NSL
Ų	FLUORC1	C1-fluorenes	1.45E-03	5.39E-03	2.77E-03	mg/kg	Carp	6/9	0.000987 - 0.00101	5.39E-03	NSL	N	NSL
Ų	NPHC1	C1-naphthalenes	1.06E-03 J+	8.90E-03 J+	3.30E-03	mg/kg	Carp	9/9	-	8.90E-03	NSL	N	NSL
	FLUORC2	C2-fluorenes	1.30E-03	4.18E-03	2.39E-03	mg/kg	American eel	5/9	0.000987 - 0.00101	4.18E-03	NSL	N	NSL
Ų	NPHC2	C2-naphthalenes	1.18E-03	1.50E-02	3.69E-03	mg/kg	Carp	7/9	0.000987 - 0.00101	1.50E-02	NSL	N	NSL
Ų	PHANC2	C2-phenanthrenes/anthracenes	1.78E-03	1.78E-03	1.78E-03	mg/kg	American eel	1/9	0.000982 - 0.00101	1.78E-03	NSL	N	NSL
Ų	FLUORC3	C3-fluorenes	1.34E-03	3.07E-03	2.21E-03	mg/kg	American eel	2/9	0.000982 - 0.00101	3.07E-03	NSL	N	NSL
	NPHC3	C3-naphthalenes	1.01E-03	1.24E-02	3.92E-03	mg/kg	Carp	7/9	0.001 - 0.00101	1.24E-02	NSL	N	NSL
Ų	PHANC3	C3-phenanthrenes/anthracenes	7.45E-03	7.45E-03	7.45E-03	mg/kg	American eel	1/9	0.000982 - 0.00101	7.45E-03	NSL	N	NSL
	NPHC4	C4-naphthalenes	1.77E-03	7.30E-03	3.62E-03	mg/kg	Carp	4/9	0.000982 - 0.00101	7.30E-03	NSL	N	NSL
	132-65-0	Dibenzothiophene	1.01E-03 J+	1.01E-03 J+	1.01E-03	mg/kg	Blue catfish	1/9	0.000982 - 0.00158	1.01E-03	1.54E+00	N	BSL
	206-44-0	Fluoranthene	1.96E-03 J+	3.78E-03 J+	2.83E-03	mg/kg	Brown bullhead	5/9	0.000987 - 0.001	3.78E-03	6.18E+00	N	BSL
	86-73-7	Fluorene	1.07E-03 J+	3.78E-03	2.74E-03	mg/kg	Carp	3/9	0.000987 - 0.00158	3.78E-03	6.18E+00	N	BSL
Ų	91-20-3	Naphthalene	1.64E-03 J+	5.42E-03 J+	3.22E-03	mg/kg	Brown bullhead	9/9	-	5.42E-03	3.09E+00	N	BSL
	198-55-0	Perylene	1.80E-03 J+	1.80E-03 J+	1.80E-03	mg/kg	American eel	1/9	0.000987 - 0.001	1.80E-03	4.63E+00	N	BSL
	85-01-8	Phenanthrene	1.10E-03 J+	8.49E-03	3.58E-03	mg/kg	American Shad	6/9	0.000987 - 0.001	8.49E-03	4.63E+01	N	BSL
	129-00-0	Pyrene	1.24E-03 J+	1.66E-03 J+	1.45E-03	mg/kg	Brown bullhead	2/9	0.000982 - 0.00158	1.66E-03	4.63E+00	N	BSL
	Polybrominated Diph	enyl Ethers											•
I.	RA_TOT_PBDE	Total PBDEs	2.22E-03	3.46E-02	8.98E-03	mg/kg	American eel	9/9	-	3.46E-02	NSL	N	NSL
Ų	Polychlorinated Biph	enyls											
Ų	1336-36-3	Total PCBs (Congeners)	3.33E-02	4.69E-01	1.64E-01	mg/kg	American eel	9/9	-	4.69E-01	2.08E-03	Υ	ASL
	PCB-TEQ	PCB-TEQ	1.50E-07	7.47E-06	3.41E-06	mg/kg	Brown bullhead	9/9	-	7.47E-06	3.20E-08	Y	ASL

Occurrence, Distribution and Selection of Chemicals of Potential Concern in Fish Tissue - Lower Potomac River Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Medium: Fish Tissue Exposure Medium: Fish Tissue (fillet)

Exposure Point	CAS Chemical	Minimum Detected Concentration ¹	Maximum Detected Concentration 1	Average Detected Concentration ²	Units	Species with Maximum Concentration	Detection Frequency	Range of Reporting Limits	Concentration Used for Screening ³	Screening Toxicity Value ⁴	COPC Flag (Y/N)	Rationale for Selection or Deletion ⁵	
-------------------	--------------	---	----------------------------------	---	-------	---	------------------------	---------------------------	---	---	-----------------------	---	--

Notes:

- (1) Minimum/maximum detected concentration and associated data flags.
 - J = The chemical was positively identified; however, the associated numerical value is an estimated concentration.
 - +/- = Indicates the result may be biased high/low.
- (2) Average of detected results.
- (3) Maximum detected concentration used for screening.
- (4) Fish tissue screening levels are equal to the USEPA Regional Screening Levels (RSLs) for fish tissue, calculated using USEPA's RSL calculator based on a target risk level of 1x10⁻⁶ for carcinogens and a target hazard quotient of 0.1 for noncarcinogens. Accessed July 2018. See Table 3-12 for screening levels and surrogates used.
- (5) Rationale Codes:

Selection Reason: Above Screening Level (ASL)

Deletion Reason: Below Screening Level (BSL); Essential Nutrient (EN); No Screening Level (NSL)

- (6) All chlordane isomer compounds were retained as COPCs if one or more was identified as a COPC.
- (7) Range of detection limits for constituents with nondetects. Presented with minimum followed by maximum nondetect concentration.

Definitions:

CAS - Chemical Abstracts Service
COPC - Chemical of Potential Concern

EN - Essential Nutrient

mg/kg - milligrams per kilogram

NSL - No Screening Level

PBDE - Polybrominated diphenyl ethers

PCB - Polychlorinated Biphenyl

TEQ - Toxicity Equivalence

Occurrence, Distribution and Selection of Chemicals of Potential Concern in Fish Tissue - Upstream Non-Tidal Anacostia River Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Fish Tissue

Exposure Medium: Fish Tissue (fillet)

Exposure Point	CAS Number	Chemical	Minimum Detected Concentration 1	Maximum Detected Concentration ¹	Average Detected Concentration ²	Units	Species with Maximum Concentration	Detection Frequency	Range of Reporting Limits	Concentration Used for Screening ³	Screening Toxicity Value ⁴	COPC Flag (Y/N)	Rationale for Selection or Deletion ⁵
	Dioxins and Furans												
	DFTEQ-HH	2,3,7,8-TCDD-TEQ	1.10E-08	2.89E-07	9.74E-08	mg/kg	Smallmouth bass	28 / 28	-	2.89E-07	3.20E-08	Υ	ASL
n-tidal	Inorganics			1	1	,					1		
acostia	7429-90-5	Aluminum	5.50E-01 J	2.50E+00 J	9.90E-01	mg/kg	Largemouth bass	15 / 24	0.49 - 0.58	2.50E+00	1.54E+02	N	BSL
	7440-38-2	Arsenic	2.70E-02 J	1.40E-01	6.40E-02	mg/kg	Smallmouth bass	24 / 24	-	1.40E-01	2.77E-03	Y	ASL
	7440-39-3	Barium	4.30E-02 J	1.40E-01 J	8.50E-02	mg/kg	Northern snakehead	17 / 24	0.026 - 0.13	1.40E-01	3.09E+01	N	BSL
	7440-70-2	Calcium	3.60E+02	2.80E+03	1.08E+03	mg/kg	Largemouth bass	24 / 24	-	2.80E+03	EN	N	EN
	7440-47-3	Chromium	6.20E-01	1.20E+01	2.18E+00	mg/kg	Largemouth bass	24 / 24	•	1.20E+01	2.32E+02	N	BSL
	7440-48-4	Cobalt	6.20E-03 J	4.70E-02	1.50E-02	mg/kg	Largemouth bass	12 / 24	0.008 - 0.046	4.70E-02	4.63E-02	Y	ASL
	7440-50-8	Copper	2.00E-01	3.30E-01	2.78E-01	mg/kg	Largemouth bass	24 / 24	-	3.30E-01	6.18E+00	N	BSL
	7439-89-6	Iron	6.00E+00	8.20E+01	1.70E+01	mg/kg	Largemouth bass	24 / 24	-	8.20E+01	1.08E+02	N	BSL
	7439-92-1	Lead	7.60E-03 J	4.90E-02 J	2.20E-02	mg/kg	Largemouth bass	10 / 24	0.0075 - 0.0091	4.90E-02	NSL	N	NSL
	7439-95-4	Magnesium	2.60E+02	3.80E+02	3.10E+02	mg/kg	Largemouth bass	24 / 24	-	3.80E+02	EN	N	EN
	7439-96-5	Manganese	2.30E-01 J	9.80E-01	4.30E-01	mg/kg	Largemouth bass	18 / 24	0.27 - 0.39	9.80E-01	2.16E+01	Ν	BSL
	7439-97-6	Mercury	1.60E-01 J,J-	5.00E-01 J-	2.60E-01	mg/kg	Smallmouth bass	23 / 24	0.076 - 0.076	5.00E-01	1.54E-02	Υ	ASL
	7440-02-0	Nickel	8.60E-02 J	1.50E+00	3.54E-01	mg/kg	Largemouth bass	24 / 24	-	1.50E+00	3.09E+00	N	BSL
	7440-09-7	Potassium	3.10E+03	4.30E+03	3.80E+03	mg/kg	Largemouth bass, Smallmouth bass	24 / 24	-	4.30E+03	EN	N	EN
	7782-49-2	Selenium	1.40E-01 J	4.20E-01	2.80E-01	mg/kg	Largemouth bass	18 / 24	0.22 - 0.37	4.20E-01	7.72E-01	N	BSL
	7440-23-5	Sodium	5.20E+02	8.50E+02	6.60E+02	mg/kg	Largemouth bass	X (d)	-	8.50E+02	EN	N	EN
	7440-28-0	Thallium	2.40E-03 J	6.20E-03 J	3.77E-03	mg/kg	Largemouth bass	19 / 24	0.0021 - 0.0026	6.20E-03	1.54E-03	Υ	ASL
	7440-62-2	Vanadium	6.40E-02 J	6.80E-02 J	6.60E-02	mg/kg	Largemouth bass	3 / 24	0.057 - 0.07	6.80E-02	7.79E-01	N	BSL
	7440-66-6	Zinc	5.50E+00	1.20E+01	7.90E+00	mg/kg	Largemouth bass	24 / 24	-	1.20E+01	4.63E+01	N	BSL
	Pesticides												
	72-54-8	4,4'-DDD	1.10E-04 J	6.00E-04 J	3.70E-04	mg/kg	Northern snakehead	7 / 26	0.000042 - 0.00018	6.00E-04	4.63E-03	Ν	BSL
	72-55-9	4,4'-DDE	2.80E-04 J	2.80E-03	1.20E-03	mg/kg	Striped bass	26 / 26	-	2.80E-03	1.22E-02	Ν	BSL
	50-29-3	4,4'-DDT	1.90E-04 J	1.90E-04 J	1.90E-04	mg/kg	Smallmouth bass	1 / 26	0.000042 - 0.00018	1.90E-04	1.22E-02	Ν	BSL
	CHLORDANE_ALL	Chlordane	6.30E-03 J	6.20E-02	2.20E-02	mg/kg	Largemouth bass	25 / 26	0.00047 - 0.00047	6.20E-02	1.19E-02	Υ	ASL
	60-57-1	Dieldrin	2.00E-04 J	4.70E-03	1.70E-03	mg/kg	Largemouth bass	23 / 26	0.000078 - 0.00014	4.70E-03	2.60E-04	Υ	ASL
	1024-57-3	Heptachlor epoxide	1.20E-04 J	4.80E-03	1.80E-03	mg/kg	Largemouth bass	18 / 26	0.00005 - 0.0002	4.80E-03	4.57E-04	Υ	ASL
	Semivolatile Organic	Compounds											
	65-85-0	Benzoic Acid	6.10E-01 J	1.10E+00 J	7.10E-01	mg/kg	Largemouth bass	9/9	-	1.10E+00	6.18E+02	N	BSL
	84-66-2	Diethylphthalate	4.60E-02 J	4.60E-02 J	4.60E-02	mg/kg	Smallmouth bass	1/9	0.029 - 0.054	4.60E-02	1.24E+02	N	BSL
	117-84-0	Di-n-octylphthalate	2.30E-01 J	2.70E-01 J	2.40E-01	mg/kg	Smallmouth bass	4/9	0.028 - 0.052	2.70E-01	1.54E+00	N	BSL
	85-01-8	Phenanthrene	1.40E-02 J	1.40E-02 J	1.40E-02	mg/kg	Largemouth bass	1/9	0.0084 - 0.016	1.40E-02	4.63E+01	N	BSL
	108-95-2	Phenol	1.30E-02 J	5.20E-02 J	3.30E-02	mg/kg	Largemouth bass	2/9	0.0062 - 0.015	5.20E-02	4.63E+01	N	BSL
	Polychlorinated Biph	nenyls											
	1336-36-3	Total PCBs (Congeners)	9.49E-03	5.97E-02	2.84E-02	mg/kg	Striped bass	29 / 29	-	5.97E-02	2.08E-03	Υ	ASL
	PCB-TEQ	PCB-TEQ	2.37E-08	2.54E-06	6.65E-07	mg/kg	Largemouth bass	29 / 29	-	2.54E-06	3.20E-08	Υ	ASL

Occurrence, Distribution and Selection of Chemicals of Potential Concern in Fish Tissue - Upstream Non-Tidal Anacostia River Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Medium: Fish Tissue Exposure Medium: Fish Tissue (fillet)

Exposure Point	CAS Chemic	Minimum Detected Concentration ¹	Maximum Detected Concentration ¹	Average Detected Concentration ²	Units	Species with Maximum Concentration	Detection Frequency	Range of Reporting Limits	Concentration Used for Screening ³	Screening Toxicity Value ⁴	COPC Flag (Y/N)	Rationale for Selection or Deletion ⁵
-------------------	------------	---	---	---	-------	---	------------------------	---------------------------	---	---	-----------------------	---

Notes:

- (1) Minimum/maximum detected concentration and associated data flags.
 - J = The chemical was positively identified; however, the associated numerical value is an estimated concentration.
 - +/- = Indicates the result may be biased high/low.
- (2) Average of detected results.
- (3) Maximum detected concentration used for screening.
- (4) Fish tissue screening levels are equal to the USEPA Regional Screening Levels (RSLs) for fish tissue, calculated using USEPA's RSL calculator based on a target risk level of 1x10⁻⁶ for carcinogens and a target hazard quotient of 0.1 for noncarcinogens. Accessed July 2018. See Table 3-12 for screening levels and surrogates used.
- (5) Rationale Codes:

Selection Reason: Above Screening Level (ASL)

Deletion Reason: Below Screening Level (BSL); Essential Nutrient (EN); No Screening Level (NSL)

- (6) All chlordane isomer compounds were retained as COPCs if one or more was identified as a COPC.
- (7) Range of detection limits for constituents with nondetects. Presented with minimum followed by maximum nondetect concentration.

Definitions:

CAS - Chemical Abstracts Service COPC - Chemical of Potential Concern

EN - Essential Nutrient

mg/kg - milligrams per kilogram

NSL - No Screening Level

PBDE - Polybrominated diphenyl ethers

PCB - Polychlorinated Biphenyl

TEQ - Toxicity Equivalence

TCDD-TEQ - Dioxin Toxic Equivalence

Table 3-22
Hexavalent Chromium Evaluation
Benning Road Facility RI/FS Project
3400 Benning Rd, N.E., Washington DC 20019

				Total Chromi	um	Hexavalent Chr	omium	% Hexavaler	nt Chromium
Area	Location	Comple	Units	Pocult	Detect	Popult	Detect	Including Non-	Excluding Non-
Area	Location	Sample	Units	Result	Flag	Result	Flag	Detects	Detects
	KMY04	SUSKMY0400N	mg/kg	51	Υ	0.34	Y	0.67%	0.67%
	KMY05	SUSKMY0500N	mg/kg	41	Υ	1.20	N	2.93%	
Anacostia Park Property	KMY07	SUSKMY0700N	mg/kg	36	Υ	0.40	N	1.11%	
Anacostia Faik Floperty	KMY08	SUSKMY0800N	mg/kg	44	Υ	0.98	Υ	2.23%	2.23%
	KMY12	SUSKMY1200N	mg/kg	40	Υ	0.62	Υ	1.55%	1.55%
	KMY14	SUSKMY1400N	mg/kg	35	Υ	0.35	N	1.00%	
	SUS08-1D	SUS081D00N2	mg/kg	69	Υ	0.6	Υ	0.87%	0.87%
	SUS08-1H	SUS081H00N2	mg/kg	42	Υ	0.25	Υ	0.60%	0.60%
	SUS08-1H	SUS081H00R2	mg/kg	53	Υ	0.18	Υ	0.34%	0.34%
	SUSDP08	SUS0800N2	mg/kg	27	Υ	0.36	N	1.33%	
Warehouse and	SUSDP08-1E	SUS081E00N2	mg/kg	160	Υ	0.38	N	0.24%	
	TA1C4	SUSTA1C400N2	mg/kg	120	Υ	2.60	N	2.17%	
Laydown Area	TA1C5	SUSTA1C500N2	mg/kg	160	Υ	3.50	N	2.19%	
,	TA1E1	SUSTA1E100N2	mg/kg	18	Υ	0.43	N	2.39%	
	TA1E9	SUSTA1E900N2	mg/kg	11	Υ	0.32	N	2.91%	
	TA1F4	SUSTA1F400N2	mg/kg	22	Υ	0.42	N	1.91%	
	TA1G9	SUSTA1G900N2	mg/kg	18	Υ	0.36	N	2.00%	

Notes

Detect Flag: Y = Yes, Detected. N = No, Not Detected

Summary of % Hexavalent Chromium - Anacostia Park Property and Warehouse											
Statistic	Statistic Including Non- Excluding Non- Detects Detects										
Minimum	0.24%	0.34%									
Maximum	2.93%	2.23%									
Mean	1.55%	1.0%									

Summary of % Hexavalent Chromium - Anacostia Park Property Only										
Statistic	Including Non- Detects	Excluding Non- Detects								
Minimum	0.67%	0.67%								
Maximum	2.93%	2.23%								
Mean	1.58%	1.5%								

Summary of % Hexavale	ent Chromium - Wa	rehouse Only
Statistic	Including Non-	Excluding Non-
Ciuliono	Detects	Detects
Minimum	0.24%	0.34%
Maximum	2.91%	0.87%
Mean	1.54%	0.60%

Table 3-23 Summary of Chemicals of Potential Concern Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

		On-Sit	e Landside Media			Waterside Media		Background Fish Fillet	R	egional Fish Fil	let
Chemical	CAS Number	Groundwater (Excavation Trench)	Groundwater (Future Vapor Intrustion to Indoor Air)	Soil	Fringe Surface Sediment	Surface Water	Upper Anacostia River Fish Fillet (e)	Non-Tidal Anacostia	Lower Anacostia	Upper Potomac	Lower Potomac
Dioxins and Furans											
2,3,7,8-TCDD-TEQ	DFTEQ-HH			Χ	X	X		X			
Inorganics											
Aluminum	7429-90-5				X						
Antimony	7440-36-0				X						
Arsenic	7440-38-2			Χ	X	X		X	X	X	X
Cobalt	7440-48-4			Χ	X	X		X			
Cyanide	57-12-5				X						
Manganese	7439-96-5			Х	X	X					
Mercury	7439-97-6						X	X	X	X	X
Nickel	7440-02-0			Χ	X						
Thallium	7440-28-0			Χ	X			X			
Vanadium	7440-62-2			Χ	X						
Pesticides											
4,4'-DDE	72-55-9						Х		X	X	X
4,4'-DDD	72-54-8						Х		X	Х	Х
4,4'-DDT	50-29-3					Х					
Aldrin	309-00-2						Х		Х	Х	
alpha-Chlordane	5103-71-9						Х	X (d)	Х	Х	Х
beta-BHC	319-85-7							(-)		Х	
cis-Nonachlor	5103-73-1						Х		Х	Х	
Dieldrin	60-57-1						X	X	X	X	Х
gamma-Chlordane	5566-34-7						X		X	X	X
Heptachlor Epoxide	1024-57-3						X	X	X	X	X
Hexachlorobenzene	118-74-1						,			X	
Mirex	2385-85-5						Х		Х	X	
Oxychlordane	27304-13-8						X		X	X	Х
trans-Nonachlor	39765-80-5						X		X	X	X
PCBs	00700 00 0										^
Total PCBs (a)	1336-36-3			Х	X	X (b)	Х	Х	Х	Х	Х
PCB-TEQ	PCB-TEQ					7.(0)	X	X	X	X	X
SVOCs (c)	TODIEQ										
Benzo(a)anthracene	56-55-3			Х	X						-
Benzo(a)pyrene	50-32-8			X	X						
Benzo(b)fluoranthene	205-99-2	1		X	X					1	
Benzo(k)fluoranthene	207-08-9	1		X	X	1				1	
Chrysene	218-01-9			X	X						
Dibenzo(a,h)anthracene	53-70-3	1		X	X	1				1	
Indeno(1,2,3-cd)pyrene	193-39-5	1		X	X	1				1	
Naphthalene	91-20-3	1		X	^	1				1	
TPH	91-20-3			^							
	C10C20			Х	X						
Diesel Range Organics (C10-C20)	C10C20	1		^	X						
VOCs Promodichleromethane	75.07.4										
Bromodichloromethane	75-27-4	X				-				 	
Butyl alcohol, tert-	75-65-0	X								1	
Chloroform	67-66-3	X	X							1	
Methyl tert-Butyl Ether (MTBE)	1634-04-4	X				-				 	
Tetrachloroethylene	127-18-4	X	X								
Trichloroethene	79-01-6	X	X								<u> </u>
Vinyl Chloride	75-01-4	X	X				L			L	<u> </u>
Total	<u> </u>	7	4	17	19	6	14	10	15	17	12

Notes:

CAS - Chemical Abstracts Service PCB - Polychlorinated biphenyl SVOC - Semivolatile organic compound TCDD-TEQ - Dioxin Toxic Equivalence.

X - Indicates chemical was identified as a chemical of potential concern in the associated media.

- (a) Total PCBs for abiotic media (soil, sediment, surface water) are evaluated as Total PCB Aroclors. PCBs for biotic media (fish tissue) are evaluated as Total PCB (sum of congeners) and PCB-TEQ. (See text Section 3 for further discussion).
- (b) PCBs was not detected in the RI surface water samples, however, the detection limit for the analytical method used (approximately 0.01 ug/L for Method 8082) exceeds the applicable surface water screening level of 0.000064 ug/L for PCBs. Therefore, PCBs was conservatively identified as a surface water COPC using the lowest reporting limit that was achieved (0.0094 ug/L).
- (c) All seven potentially carcinogenic polycyclic aromatic hydrocarbons were conservatively retained as COPCs if one or more was identified as a COPC.
- (d) Represents total chlordane.
- (e) The samples collected in the Upper Anacostia River are assumed to reflect overall conditions within the several mile long river reach that was sampled (or the possibly larger home range for some of the fish species sampled), and may not reflect the specific conditions within the Waterside Investigation Area.

Table 4-1 Non-Cancer Toxicity Data For COPCs - Oral/Dermal Benning Road Facility RIFS Project 3400 Benning Rd, N.E., Washington DC 20019

Chemical		Chronic/	Chronic Oral	Oral Absorpti				Primary Target		Combined Uncertainty/		RfD: Target Orga	an(s)	
of Potential Concern (d)	CAS Number	Subchronic	Reference Dose (mg/kg-day)	for Derma	,	Study Animal	Study Method	Organ/System	Critical Endpoint	Modifying Factors	Confidence Level	Source	Date	RfD Tier (h)
Dioxin and Dioxin-Like PCBs									_					
2,3,7,8-TCDD-TEQ	DFTEQ-HH	Chronic	7.00E-10	j)	7.00E-10	Human	Epidemiological	Reproductive, Developmental	Decreased sperm count and motility in men / Increased TSH in	30	High	IRIS	8/2018	Tier 1
PCB-TEQ	PCB-TEQ	Chronic	7.00E-10	j)	7.00E-10		1	Reproductive, Developmental	neonates		J			
Inorganics	1	1	ı			1	ı		1	П	1	1		
Aluminum	7429-90-5	Chronic	1.00E+00		1.00E+00	Mouse	Oral: Diet	Neurological	Neurological Toxicity	100	Low	PPRTV aluminum and its compounds	10/2006	Tier 2
Antimony	7440-36-0	Chronic	4.00E-04	0.15	6.00E-05	Rat	Oral: Bioassay	Mortality, Blood	Longevity, blood glucose, and cholesterol	1,000	Low	IRIS metallic form	8/2018	Tier 1
Arsenic	7440-38-2	Chronic	3.00E-04		3.00E-04	Human	Oral: Drinking water	Skin, Vascular	Hyperpigmentation, keratosis and possible vascular complications	3	Medium	IRIS inorganic form	8/2018	Tier 1
Arsenic, organic	75-60-5	Chronic	2.00E-02	n) NA	NA	Mouse	Oral: diet	Bladder	Vacuolization of the urothelium	100	NA	ATSDR dimethylarsinic acid	8/2007	Tier 3
Cobalt	7440-48-4	Chronic	3.00E-04		3.00E-04	Human	Oral	Thyroid	Decreased iodine uptake	3,000	Low/Medium	PPRTV	8/2008	Tier 2
Cyanide	57-12-5	Chronic	6.30E-04			Rat	Oral: Drinking water	Reproductive	Decreased cauda epididymis weight	3,000	Low/Medium	IRIS free cyanide	8/2018	Tier 1
Manganese	7439-96-5	Chronic	2.40E-02	f) 0.04	9.60E-04	Human	Oral: dietary supplements	Neurological	CNS effects (other effect: Impairment of neurobehavioral function)	3	High	IRIS	8/2018	Tier 1
Mercury	7439-97-6	Chronic	3.00E-04	0.07	2.10E-05	Rat	Oral: Diet	Immune	Autoimmune	1,000	High	IRIS mercuric chloride	8/2018	Tier 1
Methyl Mercury	22967-92-6	Chronic	1.00E-04	NA	NA (g)	Human	Epidemiological	Neurological	Developmental neuropsychological impairment	10	High	IRIS methyl mercury	8/2018	Tier 1
Nickel	7440-02-0	Chronic	2.00E-02	0.04	8.00E-04	Rat	Oral: Diet	Decreased body and organ weights	Decreased body and organ weights	300	Medium	IRIS nickel soluble salts	8/2018	Tier 1
Thallium	7440-28-0	Chronic	1.00E-05	g)	1.00E-05	Rat	Oral: Subchronic	Hair	Hair follicle atrophy	3,000		PPRTV screening value (e) thallium soluble salts	10/2012	Tier 3
Vanadium	7440-62-2	Chronic	5.04E-03	(i) 0.026	1.31E-04	Rat	Oral	Hair	Decreased hair cysteine	100	Low	IRIS vanadium and compounds (i)	8/2018	Tier 1
Pesticides			T	_			T			T		•		
4,4'-DDD	72-54-8	Chronic	3.00E-05		3.00E-05	Rat	Oral: diet	Liver	Liver lesions	300		PPRTV screening value (e)	9/2017	Tier 3
4,4'-DDE	72-55-9	Chronic	3.00E-04	-	3.00E-04	Rat	Oral: gavage	Liver, Developmental	Increased liver weight in male offspring	3,000	-	PPRTV screening value (e)	9/2017	Tier 3
4,4'-DDT	50-29-3	Chronic	5.00E-04		5.00E-04	Rat	Oral: diet	Liver	Liver lesions	100	Medium	IRIS	8/2018	Tier 1
Aldrin	309-00-2	Chronic	3.00E-05		3.00E-05	Rat	Oral: diet	Liver	Liver toxicity	1,000	Medium	IRIS	8/2018	Tier 1
alpha-Chlordane	5103-71-9	Chronic		k)	5.00E-04	Mouse	Oral	Liver	Liver necrosis	300	Medium	IRIS (k)	8/2018	Surrogate
beta-BHC	319-85-7 5103-73-1	Chronic	NA 5.00E-04	 k)	NA 5.00E-04	NA	NA Oral	NA Liver	NA Liver poeresia	NA 300	NA Madium	NA IRIS (k)	NA 8/2018	NA
cis-Nonachlor Dieldrin	60-57-1	Chronic Chronic	5.00E-04 5.00E-05	k)	5.00E-04 5.00E-05	Mouse Rat	Oral Oral: diet	Liver Liver	Liver necrosis Liver lesions	100	Medium Medium	IRIS (K)	8/2018	Surrogate Tier 1
gamma-Chlordane	5566-34-7	Chronic		k)	5.00E-04	Mouse	Oral Oral	Liver	Liver necrosis	300	Medium	IRIS	8/2018	Tier 1
Heptachlor epoxide	1024-57-3	Chronic	1.30E-05		1.30E-05	Dog	Oral	Liver	Increased liver-to-body weight ratio in both males and females	1,000	Low	IRIS	8/2018	Tier 1
Hexachlorobenzene	118-74-1	Chronic	8.00E-04		8.00E-04	Rat	Oral: capsule	Liver	Liver effects	100	Medium	IRIS	8/2018	Tier 1
Mirex	2385-85-5	Chronic	2.00E-04		2.00E-04	Rat	Oral	Endocrine, Liver	Liver cytomegaly, fatty metamorphosis, angiectasis; thyroid cystic follicles	300	High	IRIS	8/2018	Tier 1
Oxychlordane	27304-13-8	Chronic		k)	5.00E-04	Mouse	Oral	Liver	Liver necrosis	300	Medium	IRIS (k)	8/2018	Surrogate
trans-Nonachlor	39765-80-5	Chronic	5.00E-04	k)	5.00E-04	Mouse	Oral	Liver	Liver necrosis	300	Medium	IRIS (k)	8/2018	Surrogate

Table 4-1 Non-Cancer Toxicity Data For COPCs - Oral/Dermal Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Chemical of Potential Concern (d)	CAS Number	Chronic/ Subchronic	Chronic Oral Reference Dose	Oral Absorption Efficiency for Dermal (a)	Absorbed Chronic RfD for Dermal (b)	Study Animal	Study Method	Primary Target Organ/System	Critical Endpoint	Combined Uncertainty/ Modifying Factors	Confidence Level	RfD: Target Orga	an(s)	RfD Tier (h)
			(mg/kg-day)		(mg/kg-day)									
PCBs														
Total PCBs	1336-36-3	Chronic	2.00E-05 (c)		2.00E-05	Monkey	Oral: Capsule	Ocular/eye, Nails,	Ocular exudate, inflamed and prominent Meibomian glands, distorted growth of finger and toe	300	Medium	IRIS	8/2018	Tier 1
Total POBS	1330-30-3	Subchronic	5.00E-05 (m)		5.00E-05	Workey	Oral. Capsule	Immune	nails; decreased antibody response to sheep erythrocytes	100 (m)	wedum	inis	8/2018	rieri
SVOCs				•										
Benzo(a)anthracene	56-55-3	Chronic	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	50-32-8	Chronic	3.00E-04		3.00E-04	Rat	Oral: diet	Developmental	Neurobehavioral changes	300	Medium	IRIS	8/2018	Tier 1
Benzo(b)fluoranthene	205-99-2	Chronic	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	207-08-9	Chronic	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	218-01-9	Chronic	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenzo(a,h)anthracene	53-70-3	Chronic	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	193-39-5	Chronic	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	91-20-3	Chronic	2.00E-02		2.00E-02	Rat	Oral: gavage	Developmental	Decreased terminal body weight	3,000	Low	IRIS	8/2018	Tier 1
TPH														
Diesel Range Organics (C10-C20)	C10C20	Chronic	1.00E-02 (I)		1.00E-02	Rat	Oral: gavage	Liver, Kidney, Blood	Liver/kidney weight increases and other changes, serum chemistry changes	10,000	Low	PPRTV screening value (e)	9/2009	Tier 3

Notes:

"--" - No adjustment necessary.

ABS(GI) - Fraction of contaminant absorbed in gastrointestinal tract (dimensionless).

CAS - Chemical Abstracts Service.

CNS - Central Nervous System.

IRIS - Integrated Risk Information System, an online computer database of toxicological information (USEPA, 2018).

mg/kg-day - Milligrams per Kilogram per day.

NA - Not available/Not Applicable.

PCB - Polychlorinated Biphenyls.

PPRTV - Provisional Peer Reviewed Toxicity Value.

RfD - Reference Dose.

SVOCs - Semi-volatile organic compounds.

TCDD - 2,3,7,8-Tetrachlorodibenzo-p-dioxin.

TEQ - Toxicity Equivalence

TPH - Total Petroleum Hydrocarbon.

TSH - Thyroid Stimulating Hormone.

USEPA - United States Environmental Protection Agency.

- (a) USEPA, 2004. Risk Assessment Guidance for Superfund. Volume 1, Part E, Supplemental Guidance for Dermal Risk Assessment. Exhibit 4-1. Where USEPA, 2004 does not recommend adjustments, no value is listed.
- (b) Oral RfD multiplied by ABS_{GI}. Where the gastrointestinal absorption is greater than or equal to 50%, Dermal RfD = Oral RfD.
- (c) Value for Aroclor 1254 (2E-05 mg/kg-day) or Aroclor 1016 (7E-05 mg/kg-day) may be used to evaluate the noncarcinogenic hazards of total PCBs, and the Aroclor selected depends on the chlorine content of the PCB congeners in the medium of interest. For this HHRA, the RfD for Aroclor 1254 is used.
- (d) Volatile organic compounds are not chemicals of potential concern for oral or dermal pathways, and are therefore not presented here.
- (e) No PPRTVs were developed in the PPRTV document. PPRTV document indicates that it is inappropriate to derive provisional chronic or subchronic RfDs but that information is available which, although insufficient to support derivation of a provisional toxicity value, under current guidelines, may be of limited use to risk assessors as a screening value. The use of screening provisional values is highly uncertain but they used in the USEPA Regional Screening Tables (May 2018).
- (f) When assessing exposure to manganese for non-dietary pathways, IRIS recommends applying a modifying factor of 3 to the oral RfD of 0.14 mg/kg-day. The USEPA Regional Screening Level User's Guide also indicates that the average dietary manganese content of the US diet (5 mg/day) be subtracted from the critical dose of 10 mg/day when assessing exposure to non-dietary manganese.

 Therefore, the RfD is (10 mg/day 5 mg/day)/Modifying Factor (3) = 1.67 mg/day / 70 kg = 0.024 mg/kg-day.
- (g) Dermal pathway not applicable; methyl mercury is used to assess the fish ingestion pathway only.
- (h) USEPA, 2003. Human Health Toxicity Values in Superfund Risk Assessments. OSWER Directive 9285.7-53. December 5, 2003. IRIS values are considered Tier 1, PPRTVs are considered Tier 2, and other values, including ATSDR, CalEPA, HEAST, and other non-USEPA values are considered Tier 3 values. Selection of Tier 3 values followed the hierarchy put forth in USEPA's Tier 3 Toxicity Value White Paper, OSWER 9285.7-86, May 16, 2013.
- (i) The oral RfD for Vanadium is derived from the IRIS oral RfD for Vanadium Pentoxide by factoring out the molecular weight (MW) of the oxide ion. Vanadium Pentoxide (V205) has a molecular weight of 181.88. The two atoms of Vanadium contribute 56% of the MW. Vanadium Pentoxide's oral RfD of 9E-03 mg/kg-day multiplied by 56% gives a Vanadium oral RfD of 5.04E-03 mg/kg-day.
- (j) The IRIS reference dose for 2,3,7,8-TCDD is used to evaluate TCDD-TEQ and PCB-TEQ.
- (k) Value for technical chlordane is used as a surrogate.
- (I) Value for TPH (Aliphatic Medium), based on the PPRTV for Midrange Aliphatic Hydrocarbon Streams. RfD is considered a screening provisional value (USEPA 2009).
- (m) As allowed by guidance (USEPA 1989), the UF of 3 used for extrapolation from subchronic to lifetime exposure was removed to derive a subchronic RfD of 5E-5 mg/kg-day for the construction worker scenario (LOAEL of 5E-3 mg/kg-day divided by uncertainty factor of 100).
- (m) Minimal Risk Level for Dimethylarsinic acid (DMA) derived in Appendix A of Toxicological Profile for Arsenic (ATSDR, 2007). The value for organic arsenic is used to assess dietary exposure to fish tissue.

Table 4-2
Non-Cancer Toxicity Data For COPCs - Inhalation
Benning Road Facility RI/FS Project
3400 Benning Rd, N.E., Washington DC 20019

Chamical		Chronis'	Chronic			Drimony Torget		Combined		RfD: Target (Organ(s)	
Chemical of Potential	CAS	Chronic/ Subchronic	Inhalation Reference	Study	Study	Primary Target Organ/System	Critical	Uncertainty/ Modifying	Confidence			RfC
Concern	Number	Subcilionic	Concentration mg/m3	Animal	Method	Organizaystem	Endpoint	Factors	Level	Source	Date	Tier (a)
Dioxin and Dioxin-Like PCBs		•							•	•		
2,3,7,8-TCDD-TEQ	DFTEQ-HH	Chronic	4.00E-08			Liver, reproductive,	Increased mortality, decreased weight					
PCB-TEQ	PCB-TEQ	Chronic	4.00E-08	Rat	Oral: Diet	developmental, endocrine, respiratory, blood	gain, various tissue changes	100	NA	CalEPA	8/2018	Tier 3
Metals			<u>I</u>							II.		
Aluminum	7429-90-5	Chronic	5.00E-03	Human	Inhalation	Neurological	Neurological effects	300	Low to Medium	PPRTV aluminum and its compounds	10/2006	Tier 2
Antimony	7440-36-0	Chronic	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	7440-38-2	Chronic	1.50E-05	Human	Inhalation	Neurological, developmental	Decreased intellectual function in children	30	NA	CalEPA inorganic form	9/2016	Tier 3
Cobalt	7440-48-4	Chronic	6.00E-06	Human	Inhalation	Respiratory	Respiratory tract and lung effects	300	Medium to Low	PPRTV	8/2008	Tier 2
Cyanide	57-12-5	Chronic	8.00E-04	Human	Inhalation	Endocrine	Thyroid enlargement	3000	Low to Medium	IRIS hydrogen cyanide	8/2018	Tier 1
Manganese	7439-96-5	Chronic	5.00E-05	Human	Inhalation	Neurological	Neurobehavioral effects	1000	Medium	IRIS	8/2018	Tier 1
Mercury	7439-97-6	Chronic	3.00E-04	Human	Inhalation	Neurological	Neurological effects	30	Medium	IRIS elemental mercury	8/2018	Tier 1
Methyl Mercury	22967-92-6	Chronic	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	7440-02-0	Chronic	9.00E-05	Rat	Inhalation	Respiratory	Respiratory tract effects	30	NA	ATSDR nickel sulfate hexahydrate	5/2005	Tier 3
Thallium	7440-28-0	Chronic	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	7440-62-2	Chronic	1.00E-04	Rat	Inhalation	Respiratory	Respiratory tract effects	30	NA	ATSDR vanadium pentoxide	7/2012	Tier 3
Pesticides	•	•				•						
4,4'-DDD	72-54-8	Chronic	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDE	72-55-9	Chronic	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4,4'-DDT	50-29-3	Chronic	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aldrin	309-00-2	Chronic	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
alpha-Chlordane	5103-71-9	Chronic		(b) Rat	Inhalation	Liver	Hepatic effects	1000	Low	IRIS (b)	8/2018	Surrogate
beta-BHC	319-85-7	Chronic	NA 7.00F.04	NA Det	NA Introduction	NA Liver	NA	NA 4000	NA	NA IDIO (h)	NA 0/0040	NA Ourses
cis-Nonachlor	5103-73-1	Chronic		(b) Rat	Inhalation	Liver	Hepatic effects	1000	Low	IRIS (b)	8/2018	Surrogate
Dieldrin	60-57-1 5566-34-7	Chronic Chronic	NA 7.00E-04	(b) Rat	NA Inhalation	NA Liver	NA Hanatia affacta	NA 1000	NA Low	NA IRIS (b)	NA 8/2018	NA
gamma-Chlordane Heptachlor epoxide	1024-57-3	Chronic	7.00E-04 NA	(b) Rat	Inhalation NA	NA Liver	Hepatic effects NA	NA	NA NA	NA	0/2016 NA	Surrogate NA
Hexachlorobenzene	118-74-1	Chronic	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Mirex	2385-85-5	Chronic	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA
Oxychlordane	27304-13-8	Chronic		(b) Rat	Inhalation	Liver	Hepatic effects	1000	Low	IRIS (b)	8/2018	Surrogate
trans-Nonachlor	39765-80-5	Chronic		(b) Rat	Inhalation	Liver	Hepatic effects	1000	Low	IRIS (b)	8/2018	Surrogate
PCBs	00700 00 0	Officials	7.002 04	(b) Rut	minalation	Elvei	riepatio circoto	1000	LOW	iitio (b)	0/2010	Ourrogate
Total PCBs	1336-36-3	Chronic	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SVOCs	,			1								
Benzo(a)anthracene	56-55-3	Chronic	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	50-32-8	Chronic	2.00E-06	Rat	Inhalation	Developmental	Decreased embryo/fetal survival	3000	Low to Medium	IRIS	8/2018	Tier 1
			NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA
	205-99-2	Chronic	INA									
Benzo(b)fluoranthene	205-99-2 207-08-9						NA	NA			1	
Benzo(b)fluoranthene Benzo(k)fluoranthene	207-08-9	Chronic	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA
Benzo(b)fluoranthene							NA NA NA	NA NA NA			1	
Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene	207-08-9 218-01-9	Chronic Chronic	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA

Table 4-2 Non-Cancer Toxicity Data For COPCs - Inhalation Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Chemical of Potential	CAS	Chronic/ Subchronic	Chronic Inhalation Reference		Study	Study	Primary Target Organ/System	Critical	Combined Uncertainty/ Modifying	Confidence	RfD: Target	Organ(s)	RfC
Concern	Number		Concentration mg/m3		Animal	Method		Endpoint	Factors	Level	Source	Date	Tier (a)
ТРН													
Diesel Range Organics (C10-C20)	C10C20	Chronic	1.00E-01	(d)	Rat	Inhalation	Respiratory	Nasal effects	100	Medium	PPRTV	9/2009	Tier 3
VOCs Bromodichloromethane	75-27-4	Chronic	l NA		NA	I NA I	NA	l NA	NA NA	NA	NA	l NA	l NA
Butyl alcohol, tert-	75-65-0	Chronic	2.00E-01	(c)	Mouse	Inhalation	Reproductive	Decreased testes weights	1000	Medium	PPRTV	9/2014	Surrogate
Chloroform	67-66-3	Chronic	9.80E-02		Human	Inhalation: Epidemiological	Liver	Hepatic effects	100	NA	ATSDR	9/1997	Tier 3
Methyl tert-Butyl Ether (MTBE)	1634-04-4	Chronic	3.00E+00		Rat	Inhalation	Liver, Kidney, Ocular	Increased liver/kidney weight, swollen periocular tissue	100	Medium	IRIS	8/2018	Tier 1
Tetrachloroethylene	127-18-4	Chronic	4.00E-02		Human	Inhalation	Neurological, Ocular	Vision and memory effects	1000	Medium	IRIS	8/2018	Tier 1
Trichloroethene	79-01-6	Chronic	2.00E-03		Mouse Rat	Oral: drinking water	Thyroid Vascular	Decreased thymus weight Increased fetal heart malformations	100 10	High	IRIS	8/2018	Tier 1
Vinyl Chloride	75-01-4	Chronic	1.00E-01		Rat	Inhalation	Liver	Liver cell polymorphism	30	Medium	IRIS	8/2018	Tier 1

Notes:

ATSDR - Agency for Toxic Substances and Disease Registry.

CalEPA - California Environmental Protection Agency. Office of Environmental Health Hazard Assessment (OEHHA) Toxicity Criteria Database. http://oehha.ca.gov/chemicals.

CAS - Chemical Abstracts Service.

IRIS - Integrated Risk Information System, an online computer database of toxicological information (USEPA, 2018).

NA - Not available/Not Applicable.

PCB - Polychlorinated Biphenyls.

PPRTV - Provisional Peer Reviewed Toxicity Value.

RfC - Reference concentration.

RfD - Reference Dose.

SVOCs - Semi-volatile organic compounds.

TCDD - 2,3,7,8-Tetrachlorodibenzo-p-dioxin.

TPH - Total Petroleum Hydrocarbons.

TEQ - Toxicity Equivalence.

USEPA - United States Environmental Protection Agency.

VOCs - Volatile organic compounds.

- (a) USEPA, 2003. Human Health Toxicity Values in Superfund Risk Assessments. OSWER Directive 9285.7-53. December 5, 2003. IRIS values are considered Tier 1, PPRTVs are considered Tier 2, and other values, including ATSDR, CalEPA, HEAST, and other non-USEPA values are considered Tier 3 values. Selection of Tier 3 values. Selection of Tier 3 values. Selection of Tier 3 values.
- (b) Value for technical chlordane is used as a surrogate.
- (c) Value for isopropanol.
- (d) No PPRTVs were developed in the PPRTV document. PPRTV document indicates that it is inappropriate to derive provisional chronic or subchronic RfDs but that information is available which, although insufficient to support derivation of a provisional toxicity value, under current guidelines, may be of limited use to risk assessors as a screening value. The use of screening provisional values is highly uncertain but they used in the USEPA Regional Screening Tables (November 2017).

Table 4-3
Cancer Toxicity Data For COPCs - Oral/Dermal
Benning Road Facility RI/FS Project
3400 Benning Rd, N.E., Washington DC 20019

		Oral		Oral	Absorbed Dermal							
Chemical		Cancer		Absorption	Cancer			Weight of Evidence/		Oral CSF/W	OE	
of Potential	CAS	Slope		Efficiency	Slope	Study	Study	Cancer Guideline	Classification		,	CSF
Concern (e)	Number					l		Description (c)	System			Tier (g)
		Factor (mg/kg-day) ⁻¹		for Dermal (a)	Factor (b) (mg/kg-day) ⁻¹	Animal	Method			Source(s)	Date	
Dioxin and Dioxin-Like PCBs	1			l	(3 3)/		l		<u> </u>			
2.3.7.8-TCDD-TEQ	DFTEQ-HH	1.30E+05	(d)		1.30E+05 (d)	T						
PCB-TEQ	PCB-TEQ	1.30E+05	(d)		1.30E+05 (d)	Mouse	Oral: Gavage	(j)	(j)	CalEPA	8/2018	Tier 3
Metals	•				•		•				•	
Aluminum	7429-90-5	NA			NA	NA	NA	Inadequate Information	2005	PPRTV	2/2007	NA
Antimony	7440-36-0	NA		0.15	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	7440-38-2	1.50E+00			1.50E+00	Human	Oral: Drinking Water	А	1986	IRIS inorganic form	8/2018	Tier 1
Arsenic, organic	75-60-5	NA		0.15	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt	7440-48-4	NA			NA	NA	NA	Likely Carcinogenic (inhalation)	2005	PPRTV	8/2008	NA
Cyanide	57-12-5	NA			NA	NA	NA	D	1986	IRIS	8/2018	Tier 1
Manganese	7439-96-5	NA		0.04	NA	NA	NA	D	1986	IRIS	8/2018	NA
Mercury	7439-97-6	NA		0.07	NA	NA	NA	D	1986	IRIS	8/2018	NA
Methyl Mercury	22967-92-6	NA		NA	NA	NA	NA	С	1986	IRIS	8/2018	NA
Nickel	7440-02-0	NA		0.04	NA	NA	NA	NA	NA	NA	NA	NA
Thallium	7440-28-0	NA			NA	NA	NA	Inadequate Information	2005	IRIS	8/2018	NA
Vanadium	7440-62-2	NA		0.026	NA	NA	NA	NA	NA	NA	NA	NA
Pesticides	•				•		•				•	
4,4'-DDD	72-54-8	2.40E-01			2.40E-01	Mouse	Oral: diet	B2	1986	IRIS	8/2018	Tier 1
4,4'-DDE	72-55-9	3.40E-01			3.40E-01	Mouse	Oral: diet	B2	1986	IRIS	8/2018	Tier 1
4,4'-DDT	50-29-3	3.40E-01			3.40E-01	Mouse	Oral: diet	B2	1986	IRIS	8/2018	Tier 1
Aldrin	309-00-2	1.70E+01			1.70E+01	Mouse	Oral: diet	B2	1986	IRIS	8/2018	Tier 1
alpha-Chlordane	5103-71-9	3.50E-01	(f)		3.50E-01	Mouse	Oral: diet	B2	1986	IRIS (f)	8/2018	Surrogate
beta-BHC	319-85-7	1.80E+00			1.80E+00	Mouse	Oral: diet	С	1986	IRIS	8/2018	Tier 1
cis-Nonachlor	5103-73-1	3.50E-01	(f)		3.50E-01 (f)	Mouse	Oral: diet	B2	1986	IRIS (f)	8/2018	Surrogate
Dieldrin	60-57-1	1.60E+01			1.60E+01	Mouse	Oral: diet	B2	1986	IRIS	8/2018	Tier 1
gamma-Chlordane	5566-34-7	3.50E-01			3.50E-01	Mouse	Oral: diet	B2	1986	IRIS	8/2018	Tier 1
Heptachlor epoxide	1024-57-3	9.10E+00			9.10E+00	Mouse	Oral: diet	Likely Carcinogenic	2005	IRIS	8/2018	Tier 1
Hexachlorobenzene	118-74-1	1.60E+00			1.60E+00	Rat	Oral: diet	B2	1986	IRIS	8/2018	Tier 1
Mirex	2385-85-5	1.80E+01			1.80E+01	Rat	Oral: Diet	Carcinogen	SQE	CalEPA	4/1992	Tier 3
Oxychlordane	27304-13-8	3.50E-01	(f)		3.50E-01 (f)	Mouse	Oral: diet	B2	1986	IRIS (f)	8/2018	Surrogate
trans-Nonachlor	39765-80-5	3.50E-01	(f)		3.50E-01 (f)	Mouse	Oral: diet	B2	1986	IRIS (f)	8/2018	Surrogate
PCBs												
PCBs, total (high risk & persistence/upper bound)	1336-36-3	2.00E+00			2.00E+00	Rat	Oral: Diet	B2	1986	IRIS	8/2018	Tier 1
PCBs, total (high risk & persistence/central estimate)	1336-36-3	1.00E+00			1.00E+00	Rat	Oral: Diet	B2	1986	IRIS	8/2018	Tier 1
PCBs, total (low risk & persistence/upper bound)	1336-36-3	4.00E-01			4.00E-01	Rat	Oral: Diet	B2	1986	IRIS	8/2018	Tier 1
PCBs, total (low risk & persistence/central estimate)	1336-36-3	3.00E-01			3.00E-01	Rat	Oral: Diet	B2	1986	IRIS	8/2018	Tier 1
PCBs, total (lowest risk & persistence/upper bound)	1336-36-3	7.00E-02			7.00E-02	Rat	Oral: Diet	B2	1986	IRIS	8/2018	Tier 1
PCBs, total (lowest risk & persistence/central estimate)	1336-36-3	4.00E-02			4.00E-02	Rat	Oral: Diet	B2	1986	IRIS	8/2018	Tier 1
SVOCs	•											
Benzo(a)anthracene	56-55-3	1.00E-01	(i,h)		1.00E-01 (i,h		Oral: diet	Carcinogenic	2005	IRIS	8/2018	Tier 1
Benzo(a)pyrene	50-32-8	1.00E+00	(h)		1.00E+00 (h		Oral: diet	Carcinogenic	2005	IRIS	8/2018	Tier 1
Benzo(b)fluoranthene	205-99-2	1.00E-01	(i,h)		1.00E-01 (i,h		Oral: diet	Carcinogenic	2005	IRIS	8/2018	Tier 1
Benzo(k)fluoranthene	207-08-9	1.00E-02	(i,h)		1.00E-02 (i,h		Oral: diet	Carcinogenic	2005	IRIS	8/2018	Tier 1
Chrysene	218-01-9	1.00E-03	(i,h)		1.00E-03 (i,h		Oral: diet	Carcinogenic	2005	IRIS	8/2018	Tier 1
Dibenzo(a,h)anthracene	53-70-3	1.00E+00	(i,h)		1.00E+00 (i,h		Oral: diet	Carcinogenic	2005	IRIS	8/2018	Tier 1
Indeno(1,2,3-cd)pyrene	193-39-5	1.00E-01	(i,h)		1.00E-01 (i,h		Oral: diet	Carcinogenic	2005	IRIS	8/2018	Tier 1
Naphthalene	91-20-3	NA			NA	NA	NA	NA	NA	NA	NA	NA
ТРН												
Diesel Range Organics (C10-C20)	C10C20	NA			NA	NA	NA	NA	NA	NA	NA	NA
											1	

Table 4-3 Cancer Toxicity Data For COPCs - Oral/Dermal Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Chemical of Potential	CAS	Oral Cancer Slope	Oral Absorption Efficiency	Absorbed Dermal Cancer Slope	Study	Study	Weight of Evidence/ Cancer Guideline	Classification	Oral CSF/WC	DΕ	CSF
Concern (e)	Number	Factor (mg/kg-day) ⁻¹	for Dermal (a)	Factor (b) (mg/kg-day) ⁻¹	Animal	Method	Description (c)	System	Source(s)	Date	Tier (g)

Notes:

"--" - No adjustment necessary.

 $\mathsf{ABS}_{(GI)}$ - Fraction of contaminant absorbed in gastrointestinal tract (dimensionless).

ATSDR - Agency for Toxic Substances and Disease Registry.

CalEPA - California Environmental Protection Agency. Toxicity Criteria Database. https://oehha.ca.gov/chemicals

CAS - Chemical Abstracts Service.

COPC - Chemical of Potential Concern.

CSF - Cancer Slope Factor.

IRIS - Integrated Risk Information System, an online computer database of toxicological information (USEPA, 2017).

mg/kg-day - Milligrams per Kilogram per day.

NA - Not available.

NJDEP - New Jersey Department of Environmental Protection.

NTP - National Toxicology Program.

PCB - Polychlorinated Biphenyls.

PPRTV - Provisional Peer Reviewed Toxicity Value.

SQE - State's Qualified Experts.

TCDD - 2,3,7,8-Tetrachlorodibenzo-p-dioxin.

TEQ - Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbons.

USEPA - United States Environmental Protection Agency.

WOE - Weight-of-Evidence.

(a) USEPA, 2004. Risk Assessment Guidance for Superfund. Volume 1, Part E, Supplemental Guidance for Dermal Risk Assessment. Exhibit 4-1. Where USEPA, 2004 does not recommend adjustments, no value is listed.

(b) Oral CSF divided by ABSGI. Where the gastrointestinal absorption is greater than or equal to 50%, Dermal CSF = Oral CSF.

(c) Some chemicals are classified under the 1986 system, while others have been classified under the 2005 system:

1986 Classifications

Group A: Carcinogenic to Humans.

Group B: Probably Carcinogenic to Humans:

B1: Based on limited human evidence.

B2: Based on animal evidence.

Group C: Possibly Carcinogenic to Humans

Group D: Not Classifiable as to Human Carcinogenicity.

Group E: Evidence of Non-carcinogenicity for Humans

2005 Classifications

Carcinogenic: Carcinogenic to Humans

Likely Carcinogenic: Likely to be Carcinogenic to Humans

Suggestive Evidence: Suggestive Evidence of Carcinogenic Potential

Inadequate: Information Inadequate Information to Assess Carcinogenic Potential

Not Likely Carcinogenic: Not Likely to be Carcinogenic to Humans

(d) Consistent with the hierarchy used in USEPA's development of Regional Screening Levels (November 2015), the CalEPA cancer slope factor for 2,3,7,8-TCDD is used to evaluate TCDD-TEQ and PCB-TEQ.

(e) - Volatile organic compounds are not chemicals of potential concern for oral or dermal pathways, and are therefore not presented here.

(f) Letter from Superfund Technical Support Center to Marian Olsen, USEPA Region 2, dated April 9, 2015. Approval of Surrogates for Multiple Chemicals. Cis- and trans-nonachlor and oxychlordane.

Value for chlordane is used as a surrogate based on structural similarity, and without the use of relative potency factors, per letters from Superfund Technical Support Center to Marian Olsen, USEPA Region 2, dated August 5, 2015 and November 24, 2015.

(g) USEPA, 2003. Human Health Toxicity Values in Superfund Risk Assessments. OSWER Directive 9285.7-53. December 5, 2003. IRIS values are considered Tier 1, PPRTVs are considered Tier 2, and other values, including ATSDR, CalEPA, PPRTV Appendix Screening Toxicity Values, HEAST and other non-USEPA values are considered Tier 3 values. Selection of Tier 3 values followed the hierarchy put forth

in USEPA's Tier 3 Toxicity Value White Paper, OSWER 9285.7-86, May 16, 2013.

(h) Assumed to act via a mutagenic mode of carcinogenic action; therefore, age-dependent adjustment factors are applied to the risk estimates.

(i) Calculated using Relative Potency Factors (RPFs) as per USEPA Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons (USEPA, 1993).

(j) The cancer assessment for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is currently underway (USEPA IRIS, 2018).

Table 4-4
Cancer Toxicity Data For COPCs - Inhalation
Benning Road Facility RI/FS Project
3400 Benning Rd, N.E., Washington DC 20019

Chemical of Potential	CAS	Inhalation Unit Risk		Study	Study	Weight of Evidence/ Cancer Guideline	Classification	URF /	WOE	URF
Concern	Number	Factor		Animal	Method	Description (a)	System	Source(s)	Date	Tier (b)
		(ug/m³)⁻¹								
Dioxin and Dioxin-Like PCBs										
2,3,7,8-TCDD-TEQ	DFTEQ-HH	3.80E+01	(c)	Mouse	Oral: Diet	(h)	(h)	CalEPA	8/2018	Tier 3
PCB-TEQ	PCB-TEQ	3.80E+01	(c)			(**)	(,		0.00	
Metals										
Aluminum	7429-90-5	NA		NA	NA	NA	NA	NA	NA	NA
Antimony	7440-36-0	NA		NA	NA	NA	NA	NA	NA	NA
Arsenic	7440-38-2	4.30E-03		Human	Inhalation	А	1986	IRIS inorganic form	8/2018	Tier 1
Cobalt	7440-48-4	9.00E-03		Rat/Mouse	Inhalation	B2	1986	PPRTV	8/2008	Tier 2
Cyanide	57-12-5	NA		NA	NA	D	1986	IRIS	8/2018	NA
Manganese	7439-96-5	NA		NA	NA	D	1986	IRIS	8/2018	NA
Mercury	7439-97-6	NA		NA	NA	С	1986	IRIS	8/2018	NA
Methyl Mercury	22967-92-6	NA		NA	NA	С	1986	IRIS	8/2018	NA
Nickel	7440-02-0	2.60E-04		Human	Epidemiological (Refinery workers)	NA	NA	CalEPA nickel and compounds	NA	Tier 3
Thallium	7440-28-0	NA		NA	NA	NA	NA	NA	NA	NA
Vanadium	7440-62-2	NA		NA	NA	NA	NA	NA	NA	NA
Pesticides										
4,4'-DDD	72-54-8	6.90E-05		Mouse	Oral: Diet	B2	1986	CalEPA	8/1998	Tier 3
4,4'-DDE	72-55-9	9.70E-05		Mouse	Oral: Diet	B2	1986	CalEPA	8/1998	Tier 3
4,4'-DDT	50-29-3	9.70E-05		Mouse	Oral: Diet	B2	1986	IRIS	8/2018	Tier 1
Aldrin	309-00-2	4.90E-03		Mouse	Oral: Diet	B2	1986	IRIS	8/2018	Tier 1
alpha-Chlordane	5103-71-9	1.00E-04		Mouse	Oral: Diet	B2	1986	IRIS (d)	8/2018	Surrogate
beta-BHC	319-85-7	5.30E-04		Mouse	Oral: Diet	С	1986	IRIS	8/2018	Tier 1
cis-Nonachlor	5103-73-1	1.00E-04		Mouse	Oral: Diet	B2	1986	IRIS (d)	8/2018	Surrogate
Dieldrin	60-57-1	4.60E-03		Mouse	Oral: Diet	B2	1986	IRIS	8/2018	Tier 1
gamma-Chlordane	5566-34-7	1.00E-04		Mouse	Oral: Diet	B2	1986	IRIS (d)	8/2018	Surrogate
Heptachlor epoxide	1024-57-3	2.60E-03		Mouse	Oral: Diet	B2	1986	IRIS	8/2018	Tier 1
Hexachlorobenzene	118-74-1	4.60E-04		Rat	Oral: Diet	B2	1986	IRIS	8/2018	Tier 1
Mirex	2385-85-5	5.10E-03		Rat	Oral: Diet	Carcinogen	SQE	CalEPA	4/1992	Tier 3
Oxychlordane	27304-13-8	1.00E-04		Mouse	Oral: Diet	B2	1986	IRIS (d)	8/2018	Surrogate
trans-Nonachlor	39765-80-5	1.00E-04		Mouse	Oral: Diet	B2	1986	IRIS (d)	8/2018	Surrogate
PCBs										
PCBs, total (high risk & persistence/upper bound)	1336-36-3	5.71E-04	(e)	Rat	Oral: Diet	B2	1986	IRIS	8/2018	Tier 1
PCBs, total (high risk & persistence/central estimate)	1336-36-3	2.86E-04	(e)	Rat	Oral: Diet	B2	1986	IRIS	8/2018	Tier 1
PCBs, total (low risk & persistence/upper bound)	1336-36-3	1.14E-04	(e)	Rat	Oral: Diet	B2	1986	IRIS	8/2018	Tier 1
PCBs, total (low risk & persistence/central estimate)	1336-36-3	8.57E-05	(e)	Rat	Oral: Diet	B2	1986	IRIS	8/2018	Tier 1
PCBs, total (lowest risk & persistence/upper bound)	1336-36-3	2.00E-05	(e)	Rat	Oral: Diet	B2	1986	IRIS	8/2018	Tier 1
PCBs, total (lowest risk & persistence/central estimate)	1336-36-3	1.14E-05	(e)	Rat	Oral: Diet	B2	1986	IRIS	8/2018	Tier 1
SVOCs										
Benzo(a)anthracene	56-55-3	6.00E-05	(g,f)	Hamster	Inhalation	Carcinogenic	2005	IRIS	8/2018	Tier 1
Benzo(a)pyrene	50-32-8	6.00E-04	(f)	Hamster	Inhalation	Carcinogenic	2005	IRIS	8/2018	Tier 1
Benzo(b)fluoranthene	205-99-2	6.00E-05	(g,f)	Hamster	Inhalation	Carcinogenic	2005	IRIS	8/2018	Tier 1
Benzo(k)fluoranthene	207-08-9	6.00E-06	(g,f)	Hamster	Inhalation	Carcinogenic	2005	IRIS	8/2018	Tier 1
Chrysene	218-01-9	6.00E-07	(g,f)	Hamster	Inhalation	Carcinogenic	2005	IRIS	8/2018	Tier 1
Dibenzo(a,h)anthracene	53-70-3	6.00E-04	(g,f)	Hamster	Inhalation	Carcinogenic	2005	IRIS	8/2018	Tier 1
Indeno(1,2,3-cd)pyrene	193-39-5	6.00E-05	(g,f)	Hamster	Inhalation	Carcinogenic	2005	IRIS	8/2018	Tier 1
Naphthalene	91-20-3	3.40E-05		Rat	Inhalation	Carcinogenic	NTP, 2000	CalEPA	2004	Tier 3
TPH										
Diesel Range Organics (C10-C20)	C10C20	NA		NA	NA	NA	NA	NA	NA	NA

Table 4-4 Cancer Toxicity Data For COPCs - Inhalation Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Chemical of Potential	CAS						Classification	URF /\	VOE	URF
Concern	Number	Factor (ug/m³)-		Animal	Method	Description (a)	System	Source(s)	Date	Tier (b)
VOCs										
Bromodichloromethane	75-27-4	3.70E-05		Rat	Oral: Gavage	B2	1986	CalEPA	8/2018	Tier 3
Butyl alcohol, tert-	75-65-0	NA		NA	NA	NA	NA	NA	NA	NA
Chloroform	67-66-3	2.30E-05		Mouse	Oral: Gavage	B2	1986	IRIS	8/2018	Tier1
Methyl tert-Butyl Ether (MTBE)	1634-04-4	2.60E-07		Rat	Oral: Gavage	Carcinogenic	OEHHA, 1999	CalEPA	8/2018	Tier 3
Tetrachloroethylene	127-18-4	2.60E-07		Mouse	Inhalation	Likely to be Carcinogenic	2005	IRIS	8/2018	Tier 1
Trichloroethene	79-01-6	4.10E-06	(f)	Human	Inhalation	Carcinogenic	2005	IRIS	8/2018	Tier 1
Vinyl Chloride	75-01-4	4.40E-06	(i)	Rat	Inhalation	A	1986	IRIS	8/2018	Tier 1

ug/m3 - micrograms per cubic meter.

CalEPA - California Environmental Protection Agency Office of Environmental Health Hazard Assessment (OEHHA).

NTP - National Toxicology Program.

PPRTV - Provisional Peer Reviewed Toxicity Values.

SQE - State's Qualified Experts.

SVOCs - Semi-volatile organic compounds.

USEPA - United States Environmental Protection Agency.

(a) Some chemicals are classified under the 1986 system, while others have been classified under the 2005 system:

1986 Classifications

Group A: Carcinogenic to Humans.

Group B: Probably Carcinogenic to Humans:

B1: Based on limited human evidence.

B2: Based on animal evidence.

Group C: Possibly Carcinogenic to Humans

Group D: Not Classifiable as to Human Carcinogenicity.

Group E: Evidence of Non-carcinogenicity for Humans

2005 Classifications

Carcinogenic: Carcinogenic to Humans

Likely Carcinogenic: Likely to be Carcinogenic to Humans

Suggestive Evidence: Suggestive Evidence of Carcinogenic Potential

Inadequate: Information Inadequate Information to Assess Carcinogenic Potential

Not Likely Carcinogenic: Not Likely to be Carcinogenic to Humans

- (b) USEPA, 2003. Human Health Toxicity Values in Superfund Risk Assessments. OSWER Directive 9285.7-53. December 5, 2003. IRIS values are considered Tier 1, PPRTVs are considered Tier 2, and other values, including ATSDR, CalEPA, PPRTV Appendix Screening Toxicity Values, HEAST and other non-USEPA values are considered Tier 3 values. Selection of Tier 3 values followed the hierarchy put forth in USEPA's Tier 3 Toxicity Value White Paper, OSWER 9285.7-86, May 16, 2013.
- (c) Consistent with the hierarchy used in USEPA's development of Regional Screening Levels (November 2015), the CalEPA cancer slope factor for 2,3,7,8-TCDD is used to evaluate TCDD-TEQ and PCB-TEQ.
- (d) Value for chlordane is used as a surrogate based on structural similarity, and without the use of relative potency factors, per letters from Superfund Technical Support Center to Marian Olsen, USEPA Region 2, dated August 5, 2015 and November 24, 2015.
- (e) Consistent with the IRIS file for PCBs, for inhalation of dust containing PCBs, the high risk and persistence slope factors are used. The Reasonable Maximum Exposure (RME) unit risk factor presented represents the upper-bound slope factor. The Central Tendency Exposure (CTE) unit risk factor is based on the central-estimate slope factor.

The unit risk factors were converted from the slope factors as follows: URF = [CSF (mg/kg-day)-1 x (20 m3/day/70 kg) x 1 mg/1000 ug]

- (f) Assumed to act via a mutagenic mode of carcinogenic action. However, no childhood exposue pathways were identified.
- (g) Calculated using Relative Potency Factors (RPFs) as per USEPA Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons (USEPA, 1993).
- (h) The cancer assessment for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is currently underway (USEPA IRIS, 2018).
- (i) Value for continuous exposure during adulthood used; COPC only for the construction worker trench air inhalation pathway.

Table 5-1
Selection of Exposure Pathways
Benning Road Facility RI/FS Project
3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe	Medium	Exposure Medium	Exposure Point	Receptor Population	Receptor Age	Exposure Route	Type of Analysis	Rationale for Selection or Exclusion of Exposure Pathway
					Young Child (1 to <7 year)	Ingestion	Quantitative	Despite the presence of an advisory warning against the consumption of certain species of fish from the Anacostia and Potomac Rivers, it is assumed that a
		Fish Tissue	Fish from Waterside Investigation Area	Recreational Angler	Older Child/Teen (7 to <19 years)	Ingestion	Quantitative	recreational angler visits the Anacostia River to fish and consumes his/her catch. Assumes receptor will consume fish caught from Anacostia River and share it with
					Adult	Ingestion	Quantitative	family members.
			Fish form Metansida	I Bab and	Young Child (1 to <7 year)	Ingestion	Quantitative	Some anglers may fish on a frequent basis to supplement their diet. While the available survey data indicate there is no evidence of year-round subsistence
	Biota Tissue	Fish Tissue	Fish from Waterside Investigation Area	High-end Consuming Angler	Older Child/Teen (7 to <19 years)	Ingestion	Quantitative	fishing, a high-end consuming angler who supplements a significant fraction of his/her diet and that of a family with Anacostia River fish is evaluated in the
					Adult	Ingestion	Quantitative	uncertainty analysis.
			Oh allfish farm Materials		Young Child (1 to <7 year)	Ingestion	Qualitative	Anglers and their families may consume shellfish from the Anacostia River; due to
		Shellfish Tissue	Shellfish from Waterside Investigation Area	Angler	Older Child/Teen (7 to <19 years)	Ingestion	Qualitative	limited data on shellfish consumption practices and shellfish tissue chemistry, this pathway is evaluated qualitatively.
					Adult	Ingestion	Qualitative	
					Older Child/Teen	Incidental Ingestion	Quantitative	
				Recreational Angler	(7 to <19 years)	Dermal Contact	Quantitative	Anglers may contact fringe surface sediment while fishing from the river bank. Assumes that young children under 6 years of age would not typically accompany
					Adult	Incidental Ingestion	Quantitative	adult anglers due to safety concerns.
Current/Future					radit	Dermal Contact	Quantitative	
					Young Child	Incidental Ingestion	Quantitative	
					(1 to <7 year)	Dermal Contact	Quantitative	
				Swimmer	Older Child/Teen	Incidental Ingestion	Quantitative	Swimmers may contact fringe surface sediment while entering and leaving the
				- Cwininier	(7 to <19 years)	Dermal Contact	Quantitative	river and while swimming.
		Fringe Surface	Waterside Investigation		Adult	Incidental Ingestion	Quantitative	
	Sediment	Sediment	Area		radit	Dermal Contact	Quantitative	
					Young Child	Incidental Ingestion	Quantitative	
					(1 to <7 year)	Dermal Contact	Quantitative	
				Wader	Older Child/Teen	Incidental Ingestion	Quantitative	Families visiting the river may contact fringe surface sediment while wading or
				***************************************	(7 to <19 years)	Dermal Contact	Quantitative	playing along the shoreline.
					Adult	Incidental Ingestion	Quantitative	
					,	Dermal Contact	Quantitative	
						Incidental Ingestion	Quantitative	Workers may be tasked with collecting trash or performing other shoreline
				Worker	Adult	Dermal Contact	Quantitative	maintenance activities with the potential for contact with fringe surface sediment.

Table 5-1 Selection of Exposure Pathways Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe	Medium	Exposure Medium	Exposure Point	Receptor Population	Receptor Age	Exposure Route	Type of Analysis	Rationale for Selection or Exclusion of Exposure Pathway
				Recreational	Older Child/Teen (7 to <19 years)	Incidental Ingestion Dermal Contact	Quantitative Quantitative	Angler may contact surface water while fishing from the river bank. Assumes that
				Angler	Adult	Incidental Ingestion Dermal Contact	Quantitative Quantitative	young children under 6 years of age would not typically accompany adult anglers due to safety concerns.
					Young Child (1 to <7 year)	Incidental Ingestion	Quantitative Quantitative	
				Swimmer	Older Child/Teen (7 to <19 years)	Incidental Ingestion	Quantitative	Swimmers may contact surface water while swimming.
	Surface Water	Surface Water	Waterside Investigation Area		Adult	Dermal Contact Incidental Ingestion	Quantitative	
					Young Child	Dermal Contact Incidental Ingestion	Quantitative Quantitative	
Current/Future (continued)				Wader	(1 to <7 year) Older Child/Teen	Dermal Contact Incidental Ingestion	Quantitative Quantitative	Families visiting the river may contact surface water while wading or playing along
					(7 to <19 years) Adult	Dermal Contact Incidental Ingestion	Quantitative Quantitative	the shoreline.
				Worker	Adult	Dermal Contact Incidental Ingestion	Quantitative Quantitative	Workers may be tasked with collecting trash or performing other shoreline
		0 ()		776.11.0.	710011	Dermal Contact Incidental Ingestion	Quantitative Quantitative	maintenance activities with the potential for contact with surface water.
	Soil	Surface and Subsurface soil combined	Landside Investigation Area	Current/Future Construction	Adult	Dermal Contact Inhalation	Quantitative Quantitative	Workers may contact surface and subsurface soil during utility or other construction work requiring excavation into the subsurface.
	Groundwater	Trench Air	Alea	Worker		Inhalation	Quantitative	Vapors may migrate from the subsurface into the air of an excavation trench.
_			Landside Investigation	Future Recreational Visitor	Older Child/Teen (7 to <19 years)	Incidental Ingestion Dermal Contact	Quantitative Quantitative	Site is fenced and access is closely controlled. No current potential exposure to recreational users. In the future, if Site use or security changes, it is possible that recreational receptors could contact on-site surface soil. Limited to the western portion of the Site next to Anacostia Avenue and the off-Site parcel of land owned
Future	Soil	Surface Soil	Landside Investigation Area			Inhalation	Quantitative Quantitative	by the National Park Service that is located between the Site and the river
				Future Industrial Worker	Adult	Incidental Ingestion Dermal Contact Inhalation	Quantitative Quantitative Quantitative	Pavement/clean soil cover limits current contact. If current Site configuration with respect to soil cover changes, an industrial worker may contact surface soil.

Scenario Timeframe: Future
Medium: Soil
Exposure Medium/Point: Soil

Exposure	Receptor	D	Exposure	Parameter	December Definition	11-14		RME		CTE	Charais Daily Intaly (CDI) Favorian
Route	Population	Receptor Age	Point	Code	Parameter Definition	Unit	Value	Rationale/ Reference	Value	Rationale/ Reference	Chronic Daily Intake (CDI) Equation
				CS	Concentration in soil	mg/kg			-		
				SIR	Ingestion Rate of soil	mg/day	100	USEPA, 2014	50	USEPA, 2011 (Table 5-1, central)	
				FI	Fraction Ingested	dimensionless	0.5	(a)	0.5	(a)	
				ABS	Absorption Factor	dimensionless					CDI (mg/kg-day) =
	Future	Older Child/Teen		EF	Exposure Frequency	days/year	39	one day/week for May, September, and October and 2 days/week for June through August	19	one day/ every other week for May, September, and October and 1 days/week for June through August	CS x SIR x FI x ABS x EF x ED x CF
	Recreational	(7 to <19	Surface Soil	ED	Exposure Duration	years	12	receptor age range	6	1/2 RME	BW x AT
	Visitor	(7 to <19 years)		CF	Conversion Factor	kg/mg	0.000001	1 kg = 1E6 mg	0.000001	1 kg = 1E6 mg	
		years)		BW	Body Weight	kg	53	Fryar et al. 2012	53	Fryar et al. 2012	
				AT-C	Averaging Time (Cancer)	days	25550	70 years times 365 days per year (USEPA, 2014)	25550	70 years times 365 days per year (USEPA, 2014)	
				AT-N	Averaging Time (Noncancer)	days	4380	ED (years) x 365 days/year (USEPA, 2014)	2190	ED (years) x 365 days/year (USEPA, 2014)	
				IF-C	Intake factor, cancer	(kg-sed)/(kg-bw/d)	1.73E-08	IF-C x CS x ABS = CDI-C	2.10E-09	IF-C x CS x ABS = CDI-C	
				IF-NC	Intake factor, noncancer	(kg-sed)/(kg-bw/d)	1.01E-07	IF-NC x CS x ABS = CDI-NC	2.46E-08	IF-NC x CS x ABS = CDI-NC	
				CS	Concentration in soil	mg/kg		==		-	
				SIR	Ingestion Rate of soil	mg/day	100	USEPA, 2014	50	USEPA, 2011 (Table 5-1, central)	
				FI	Fraction Ingested	dimensionless	1	Assumes 100%	1	Assumes 100%	
				ABS	Absorption Factor	dimensionless				-	CDI (mg/kg-day) =
				EF	Exposure Frequency	days/year	225	USEPA, 2014	219	USEPA, 2004, Exhibit 3-5	CS x SIR x FI x ABS x EF x ED x CF
Incidental Ingestion	Future Outdoor			ED	Exposure Duration	years	25	USEPA, 2014	6.6	USEPA, 2011 (Table 16-82, median tenure at same job, all workers)	BW x AT
	Industrial	Adult	Surface Soil	CF	Conversion Factor	kg/mg	0.000001	1 kg = 1E6 mg	0.000001	1 kg = 1E6 mg	
	Worker			BW	Body Weight	kg	80	USEPA, 2014	80	USEPA, 2014	
				AT-C	Averaging Time (Cancer)	days	25550	70 years times 365 days per year (USEPA, 2014)	25550	70 years times 365 days per year (USEPA, 2014)	
				AT-N	Averaging Time (Noncancer)	days	9125	ED (years) x 365 days/year (USEPA, 2014)	2409	ED (years) x 365 days/year (USEPA, 2014)	
				IF-C	Intake factor, cancer	(kg-sed)/(kg-bw/d)	2.75E-07	IF-C x CS x ABS = CDI-C	3.54E-08	IF-C x CS x ABS = CDI-C	
				IF-NC	Intake factor, noncancer	(kg-sed)/(kg-bw/d)	7.71E-07	IF-NC x CS x ABS = CDI-NC	3.75E-07	IF-NC x CS x ABS = CDI-NC	
				CS	Concentration in soil	mg/kg					
				SIR	Ingestion Rate of soil	mg/day	330	USEPA, 2002	330	USEPA, 2002	
				FI	Fraction Ingested	dimensionless	1	Assumes 100%	1	Assumes 100%	
				ABS	Absorption Factor	dimensionless				-	CDI (mg/kg-day) =
				EF	Exposure Frequency	days/year	40	5 days/week for 2 months	20	5 days/week for 1 month	CS x SIR x FI x ABS x EF x ED x CF
	Current/Future			ED	Exposure Duration	years	1	Assumed to occur over 1 year	1	Assumed to occur over 1 year	BW x AT
	Construction	Adult	Soil	CF	Conversion Factor	kg/mg	0.000001	1 kg = 1E6 mg	0.000001	1 kg = 1E6 mg	
	Worker	Adult	SUII	BW	Body Weight	kg	80	USEPA, 2014	80	USEPA, 2014	
	worker			AT-C	Averaging Time (Cancer)	days	25550	70 years times 365 days per year (USEPA, 2014)	25550	70 years times 365 days per year (USEPA, 2014)	
				AT-N	Averaging Time (Noncancer)	days	365	ED (years) x 365 days/year (USEPA, 2014)	365	ED (years) x 365 days/year (USEPA, 2014)	
				IF-C	Intake factor, cancer	(kg-sed)/(kg-bw/d)	6.46E-09	IF-C x CS x ABS = CDI-C	3.23E-09	IF-C x CS x ABS = CDI-C	
				IF-NC	Intake factor, noncancer	(kg-sed)/(kg-bw/d)	4.52E-07	IF-NC x CS x ABS = CDI-NC	2.26E-07	IF-NC x CS x ABS = CDI-NC	

Scenario Timeframe: Future
Medium: Soil
Exposure Medium/Point: Soil

Exposure	Receptor	Becomtor A	Exposure	Parameter	Parameter Definition	Unit		RME		CTE	Chronic Daily Intake (CDI) Equation
Route	Population	Receptor Age	Point	Code	Parameter Definition	Unit	Value	Rationale/ Reference	Value	Rationale/ Reference	Chronic Daily Intake (CDI) Equation
				CS	Concentration in soil	mg/kg				-	
				SA	Skin Surface Area Available for Contact	cm ² /day	3949.525	Head, hands, forearms, and lower legs. See Table 5-8 for calculation	3949.525	Head, hands, forearms, and lower legs. See Table 5-8 for calculation	
				FC	Fraction of Skin Contacted	dimensionless	1	full SA assumed/day	1	full SA assumed/day	
				AF	Adherence Factor	mg/cm ²	0.01	See Table 5-8 for calculation.	0.01	See Table 5-8 for calculation.	
				DAF	Dermal Absorption Factor	dimensionless					CDI (mg/kg-day) =
	Future Recreational Visitor	Older Child/Teen (7 to <19 years)	Surface Soil	EF	Exposure Frequency	days/year	39	one day/week for May, September, and October and 2 days/week for June through August	19	one day/ every other week for May, September, and October and 1 days/week for June through August	CS x FC x SA x AF x DAF x EF x ED x C
		years)		ED	Exposure Duration	years	12	receptor age range	6	1/2 RME	BW x AT
				CF	Conversion Factor	kg/mg	0.000001	1 kg = 1E6 mg	0.000001	1 kg = 1E6 mg	
				BW	Body Weight	kg	53	Fryar et al. 2012	53	Fryar et al. 2012	
				AT-C	Averaging Time (Cancer)	days	25550	70 years times 365 days per year (USEPA, 2014)	25550	70 years times 365 days per year (USEPA, 2014)	
				AT-N	Averaging Time (Noncancer)	days	4380	ED (years) x 365 days/year (USEPA, 2014)	2190	ED (years) x 365 days/year (USEPA, 2014)	
				IF-C	Intake factor, cancer	(kg-sed)/(kg-bw/d)	1.36E-08	IF-C x CS x ABS = CDI-C	3.32E-09	IF-C x CS x ABS = CDI-C	
				IF-NC	Intake factor, noncancer	(kg-sed)/(kg-bw/d)	7.96E-08	IF-NC x CS x ABS = CDI-NC	3.88E-08	IF-NC x CS x ABS = CDI-NC	
				CS	Concentration in soil	mg/kg				-	
				SA	Skin Surface Area Available for Contact	cm ² /day	3527	USEPA, 2014 Head, hands, forearms.	3527	USEPA, 2014 Head, hands, forearms.	
				FC	Fraction of Skin Contacted	dimensionless	1	full SA assumed/day	1	full SA assumed/day	
				AF	Adherence Factor	mg/cm ²	0.12	USEPA, 2014	0.12	USEPA, 2014	
Dermal				DAF	Dermal Absorption Factor	dimensionless					CDI (mg/kg-day) =
Contact				EF	Exposure Frequency	days/year	225	USEPA, 2014	219	USEPA, 2004, Exhibit 3-5	CS x FC x SA x AF x DAF x EF x ED x C
Contact	Future Outdoor Industrial Worker	Adult	Surface Soil	ED	Exposure Duration	years	25	USEPA, 2014	6.6	USEPA, 2011 (Table 16-82, median tenure at same job, all workers)	BW x AT
	vvorker			CF	Conversion Factor	kg/mg	0.000001	1 kg = 1E6 mg	0.000001	1 kg = 1E6 mg	
				BW	Body Weight	kg	80	USEPA, 2014	80	USEPA, 2014	
				AT-C	Averaging Time (Cancer)	days	25550	70 years times 365 days per year (USEPA, 2014)	25550	70 years times 365 days per year (USEPA, 2014)	
				AT-N	Averaging Time (Noncancer)	days	9125	ED (years) x 365 days/year (USEPA, 2014)	2409	ED (years) x 365 days/year (USEPA, 2014)	
				IF-C	Intake factor, cancer	(kg-sed)/(kg-bw/d)	1.16E-06	IF-C x CS x ABS = CDI-C	2.99E-07	IF-C x CS x ABS = CDI-C	
				IF-NC	Intake factor, noncancer	(kg-sed)/(kg-bw/d)	3.26E-06	IF-NC x CS x ABS = CDI-NC	3.17E-06	IF-NC x CS x ABS = CDI-NC	
				CS	Concentration in soil	mg/kg				-	
				SA	Skin Surface Area Available for Contact	cm²/day	3527	USEPA, 2014 Head, hands, forearms.	3527	USEPA, 2014 Head, hands, forearms.	
				FC	Fraction of Skin Contacted	dimensionless	1	full SA assumed/day	1	full SA assumed/day	
				AF	Adherence Factor	ma/cm ²	0.3	USEPA, 2002	0.3	USEPA, 2002	
				DAF	Dermal Absorption Factor	dimensionless					CDI (mg/kg-day) =
	Current/Future			EF	Exposure Frequency	days/year	40	5 days/week for 2 months	20	5 days/week for 1 month	CS x FC x SA x AF x DAF x EF x ED x C
	Construction	Adult	Soil	ED	Exposure Duration	years	1	Assumed to occur over 1 year	1	Assumed to occur over 1 year	BW x AT
	Worker		1	CF	Conversion Factor	kg/mg	0.000001	1 kg = 1E6 mg	0.000001	1 kg = 1E6 mg	
			1	BW	Body Weight	kg	80	USEPA, 2014	80	USEPA, 2014	
				AT-C	Averaging Time (Cancer)	days	25550	70 years times 365 days per year (USEPA, 2014)	25550	70 years times 365 days per year (USEPA, 2014)	
				AT-N	Averaging Time (Noncancer)	days	365	ED (years) x 365 days/year (USEPA, 2014)	365	ED (years) x 365 days/year (USEPA, 2014)	
			1	IF-C	Intake factor, cancer	(kg-sed)/(kg-bw/d)	2.07E-08	IF-C x CS x ABS = CDI-C	1.04E-08	IF-C x CS x ABS = CDI-C	
	1	1		IF-NC	Intake factor, noncancer	(kg-sed)/(kg-bw/d)	1.45E-06	IF-NC x CS x ABS = CDI-NC	7.25E-07	IF-NC x CS x ABS = CDI-NC	

Scenario Timeframe: Future Medium: Soil Exposure Medium/Point: Soil

Exposure	Receptor		Exposure	Parameter	2 . 25.00			RME		CTE	0
Route	Population	Receptor Age	Point	Code	Parameter Definition	Unit	Value	Rationale/ Reference	Value	Rationale/ Reference	Chronic Daily Intake (CDI) Equation
				CS	Chemical Concentration in Soil	mg/kg					
				CA	Chemical Concentration in Air	mg/m ³					Exposure Concentration (EC) (mg/m³) =
				ET	Exposure Time	hrs/day	2	Assumes visit is short in duration	1	1/2 RME	CA x (ET) x EF x ED x 1/AT
	Future	Older		EF	Exposure Frequency	days/year	39	one day/week for May, September, and October and 2 days/week for June through August	19	one day/ every other week for May, September, and October and 1 days/week for June through August	where:
	Recreational	Child/Teen	Outdoor Air	ED	Exposure Duration	years	12	receptor age range	6	1/2 RME	CA = CS / (VF or PEF)
	Visitor	(7 to <19 years)		VF	Volatilization Factor	m³/kg					
		years)		PEF	Particulate Emission Factor	m³/kg				-	
				AT-C	Averaging Time (Cancer)	hrs	613200	70-year lifetime x 365 days/year x 24 hrs/day	613200	70-year lifetime x 365 days/year x 24 hrs/day	
				AT-N	Averaging Time (Noncancer)	hrs	105120	ED (year) x 365 days/year x 24 hrs/day	52560	ED (year) x 365 days/year x 24 hrs/day	
				IF-C	Intake factor, cancer		1.53E-03	IF-C x CA = CDI-C	1.86E-04	IF-C x CA = CDI-C	
				IF-NC	Intake factor, noncancer		8.90E-03	IF-NC x CA = CDI-NC	2.17E-03	IF-NC x CA = CDI-NC	
				CS	Chemical Concentration in Soil	mg/kg					
				CA	Chemical Concentration in Air	mg/m ³					Exposure Concentration (EC) (mg/m³) =
				ET	Exposure Time	hrs/day	8	USEPA, 2014	8	USEPA, 2014	CA x (ET) x EF x ED x 1/AT
				EF	Exposure Frequency	days/year	225	USEPA, 2014	219	USEPA, 2004, Exhibit 3-5	where:
Inhalation	Future Outdoor			ED	Exposure Duration	years	25	USEPA, 2014	6.6	USEPA, 2011 (Table 16-82, median tenure at same job, all workers)	CA = CS / (VF or PEF)
	Industrial	Adult	Outdoor Air	VF	Volatilization Factor	m ³ /kg				-	
	Worker			PEF	Particulate Emission Factor	m ³ /kg					
				AT-C	Averaging Time (Cancer)	hrs	613200	70-year lifetime x 365 days/year x 24 hrs/day	613200	70-year lifetime x 365 days/year x 24 hrs/day	
				AT-N	Averaging Time (Noncancer)	hrs	219000	ED (year) x 365 days/year x 24 hrs/day	57816	ED (year) x 365 days/year x 24 hrs/day	
				IF-C	Intake factor, cancer		7.34E-02	IF-C x CA = CDI-C	1.89E-02	IF-C x CA = CDI-C	
				IF-NC	Intake factor, noncancer		2.05E-01	IF-NC x CA = CDI-NC	2.00E-01	IF-NC x CA = CDI-NC	
				CS	Chemical Concentration in Soil	mg/kg					
				CA	Chemical Concentration in Air	mg/m ³				-	Exposure Concentration (EC) (mg/m³) =
				ET	Exposure Time	hrs/day	8	USEPA, 2014	8	USEPA, 2014	CA x (ET) x EF x ED x 1/AT
				EF	Exposure Frequency	days/year	40	5 days/week for 2 months	20	5 days/week for 1 month	where:
				ED	Exposure Duration	years	1	Assumed to occur over 1 year	1	Assumed to occur over 1 year	CA = CS / (VF or PEF)
	Current/Future			VF	Volatilization Factor	m³/kg				-	
	Construction	Adult	Outdoor Air	PEF	Particulate Emission Factor	m³/kg					
	Worker			AT-C	Averaging Time (Cancer)	hrs	613200	70-year lifetime x 365 days/year x 24 hrs/day	613200	70-year lifetime x 365 days/year x 24 hrs/day	
				AT-N	Averaging Time (Noncancer)	hrs	8760	ED (year) x 365 days/year x 24 hrs/day	8760	ED (year) x 365 days/year x 24 hrs/day	
				IF-C	Intake factor, cancer		5.22E-04	IF-C x CA = CDI-C	2.61E-04	IF-C x CA = CDI-C	
				IF-NC	Intake factor, noncancer		3.65E-02	IF-NC x CA = CDI-NC	1.83E-02	IF-NC x CA = CDI-NC	

RME = Reasonable Maximum Exposure; CTE = Central Tendency Exposure

⁽a) On days when the receptor is assumed to have direct contact with Site soil, one-half of the receptor's total daily ingestion exposure to outdoor soil is assumed to come from the Site and the other half while away from the Site (i.e., at home, work, school).

Fryar, C.D., Q. Gu, and C.L. Ogden. 2012. Anthropometric reference data for children and adults: United States, 2007-2010. National Center for Health Statistics. Vital Health Stat 11(252). USEPA, 2002d. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24. December.

USEPA, 2004. Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual, Part E, Supplemental Guidance for Dermal Risk Assessment Final. EPA/540/R/99/005.

USEPA, 2011. Exposure Factors Handbook: 2011 Edition. EPA/600/R-09/052F. Office of Research and Development, Washington, DC. September.

USEPA, 2014. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors. OSWER Directive 9200.1-120. Assessment and Remediation Division, Office of Superfund Remediation and Technology Innovation, US Environmental Protection Agency, Washington, DC. February 6, 2014, with corrections through September 2015.

Table 5-3 Values Used for Daily Intake Calculations - Groundwater Volatilization to Air Pathway Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future
Medium: Groundwater
Exposure Medium/Point: Excavation Trench Air

Exposure	Receptor	Receptor Age	Exposure	Parameter	Parameter Definition	Unit		RME		СТЕ	Chronic Daily Intake (CDI) Equation						
Route	Population	Receptor Age	Point	Code	Parameter Definition	Onit	Value	Rationale/ Reference	Value	Rationale/ Reference	Chronic Daily Intake (CDI) Equation						
				cs	Volatile Chemical Concentration in Groundwater	mg/kg	-			-							
				CA	Chemical Concentration in Air	mg/m³					Exposure Concentration (EC) (mg/m3) =						
				ET	Exposure Time	hrs/day	2	Time in trench expected to be limited	2	Time in trench expected to be limited	CA x ET x EF x ED x 1/AT						
				EF	Exposure Frequency	days/year	40	5 days/week for 2 months	20	5 days/week for 1 month	where:						
Inhalation	Current/Future Construction	Adult	Excavation	ED	Exposure Duration	years	1	Assumed to occur over 1 year	1	Assumed to occur over 1 year	CA = CS / (VF)						
IIIIalallon	Worker	Addit	Trench Air	VF	Volatilization Factor	m³/kg		-									
	Worker			AT-C	Averaging Time (Cancer)	hrs	613,200	70-year lifetime x 365 days/year x 24 hrs/day	613,200	70-year lifetime x 365 days/year x 24 hrs/day							
				AT-N	Averaging Time (Noncancer)	hrs	8,760	ED (year) x 365 days/year x 24 hrs/day	8,760	ED (year) x 365 days/year x 24 hrs/day							
				IF-C	Intake factor, cancer		1.30E-04	IF-C x CA = CDI-C	6.52E-05	IF-C x CA = CDI-C							
				IF-NC	Intake factor, noncancer		9.13E-03	IF-NC x CA = CDI-NC	4.57E-03	IF-NC x CA = CDI-NC							
				CS	Volatile Chemical Concentration in Groundwater	mg/kg	-										
				CA	Chemical Concentration in Air	mg/m ³					Exposure Concentration (EC) (mg/m³) =						
				ET	Exposure Time	hrs/day	8	USEPA, 2014			CA x ET x EF x ED x 1/AT						
				EF	Exposure Frequency	days/year	250	USEPA, 2015									
	Future Indoor		Excavation	ED	Exposure Duration	years	25	USEPA, 2016									
Inhalation	Industrial Worker	Adult	Trench Air	AT-C	Averaging Time (Cancer)	hrs	613,200	70-year lifetime x 365 days/year x 24 hrs/day	ar x Not included in sceening level evaluation.								
										AT-N	Averaging Time (Noncancer)	hrs	8,760	ED (year) x 365 days/year x 24 hrs/day			
				IF-C	Intake factor, cancer		8.15E-02	IF-C x CA = CDI-C									
				IF-NC	Intake factor, noncancer		5.71E+00	IF-NC x CA = CDI-NC									

Sources:

USEPA, 2014. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors. OSWER Directive 9200.1-120. Assessment and Remediation Division, Office of Superfund Remediation and Technology Innovation, US Environmental Protection Agency, Washington, DC. February 6, 2014, with corrections through September 2015.

	Receptor	D	Parameter	Barrer Deffection	11-2		RME		CTE	Observed - Della Intella (ODI) Ferredian
Route	Population	Receptor Age	Code	Parameter Definition	Unit	Value	Rationale/ Reference	Value	Rationale/ Reference	Chronic Daily Intake (CDI) Equation
			CS	Concentration in Fringe Surface Sediment	mg/kg		-			
			SIR	Ingestion Rate of Sediment	mg/day	200	USEPA, 2014	100	USEPA, 2011 (Table 5-1, central)	
			FI	Fraction Ingested	dimensionless	0.5	(a)	0.5	(a)	
			ABS	Absorption Factor	dimensionless					CDI (mg/kg-day) =
			EF	Exposure Frequency	days/year	26	6 months (26 weeks)/year, 1	13	6 months (26 weeks)/year, 1 day every other week	CS x SIR x FI x ABS x EF x ED x CF
		vouna abild	ED	Exposure Duration	years	6	dav/week USEPA, 2014. 26 years total (20 adult/6 child)	2	every other week USEPA, 2011 (Table ES-1). Average 12 vrs (10 adult/2 child)	BW x AT
		young child	CF	Conversion Factor	kg/mg	0.000001	1 kg = 1E6 mg	0.000001	1 kg = 1E6 mg	
			BW	Body Weight	kg	17	Fryar et al. 2012	17	Fryar et al. 2012	
			AT-C	Averaging Time (Cancer)	days	25550	70 years times 365 days per year (USEPA, 2014)	25550	70 years times 365 days per year (USEPA, 2014)	
			AT-N	Averaging Time (Noncancer)	days	2190	(USEPA, 2014) ED (years) x 365 days/year (USEPA, 2014)	730	ED (years) x 365 days/year (USEPA, 2014)	
			IF-C	Intake factor, cancer	(kg-sed)/(kg-bw/d)	3.59E-08	IF-C x CS x ABS = CDI-C	2.99E-09	IF-C x CS x ABS = CDI-C	
			IF-NC	Intake factor, noncancer	(kg-sed)/(kg-bw/d)	4.19E-07	IF-NC x CS x ABS = CDI-NC	1.05E-07	IF-NC x CS x ABS = CDI-NC	
			CS	Concentration in Fringe Surface Sediment	mg/kg					
			SIR	Ingestion Rate of Fringe Surface Sediment	mg/day	100	USEPA, 2014	50	USEPA, 2011 (Table 5-1, central)	
			FI	Fraction Ingested	dimensionless	0.5	(a)	0.5	(a)	
			ABS	Absorption Factor	dimensionless					CDI (mg/kg-day) =
			EF	Exposure Frequency	days/year	26	6 months (26 weeks)/year, 1 day/week	13	6 months (26 weeks)/year, 1 day every other week	CS x SIR x FI x ABS x EF x ED x CF
Incidental Ingestion	Recreational	Older Child/Toon	ED	Exposure Duration	years	12	receptor age range	6	1/2 RME	BW x AT
ingestion	Angler	Child/Teen (7 to <19	CF	Conversion Factor	kg/mg	0.000001	1 kg = 1E6 mg	0.000001	1 kg = 1E6 mg	
		years)	BW	Body Weight	kg	53	Frvar et al. 2012	53	Fryar et al. 2012	
		youloy	AT-C	Averaging Time (Cancer)	days	25550	70 years times 365 days per year (USEPA, 2014)	25550	70 years times 365 days per year (USEPA, 2014)	
			AT-N	Averaging Time (Noncancer)	days	4380	ED (years) x 365 days/year (USEPA, 2014)	2190	ED (years) x 365 days/year (USEPA, 2014)	
			IF-C	Intake factor, cancer	(kg-sed)/(kg-bw/d)	1.15E-08	IF-C x CS x ABS = CDI-C	1.44E-09	IF-C x CS x ABS = CDI-C	
			IF-NC	Intake factor, noncancer	(kg-sed)/(kg-bw/d)	6.72E-08	IF-NC x CS x ABS = CDI-NC	1.68E-08	IF-NC x CS x ABS = CDI-NC	
			CS	Concentration in Fringe Surface Sediment	mg/kg					
			SIR	Ingestion Rate of Sediment	mg/day	100	USEPA, 2014	50	USEPA, 2011 (Table 5-1, central)	
			FI	Fraction Ingested	dimensionless	0.5	(a)	0.5	(a)	
			ABS	Absorption Factor	dimensionless					CDI (mg/kg-day) =
			EF	Exposure Frequency	days/year	26	6 months (26 weeks)/year, 1 day/week	13	6 months (26 weeks)/year, 1 day every other week	CS x SIR x FI x ABS x EF x ED x CF
			ED	Exposure Duration	years	20	USEPA, 2014. 26 years total (20 adult/6 child)	10	USEPA, 2011 (Table ES-1). Average 12 yrs (10 adult/2 child)	BW x AT
		Adult	CF	Conversion Factor	kg/mg	0.000001	1 kg = 1E6 mg	0.000001	1 kg = 1E6 mg	
			BW	Body Weight	kg	80	USEPA, 2014	80	USEPA, 2014	
			AT-C	Averaging Time (Cancer)	days	25550	70 years times 365 days per year (USEPA, 2014)	25550	70 years times 365 days per year (USEPA, 2014)	
			AT-N	Averaging Time (Noncancer)	days	7300	ED (years) x 365 days/year (USEPA, 2014)	3650	ED (years) x 365 days/year (USEPA, 2014)	
			IF-C	Intake factor, cancer	(kg-sed)/(kg-bw/d)	1.27E-08	IF-C x CS x ABS = CDI-C	1.59E-09	IF-C x CS x ABS = CDI-C	
			IF-NC	Intake factor, cancer	(kg-sed)/(kg-bw/d)	4.45E-08	IF-NC x CS x ABS = CDI-NC	1.11E-08	IF-NC x CS x ABS = CDI-NC	

Exposure	Receptor	B	Parameter	Parameter Definition	H-h		RME		СТЕ	Observis Della Justila (ODI) Ferration
Route	Population	Receptor Age	Code	Parameter Definition	Unit	Value	Rationale/ Reference	Value	Rationale/ Reference	Chronic Daily Intake (CDI) Equation
			CS	Concentration in Fringe Surface Sediment	mg/kg					
			SIR	Ingestion Rate of Fringe Surface Sediment	mg/day	200	USEPA, 2014	100	USEPA, 2011 (Table 5-1, central)	
			FI	Fraction Ingested	dimensionless	0.5	(a)	0.5	(a)	
			ABS	Absorption Factor	dimensionless		-			CDI (mg/kg-day) =
			EF	Exposure Frequency	days/year	13	3 months (13 weeks)/year, 1 day/week	6	3 months (13 weeks)/year, 1 day every other week	CS x SIR x FI x ABS x EF x ED x CF
		Young Child	ED	Exposure Duration	years	6	USEPA, 2014. 26 years total (20 adult/6 child)	2	USEPA, 2011 (Table ES-1). Average 12 yrs (10 adult/2 child)	BW x AT
		(1 to <7 year)	CF	Conversion Factor	kg/mg	0.000001	1 kg = 1E6 mg	0.000001	1 kg = 1E6 mg	
			BW	Body Weight	kg	17	Fryar et al. 2012	17	Fryar et al. 2012	
			AT-C	Averaging Time (Cancer)	days	25550	70 years times 365 days per year (USEPA, 2014)	25550	70 years times 365 days per year (USEPA, 2014)	
			AT-N	Averaging Time (Noncancer)	days	2190	ED (years) x 365 days/year (USEPA, 2014)	730	ED (years) x 365 days/year (USEPA, 2014)	
			IF-C	Intake factor, cancer	(kg-sed)/(kg-bw/d)	1.80E-08	IF-C x CS x ABS = CDI-C	1.50E-09	IF-C x CS x ABS = CDI-C	
			IF-NC	Intake factor, noncancer	(kg-sed)/(kg-bw/d)	2.10E-07	IF-NC x CS x ABS = CDI-NC	5.23E-08	IF-NC x CS x ABS = CDI-NC	
			CS	Concentration in Fringe Surface Sediment	mg/kg		-			
			SIR	Ingestion Rate of Sediment	mg/day	100	USEPA, 2014	50	USEPA, 2011 (Table 5-1, central)	
			FI	Fraction Ingested	dimensionless	0.5	(a)	0.5	(a)	
			ABS	Absorption Factor	dimensionless					CDI (mg/kg-day) =
	Swimmer		EF	Exposure Frequency	days/year	26	3 months (13 weeks)/year, 2 days/week	13	3 months (13 weeks)/year, 1 day/week	CS x SIR x FI x ABS x EF x ED x CF
Incidental		Older	ED	Exposure Duration	years	12	receptor age range	6	1/2 RME	BW x AT
Ingestion		Child/Teen	CF	Conversion Factor	kg/mg	0.000001	1 kg = 1E6 mg	0.000001	1 kg = 1E6 mg	
continued		(7 to <19 years)	BW	Body Weight	kg	53	Fryar et al. 2012	53	Fryar et al. 2012	
		years)	AT-C	Averaging Time (Cancer)	days	25550	70 years times 365 days per year (USEPA, 2014)	25550	70 years times 365 days per year (USEPA, 2014)	
			AT-N	Averaging Time (Noncancer)	days	4380	ED (years) x 365 days/year (USEPA, 2014)	2190	ED (years) x 365 days/year (USEPA, 2014)	
			IF-C	Intake factor, cancer	(kg-sed)/(kg-bw/d)	1.15E-08	IF-C x CS x ABS = CDI-C	1.44E-09	IF-C x CS x ABS = CDI-C	
			IF-NC	Intake factor, noncancer	(kg-sed)/(kg-bw/d)	6.72E-08	IF-NC x CS x ABS = CDI-NC	1.68E-08	IF-NC x CS x ABS = CDI-NC	
			CS	Concentration in Fringe Surface Sediment	mg/kg					
			SIR	Ingestion Rate of Fringe Surface Sediment	mg/day	100	USEPA, 2014	50	USEPA, 2011 (Table 5-1, central)	
			FI	Fraction Ingested	dimensionless	0.5	(a)	0.5	(a)	
			ABS	Absorption Factor	dimensionless					CDI (mg/kg-day) =
			EF	Exposure Frequency	days/year	13	3 months (13 weeks)/year, 1 day/week	6	3 months (13 weeks)/year, 1 day every other week	CS x SIR x FI x ABS x EF x ED x CF
			ED	Exposure Duration	years	20	USEPA, 2014. 26 years total (20 adult/6 child)	10	USEPA, 2011 (Table ES-1). Average 12 yrs (10 adult/2 child)	BW x AT
		Adult	CF	Conversion Factor	kg/mg	0.000001	1 kg = 1E6 mg	0.000001	1 kg = 1E6 mg	
			BW	Body Weight	kg	80	USEPA, 2014	80	USEPA, 2014	
			AT-C	Averaging Time (Cancer)	days	25550	70 years times 365 days per year (USEPA, 2014)	25550	70 years times 365 days per year (USEPA, 2014)	
			AT-N	Averaging Time (Noncancer)	days	7300	ED (years) x 365 days/year (USEPA, 2014)	3650	ED (years) x 365 days/year (USEPA, 2014)	
			IF-C	Intake factor, cancer	(kg-sed)/(kg-bw/d)	6.36E-09	IF-C x CS x ABS = CDI-C	7.94E-10	IF-C x CS x ABS = CDI-C	
L			IF-NC	Intake factor, noncancer	(kg-sed)/(kg-bw/d)	2.23E-08	IF-NC x CS x ABS = CDI-NC	5.56E-09	IF-NC x CS x ABS = CDI-NC	

Exposure	Receptor		Parameter				RME		СТЕ	
Route	Population	Receptor Age	Code	Parameter Definition	Unit	Value	Rationale/ Reference	Value	Rationale/ Reference	Chronic Daily Intake (CDI) Equation
			CS	Concentration in Fringe Surface Sediment	mg/kg					
			SIR	Ingestion Rate of Fringe Surface Sediment	mg/day	200	USEPA, 2014	100	USEPA, 2011 (Table 5-1, central)	
			FI	Fraction Ingested	dimensionless	0.5	(a)	0.5	(a)	
			ABS	Absorption Factor	dimensionless					CDI (mg/kg-day) =
			EF	Exposure Frequency	days/year	35	5 months (22 weeks)/year, 2 day/week during 3 summer months, 1 day/week in May & Sept	17	5 months (22 weeks)/year, 1 day/week during 3 summer months, 1 day every other week in May & Sept	CS x SIR x FI x ABS x EF x ED x CF
		Young Child (1 to <7 years)	ED	Exposure Duration	years	6	USEPA, 2014. 26 years total (20 adult/6 child)	2	USEPA, 2011 (Table ES-1). Average 12 yrs (10 adult/2 child)	BW x AT
			CF	Conversion Factor	kg/mg	0.000001	1 kg = 1E6 mg	0.000001	1 kg = 1E6 mg	
			BW	Body Weight	kg	17	Fryar et al. 2012	17	Fryar et al. 2012	
			AT-C	Averaging Time (Cancer)	days	25550	70 years times 365 days per year (USEPA, 2014)	25550	70 years times 365 days per year (USEPA, 2014)	
			AT-N	Averaging Time (Noncancer)	days	2190	ED (years) x 365 days/year (USEPA, 2014)	730	ED (years) x 365 days/year (USEPA, 2014)	
]	IF-C	Intake factor, cancer	(kg-sed)/(kg-bw/d)	4.83E-08	IF-C x CS x ABS = CDI-C	3.98E-09	IF-C x CS x ABS = CDI-C	
			IF-NC	Intake factor, noncancer	(kg-sed)/(kg-bw/d)	5.64E-07	IF-NC x CS x ABS = CDI-NC	1.39E-07	IF-NC x CS x ABS = CDI-NC	
			CS	Concentration in Fringe Surface Sediment	mg/kg		-			
			SIR	Ingestion Rate of Sediment	mg/day	100	USEPA, 2014	50	USEPA, 2011 (Table 5-1, central)	
			FI	Fraction Ingested	dimensionless	0.5	(a)	0.5	(a)	
			ABS	Absorption Factor	dimensionless					CDI (mg/kg-day) =
		Older	EF	Exposure Frequency	days/year	43	5 months (22 weeks)/year, 2 days/week	22	5 months (22 weeks)/year, 1 day/week	CS x SIR x FI x ABS x EF x ED x CF
Incidental		Child/Teen	ED	Exposure Duration	years	12	receptor age range	6	1/2 RME	BW x AT
Ingestion	Wader	(7 to <19	CF	Conversion Factor	kg/mg	0.000001	1 kg = 1E6 mg	0.000001	1 kg = 1E6 mg	
continued		years)	BW	Body Weight	kg	53	Fryar et al. 2012	53	Fryar et al. 2012	
		, ,	AT-C	Averaging Time (Cancer)	days	25550	70 years times 365 days per year (USEPA, 2014)	25550	70 years times 365 days per year (USEPA, 2014)	
			AT-N	Averaging Time (Noncancer)	days	4380	ED (years) x 365 days/year (USEPA, 2014)	2190	ED (years) x 365 days/year (USEPA, 2014)	
			IF-C	Intake factor, cancer	(kg-sed)/(kg-bw/d)	1.91E-08	IF-C x CS x ABS = CDI-C	2.44E-09	IF-C x CS x ABS = CDI-C	
			IF-NC	Intake factor, noncancer	(kg-sed)/(kg-bw/d)	1.11E-07	IF-NC x CS x ABS = CDI-NC	2.84E-08	IF-NC x CS x ABS = CDI-NC	
			CS	Concentration in Fringe Surface Sediment	mg/kg					
			SIR	Ingestion Rate of Fringe Surface Sediment	mg/day	100	USEPA, 2014	50	USEPA, 2011 (Table 5-1, central)	
]	FI	Fraction Ingested	dimensionless	0.5	(a)	0.5	(a)	ODI (
]	ABS	Absorption Factor	dimensionless					CDI (mg/kg-day) =
			EF	Exposure Frequency	days/year	35	5 months (22 weeks)/year, 2 day/week during 3 summer months, 1 day/week in May & Sept	17	5 months (22 weeks)/year, 1 day/week during 3 summer months, 1 day every other week in May & Sept	CS x SIR x FI x ABS x EF x ED x CF
		Adult	ED	Exposure Duration	years	20	USEPA, 2014. 26 years total (20 adult/6 child)	10	USEPA, 2011 (Table ES-1). Average 12 yrs (10 adult/2 child)	BW x AT
			CF	Conversion Factor	kg/mg	0.000001	1 kg = 1E6 mg	0.000001	1 kg = 1E6 mg	
		1	BW	Body Weight	kg	80	USEPA, 2014	80	USEPA, 2014	
			AT-C	Averaging Time (Cancer)	days	25550	70 years times 365 days per year (USEPA, 2014)	25550	70 years times 365 days per year (USEPA, 2014)	
			AT-N	Averaging Time (Noncancer)	days	7300	ED (years) x 365 days/year (USEPA, 2014)	3650	ED (years) x 365 days/year (USEPA, 2014)	
			IF-C	Intake factor, cancer	(kg-sed)/(kg-bw/d)	1.71E-08	IF-C x CS x ABS = CDI-C	2.11E-09	IF-C x CS x ABS = CDI-C	
		<u> </u>	IF-NC	Intake factor, noncancer	(kg-sed)/(kg-bw/d)	5.99E-08	IF-NC x CS x ABS = CDI-NC	1.48E-08	IF-NC x CS x ABS = CDI-NC	

Exposure	Receptor	D	Parameter	Parameter Definition	Heli		RME		CTE	Observice Delity Intellige (ODI) Ferrestica
Route	Population	Receptor Age	Code	Parameter Definition	Unit	Value	Rationale/ Reference	Value	Rationale/ Reference	Chronic Daily Intake (CDI) Equation
			CS	Concentration in Fringe Surface Sediment	mg/kg					
			SIR	Ingestion Rate of Fringe Surface Sediment	mg/day	100	USEPA, 2014	50	USEPA, 2011 (Table 5-1, central)	
			FI	Fraction Ingested	dimensionless	1		11		
			ABS	Absorption Factor	dimensionless		-			CDI (mg/kg-day) =
			EF	Exposure Frequency	days/year	50	50 weeks/year, 1 day/week	25	50 weeks/year, 1 day every other week	CS x SIR x FI x ABS x EF x ED x CF
Incidental Ingestion	Shoreline Worker	Adult	ED	Exposure Duration	years	25	USEPA, 2014	6.6	USEPA, 2011 (Table 16-82, median tenure at same job, all workers)	BW x AT
continued	· · · · · · · · · · · · · · · · · · ·		CF	Conversion Factor	kg/mg	0.000001	1 kg = 1E6 mg	0.000001	1 kg = 1E6 mg	
			BW	Body Weight	kg	80	USEPA, 2014	80	USEPA, 2014	
			AT-C	Averaging Time (Cancer)	days	25550	70 years times 365 days per year (USEPA, 2014)	25550	70 years times 365 days per year (USEPA, 2014)	
			AT-N	Averaging Time (Noncancer)	days	9125	ED (years) x 365 days/year (USEPA, 2014)	2409	ED (years) x 365 days/year (USEPA, 2014)	
			IF-C	Intake factor, cancer	(kg-sed)/(kg-bw/d)	6.12E-08	IF-C x CS x ABS = CDI-C	4.04E-09	IF-C x CS x ABS = CDI-C	
			IF-NC	Intake factor, noncancer	(kg-sed)/(kg-bw/d)	1.71E-07	IF-NC x CS x ABS = CDI-NC	4.28E-08	IF-NC x CS x ABS = CDI-NC	
			CS SA	Concentration in Fringe Surface Sediment Skin Surface Area Available for Contact	mg/kg cm²/day	3527	See Table 5-10. Head, hands, forearms.	3527	See Table 5-10. Head, hands, forearms.	
			FC	Fraction of Skin Contacted	dimensionless	1	full SA assumed/day	1	full SA assumed/day	
			AF	Adherence Factor	mg/cm ²	0.3	See Table 5-10.	0.3	See Table 5-10.	
			DAF	Dermal Absorption Factor	dimensionless					CDI (mg/kg-day) =
			EF	Exposure Frequency	days/year	50	50 weeks/year, 1 day/week	25	50 weeks/year, 1 day every other week	CS x FC x SA x AF x DAF x EF x ED x CF
Dermal Contact	Shoreline Worker	Adult	ED	Exposure Duration	years	25	USEPA, 2014	6.6	USEPA, 2011 (Table 16-82, median tenure at same job, all workers)	BW x AT
			CF	Conversion Factor	kg/mg	0.000001	1 kg = 1E6 mg	0.000001	1 kg = 1E6 mg	
			BW	Body Weight	kg	80	USEPA, 2014	80	USEPA, 2014	
			AT-C	Averaging Time (Cancer)	days	25550	70 years times 365 days per year (USEPA, 2014)	25550	70 years times 365 days per year (USEPA, 2014)	
			AT-N	Averaging Time (Noncancer)	days	9125	ED (years) x 365 days/year (USEPA, 2014)	2409	ED (years) x 365 days/year (USEPA, 2014)	
			IF-C	Intake factor, cancer	(kg-sed)/(kg-bw/d)	6.47E-07	IF-C x CS x ABS = CDI-C	8.54E-08	IF-C x CS x ABS = CDI-C	
			IF-NC	Intake factor, noncancer	(kg-sed)/(kg-bw/d)	1.81E-06	IF-NC x CS x ABS = CDI-NC	9.06E-07	IF-NC x CS x ABS = CDI-NC	
			CS	Concentration in Fringe Surface Sediment	mg/kg					
			SA	Skin Surface Area Available for Contact	cm²/day	2057	See Table 5-12. Hands, forearms, lower legs, feet	2057	See Table 5-12. Hands, forearms, lower legs, feet	
			FC	Fraction of Skin Contacted	dimensionless	1	full SA assumed/day	1	full SA assumed/day	
			AF	Adherence Factor	mg/cm ²	0.28	See Table 5-12. Hands, forearms, lower legs, feet	0.28	See Table 5-12. Hands, forearms, lower legs, feet	
			DAF	Dermal Absorption Factor	dimensionless					CDI (mg/kg-day) =
		Young child	EF	Exposure Frequency	days/year	26	6 months (26 weeks)/year, 1 day/week	13	6 months (26 weeks)/year, 1 day every other week	CS x FC x SA x AF x DAF x EF x ED x CF
			ED	Exposure Duration	years	6	USEPA, 2014. 26 years total (20 adult/6 child)	2	USEPA, 2011 (Table ES-1). Average 12 yrs (10 adult/2 child)	BW x AT
			CF	Conversion Factor	kg/mg	0.000001	1 kg = 1E6 mg	0.000001	1 kg = 1E6 mg	
			BW	Body Weight	kg	17	Fryar et al. 2012	17	Fryar et al. 2012	
			AT-C	Averaging Time (Cancer)	days	25550	70 years times 365 days per year (USEPA, 2014)	25550	70 years times 365 days per year (USEPA, 2014)	
			AT-N	Averaging Time (Noncancer)	days	2190	ED (years) x 365 days/year (USEPA, 2014)	730	ED (years) x 365 days/year (USEPA, 2014)	
			IF-C	Intake factor, cancer	(kg-sed)/(kg-bw/d)	2.07E-07	IF-C x CS x ABS = CDI-C	3.45E-08	IF-C x CS x ABS = CDI-C	
		l	IF-NC	Intake factor, noncancer	(kg-sed)/(kg-bw/d)	2.41E-06	IF-NC x CS x ABS = CDI-NC	1.21E-06	IF-NC x CS x ABS = CDI-NC	

Exposure	Receptor	Receptor Age	Parameter	Parameter Definition	Unit		RME		СТЕ	Chronic Daily Intake (CDI) Equation
Route	Population	Receptor Age	Code	Parameter Definition	Unit	Value	Rationale/ Reference	Value	Rationale/ Reference	Chronic Daily Intake (CDI) Equation
			CS	Concentration in Fringe Surface Sediment	mg/kg		-			
			SA	Skin Surface Area Available for Contact	cm²/day	2710	See Table 5-11. Lower legs and feet	2710	See Table 5-11. Lower legs and feet	
			FC	Fraction of Skin Contacted	dimensionless	1	full SA assumed/day	1	full SA assumed/day	
			AF	Adherence Factor	mg/cm ²	0.25	See Table 5-11. Lower legs and feet	0.25	See Table 5-11. Lower legs and feet	
Dermal			DAF	Dermal Absorption Factor	dimensionless					CDI (mg/kg-day) =
Contact	Angler	Older Child/Teen	EF	Exposure Frequency	days/year	26	6 months (26 weeks)/year, 1 day/week	13	6 months (26 weeks)/year, 1 day every other week	CS x FC x SA x AF x DAF x EF x ED x CF
		(7 to <19	ED	Exposure Duration	years	12	receptor age range	6	1/2 RME	BW x AT
		years)	CF	Conversion Factor	kg/mg	0.000001	1 kg = 1E6 mg	0.000001	1 kg = 1E6 mg	
			BW	Body Weight	kg	53	Fryar et al. 2012	53	Fryar et al. 2012	
			AT-C	Averaging Time (Cancer)	days	25550	70 years times 365 days per year (USEPA, 2014)	25550	70 years times 365 days per year (USEPA, 2014)	
			AT-N	Averaging Time (Noncancer)	days	4380	ED (years) x 365 days/year (USEPA, 2014)	2190	ED (years) x 365 days/year (USEPA, 2014)	
			IF-C	Intake factor, cancer	(kg-sed)/(kg-bw/d)	1.56E-07	IF-C x CS x ABS = CDI-C	3.90E-08	IF-C x CS x ABS = CDI-C	
			IF-NC	Intake factor, noncancer	(kg-sed)/(kg-bw/d)	9.11E-07	IF-NC x CS x ABS = CDI-NC	4.55E-07	IF-NC x CS x ABS = CDI-NC	
			CS	Concentration in Fringe Surface Sediment	mg/kg	-	-			
			SA	Skin Surface Area Available for Contact	cm²/day	3800	See Table 5-10. Lower legs and feet	3800	See Table 5-10. Lower legs and feet	
			FC	Fraction of Skin Contacted	dimensionless	1	full SA assumed/day	1	full SA assumed/day	
			AF	Adherence Factor	mg/cm ²	0.3	See Table 5-10.	0.3	See Table 5-10.	
			DAF	Dermal Absorption Factor	dimensionless					CDI (mg/kg-day) =
			EF	Exposure Frequency	days/year	26	6 months (26 weeks)/year, 1 day/week	13	6 months (26 weeks)/year, 1 day every other week	CS x FC x SA x AF x DAF x EF x ED x CF
		Adult	ED	Exposure Duration	years	20	USEPA, 2014. 26 years total (20 adult/6 child)	10	USEPA, 2011 (Table ES-1). Average 12 yrs (10 adult/2 child)	BW x AT
			CF	Conversion Factor	kg/mg	0.000001	1 kg = 1E6 mg	0.000001	1 kg = 1E6 mg	
			BW	Body Weight	kg	80	USEPA, 2014	80	USEPA, 2014	
			AT-C	Averaging Time (Cancer)	days	25550	70 years times 365 days per year (USEPA, 2014)	25550	70 years times 365 days per year (USEPA, 2014)	
			AT-N	Averaging Time (Noncancer)	days	7300	ED (years) x 365 days/year (USEPA, 2014)	3650	ED (years) x 365 days/year (USEPA, 2014)	
			IF-C	Intake factor, cancer	(kg-sed)/(kg-bw/d)	2.90E-07	IF-C x CS x ABS = CDI-C	7.24E-08	IF-C x CS x ABS = CDI-C	
			IF-NC	Intake factor, noncancer	(kg-sed)/(kg-bw/d)	1.02E-06	IF-NC x CS x ABS = CDI-NC	5.07E-07	IF-NC x CS x ABS = CDI-NC	

Value	Exposure	Receptor	December Asso	Parameter	Parameter Definition	Unit		RME		СТЕ	Chronic Daily Intake (CDI) Equation
Bull	Route	Population	Receptor Age	Code	Parameter Definition	Unit	Value	Rationale/ Reference	Value	Rationale/ Reference	Chronic Daily Intake (CDI) Equation
Summer S				CS	Concentration in Fringe Surface Sediment	mg/kg					
Addresses Section				SA	Skin Surface Area Available for Contact	cm ² /day	2057		2057		
Afterwise February Advanced Factor				FC	Fraction of Skin Contacted	dimensionless	1		1		
Part Color				AF	Adherence Factor	mg/cm ²	0.28		0.28		
Parameter Para				DAF	Dermal Absorption Factor	dimensionless					CDI (mg/kg-day) =
Part			Vauna Child	EF	Exposure Frequency	days/year	13		6		CS x FC x SA x AF x DAF x EF x ED x CF
BW Boy Weight kg 17 Four et al. 2012 17				ED	Exposure Duration	years	6		2		BW x AT
AT-C						kg/mg	0.000001		0.000001	1 kg = 1E6 mg	
AT-N				BW	Body Weight	kg	17		17		
A-1-N Averaging Time (Noncancer) Cays				AT-C	Averaging Time (Cancer)	days	25550	(USEPA, 2014)	25550	(USEPA, 2014)	
Final					, ,			(USEPA, 2014)		2014)	
CS											
SA Sain Surface Area Available for Contact								IF-NC x CS x ABS = CDI-NC		IF-NC x CS x ABS = CDI-NC	
Part				CS	Concentration in Fringe Surface Sediment	mg/kg		-			
AF Adherence Factor mg/cm² 0.25 See Table 5-11. Lower legs and formal dependence of the continued contact Colid Team Continued Colidate Child/Team Colidate Chil								feet		feet	
Demail Contact Conta				FC	Fraction of Skin Contacted	dimensionless	11		11		
Demail Contact Conta						_	0.25		0.25		
Contract Continued				DAF	Dermal Absorption Factor	dimensionless					CDI (mg/kg-day) =
Years CF Conversion Factor Kg/mg 0.000001 1 kg = 1E6 mg 0.000001 1 kg = 1E6 mg S3 Fryar et al. 2012 S3 Fryar et al. 2014 S4 Fryar et al. 2014	Contact	Swimmer	Child/Teen		· · · · · ·	days/year	-	days/week		day/week	CS x FC x SA x AF x DAF x EF x ED x CF
BW Body Weight Kg 53	continued										BW x AT
AT-C Averaging Time (Cancer) days 25550 70 years times 386 days per year (USEPA, 2014) 25550 70 years times 386 days per year (USEPA, 2014) 25550 70 years times 386 days per year (USEPA, 2014) 2190 ED (years) x 386 days year (USEPA, 2014) ED			years)								
AT-N Averaging lime (Lancer) Gays Z5550 (USEPA, 2014) Z5550 (USEPA, 2014) AT-N Averaging lime (Lancer) Gays A380 ED (years) x 365 days/year (USEPA, 2014) EF-C Intake factor, cancer (kg-sed)/(kg-bwld) 1.56E-07 IF-Cx CS x ABS = CDI-C 3.90E-08 IF-Cx CS x ABS = CDI-C EF-NC Intake factor, noncancer (kg-sed)/(kg-bwld) 9.11E-07 IF-NC x CS x ABS = CDI-NC EF-NC Intake factor, noncancer (kg-sed)/(kg-bwld) 9.11E-07 IF-NC x CS x ABS = CDI-NC CS Concentration in Fringe Surface Sediment mg/kg				BW	Body Weight	kg	53		53		
AI-N Averaging Time (Noncancer) days 4380 "(USEPA, 2014) 2190 2014)				AT-C	Averaging Time (Cancer)	days	25550	(USEPA, 2014)	25550	(USEPA, 2014)	
IF-NC Intake factor, noncancer (kg-sed)/(kg-bw/d) 9.11E-07 IF-NC x CS x ABS = CDI-NC CS Concentration in Fringe Surface Sediment mg/kg					Averaging Time (Noncancer)	days		(USEPA, 2014)		2014)	
CS											
SA Skin Surface Area Available for Contact cm²/day 3800 See Table 5-10. Lower legs and feet feet feet feet feet feet feet fee								IF-NC x CS x ABS = CDI-NC		IF-NC x CS x ABS = CDI-NC	
FC Fraction of Skin Contacted dimensionless 1 full SA assumed/day 2 full sA assumed/day 1 full SA assumed/day 1 full SA assumed/day 1 full SA assumed/day 1 full SA assumed/day 2 full sa assume					, , , , , , , , , , , , , , , , , , ,						
DAF Dermal Absorption Factor dimensionless				FC				full SA assumed/day		full SA assumed/day	
EF			1					See Table 5-10.		See Table 5-10.	
Adult ED Exposure Duration years 20 USEPA, 2014 (26) every other week ED Exposure Duration years 20 USEPA, 2014 (26) adult/6 child) CF Conversion Factor kg/mg 0.000001 1 kg = 1E6 mg BW Body Weight kg 80 USEPA, 2014 80 USEPA, 2014 4 AT-C Averaging Time (Cancer) days 25550 70 evers times 365 days per year (USEPA, 2014) AT-N Averaging Time (Noncancer) days 7300 ED (years) x 365 days/year (USEPA, 2014) IF-C Intake factor, cancer (kg-sed)/(kg-bw/d) 1.45E-07 IF-C x CS x ABS = CDI-C 3.62E-08 IF-C x CS x ABS = CDI-C				DAF	Dermal Absorption Factor	dimensionless					CDI (mg/kg-day) =
Adult ED Exposure Duration years 20 adult/6 child) 10 Average 12 yrs (10 adult/2 child) CF Conversion Factor kg/mg 0.000001 1 kg = 1E6 mg BW Body Weight kg 80 USEPA, 2014 80 USEPA, 2014 AT-C Averaging Time (Cancer) days 25550 70 years times 385 days per year (USEPA, 2014) AT-N Averaging Time (Noncancer) days 7300 ED (years) x 385 days/year (USEPA, 2014) IF-C Intake factor, cancer (kg-sed)/(kg-bw/d) 1.45E-07 IF-C x CS x ABS = CDI-C 3.62E-08 IF-C x CS x ABS = CDI-C				EF	Exposure Frequency	days/year	13	day/week	6	every other week	CS x FC x SA x AF x DAF x EF x ED x CF
BW Body Weight kg 80 USEPA, 2014 80 USEPA, 2014 AT-C Averaging Time (Cancer) days 25550 70 years times 365 days per year (USEPA, 2014) (USEPA, 2014) (USEPA, 2014) AT-N Averaging Time (Noncancer) days 7300 ED (years) x 365 days/year (USEPA, 2014) (USEPA, 2014) IF-C Intake factor, cancer (kg-sed)/(kg-bw/d) 1.45E-07 IF-C x CS x ABS = CDI-C 3.62E-08 IF-C x CS x ABS = CDI-C			Adult		,	years		adult/6 child)		Average 12 yrs (10 adult/2 child)	BW x AT
AT-C Averaging Time (Cancer) days 25550 70 years times 365 days per year (USEPA, 2014) AT-N Averaging Time (Noncancer) days 7300 ED (years) x 365 days/year (USEPA, 2014) (USEPA, 2014) (USEPA, 2014) FC Intake factor, cancer (kg-sed)/(kg-bw/d) 1.45E-07 FC x C x x ABS = CDI-C 3.62E-08 FC x C S x ABS = CDI-C											
AT-N Averaging Time (Noncancer) days 7300 (USEPA, 2014) (U								70 years times 365 days per year		70 years times 365 days per year	
IF-C Intake factor, cancer (kg-sed)/(kg-bwld) 1.45E-07 IF-C x CS x ABS = CDI-C 3.62E-08 IF-C x CS x ABS = CDI-C				AT-N	Averaging Time (Noncancer)		7300	ED (years) x 365 days/year	3650	ED (years) x 365 days/year (USEPA,	
			1	IE-C	Intake factor, cancer	(ka-sed)/(ka-bw/d)	1.45E-07		3 62F-08		
. I I I I I I I I I I I I I I I I I I I				IF-NC	Intake factor, cancer	(kg-sed)/(kg-bw/d)	5.08E-07	IF-NC x CS x ABS = CDI-NC	2.54E-07	IF-NC x CS x ABS = CDI-NC	

Exposure	Receptor		Parameter				RME		СТЕ	
Route	Population	Receptor Age	Code	Parameter Definition	Unit	Value	Rationale/ Reference	Value	Rationale/ Reference	Chronic Daily Intake (CDI) Equation
			CS	Concentration in Fringe Surface Sediment	mg/kg					
			SA	Skin Surface Area Available for Contact	cm²/day	2057	See Table 5-12. Hands, forearms, lower legs, feet	2057	See Table 5-12. Hands, forearms, lower legs, feet	
			FC	Fraction of Skin Contacted	dimensionless	1	full SA assumed/day	1	full SA assumed/day	
			AF	Adherence Factor	mg/cm ²	0.28	See Table 5-12. Hands, forearms, lower legs, feet	0.28	See Table 5-12. Hands, forearms, lower legs, feet	
			DAF	Dermal Absorption Factor	dimensionless					CDI (mg/kg-day) =
		Young Child (1 to <7 year)	EF	Exposure Frequency	days/year	35	5 months (22 weeks)/year, 2 day/week during 3 summer months, 1 day/week in May & Sept	17	5 months (22 weeks)/year, 1 day/week during 3 summer months, 1 day every other week in May & Sept	CS x FC x SA x AF x DAF x EF x ED x CF
		(1 to <7 year)	ED	Exposure Duration	years	6	USEPA, 2014. 26 years total (20 adult/6 child)	2	USEPA, 2011 (Table ES-1). Average 12 yrs (10 adult/2 child)	BW x AT
			CF	Conversion Factor	kg/mg	0.000001	1 kg = 1E6 mg	0.000001	1 kg = 1E6 mg	
			BW	Body Weight	kg	17	Fryar et al. 2012	17	Fryar et al. 2012	
			AT-C	Averaging Time (Cancer)	days	25550	70 years times 365 days per year (USEPA, 2014)	25550	70 years times 365 days per year (USEPA, 2014)	
			AT-N	Averaging Time (Noncancer)	days	2190	ED (years) x 365 days/year (USEPA, 2014)	730	ED (years) x 365 days/year (USEPA, 2014)	
			IF-C	Intake factor, cancer	(kg-sed)/(kg-bw/d)	2.78E-07	IF-C x CS x ABS = CDI-C	4.59E-08	IF-C x CS x ABS = CDI-C	
			IF-NC	Intake factor, noncancer	(kg-sed)/(kg-bw/d)	3.25E-06	IF-NC x CS x ABS = CDI-NC	1.60E-06	IF-NC x CS x ABS = CDI-NC	
			CS	Concentration in Fringe Surface Sediment	mg/kg		-			
			SA	Skin Surface Area Available for Contact	cm²/day	2710	See Table 5-11. Lower legs and feet	2710	See Table 5-11. Lower legs and feet	
			FC	Fraction of Skin Contacted	dimensionless	11	full SA assumed/day	11	full SA assumed/day	
			AF	Adherence Factor	mg/cm ²	0.25	See Table 5-11. Lower legs and feet	0.25	See Table 5-11. Lower legs and feet	
			DAF	Dermal Absorption Factor	dimensionless				-	CDI (mg/kg-day) =
Dermal Contact	Wader	Older Child/Teen	EF	Exposure Frequency	days/year	43	5 months (22 weeks)/year, 2 days/week	22	5 months (22 weeks)/year, 1 day/week	CS x FC x SA x AF x DAF x EF x ED x CF
continued		(7 to <19	ED	Exposure Duration	years	12	receptor age range	6	1/2 RME	BW x AT
		years)	CF	Conversion Factor	kg/mg	0.000001	1 kg = 1E6 mg	0.000001	1 kg = 1E6 mg	
			BW	Body Weight	kg	53	Fryar et al. 2012	53	Fryar et al. 2012	
			AT-C	Averaging Time (Cancer)	days	25550	70 years times 365 days per year (USEPA, 2014)	25550	70 years times 365 days per year (USEPA, 2014)	
			AT-N	Averaging Time (Noncancer)	days	4380	ED (years) x 365 days/year (USEPA, 2014)	2190	ED (years) x 365 days/year (USEPA, 2014)	
			IF-C	Intake factor, cancer	(kg-sed)/(kg-bw/d)	2.58E-07	IF-C x CS x ABS = CDI-C	6.60E-08	IF-C x CS x ABS = CDI-C	
			IF-NC CS	Intake factor, noncancer Concentration in Fringe Surface Sediment	(kg-sed)/(kg-bw/d)	1.51E-06	IF-NC x CS x ABS = CDI-NC	7.70E-07	IF-NC x CS x ABS = CDI-NC	
			SA	Skin Surface Area Available for Contact	mg/kg cm²/day	3800	See Table 5-10. Lower legs and	3800	See Table 5-10. Lower legs and	
			FC	Fraction of Skin Contacted	dimensionless	1	full SA assumed/day	1	full SA assumed/day	
			AF	Adherence Factor	mg/cm ²	0.3	See Table 5-10.	0.3	See Table 5-10.	
			DAF	Dermal Absorption Factor	dimensionless					CDI (mg/kg-day) =
			EF	Exposure Frequency	days/year	35	5 months (22 weeks)/year, 2 day/week during 3 summer months, 1 day/week in May & Sept	17	5 months (22 weeks)/year, 1 day/week during 3 summer months, 1 day every other week in May & Sept	CS x FC x SA x AF x DAF x EF x ED x CF
		Adult	ED	Exposure Duration	years	20	USEPA, 2014. 26 years total (20 adult/6 child)	10	USEPA, 2011 (Table ES-1). Average 12 yrs (10 adult/2 child)	BW x AT
			CF	Conversion Factor	kg/mg	0.000001	1 kg = 1E6 mg	0.000001	1 kg = 1E6 mg	
			BW	Body Weight	kg	80	USEPA, 2014	80	USEPA, 2014	
			AT-C	Averaging Time (Cancer)	days	25550	70 years times 365 days per year (USEPA, 2014)	25550	70 years times 365 days per year (USEPA, 2014)	
			AT-N	Averaging Time (Noncancer)	days	7300	ED (years) x 365 days/year (USEPA, 2014)	3650	ED (years) x 365 days/year (USEPA, 2014)	
			IF-C	Intake factor, cancer	(kg-sed)/(kg-bw/d)	3.90E-07	IF-C x CS x ABS = CDI-C	9.64E-08	IF-C x CS x ABS = CDI-C	
			IF-NC	Intake factor, noncancer	(kg-sed)/(kg-bw/d)	1.37E-06	IF-NC x CS x ABS = CDI-NC	6.75E-07	IF-NC x CS x ABS = CDI-NC	

Table 5-4

Values Used for Daily Intake Calculations - Fringe Surface Sediment Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Sediment

Exposure Medium/Point: Surface Sediment

Exposure	Receptor	Receptor Age	Parameter	Parameter Definition	Unit		RME		CTE	Chronic Daily Intake (CDI) Equation
Route	Population	Receptor Age	Code	Farameter Definition	Ollit	Value	Rationale/ Reference	Value	Rationale/ Reference	Cilionic Daily Illiane (CDI) Equation

Notes:

RME = Reasonable Maximum Exposure; CTE = Central Tendency Exposure

-- Constituent-specific value.

(a) On days when the receptor is assumed to have direct contact with Anacostia River fringe surface sediment, one-half of the receptor's total daily ingestion exposure to outdoor soil/fringe surface sediment is assumed to come from the River, and the other half while away from the River (i.e., at home, work, school).

Source

Fryar, C.D., Q. Gu, and C.L. Ogden. 2012. Anthropometric reference data for children and adults: United States, 2007-2010. National Center for Health Statistics. Vital Health Stat 11(252).

USEPA, 1989. Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

USEPA, 2004. Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual, Part E, Supplemental Guidance for Dermal Risk Assessment Final. EPA/540/R/99/005.

USEPA, 2011. Exposure Factors Handbook: 2011 Edition. EPA/600/R-09/052F. Office of Research and Development, Washington, DC. September.

USEPA, 2014. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors. OSWER Directive 9200.1-120. Assessment and Remediation Division, Office of Superfund Remediation and Technology Innovation, US Environmental Protection Agency, Washington, DC. February 6, 2014

Function Devite	Receptor	Danaman Ama	Parameter	Parameter Definition	Unit		RME		СТЕ	Chronic Daily Intake (CDI) (Ingestion)
Exposure Route	Population	Receptor Age	Code	Parameter Definition	Unit	Value	Rationale/ Reference	Value	Rationale/ Reference	Dermal Absorbed Dose (DAD) Equations
			CW	Concentration in Water	ug/L					
			WIR-H	Ingestion Rate of Water, hourly	L/hour	see daily rate	see daily rate	see daily rate	see daily rate	
			t _{event}	Event Duration	hours/event	see daily rate	see daily rate	see daily rate	see daily rate	
			WIR-E	Ingestion Rate of Water, per event	L/event	0.013	Dorevitch, S. et al. 2011	0.004	Dorevitch, S. et al. 2011	
			EV	Event Frequency	events/day	1	1 event/day	1	1 event/day	CDI (mg/kg-day) =
		Young Child	EF	Exposure Frequency	days/year	26	6 months (26 weeks)/year, 1 day/week	13	6 months (26 weeks)/year, 1 day every other week	CW x WIR-E x EV x EF x ED x CF
		(1 to <7 year)	ED	Exposure Duration	years	6	USEPA, 2014. 26 years total (20 adult/6 child)	2	USEPA, 2011 (Table ES-1). Average 12 yrs (10 adult/2 child)	BW x AT
			CF	Conversion Factor	mg/ug	0.001	1 mg = 1000 ug	0.001	1 mg = 1000 ug	
			BW	Body Weight	kg	17	Fryar et al. 2012	17	Fryar et al. 2012	
			AT-C	Averaging Time (Cancer)	days	25550	70-year lifetime x 365 days/year	25550	70-year lifetime x 365 days/year	
			AT-N	Averaging Time (Noncancer)	days	2190	ED (year) x 365 days/year	730	ED (year) x 365 days/year	
			IF-C	Intake factor, cancer	mg/(ug/L*kg/day)	4.67E-09	IF-C x CW = CDI-C	2.39E-10	IF-C x CW = CDI-C	
			IF-NC	Intake factor, noncancer	mg/(ug/L*kg/day)	5.45E-08	IF-NC x CW = CDI-NC	8.37E-09	Rationale/ Reference	
			CW	Concentration in Water	ug/L				-	
			WIR-H	Ingestion Rate of Water, hourly	L/hour	see daily rate	see daily rate	see daily rate	see daily rate	
			t _{event}	Event Duration	hours/event	see daily rate	see daily rate	see daily rate	see daily rate	
			WIR-E	Ingestion Rate of Water, per event	L/event	0.013	Dorevitch, S. et al. 2011	0.004	Dorevitch, S. et al. 2011	
			EV	Event Frequency	events/day	1	1 event/day	1	1 event/day	CDI (mg/kg-day) =
Incidental Ingestion	Recreational Angler	Older Child/Teen	EF	Exposure Frequency	days/year	26	6 months (26 weeks)/year, 1 day/week	13	6 months (26 weeks)/year, 1 day every other week	CW x WIR-E x EV x EF x ED x CF
		(7 to <19 years)	ED	Exposure Duration	years	12	receptor age range	6	1/2 RME	BW x AT
		, , ,	CF	Conversion Factor	mg/ug	0.001	1 mg = 1000 ug	0.001	1 mg = 1000 ug	
			BW	Body Weight	kg	53	Fryar et al. 2012	53	Fryar et al. 2012	
			AT-C	Averaging Time (Cancer)	days	25550	70-year lifetime x 365 days/year	25550	70-year lifetime x 365 days/year	
			AT-N	Averaging Time (Noncancer)	days	4380	ED (year) x 365 days/year	2190	ED (year) x 365 days/year	
			IF-C	Intake factor, cancer	mg/(ug/L*kg/day)	3.00E-09	IF-C x CW = CDI-C	2.30E-10	IF-C x CW = CDI-C	
			IF-NC	Intake factor, noncancer	mg/(ug/L*kg/day)	1.75E-08	IF-NC x CW = CDI-NC	2.69E-09	IF-NC x CW = CDI-NC	
			CW	Concentration in Water	ug/L				-	
			WIR-H	Ingestion Rate of Water, hourly	L/hour	see daily rate	see daily rate	see daily rate	see daily rate	
			t _{event}	Event Duration	hours/event	see daily rate	see daily rate	see daily rate	see daily rate	
			WIR-E	Ingestion Rate of Water, per event	L/event	0.013	Dorevitch, S. et al. 2011	0.004	Dorevitch, S. et al. 2011	
			EV	Event Frequency	events/day	1	1 event/day	1	1 event/day	CDI (mg/kg-day) =
			EF	Exposure Frequency	days/year	26	6 months (26 weeks)/year, 1 day/week	13	6 months (26 weeks)/year, 1 day every other week	CW x WIR-E x EV x EF x ED x CF
		Adult	ED	Exposure Duration	years	20	USEPA, 2014. 26 years total (20 adult/6 child)	10	USEPA, 2011 (Table ES-1). Average 12 yrs (10 adult/2 child)	BW x AT
			CF	Conversion Factor	mg/ug	0.001	1 mg = 1000 ug	0.001	1 mg = 1000 ug	
			BW	Body Weight	kg	80	USEPA, 2014	80	USEPA, 2014	
			AT-C	Averaging Time (Cancer)	days	25550	70-year lifetime x 365 days/year	25550	70-year lifetime x 365 days/year	
			AT-N	Averaging Time (Noncancer)	days	7300	ED (year) x 365 days/year	3650	ED (year) x 365 days/year	
			IF-C	Intake factor, cancer	mg/(ug/L*kg/day)	3.30724E-09	IF-C x CW = CDI-C	2.54207E-10	IF-C x CW = CDI-C	
			IF-NC	Intake factor, noncancer	mg/(ug/L*kg/day)	1.15753E-08	IF-NC x CW = CDI-NC	1.77945E-09	IF-NC x CW = CDI-NC	

	Receptor	B	Parameter	Parameter Defende	11-2		RME		СТЕ	Chronic Daily Intake (CDI) (Ingestion)
Exposure Route	Population	Receptor Age	Code	Parameter Definition	Unit	Value	Rationale/ Reference	Value	Rationale/ Reference	Dermal Absorbed Dose (DAD) Equations
			CW	Concentration in Water	ug/L			-		
			WIR-H	Ingestion Rate of Water, hourly	L/hour	0.12	USEPA (2011, Table 3-5, upper percentile rate for child (ages 0-18 yr) in swimming pool)	0.049	USEPA (2011, Table 3-5, mean rate for child (ages 0-18 yr) in swimming pool)	
			t _{event}	Event Duration	hours/event	0.5	(a)	0.25	(a)	
			WIR-E	Ingestion Rate of Water, per event	L/event	0.06	WIR-H x ET	0.01225	WIR-H x ET	
			EV	Event Frequency	events/day	11	1 event/day	1	1 event/day	CDI (mg/kg-day) =
		Young Child (1 to <7 year)	EF	Exposure Frequency	days/year	13	3 months (13 weeks)/year, 1 day/week	6	3 months (13 weeks)/year, 1 day every other week	CW x WIR-E x EV x EF x ED x CF
			ED	Exposure Duration	years	6	USEPA, 2014. 26 years total (20 adult/6 child)	2	USEPA, 2011 (Table ES-1). Average 12 yrs (10 adult/2 child)	BW x AT
			CF	Conversion Factor	mg/ug	0.001	1 mg = 1000 ug	0.001	1 mg = 1000 ug	
			BW	Body Weight	kg	17	Fryar et al. 2012	17	Fryar et al. 2012	
			AT-C	Averaging Time (Cancer)	days	25550	70-year lifetime x 365 days/year	25550	70-year lifetime x 365 days/year	
			AT-N	Averaging Time (Noncancer)	days	2190	ED (year) x 365 days/year	730	ED (year) x 365 days/year	
			IF-C	Intake factor, cancer	mg/(ug/L*kg/day)	1.08E-08	IF-C x CW = CDI-C	3.66E-10	IF-C x CW = CDI-C	
			IF-NC	Intake factor, noncancer	mg/(ug/L*kg/day)	1.26E-07	IF-NC x CW = CDI-NC	1.28E-08	IF-NC x CW = CDI-NC	
			CW	Concentration in Water	ug/L					
			WIR-H	Ingestion Rate of Water, hourly	L/hour	0.071	USEPA (2011, Table 3-5, upper percentile rate for adult in swimming pool)	0.049	USEPA (2011, Table 3-5, mean rate for adult in swimming pool)	
			t _{event}	Event Duration	hours/event	0.5	(a)	0.25	(a)	
			WIR-E	Ingestion Rate of Water, per event	L/event	0.0355	WIR-H x ET	0.01225	WIR-H x ET	
		Older	EV	Event Frequency	events/day	1	1 event/day	1	1 event/day	CDI (mg/kg-day) =
Incidental Ingestion		Child/Teen (7 to <19 years)	EF	Exposure Frequency	days/year	26	3 months (13 weeks)/year, 2 days/week	13	3 months (13 weeks)/year, 1 day/week	CW x WIR-E x EV x EF x ED x CF
			ED	Exposure Duration	years	12	receptor age range	6	1/2 RME	BW x AT
			CF	Conversion Factor	mg/ug	0.001	1 mg = 1000 ug	0.001	1 mg = 1000 ug	
			BW	Body Weight	kg	53	Fryar et al. 2012	53	Fryar et al. 2012	
			AT-C	Averaging Time (Cancer)	days	25550	70-year lifetime x 365 days/year	25550	70-year lifetime x 365 days/year	
			AT-N	Averaging Time (Noncancer)	days	4380	ED (year) x 365 days/year	2190	ED (year) x 365 days/year	
			IF-C	Intake factor, cancer	mg/(ug/L*kg/day)	8.18E-09	IF-C x CW = CDI-C	7.05E-10	IF-C x CW = CDI-C	
			IF-NC	Intake factor, noncancer	mg/(ug/L*kg/day)	4.77E-08	IF-NC x CW = CDI-NC	8.23E-09	IF-NC x CW = CDI-NC	
			CW WIR-H	Concentration in Water Ingestion Rate of Water, hourly	ug/L L/hour	0.071	USEPA (2011, Table 3-5, upper percentile rate for adult in swimming pool)	0.021	USEPA (2011, Table 3-5, mean rate for adult in swimming pool)	
			t _{event}	Event Duration	hours/event	0.5	(a)	0.25	(a)	
			WIR-E	Ingestion Rate of Water, per event	L/event	0.0355	WIR-H x ET	0.00525	WIR-H x ET	
			EV	Event Frequency	events/day	1	1 event/day	1	1 event/day	CDI (mg/kg-day) =
		Adult	EF	Exposure Frequency	days/year	13	3 months (13 weeks)/year, 1 day/week	6	3 months (13 weeks)/year, 1 day every other week	CW x WIR-E x EV x EF x ED x CF
			ED	Exposure Duration	years	20	USEPA, 2014. 26 years total (20 adult/6 child)	10	USEPA, 2011 (Table ES-1). Average 12 yrs (10 adult/2 child)	BW x AT
			CF	Conversion Factor	mg/ug	0.001	1 mg = 1000 ug	0.001	1 mg = 1000 ug	
			BW	Body Weight	kg	80	USEPA, 2014	80	USEPA, 2014	
			AT-C	Averaging Time (Cancer)	days	25550	70-year lifetime x 365 days/year	25550	70-year lifetime x 365 days/year	
			AT-N	Averaging Time (Noncancer)	days	7300	ED (year) x 365 days/year	3650	ED (year) x 365 days/year	
			IF-C	Intake factor, cancer	mg/(ug/L*kg/day)	4.52E-09	IF-C x CW = CDI-C	1.67E-10	IF-C x CW = CDI-C	
			IF-NC	Intake factor, noncancer	mg/(ug/L*kg/day)	1.58E-08	IF-NC x CW = CDI-NC	1.17E-09	IF-NC x CW = CDI-NC	

Exposure Route	Receptor	Receptor Age	Parameter	Parameter Definition	Unit		RME		СТЕ	Chronic Daily Intake (CDI) (Ingestion)
Exposure Route	Population	Receptor Age	Code	Parameter Definition	Onit	Value	Rationale/ Reference	Value	Rationale/ Reference	Dermal Absorbed Dose (DAD) Equations
			CW	Concentration in Water	ug/L					
			WIR-H	Ingestion Rate of Water, hourly	L/hour	see daily rate	see daily rate	see daily rate	see daily rate	
			t _{event}	Event Duration	hours/event	see daily rate	see daily rate	see daily rate	see daily rate	
			WIR-E	Ingestion Rate of Water, per event	L/event	0.013	Dorevitch, S. et al. 2011	0.004	Dorevitch, S. et al. 2011	
			EV	Event Frequency	events/day	1	1 event/day	1	1 event/day	CDI (mg/kg-day) =
		Young Child	EF	Exposure Frequency	days/year	35	5 months (22 weeks)/year, 2 day/week during 3 summer months, 1 day/week in May & Sept	17	5 months (22 weeks)/year, 1 day/week during 3 summer months, 1 day every other week in May & Sept	CW x WIR-E x EV x EF x ED x CF
		(1 to <7 year)	ED	Exposure Duration	years	6	USEPA, 2014. 26 years total (20 adult/6 child)	2	USEPA, 2011 (Table ES-1). Average 12 yrs (10 adult/2 child)	BW x AT
			CF	Conversion Factor	mg/ug	0.001	1 mg = 1000 ug	0.001	1 mg = 1000 ug	
			BW	Body Weight	kg	17	Fryar et al. 2012	17	Fryar et al. 2012	
			AT-C	Averaging Time (Cancer)	days	25550	70-year lifetime x 365 days/year	25550	70-year lifetime x 365 days/year	
			AT-N	Averaging Time (Noncancer)	days	2190	ED (year) x 365 days/year	730	ED (year) x 365 days/year	
			IF-C	Intake factor, cancer	mg/(ug/L*kg/day)	6.28525E-09	IF-C x CW = CDI-C	3.18453E-10	IF-C x CW = CDI-C	
			IF-NC	Intake factor, noncancer	mg/(ug/L*kg/day)	7.3328E-08	IF-NC x CW = CDI-NC	1.11459E-08	IF-NC x CW = CDI-NC	
			CW	Concentration in Water	ug/L		-		-	
			WIR-H	Ingestion Rate of Water, hourly	L/hour	see daily rate	see daily rate	see daily rate	see daily rate	
			t _{event}	Event Duration	hours/event	see daily rate	see daily rate	see daily rate	see daily rate	
			WIR-E	Ingestion Rate of Water, per event	L/event	0.013	Dorevitch, S. et al. 2011	0.004	Dorevitch, S. et al. 2011	
			EV	Event Frequency	events/day	1	1 event/day	1	1 event/day	CDI (mg/kg-day) =
Incidental Ingestion	Wader	Older Child/Teen	EF	Exposure Frequency	days/year	43	5 months (22 weeks)/year, 2 days/week	22	5 months (22 weeks)/year, 1 day/week	CW x WIR-E x EV x EF x ED x CF
incidental ingestion		(7 to <19 years)	ED	Exposure Duration	years	12	receptor age range	6	1/2 RME	BW x AT
		, , , , , , ,	CF	Conversion Factor	mg/ug	0.001	1 mg = 1000 ug	0.001	1 mg = 1000 ug	
			BW	Body Weight	kg	53	Fryar et al. 2012	53	Fryar et al. 2012	
			AT-C	Averaging Time (Cancer)	days	25550	70-year lifetime x 365 days/year	25550	70-year lifetime x 365 days/year	
			AT-N	Averaging Time (Noncancer)	days	4380	ED (year) x 365 days/year	2190	ED (year) x 365 days/year	
			IF-C	Intake factor, cancer	mg/(ug/L*kg/day)	4.95E-09	IF-C x CW = CDI-C	3.90E-10	IF-C x CW = CDI-C	
			IF-NC	Intake factor, noncancer	mg/(ug/L*kg/day)	2.89E-08	IF-NC x CW = CDI-NC	4.55E-09	IF-NC x CW = CDI-NC	
			CW	Concentration in Water	ug/L					
			WIR-H	Ingestion Rate of Water, hourly	L/hour	see daily rate	see daily rate	see daily rate	see daily rate	
			t _{event}	Event Duration	hours/event	see daily rate	see daily rate	see daily rate	see daily rate	
			WIR-E	Ingestion Rate of Water, per event	L/event	0.013	Dorevitch, S. et al. 2011	0.004	Dorevitch, S. et al. 2011	001/ 1 1
			EV	Event Frequency	events/day	1	1 event/day	1	1 event/day	CDI (mg/kg-day) =
		Adult	EF	Exposure Frequency	days/year	35	5 months (22 weeks)/year, 2 day/week during 3 summer months, 1 day/week in May & Sept	17	5 months (22 weeks)/year, 1 day/week during 3 summer months, 1 day every other week in May & Sept	CW x WIR-E x EV x EF x ED x CF
		7 idail	ED	Exposure Duration	years	20	USEPA, 2014. 26 years total (20 adult/6 child)	10	USEPA, 2011 (Table ES-1). Average 12 yrs (10 adult/2 child)	BW x AT
			CF	Conversion Factor	mg/ug	0.001	1 mg = 1000 ug	0.001	1 mg = 1000 ug	
			BW	Body Weight	kg	80	USEPA, 2014	80	USEPA, 2014	
			AT-C	Averaging Time (Cancer)	days	25550	70-year lifetime x 365 days/year	25550	70-year lifetime x 365 days/year	
			AT-N	Averaging Time (Noncancer)	days	7300	ED (year) x 365 days/year	3650	ED (year) x 365 days/year	
			IF-C	Intake factor, cancer	mg/(ug/L*kg/day)	4.45E-09	IF-C x CW = CDI-C	3.38E-10	IF-C x CW = CDI-C	
			IF-NC	Intake factor, noncancer	mg/(ug/L*kg/day)	1.56E-08	IF-NC x CW = CDI-NC	2.37E-09	IF-NC x CW = CDI-NC	

Exposure Route	Receptor	Receptor Age	Parameter Code	Parameter Definition	Unit		RME		СТЕ	Chronic Daily Intake (CDI) (Ingestion) Dermal Absorbed Dose (DAD) Equations
Exposure Route	Population					Value	Rationale/ Reference	Value	Rationale/ Reference	
			CW	Concentration in Water	ug/L			-		
			WIR-H	Ingestion Rate of Water, hourly	L/hour	see daily rate	see daily rate	see daily rate	see daily rate	
		,	t _{event}	Event Duration	hours/event	see daily rate	see daily rate	see daily rate	see daily rate	
			WIR-E	Ingestion Rate of Water, per event	L/event	0.013	Dorevitch, S. et al. 2011	0.004	Dorevitch, S. et al. 2011	
			EV	Event Frequency	events/day	1	1 event/day	1	1 event/day	CDI (mg/kg-day) =
	Shoreline	Adult	EF	Exposure Frequency	days/year	50	50 weeks/year, 1 day/week	25	50 weeks/year, 1 day every other week	CW x WIR-E x EV x EF x ED x CF
Incidental Ingestion	Worker		ED	Exposure Duration	years	25	USEPA, 2014	6.6	USEPA, 2011 (Table 16-82, median tenure at same job, all workers)	BW x AT
			CF	Conversion Factor	mg/ug	0.001	1 mg = 1000 ug	0.001	1 mg = 1000 ug	
			BW	Body Weight	kg	80	USEPA, 2014	80	USEPA, 2014	
			AT-C	Averaging Time (Cancer)	days	25550	70-year lifetime x 365 days/year	25550	70-year lifetime x 365 days/year	
			AT-N	Averaging Time (Noncancer)	days	9.13E+03	ED (year) x 365 days/year	2.41E+03	ED (year) x 365 days/year	
			IF-C	Intake factor, cancer	mg/(ug/L*kg/day)	7.95E-09	IF-C x CW = CDI-C	3.23E-10	IF-C x CW = CDI-C	
			IF-NC	Intake factor, noncancer	mg/(ug/L*kg/day)	2.23E-08	IF-NC x CW = CDI-NC	3.42E-09	IF-NC x CW = CDI-NC	
			CW	Concentration in Water	ug/L					
			DA _{event}	Absorbed dose per event	mg/cm ² -event	-		-	-	
			Z	Dermal Factor	cm/event	-		-	-	
			SA	Skin Surface Area Available for Contact	cm ²	3527	See Table 5-10. Head, hands, forearms.	3527	See Table 5-10. Head, hands, forearms.	DAD (mg/kg-day)=
			t _{event}	Event Duration	hours/event	2	1/4 of work day	1	1/8 of work day	DAevent x SA x EV x EF x ED x CF1 x CF2
			EV	Event Frequency	events/day	1	1 event/day	1	1 event/day	BW x AT
Dermal	Shoreline Worker	Adult	EF	Exposure Frequency	days/year	50	50 weeks/year, 1 day/week	25	50 weeks/year, 1 day every other week	Daevent = Z x CW
			ED	Exposure Duration	years	25	USEPA, 2014	6.6	USEPA, 2011 (Table 16-82, median tenure at same job, all workers)	tevent is incorporated into Daevent.
			CF1	Conversion Factor 1	mg/ug	0.001	1 mg = 1000 ug	0.001	1 mg = 1000 ug	See text for equations.
			CF2	Conversion Factor 2	L/cm ³	0.001	1 L = 1000 cm ³	0.001	1 L = 1000 cm3	
			BW	Body Weight	kg	80	USEPA, 2014	80	USEPA, 2014	
			AT-C	Averaging Time (Cancer)	days	25550	70-year lifetime x 365 days/year	25550	70-year lifetime x 365 days/year	
			AT-N	Averaging Time (Noncancer)	days	9125	ED (year) x 365 days/year	2409	ED (year) x 365 days/year	
			IF-C	Intake factor, cancer	mg/(ug/L*kg/day)	2.16E-06	IF-C x Z x CW = DAD	2.85E-07	IF-C x Z x CW = DAD	
			IF-NC	Intake factor, noncancer	mg/(ug/L*kg/day)	6.04E-06	$IF-NC \times Z \times CW = DAD$	3.02E-06	IF-NC x Z x CW = DAD	
			CW	Concentration in Water	ug/L					
			DA _{event}	Absorbed dose per event	mg/cm ² -event	-		-		
			Z	Dermal Factor	cm/event					
			SA	Skin Surface Area Available for Contact	cm ²	2057	See Table 5-12. Hands, forearms, lower legs, feet	2057	See Table 5-12. Hands, forearms, lower legs, feet	DAD (mg/kg-day)=
			t _{event}	Event Duration	hours/event	1	(b)	0.5	(b)	DAevent x SA x EV x EF x ED x CF1 x CF2
			EV	Event Frequency	events/day	1	1 event/day	1	1 event/day	BW x AT
		Young Child	EF	Exposure Frequency	days/year	26	6 months (26 weeks)/year, 1 day/week	13	6 months (26 weeks)/year, 1 day every other week	Daevent = Z x CW
		(1 to <7 year)	ED	Exposure Duration	years	6	USEPA, 2014. 26 years total (20 adult/6 child)	2	USEPA, 2011 (Table ES-1). Average 12 yrs (10 adult/2 child)	tevent is incorporated into Daevent.
	1		CF1	Conversion Factor 1	ma/ua	0.001	1 mg = 1000 ug	0.001	1 mg = 1000 ug	See text for equations.
	1		CF1	Conversion Factor 2	mg/ug	0.001		0.001	1 mg = 1000 ug 1 L = 1000 cm3	Gee text for equations.
					L/cm ³		1 L = 1000 cm ³			
			BW	Body Weight	kg	17	Fryar et al. 2012	17	Fryar et al. 2012	
			AT-C	Averaging Time (Cancer)	days	25550	70-year lifetime x 365 days/year	25550	70-year lifetime x 365 days/year	
	1		AT-N	Averaging Time (Noncancer)	days	2190	ED (year) x 365 days/year	730	ED (year) x 365 days/year	
			IF-C	Intake factor, cancer	mg/(ug/L*kg/day)	7.39E-07	IF-C x Z x CW = CDI	1.23E-07	IF-C x Z x CW = CDI	
	l		IF-NC	Intake factor, noncancer	mg/(ug/L*kg/day)	8.62E-06	IF-C x Z x CW = CDI	4.31E-06	IF-C x Z x CW = CDI	

Exposure Route	Receptor Population	Receptor Age	Parameter Code	Parameter Definition	Unit	Unit	RME	CTE		Chronic Daily Intake (CDI) (Ingestion)
Exposure Noute				Parameter Dennition	Onit	Value	Rationale/ Reference	Value	Rationale/ Reference	Dermal Absorbed Dose (DAD) Equations
			CW	Concentration in Water	ug/L			-		
			DA _{event}	Absorbed dose per event	mg/cm ² -event					
			Z	Dermal Factor	cm/event					
			SA	Skin Surface Area Available for Contact	cm ²	2710	See Table 5-11. Lower legs and feet	2710	See Table 5-11. Lower legs and feet	DAD (mg/kg-day)=
			t _{event}	Event Duration	hours/event	1	(b)	0.5	(b)	DAevent x SA x EV x EF x ED x CF1 x CF2
		Older Child/Teen (7 to <19 years)	EV	Event Frequency	events/day	1	1 event/day	1	1 event/day	BW x AT
Dermal	Recreational Angler		EF	Exposure Frequency	days/year	26	6 months (26 weeks)/year, 1 day/week	13	6 months (26 weeks)/year, 1 day every other week	Daevent = Z x CW
	-		ED	Exposure Duration	years	12	receptor age range	6	1/2 RME	tevent is incorporated into Daevent.
			CF1	Conversion Factor 1	mg/ug	0.001	1 mg = 1000 ug	0.001	1 mg = 1000 ug	See text for equations.
			CF2	Conversion Factor 2	L/cm ³	0.001	1 L = 1000 cm ³	0.001	1 L = 1000 cm3	
			BW	Body Weight	kg	53	Fryar et al. 2012	53	Fryar et al. 2012	
			AT-C	Averaging Time (Cancer)	days	25550	70-year lifetime x 365 days/year	25550	70-year lifetime x 365 days/year	
			AT-N	Averaging Time (Noncancer)	days	4380	ED (year) x 365 days/year	2190	ED (year) x 365 days/year	
			IF-C	Intake factor, cancer	mg/(ug/L*kg/day)	6.24E-07	IF-C x Z x CW = CDI	1.56E-07	IF-C x Z x CW = CDI	
			IF-NC	Intake factor, noncancer	mg/(ug/L*kg/day)	3.64E-06	IF-C x Z x CW = CDI	1.82E-06	IF-C x Z x CW = CDI	
			CW	Concentration in Water	ug/L					
			DA _{event}	Absorbed dose per event	mg/cm ² -event					
			Z	Dermal Factor	cm/event					
			SA	Skin Surface Area Available for Contact	cm ²	3800	See Table 5-10. Lower legs and feet	3800	See Table 5-10. Lower legs and feet	DAD (mg/kg-day)=
			t _{event}	Event Duration	hours/event	1	(b)	0.5	(b)	DAevent x SA x EV x EF x ED x CF1 x CF2
			EV	Event Frequency	events/day	1	1 event/day	1	1 event/day	BW x AT
		Adult	EF	Exposure Frequency	days/year	26	6 months (26 weeks)/year, 1 day/week	13	6 months (26 weeks)/year, 1 day every other week	Daevent = Z x CW
			ED	Exposure Duration	years	20	USEPA, 2014. 26 years total (20 adult/6 child)	10	USEPA, 2011 (Table ES-1). Average 12 yrs (10 adult/2 child)	tevent is incorporated into Daevent.
			CF1	Conversion Factor 1	mg/ug	0.001	1 mg = 1000 ug	0.001	1 mg = 1000 ug	See text for equations.
			CF2	Conversion Factor 2	L/cm ³	0.001	1 L = 1000 cm ³	0.001	1 L = 1000 cm3	
			BW	Body Weight	kg	80	USEPA, 2014	80	USEPA, 2014	
			AT-C	Averaging Time (Cancer)	days	25550	70-year lifetime x 365 days/year	25550	70-year lifetime x 365 days/year	
			AT-N	Averaging Time (Noncancer)	days	7300	ED (year) x 365 days/year	3650	ED (year) x 365 days/year	
			IF-C	Intake factor, cancer	mg/(ug/L*kg/day)	9.67E-07	IF-C x Z x CW = CDI	2.41E-07	IF-C x Z x CW = CDI	
			IF-NC	Intake factor, noncancer	mg/(ug/L*kg/day)	3.38E-06	IF-C x Z x CW = CDI	1.69E-06	IF-C x Z x CW = CDI	

Exposure Route	Receptor Population	Receptor Age	Parameter Code	Parameter Definition	Unit		RME		СТЕ	Chronic Daily Intake (CDI) (Ingestion) Dermal Absorbed Dose (DAD) Equations
						Value	Rationale/ Reference	Value	Rationale/ Reference	
			CW	Concentration in Water	ug/L			-		
			DA _{event}	Absorbed dose per event	mg/cm ² -event	-				
			Z	Dermal Factor	cm/event	-				
		Young Child (1 to <7 year)	SA	Skin Surface Area Available for Contact	cm ²	7500	See Table 5-6. Full body SA	7500	See Table 5-6. Full body SA	DAD (mg/kg-day)=
			t _{event}	Event Duration	hours/event	0.5	(a)	0.25	(a)	DAevent x SA x EV x EF x ED x CF1 x CF2
			EV	Event Frequency	events/day	1	1 event/day	1	1 event/day	BW x AT
			EF	Exposure Frequency	days/year	13	3 months (13 weeks)/year, 1 day/week	6	3 months (13 weeks)/year, 1 day every other week	Daevent = Z x CW
			ED	Exposure Duration	years	6	USEPA, 2014. 26 years total (20 adult/6 child)	2	USEPA, 2011 (Table ES-1). Average 12 yrs (10 adult/2 child)	tevent is incorporated into Daevent.
			CF1	Conversion Factor 1	mg/ug	0.001	1 mg = 1000 ug	0.001	1 mg = 1000 ug	See text for equations.
			CF2	Conversion Factor 2	L/cm ³	0.001	1 L = 1000 cm ³	0.001	1 L = 1000 cm3	
			BW	Body Weight	kg	17	Fryar et al. 2012	17	Fryar et al. 2012	
			AT-C	Averaging Time (Cancer)	days	25550	70-year lifetime x 365 days/year	25550	70-year lifetime x 365 days/year	
			AT-N	Averaging Time (Noncancer)	days	2190	ED (year) x 365 days/year	730	ED (year) x 365 days/year	
			IF-C	Intake factor, cancer	mg/(ug/L*kg/day)	1.35E-06	IF-C x Z x CW = CDI	2.24E-07	IF-C x Z x CW = CDI	
			IF-NC	Intake factor, noncancer	mg/(ug/L*kg/day)	1.57E-05	IF-C x Z x CW = CDI	7.85E-06	IF-C x Z x CW = CDI	
			CW	Concentration in Water	ug/L					
			DA _{event}	Absorbed dose per event	mg/cm2-event					
			Z	Dermal Factor	cm/event					
			SA	Skin Surface Area Available for Contact	cm ²	14825	See Table 5-6. Full body SA	14825	See Table 5-6. Full body SA	DAD (mg/kg-day)=
			t _{event}	Event Duration	hours/event	0.5	(a)	0.25	(a)	DAevent x SA x EV x EF x ED x CF1 x CF2
			EV	Event Frequency	events/day	1	1 event/day	1	1 event/day	BW x AT
Dermal	Swimmer	Older Child/Teen (7 to <19 years)	EF	Exposure Frequency	days/year	26	3 months (13 weeks)/year, 2 days/week	13	3 months (13 weeks)/year, 1 day/week	Daevent = Z x CW
Deliliai			ED	Exposure Duration	years	12	receptor age range	6	1/2 RME	tevent is incorporated into Daevent.
			CF1	Conversion Factor 1	mg/ug	0.001	1 mg = 1000 ug	0.001	1 mg = 1000 ug	See text for equations.
			CF2	Conversion Factor 2	L/cm ³	0.001	1 L = 1000 cm ³	0.001	1 L = 1000 cm3	
			BW	Body Weight	kg	53	Fryar et al. 2012	53	Fryar et al. 2012	
			AT-C	Averaging Time (Cancer)	days	25550	70-year lifetime x 365 days/year	25550	70-year lifetime x 365 days/year	
			AT-N	Averaging Time (Noncancer)	days	4380	ED (year) x 365 days/year	2190	ED (year) x 365 days/year	
			IF-C	Intake factor, cancer	mg/(ug/L*kg/day)	3.42E-06	IF-C x Z x CW = CDI	8.53E-07	IF-C x Z x CW = CDI	
			IF-NC	Intake factor, noncancer	mg/(ug/L*kg/day)	1.99E-05	IF-C x Z x CW = CDI	9.95E-06	IF-C x Z x CW = CDI	
		Adult	CW	Concentration in Water	ug/L					
			DA _{event}	Absorbed dose per event	mg/cm ² -event					
			Z	Dermal Factor	cm/event					
			SA	Skin Surface Area Available for Contact	cm ²	20900	USEPA, 2014	20900	USEPA, 2014	DAD (mg/kg-day)=
			t _{event}	Event Duration	hours/event	0.5	(a)	0.25	(a)	DAevent x SA x EV x EF x ED x CF1 x CF2
			EV	Event Frequency	events/day	1	1 event/day	1	1 event/day	BW x AT
			EF	Exposure Frequency	days/year	13	3 months (13 weeks)/year, 1 day/week	6.495	3 months (13 weeks)/year, 1 day every other week	Daevent = Z x CW
			ED	Exposure Duration	years	20	USEPA, 2014. 26 years total (20 adult/6 child)	10	USEPA, 2011 (Table ES-1). Average 12 yrs (10 adult/2 child)	tevent is incorporated into Daevent.
			CF1	Conversion Factor 1	mg/ug	0.001	1 mg = 1000 ug	0.001	1 mg = 1000 ug	See text for equations.
			CF2	Conversion Factor 2	L/cm ³	0.001	1 L = 1000 cm ³	0.001	1 L = 1000 cm3	
			BW	Body Weight	kg	80	USEPA, 2014	80	USEPA, 2014	
			AT-C	Averaging Time (Cancer)	days	25550	70-year lifetime x 365 days/year	25550	70-year lifetime x 365 days/year	
			AT-N	Averaging Time (Noncancer)	days	7300	ED (year) x 365 days/year	3650	ED (year) x 365 days/year	
			IF-C	Intake factor, cancer	mg/(ug/L*kg/day)	2.66E-06	IF-C x Z x CW = CDI	6.64E-07	IF-C x Z x CW = CDI	
			IF-NC	Intake factor, noncancer	mg/(ug/L*kg/day)	9.30E-06	$IF-C \times Z \times CW = CDI$	4.65E-06	IF-C x Z x CW = CDI	

Table 5-5 Values Used for Daily Intake Calculations - Surface Water Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Medium: Surface Water Exposure Medium/Point: Surface Water

Exposure Route	Receptor	Receptor Age	Parameter	Parameter Definition	Unit		RME		СТЕ	Chronic Daily Intake (CDI) (Ingestion)
Exposure Route	Population	Receptor Age	Code	Parameter Dennition	Onit	Value	Rationale/ Reference	Value	Rationale/ Reference	Dermal Absorbed Dose (DAD) Equations
			CW	Concentration in Water	ug/L					
			DA _{event}	Absorbed dose per event	mg/cm2-event					
			Z	Dermal Factor	cm/event					
			SA	Skin Surface Area Available for Contact	cm ²	2057	See Table 5-12. Hands, forearms, lower legs, feet	2057	See Table 5-12. Hands, forearms, lower legs, feet	DAD (mg/kg-day)=
			t _{event}	Event Duration	hours/event	1	(c)	0.5	(c)	DAevent x SA x EV x EF x ED x CF1 x CF2
			EV	Event Frequency	events/day	1	1 event/day	1	1 event/day	BW x AT
		Young Child (1 to <7 year)	EF	Exposure Frequency	days/year	35	5 months (22 weeks)/year, 2 day/week during 3 summer months, 1 day/week in May & Sept	17	5 months (22 weeks)/year, 1 day/week during 3 summer months, 1 day every other week in May & Sept	Daevent = Z x CW
		,,	ED	Exposure Duration	years	6	USEPA, 2014. 26 years total (20 adult/6 child)	2	USEPA, 2011 (Table ES-1). Average 12 yrs (10 adult/2 child)	tevent is incorporated into Daevent.
			CF1	Conversion Factor 1	mg/ug	0.001	1 mg = 1000 ug	0.001	1 mg = 1000 ug	See text for equations.
			CF2	Conversion Factor 2	L/cm ³	0.001	1 L = 1000 cm ³	0.001	1 L = 1000 cm3	
			BW	Body Weight	kg	17	Fryar et al. 2012	17	Fryar et al. 2012	
			AT-C	Averaging Time (Cancer)	days	25550	70-year lifetime x 365 days/year	25550	70-year lifetime x 365 days/year	
			AT-N	Averaging Time (Noncancer)	days	2190	ED (year) x 365 days/year	730	ED (year) x 365 days/year	
			IF-C	Intake factor, cancer	mg/(ug/L*kg/day)	9.94521E-07	IF-C x Z x CW = CDI	1.63764E-07	IF-C x Z x CW = CDI	
			IF-NC	Intake factor, noncancer	mg/(ug/L*kg/day)	1.16027E-05	IF-C x Z x CW = CDI	5.73175E-06	IF-C x Z x CW = CDI	
			CW	Concentration in Water	ug/L		-		-	
			DA _{event}	Absorbed dose per event	mg/cm ² -event		_		-	
			Z	Dermal Factor	cm/event					
			SA	Skin Surface Area Available for Contact	cm ²	2710	See Table 5-11. Lower legs and feet	2710	See Table 5-11. Lower legs and feet	DAD (mg/kg-day)=
			t _{event}	Event Duration	hours/event	1	(c)	0.5	(c)	DAevent x SA x EV x EF x ED x CF1 x CF2
			EV	Event Frequency	events/day	1	1 event/day	1	1 event/day	BW x AT
Dermal	Wader	Older Child/Teen	EF	Exposure Frequency	days/year	43	5 months (22 weeks)/year, 2 days/week	22	5 months (22 weeks)/year, 1 day/week	Daevent = Z x CW
		(7 to <19 years)	ED	Exposure Duration	years	12	receptor age range	6	1/2 RME	tevent is incorporated into Daevent.
			CF1	Conversion Factor 1	mg/ug	0.001	1 mg = 1000 ug	0.001	1 mg = 1000 ug	See text for equations.
			CF2	Conversion Factor 2	L/cm ³	0.001	1 L = 1000 cm ³	0.001	1 L = 1000 cm3	
			BW	Body Weight	kg	53	Fryar et al. 2012	53	Fryar et al. 2012	
			AT-C	Averaging Time (Cancer)	days	25550	70-year lifetime x 365 days/year	25550	70-year lifetime x 365 days/year	
			AT-N	Averaging Time (Noncancer)	days	4380	ED (year) x 365 days/year	2190	ED (year) x 365 days/year	
			IF-C	Intake factor, cancer	mg/(ug/L*kg/day)	1.03E-06	IF-C x Z x CW = CDI	2.64E-07	IF-C x Z x CW = CDI	
			IF-NC	Intake factor, noncancer	mg/(ug/L*kg/day)	6.02E-06	IF-C x Z x CW = CDI	3.08E-06	IF-C x Z x CW = CDI	
			CW	Concentration in Water	ug/L			-		
			DA _{event}	Absorbed dose per event	mg/cm ² -event					
			Z	Dermal Factor	cm/event			-		
			SA	Skin Surface Area Available for Contact	cm ²	3800	See Table 5-10. Lower legs and feet	3800	See Table 5-10. Lower legs and feet	DAD (mg/kg-day)=
			t _{event}	Event Duration	hours/event	1	(c)	0.5	(c)	DAevent x SA x EV x EF x ED x CF1 x CF2
			EV	Event Frequency	events/day	1	1 event/day	1	1 event/day	BW x AT
		Adult	EF	Exposure Frequency	days/year	35	5 months (22 weeks)/year, 2 day/week during 3 summer months, 1 day/week in May & Sept	17	5 months (22 weeks)/year, 1 day/week during 3 summer months, 1 day every other week in May & Sept	Daevent = Z x CW
			ED	Exposure Duration	years	20	USEPA, 2014. 26 years total (20 adult/6 child)	10	USEPA, 2011 (Table ES-1). Average 12 yrs (10 adult/2 child)	tevent is incorporated into Daevent.
			CF1	Conversion Factor 1	mg/ug	0.001	1 mg = 1000 ug	0.001	1 mg = 1000 ug	See text for equations.
			CF2	Conversion Factor 2	L/cm ³	0.001	1 L = 1000 cm ³	0.001	1 L = 1000 cm3	
			BW	Body Weight	kg	80	USEPA, 2014	80	USEPA, 2014	
			AT-C	Averaging Time (Cancer)	days	25550	70-year lifetime x 365 days/year	25550	70-year lifetime x 365 days/year	
l			AT-N	Averaging Time (Noncancer)	days	7300	ED (year) x 365 days/year	3650	ED (year) x 365 days/year	
l			IF-C	Intake factor, cancer	mg/(ug/L*kg/day)	1.30E-06	IF-C x Z x CW = CDI	3.21E-07	IF-C x Z x CW = CDI	'
Í			IF-NC	Intake factor, noncancer	mg/(ug/L*kg/day)	4.55E-06	IF-C x Z x CW = CDI	2.25E-06	IF-C x Z x CW = CDI	!

Table 5-5

Values Used for Daily Intake Calculations - Surface Water Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future
Medium: Surface Water
Exposure Medium/Point: Surface Water

Exposure Route	Receptor	Receptor Age	Parameter	Parameter Definition	Unit		RME		СТЕ	Chronic Daily Intake (CDI) (Ingestion)
Exposure Route	Population	Receptor Age	Code	r al ameter Definition	Onit	Value	Rationale/ Reference	Value	Rationale/ Reference	Dermal Absorbed Dose (DAD) Equations

Notes:

RME = Reasonable Maximum Exposure; CTE = Central Tendency Exposure

Constituent-specific value

(a) Extended periods of swimming in the Anacostia River are unlikely (see text). An upper-bound estimate of swimming event duration is estimated to be 30 minutes; the central tendency estimate is one-half of RME or 15 minutes.

(b) Anglers may occasionally wade in the river while fishing. An upper-bound estimate of wading duration while fishing is estimated to be 1 hour; the central tendency estimate is one-half of RME or 30 minutes.

(c) Visitors to the river may occasionally wade along the shoreline. An upper-bound estimate of wading while visiting/recreating is estimated to be 1 hour; the central tendency estimate is one-half of RME or 30 minutes.

Sources:

Dorevitch, S. et al. 2011. Water ingestion during water recreation. Water Research 45(5):2020-8.

Authors cite mean of 3-4 mL and upper confidence level estimate of 10-15 mL for limited contact recreational exposures to surface water (e.g., canoeing, kayaking, fishing, motor boating and rowing).

The midpoint of the upper confidence level rate (13 mL) is selected as the RME rate and the mean is selected as the CTE rate. As this is a per event rate, an hourly rate is not provided.

Fryar, C.D., Q. Gu, and C.L. Ogden. 2012. Anthropometric reference data for children and adults: United States, 2007-2010. National Center for Health Statistics. Vital Health Stat 11(252).

USEPA, 1989. Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

USEPA, 2004. Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual, Part E, Supplemental Guidance for Dermal Risk Assessment Final. EPA/540/R/99/005.

USEPA, 2011. Exposure Factors Handbook: 2011 Edition. EPA/600/R-09/052F. Office of Research and Development, Washington, DC. September.

USEPA, 2014. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors. OSWER Directive 9200.1-120. Assessment and Remediation Division, Office of Superfund Remediation and Technology Innovation, US Environmental Protection Agency, Washington, DC. February 6, 2014

Table 5-6 Values Used for Daily Intake Calculations - Fish Tissue Benning Road Facility RVFS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future
Medium: Fish tissue
Exposure Medium/Point: Fish tissue (fillet)

Exposure	Receptor		Parameter		11.74		RME		CTE	01 1 5 11 1 1 (00) 5 (1
Route	Population	Receptor Age	Code	Parameter Definition	Unit	Value	Rationale/ Reference	Value	Rationale/ Reference	Chronic Daily Intake (CDI) Equation
			CFF	Concentration in Fish Tissue	mg/kg wet weight					
			FIR	Ingestion Rate of Fish	g/day	7	1/3 of adult rate (USEPA, 2011)	3	1/3 of adult rate (USEPA, 2011)	
			FI	Fraction from source	unitless	0.5	Assumes half of consumed catch is from Anacostia River in vicinity of site	0.25	1/2 of RME (assumes anglers eat catch from various locations throughout the Wash DC area)	CDI (mg/kg-day) =
			Loss	Cooking Loss	g/g					CFF X FIR x FI x (1-Loss) x EF x ED x CF
		Young Child	EF	Exposure Frequency	days/year	365	FIR rate prorated over one year	365	FIR rate prorated over one year	BW x AT
		(1 to <7 year)	ED	Exposure Duration	years	6	USEPA, 2014. 26 years total (20 adult/6 child)	2	USEPA, 2011 (Table ES-1). Average 12 yrs (10 adult/2 child)	
			CF	Conversion Factor	kg/g	0.001	1 kg = 0.001 mg	0.001	1 kg = 0.001 mg	
			BW	Body Weight	kg	17	Fryar et al. 2012	17	Fryar et al. 2012	
			AT-C	Averaging Time (Cancer)	days	25550	70-year lifetime x 365 days/year	25550	70-year lifetime x 365 days/year	
			AT-N	Averaging Time (Noncancer)	days	2190	ED (years) x 365 days/year	730	ED (years) x 365 days/year	
			IF-C	Intake factor, cancer	(kg-fish)/(kg-bw/d)	1.76E-05	IF-C x CFF x (1-Loss) = CDI-C	1.26E-06	IF-C x CFF x (1-Loss) = CDI-C	
			IF-NC	Intake factor, noncancer	(kg-fish)/(kg-bw/d)	2.06E-04	IF-NC x CFF x (1-Loss) = CDI-NC	4.41E-05	IF-NC x CFF x (1-Loss) = CDI-NC	
			CFF	Concentration in Fish Tissue	mg/kg wet weight					
			FIR	Ingestion Rate of Fish	g/day	13	2/3 of adult rate (USEPA, 2011)	7	2/3 of adult rate (USEPA, 2011)	
			FI	Fraction from source	unitless	0.5	Assumes half of consumed catch is from Anacostia River in vicinity of site	0.25	1/2 of RME (assumes anglers eat catch from various locations throughout the Wash DC area)	CDI (mg/kg-day) =
			Loss	Cooking Loss	g/g					CFF X FIR x FI x (1-Loss) x EF x ED x CF
		Older Child/Teen	EF	Exposure Frequency	days/year	365	FIR rate prorated over one year	365	FIR rate prorated over one year	BW x AT
	Recreational	(7 to <19 years)	ED	Exposure Duration	years	12	receptor age range	6	1/2 RME	
Ingestion	Angler		CF	Conversion Factor	kg/g	0.001	1 kg = 0.001 mg	0.001	1 kg = 0.001 mg	
	g		BW	Body Weight	kg	53	Fryar et al. 2012	53	Fryar et al. 2012	
			AT-C	Averaging Time (Cancer)	days	25550	70-year lifetime x 365 days/year	25550	70-year lifetime x 365 days/year	
			AT-N	Averaging Time (Noncancer)	days	4380	ED (years) x 365 days/year	2190	ED (years) x 365 days/year	
			IF-C	Intake factor, cancer	(kg-fish)/(kg-bw/d)	2.10E-05	IF-C x CFF x (1-Loss) = CDI-C	2.83E-06	IF-C x CFF x (1-Loss) = CDI-C	
			IF-NC	Intake factor, noncancer	(kg-fish)/(kg-bw/d)	1.23E-04	IF-NC x CFF x (1-Loss) = CDI-NC	3.30E-05	IF-NC x CFF x (1-Loss) = CDI-NC	
		Adult	CFF	Concentration in Fish Tissue	mg/kg wet weight					
			FIR	Ingestion Rate of Fish	g/day	20	Gibson & McClafferty, 2005. (Washington DC area anglers) See Table 5-5 for details on ingestion rate derivation.	10	Gibson & McClafferty, 2005. (Washington DC area anglers) See Table 5-5 for details on ingestion rate derivation.	
			FI	Fraction from source	unitless	0.5	Assumes half of consumed catch is from Anacostia River in vicinity of site	0.25	1/2 of RME (assumes anglers eat catch from various locations throughout the Wash DC area)	CDI (mg/kg-day) =
			Loss	Cooking Loss	g/g					CFF X FIR x FI x (1-Loss) x EF x ED x CF
			EF	Exposure Frequency	days/year	365	FIR rate prorated over one year	365	FIR rate prorated over one year	BW x AT
			ED	Exposure Duration	years	20	USEPA, 2014. 26 years total (20 adult/6 child)	10	USEPA, 2011 (Table ES-1). Average 12 yrs (10 adult/2 child)	
			CF	Conversion Factor	kg/g	0.001	1 kg = 0.001 mg	0.001	1 kg = 0.001 mg	
			BW	Body Weight	kg	80	USEPA, 2014	80	USEPA, 2014	
			AT-C	Averaging Time (Cancer)	days	25550	70-year lifetime x 365 days/year	25550	70-year lifetime x 365 days/year	
			AT-N	Averaging Time (Noncancer)	days	7300	ED (years) x 365 days/year	3650	ED (years) x 365 days/year	
			IF-C	Intake factor, cancer	(kg-fish)/(kg-bw/d)	3.57E-05	IF-C x CFF x (1-Loss) = CDI-C	4.46E-06	IF-C x CFF x (1-Loss) = CDI-C	
			IF-NC	Intake factor, noncancer	(kg-fish)/(kg-bw/d)	1.25E-04	IF-NC x CFF x (1-Loss) = CDI-NC	3.13E-05	IF-NC x CFF x (1-Loss) = CDI-NC	

Table 5-6 Values Used for Daily Intake Calculations - Fish Tissue Benning Road Facility RIFS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future
Medium: Fish tissue
Exposure Medium/Point: Fish tissue (fillet)

Exposure	osure Receptor Receptor Age	Parameter	Parameter Definition	Unit		RME		CTE	Chronic Daily Intako (CDI) Equation	
Route	Population	Receptor Age	Code	Farameter Demintion	Unit	Value	Rationale/ Reference	Value	Rationale/ Reference	Chronic Daily Intake (CDI) Equation

Notes:

RME = Reasonable Maximum Exposure; CTE = Central Tendency Exposure

-- Constituent-specific value; CFF (concentration in fish tissue) is also species-specific.

Sources

Fryar, C.D., Q. Gu, and C.L. Ogden. 2012. Anthropometric reference data for children and adults: United States, 2007-2010. National Center for Health Statistics. Vital Health Stat 11(252).

Gibson & McClafferty, 2005. Chesapeake Bay Angler Survey, Identifying Populations at Risk from Consuming Contaminated Fish in Three Regions of Concern. Virginia Polytechnic Institute and State University. CMI-HDD-05-01. March.

USEPA, 2011. Exposure Factors Handbook: 2011 Edition. EPA/600/R-09/052F. Office of Research and Development, Washington, DC. September.

USEPA, 2014. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors. OSWER Directive 9200.1-120. Assessment and Remediation Division, Office of Superfund Remediation and Technology Innovation, US Environmental Protection Agency, Washington, DC. February 6, 2014.

Table 5-7 Default Absorption Factors for COPCs in Soil and Fringe Surface Sediment Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Is of Potential Concern in Soil and Fringe Surface		Oral - Sediment Absor Adjustment Facto		Dermal - Sediment Absorption Fraction	
	CAS Number	Default		Default	
Dioxin	<u> </u>	1			
2,3,7,8-TCDD-TEQ	DFTEQ-HH	1	(a)	0.03	(c)
Metals		•	•		
Aluminum	7429-90-5	1	(a)	NA	(c)
Antimony	7440-36-0	1	(a)	NA	(c)
Arsenic	7440-38-2	0.6	(b)	0.03	(c)
Cobalt	7440-48-4	1	(a)	NA	(c)
Cyanide	57-12-5	1	(a)	NA	(c)
Manganese	7439-96-5	1	(a)	NA	(c)
Nickel	7440-02-0	1	(a)	NA	(c)
Thallium	7440-28-0	1	(a)	NA	(c)
Vanadium	7440-62-2	1	(a)	NA	(c)
PCBs		•	•		
Total PCBs	1336-36-3	1	(a)	0.14	(c)
SVOCs	•	•			
Benzo(a)anthracene	56-55-3	1	(a)	0.13	(c)
Benzo(a)pyrene	50-32-8	1	(a)	0.13	(c)
Benzo(b)fluoranthene	205-99-2	1	(a)	0.13	(c)
Benzo(k)fluoranthene	207-08-9	1	(a)	0.13	(c)
Chrysene	218-01-9	1	(a)	0.13	(c)
Dibenzo(a,h)anthracene	53-70-3	1	(a)	0.13	(c)
Indeno(1,2,3-cd)pyrene	193-39-5	1	(a)	0.13	(c)
Naphthalene	91-20-3	1	(a)	0.13	(c)
TPH .		•			
Diesel Range Organics (C10-C20)	C10C20	1	(a)	NA	(c)

Notes:

CAS - Chemical Abstracts Service.

NA - Not Applicable. Chemical is not assessed via this pathway.

PCB - Polychlorinated Biphenyls.

SVOC - Semi-Volatile Organic Compounds.

TCDD - 2,3,7,8-Tetrachlorodibenzo-p-dioxin.

TEQ - Toxicity Equivalence.

USEPA - United States Environmental Protection Agency.

- (a) Absorption is assumed to be 100% (absorption factor = 1) (USEPA Risk Assessment Guidance for Superfund (RAGS), Part A, 1989; USEPA Regional Screening Level (RSL) Table, May 2018).
- (b) Recommendations for Default Value for Relative Bioavailability of Arsenic in Soil. OSWER Directive 9200.1-113. USEPA, December 2012. Consistent with the approach used by the USEPA Regional Screening Level (RSL) table (May 2018).
- (c) USEPA, 2004. Risk Assessment Guidance for Superfund. Vol. 1, Part E. July, 2004. Exhibit 3-4.

Consistent with the approach used by the USEPA Regional Screening Level (RSL) table (May 2018).

Table 5-8 Dermal Water Parameters Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

		Chemical	Properties									Derma	l Wate	er Paramete	ers					
Chemical of Potential			log					Lag Time							log					In Effective
Concern in Surface	CAS	MW (f)	Kow (f)	Кp		В		τ		t*		FA		Isc (e)	(Dsc/lsc)	Dsc/Isc	Dsc	b (a)	c (a)	Predictive
Water	Number	g/mol	unitless	(cm/hr)		unitless		hr/event		hr		unitless		cm	unitless	unitless	unitless	unitless	unitless	Domain? (f)
Dioxin																				
2,3,7,8-TCDD-TEQ	DFTEQ-HH	3.22E+02	6.80E+00	8.07E-01	(a)	5.57E+00	(a)	6.82E+00	(a)	3.01E+01	(a)	5.00E-01	(a)	1.00E-03	-4.61E+00	2.44E-05	2.44E-08	2.19E+01	5.62E+00	No
Metals																				
Arsenic	7440-38-2			1.00E-03	(b,c)					-										Yes
Cobalt	7440-48-4			4.00E-04	(b)					-									-	Yes
Manganese	7439-96-5			1.00E-03	(b,c)															Yes
Pesticides																				
4,4'-DDT	50-29-3	3.55E+02	6.36E+00	2.69E-01	(a)	1.95E+00	(a)	1.04E+01	(a)	4.25E+01	(a)	7.00E-01	(a)	1.00E-03	-4.80E+00	1.59E-05	1.59E-08	3.47E+00	2.06E+00	No
PCBs																				
Total PCBs	1336-36-3	3.61E+02	6.72E+00	4.32E-01	(a,e)	3.15E+00	(a,f)	1.13E+01	(a,f)	4.79E+01	(a,f)	5.00E-01	(a,f)	1.00E-03	-4.83E+00	1.48E-05	1.48E-08	7.75E+00	3.23E+00	No

Notes:

CAS - Chemical Abstracts Service.

TCDD - 2,3,7,8-Tetrachlorodibenzo-p-dioxin.

TEQ - Toxicity Equivalence.

- (a) USEPA, 2004. Exhibit B-3 (Organics). Values calculated based the equations below may have rounding different from that presented in Exhibit B-3.
- (b) USEPA, 2004. Exhibit 3-1. (Inorganics)
- (c) Default for all other inorganics.
- (e) USEPA, 2004. Equation A-4. Default value.
- (f) USEPA, 2004. Exhibit B-2. Value for hexachlorobiphenyl used for PCBs.

Equations:	
USEPA, 2004. Risk Assessment Gui	dance for Superfund. Volume 1, Part E, Supplemental Guidance for Dermal Risk Assessment
Equation 3.8:	Log Kp = -2.80 + 0.66 log Kow - 0.0056 MW
Equation A.1:	$B = Kp \times MW^{0.5}/2.6$
Equation A.2:	Log Dsc/lsc = -2.8-0.0056 MW, where lsc = 1E-3 cm. Solving for Dsc: Dsc = 10 ^{-2.8-0.0056 MW} * lsc.
Equation A.4:	$\tau = Isc^2/(6*Dsc)$
Equation A.5:	If B \leq 0.6, Equation A.5: $t^* = 2.4^* \tau$
Equation A.6:	If B> 0.6: t* = (b- (b²-c²)0.5) * l²sc/(Dsc)
Equation A-7:	$b = (2^*(1+B)^2/\pi) - c$
Fauation A-8	$c = (1+3B+3B^2)/(3*(1+B))$

Definitions:

- B Relative Contribution of Permeability Coefficient.
- Dsc Effective diffusion coefficient through stratum corneum.
- FA Fraction Absorbed.
- Kow Octanol-Water Partition Coefficient.
- Kp Dermal Permeability Coefficient.
- Isc Apparent thickness of stratum corneum.
- MW Molecular Weight.
- τ lag time (hr/event).
- t* Time to reach steady state.

Table 5-9 Cooking Loss Factors for Fish Tissue Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

	CAS	Cooking Lo	ess Factor (a)
Chemical	Number	RME (b)	CTE (c)
Dioxin and Dioxin-Like PCBs			
2,3,7,8-TCDD-TEQ	DFTEQ-HH	0.29	0.48
PCB-TEQ	PCB-TEQ	0.29	0.48
Inorganics			
Arsenic	7440-38-2	0	0
Arsenic, organic	75-60-5	0	0
Cobalt	7440-48-4	0	0
Mercury	7439-97-6	0	0
Thallium	7440-28-0	0	0
Pesticides			
4,4'-DDD	72-54-8	0.1	0.32
4,4'-DDE	72-55-9	0.1	0.32
4,4'-DDT	50-29-3	0.1	0.32
Aldrin	309-00-2	0.1	0.32
alpha-Chlordane	5103-71-9	0.1	0.32
beta-BHC	319-85-7	0.1	0.32
cis-Nonachlor	5103-73-1	0.1	0.32
Dieldrin	60-57-1	0.1	0.32
gamma-Chlordane	5566-34-7	0.1	0.32
Heptachlor epoxide	1024-57-3	0.1	0.32
Hexachlorobenzene	118-74-1	0.1	0.32
Mirex	2385-85-5	0.1	0.32
Oxychlordane	27304-13-8	0.1	0.32
trans-Nonachlor	39765-80-5	0.1	0.32
PCBs			
Total PCBs	1336-36-3	0.13	0.3

Notes:

CTE - Central Tendency Exposure.

PCBs - Polychlorinated biphenyls.

RME - Reasonable Maximum Exposure.

TCDD - 2,3,7,8-Tetrachlorodibenzo-p-dioxin.

TEQ - Toxicity Equivalence.

- (a) Fraction of mass loss values reported in 17 studies for various species and cooking methods (see Section 5.4.4 and Attachment D).
- (b) For the RME scenario, the 10th percentile value is used.
- (c) For the CTE scenario, the median value is used.

xposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic ⁽¹⁾ Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration	Exposure Point Concentration (RME)				
			(mg/kg)	(9,9)		(mg/kg)	Value	Units	Statistic (3)	Rationale	
	Dioxin										
	2,3,7,8-TCDD-TEQ	2/2	1.89E-06	NC	NC	2.51E-06	2.51E-06	mg/kg	Max	Footnote (4	
	Inorganics	2/2	1.03L-00	NC	INC.	2.512-00	2.51L-00	mg/kg	IVIAX	1 oothote (-	
Hypothetical Future Park	Arsenic	2/2	2.20E+00	NC	NC	2.60E+00	2.60E+00	mg/kg	Max	Footnote (
Land/Green	Cobalt	2/2	1.11E+02	NC NC	NC NC	1.30E+02	1.30E+02	mg/kg	Max	Footnote (4	
Space	Manganese	2/2	1.11E+02 1.18E+02	NC NC	NC NC	2.00E+02	2.00E+02	mg/kg	Max	Footnote (4	
	Nickel	2/2	1.04E+01	NC	NC	1.20E+01	1.20E+01	mg/kg	Max	Footnote (
	Thallium	ND					ND				
	Vanadium	2/2	3.70E+01	NC	NC	5.80E+01	5.80E+01	mg/kg	Max	Footnote (
	PCBs	2,2	0.702.701	110	110	0.002101	0.002101	mg/kg	With	1 00111010 (
	Total PCBs	3/4	4.42E-02	NC	NC	9.20E-02	9.20E-02	mg/kg	Max	Footnote (
	SVOCs	074	1.122 02	110	110	0.202 02	0.202 02	mg/kg	With	1 00111010 (
	Benzo(a)anthracene	4/4	1.37E-01	NC	NC	1.90E-01	1.90E-01	mg/kg	Max	Footnote (
	Benzo(a)pyrene	4/4	1.55E-01	NC	NC NC	1.80E-01	1.80E-01	mg/kg	Max	Footnote (
	Benzo(b)fluoranthene	4/4	1.65E-01	NC	NC	2.60E-01	2.60E-01	mg/kg	Max	Footnote (
	Benzo(k)fluoranthene	4/4	6.80E-02	NC	NC	9.10E-02	9.10E-02	mg/kg	Max	Footnote (
	Chrysene	4/4	1.53E-01	NC	NC	2.00E-01	2.00E-01	mg/kg	Max	Footnote (
	Dibenzo(a,h)anthracene	4/4	3.23E-02	NC	NC	4.60E-02	4.60E-02	mg/kg	Max	Footnote (
	Indeno(1,2,3-cd)pyrene	4/4	1.04E-01	NC	NC	1.50E-01	1.50E-01	mg/kg	Max	Footnote (
	Naphthalene	2/4	1.22E-02	NC	NC	1.80E-02	1.80E-02	mg/kg	Max	Footnote (
	ТРН										
	Diesel Range Organics (C10-C20)	1/2	1.30E+01	NC	NC	1.30E+01	1.30E+01	mg/kg	Max	Footnote (

February 2020

Table 5-10 Exposure Point Concentration Summary — Surface Soil (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic ⁽¹⁾ Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration	Ex	posure Point Co	ncentration (RM	E)
			(mg/kg)	(55)		(mg/kg)	Value	Units	Statistic (3)	Rationale
Warehouse and	Dioxin									
Laydown Area	2,3,7,8-TCDD-TEQ	22 / 22	1.51E-05	3.17E-05	95% Chebyshev (Mean, Sd) UCL	5.87E-05	3.17E-05	mg/kg	95% UCL	Footnote (2)
	Inorganics									
	Arsenic	44 / 44	1.83E+01	3.85E+01	95% Chebyshev(Mean, Sd) UCL	1.90E+02	3.85E+01	mg/kg	95% UCL	Footnote (2,5)
	Cobalt	44 / 44	1.95E+01	4.55E+01	95% Chebyshev (Mean, Sd) UCL	2.40E+02	4.55E+01	mg/kg	95% UCL	Footnote (2)
	Manganese	44 / 44	3.99E+02	1.05E+03	95% Chebyshev(Mean, Sd) UCL	6.60E+03	1.05E+03	mg/kg	95% UCL	Footnote (2,5)
	Nickel	44 / 44	5.13E+02	1.53E+03	95% Chebyshev (Mean, Sd) UCL	8.00E+03	1.53E+03	mg/kg	95% UCL	Footnote (2)
	Thallium	29 / 44	1.31E-01	1.56E-01	95% KM Adjusted Gamma UCL	4.60E-01	1.56E-01	mg/kg	95% UCL	Footnote (2)
	Vanadium	50 / 50	2.24E+03	7.06E+03	95% Chebyshev (Mean, Sd) UCL	4.20E+04	7.06E+03	mg/kg	95% UCL	Footnote (2)
	PCBs									
	Total PCBs	55 / 57	1.28E+00	5.19E+00	KM H-UCL	8.60E+00	5.19E+00	mg/kg	95% UCL	Footnote (2)
	SVOCs									
	Benzo(a)anthracene	18 / 18	4.36E-01	5.83E-01	95% Student's-t UCL	1.20E+00	5.83E-01	mg/kg	95% UCL	Footnote (2)
	Benzo(a)pyrene	18 / 18	4.31E-01	5.77E-01	95% Student's-t UCL	1.20E+00	5.77E-01	mg/kg	95% UCL	Footnote (2)
	Benzo(b)fluoranthene	18 / 18	5.16E-01	6.81E-01	95% Student's-t UCL	1.40E+00	6.81E-01	mg/kg	95% UCL	Footnote (2)
	Benzo(k)fluoranthene	18 / 18	1.95E-01	2.58E-01	95% Student's-t UCL	5.40E-01	2.58E-01	mg/kg	95% UCL	Footnote (2)
	Chrysene	18 / 18	4.90E-01	6.39E-01	95% Student's-t UCL	1.30E+00	6.39E-01	mg/kg	95% UCL	Footnote (2)
	Dibenzo(a,h)anthracene	15 / 18	9.93E-02	1.50E-01	95% KM Adjusted Gamma UCL	3.10E-01	1.50E-01	mg/kg	95% UCL	Footnote (2)
	Indeno(1,2,3-cd)pyrene	18 / 18	3.19E-01	4.42E-01	95% Student's-t UCL	1.10E+00	4.42E-01	mg/kg	95% UCL	Footnote (2)
	Naphthalene	16 / 18	6.76E-02	1.14E-01	KM H-UCL	4.40E-01	1.14E-01	mg/kg	95% UCL	Footnote (2)
	ТРН									
	Diesel Range Organics (C10-C20)	7 / 12	9.62E+01	1.49E+02	95% KM (t) UCL	2.80E+02	1.49E+02	mg/kg	95% UCL	Footnote (2)

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic (1) Mean (mg/kg)	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration	Exposure Point Concentration (RME)				
			(mg/kg)	(9,9)		(mg/kg)	Value	Units	Statistic (3)	Rationale	
Salvage Yard	Dioxin										
and Waste	2,3,7,8-TCDD-TEQ	23 / 23	6.10E-05	1.08E-04	95% Adjusted Gamma UCL	4.84E-04	1.08E-04	mg/kg	95% UCL	Footnote (2)	
Storage Area	Inorganics										
	Arsenic	3/3	1.14E+01	NC	NC	1.40E+01	1.40E+01	mg/kg	Max	Footnote (4)	
	Cobalt	3/3	1.03E+01	NC	NC	1.70E+01	1.70E+01	mg/kg	Max	Footnote (4)	
	Manganese	3/3	2.77E+02	NC	NC	5.00E+02	5.00E+02	mg/kg	Max	Footnote (4)	
	Nickel	3/3	1.69E+01	NC	NC	2.70E+01	2.70E+01	mg/kg	Max	Footnote (4)	
	Thallium	3/3	1.80E-01	NC	NC	2.00E-01	2.00E-01	mg/kg	Max	Footnote (4)	
	Vanadium	3/3	2.47E+01	NC	NC	3.60E+01	3.60E+01	mg/kg	Max	Footnote (4)	
	PCBs										
	Total PCBs	40 / 41	1.14E+00	2.15E+00	Gamma Adjusted KM-UCL	1.40E+01	2.15E+00	mg/kg	95% UCL	Footnote (2)	
	SVOCs										
	Benzo(a)anthracene	18 / 19	8.21E-01	1.34E+00	Gamma Adjusted KM-UCL	2.50E+00	1.34E+00	mg/kg	95% UCL	Footnote (2)	
	Benzo(a)pyrene	18 / 19	7.80E-01	1.29E+00	Gamma Adjusted KM-UCL	2.50E+00	1.29E+00	mg/kg	95% UCL	Footnote (2)	
	Benzo(b)fluoranthene	18 / 19	1.17E+00	2.03E+00	Gamma Adjusted KM-UCL	5.00E+00	2.03E+00	mg/kg	95% UCL	Footnote (2)	
	Benzo(k)fluoranthene	18 / 19	3.57E-01	4.92E-01	95% KM (t) UCL	1.30E+00	4.92E-01	mg/kg	95% UCL	Footnote (2)	
	Chrysene	18 / 19	8.58E-01	1.41E+00	95% GROS Adjusted Gamma UCL	2.50E+00	1.41E+00	mg/kg	95% UCL	Footnote (2)	
	Dibenzo(a,h)anthracene	15 / 19	1.42E-01	2.40E-01	Gamma Adjusted KM-UCL	5.10E-01	2.40E-01	mg/kg	95% UCL	Footnote (2)	
	Indeno(1,2,3-cd)pyrene	18 / 19	5.90E-01	9.69E-01	Gamma Adjusted KM-UCL	2.00E+00	9.69E-01	mg/kg	95% UCL	Footnote (2)	
	Naphthalene	17 / 19	1.12E-01	1.66E-01	95% KM Adjusted Gamma UCL	3.20E-01	1.66E-01	mg/kg	95% UCL	Footnote (2)	
	ТРН					[
	Diesel Range Organics (C10-C20)	5/5	1.30E+03	NC	NC	3.40E+03	3.40E+03	mg/kg	Max	Footnote (4)	

February 2020

Table 5-10 Exposure Point Concentration Summary — Surface Soil (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic (1) Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration	Ех	oosure Point Co	ncentration (RM	E)
			(mg/kg)	(3 3/		(mg/kg)	Value	Units	Statistic (3)	Rationale
Stores and Fleet	Dioxin									
Maintenance Area	2,3,7,8-TCDD-TEQ	14 / 14	6.19E-06	1.45E-05	95% Adjusted Gamma UCL	2.23E-05	1.45E-05	mg/kg	95% UCL	Footnote (2)
	Inorganics									
	Arsenic	8/8	5.25E+00	NC	NC	7.50E+00	7.50E+00	mg/kg	Max	Footnote (4)
	Cobalt	8/8	4.48E+00	NC	NC	7.90E+00	7.90E+00	mg/kg	Max	Footnote (4)
	Manganese	8/8	1.18E+02	NC	NC	2.20E+02	2.20E+02	mg/kg	Max	Footnote (4)
	Nickel	8/8	1.13E+01	NC	NC	3.10E+01	3.10E+01	mg/kg	Max	Footnote (4)
	Thallium	5/8	1.03E-01	NC	NC	1.70E-01	1.70E-01	mg/kg	Max	Footnote (4)
	Vanadium	8/8	2.08E+01	NC	NC	3.00E+01	3.00E+01	mg/kg	Max	Footnote (4)
	PCBs									
	Total PCBs	24 / 27	6.80E-01	1.35E+00	Gamma Adjusted KM-UCL	4.80E+00	1.35E+00	mg/kg	95% UCL	Footnote (2)
	SVOCs									
	Benzo(a)anthracene	12 / 13	2.42E-01	3.70E-01	95% KM (t) UCL	9.00E-01	3.70E-01	mg/kg	95% UCL	Footnote (2)
	Benzo(a)pyrene	12 / 13	2.49E-01	5.41E-01	Gamma Adjusted KM-UCL	1.10E+00	5.41E-01	mg/kg	95% UCL	Footnote (2)
	Benzo(b)fluoranthene	12 / 13	3.24E-01	6.87E-01	Gamma Adjusted KM-UCL	1.40E+00	6.87E-01	mg/kg	95% UCL	Footnote (2)
	Benzo(k)fluoranthene	12 / 13	1.32E-01	2.73E-01	Gamma Adjusted KM-UCL	5.20E-01	2.73E-01	mg/kg	95% UCL	Footnote (2)
	Chrysene	12 / 13	3.02E-01	6.82E-01	Gamma Adjusted KM-UCL	1.40E+00	6.82E-01	mg/kg	95% UCL	Footnote (2)
	Dibenzo(a,h)anthracene	12 / 13	5.68E-02	1.39E-01	Gamma Adjusted KM-UCL	2.90E-01	1.39E-01	mg/kg	95% UCL	Footnote (2)
	Indeno(1,2,3-cd)pyrene	12 / 13	1.92E-01	4.37E-01	Gamma Adjusted KM-UCL	9.00E-01	4.37E-01	mg/kg	95% UCL	Footnote (2)
	Naphthalene	12 / 13	2.78E-02	4.00E-02	95% KM (t) UCL	6.70E-02	4.00E-02	mg/kg	95% UCL	Footnote (2)
	ТРН									
	Diesel Range Organics (C10-C20)	3/8	3.98E+01	NC	NC	1.70E+02	1.70E+02	mg/kg	Max	Footnote (4)

February 2020

Table 5-10 Exposure Point Concentration Summary — Surface Soil (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic ⁽¹⁾ Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration	Exp	posure Point Co	ncentration (RM	E)
			(mg/kg)	(9,9)		(mg/kg)	Value	Units	Statistic (3)	Rationale
Offices and	Dioxin									
Parking Lot	2,3,7,8-TCDD-TEQ	2/2	9.63E-06	NC	NC	1.37E-05	1.37E-05	mg/kg	Max	Footnote (4)
	Inorganics									
	Arsenic	3/3	2.97E+00	NC	NC	3.70E+00	3.70E+00	mg/kg	Max	Footnote (4)
	Cobalt	3/3	6.87E+00	NC	NC	1.10E+01	1.10E+01	mg/kg	Max	Footnote (4)
	Manganese	3/3	1.87E+02	NC	NC	2.60E+02	2.60E+02	mg/kg	Max	Footnote (4)
	Nickel	3/3	2.27E+01	NC	NC	3.00E+01	3.00E+01	mg/kg	Max	Footnote (4)
	Thallium	ND					ND			
	Vanadium	3/3	1.93E+01	NC	NC	2.30E+01	2.30E+01	mg/kg	Max	Footnote (4)
	PCBs									
	Total PCBs	5/5	2.34E-01	NC	NC	3.30E-01	3.30E-01	mg/kg	Max	Footnote (4)
	SVOCs									
	Benzo(a)anthracene	28 / 30	1.24E+00	2.79E+00	Gamma Adjusted KM-UCL	1.40E+01	2.79E+00	mg/kg	95% UCL	Footnote (2)
	Benzo(a)pyrene	28 / 30	1.11E+00	2.27E+00	Gamma Adjusted KM-UCL	1.10E+01	2.27E+00	mg/kg	95% UCL	Footnote (2)
	Benzo(b)fluoranthene	28 / 30	1.33E+00	2.58E+00	Gamma Adjusted KM-UCL	1.20E+01	2.58E+00	mg/kg	95% UCL	Footnote (2)
	Benzo(k)fluoranthene	26 / 30	5.25E-01	1.12E+00	Gamma Adjusted KM-UCL	5.50E+00	1.12E+00	mg/kg	95% UCL	Footnote (2)
	Chrysene	28 / 30	1.17E+00	2.45E+00	Gamma Adjusted KM-UCL	1.20E+01	2.45E+00	mg/kg	95% UCL	Footnote (2)
	Dibenzo(a,h)anthracene	25 / 30	2.47E-01	4.70E-01	Gamma Adjusted KM-UCL	2.20E+00	4.70E-01	mg/kg	95% UCL	Footnote (2)
	Indeno(1,2,3-cd)pyrene	28 / 30	7.78E-01	1.51E+00	Gamma Adjusted KM-UCL	7.10E+00	1.51E+00	mg/kg	95% UCL	Footnote (2)
	Naphthalene	20 / 30	3.93E-02	7.92E-02	Gamma Adjusted KM-UCL	4.10E-01	7.92E-02	mg/kg	95% UCL	Footnote (2)
	ТРН									
	Diesel Range Organics (C10-C20)	ND					ND			

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic ⁽¹⁾ Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration	Ex	posure Point Co	oncentration (RM	E)
			(mg/kg)	(9/9/		(mg/kg)	Value	Units	Statistic (3)	Rationale
Substation #7	Dioxin									
	2,3,7,8-TCDD-TEQ	1/1	4.37E-06	NC	NC	4.37E-06	4.37E-06	mg/kg	Max	Footnote (4)
	Inorganics									
	Arsenic	4/4	1.00E+01	NC	NC	3.30E+01	3.30E+01	mg/kg	Max	Footnote (4)
	Cobalt	4/4	4.03E+00	NC	NC	4.70E+00	4.70E+00	mg/kg	Max	Footnote (4)
	Manganese	4/4	1.98E+02	NC	NC	3.70E+02	3.70E+02	mg/kg	Max	Footnote (4)
	Nickel	4/4	1.04E+01	NC	NC	1.40E+01	1.40E+01	mg/kg	Max	Footnote (4)
	Thallium	1 / 4	1.38E-01	NC	NC	2.50E-01	2.50E-01	mg/kg	Max	Footnote (4)
	Vanadium	4/4	1.46E+01	NC	NC	2.30E+01	2.30E+01	mg/kg	Max	Footnote (4)
	PCBs									
	Total PCBs	11 / 13	4.62E-01	8.85E+00	95% KM Bootstrap t UCL	5.10E+00	5.10E+00	mg/kg	Max	Footnote (4)
	SVOCs									
	Benzo(a)anthracene	4/5	4.01E-01	NC	NC	1.80E+00	1.80E+00	mg/kg	Max	Footnote (4)
	Benzo(a)pyrene	4/5	3.17E-01	NC	NC	1.40E+00	1.40E+00	mg/kg	Max	Footnote (4)
	Benzo(b)fluoranthene	4/5	7.13E-01	NC	NC	3.20E+00	3.20E+00	mg/kg	Max	Footnote (4)
	Benzo(k)fluoranthene	4/5	3.65E-01	NC	NC	1.70E+00	1.70E+00	mg/kg	Max	Footnote (4)
	Chrysene	4/5	7.10E-01	NC	NC	3.20E+00	3.20E+00	mg/kg	Max	Footnote (4)
	Dibenzo(a,h)anthracene	4/5	9.44E-02	NC	NC	4.00E-01	4.00E-01	mg/kg	Max	Footnote (4)
	Indeno(1,2,3-cd)pyrene	4/5	2.95E-01	NC	NC	1.30E+00	1.30E+00	mg/kg	Max	Footnote (4)
	Naphthalene	4/5	2.70E-02	NC	NC	6.70E-02	6.70E-02	mg/kg	Max	Footnote (4)
	ТРН									
	Diesel Range Organics (C10-C20)	1 / 4	1.90E+01	NC	NC	2.00E+01	2.00E+01	mg/kg	Max	Footnote (4)

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic ⁽¹⁾ Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration	Ex	Exposure Point Concentration (RME)		
			(mg/kg)	(9/1.9/		(mg/kg)	Value	Units	Statistic (3)	Rationale
Transformer	Dioxin									
Shop	2,3,7,8-TCDD-TEQ	ND					ND			
	Inorganics									
	Arsenic	1 / 1	1.70E+00	NC	NC	1.70E+00	1.70E+00	mg/kg	Max	Footnote (4)
	Cobalt	1 / 1	2.70E+00	NC	NC	2.70E+00	2.70E+00	mg/kg	Max	Footnote (4)
	Manganese	1 / 1	2.60E+02	NC	NC	2.60E+02	2.60E+02	mg/kg	Max	Footnote (4)
	Nickel	1 / 1	1.60E+01	NC	NC	1.60E+01	1.60E+01	mg/kg	Max	Footnote (4)
	Thallium	ND					ND			
	Vanadium	1 / 1	9.70E+00	NC	NC	9.70E+00	9.70E+00	mg/kg	Max	Footnote (4)
	PCBs									
	Total PCBs	47 / 48	1.89E+02	2.01E+03	99% KM (Chebyshev) UCL	8.80E+03	2.01E+03	mg/kg	95% UCL	Footnote (2)
	SVOCs									
	Benzo(a)anthracene	13 / 25	3.24E-01	7.49E-01	Gamma Adjusted KM-UCL	2.00E+00	7.49E-01	mg/kg	95% UCL	Footnote (2)
	Benzo(a)pyrene	11 / 25	2.86E-01	6.52E-01	Gamma Adjusted KM-UCL	1.70E+00	6.52E-01	mg/kg	95% UCL	Footnote (2)
	Benzo(b)fluoranthene	13 / 25	3.80E-01	8.16E-01	Gamma Adjusted KM-UCL	2.10E+00	8.16E-01	mg/kg	95% UCL	Footnote (2)
	Benzo(k)fluoranthene	11 / 25	1.42E-01	2.33E-01	95% KM (t) UCL	7.90E-01	2.33E-01	mg/kg	95% UCL	Footnote (2)
	Chrysene	13 / 25	3.23E-01	7.36E-01	Gamma Adjusted KM-UCL	1.90E+00	7.36E-01	mg/kg	95% UCL	Footnote (2)
	Dibenzo(a,h)anthracene	9 / 25	7.51E-02	1.22E-01	95% KM (t) UCL	4.50E-01	1.22E-01	mg/kg	95% UCL	Footnote (2)
	Indeno(1,2,3-cd)pyrene	12 / 25	2.41E-01	3.91E-01	95% KM (t) UCL	1.40E+00	3.91E-01	mg/kg	95% UCL	Footnote (2)
	Naphthalene	8 / 25	1.70E-02	2.67E-02	95% KM (t) UCL	9.60E-02	2.67E-02	mg/kg	95% UCL	Footnote (2)
	ТРН									
	Diesel Range Organics (C10-C20)	1/2	4.90E+01	NC	NC	8.00E+01	8.00E+01	mg/kg	Max	Footnote (4)

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic (1) Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration	Ex	posure Point Co	ncentration (RM	E)
			(mg/kg)	(99)		(mg/kg)	Value	Units	Statistic (3)	Rationale
Vehicle	Dioxin									
Refueling Area	2,3,7,8-TCDD-TEQ	ND					ND			
_	Inorganics									
	Arsenic	ND					ND			
	Cobalt	ND					ND			
	Manganese	ND					ND			
	Nickel	ND					ND			
	Thallium	ND					ND			
	Vanadium	ND					ND			
	PCBs									
	Total PCBs	2/2	7.40E-02	NC	NC	1.40E-01	1.40E-01	mg/kg	Max	Footnote (4
	SVOCs									
	Benzo(a)anthracene	2/2	1.75E+00	NC	NC	2.60E+00	2.60E+00	mg/kg	Max	Footnote (4
	Benzo(a)pyrene	2/2	8.85E-01	NC	NC	1.30E+00	1.30E+00	mg/kg	Max	Footnote (4
	Benzo(b)fluoranthene	2/2	1.48E+00	NC	NC	2.20E+00	2.20E+00	mg/kg	Max	Footnote (4
	Benzo(k)fluoranthene	2/2	4.60E-01	NC	NC	6.10E-01	6.10E-01	mg/kg	Max	Footnote (4
	Chrysene	2/2	1.71E+00	NC	NC	2.50E+00	2.50E+00	mg/kg	Max	Footnote (4
	Dibenzo(a,h)anthracene	2/2	2.15E-01	NC	NC	3.10E-01	3.10E-01	mg/kg	Max	Footnote (4
	Indeno(1,2,3-cd)pyrene	2/2	5.55E-01	NC	NC	7.80E-01	7.80E-01	mg/kg	Max	Footnote (4
	Naphthalene	2/2	3.43E-01	NC	NC	6.30E-01	6.30E-01	mg/kg	Max	Footnote (4
	ТРН									
	Diesel Range Organics (C10-C20)	1 / 1	3.80E+02	NC	NC	3.80E+02	3.80E+02	mg/kg	Max	Footnote (4

Table 5-10

Exposure Point Concentration Summary — Surface Soil (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future Medium: Surface Soil Exposure Medium: Surface Soil

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration		posure Point Co	ncentration (RM	E)
			(mg/kg)			(mg/kg)	Value	Units	Statistic (3)	Rationale

Notes:

EPC - Exposure Point Concentration.

NC - Not Calculated.

ND - Not Detected in this area.

PCB - Polychlorinated Biphenyl.

RME - Reasonable Maximum Exposure.

SVOC - Semivolatile Organic Compound

TCDD-TEQ - 2,3,7,8-Dioxin-Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon

UCL - Upper confidence limit.

- (1) Arithmetic mean. For datasets with non-detects, ProUCL Version 5.1 used the Kaplan-Meier method to handle detection limits.
- (2) 95% Upper Confidence Limit (UCL) on the arithmetic mean concentration calculated using USEPA ProUCL Version 5.1. The UCL suggested by ProUCL is used, unless otherwise noted.

 In cases where more than one UCL is suggested, the higher UCL is used, unless otherwise noted. Where too few samples or detects are available, the 95% UCL is not calculated. See text for details.
- (3) The EPC is equal to the 95% UCL where a sufficient number of samples and/or detects are available. The EPC is equal to the maximum detected concentration where a sufficient number of samples and/or detects are not available to calculate a UCL. See text for details.
- (4) The 95% UCL exceeded the maximum detected concentration or was not calculated due to small sample size, and the maximum detected concentration was selected as the EPC.
- (5) ProUCL recommended the H-Stat UCL. Alternate UCL selected based on ProUCL technical guidance and review of data.

Exposure Point	Chemical of Potential Concern	Frequency of Detection	wean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration		Exposure Poir	nt Concentration (CTE)	
			(mg/kg)	(33)		(mg/kg)	Value	Units	Statistic	Rationale
Hypothetical	Dioxin 2,3,7,8-TCDD-TEQ Inorganics	2/2	1.89E-06	NC	NC	2.51E-06	1.89E-06	mg/kg	Mean	Footnote (2)
Future Park	Arsenic	2/2	2.20E+00	NC	NC	2.60E+00	2.20E+00	mg/kg	Mean	Footnote (2)
Land/Green Space	Cobalt	2/2	1.11E+02	NC	NC	1.30E+02	1.11E+02	mg/kg	Mean	Footnote (2)
Space	Manganese	2/2	1.18E+02	NC	NC	2.00E+02	1.18E+02	mg/kg	Mean	Footnote (2)
	Nickel	2/2	1.04E+01	NC	NC	1.20E+01	1.04E+01	mg/kg	Mean	Footnote (2)
	Thallium	ND					ND			
	Vanadium	2/2	3.70E+01	NC	NC	5.80E+01	3.70E+01	mg/kg	Mean	Footnote (2)
	PCBs									
	Total PCBs	3/4	4.42E-02	NC	NC	9.20E-02	4.42E-02	mg/kg	Mean	Footnote (2)
	SVOCs									
	Benzo(a)anthracene	4/4	1.37E-01	NC	NC	1.90E-01	1.37E-01	mg/kg	Mean	Footnote (2)
	Benzo(a)pyrene	4/4	1.55E-01	NC	NC	1.80E-01	1.55E-01	mg/kg	Mean	Footnote (2)
	Benzo(b)fluoranthene	4/4	1.65E-01	NC	NC	2.60E-01	1.65E-01	mg/kg	Mean	Footnote (2)
	Benzo(k)fluoranthene	4/4	6.80E-02	NC	NC	9.10E-02	6.80E-02	mg/kg	Mean	Footnote (2)
	Chrysene	4/4	1.53E-01	NC	NC	2.00E-01	1.53E-01	mg/kg	Mean	Footnote (2)
	Dibenzo(a,h)anthracene	4/4	3.23E-02	NC	NC	4.60E-02	3.23E-02	mg/kg	Mean	Footnote (2)
	Indeno(1,2,3-cd)pyrene	4/4	1.04E-01	NC	NC	1.50E-01	1.04E-01	mg/kg	Mean	Footnote (2)
	Naphthalene	2/4	1.22E-02	NC	NC	1.80E-02	1.22E-02	mg/kg	Mean	Footnote (2)
	трн)
	Diesel Range Organics (C10-C20)	1/2	1.30E+01	NC	NC	1.30E+01	1.30E+01	mg/kg	Maximum	Footnote (2)

Exposure Point	Chemical of Potential Concern	Frequency of Detection	wean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration		Exposure Poir	nt Concentration (CTE)	
			(mg/kg)	(3 3)		(mg/kg)	Value	Units	Statistic	Rationale
Warehouse and	Dioxin									
Laydown Area	2,3,7,8-TCDD-TEQ	22 / 22	1.51E-05	3.17E-05	95% Chebyshev (Mean, Sd) UCL	5.87E-05	1.51E-05	mg/kg	Mean	Footnote (2
	Inorganics									
	Arsenic	44 / 44	1.83E+01	3.85E+01	95% Chebyshev(Mean, Sd) UCL	1.90E+02	1.83E+01	mg/kg	Mean	Footnote (2
	Cobalt	44 / 44	1.95E+01	4.55E+01	95% Chebyshev (Mean, Sd) UCL	2.40E+02	1.95E+01	mg/kg	Mean	Footnote (2
	Manganese	44 / 44	3.99E+02	1.05E+03	95% Chebyshev(Mean, Sd) UCL	6.60E+03	3.99E+02	mg/kg	Mean	Footnote (2
	Nickel	44 / 44	5.13E+02	1.53E+03	95% Chebyshev (Mean, Sd) UCL	8.00E+03	5.13E+02	mg/kg	Mean	Footnote (2
	Thallium	29 / 44	1.31E-01	1.56E-01	95% KM Adjusted Gamma UCL	4.60E-01	1.31E-01	mg/kg	Mean	Footnote (2
	Vanadium	50 / 50	2.24E+03	7.06E+03	95% Chebyshev (Mean, Sd) UCL	4.20E+04	2.24E+03	mg/kg	Mean	Footnote (
	PCBs									
	Total PCBs	55 / 57	1.28E+00	5.19E+00	KM H-UCL	8.60E+00	1.28E+00	mg/kg	Mean	Footnote (2
	SVOCs									
	Benzo(a)anthracene	18 / 18	4.36E-01	5.83E-01	95% Student's-t UCL	1.20E+00	4.36E-01	mg/kg	Mean	Footnote (2
	Benzo(a)pyrene	18 / 18	4.31E-01	5.77E-01	95% Student's-t UCL	1.20E+00	4.31E-01	mg/kg	Mean	Footnote (2
	Benzo(b)fluoranthene	18 / 18	5.16E-01	6.81E-01	95% Student's-t UCL	1.40E+00	5.16E-01	mg/kg	Mean	Footnote (
	Benzo(k)fluoranthene	18 / 18	1.95E-01	2.58E-01	95% Student's-t UCL	5.40E-01	1.95E-01	mg/kg	Mean	Footnote (
	Chrysene	18 / 18	4.90E-01	6.39E-01	95% Student's-t UCL	1.30E+00	4.90E-01	mg/kg	Mean	Footnote (
	Dibenzo(a,h)anthracene	15 / 18	9.93E-02	1.50E-01	95% KM Adjusted Gamma UCL	3.10E-01	9.93E-02	mg/kg	Mean	Footnote (
	Indeno(1,2,3-cd)pyrene	18 / 18	3.19E-01	4.42E-01	95% Student's-t UCL	1.10E+00	3.19E-01	mg/kg	Mean	Footnote (
	Naphthalene	16 / 18	6.76E-02	1.14E-01	KM H-UCL	4.40E-01	6.76E-02	mg/kg	Mean	Footnote (
	ТРН									
	Diesel Range Organics (C10-C20)	7 / 12	9.62E+01	1.49E+02	95% KM (t) UCL	2.80E+02	9.62E+01	mg/kg	Mean	Footnote (2

February 2020

Table 5-11 Exposure Point Concentration Summary — Surface Soil (CTE) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic (1) Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration		Exposure Poir	nt Concentration (CTE)	
			(mg/kg)	(3 3/		(mg/kg)	Value	Units	Statistic	Rationale
Salvage Yard	Dioxin									
and Waste	2,3,7,8-TCDD-TEQ	23 / 23	6.10E-05	1.08E-04	95% Adjusted Gamma UCL	4.84E-04	6.10E-05	mg/kg	Mean	Footnote (2)
Storage Area	Inorganics									
	Arsenic	3/3	1.14E+01	NC	NC	1.40E+01	1.14E+01	mg/kg	Mean	Footnote (2)
	Cobalt	3/3	1.03E+01	NC	NC	1.70E+01	1.03E+01	mg/kg	Mean	Footnote (2)
	Manganese	3/3	2.77E+02	NC	NC	5.00E+02	2.77E+02	mg/kg	Mean	Footnote (2)
	Nickel	3/3	1.69E+01	NC	NC	2.70E+01	1.69E+01	mg/kg	Mean	Footnote (2)
	Thallium	3/3	1.80E-01	NC	NC	2.00E-01	1.80E-01	mg/kg	Mean	Footnote (2)
	Vanadium	3/3	2.47E+01	NC	NC	3.60E+01	2.47E+01	mg/kg	Mean	Footnote (2)
	PCBs									
	Total PCBs	40 / 41	1.14E+00	2.15E+00	Gamma Adjusted KM-UCL	1.40E+01	1.14E+00	mg/kg	Mean	Footnote (2)
	SVOCs									
	Benzo(a)anthracene	18 / 19	8.21E-01	1.34E+00	Gamma Adjusted KM-UCL	2.50E+00	8.21E-01	mg/kg	Mean	Footnote (2)
	Benzo(a)pyrene	18 / 19	7.80E-01	1.29E+00	Gamma Adjusted KM-UCL	2.50E+00	7.80E-01	mg/kg	Mean	Footnote (2)
	Benzo(b)fluoranthene	18 / 19	1.17E+00	2.03E+00	Gamma Adjusted KM-UCL	5.00E+00	1.17E+00	mg/kg	Mean	Footnote (2)
	Benzo(k)fluoranthene	18 / 19	3.57E-01	4.92E-01	95% KM (t) UCL	1.30E+00	3.57E-01	mg/kg	Mean	Footnote (2)
	Chrysene	18 / 19	8.58E-01	1.41E+00	95% GROS Adjusted Gamma UCL	2.50E+00	8.58E-01	mg/kg	Mean	Footnote (2)
	Dibenzo(a,h)anthracene	15 / 19	1.42E-01	2.40E-01	Gamma Adjusted KM-UCL	5.10E-01	1.42E-01	mg/kg	Mean	Footnote (2)
	Indeno(1,2,3-cd)pyrene	18 / 19	5.90E-01	9.69E-01	Gamma Adjusted KM-UCL	2.00E+00	5.90E-01	mg/kg	Mean	Footnote (2)
	Naphthalene	17 / 19	1.12E-01	1.66E-01	95% KM Adjusted Gamma UCL	3.20E-01	1.12E-01	mg/kg	Mean	Footnote (2)
	ТРН									
	Diesel Range Organics (C10-C20)	5/5	1.30E+03	NC	NC	3.40E+03	1.30E+03	mg/kg	Mean	Footnote (2)

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration		Exposure Poir	nt Concentration (CTE)	
			(mg/kg)	(55)		(mg/kg)	Value	Units	Statistic	Rationale
Stores and Fleet	Dioxin									
Maintenance Area	2,3,7,8-TCDD-TEQ	14 / 14	6.19E-06	1.45E-05	95% Adjusted Gamma UCL	2.23E-05	6.19E-06	mg/kg	Mean	Footnote (2)
	Inorganics									
	Arsenic	8/8	5.25E+00	NC	NC	7.50E+00	5.25E+00	mg/kg	Mean	Footnote (2)
	Cobalt	8/8	4.48E+00	NC	NC	7.90E+00	4.48E+00	mg/kg	Mean	Footnote (2)
	Manganese	8/8	1.18E+02	NC	NC	2.20E+02	1.18E+02	mg/kg	Mean	Footnote (2)
	Nickel	8/8	1.13E+01	NC	NC	3.10E+01	1.13E+01	mg/kg	Mean	Footnote (2)
	Thallium	5/8	1.03E-01	NC	NC	1.70E-01	1.03E-01	mg/kg	Mean	Footnote (2)
	Vanadium	8/8	2.08E+01	NC	NC	3.00E+01	2.08E+01	mg/kg	Mean	Footnote (2)
	PCBs									
	Total PCBs	24 / 27	6.80E-01	1.35E+00	Gamma Adjusted KM-UCL	4.80E+00	6.80E-01	mg/kg	Mean	Footnote (2)
	SVOCs									
	Benzo(a)anthracene	12 / 13	2.42E-01	3.70E-01	95% KM (t) UCL	9.00E-01	2.42E-01	mg/kg	Mean	Footnote (2)
	Benzo(a)pyrene	12 / 13	2.49E-01	5.41E-01	Gamma Adjusted KM-UCL	1.10E+00	2.49E-01	mg/kg	Mean	Footnote (2)
	Benzo(b)fluoranthene	12 / 13	3.24E-01	6.87E-01	Gamma Adjusted KM-UCL	1.40E+00	3.24E-01	mg/kg	Mean	Footnote (2)
	Benzo(k)fluoranthene	12 / 13	1.32E-01	2.73E-01	Gamma Adjusted KM-UCL	5.20E-01	1.32E-01	mg/kg	Mean	Footnote (2)
	Chrysene	12 / 13	3.02E-01	6.82E-01	Gamma Adjusted KM-UCL	1.40E+00	3.02E-01	mg/kg	Mean	Footnote (2)
	Dibenzo(a,h)anthracene	12 / 13	5.68E-02	1.39E-01	Gamma Adjusted KM-UCL	2.90E-01	5.68E-02	mg/kg	Mean	Footnote (2)
	Indeno(1,2,3-cd)pyrene	12 / 13	1.92E-01	4.37E-01	Gamma Adjusted KM-UCL	9.00E-01	1.92E-01	mg/kg	Mean	Footnote (2)
	Naphthalene	12 / 13	2.78E-02	4.00E-02	95% KM (t) UCL	6.70E-02	2.78E-02	mg/kg	Mean	Footnote (2)
	ТРН									
	Diesel Range Organics (C10-C20)	3/8	3.98E+01	NC	NC	1.70E+02	3.98E+01	mg/kg	Mean	Footnote (2)

xposure Point	Chemical of Potential Concern	Frequency of Detection	wean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration		Exposure Poir	nt Concentration (CTE)	ı
			(mg/kg)	(3 3)		(mg/kg)	Value	Units	Statistic	Rationale
Offices and	Dioxin									Τ
Parking Lot	2,3,7,8-TCDD-TEQ	2/2	9.63E-06	NC	NC	1.37E-05	9.63E-06	mg/kg	Mean	Footnote (2)
_	Inorganics									
	Arsenic	3/3	2.97E+00	NC	NC	3.70E+00	2.97E+00	mg/kg	Mean	Footnote (2)
	Cobalt	3/3	6.87E+00	NC	NC	1.10E+01	6.87E+00	mg/kg	Mean	Footnote (2
	Manganese	3/3	1.87E+02	NC	NC	2.60E+02	1.87E+02	mg/kg	Mean	Footnote (2
	Nickel	3/3	2.27E+01	NC	NC	3.00E+01	2.27E+01	mg/kg	Mean	Footnote (2
	Thallium	ND					ND			
	Vanadium	3/3	1.93E+01	NC	NC	2.30E+01	1.93E+01	mg/kg	Mean	Footnote (2
	PCBs									
	Total PCBs	5/5	2.34E-01	NC	NC	3.30E-01	2.34E-01	mg/kg	Mean	Footnote (2
	SVOCs									
	Benzo(a)anthracene	28 / 30	1.24E+00	2.79E+00	Gamma Adjusted KM-UCL	1.40E+01	1.24E+00	mg/kg	Mean	Footnote (2
	Benzo(a)pyrene	28 / 30	1.11E+00	2.27E+00	Gamma Adjusted KM-UCL	1.10E+01	1.11E+00	mg/kg	Mean	Footnote (2
	Benzo(b)fluoranthene	28 / 30	1.33E+00	2.58E+00	Gamma Adjusted KM-UCL	1.20E+01	1.33E+00	mg/kg	Mean	Footnote (2
	Benzo(k)fluoranthene	26 / 30	5.25E-01	1.12E+00	Gamma Adjusted KM-UCL	5.50E+00	5.25E-01	mg/kg	Mean	Footnote (2
	Chrysene	28 / 30	1.17E+00	2.45E+00	Gamma Adjusted KM-UCL	1.20E+01	1.17E+00	mg/kg	Mean	Footnote (
	Dibenzo(a,h)anthracene	25 / 30	2.47E-01	4.70E-01	Gamma Adjusted KM-UCL	2.20E+00	2.47E-01	mg/kg	Mean	Footnote (
	Indeno(1,2,3-cd)pyrene	28 / 30	7.78E-01	1.51E+00	Gamma Adjusted KM-UCL	7.10E+00	7.78E-01	mg/kg	Mean	Footnote (
	Naphthalene	20 / 30	3.93E-02	7.92E-02	Gamma Adjusted KM-UCL	4.10E-01	3.93E-02	mg/kg	Mean	Footnote (2
	ТРН									
	Diesel Range Organics (C10-C20)	ND					ND			

February 2020

Table 5-11 Exposure Point Concentration Summary — Surface Soil (CTE) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic (1) Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration		Exposure Poir	nt Concentration (CTI	≣)
			(mg/kg)	, , ,		(mg/kg)	Value	Units	Statistic	Rationale
Substation #7	Dioxin									
	2,3,7,8-TCDD-TEQ	1 / 1	4.37E-06	NC	NC	4.37E-06	4.37E-06	mg/kg	Mean	Footnote (2)
	Inorganics									
	Arsenic	4/4	1.00E+01	NC	NC	3.30E+01	1.00E+01	mg/kg	Mean	Footnote (2)
	Cobalt	4/4	4.03E+00	NC	NC	4.70E+00	4.03E+00	mg/kg	Mean	Footnote (2)
	Manganese	4/4	1.98E+02	NC	NC	3.70E+02	1.98E+02	mg/kg	Mean	Footnote (2)
	Nickel	4/4	1.04E+01	NC	NC	1.40E+01	1.04E+01	mg/kg	Mean	Footnote (2)
	Thallium	1 / 4	1.38E-01	NC	NC	2.50E-01	1.38E-01	mg/kg	Mean	Footnote (2)
	Vanadium	4/4	1.46E+01	NC	NC	2.30E+01	1.46E+01	mg/kg	Mean	Footnote (2)
	PCBs									
	Total PCBs	11 / 13	4.62E-01	8.85E+00	95% KM Bootstrap t UCL	5.10E+00	4.62E-01	mg/kg	Mean	Footnote (2)
	SVOCs									
	Benzo(a)anthracene	4/5	4.01E-01	NC	NC	1.80E+00	4.01E-01	mg/kg	Mean	Footnote (2)
	Benzo(a)pyrene	4/5	3.17E-01	NC	NC	1.40E+00	3.17E-01	mg/kg	Mean	Footnote (2)
	Benzo(b)fluoranthene	4/5	7.13E-01	NC	NC	3.20E+00	7.13E-01	mg/kg	Mean	Footnote (2)
	Benzo(k)fluoranthene	4/5	3.65E-01	NC	NC	1.70E+00	3.65E-01	mg/kg	Mean	Footnote (2)
	Chrysene	4/5	7.10E-01	NC	NC	3.20E+00	7.10E-01	mg/kg	Mean	Footnote (2)
	Dibenzo(a,h)anthracene	4/5	9.44E-02	NC	NC	4.00E-01	9.44E-02	mg/kg	Mean	Footnote (2)
	Indeno(1,2,3-cd)pyrene	4/5	2.95E-01	NC	NC	1.30E+00	2.95E-01	mg/kg	Mean	Footnote (2)
	Naphthalene	4/5	2.70E-02	NC	NC	6.70E-02	2.70E-02	mg/kg	Mean	Footnote (2)
	ТРН									
	Diesel Range Organics (C10-C20)	1 / 4	1.90E+01	NC	NC	2.00E+01	1.90E+01	mg/kg	Mean	Footnote (2)

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration		Exposure Poir	nt Concentration (CTE)	
			(mg/kg)	(3 3)		(mg/kg)	Value	Units	Statistic	Rationale
Transformer	Dioxin									
Shop	2,3,7,8-TCDD-TEQ	ND					ND			
	Inorganics									
	Arsenic	1 / 1	1.70E+00	NC	NC	1.70E+00	1.70E+00	mg/kg	Maximum	Footnote (2)
	Cobalt	1 / 1	2.70E+00	NC	NC	2.70E+00	2.70E+00	mg/kg	Maximum	Footnote (2)
	Manganese	1 / 1	2.60E+02	NC	NC	2.60E+02	2.60E+02	mg/kg	Maximum	Footnote (2)
	Nickel	1 / 1	1.60E+01	NC	NC	1.60E+01	1.60E+01	mg/kg	Maximum	Footnote (2)
	Thallium	ND					ND			
	Vanadium	1/1	9.70E+00	NC	NC	9.70E+00	9.70E+00	mg/kg	Maximum	Footnote (2)
	PCBs									
	Total PCBs	47 / 48	1.89E+02	2.01E+03	99% KM (Chebyshev) UCL	8.80E+03	1.89E+02	mg/kg	Mean	Footnote (2)
	SVOCs									
	Benzo(a)anthracene	13 / 25	3.24E-01	7.49E-01	Gamma Adjusted KM-UCL	2.00E+00	3.24E-01	mg/kg	Mean	Footnote (2)
	Benzo(a)pyrene	11 / 25	2.86E-01	6.52E-01	Gamma Adjusted KM-UCL	1.70E+00	2.86E-01	mg/kg	Mean	Footnote (2)
	Benzo(b)fluoranthene	13 / 25	3.80E-01	8.16E-01	Gamma Adjusted KM-UCL	2.10E+00	3.80E-01	mg/kg	Mean	Footnote (2)
	Benzo(k)fluoranthene	11 / 25	1.42E-01	2.33E-01	95% KM (t) UCL	7.90E-01	1.42E-01	mg/kg	Mean	Footnote (2)
	Chrysene	13 / 25	3.23E-01	7.36E-01	Gamma Adjusted KM-UCL	1.90E+00	3.23E-01	mg/kg	Mean	Footnote (2
	Dibenzo(a,h)anthracene	9 / 25	7.51E-02	1.22E-01	95% KM (t) UCL	4.50E-01	7.51E-02	mg/kg	Mean	Footnote (2
	Indeno(1,2,3-cd)pyrene	12 / 25	2.41E-01	3.91E-01	95% KM (t) UCL	1.40E+00	2.41E-01	mg/kg	Mean	Footnote (2
	Naphthalene	8 / 25	1.70E-02	2.67E-02	95% KM (t) UCL	9.60E-02	1.70E-02	mg/kg	Mean	Footnote (2
	ТРН									
	Diesel Range Organics (C10-C20)	1/2	4.90E+01	NC	NC	8.00E+01	8.00E+01	mg/kg	Maximum	Footnote (2)

Scenario Timeframe: Future Medium: Surface Soil Exposure Medium: Surface Soil

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic ⁽¹⁾ Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration		Exposure Poi	nt Concentration (CTE)	
			(mg/kg)	(99)		(mg/kg)	Value	Units	Statistic	Rationale
Vehicle	Dioxin									
Refueling Area	2,3,7,8-TCDD-TEQ	ND					ND			
	Inorganics									
	Arsenic	ND					ND			
	Cobalt	ND					ND			
	Manganese	ND					ND			
	Nickel	ND					ND			
	Thallium	ND					ND			
	Vanadium	ND					ND			
	PCBs									
	Total PCBs	2/2	7.40E-02	NC	NC	1.40E-01	7.40E-02	mg/kg	Mean	Footnote (2
	SVOCs									
	Benzo(a)anthracene	2/2	1.75E+00	NC	NC	2.60E+00	1.75E+00	mg/kg	Mean	Footnote (2
	Benzo(a)pyrene	2/2	8.85E-01	NC	NC	1.30E+00	8.85E-01	mg/kg	Mean	Footnote (2
	Benzo(b)fluoranthene	2/2	1.48E+00	NC	NC	2.20E+00	1.48E+00	mg/kg	Mean	Footnote (2
	Benzo(k)fluoranthene	2/2	4.60E-01	NC	NC	6.10E-01	4.60E-01	mg/kg	Mean	Footnote (2
	Chrysene	2/2	1.71E+00	NC	NC	2.50E+00	1.71E+00	mg/kg	Mean	Footnote (2
	Dibenzo(a,h)anthracene	2/2	2.15E-01	NC	NC	3.10E-01	2.15E-01	mg/kg	Mean	Footnote (2
	Indeno(1,2,3-cd)pyrene	2/2	5.55E-01	NC	NC	7.80E-01	5.55E-01	mg/kg	Mean	Footnote (2
	Naphthalene	2/2	3.43E-01	NC	NC	6.30E-01	3.43E-01	mg/kg	Mean	Footnote (2
	ТРН									
	Diesel Range Organics (C10-C20)	1/1	3.80E+02	NC	NC	3.80E+02	3.80E+02	mg/kg	Mean	Footnote (2

Notes:

CTE - Central Tendency Exposure.

EPC - Exposure Point Concentration.

NC - Not Calculated.

ND - Not Detected in this area.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound

TCDD-TEQ - 2,3,7,8-Dioxin-Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon

UCL - Upper confidence limit.

- (1) Arithmetic mean. For datasets with non-detects, ProUCL Version 5.1 used the Kaplan-Meier method to handle detection limits.
- (2) The EPC is the detected concentration for datasets with only one detected result. The EPC is the arithmetic mean for datasets with multiple detects, calculated as described above, in footnote (1).

Scenario Timeframe: Current/Future

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic (1) Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration	Ex	posure Point Co	ncentration (RM	E)
			(mg/kg)	(9/1.9/		(mg/kg)	Value	Units	Statistic (3)	Rationale
Hypothetical Future Park Land/Green Space	Dioxin 2,3,7,8-TCDD-TEQ Inorganics Arsenic Cobalt Manganese Nickel Thallium Vanadium PCBs Total PCBs SVOCs Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene Naphthalene TPH	4/4 4/4 4/4 4/4 4/4 6/19 10/13 10/13 10/13 10/13 10/13 10/13 10/13 8/13	1.14E-06 1.81E+00 5.85E+01 2.09E+02 7.08E+00 4.50E-02 2.37E+01 1.42E-02 1.05E-01 1.04E-01 1.24E-01 5.03E-01 1.13E-01 2.30E-02 7.09E-02 7.97E-03	NC NC NC NC NC NC NC 1.56E-01 1.50E-01 1.85E-01 7.24E-02 1.63E-01 3.33E-02 1.06E-01 1.15E-02	NC NC NC NC NC NC NC NC SS% KM (t) UCL	2.51E-06 2.60E+00 1.30E+02 3.70E+02 1.20E+01 5.30E-02 5.80E+01 9.20E-02 2.90E-01 2.90E-01 3.90E-01 1.30E-01 7.60E-02 2.50E-01 1.80E-02	2.51E-06 2.60E+00 1.30E+02 3.70E+02 1.20E+01 5.30E-02 5.80E+01 2.66E-02 1.56E-01 1.50E-01 1.85E-01 7.24E-02 1.63E-01 3.33E-02 1.06E-01 1.15E-02	mg/kg	Max Max Max Max Max Max Max Max	Footnote (4) Footnote (2)
	Diesel Range Organics (C10-C20)	1 / 11	1.30E+01	NC	NC	1.30E+01 ·	1.30E+01	mg/kg	Max	Footnote (4)

Scenario Timeframe: Current/Future

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic ⁽¹⁾ Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration	Ex	posure Point Co	oncentration (RM	IE)
	1 313111111 331133111	0. 20.00	(mg/kg)	(mg/kg)		(mg/kg)	Value	Units	Statistic (3)	Rationale
Warehouse and	Dioxin									
Laydown Area	2,3,7,8-TCDD-TEQ	25 / 25	1.35E-05	2.85E-05	95% Chebyshev(Mean, Sd) UCL	5.87E-05	2.85E-05	mg/kg	95% UCL	Footnote (2,5)
	Inorganics									
	Arsenic	74 / 74	1.40E+01	2.70E+01	95% Chebyshev(Mean, Sd) UCL	1.90E+02	2.70E+01	mg/kg	95% UCL	Footnote (2,5)
	Cobalt	74 / 74	1.41E+01	2.99E+01	95% Chebyshev (Mean, Sd) UCL	2.40E+02	2.99E+01	mg/kg	95% UCL	Footnote (2)
	Manganese	74 / 74	3.12E+02	7.05E+02	95% Chebyshev(Mean, Sd) UCL	6.60E+03	7.05E+02	mg/kg	95% UCL	Footnote (2,5)
	Nickel	74 / 74	3.20E+02	9.36E+02	95% Chebyshev (Mean, Sd) UCL	8.00E+03	9.36E+02	mg/kg	95% UCL	Footnote (2)
	Thallium	58 / 74	1.46E-01	2.45E-01	95% KM (Chebyshev) UCL	1.60E+00	2.45E-01	mg/kg	95% UCL	Footnote (2)
	Vanadium	80 / 80	1.47E+03	4.51E+03	95% Chebyshev (Mean, Sd) UCL	4.20E+04	4.51E+03	mg/kg	95% UCL	Footnote (2)
	PCBs									
	Total PCBs	152 / 172	1.16E+00	8.34E+00	KM H-UCL	1.40E+01	8.34E+00	mg/kg	95% UCL	Footnote (2)
	SVOCs									
	Benzo(a)anthracene	62 / 70	1.02E+00	2.85E+00	KM H-UCL	3.90E+01	2.85E+00	mg/kg	95% UCL	Footnote (2)
	Benzo(a)pyrene	58 / 70	9.08E-01	1.78E+00	KM H-UCL	3.40E+01	1.78E+00	mg/kg	95% UCL	Footnote (2)
	Benzo(b)fluoranthene	60 / 70	1.11E+00	3.90E+00	95% KM (Chebyshev) UCL	4.50E+01	3.90E+00	mg/kg	95% UCL	Footnote (2)
	Benzo(k)fluoranthene	59 / 70	3.99E-01	6.01E-01	KM H-UCL	1.60E+01	6.01E-01	mg/kg	95% UCL	Footnote (2)
	Chrysene	62 / 70	1.15E+00	3.94E+00	95% KM (Chebyshev) UCL	4.50E+01	3.94E+00	mg/kg	95% UCL	Footnote (2)
	Dibenzo(a,h)anthracene	53 / 70	1.99E-01	2.54E-01	KM H-UCL	7.40E+00	2.54E-01	mg/kg	95% UCL	Footnote (2)
	Indeno(1,2,3-cd)pyrene	58 / 70	5.70E-01	1.21E+00	KM H-UCL	2.10E+01	1.21E+00	mg/kg	95% UCL	Footnote (2)
	Naphthalene	57 / 70	7.16E-02	9.07E-02	95% KM Approximate Gamma UCL	4.40E-01	9.07E-02	mg/kg	95% UCL	Footnote (2)
	ТРН									
	Diesel Range Organics (C10-C20)	40 / 71	6.53E+02	8.23E+02	KM H-UCL	1.10E+04	8.23E+02	mg/kg	95% UCL	Footnote (2)

Scenario Timeframe: Current/Future

Medium: Soil (0-16 feet)

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic ⁽¹⁾ Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration	Ex	posure Point Co	oncentration (RM	E)
	1 0.0	0. 20.00	(mg/kg)	(9/1.9/		(mg/kg)	Value	Units	Statistic (3)	Rationale
Salvage Yard	Dioxin									
and Waste	2,3,7,8-TCDD-TEQ	30 / 30	4.87E-05	8.23E-05	95% Adjusted Gamma UCL	4.84E-04	8.23E-05	mg/kg	95% UCL	Footnote (2)
Storage Area	Inorganics									
	Arsenic	9/9	5.42E+00	NC	NC	1.40E+01	1.40E+01	mg/kg	Max	Footnote (4
	Cobalt	9/9	6.11E+00	NC	NC	1.70E+01	1.70E+01	mg/kg	Max	Footnote (4
	Manganese	9/9	1.42E+02	NC	NC	5.00E+02	5.00E+02	mg/kg	Max	Footnote (4
	Nickel	9/9	1.08E+01	NC	NC	2.70E+01	2.70E+01	mg/kg	Max	Footnote (4
	Thallium	9/9	1.30E-01	NC	NC	2.00E-01	2.00E-01	mg/kg	Max	Footnote (4
	Vanadium	9/9	2.37E+01	NC	NC	3.60E+01	3.60E+01	mg/kg	Max	Footnote (4
	PCBs									
	Total PCBs	90 / 110	6.59E-01	1.32E+00	95% KM (Chebyshev) UCL	1.40E+01	1.32E+00	mg/kg	95% UCL	Footnote (2
	SVOCs									
	Benzo(a)anthracene	81 / 97	1.02E+01	2.35E+01	KM H-UCL	5.30E+02	2.35E+01	mg/kg	95% UCL	Footnote (2
	Benzo(a)pyrene	80 / 97	8.48E+00	2.14E+01	KM H-UCL	4.20E+02	2.14E+01	mg/kg	95% UCL	Footnote (2
	Benzo(b)fluoranthene	79 / 97	1.03E+01	2.21E+01	KM H-UCL	5.10E+02	2.21E+01	mg/kg	95% UCL	Footnote (2
	Benzo(k)fluoranthene	78 / 97	4.03E+00	5.87E+00	KM H-UCL	2.00E+02	5.87E+00	mg/kg	95% UCL	Footnote (2
	Chrysene	82 / 97	9.11E+00	2.51E+01	KM H-UCL	4.50E+02	2.51E+01	mg/kg	95% UCL	Footnote (2
	Dibenzo(a,h)anthracene	67 / 97	1.10E+00	9.18E-01	KM H-UCL	6.20E+01	9.18E-01	mg/kg	95% UCL	Footnote (2
	Indeno(1,2,3-cd)pyrene	79 / 97	5.45E+00	1.29E+01	KM H-UCL	2.60E+02	1.29E+01	mg/kg	95% UCL	Footnote (2
	Naphthalene	71 / 97	1.80E+00	7.24E-01	KM H-UCL	1.30E+02	7.24E-01	mg/kg	95% UCL	Footnote (2
	ТРН									
	Diesel Range Organics (C10-C20)	13 / 25	6.63E+02	2.09E+03	Gamma Adjusted KM-UCL	7.90E+03	2.09E+03	mg/kg	95% UCL	Footnote (2

Scenario Timeframe: Current/Future

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic (1) Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration	Ехі	posure Point Co	ncentration (RM	E)
			(mg/kg)	(99)		(mg/kg)	Value	Units	Statistic (3)	Rationale
Stores and Fleet	Dioxin									
Maintenance Area	2,3,7,8-TCDD-TEQ	16 / 16	5.51E-06	1.25E-05	95% Adjusted Gamma UCL	2.23E-05	1.25E-05	mg/kg	95% UCL	Footnote (2)
	Inorganics									
	Arsenic	11 / 11	4.49E+00	5.56E+00	95% Student's-t UCL	7.50E+00	5.56E+00	mg/kg	95% UCL	Footnote (2)
	Cobalt	11 / 11	3.99E+00	5.09E+00	95% Student's-t UCL	7.90E+00	5.09E+00	mg/kg	95% UCL	Footnote (2)
	Manganese	11 / 11	1.18E+02	1.55E+02	95% Student's-t UCL	2.30E+02	1.55E+02	mg/kg	95% UCL	Footnote (2)
	Nickel	11 / 11	9.05E+00	2.19E+01	95% Chebyshev(Mean, Sd) UCL	3.10E+01	2.19E+01	mg/kg	95% UCL	Footnote (2,5)
	Thallium	7 / 11	9.16E-02	1.17E-01	95% KM (t) UCL	1.70E-01	1.17E-01	mg/kg	95% UCL	Footnote (2)
	Vanadium	11 / 11	1.99E+01	2.37E+01	95% Student's-t UCL	3.00E+01	2.37E+01	mg/kg	95% UCL	Footnote (2)
	PCBs									
	Total PCBs	56 / 76	4.94E-01	7.14E-01	95% KM Approximate Gamma UCL	4.80E+00	7.14E-01	mg/kg	95% UCL	Footnote (2)
	SVOCs									
	Benzo(a)anthracene	40 / 44	1.13E+00	4.63E+00	95% KM (Chebyshev) UCL	3.50E+01	4.63E+00	mg/kg	95% UCL	Footnote (2)
	Benzo(a)pyrene	40 / 44	6.65E-01	2.31E+00	95% KM (Chebyshev) UCL	1.60E+01	2.31E+00	mg/kg	95% UCL	Footnote (2)
	Benzo(b)fluoranthene	40 / 44	1.18E+00	4.66E+00	95% KM (Chebyshev) UCL	3.50E+01	4.66E+00	mg/kg	95% UCL	Footnote (2)
	Benzo(k)fluoranthene	39 / 44	3.02E-01	4.46E-01	KM H-UCL	7.10E+00	4.46E-01	mg/kg	95% UCL	Footnote (2)
	Chrysene	40 / 44	1.07E+00	4.25E+00	95% KM (Chebyshev) UCL	3.20E+01	4.25E+00	mg/kg	95% UCL	Footnote (2)
	Dibenzo(a,h)anthracene	35 / 44	1.28E-01	1.69E-01	KM H-UCL	2.90E+00	1.69E-01	mg/kg	95% UCL	Footnote (2)
	Indeno(1,2,3-cd)pyrene	39 / 44	3.87E-01	6.11E-01	KM H-UCL	7.80E+00	6.11E-01	mg/kg	95% UCL	Footnote (2)
	Naphthalene	37 / 44	5.77E-02	8.86E-02	KM H-UCL	6.80E-01	8.86E-02	mg/kg	95% UCL	Footnote (2)
	TPH									
	Diesel Range Organics (C10-C20)	7 / 24	5.15E+01	7.82E+01	95% KM (t) UCL	2.80E+02	7.82E+01	mg/kg	95% UCL	Footnote (2)

Scenario Timeframe: Current/Future

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic (1) Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration	Exp	posure Point Co	ncentration (RM	E)
			(mg/kg)	` 0 0,		(mg/kg)	Value	Units	Statistic (3)	Rationale
Offices and	Dioxin									
Parking Lot	2,3,7,8-TCDD-TEQ	4/4	6.57E-06	NC	NC	1.37E-05	1.37E-05	mg/kg	Max	Footnote (4)
	Inorganics									
	Arsenic	6/6	3.08E+00	NC	NC	4.20E+00	4.20E+00	mg/kg	Max	Footnote (4)
	Cobalt	6/6	8.25E+00	NC	NC	1.30E+01	1.30E+01	mg/kg	Max	Footnote (4)
	Manganese	6/6	2.05E+02	NC	NC	4.00E+02	4.00E+02	mg/kg	Max	Footnote (4)
	Nickel	6/6	1.83E+01	NC	NC	3.00E+01	3.00E+01	mg/kg	Max	Footnote (4)
	Thallium	3/6	8.89E-02	NC	NC	1.30E-01	1.30E-01	mg/kg	Max	Footnote (4)
	Vanadium	6/6	2.42E+01	NC	NC	3.60E+01	3.60E+01	mg/kg	Max	Footnote (4)
	PCBs									
	Total PCBs	11 / 22	1.08E-01	1.73E-01	95% KM (t) UCL	7.10E-01	1.73E-01	mg/kg	95% UCL	Footnote (2)
	SVOCs									
	Benzo(a)anthracene	152 / 165	1.07E+01	3.07E+01	95% KM (Chebyshev) UCL	7.20E+02	3.07E+01	mg/kg	95% UCL	Footnote (2)
	Benzo(a)pyrene	147 / 165	9.48E+00	2.72E+01	95% KM (Chebyshev) UCL	6.40E+02	2.72E+01	mg/kg	95% UCL	Footnote (2)
	Benzo(b)fluoranthene	148 / 165	9.11E+00	2.15E+01	95% KM (Chebyshev) UCL	4.20E+02	2.15E+01	mg/kg	95% UCL	Footnote (2)
	Benzo(k)fluoranthene	142 / 165	6.15E+00	2.15E+01	95% KM (Chebyshev) UCL	5.70E+02	2.15E+01	mg/kg	95% UCL	Footnote (2)
	Chrysene	151 / 165	9.54E+00	2.68E+01	95% KM (Chebyshev) UCL	6.20E+02	2.68E+01	mg/kg	95% UCL	Footnote (2)
	Dibenzo(a,h)anthracene	129 / 165	1.80E+00	7.68E+00	KM H-UCL	1.00E+02	7.68E+00	mg/kg	95% UCL	Footnote (2)
	Indeno(1,2,3-cd)pyrene	147 / 165	6.29E+00	1.68E+01	95% KM (Chebyshev) UCL	3.80E+02	1.68E+01	mg/kg	95% UCL	Footnote (2)
	Naphthalene	105 / 165	1.06E+00	1.12E+00	KM H-UCL	1.00E+02	1.12E+00	mg/kg	95% UCL	Footnote (2)
	ТРН									
	Diesel Range Organics (C10-C20)	1 / 12	1.86E+01	NC	NC	2.30E+01	2.30E+01	mg/kg	Max	Footnote (4)

Scenario Timeframe: Current/Future

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic (1) Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration	Ex	posure Point Co	ncentration (RM	E)
			(mg/kg)	(33)		(mg/kg)	Value	Units	Statistic (3)	Rationale
Substation #7	Dioxin									
	2,3,7,8-TCDD-TEQ	2/2	2.37E-06	NC	NC	4.37E-06	4.37E-06	mg/kg	Max	Footnote (4)
	Inorganics									
	Arsenic	7/7	6.64E+00	NC	NC	3.30E+01	3.30E+01	mg/kg	Max	Footnote (4)
	Cobalt	7 / 7	3.79E+00	NC	NC	4.70E+00	4.70E+00	mg/kg	Max	Footnote (4)
	Manganese	7/7	1.34E+02	NC	NC	3.70E+02	3.70E+02	mg/kg	Max	Footnote (4)
	Nickel	7/7	7.56E+00	NC	NC	1.40E+01	1.40E+01	mg/kg	Max	Footnote (4)
	Thallium	3/7	6.44E-02	NC	NC	2.50E-01	2.50E-01	mg/kg	Max	Footnote (4)
	Vanadium	7 / 7	1.60E+01	NC	NC	3.20E+01	3.20E+01	mg/kg	Max	Footnote (4)
	PCBs									
	Total PCBs	13 / 25	2.41E-01	1.56E+00	Gamma Adjusted KM-UCL	5.10E+00	1.56E+00	mg/kg	95% UCL	Footnote (2)
	SVOCs									
	Benzo(a)anthracene	6 / 12	1.71E-01	4.47E+00	95% KM Bootstrap t UCL	1.80E+00	1.80E+00	mg/kg	Max	Footnote (4)
	Benzo(a)pyrene	6 / 12	1.36E-01	1.34E+00	99% KM (Chebyshev) UCL	1.40E+00	1.34E+00	mg/kg	95% UCL	Footnote (2)
	Benzo(b)fluoranthene	7 / 12	2.99E-01	1.07E+01	95% KM Bootstrap t UCL	3.20E+00	3.20E+00	mg/kg	Max	Footnote (4)
	Benzo(k)fluoranthene	6 / 12	1.54E-01	1.62E+00	99% KM (Chebyshev) UCL	1.70E+00	1.62E+00	mg/kg	95% UCL	Footnote (2)
	Chrysene	6 / 12	2.99E-01	1.44E+01	95% KM Bootstrap t UCL	3.20E+00	3.20E+00	mg/kg	Max	Footnote (4)
	Dibenzo(a,h)anthracene	6 / 12	4.04E-02	9.72E-01	95% KM Bootstrap t UCL	4.00E-01	4.00E-01	mg/kg	Max	Footnote (4)
	Indeno(1,2,3-cd)pyrene	6 / 12	1.26E-01	3.32E+00	95% KM Bootstrap t UCL	1.30E+00	1.30E+00	mg/kg	Max	Footnote (4)
	Naphthalene	4 / 12	1.41E-02	NC	NC	6.70E-02	6.70E-02	mg/kg	Max	Footnote (4)
	ТРН									
	Diesel Range Organics (C10-C20)	1 / 14	1.82E+01	NC	NC	2.00E+01	2.00E+01	mg/kg	Max	Footnote (4)

Scenario Timeframe: Current/Future

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic (1) Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration	Ex	posure Point Co	ncentration (RM	E)
			(mg/kg)	` 0 0,		(mg/kg)	Value	Units	Statistic (3)	Rationale
Transformer	Dioxin									
Shop	2,3,7,8-TCDD-TEQ	ND					ND			
	Inorganics									
	Arsenic	3/3	3.40E+00	NC	NC	7.70E+00	7.70E+00	mg/kg	Max	Footnote (4)
	Cobalt	3/3	3.47E+00	NC	NC	6.50E+00	6.50E+00	mg/kg	Max	Footnote (4)
	Manganese	3/3	1.57E+02	NC	NC	2.60E+02	2.60E+02	mg/kg	Max	Footnote (4)
	Nickel	3/3	1.39E+01	NC	NC	2.30E+01	2.30E+01	mg/kg	Max	Footnote (4)
	Thallium	2/3	1.13E-01	NC	NC	1.70E-01	1.70E-01	mg/kg	Max	Footnote (4)
	Vanadium	3/3	1.66E+01	NC	NC	2.30E+01	2.30E+01	mg/kg	Max	Footnote (4)
	PCBs									
	Total PCBs	125 / 136	7.46E+01	1.26E+02	KM H-UCL	8.80E+03	1.26E+02	mg/kg	95% UCL	Footnote (2)
	SVOCs									
	Benzo(a)anthracene	79 / 99	2.23E+00	3.04E+00	95% KM Approximate Gamma UCL	2.30E+01	3.04E+00	mg/kg	95% UCL	Footnote (2)
	Benzo(a)pyrene	77 / 99	1.87E+00	2.52E+00	95% KM Approximate Gamma UCL	1.80E+01	2.52E+00	mg/kg	95% UCL	Footnote (2)
	Benzo(b)fluoranthene	79 / 99	2.44E+00	3.25E+00	95% KM Approximate Gamma UCL	2.30E+01	3.25E+00	mg/kg	95% UCL	Footnote (2)
	Benzo(k)fluoranthene	74 / 99	9.18E-01	1.22E+00	95% KM Approximate Gamma UCL	8.20E+00	1.22E+00	mg/kg	95% UCL	Footnote (2)
	Chrysene	79 / 99	2.05E+00	2.77E+00	95% KM Approximate Gamma UCL	2.00E+01	2.77E+00	mg/kg	95% UCL	Footnote (2)
	Dibenzo(a,h)anthracene	68 / 99	4.25E-01	5.67E-01	95% KM Approximate Gamma UCL	4.20E+00	5.67E-01	mg/kg	95% UCL	Footnote (2)
	Indeno(1,2,3-cd)pyrene	79 / 99	1.38E+00	1.82E+00	95% KM Approximate Gamma UCL	1.30E+01	1.82E+00	mg/kg	95% UCL	Footnote (2)
	Naphthalene	47 / 99	9.91E-02	1.94E-01	KM H-UCL	1.10E+00	1.94E-01	mg/kg	95% UCL	Footnote (2)
	ТРН									
	Diesel Range Organics (C10-C20)	3 / 12	1.86E+01	NC	NC	8.00E+01	8.00E+01	mg/kg	Max	Footnote (4)

Scenario Timeframe: Current/Future

Exposure Point	Chemical of Potential Concern	Frequency of Detection	wean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration	Ex	posure Point Co	ncentration (RM	E)
			(mg/kg)	(9,9)		(mg/kg)	Value	Units	Statistic (3)	Rationale
Vehicle	Dioxin									
Refueling Area	2,3,7,8-TCDD-TEQ	ND					ND			
	Inorganics									
	Arsenic	5/5	2.48E+00	NC	NC	3.70E+00	3.70E+00	mg/kg	Max	Footnote (4)
	Cobalt	5/5	5.52E+00	NC	NC	7.30E+00	7.30E+00	mg/kg	Max	Footnote (4)
	Manganese	5/5	1.41E+02	NC	NC	2.00E+02	2.00E+02	mg/kg	Max	Footnote (4)
	Nickel	5/5	6.34E+00	NC	NC	1.20E+01	1.20E+01	mg/kg	Max	Footnote (4)
	Thallium	4/5	1.03E-01	NC	NC	1.50E-01	1.50E-01	mg/kg	Max	Footnote (4)
	Vanadium	5/5	2.18E+01	NC	NC	2.90E+01	2.90E+01	mg/kg	Max	Footnote (4)
	PCBs									
	Total PCBs	10 / 19	2.32E-02	6.03E-02	Gamma Adjusted KM-UCL	1.40E-01	6.03E-02	mg/kg	95% UCL	Footnote (2)
	SVOCs									
	Benzo(a)anthracene	16 / 19	3.73E-01	8.96E-01	Gamma Adjusted KM-UCL	2.60E+00	8.96E-01	mg/kg	95% UCL	Footnote (2)
	Benzo(a)pyrene	14 / 19	3.28E-01	6.81E-01	Gamma Adjusted KM-UCL	1.40E+00	6.81E-01	mg/kg	95% UCL	Footnote (2)
	Benzo(b)fluoranthene	15 / 19	4.40E-01	1.01E+00	Gamma Adjusted KM-UCL	2.30E+00	1.01E+00	mg/kg	95% UCL	Footnote (2)
	Benzo(k)fluoranthene	14 / 19	1.26E-01	2.63E-01	Gamma Adjusted KM-UCL	6.10E-01	2.63E-01	mg/kg	95% UCL	Footnote (2)
	Chrysene	16 / 19	3.91E-01	8.78E-01	Gamma Adjusted KM-UCL	2.50E+00	8.78E-01	mg/kg	95% UCL	Footnote (2)
	Dibenzo(a,h)anthracene	11 / 19	7.31E-02	1.17E-01	95% KM (t) UCL	3.10E-01	1.17E-01	mg/kg	95% UCL	Footnote (2)
	Indeno(1,2,3-cd)pyrene	14 / 19	2.11E-01	4.50E-01	Gamma Adjusted KM-UCL	1.00E+00	4.50E-01	mg/kg	95% UCL	Footnote (2)
	Naphthalene	12 / 19	7.18E-02	2.37E-01	Gamma Adjusted KM-UCL	6.30E-01	2.37E-01	mg/kg	95% UCL	Footnote (2)
	ТРН									
	Diesel Range Organics (C10-C20)	5 / 12	7.07E+01	NC	NC	3.80E+02	3.80E+02	mg/kg	Max	Footnote (4)

Scenario Timeframe: Current/Future

Medium: Soil (0-16 feet)

Exposure Medium: Soil (0-16 feet)

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration		posure Point Co	ncentration (RMI	E)
			(mg/kg)	, , ,		(mg/kg)	Value	Units	Statistic (3)	Rationale

Notes:

EPC - Exposure Point Concentration.
PCB - Polychlorinated Biphenyl.

r CB - r diyenlerinated biprieri

NC - Not Calculated.

ND - Not Detected in this area.

RME - Reasonable Maximum Exposure.

SVOC - Semivolatile Organic Compound

TCDD-TEQ - 2,3,7,8-Dioxin-Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon

UCL - Upper confidence limit.

- (1) Arithmetic mean. For datasets with non-detects, ProUCL Version 5.1 used the Kaplan-Meier method to handle detection limits.
- (2) 95% Upper Confidence Limit (UCL) on the arithmetic mean concentration calculated using USEPA ProUCL Version 5.1. The UCL suggested by ProUCL is used, unless otherwise noted.

 In cases where more than one UCL is suggested, the higher UCL is used, unless otherwise noted. Where too few samples or detects are available, the 95% UCL is not calculated. See text for details.
- (3) The EPC is equal to the 95% UCL where a sufficient number of samples and/or detects are available. The EPC is equal to the maximum detected concentration where a sufficient number of samples and/or detects are not available to calculate a UCL. See text for details.
- (4) The 95% UCL exceeded the maximum detected concentration or was not calculated due to small sample size, and the maximum detected concentration was selected as the EPC.
- (5) ProUCL recommended the H-Stat UCL. Alternate UCL selected based on ProUCL technical guidance and review of data.

Scenario Timeframe: Current/Future

Medium: Soil (0-16 feet)

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic (1) Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration		Exposure Poin	t Concentration (CTE)	
			(mg/kg)	(3 3/		(mg/kg)	Value	Units	Statistic	Rationale
	Dioxin									
	2,3,7,8-TCDD-TEQ	4 / 4	1.14E-06	NC	NC	2.51E-06	1.14E-06	mg/kg	Mean	Footnote (2)
Hypothetical	Inorganics									
Future Park	Arsenic	4/4	1.81E+00	NC	NC	2.60E+00	1.81E+00	mg/kg	Mean	Footnote (2)
Land/Green	Cobalt	4/4	5.85E+01	NC	NC	1.30E+02	5.85E+01	mg/kg	Mean	Footnote (2)
Space	Manganese	4/4	2.09E+02	NC	NC	3.70E+02	2.09E+02	mg/kg	Mean	Footnote (2)
	Nickel	4/4	7.08E+00	NC	NC	1.20E+01	7.08E+00	mg/kg	Mean	Footnote (2)
	Thallium	2/4	4.50E-02	NC	NC	5.30E-02	4.50E-02	mg/kg	Mean	Footnote (2)
	Vanadium	4/4	2.37E+01	NC	NC	5.80E+01	2.37E+01	mg/kg	Mean	Footnote (2)
	PCBs									
	Total PCBs	6/19	1.42E-02	2.66E-02	95% KM (t) UCL	9.20E-02	1.42E-02	mg/kg	Mean	Footnote (2)
	SVOCs									
	Benzo(a)anthracene	10 / 13	1.05E-01	1.56E-01	95% KM (t) UCL	2.90E-01	1.05E-01	mg/kg	Mean	Footnote (2)
	Benzo(a)pyrene	10 / 13	1.04E-01	1.50E-01	95% KM (t) UCL	2.90E-01	1.04E-01	mg/kg	Mean	Footnote (2)
	Benzo(b)fluoranthene	10 / 13	1.24E-01	1.85E-01	95% KM (t) UCL	3.90E-01	1.24E-01	mg/kg	Mean	Footnote (2)
	Benzo(k)fluoranthene	10 / 13	5.03E-01	7.24E-02	95% KM (t) UCL	1.30E-01	5.03E-01	mg/kg	Mean	Footnote (2)
	Chrysene	10 / 13	1.13E-01	1.63E-01	95% KM (t) UCL	3.10E-01	1.13E-01	mg/kg	Mean	Footnote (2)
	Dibenzo(a,h)anthracene	10 / 13	2.30E-02	3.33E-02	95% KM (t) UCL	7.60E-02	2.30E-02	mg/kg	Mean	Footnote (2)
	Indeno(1,2,3-cd)pyrene	10 / 13	7.09E-02	1.06E-01	95% KM (t) UCL	2.50E-01	7.09E-02	mg/kg	Mean	Footnote (2)
	Naphthalene	8 / 13	7.97E-03	1.15E-02	95% KM (t) UCL	1.80E-02	7.97E-03	mg/kg	Mean	Footnote (2)
	трн									
	Diesel Range Organics (C10-C20)	1 / 11	1.30E+01	NC	NC	1.30E+01	1.30E+01	mg/kg	Maximum	Footnote (2)
										1

Scenario Timeframe: Current/Future

Medium: Soil (0-16 feet)

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic (1) Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration		Exposure Poin	t Concentration (CTE)	
			(mg/kg)	(3 3)		(mg/kg)	Value	Units	Statistic	Rationale
Warehouse and	Dioxin									
Laydown Area	2,3,7,8-TCDD-TEQ	25 / 25	1.35E-05	2.85E-05	95% Chebyshev(Mean, Sd) UCL	5.87E-05	1.35E-05	mg/kg	Mean	Footnote (2)
	Inorganics									
	Arsenic	74 / 74	1.40E+01	2.70E+01	95% Chebyshev(Mean, Sd) UCL	1.90E+02	1.40E+01	mg/kg	Mean	Footnote (2)
	Cobalt	74 / 74	1.41E+01	2.99E+01	95% Chebyshev (Mean, Sd) UCL	2.40E+02	1.41E+01	mg/kg	Mean	Footnote (2)
	Manganese	74 / 74	3.12E+02	7.05E+02	95% Chebyshev(Mean, Sd) UCL	6.60E+03	3.12E+02	mg/kg	Mean	Footnote (2)
	Nickel	74 / 74	3.20E+02	9.36E+02	95% Chebyshev (Mean, Sd) UCL	8.00E+03	3.20E+02	mg/kg	Mean	Footnote (2)
	Thallium	58 / 74	1.46E-01	2.45E-01	95% KM (Chebyshev) UCL	1.60E+00	1.46E-01	mg/kg	Mean	Footnote (2)
	Vanadium	80 / 80	1.47E+03	4.51E+03	95% Chebyshev (Mean, Sd) UCL	4.20E+04	1.47E+03	mg/kg	Mean	Footnote (2)
	PCBs									
	Total PCBs	152 / 172	1.16E+00	8.34E+00	KM H-UCL	1.40E+01	1.16E+00	mg/kg	Mean	Footnote (2)
	SVOCs									
	Benzo(a)anthracene	62 / 70	1.02E+00	2.85E+00	KM H-UCL	3.90E+01	1.02E+00	mg/kg	Mean	Footnote (2)
	Benzo(a)pyrene	58 / 70	9.08E-01	1.78E+00	KM H-UCL	3.40E+01	9.08E-01	mg/kg	Mean	Footnote (2)
	Benzo(b)fluoranthene	60 / 70	1.11E+00	3.90E+00	95% KM (Chebyshev) UCL	4.50E+01	1.11E+00	mg/kg	Mean	Footnote (2)
	Benzo(k)fluoranthene	59 / 70	3.99E-01	6.01E-01	KM H-UCL	1.60E+01	3.99E-01	mg/kg	Mean	Footnote (2)
	Chrysene	62 / 70	1.15E+00	3.94E+00	95% KM (Chebyshev) UCL	4.50E+01	1.15E+00	mg/kg	Mean	Footnote (2)
	Dibenzo(a,h)anthracene	53 / 70	1.99E-01	2.54E-01	KM H-UCL	7.40E+00	1.99E-01	mg/kg	Mean	Footnote (2)
	Indeno(1,2,3-cd)pyrene	58 / 70	5.70E-01	1.21E+00	KM H-UCL	2.10E+01	5.70E-01	mg/kg	Mean	Footnote (2)
	Naphthalene	57 / 70	7.16E-02	9.07E-02	95% KM Approximate Gamma UCL	4.40E-01	7.16E-02	mg/kg	Mean	Footnote (2)
	ТРН									
	Diesel Range Organics (C10-C20)	40 / 71	6.53E+02	8.23E+02	KM H-UCL	1.10E+04	6.53E+02	mg/kg	Mean	Footnote (2)

Scenario Timeframe: Current/Future

Medium: Soil (0-16 feet)

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic ⁽¹⁾ Mean (mg/kg)	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration (mg/kg)	Exposure Point Concentration (CTE)			
							Value	Units	Statistic	Rationale
Salvage Yard	Dioxin	00 / 00	4.075.05	0.005.05	050/ A l' - t - 1 0 1101	4.045.04	4.075.05		M	F (0)
•	2,3,7,8-TCDD-TEQ Inorganics	30 / 30	4.87E-05	8.23E-05	95% Adjusted Gamma UCL	4.84E-04	4.87E-05	mg/kg	Mean	Footnote (2)
	Arsenic	9/9	5.42E+00	NC	NC	1.40E+01	5.42E+00	mg/kg	Mean	Footnote (2)
	Cobalt	9/9	6.11E+00	NC	NC	1.70E+01	6.11E+00	mg/kg	Mean	Footnote (2)
	Manganese	9/9	1.42E+02	NC	NC	5.00E+02	1.42E+02	mg/kg	Mean	Footnote (2)
	Nickel	9/9	1.08E+01	NC	NC	2.70E+01	1.08E+01	mg/kg	Mean	Footnote (2)
	Thallium	9/9	1.30E-01	NC	NC	2.00E-01	1.30E-01	mg/kg	Mean	Footnote (2)
	Vanadium	9/9	2.37E+01	NC	NC	3.60E+01	2.37E+01	mg/kg	Mean	Footnote (2)
	PCBs									
	Total PCBs	90 / 110	6.59E-01	1.32E+00	95% KM (Chebyshev) UCL	1.40E+01	6.59E-01	mg/kg	Mean	Footnote (2)
	SVOCs									
	Benzo(a)anthracene	81 / 97	1.02E+01	2.35E+01	KM H-UCL	5.30E+02	1.02E+01	mg/kg	Mean	Footnote (2)
	Benzo(a)pyrene	80 / 97	8.48E+00	2.14E+01	KM H-UCL	4.20E+02	8.48E+00	mg/kg	Mean	Footnote (2)
	Benzo(b)fluoranthene	79 / 97	1.03E+01	2.21E+01	KM H-UCL	5.10E+02	1.03E+01	mg/kg	Mean	Footnote (2)
	Benzo(k)fluoranthene	78 / 97	4.03E+00	5.87E+00	KM H-UCL	2.00E+02	4.03E+00	mg/kg	Mean	Footnote (2)
	Chrysene	82 / 97	9.11E+00	2.51E+01	KM H-UCL	4.50E+02	9.11E+00	mg/kg	Mean	Footnote (2)
	Dibenzo(a,h)anthracene	67 / 97	1.10E+00	9.18E-01	KM H-UCL	6.20E+01	1.10E+00	mg/kg	Mean	Footnote (2)
	Indeno(1,2,3-cd)pyrene	79 / 97	5.45E+00	1.29E+01	KM H-UCL	2.60E+02	5.45E+00	mg/kg	Mean	Footnote (2)
	Naphthalene	71 / 97	1.80E+00	7.24E-01	KM H-UCL	1.30E+02	1.80E+00	mg/kg	Mean	Footnote (2)
	TPH									
	Diesel Range Organics (C10-C20)	13 / 25	6.63E+02	2.09E+03	Gamma Adjusted KM-UCL	7.90E+03	6.63E+02	mg/kg	Mean	Footnote (2)

Scenario Timeframe: Current/Future

Medium: Soil (0-16 feet)

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic ⁽¹⁾ Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration		Exposure Point	Concentration (CTE)
			(mg/kg)	` 0 0,		(mg/kg)	Value	Units	Statistic	Rationale
Stores and Fleet	Dioxin									
Maintenance Area	2,3,7,8-TCDD-TEQ	16 / 16	5.51E-06	1.25E-05	95% Adjusted Gamma UCL	2.23E-05	5.51E-06	mg/kg	Mean	Footnote (2)
	Inorganics									
	Arsenic	11 / 11	4.49E+00	5.56E+00	95% Student's-t UCL	7.50E+00	4.49E+00	mg/kg	Mean	Footnote (2)
	Cobalt	11 / 11	3.99E+00	5.09E+00	95% Student's-t UCL	7.90E+00	3.99E+00	mg/kg	Mean	Footnote (2)
	Manganese	11 / 11	1.18E+02	1.55E+02	95% Student's-t UCL	2.30E+02	1.18E+02	mg/kg	Mean	Footnote (2)
	Nickel	11 / 11	9.05E+00	2.19E+01	95% Chebyshev(Mean, Sd) UCL	3.10E+01	9.05E+00	mg/kg	Mean	Footnote (2)
	Thallium	7 / 11	9.16E-02	1.17E-01	95% KM (t) UCL	1.70E-01	9.16E-02	mg/kg	Mean	Footnote (2)
	Vanadium	11 / 11	1.99E+01	2.37E+01	95% Student's-t UCL	3.00E+01	1.99E+01	mg/kg	Mean	Footnote (2)
	PCBs									
	Total PCBs	56 / 76	4.94E-01	7.14E-01	95% KM Approximate Gamma UCL	4.80E+00	4.94E-01	mg/kg	Mean	Footnote (2)
	SVOCs									
	Benzo(a)anthracene	40 / 44	1.13E+00	4.63E+00	95% KM (Chebyshev) UCL	3.50E+01	1.13E+00	mg/kg	Mean	Footnote (2)
	Benzo(a)pyrene	40 / 44	6.65E-01	2.31E+00	95% KM (Chebyshev) UCL	1.60E+01	6.65E-01	mg/kg	Mean	Footnote (2)
	Benzo(b)fluoranthene	40 / 44	1.18E+00	4.66E+00	95% KM (Chebyshev) UCL	3.50E+01	1.18E+00	mg/kg	Mean	Footnote (2)
	Benzo(k)fluoranthene	39 / 44	3.02E-01	4.46E-01	KM H-UCL	7.10E+00	3.02E-01	mg/kg	Mean	Footnote (2)
	Chrysene	40 / 44	1.07E+00	4.25E+00	95% KM (Chebyshev) UCL	3.20E+01	1.07E+00	mg/kg	Mean	Footnote (2)
	Dibenzo(a,h)anthracene	35 / 44	1.28E-01	1.69E-01	KM H-UCL	2.90E+00	1.28E-01	mg/kg	Mean	Footnote (2)
	Indeno(1,2,3-cd)pyrene	39 / 44	3.87E-01	6.11E-01	KM H-UCL	7.80E+00	3.87E-01	mg/kg	Mean	Footnote (2)
	Naphthalene	37 / 44	5.77E-02	8.86E-02	KM H-UCL	6.80E-01	5.77E-02	mg/kg	Mean	Footnote (2)
	ТРН									
	Diesel Range Organics (C10-C20)	7 / 24	5.15E+01	7.82E+01	95% KM (t) UCL	2.80E+02	5.15E+01	mg/kg	Mean	Footnote (2)

Scenario Timeframe: Current/Future

Medium: Soil (0-16 feet)

Offices and Dic		of Detection	Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration		Exposure Poin		
Off Dic			(mg/kg)	` 0 0,		(mg/kg)	Value	Units	Statistic	Rationale
Offices and	ioxin									
Parking Lot 2	2,3,7,8-TCDD-TEQ	4/4	6.57E-06	NC	NC	1.37E-05	6.57E-06	mg/kg	Mean	Footnote (2)
Inc	organics									
/	Arsenic	6/6	3.08E+00	NC	NC	4.20E+00	3.08E+00	mg/kg	Mean	Footnote (2)
(Cobalt	6/6	8.25E+00	NC	NC	1.30E+01	8.25E+00	mg/kg	Mean	Footnote (2)
1	Manganese	6/6	2.05E+02	NC	NC	4.00E+02	2.05E+02	mg/kg	Mean	Footnote (2)
1	Nickel	6/6	1.83E+01	NC	NC	3.00E+01	1.83E+01	mg/kg	Mean	Footnote (2)
7	Thallium	3/6	8.89E-02	NC	NC	1.30E-01	8.89E-02	mg/kg	Mean	Footnote (2)
١	Vanadium	6/6	2.42E+01	NC	NC	3.60E+01	2.42E+01	mg/kg	Mean	Footnote (2)
PC	CBs									
٦ -	Total PCBs	11 / 22	1.08E-01	1.73E-01	95% KM (t) UCL	7.10E-01	1.08E-01	mg/kg	Mean	Footnote (2)
sv	VOCs									
F	Benzo(a)anthracene	152 / 165	1.07E+01	3.07E+01	95% KM (Chebyshev) UCL	7.20E+02	1.07E+01	mg/kg	Mean	Footnote (2)
F	Benzo(a)pyrene	147 / 165	9.48E+00	2.72E+01	95% KM (Chebyshev) UCL	6.40E+02	9.48E+00	mg/kg	Mean	Footnote (2)
F	Benzo(b)fluoranthene	148 / 165	9.11E+00	2.15E+01	95% KM (Chebyshev) UCL	4.20E+02	9.11E+00	mg/kg	Mean	Footnote (2)
F	Benzo(k)fluoranthene	142 / 165	6.15E+00	2.15E+01	95% KM (Chebyshev) UCL	5.70E+02	6.15E+00	mg/kg	Mean	Footnote (2)
(Chrysene	151 / 165	9.54E+00	2.68E+01	95% KM (Chebyshev) UCL	6.20E+02	9.54E+00	mg/kg	Mean	Footnote (2)
Г	Dibenzo(a,h)anthracene	129 / 165	1.80E+00	7.68E+00	KM H-UCL	1.00E+02	1.80E+00	mg/kg	Mean	Footnote (2)
1	Indeno(1,2,3-cd)pyrene	147 / 165	6.29E+00	1.68E+01	95% KM (Chebyshev) UCL	3.80E+02	6.29E+00	mg/kg	Mean	Footnote (2)
1	Naphthalene	105 / 165	1.06E+00	1.12E+00	KM H-UCL	1.00E+02	1.06E+00	mg/kg	Mean	Footnote (2)
TPI	РН									
Г	Diesel Range Organics (C10-C20)	1 / 12	1.86E+01	NC	NC	2.30E+01	2.30E+01	mg/kg	Maximum	Footnote (2)

Scenario Timeframe: Current/Future

Medium: Soil (0-16 feet)

	Chemical of Potential Concern	Frequency of Detection	Mean	95% UCL (2) (mg/kg)	UCL Basis	Maximum Concentration		Exposure Poin		
			(mg/kg)	` ` ` ` ` ` ` ` ` `		(mg/kg)	Value	Units	Statistic	Rationale
Substation #7 D	Dioxin									
	2,3,7,8-TCDD-TEQ	2/2	2.37E-06	NC	NC	4.37E-06	2.37E-06	mg/kg	Mean	Footnote (2)
Ir	norganics									
	Arsenic	7 / 7	6.64E+00	NC	NC	3.30E+01	6.64E+00	mg/kg	Mean	Footnote (2)
	Cobalt	7 / 7	3.79E+00	NC	NC	4.70E+00	3.79E+00	mg/kg	Mean	Footnote (2)
	Manganese	7/7	1.34E+02	NC	NC	3.70E+02	1.34E+02	mg/kg	Mean	Footnote (2)
	Nickel	7 / 7	7.56E+00	NC	NC	1.40E+01	7.56E+00	mg/kg	Mean	Footnote (2)
	Thallium	3/7	6.44E-02	NC	NC	2.50E-01	6.44E-02	mg/kg	Mean	Footnote (2)
	Vanadium	7 / 7	1.60E+01	NC	NC	3.20E+01	1.60E+01	mg/kg	Mean	Footnote (2)
P	PCBs									
	Total PCBs	13 / 25	2.41E-01	1.56E+00	Gamma Adjusted KM-UCL	5.10E+00	2.41E-01	mg/kg	Mean	Footnote (2)
S	SVOCs									
	Benzo(a)anthracene	6 / 12	1.71E-01	4.47E+00	95% KM Bootstrap t UCL	1.80E+00	1.71E-01	mg/kg	Mean	Footnote (2)
	Benzo(a)pyrene	6 / 12	1.36E-01	1.34E+00	99% KM (Chebyshev) UCL	1.40E+00	1.36E-01	mg/kg	Mean	Footnote (2)
	Benzo(b)fluoranthene	7 / 12	2.99E-01	1.07E+01	95% KM Bootstrap t UCL	3.20E+00	2.99E-01	mg/kg	Mean	Footnote (2)
	Benzo(k)fluoranthene	6 / 12	1.54E-01	1.62E+00	99% KM (Chebyshev) UCL	1.70E+00	1.54E-01	mg/kg	Mean	Footnote (2)
	Chrysene	6 / 12	2.99E-01	1.44E+01	95% KM Bootstrap t UCL	3.20E+00	2.99E-01	mg/kg	Mean	Footnote (2)
	Dibenzo(a,h)anthracene	6 / 12	4.04E-02	9.72E-01	95% KM Bootstrap t UCL	4.00E-01	4.04E-02	mg/kg	Mean	Footnote (2)
	Indeno(1,2,3-cd)pyrene	6 / 12	1.26E-01	3.32E+00	95% KM Bootstrap t UCL	1.30E+00	1.26E-01	mg/kg	Mean	Footnote (2)
	Naphthalene	4 / 12	1.41E-02	NC	NC	6.70E-02	1.41E-02	mg/kg	Mean	Footnote (2)
T	PH .									
	Diesel Range Organics (C10-C20)	1 / 14	1.82E+01	NC	NC	2.00E+01	2.00E+01	mg/kg	Maximum	Footnote (2)

Scenario Timeframe: Current/Future

Medium: Soil (0-16 feet)

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic (1) Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration		Exposure Poin	t Concentration (CTE)	
			(mg/kg)	` 0 0,		(mg/kg)	Value	Units	Statistic	Rationale
Transformer	Dioxin									
Shop	2,3,7,8-TCDD-TEQ	ND					ND			
	Inorganics									
	Arsenic	3/3	3.40E+00	NC	NC	7.70E+00	3.40E+00	mg/kg	Mean	Footnote (2)
	Cobalt	3/3	3.47E+00	NC	NC	6.50E+00	3.47E+00	mg/kg	Mean	Footnote (2)
	Manganese	3/3	1.57E+02	NC	NC	2.60E+02	1.57E+02	mg/kg	Mean	Footnote (2)
	Nickel	3/3	1.39E+01	NC	NC	2.30E+01	1.39E+01	mg/kg	Mean	Footnote (2)
	Thallium	2/3	1.13E-01	NC	NC	1.70E-01	1.13E-01	mg/kg	Mean	Footnote (2)
	Vanadium	3/3	1.66E+01	NC	NC	2.30E+01	1.66E+01	mg/kg	Mean	Footnote (2)
	PCBs									
	Total PCBs	125 / 136	7.46E+01	1.26E+02	KM H-UCL	8.80E+03	7.46E+01	mg/kg	Mean	Footnote (2)
	SVOCs									
	Benzo(a)anthracene	79 / 99	2.23E+00	3.04E+00	95% KM Approximate Gamma UCL	2.30E+01	2.23E+00	mg/kg	Mean	Footnote (2)
	Benzo(a)pyrene	77 / 99	1.87E+00	2.52E+00	95% KM Approximate Gamma UCL	1.80E+01	1.87E+00	mg/kg	Mean	Footnote (2)
	Benzo(b)fluoranthene	79 / 99	2.44E+00	3.25E+00	95% KM Approximate Gamma UCL	2.30E+01	2.44E+00	mg/kg	Mean	Footnote (2)
	Benzo(k)fluoranthene	74 / 99	9.18E-01	1.22E+00	95% KM Approximate Gamma UCL	8.20E+00	9.18E-01	mg/kg	Mean	Footnote (2)
	Chrysene	79 / 99	2.05E+00	2.77E+00	95% KM Approximate Gamma UCL	2.00E+01	2.05E+00	mg/kg	Mean	Footnote (2)
	Dibenzo(a,h)anthracene	68 / 99	4.25E-01	5.67E-01	95% KM Approximate Gamma UCL	4.20E+00	4.25E-01	mg/kg	Mean	Footnote (2)
	Indeno(1,2,3-cd)pyrene	79 / 99	1.38E+00	1.82E+00	95% KM Approximate Gamma UCL	1.30E+01	1.38E+00	mg/kg	Mean	Footnote (2)
	Naphthalene	47 / 99	9.91E-02	1.94E-01	KM H-UCL	1.10E+00	9.91E-02	mg/kg	Mean	Footnote (2)
	ТРН									
	Diesel Range Organics (C10-C20)	3 / 12	1.86E+01	NC	NC	8.00E+01	1.86E+01	mg/kg	Mean	Footnote (2)

Scenario Timeframe: Current/Future

Medium: Soil (0-16 feet)

Exposure Medium: Soil (0-16 feet)

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic ⁽¹⁾ Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration		Exposure Point	Concentration (CTE))
			(mg/kg)	(9/9/		(mg/kg)	Value	Units	Statistic	Rationale
Vehicle	Dioxin									
Refueling Area	2,3,7,8-TCDD-TEQ	ND					ND	mg/kg	Mean	Footnote (2)
	Inorganics									
	Arsenic	5/5	2.48E+00	NC	NC	3.70E+00	2.48E+00	mg/kg	Mean	Footnote (2)
	Cobalt	5/5	5.52E+00	NC	NC	7.30E+00	5.52E+00	mg/kg	Mean	Footnote (2)
	Manganese	5/5	1.41E+02	NC	NC	2.00E+02	1.41E+02	mg/kg	Mean	Footnote (2)
	Nickel	5/5	6.34E+00	NC	NC	1.20E+01	6.34E+00	mg/kg	Mean	Footnote (2)
	Thallium	4/5	1.03E-01	NC	NC	1.50E-01	1.03E-01	mg/kg	Mean	Footnote (2)
	Vanadium	5/5	2.18E+01	NC	NC	2.90E+01	2.18E+01	mg/kg	Mean	Footnote (2)
	PCBs									
	Total PCBs	10 / 19	2.32E-02	6.03E-02	Gamma Adjusted KM-UCL	1.40E-01	2.32E-02	mg/kg	Mean	Footnote (2)
	SVOCs									
	Benzo(a)anthracene	16 / 19	3.73E-01	8.96E-01	Gamma Adjusted KM-UCL	2.60E+00	3.73E-01	mg/kg	Mean	Footnote (2)
	Benzo(a)pyrene	14 / 19	3.28E-01	6.81E-01	Gamma Adjusted KM-UCL	1.40E+00	3.28E-01	mg/kg	Mean	Footnote (2)
	Benzo(b)fluoranthene	15 / 19	4.40E-01	1.01E+00	Gamma Adjusted KM-UCL	2.30E+00	4.40E-01	mg/kg	Mean	Footnote (2)
	Benzo(k)fluoranthene	14 / 19	1.26E-01	2.63E-01	Gamma Adjusted KM-UCL	6.10E-01	1.26E-01	mg/kg	Mean	Footnote (2)
	Chrysene	16 / 19	3.91E-01	8.78E-01	Gamma Adjusted KM-UCL	2.50E+00	3.91E-01	mg/kg	Mean	Footnote (2)
	Dibenzo(a,h)anthracene	11 / 19	7.31E-02	1.17E-01	95% KM (t) UCL	3.10E-01	7.31E-02	mg/kg	Mean	Footnote (2)
	Indeno(1,2,3-cd)pyrene	14 / 19	2.11E-01	4.50E-01	Gamma Adjusted KM-UCL	1.00E+00	2.11E-01	mg/kg	Mean	Footnote (2)
	Naphthalene	12 / 19	7.18E-02	2.37E-01	Gamma Adjusted KM-UCL	6.30E-01	7.18E-02	mg/kg	Mean	Footnote (2)
	TPH									
	Diesel Range Organics (C10-C20)	5 / 12	7.07E+01	NC	NC	3.80E+02	7.07E+01	mg/kg	Mean	Footnote (2)

Notes:

CTE - Central Tendency Exposure.

EPC - Exposure Point Concentration.

NC - Not Calculated.

ND - Not Detected in this area.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound

TCDD-TEQ - 2,3,7,8-Dioxin-Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon

UCL - Upper confidence limit.

- (1) Arithmetic mean. For datasets with non-detects, ProUCL Version 5.1 used the Kaplan-Meier method to handle detection limits.
- (2) The EPC is the detected concentration for datasets with only one detected result. The EPC is the arithmetic mean for datasets with multiple detects, calculated as described above, in footnote (1).

Table 5-14 Exposure Point Concentration Summary — Groundwater for the Excavation Trench (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Groundwater

Exposure Medium: Groundwater

Exposure Point	Chemical of Potential Concern	Frequency of	Arithmetic ⁽¹⁾ Mean	95% UCL (2)	UCL Basis	Maximum Concentration	Ехр	oosure Point Co	ncentration (RM	IE)
	Potential Concern	Detection	(ug/L)	(ug/L)		(ug/L)	Value	Units	Statistic (3)	Rationale
	VOCs									
	Bromodichloromethane	ND					ND			
	Butyl alcohol, tert-	ND					ND			
Hypothetical Future Park	Chloroform	3 / 20	3.07E-01	NC	NC	1.20E+00	1.20E+00	ug/L	Max	Footnote (4)
Land/Green	Methyl tert-Butyl Ether (MTBE)	11 / 20	7.56E-01	1.28E+00	95% GROS Adjusted Gamma UCL	3.90E+00	1.28E+00	ug/L	95% UCL	Footnote (2)
Space	Tetrachloroethylene	13 / 20	3.77E+00	1.00E+01	Gamma Adjusted KM-UCL	3.00E+01	1.00E+01	ug/L	95% UCL	Footnote (2)
·	Trichloroethene	6/20	7.64E-01	1.34E+00	95% KM (t) UCL	5.90E+00	1.34E+00	ug/L	95% UCL	Footnote (2)
	Vinyl Chloride	ND					ND			
	VOCs									
	Bromodichloromethane	1 / 20	3.60E-01	NC	NC	3.60E-01	3.60E-01	ug/L	Max	Footnote (4)
	Butyl alcohol, tert-	ND					ND			
Warehouse and	Chloroform	7 / 20	7.59E-01	1.06E+00	95% KM (t) UCL	2.10E+00	1.06E+00	ug/L	95% UCL	Footnote (2)
Laydown Area	Methyl tert-Butyl Ether (MTBE)	8/20	9.56E-01	1.22E+00	95% KM (t) UCL	3.10E+00	1.22E+00	ug/L	95% UCL	Footnote (2)
	Tetrachloroethylene	5/21	1.18E+00	NC	NC	1.50E+01	1.50E+01	ug/L	Max	Footnote (4)
	Trichloroethene	3/21	6.62E-01	NC	NC	2.30E+00	2.30E+00	ug/L	Max	Footnote (4)
	Vinyl Chloride	ND					ND			
	VOCs									
	Bromodichloromethane	ND					ND			
	Butyl alcohol, tert-	ND					ND			
Salvage Yard and	Chloroform	ND					ND			
Waste Storage Area	Methyl tert-Butyl Ether (MTBE)	8/8	1.56E+00	NC	NC	4.90E+00	4.90E+00	ug/L	Max	Footnote (4)
Alba	Tetrachloroethylene	2/8	2.40E-01	NC	NC	2.70E-01	2.70E-01	ug/L	Max	Footnote (4)
	Trichloroethene	ND					ND			
	Vinyl Chloride	ND					ND			

Table 5-14 Exposure Point Concentration Summary — Groundwater for the Excavation Trench (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Groundwater

Exposure Medium: Groundwater

Exposure Point	Chemical of Potential Concern	Frequency of	Arithmetic ⁽¹⁾ Mean	95% UCL (2)	UCL Basis	Maximum Concentration	Ехр	oosure Point Co	ncentration (RN	IE)
	Potential Concern	Detection	(ug/L)	(ug/L)		(ug/L)	Value	Units	Statistic (3)	Rationale
	VOCs									
	Bromodichloromethane	1 / 13	1.12E+00	NC	NC	2.60E+00	2.60E+00	ug/L	Max	Footnote (4)
0. 15	Butyl alcohol, tert-	1/7	5.00E+01	NC	NC	1.10E+02	1.10E+02	ug/L	Max	Footnote (4)
Stores and Fleet Maintenance	Chloroform	4 / 13	1.57E+00	NC	NC	1.50E+01	1.50E+01	ug/L	Max	Footnote (4)
Area	Methyl tert-Butyl Ether (MTBE)	10 / 13	8.72E+00	3.44E+01	95% KM Bootstrap t UCL	4.80E+01	3.44E+01	ug/L	95% UCL	Footnote (2)
	Tetrachloroethylene	8 / 15	2.31E+00	1.25E+01	97.5% KM (Chebyshev) UCL	2.40E+01	1.25E+01	ug/L	95% UCL	Footnote (2)
	Trichloroethene	2 / 15	3.85E-01	NC	NC	5.80E-01	5.80E-01	ug/L	Max	Footnote (4)
	Vinyl Chloride	ND					ND			
	VOCs									
	Bromodichloromethane	ND					ND			
	Butyl alcohol, tert-	ND					ND			
Offices and	Chloroform	2/7	4.60E-01	NC	NC	1.30E+00	1.30E+00	ug/L	Max	Footnote (4)
Parking Lot	Methyl tert-Butyl Ether (MTBE)	5/7	1.18E+00	NC	NC	5.00E+00	5.00E+00	ug/L	Max	Footnote (4)
	Tetrachloroethylene	19 / 27	1.12E+02	1.56E+02	95% KM (t) UCL	4.70E+02	1.56E+02	ug/L	95% UCL	Footnote (2)
	Trichloroethene	15 / 27	9.24E+00	1.29E+01	95% KM (t) UCL	4.10E+01	1.29E+01	ug/L	95% UCL	Footnote (2)
	Vinyl Chloride	1 / 27	1.16E+00	NC	NC	5.30E+00	5.30E+00	ug/L	Max	Footnote (4)
	VOCs									
	Bromodichloromethane	ND					ND			
	Butyl alcohol, tert-	ND					ND			
0.1.1.1	Chloroform	ND					ND			
Substation #7	Methyl tert-Butyl Ether (MTBE)	5/8	6.12E+00	NC	NC	2.10E+01	2.10E+01	ug/L	Max	Footnote (4)
	Tetrachloroethylene	4/8	6.85E-01	NC	NC	9.60E-01	9.60E-01	ug/L	Max	Footnote (4)
	Trichloroethene	1/8	1.70E-01	NC	NC	1.70E-01	1.70E-01	ug/L	Max	Footnote (4)
	Vinyl Chloride	ND					ND			
1										

Exposure Point Concentration Summary — Groundwater for the Excavation Trench (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Groundwater

Exposure Medium: Groundwater

Exposure Point	Chemical of	Frequency of	Arithmetic (1) Mean	95% UCL `	UCL Basis	Maximum Concentration	Ex	posure Point Co	oncentration (RM	ME)
-	Potential Concern	Detection	(ug/L)	(ug/L)		(ug/L)	Value	Units	Statistic (3)	Rationale
	VOCs									
	Bromodichloromethane	ND					ND			
	Butyl alcohol, tert-	ND					ND			
Transformer	Chloroform	1/5	4.40E-01	NC	NC	4.40E-01	4.40E-01	ug/L	Max	Footnote (4)
Shop	Methyl tert-Butyl Ether (MTBE)	ND					ND			
	Tetrachloroethylene	1/5	2.00E-01	NC	NC	2.00E-01	2.00E-01	ug/L	Max	Footnote (4)
	Trichloroethene	ND					ND			
	Vinyl Chloride	ND					ND			
	VOCs									
	Bromodichloromethane	ND					ND			
	Butyl alcohol, tert-	ND					ND			
Vehicle Refueling	Chloroform	1/6	1.38E+00	NC	NC	3.30E+00	3.30E+00	ug/L	Max	Footnote (4)
Area	Methyl tert-Butyl Ether (MTBE)	2/6	1.13E+00	NC	NC	1.60E+00	1.60E+00	ug/L	Max	Footnote (4)
	Tetrachloroethylene	1/6	2.60E-01	NC	NC	2.60E-01	2.60E-01	ug/L	Max	Footnote (4)
	Trichloroethene	ND					ND			
	Vinyl Chloride	ND					ND			

Notes:

EPC - Exposure point concentration.

NC - Not Calculated; A sufficient number of samples is not available to calculate a UCL.

ND - Not Detected in this area.

RME - Reasonable maximum exposure.

VOC - Volatile Organic Compound.

UCL - Upper confidence limit.

- (1) Arithmetic mean. For datasets with non-detects, ProUCL Version 5.1 used the Kaplan-Meier method to handle detection limits.
- (2) 95% Upper Confidence Limit (UCL) on the arithmetic mean concentration calculated using USEPA ProUCL Version 5.1. The UCL suggested by ProUCL is used, unless otherwise noted. In cases where more than one UCL is suggested, the higher UCL is used, unless otherwise noted. Where too few samples or detects are available, the 95% UCL is not calculated.
- (3) The EPC is equal to the 95% UCL where a sufficient number of samples and/or detects are available. The EPC is equal to the maximum detected concentration where a sufficient number of samples and/or detects are not available to calculate a UCL. Statistic: Maximum Detected Value (Max); 95% UCL (95% UCL).
- (4) The 95% UCL exceeded the maximum detected concentration or was not calculated, and the maximum detected concentration was selected as the EPC.

Table 5-15 Exposure Point Concentration Summary — Groundwater for the Excavation Trench (CTE) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Groundwater

Exposure Medium: Groundwater

Exposure Point	Chemical of	Frequency of	Arithmetic ⁽¹⁾ Mean	95% UCL	UCL Basis	Maximum Concentration	Ex	posure Point Co	oncentration (CT	E)
	Potential Concern	Detection	(ug/L)	(ug/L)		(ug/L)	Value	Units	Statistic	Rationale
	VOCs									
	Bromodichloromethane	ND					ND			
	Butyl alcohol, tert-	ND					ND			
Hypothetical Future Park	Chloroform	3 / 20	3.07E-01	NC	NC	1.20E+00	3.07E-01	ug/L	Mean	Footnote (2)
Land/Green	Methyl tert-Butyl Ether (MTBE)	11 / 20	7.56E-01	1.28E+00	95% GROS Adjusted Gamma UCL	3.90E+00	7.56E-01	ug/L	Mean	Footnote (2)
Space	Tetrachloroethylene	13 / 20	3.77E+00	1.00E+01	Gamma Adjusted KM-UCL	3.00E+01	3.77E+00	ug/L	Mean	Footnote (2)
·	Trichloroethene	6/20	7.64E-01	1.34E+00	95% KM (t) UCL	5.90E+00	7.64E-01	ug/L	Mean	Footnote (2)
	Vinyl Chloride	ND					ND			
	VOCs									
	Bromodichloromethane	1 / 20	3.60E-01	NC	NC	3.60E-01	3.60E-01	ug/L	Max	Footnote (2)
	Butyl alcohol, tert-	ND					ND			
Warehouse and	Chloroform	7 / 20	7.59E-01	1.06E+00	95% KM (t) UCL	2.10E+00	7.59E-01	ug/L	Mean	Footnote (2)
Laydown Area	Methyl tert-Butyl Ether (MTBE)	8 / 20	9.56E-01	1.22E+00	95% KM (t) UCL	3.10E+00	9.56E-01	ug/L	Mean	Footnote (2)
	Tetrachloroethylene	5 / 21	1.18E+00	NC	NC	1.50E+01	1.18E+00	ug/L	Mean	Footnote (2)
	Trichloroethene	3 / 21	6.62E-01	NC	NC	2.30E+00	6.62E-01	ug/L	Mean	Footnote (2)
	Vinyl Chloride	ND					ND			
	VOCs									
	Bromodichloromethane	ND					ND			
	Butyl alcohol, tert-	ND					ND			
Salvage Yard and	Chloroform	ND					ND			
Waste Storage Area	Methyl tert-Butyl Ether (MTBE)	8/8	1.56E+00	NC	NC	4.90E+00	1.56E+00	ug/L	Mean	Footnote (2)
Alba	Tetrachloroethylene	2/8	2.40E-01	NC	NC	2.70E-01	2.40E-01	ug/L	Mean	Footnote (2)
	Trichloroethene	ND					ND			, ,
	Vinyl Chloride	ND					ND			

Table 5-15 Exposure Point Concentration Summary — Groundwater for the Excavation Trench (CTE) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Groundwater

Exposure Medium: Groundwater

Exposure Point	Chemical of	Frequency	Arithmetic ⁽¹⁾ Mean	95% UCL	UCL Basis	Maximum Concentration	Ex	posure Point Co	oncentration (C1	ГЕ)
	Potential Concern	Detection	(ug/L)	(ug/L)		(ug/L)	Value	Units	Statistic	Rationale
	VOCs									
	Bromodichloromethane	1 / 13	1.12E+00	NC	NC	2.60E+00	2.60E+00	ug/L	Max	Footnote (2)
	Butyl alcohol, tert-	1/7	5.00E+01	NC	NC	1.10E+02	1.10E+02	ug/L	Max	Footnote (2)
Stores and Fleet Maintenance	Chloroform	4 / 13	1.57E+00	NC	NC	1.50E+01	1.57E+00	ug/L	Mean	Footnote (2)
Area	Methyl tert-Butyl Ether (MTBE)	10 / 13	8.72E+00	3.44E+01	95% KM Bootstrap t UCL	4.80E+01	8.72E+00	ug/L	Mean	Footnote (2)
	Tetrachloroethylene	8 / 15	2.31E+00	1.25E+01	97.5% KM (Chebyshev) UCL	2.40E+01	2.31E+00	ug/L	Mean	Footnote (2)
	Trichloroethene	2 / 15	3.85E-01	NC	NC	5.80E-01	3.85E-01	ug/L	Mean	Footnote (2)
	Vinyl Chloride	ND					ND	-		
	VOCs									
	Bromodichloromethane	ND					ND			
	Butyl alcohol, tert-	ND					ND			
Offices and	Chloroform	2/7	4.60E-01	NC	NC	1.30E+00	4.60E-01	ug/L	Mean	Footnote (2)
Parking Lot	Methyl tert-Butyl Ether (MTBE)	5/7	1.18E+00	NC	NC	5.00E+00	1.18E+00	ug/L	Mean	Footnote (2)
	Tetrachloroethylene	19 / 27	1.12E+02	1.56E+02	95% KM (t) UCL	4.70E+02	1.12E+02	ug/L	Mean	Footnote (2)
	Trichloroethene	15 / 27	9.24E+00	1.29E+01	95% KM (t) UCL	4.10E+01	9.24E+00	ug/L	Mean	Footnote (2)
	Vinyl Chloride	1 / 27	1.16E+00	NC	NC	5.30E+00	5.30E+00	ug/L	Max	Footnote (2)
	VOCs									
	Bromodichloromethane	ND					ND			
	Butyl alcohol, tert-	ND					ND			
Substation #7	Chloroform	ND					ND			
Substation #7	Methyl tert-Butyl Ether (MTBE)	5/8	6.12E+00	NC	NC	2.10E+01	6.12E+00	ug/L	Mean	Footnote (2)
	Tetrachloroethylene	4/8	6.85E-01	NC	NC	9.60E-01	6.85E-01	ug/L	Mean	Footnote (2)
	Trichloroethene	1/8	1.70E-01	NC	NC	1.70E-01	1.70E-01	ug/L	Max	Footnote (2)
	Vinyl Chloride	ND					ND			
]

Exposure Point Concentration Summary — Groundwater for the Excavation Trench (CTE) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Groundwater

Exposure Medium: Groundwater

Exposure Point	Chemical of	Frequency of	Arithmetic ⁽¹⁾ Mean	95% UCL	UCL Basis	Maximum Concentration	Ex	posure Point Co	oncentration (C	TE)
	Potential Concern	Detection	(ug/L)	(ug/L)		(ug/L)	Value	Units	Statistic	Rationale
	VOCs									
	Bromodichloromethane	ND					ND			
	Butyl alcohol, tert-	ND					ND			
Transformer	Chloroform	1/5	4.40E-01	NC	NC	4.40E-01	4.40E-01	ug/L	Max	Footnote (2)
Shop	Methyl tert-Butyl Ether (MTBE)	ND					ND			
	Tetrachloroethylene	1/5	2.00E-01	NC	NC	2.00E-01	2.00E-01	ug/L	Max	Footnote (2)
	Trichloroethene	ND					ND			
	Vinyl Chloride	ND					ND			
	VOCs									
	Bromodichloromethane	ND					ND			
	Butyl alcohol, tert-	ND					ND			
Vehicle Refueling	Chloroform	1/6	1.38E+00	NC	NC	3.30E+00	3.30E+00	ug/L	Max	Footnote (2)
Area	Methyl tert-Butyl Ether (MTBE)	2/6	1.13E+00	NC	NC	1.60E+00	1.13E+00	ug/L	Mean	Footnote (2)
	Tetrachloroethylene	1/6	2.60E-01	NC	NC	2.60E-01	2.60E-01	ug/L	Max	Footnote (2)
	Trichloroethene	ND					ND			
	Vinyl Chloride	ND			-		ND			

Notes:

CTE - Central Tendency Exposure.

EPC - Exposure Point Concentration.

NC - Not Calculated.

ND - Not Detected in this area.

VOC - Volatile Organic Compound.

UCL - Upper confidence limit.

- (1) Arithmetic mean. For datasets with non-detects, ProUCL Version 5.1 used the Kaplan-Meier method to handle detection limits.
- (2) The EPC is the detected concentration for datasets with only one detected result. The EPC is the arithmetic mean for datasets with multiple detects, calculated as described above, in footnote (1).

Exposure Point Concentration Summary — Fringe Surface Sediment (RME) (4)

Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Sediment

Exposure Medium: Fringe Surface Sediment

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Mean	95% UCL ⁽²⁾ (mg/kg)	UCL Basis	Maximum Concentration	Ех	oosure Point Co	ncentration (RM	E)
			(mg/kg)	, , ,		(mg/kg)	Value	Units	Statistic (3)	Rationale
	Dioxin			-						
Investigation	2,3,7,8-TCDD-TEQ	24 / 24	7.25E-05	2.13E-04	95% Chebyshev (Mean, Sd) UCL	7.07E-04	2.13E-04	mg/kg	95% UCL	Footnote (2)
Area	Inorganics			_				_		
	Aluminum	41 / 41	8.07E+03	8.92E+03	95% Student's-t UCL	1.55E+04	8.92E+03	mg/kg	95% UCL	Footnote (2)
	Antimony	41 / 41	1.93E+00	6.43E+00	95% Chebyshev (Mean, Sd) UCL	4.30E+01	6.43E+00	mg/kg	95% UCL	Footnote (2,5)
	Arsenic	41 / 41	5.56E+00	6.55E+00	95% Adjusted Gamma UCL	1.70E+01	6.55E+00	mg/kg	95% UCL	Footnote (2)
	Cobalt	41 / 41	1.51E+01	1.65E+01	95% Student's-t UCL	3.20E+01	1.65E+01	mg/kg	95% UCL	Footnote (2)
	Cyanide	11 / 13	8.76E-01	3.40E+00	95% KM Bootstrap t UCL	4.90E+00	3.40E+00	mg/kg	95% UCL	Footnote (2)
	Manganese	41 / 41	2.10E+02	2.34E+02	95% Adjusted Gamma UCL	4.30E+02	2.34E+02	mg/kg	95% UCL	Footnote (2)
	Nickel	41 / 41	5.07E+01	6.02E+01	95% Adjusted Gamma UCL	1.60E+02	6.02E+01	mg/kg	95% UCL	Footnote (2)
	Thallium	41 / 41	2.10E-01	2.38E-01	95% Modified-t UCL	6.30E-01	2.38E-01	mg/kg	95% UCL	Footnote (2)
	Vanadium	41 / 41	8.70E+01	1.49E+02	95% Chebyshev (Mean, Sd) UCL	4.40E+02	1.49E+02	mg/kg	95% UCL	Footnote (2)
	PCBs									
	Total PCBs	41 / 41	4.47E-01	5.93E-01	95% Adjusted Gamma UCL	1.90E+00	5.93E-01	mg/kg	95% UCL	Footnote (2)
	SVOCs				,			0 0		` '
	Benzo(a)anthracene	32 / 32	5.90E-01	1.25E+00	99% Chebyshev (Mean, Sd) UCL	2.30E+00	1.25E+00	mg/kg	95% UCL	Footnote (2,5)
	Benzo(a)pyrene	32 / 32	6.50E-01	7.62E-01	95% Adjusted Gamma UCL	2.00E+00	7.62E-01	mg/kg	95% UCL	Footnote (2)
	Benzo(b)fluoranthene	32 / 32	9.70E-01	1.12E+00	95% Adjusted Gamma UCL	2.60E+00	1.12E+00	mg/kg	95% UCL	Footnote (2)
	Benzo(k)fluoranthene	32 / 32	3.55E-01	4.07E-01	95% Student's-t UCL	9.60E-01	4.07E-01	mg/kg	95% UCL	Footnote (2)
	Chrysene	32 / 32	8.76E-01	1.01E+00	95% Adjusted Gamma UCL	2.40E+00	1.01E+00	mg/kg	95% UCL	Footnote (2)
	Dibenzo(a,h)anthracene	30 / 32	1.48E-01	1.79E-01	95% KM Adjusted Gamma UCL, 95% GROS Adjusted Gamma UCL	4.70E-01	1.79E-01	mg/kg	95% UCL	Footnote (2)
	Indeno(1,2,3-cd)pyrene	32 / 32	5.70E-01	6.55E-01	95% Student's-t UCL	1.40E+00	6.55E-01	mg/kg	95% UCL	Footnote (2)
	трн									. ,
	Diesel Range Organics (C10-C20)	11 / 11	9.10E+01	1.25E+02	95% Adjusted Gamma UCL	2.20E+02	1.25E+02	mg/kg	95% UCL	Footnote (2)

Notes:

EPC - Exposure Point Concentration.

PCB - Polychlorinated Biphenyl.

RME - Reasonable Maximum Exposure.

SVOC - Semivolatile Organic Compound

TCDD-TEQ - 2,3,7,8-Dioxin-Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon

UCL - Upper confidence limit.

- (1) Arithmetic mean. For datasets with non-detects, ProUCL Version 5.1 used the Kaplan-Meir method to handle detection limits.
- (2) 95% Upper Confidence Limit (UCL) on the arithmetic mean concentration calculated using USEPA ProUCL Version 5.1. The UCL suggested by ProUCL is used, unless otherwise noted.

 In cases where more than one UCL is suggested, the higher UCL is used, unless otherwise noted. Where too few samples or detects are available, the 95% UCL is not calculated. See text for details.
- (3) The EPC is equal to the 95% UCL where a sufficient number of samples and/or detects are available. The EPC is equal to the maximum detected concentration where a sufficient number of samples and/or detects are not available to calculate a UCL. See text for details.
- (4) EPCs calculated based on fringe surface sediment samples available for exposure by human receptors. See text.
- (5) ProUCL recommended the H-Stat UCL. Alternate UCL selected based on ProUCL technical guidance and review of data.

Exposure Point Concentration Summary — Fringe Surface Sediment(CTE) (3)

Central Tendency Exposure Benning Road Facility RI/FS Project

3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Sediment

Exposure Medium: Fringe Surface Sediment

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Arithmetic ⁽¹⁾ Mean	95% UCL	UCL Basis	Maximum Concentration		Exposure Point	Concentration (CTE	E)
	1 Storidar School	or Detection	(mg/kg)	(mg/kg)		(mg/kg)	Value	Units	Statistic	Rationale
Waterside	Dioxin									
Investigation	2,3,7,8-TCDD-TEQ	24 / 24	7.25E-05	2.13E-04	95% Chebyshev (Mean, Sd) UCL	7.07E-04	7.25E-05	mg/kg	Mean	Footnote (2)
•	Inorganics	24 / 24	7.23L-03	2.13L-04	93% Chebyshev (Mean, 3d) OCL	7.07L-04	7.23L-03	ilig/kg	Weari	1 00111016 (2)
Alea	Aluminum	41 / 41	8.07E+03	8.92E+03	95% Student's-t UCL	1.55E+04	8.07E+03	mg/kg	Mean	Footnote (2)
	Antimony	41 / 41	1.93E+00	6.43E+00	95% Chebyshev (Mean, Sd) UCL	4.30E+01	1.93E+00	mg/kg	Mean	Footnote (2)
	Arsenic	41 / 41	5.56E+00	6.55E+00	95% Adjusted Gamma UCL	1.70E+01	5.56E+00	mg/kg	Mean	Footnote (2)
	Cobalt	41 / 41	1.51E+01	1.65E+01	95% Student's-t UCL	3.20E+01	1.51E+01	mg/kg	Mean	Footnote (2)
	Cvanide	11 / 13	8.76E-01	3.40E+00	95% KM Bootstrap t UCL	4.90E+00	8.76E-01	mg/kg	Mean	Footnote (2)
	Manganese	41 / 41	2.10E+02	2.34E+02	95% Adjusted Gamma UCL	4.30E+02	2.10E+02	mg/kg	Mean	Footnote (2)
	Nickel	41 / 41	5.07E+01	6.02E+01	95% Adjusted Gamma UCL	1.60E+02	5.07E+01	mg/kg	Mean	Footnote (2)
	Thallium	41 / 41	2.10E-01	2.38E-01	95% Modified-t UCL	6.30E-01	2.10E-01	mg/kg	Mean	Footnote (2)
	Vanadium	41 / 41	8.70E+01	1.49E+02	95% Chebyshev (Mean, Sd) UCL	4.40E+02	8.70E+01	mg/kg	Mean	Footnote (2)
	PCBs	,	0.702.70.		con chesyoner (mean, ca) cc	02.02	0.702.01	99	moun	. 551.1515 (2)
	Total PCBs	41 / 41	4.47E-01	5.93E-01	95% Adjusted Gamma UCL	1.90E+00	4.47E-01	mg/kg	Mean	Footnote (2)
	SVOCs	,	2 01	0.002 01	0070714,400.04 044 002	1.002.00		99	moun	. 551.1515 (2)
	Benzo(a)anthracene	32 / 32	5.90E-01	1.25E+00	99% Chebyshev (Mean, Sd) UCL	2.30E+00	5.90E-01	mg/kg	Mean	Footnote (2)
	Benzo(a)pyrene	32 / 32	6.50E-01	7.62E-01	95% Adjusted Gamma UCL	2.00E+00	6.50E-01	mg/kg	Mean	Footnote (2)
	Benzo(b)fluoranthene	32 / 32	9.70E-01	1.12E+00	95% Adjusted Gamma UCL	2.60E+00	9.70E-01	mg/kg	Mean	Footnote (2)
	Benzo(k)fluoranthene	32 / 32	3.55E-01	4.07E-01	95% Student's-t UCL	9.60E-01	3.55E-01	mg/kg	Mean	Footnote (2)
	Chrysene	32 / 32	8.76E-01	1.01E+00	95% Adjusted Gamma UCL	2.40E+00	8.76E-01	mg/kg	Mean	Footnote (2)
	Dibenzo(a,h)anthracene	30 / 32	1.48E-01	1.79E-01	95% KM Adjusted Gamma UCL, 95% GROS Adjusted Gamma UCL	4.70E-01	1.48E-01	mg/kg	Mean	Footnote (2)
	Indeno(1,2,3-cd)pyrene	32 / 32	5.70E-01	6.55E-01	95% Student's-t UCL	1.40E+00	5.70E-01	mg/kg	Mean	Footnote (2)
	ТРН									1
	Diesel Range Organics (C10-C20)	11 / 11	9.10E+01	1.25E+02	95% Adjusted Gamma UCL	2.20E+02	9.10E+01	mg/kg	Mean	Footnote (2)

Notes:

CTE - Central Tendency Exposure.

EPC - Exposure Point Concentration.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound

TCDD-TEQ - 2,3,7,8-Dioxin-Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon

UCL - Upper Confidence Limit.

- (1) Arithmetic mean. For datasets with non-detects, ProUCL Version 5.1 used the Kaplan-Meir method to handle detection limits.
- (2) The EPC is the detected concentration for datasets with only one detected result. The EPC is the arithmetic mean for datasets with multiple detects.
- (3) EPCs calculated based on fringe surface sediment samples available for exposure by human receptors. See text.

Exposure Point Concentration Summary — Surface Water (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Surface Water

Exposure Medium: Surface Water

Exposure Point	Chemical of	Frequency of	Arithmetic (1) Mean	95% UCL ⁽²⁾	UCL Basis	Maximum Concentration	Ex	posure Point Co	ncentration (RM	IE)
-	Potential Concern	Detection	(ug/L)	(ug/L)		(ug/L)	Value	Units	Statistic (3)	Rationale
	Dioxin									
Waterside	2,3,7,8-TCDD-TEQ	5:5	4.08E-07	NC	NC	6.12E-07	6.12E-07	ug/L	Max	Footnote (4)
Investigation	Inorganics									
Area	Arsenic	10:10	7.80E-01	9.21E-01	95% Student's-t UCL	1.20E+00	9.21E-01	ug/L	95% UCL	Footnote (2)
	Cobalt	10:10	9.80E-01	1.04E+00	95% Student's-t UCL	1.10E+00	1.04E+00	ug/L	95% UCL	Footnote (2)
	Manganese	10:10	1.40E+02	1.48E+02	95% Student's-t UCL	1.70E+02	1.48E+02	ug/L	95% UCL	Footnote (2)
	Pesticides									
	4,4'-DDT	5:5	1.30E-03	NC	NC	1.60E-03	1.60E-03	ug/L	Max	Footnote (4)
	PCBs									
	Total PCBs						9.40E-03	ug/L	Lowest RL	Footnote (5)

Notes:

EPC - Exposure point concentration.

PCB - Polychlorinated Biphenyl.

RL - Reporting Limit.

RME - Reasonable maximum exposure.

TCDD-TEQ - 2,3,7,8-Dioxin-Toxicity Equivalence.

UCL - Upper confidence limit.

- (1) Arithmetic mean. For datasets with non-detects, ProUCL Version 5.1 used the Kaplan-Meir method to handle detection limits.
- (2) 95% Upper Confidence Limit (UCL) on the arithmetic mean concentration calculated using USEPA ProUCL Version 5.1. The UCL suggested by ProUCL is used, unless otherwise noted.

 In cases where more than one UCL is suggested, the higher UCL is used, unless otherwise noted. Where too few samples or detects are available, the 95% UCL is not calculated. See text for details.
- (3) The EPC is equal to the 95% UCL where a sufficient number of samples and/or detects are available. The EPC is equal to the maximum detected concentration where a sufficient number of samples and/or detects are not available to calculate a UCL. See text for details.
- (4) The 95% UCL exceeded the maximum detected concentration or was not calculated due to small sample size, and the maximum detected concentration was selected as the EPC.
- (5) PCBs were not detected in Anacostia River surface water samples analyzed via Method 8082. Historical data analyzed via EPA 1668 suggest much lower concentrations in the 1 to 5 ng/L range. However, the lowest reporting limit (RL) for Method 8082 has been used, which is highly conservative.

Exposure Point Concentration Summary — Surface Water (CTE) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Surface Water

Exposure Medium: Surface Water

Exposure Point	Chemical of Potential Concern	Frequency of Detection	Wieaii	95% UCL ⁽²⁾ (ug/L)	UCL Basis	Maximum Concentration (Qualifier)	E	xposu	re Point Concentratio	n (CTE)
			(ug/L)	, ,		(ug/L)	Value	Units	Statistic	Rationale
	Dioxin									
Waterside	2,3,7,8-TCDD-TEQ	5:5	4.08E-07	NC	NC	6.12E-07	4.08E-07	ug/L	Mean	Footnote (2)
Investigation	Inorganics									
Area	Arsenic	10:10	7.80E-01	9.21E-01	95% Student's-t UCL	1.20E+00	7.80E-01	ug/L	Mean	Footnote (2)
	Cobalt	10:10	9.80E-01	1.04E+00	95% Student's-t UCL	1.10E+00	9.80E-01	ug/L	Mean	Footnote (2)
	Manganese	10:10	1.40E+02	1.48E+02	95% Student's-t UCL	1.70E+02	1.40E+02	ug/L	Mean	Footnote (2)
	Pesticides									
	4,4'-DDT	5:5	1.30E-03	NC	NC	1.60E-03	1.30E-03	ug/L	Mean	Footnote (2)
	PCBs									
	Total PCBs						9.40E-03	ug/L	Lowest RL	Footnote (3)

Notes:

CTE - Central tendency exposure.

EPC - Exposure point concentration.

PCB - Polychlorinated Biphenyl.

RL - Reporting Limit.

TCDD-TEQ - 2,3,7,8-Dioxin-Toxicity Equivalence.

UCL - Upper confidence limit.

- (1) Arithmetic mean. For datasets with non-detects, ProUCL Version 5.1 used the Kaplan-Meir method to handle detection limits.
- (2) The EPC is the detected concentration for datasets with only one detected result. The EPC is the arithmetic mean for datasets with multiple detects.
- (3) PCBs were not detected in Anacostia River surface water samples analyzed via Method 8082. Historical data analyzed via EPA 1668 suggest much lower concentrations in the 1 to 5 ng/L range. However, the lowest reporting limit (RL) for Method 8082 has been used, which is highly conservative.

Scenario Timeframe: Current/Future

Medium: Fish Tissue

Exposure	Chemical of	Frequency	Arithmetic ⁽¹⁾ Mean	95% UCL ⁽²⁾	UCL Basis	Maximum Concentration	Ex	posure Point Co	oncentration (RM	ΛE)
Point	Potential Concern	of Detection	(mg/kg)	(mg/kg)		(mg/kg)	Value	Units	Statistic (3)	Rationale
Lower	Inorganics									
Anacostia	Arsenic	1 / 6	2.45E-02	NC	NC	2.45E-02	2.45E-02	mg/kg	Max	Footnote (4,5)
	Arsenic, Organic	1/6	2.21E-01	NC	NC	2.21E-01	2.21E-01	mg/kg	Max	Footnote (4,5)
	Mercury	6/6	7.20E-02	9.77E-02	95% Student's-t UCL	1.10E-01	9.77E-02	mg/kg	95% UCL	Footnote (2)
	Pesticides									
	4,4'-DDD	6/6	1.08E-02	6.66E-02	95% Adjusted Gamma UCL	3.32E-02	3.32E-02	mg/kg	Max	Footnote (4)
	4,4'-DDE	6/6	3.63E-02	6.62E-02	95% Student's-t UCL	1.01E-01	6.62E-02	mg/kg	95% UCL	Footnote (2)
	Aldrin	4/6	2.04E-04	4.02E-04	95% KM (t) UCL	6.17E-04	4.02E-04	mg/kg	95% UCL	Footnote (2)
	alpha-Chlordane	6/6	1.89E-02	3.60E-02	95% Student's-t UCL	5.27E-02	3.60E-02	mg/kg	95% UCL	Footnote (2)
	cis-Nonachlor	5/6	7.13E-03	1.55E-02	95% KM (t) UCL	2.60E-02	1.55E-02	mg/kg	95% UCL	Footnote (2)
	Dieldrin	6/6	6.21E-03	3.68E-02	95% Adjusted Gamma UCL	1.78E-02	1.78E-02	mg/kg	Max	Footnote (4)
	gamma-Chlordane	5/6	9.07E-03	1.98E-02	95% KM (t) UCL	2.61E-02	1.98E-02	mg/kg	95% UCL	Footnote (2)
	Heptachlor epoxide	6/6	2.35E-03	4.27E-03	95% Student's-t UCL	5.36E-03	4.27E-03	mg/kg	95% UCL	Footnote (2)
	Mirex	4/6	2.12E-04	3.92E-04	95% KM (t) UCL	4.96E-04	3.92E-04	mg/kg	95% UCL	Footnote (2)
	Oxychlordane	5/6	3.51E-03	8.13E-03	95% KM (t) UCL	1.43E-02	8.13E-03	mg/kg	95% UCL	Footnote (2)
	trans-Nonachlor	6/6	1.97E-02	4.48E-02	95% Student's-t UCL	8.02E-02	4.48E-02	mg/kg	95% UCL	Footnote (2)
	PCBs									
	Total PCBs	6/6	3.17E-01	5.28E-01	95% Student's-t UCL	6.45E-01	5.28E-01	mg/kg	95% UCL	Footnote (2)
	PCB-TEQ	6/6	8.15E-06	1.40E-05	95% Student's-t UCL	1.80E-05	1.40E-05	mg/kg	95% UCL	Footnote (2)

Scenario Timeframe: Current/Future

Medium: Fish Tissue

Exposure	Chemical of	Frequency	Arithmetic ⁽¹⁾ Mean	95% UCL (2)	UCL Basis	Maximum Concentration	Ex	posure Point Co	oncentration (RM	IE)
Point	Potential Concern	of Detection	(mg/kg)	(mg/kg)		(mg/kg)	Value	Units	Statistic (3)	Rationale
Upper	Inorganics									
Anacostia (6)	Mercury	7/7	1.08E-01	1.58E-01	95% Student's-t UCL	2.36E-01	1.58E-01	mg/kg	95% UCL	Footnote (2)
	Pesticides									
	4,4'-DDD	7/7	5.47E-03	2.04E-02	95% Adjusted Gamma UCL	2.19E-02	2.04E-02	mg/kg	95% UCL	Footnote (2)
	4,4'-DDE	7/7	1.56E-02	2.69E-02	95% Student's-t UCL	4.43E-02	2.69E-02	mg/kg	95% UCL	Footnote (2)
	Aldrin	5/7	1.46E-04	4.34E-04	KM H-UCL	3.82E-04	3.82E-04	mg/kg	Max	Footnote (4)
	alpha-Chlordane	7/7	9.58E-03	3.11E-02	95% Adjusted Gamma UCL	3.10E-02	3.10E-02	mg/kg	Max	Footnote (4)
	cis-Nonachlor	7/7	4.13E-03	1.13E-02	95% Adjusted Gamma UCL	1.29E-02	1.13E-02	mg/kg	95% UCL	Footnote (2)
	Dieldrin	7/7	2.89E-03	6.64E-03	95% Adjusted Gamma UCL	8.49E-03	6.64E-03	mg/kg	95% UCL	Footnote (2)
	gamma-Chlordane	7/7	3.47E-03	5.74E-03	95% Student's-t UCL	9.19E-03	5.74E-03	mg/kg	95% UCL	Footnote (2)
	Heptachlor epoxide	7/7	1.31E-03	2.14E-03	95% Student's-t UCL	3.69E-03	2.14E-03	mg/kg	95% UCL	Footnote (2)
	Mirex	5/7	1.76E-04	3.12E-04	95% KM (t) UCL	5.41E-04	3.12E-04	mg/kg	95% UCL	Footnote (2)
	Oxychlordane	7/7	1.82E-03	2.87E-03	95% Student's-t UCL	4.82E-03	2.87E-03	mg/kg	95% UCL	Footnote (2)
	trans-Nonachlor	7/7	1.07E-02	1.78E-02	95% Student's-t UCL	3.00E-02	1.78E-02	mg/kg	95% UCL	Footnote (2)
	PCBs									
	Total PCBs	7/7	1.92E-01	3.59E-01	95% Student's-t UCL	6.81E-01	3.59E-01	mg/kg	95% UCL	Footnote (2)
	PCB-TEQ	7/7	1.30E-06	2.69E-06	95% Student's-t UCL	5.33E-06	2.69E-06	mg/kg	95% UCL	Footnote (2)

Scenario Timeframe: Current/Future

Medium: Fish Tissue

Exposure	Chemical of	Frequency	Arithmetic ⁽¹⁾ Mean	95% UCL ⁽²⁾	UCL Basis	Maximum Concentration	Ex	posure Point Co	oncentration (RM	IE)
Point	Potential Concern	of Detection	(mg/kg)	(mg/kg)		(mg/kg)	Value	Units	Statistic (3)	Rationale
Lower	Inorganics									
Potomac	Arsenic	2/9	5.03E-02	NC	NC	3.71E-01	3.71E-01	mg/kg	Max	Footnote (4,5)
	Arsenic, Organic	2/9	4.53E-01	NC	NC	3.34E+00	3.34E+00	mg/kg	Max	Footnote (4,5)
	Mercury	9/9	8.31E-02	1.10E-01	95% Student's-t UCL	1.43E-01	1.10E-01	mg/kg	95% UCL	Footnote (2)
	Pesticides									
	4,4'-DDD	9/9	3.46E-03	8.29E-03	95% Adjusted Gamma UCL	1.40E-02	8.29E-03	mg/kg	95% UCL	Footnote (2)
	4,4'-DDE	9/9	1.71E-02	4.10E-02	95% Adjusted Gamma UCL	6.01E-02	4.10E-02	mg/kg	95% UCL	Footnote (2)
	alpha-Chlordane	9/9	5.71E-03	1.54E-02	95% Adjusted Gamma UCL	2.41E-02	1.54E-02	mg/kg	95% UCL	Footnote (2)
	Dieldrin	9/9	3.82E-03	6.62E-03	95% Student's-t UCL	1.48E-02	6.62E-03	mg/kg	95% UCL	Footnote (2)
	gamma-Chlordane	8/9	2.79E-03	7.97E-03	Gamma Adjusted KM-UCL	9.43E-03	7.97E-03	mg/kg	95% UCL	Footnote (2)
	Heptachlor epoxide	9/9	1.37E-03	3.11E-03	95% Adjusted Gamma UCL	5.60E-03	3.11E-03	mg/kg	95% UCL	Footnote (2)
	Oxychlordane	9/9	1.68E-03	3.86E-03	95% Adjusted Gamma UCL	7.25E-03	3.86E-03	mg/kg	95% UCL	Footnote (2)
	trans-Nonachlor	9/9	7.81E-03	1.94E-02	95% Adjusted Gamma UCL	3.58E-02	1.94E-02	mg/kg	95% UCL	Footnote (2)
	PCBs									
	Total PCBs	9/9	1.64E-01	2.52E-01	95% Student's-t UCL	4.69E-01	2.52E-01	mg/kg	95% UCL	Footnote (2)
	PCB-TEQ	9/9	3.41E-06	5.46E-06	95% Student's-t UCL	7.47E-06	5.46E-06	mg/kg	95% UCL	Footnote (2)

Scenario Timeframe: Current/Future

Medium: Fish Tissue

Exposure	Chemical of	Frequency of Detection	Arithmetic ⁽¹⁾ Mean	95% UCL (2)	UCL Basis	Maximum Concentration	Ex	posure Point Co	oncentration (RM	IE)
Point	Potential Concern	of Detection	(mg/kg)	(mg/kg)		(mg/kg)	Value	Units	Statistic (3)	Rationale
Upper	Inorganics									
Potomac	Arsenic	5/9	2.39E-02	3.98E-02	95% KM (t) UCL	8.46E-02	3.98E-02	mg/kg	95% UCL	Footnote (2,5)
	Arsenic, Organic	5/9	2.15E-01	3.58E-01	95% KM (t) UCL	7.61E-01	3.58E-01	mg/kg	95% UCL	Footnote (2,5)
	Mercury	9/9	1.23E-01	1.61E-01	95% Student's-t UCL	2.41E-01	1.61E-01	mg/kg	95% UCL	Footnote (2)
	Pesticides									
	4,4'-DDD	9/9	1.03E-02	4.22E-02	95% Adjusted Gamma UCL	5.16E-02	4.22E-02	mg/kg	95% UCL	Footnote (2)
	4,4'-DDE	9/9	6.24E-02	3.97E-01	99% Chebyshev (Mean, Sd) UCL	2.43E-01	2.43E-01	mg/kg	Max	Footnote (4)
	Aldrin	5/9	2.21E-04	1.86E-03	95% KM Bootstrap t UCL	1.20E-03	1.20E-03	mg/kg	Max	Footnote (4)
	alpha-Chlordane	9/9	1.23E-02	5.10E-02	95% Adjusted Gamma UCL	5.37E-02	5.10E-02	mg/kg	95% UCL	Footnote (2)
	beta-BHC	9/9	6.91E-04	1.73E-03	95% Adjusted Gamma UCL	2.74E-03	1.73E-03	mg/kg	95% UCL	Footnote (2)
	cis-Nonachlor	8/9	3.87E-03	2.20E-02	95% KM Bootstrap t UCL	2.22E-02	2.20E-02	mg/kg	95% UCL	Footnote (2)
	Dieldrin	9/9	7.28E-03	2.87E-02	95% Adjusted Gamma UCL	3.78E-02	2.87E-02	mg/kg	95% UCL	Footnote (2)
	gamma-Chlordane	8/9	2.54E-03	4.64E-03	95% KM (t) UCL	8.76E-03	4.64E-03	mg/kg	95% UCL	Footnote (2)
	Heptachlor epoxide	9/9	1.97E-03	3.39E-03	95% Student's-t UCL	6.90E-03	3.39E-03	mg/kg	95% UCL	Footnote (2)
	Hexachlorobenzene	4/9	7.46E-04	1.55E-03	95% KM (t) UCL	3.50E-03	1.55E-03	mg/kg	95% UCL	Footnote (2)
	Mirex	4/9	1.75E-04	3.45E-04	95% KM (t) UCL	7.85E-04	3.45E-04	mg/kg	95% UCL	Footnote (2)
	Oxychlordane	9/9	1.87E-03	5.50E-03	95% Adjusted Gamma UCL	9.85E-03	5.50E-03	mg/kg	95% UCL	Footnote (2)
	trans-Nonachlor	8/9	1.05E-02	6.38E-02	Gamma Adjusted KM-UCL	6.26E-02	6.26E-02	mg/kg	Max	Footnote (4)
	PCBs									
	Total PCBs	9/9	4.59E-01	2.60E+00	99% Chebyshev (Mean, Sd) UCL	1.61E+00	1.61E+00	mg/kg	Max	Footnote (4)
	PCB-TEQ	9/9	1.48E-05	4.27E-05	95% Adjusted Gamma UCL	5.65E-05	4.27E-05	mg/kg	95% UCL	Footnote (2)

${\bf Exposure\ Point\ Concentration\ Summary\ -- \ Fish\ Tissue\ (RME)}$

Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Fish Tissue

Exposure Medium: Fish Tissue (Fillet)

Exposure	Chemical of	Frequency	Arithmetic ⁽¹⁾ Mean	95% UCL (2)	UCL Basis	Maximum Concentration	Ex	posure Point Co	oncentration (RM	IE)
Point	Potential Concern	of Detection	(mg/kg)	(mg/kg)		(mg/kg)	Value	Units	Statistic (3)	Rationale
	Dioxin									
	2,3,7,8-TCDD-TEQ	28 / 28	9.74E-08	1.20E-07	95% Student's-t UCL	2.89E-07	1.20E-07	mg/kg	95% UCL	Footnote (2)
	Inorganics									
	Arsenic	24 / 24	6.43E-03	7.58E-03	95% Student's-t UCL	1.40E-02	7.58E-03	mg/kg	95% UCL	Footnote (2,5)
Upstream Non-	Arsenic, Organic	24 / 24	5.79E-02	6.82E-02	95% Student's-t UCL	1.26E-01	6.82E-02	mg/kg	95% UCL	Footnote (2,5)
Tidal Anacostia	Cobalt	12 / 24	1.21E-02	1.62E-02	95% KM Adjusted Gamma UCL	4.70E-02	1.62E-02	mg/kg	95% UCL	Footnote (2)
	Mercury	23 / 24	2.57E-01	2.98E-01	95% KM Adjusted Gamma UCL, 95% GROS Adjusted Gamma UCL	5.00E-01	2.98E-01	mg/kg	95% UCL	Footnote (2)
	Thallium	19 / 24	3.43E-03	3.85E-03	95% KM (t) UCL	6.20E-03	3.85E-03	mg/kg	95% UCL	Footnote (2)
	Pesticides									
	Chlordane	25 / 26	2.16E-02	2.61E-02	95% KM (t) UCL	6.20E-02	2.61E-02	mg/kg	95% UCL	Footnote (2)
	Dieldrin	23 / 26	1.54E-03	1.97E-03	95% KM (t) UCL	4.70E-03	1.97E-03	mg/kg	95% UCL	Footnote (2)
	Heptachlor epoxide	18 / 26	1.24E-03	1.72E-03	95% KM (t) UCL	4.80E-03	1.72E-03	mg/kg	95% UCL	Footnote (2)
	PCBs									
	Total PCBs	29 / 29	2.84E-02	3.31E-02	95% Adjusted Gamma UCL	5.97E-02	3.31E-02	mg/kg	95% UCL	Footnote (2)
	PCB-TEQ	29 / 29	6.65E-07	8.76E-07	95% Adjusted Gamma UCL	2.54E-06	8.76E-07	mg/kg	95% UCL	Footnote (2)

Notes:

EPC - Exposure point concentration.

NC - Not Calculated; a sufficient number of samples and/or detects is not available to calculate a UCL.

PCB - Polychlorinated Biphenyl.

PCB-TEQ - Polychlorinated Biphenyl Toxicity Equivalence.

RME - Reasonable maximum exposure.

TCDD-TEQ - 2,3,7,8-Dioxin-Toxicity Equivalence.

UCL - Upper confidence limit.

- (1) Arithmetic mean. For datasets with non-detects, ProUCL Version 5.1 used the Kaplan-Meir method to handle detection limits.
- (2) 95% Upper Confidence Limit (UCL) on the arithmetic mean concentration calculated using USEPA ProUCL Version 5.1. The UCL suggested by ProUCL is used, unless otherwise noted.

 In cases where more than one UCL is suggested, the higher UCL is used, unless otherwise noted. Where too few samples or detects are available, the 95% UCL is not calculated. See text for details.
- (3) The EPC is equal to the 95% UCL where a sufficient number of samples and/or detects are available. The EPC is equal to the maximum detected concentration where a sufficient number of samples and/or detects are not available to calculate a UCL. See text for details.
- (4) The 95% UCL exceeded the maximum detected concentration or was not calculated, and the maximum detected concentration was selected as the EPC.
- (5) Organic and inorganic arsenic calculated assuming 90% of total arsenic is organic, and 10% is inorganic (FDA, 1993, Pinkney, 2017).
- (6) The samples collected in the Upper Anacostia River are assumed to reflect overall conditions within the several mile long river reach that was sampled (or the possibly larger home range for some of the fish species sampled), and may not reflect the specific conditions within the Waterside Investigation Area.

Scenario Timeframe: Current/Future

Medium: Fish Tissue

Exposure	Chemical of	Frequency	Arithmetic ⁽¹⁾ Mean	95% UCL (2)	UCL Basis	Maximum Concentration		Exposure Poi	nt Concentration (C	TE)
Point	Potential Concern	of Detection	(mg/kg)	(mg/kg)		(mg/kg)	Value	Units	Statistic (2)	Rationale
Lower	Inorganics									
Anacostia	Arsenic	1/6	2.45E-02	NC	NC	2.45E-02	2.45E-02	mg/kg	Maximum	Footnote (2,3)
	Arsenic, Organic	1/6	2.21E-01	NC	NC	2.21E-01	2.21E-01	mg/kg	Maximum	Footnote (2,3)
	Mercury	6/6	7.20E-02	9.77E-02	95% Student's-t UCL	1.10E-01	7.20E-02	mg/kg	Mean	Footnote (2)
	Pesticides									
	4,4'-DDD	6/6	1.08E-02	6.66E-02	95% Adjusted Gamma UCL	3.32E-02	1.08E-02	mg/kg	Mean	Footnote (2)
	4,4'-DDE	6/6	3.63E-02	6.62E-02	95% Student's-t UCL	1.01E-01	3.63E-02	mg/kg	Mean	Footnote (2)
	Aldrin	4/6	2.04E-04	4.02E-04	95% KM (t) UCL	6.17E-04	2.04E-04	mg/kg	Mean	Footnote (2)
	alpha-Chlordane	6/6	1.89E-02	3.60E-02	95% Student's-t UCL	5.27E-02	1.89E-02	mg/kg	Mean	Footnote (2)
	cis-Nonachlor	5/6	7.13E-03	1.55E-02	95% KM (t) UCL	2.60E-02	7.13E-03	mg/kg	Mean	Footnote (2)
	Dieldrin	6/6	6.21E-03	3.68E-02	95% Adjusted Gamma UCL	1.78E-02	6.21E-03	mg/kg	Mean	Footnote (2)
	gamma-Chlordane	5/6	9.07E-03	1.98E-02	95% KM (t) UCL	2.61E-02	9.07E-03	mg/kg	Mean	Footnote (2)
	Heptachlor epoxide	6/6	2.35E-03	4.27E-03	95% Student's-t UCL	5.36E-03	2.35E-03	mg/kg	Mean	Footnote (2)
	Mirex	4/6	2.12E-04	3.92E-04	95% KM (t) UCL	4.96E-04	2.12E-04	mg/kg	Mean	Footnote (2)
	Oxychlordane	5/6	3.51E-03	8.13E-03	95% KM (t) UCL	1.43E-02	3.51E-03	mg/kg	Mean	Footnote (2)
	trans-Nonachlor	6/6	1.97E-02	4.48E-02	95% Student's-t UCL	8.02E-02	1.97E-02	mg/kg	Mean	Footnote (2)
	PCBs									
	Total PCBs (Congeners)	6/6	3.17E-01	5.28E-01	95% Student's-t UCL	6.45E-01	3.17E-01	mg/kg	Mean	Footnote (2)
	PCB-TEQ	6/6	8.15E-06	1.40E-05	95% Student's-t UCL	1.80E-05	8.15E-06	mg/kg	Mean	Footnote (2)

Scenario Timeframe: Current/Future

Medium: Fish Tissue

Exposure	Chemical of	Frequency	Arithmetic (1) Mean	95% UCL (2)	UCL Basis	Maximum Concentration		Exposure Poi	nt Concentration (CT	E)
Point	Potential Concern	of Detection	(mg/kg)	(mg/kg)		(mg/kg)	Value	Units	Statistic (2)	Rationale
Upper	Inorganics									
Anacostia (4)	Mercury	7 / 7	1.08E-01	1.58E-01	95% Student's-t UCL	2.36E-01	1.08E-01	mg/kg	Mean	Footnote (2)
	Pesticides									
	4,4'-DDD	7 / 7	5.47E-03	2.04E-02	95% Adjusted Gamma UCL	2.19E-02	5.47E-03	mg/kg	Mean	Footnote (2)
	4,4'-DDE	7 / 7	1.56E-02	2.69E-02	95% Student's-t UCL	4.43E-02	1.56E-02	mg/kg	Mean	Footnote (2)
	Aldrin	5/7	1.46E-04	4.34E-04	KM H-UCL	3.82E-04	1.46E-04	mg/kg	Mean	Footnote (2)
	alpha-Chlordane	7 / 7	9.58E-03	3.11E-02	95% Adjusted Gamma UCL	3.10E-02	9.58E-03	mg/kg	Mean	Footnote (2)
	cis-Nonachlor	7 / 7	4.13E-03	1.13E-02	95% Adjusted Gamma UCL	1.29E-02	4.13E-03	mg/kg	Mean	Footnote (2)
	Dieldrin	7 / 7	2.89E-03	6.64E-03	95% Adjusted Gamma UCL	8.49E-03	2.89E-03	mg/kg	Mean	Footnote (2)
	gamma-Chlordane	7 / 7	3.47E-03	5.74E-03	95% Student's-t UCL	9.19E-03	3.47E-03	mg/kg	Mean	Footnote (2)
	Heptachlor epoxide	7 / 7	1.31E-03	2.14E-03	95% Student's-t UCL	3.69E-03	1.31E-03	mg/kg	Mean	Footnote (2)
	Mirex	5/7	1.76E-04	3.12E-04	95% KM (t) UCL	5.41E-04	1.76E-04	mg/kg	Mean	Footnote (2)
	Oxychlordane	7 / 7	1.82E-03	2.87E-03	95% Student's-t UCL	4.82E-03	1.82E-03	mg/kg	Mean	Footnote (2)
	trans-Nonachlor	7 / 7	1.07E-02	1.78E-02	95% Student's-t UCL	3.00E-02	1.07E-02	mg/kg	Mean	Footnote (2)
	PCBs									
	Total PCBs	7 / 7	1.92E-01	3.59E-01	95% Student's-t UCL	6.81E-01	1.92E-01	mg/kg	Mean	Footnote (2)
	PCB-TEQ	7 / 7	1.30E-06	2.69E-06	95% Student's-t UCL	5.33E-06	1.30E-06	mg/kg	Mean	Footnote (2)

Scenario Timeframe: Current/Future

Medium: Fish Tissue

Exposure	Chemical of	Frequency	Arithmetic ⁽¹⁾ Mean	95% UCL (2)	UCL Basis	Maximum Concentration		Exposure Poi	nt Concentration (C	TE)
Point	Potential Concern	of Detection	(mg/kg)	(mg/kg)		(mg/kg)	Value	Units	Statistic (2)	Rationale
Lower	Inorganics									
Potomac	Arsenic	2/9	5.03E-02	NC	NC	3.71E-01	5.03E-02	mg/kg	Mean	Footnote (2,3)
	Arsenic, Organic	2/9	4.53E-01	NC	NC	3.34E+00	4.53E-01	mg/kg	Mean	Footnote (2,3)
	Mercury	9/9	8.31E-02	1.10E-01	95% Student's-t UCL	1.43E-01	8.31E-02	mg/kg	Mean	Footnote (2)
	Pesticides									
	4,4'-DDD	9/9	3.46E-03	8.29E-03	95% Adjusted Gamma UCL	1.40E-02	3.46E-03	mg/kg	Mean	Footnote (2)
	4,4'-DDE	9/9	1.71E-02	4.10E-02	95% Adjusted Gamma UCL	6.01E-02	1.71E-02	mg/kg	Mean	Footnote (2)
	alpha-Chlordane	9/9	5.71E-03	1.54E-02	95% Adjusted Gamma UCL	2.41E-02	5.71E-03	mg/kg	Mean	Footnote (2)
	Dieldrin	9/9	3.82E-03	6.62E-03	95% Student's-t UCL	1.48E-02	3.82E-03	mg/kg	Mean	Footnote (2)
	gamma-Chlordane	8/9	2.79E-03	7.97E-03	Gamma Adjusted KM-UCL	9.43E-03	2.79E-03	mg/kg	Mean	Footnote (2)
	Heptachlor epoxide	9/9	1.37E-03	3.11E-03	95% Adjusted Gamma UCL	5.60E-03	1.37E-03	mg/kg	Mean	Footnote (2)
	Oxychlordane	9/9	1.68E-03	3.86E-03	95% Adjusted Gamma UCL	7.25E-03	1.68E-03	mg/kg	Mean	Footnote (2)
	trans-Nonachlor	9/9	7.81E-03	1.94E-02	95% Adjusted Gamma UCL	3.58E-02	7.81E-03	mg/kg	Mean	Footnote (2)
	PCBs									
	Total PCBs	9/9	1.64E-01	2.52E-01	95% Student's-t UCL	4.69E-01	1.64E-01	mg/kg	Mean	Footnote (2)
	PCB-TEQ	9/9	3.41E-06	5.46E-06	95% Student's-t UCL	7.47E-06	3.41E-06	mg/kg	Mean	Footnote (2)

Scenario Timeframe: Current/Future

Medium: Fish Tissue

Exposure	Chemical of	Frequency	Arithmetic ⁽¹⁾ Mean	95% UCL (2)	UCL Basis	Maximum Concentration		Exposure Poi	nt Concentration (C	TE)
Point	Potential Concern	of Detection	(mg/kg)	(mg/kg)		(mg/kg)	Value	Units	Statistic (2)	Rationale
Upper	Inorganics									
Potomac	Arsenic	5/9	2.39E-02	3.98E-02	95% KM (t) UCL	8.46E-02	2.39E-02	mg/kg	Mean	Footnote (2,3)
	Arsenic, Organic	5/9	2.15E-01	3.58E-01	95% KM (t) UCL	7.61E-01	2.15E-01	mg/kg	Mean	Footnote (2,3)
	Mercury	9/9	1.23E-01	1.61E-01	95% Student's-t UCL	2.41E-01	1.23E-01	mg/kg	Mean	Footnote (2)
	Pesticides									
	4,4'-DDD	9/9	1.03E-02	4.22E-02	95% Adjusted Gamma UCL	5.16E-02	1.03E-02	mg/kg	Mean	Footnote (2)
	4,4'-DDE	9/9	6.24E-02	3.97E-01	99% Chebyshev (Mean, Sd) UCL	2.43E-01	6.24E-02	mg/kg	Mean	Footnote (2)
	Aldrin	5/9	2.21E-04	1.86E-03	95% KM Bootstrap t UCL	1.20E-03	2.21E-04	mg/kg	Mean	Footnote (2)
	alpha-Chlordane	9/9	1.23E-02	5.10E-02	95% Adjusted Gamma UCL	5.37E-02	1.23E-02	mg/kg	Mean	Footnote (2)
	beta-BHC	9/9	6.91E-04	1.73E-03	95% Adjusted Gamma UCL	2.74E-03	6.91E-04	mg/kg	Mean	Footnote (2)
	cis-Nonachlor	8/9	3.87E-03	2.20E-02	95% KM Bootstrap t UCL	2.22E-02	3.87E-03	mg/kg	Mean	Footnote (2)
	Dieldrin	9/9	7.28E-03	2.87E-02	95% Adjusted Gamma UCL	3.78E-02	7.28E-03	mg/kg	Mean	Footnote (2)
	gamma-Chlordane	8/9	2.54E-03	4.64E-03	95% KM (t) UCL	8.76E-03	2.54E-03	mg/kg	Mean	Footnote (2)
	Heptachlor epoxide	9/9	1.97E-03	3.39E-03	95% Student's-t UCL	6.90E-03	1.97E-03	mg/kg	Mean	Footnote (2)
	Hexachlorobenzene	4/9	7.46E-04	1.55E-03	95% KM (t) UCL	3.50E-03	7.46E-04	mg/kg	Mean	Footnote (2)
	Mirex	4/9	1.75E-04	3.45E-04	95% KM (t) UCL	7.85E-04	1.75E-04	mg/kg	Mean	Footnote (2)
	Oxychlordane	9/9	1.87E-03	5.50E-03	95% Adjusted Gamma UCL	9.85E-03	1.87E-03	mg/kg	Mean	Footnote (2)
	trans-Nonachlor	8/9	1.05E-02	6.38E-02	Gamma Adjusted KM-UCL	6.26E-02	1.05E-02	mg/kg	Mean	Footnote (2)
	PCBs									
	Total PCBs	9/9	4.59E-01	2.60E+00	99% Chebyshev (Mean, Sd) UCL	1.61E+00	4.59E-01	mg/kg	Mean	Footnote (2)
	PCB-TEQ	9/9	1.48E-05	4.27E-05	95% Adjusted Gamma UCL	5.65E-05	1.48E-05	mg/kg	Mean	Footnote (2)

Exposure Point Concentration Summary — Fish Tissue (CTE) Central Tendency Exposure

Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Fish Tissue

Exposure Medium: Fish Tissue (Fillet)

Exposure	Chemical of	Frequency	Arithmetic (1) Mean	95% UCL (2)	UCL Basis	Maximum Concentration	1	Exposure Poi	int Concentration (C	TE)
Point	Potential Concern	of Detection	(mg/kg)	(mg/kg)		(mg/kg)	Value	Units	Statistic (2)	Rationale
	Dioxin									
	2,3,7,8-TCDD-TEQ	28 / 28	9.74E-08	1.20E-07	95% Student's-t UCL	2.89E-07	9.74E-08	mg/kg	Mean	Footnote (2)
	Inorganics									
	Arsenic	24 / 24	6.43E-03	7.58E-03	95% Student's-t UCL	1.40E-02	6.43E-03	mg/kg	Mean	Footnote (2,3)
Upstream Non-	Arsenic, Organic	24 / 24	5.79E-02	6.82E-02	95% Student's-t UCL	1.26E-01	5.79E-02	mg/kg	Mean	Footnote (2,3)
Tidal Anacostia	Cobalt	12 / 24	1.21E-02	1.62E-02	95% KM Adjusted Gamma UCL	4.70E-02	1.21E-02	mg/kg	Mean	Footnote (2)
	Mercury	23 / 24	2.57E-01	2.98E-01	95% KM Adjusted Gamma UCL, 95% GROS Adjusted Gamma UCL	5.00E-01	2.57E-01	mg/kg	Mean	Footnote (2)
	Thallium	19 / 24	3.43E-03	3.85E-03	95% KM (t) UCL	6.20E-03	3.43E-03	mg/kg	Mean	Footnote (2)
	Pesticides									
	Chlordane	25 / 26	2.16E-02	2.61E-02	95% KM (t) UCL	6.20E-02	2.16E-02	mg/kg	Mean	Footnote (2)
	Dieldrin	23 / 26	1.54E-03	1.97E-03	95% KM (t) UCL	4.70E-03	1.54E-03	mg/kg	Mean	Footnote (2)
	Heptachlor epoxide	18 / 26	1.24E-03	1.72E-03	95% KM (t) UCL	4.80E-03	1.24E-03	mg/kg	Mean	Footnote (2)
	PCBs									
	Total PCBs	29 / 29	2.84E-02	3.31E-02	95% Adjusted Gamma UCL	5.97E-02	2.84E-02	mg/kg	Mean	Footnote (2)
	PCB-TEQ	29 / 29	6.65E-07	8.76E-07	95% Adjusted Gamma UCL	2.54E-06	6.65E-07	mg/kg	Mean	Footnote (2)

Notes:

CTE - Central tendency exposure.

EPC - Exposure point concentration.

- J The chemical was positively identified; however, the associated numerical value is an estimated concentration.
 - +/- Indicates the result may be biased high/low.
- NC Not Calculated; a sufficient number of samples and/or detects is not available to calculate a UCL.
- PCB Polychlorinated Biphenyl.
- PCB-TEQ Polychlorinated Biphenyl Toxicity Equivalence.
- TCDD-TEQ 2,3,7,8-Dioxin-Toxicity Equivalence.
- UCL Upper confidence limit.
- (1) Arithmetic mean. For datasets with non-detects, ProUCL Version 5.1 used the Kaplan-Meir method to handle detection limits.
- (2) The EPC is the detected concentration for datasets with only one detected result. The EPC is the arithmetic mean for datasets with multiple detects.
- (3) Organic and inorganic arsenic calculated assuming 90% of total arsenic is organic, and 10% is inorganic (FDA, 1993, Pinkney, 2017).
- (4) The samples collected in the Upper Anacostia River are assumed to reflect overall conditions within the several mile long river reach that was sampled (or the possibly larger home range for some of the fish species sampled), and may not reflect the specific conditions within the Waterside Investigation Area.

Table 5-22

Derivation of Particulate Emission Factor for the Surface Soil to Outdoor Air Pathway (non-excavation pathway)

Benning Road Facility RI/FS Project

3400 Benning Rd, N.E., Washington DC 20019

Danamatan	Definition	I I i i i i i		Natas
Parameter	Definition	Units	Value	Notes
A_c	Areal extent of site	acres	77	Site-specific
А			14.0111	
В	Dispersion modeling constants (Philadelphia, PA)	unitless	19.6154	USEPA 2002, Exhibit D-2
С			225.3397	
Q/C _{wind}	Dispersion Factor - Inverse of mean concentration at center of source	g/m ² -s per kg/m ³	39.44	USEPA 2002, Equation D-1
V	Fraction of vegetative cover	unitless	0.5	
U _m	Mean annual windspeed	m/s	4.69	USEPA, 2002 Default Value
U _t	Equivalent threshold value of windspeed at 7 m	m/s	11.32	Equation 4-5
F(x)	Function dependent on U _m /U _t	unitless	0.194	
PEF	Particulate emission factor	m³/kg	5.72E+08	USEPA 2002, Equation 4-5

Equations:

$$Q/C_{wind} = A \times exp \left[\frac{(\ln A_c - B)^2}{C} \right]$$
 PE

$$PEF(m^3/kg) = \frac{Q/C_{wind}(3600s/h)}{0.036(1-V)(U_m/U_t)^3F(x)}$$

Source:

United States Environmental Protection Agency (USEPA) 2002.

Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites.

Table 5-23 Derivation of Particulate Emission Factor for Unpaved Road Traffic for the Construction Worker Scenario Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Parameter	Definition	Units	Values	Notes
А	constant	unitless	12.9351	USEPA 2002 default Equation E-19
В	constant	unitless	5.7383	USEPA 2002 default Equation E-19
С	constant	unitless	71.7711	USEPA 2002 default Equation E-19
A _s	areal extent of site surface soil contamination	acres	77.0	Site-specific
A _s	areal extent of site surface soil contamination	m ²	311,608	Acres x 4046.86 m ²
L _R	length of contaminated road segment	m	558	square root of A _s
Т	total time over which construction occurs	weeks	52	Construction activities are assumed to occur over one year.
Т	total time over which construction occurs	days	260	# weeks x 5 days/week
t _c	Overall duration of construction	unitless	8736	# weeks x 7 days/week x 24 hours per day
Т	total time over which construction occurs	seconds	7,488,000	# days x 8 hr/day x 3600 sec/hr
W_R	width of contaminated road segment	m	6.096	USEPA 2002 default (20 feet) Equation E-18
A_R	surface area of contaminated road segment	m ²	3403	L _R x W _R
W	mean vehicle weight	tons	8	Value used by USEPA 2002 example, Page E 20
р	number of days with at least 0.01 inches of precipitation	days/yr	107	University of North Carolina, Southeast Regional Climate Center. Annual average for Washington National Airport ¹
s	Road surface silt content	%	8.5	USEPA 2002 default Equation E-18
M _{dry}	Road surface material moisture content under dry, uncontrolled conditions	%	0.2	USEPA 2002 default Equation E-18
V	number of vehicles	#/day	30	Value used by USEPA 2002 example, Page E 20
ΣVKT	sum of fleet vehicle kilometers traveled during the exposure duration	km	4354	USEPA 2002 Equation E-18 v x Lr x T (weeks) x 5 days/week
Q/C _{sr}	inverse of the ratio of the 1-hr geometric mean air concentration to the emission flux along a straight road segment bisecting a square site	g/m ² -s per kg/m ³	13.29036	USEPA 2002 Equation E-19
F _D	dispersion correction factor	unitless	0.186	USEPA 2002 Equation E-16
PEF _{SC}	subchronic road particulate emission factor	m³/kg	7.19E+05	USEPA 2002 Equation E-18

Equations:

Equation E-16

Equation E-16
$$F_D = 0.1852 + \frac{5.3537}{t_c} + \frac{-9}{t_c} \quad \frac{PEF_{sc} \cdot Q/C_{sr} \times \frac{1}{F_D} \times \frac{T \times A_R}{2.6 \times (s/12)^{0.8} (W/3)^{0.4}} \times \left[\frac{(365 \cdot p)}{365} \right] \times 281.9 \times \Sigma VKT}$$

Equation E-19

$$Q/C_{_{SF}} = A \times \exp\left[\frac{\left(\ln A_{_{S}} - B\right)^{2}}{C}\right]$$

Source:

United States Environmental Protection Agency (USEPA) 2002.

Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites.

¹ http://www.sercc.com/climateinfo/historical/meanprecip.html#VA. Accessed August 8, 2018.

Exposure Point Concentration Summary — Surface Soil to Outdoor Air - Non-Excavation Scenario (RME)

Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Medium: Surface Soil (0-1 foot) Exposure Medium: Soil

Olympia Laf		ical Future Green Space		use and vn Area		Yard and orage Area	Stores a Maintena	ind Fleet ince Area	Offices and	Parking Lot	Substa	ition #7	Transfor	mer Shop	Vehicle Ref	fueling Area
Chemical of Potential Concern	Surface Soil EPC	Outdoor Air EPC ⁽¹⁾	Surface Soil EPC	Outdoor Air EPC (1)	Surface Soil EPC	Outdoor Air EPC ⁽¹⁾	Surface Soil EPC	Outdoor Air EPC ⁽¹⁾	Surface Soil EPC	Outdoor Air EPC ⁽¹⁾	Surface Soil EPC	Outdoor Air EPC ⁽¹⁾	Surface Soil EPC	Outdoor Air EPC ⁽¹⁾	Surface Soil EPC	Outdoor Air EPC ⁽¹⁾
	(mg/kg)	(mg/m³)	(mg/kg)	(mg/m³)	(mg/kg)	(mg/m³)	(mg/kg)	(mg/m³)	(mg/kg)	(mg/m³)	(mg/kg)	(mg/m³)	(mg/kg)	(mg/m ³)	(mg/kg)	(mg/m³)
Dioxin																
2,3,7,8-TCDD-TEQ	2.51E-06	4.39E-15	3.17E-05	5.54E-14	1.08E-04	1.88E-13	1.45E-05	2.53E-14	1.37E-05	2.40E-14	4.37E-06	7.64E-15	ND	ND	ND	ND
Inorganics																
Arsenic	2.60E+00	4.55E-09	3.85E+01	6.74E-08	1.40E+01	2.45E-08	7.50E+00	1.31E-08	3.70E+00	6.47E-09	3.30E+01	5.77E-08	1.70E+00	2.97E-09	ND	ND
Cobalt	1.30E+02	2.27E-07	4.55E+01	7.96E-08	1.70E+01	2.97E-08	7.90E+00	1.38E-08	1.10E+01	1.92E-08	4.70E+00	8.22E-09	2.70E+00	4.72E-09	ND	ND
Manganese	2.00E+02	3.50E-07	1.05E+03	1.84E-06	5.00E+02	8.75E-07	2.20E+02	3.85E-07	2.60E+02	4.55E-07	3.70E+02	6.47E-07	2.60E+02	4.55E-07	ND	ND
Nickel	1.20E+01	2.10E-08	1.53E+03	2.68E-06	2.70E+01	4.72E-08	3.10E+01	5.42E-08	3.00E+01	5.25E-08	1.40E+01	2.45E-08	1.60E+01	2.80E-08	ND	ND
Thallium	ND	ND	1.56E-01	2.73E-10	2.00E-01	3.50E-10	1.70E-01	2.97E-10	ND	ND	2.50E-01	4.37E-10	ND	ND	ND	ND
Vanadium	5.80E+01	1.01E-07	7.06E+03	1.23E-05	3.60E+01	6.30E-08	3.00E+01	5.25E-08	2.30E+01	4.02E-08	2.30E+01	4.02E-08	9.70E+00	1.70E-08	ND	ND
PCBs																
Total PCBs	9.20E-02	1.61E-10	5.19E+00	9.08E-09	2.15E+00	3.76E-09	1.35E+00	2.36E-09	3.30E-01	5.77E-10	5.10E+00	8.92E-09	2.01E+03	3.52E-06	1.40E-01	2.45E-10
SVOCs																
Benzo(a)anthracene	1.90E-01	3.32E-10	5.83E-01	1.02E-09	1.34E+00	2.35E-09	3.70E-01	6.47E-10	2.79E+00	4.88E-09	1.80E+00	3.15E-09	7.49E-01	1.31E-09	2.60E+00	4.55E-09
Benzo(a)pyrene	1.80E-01	3.15E-10	5.77E-01	1.01E-09	1.29E+00	2.25E-09	5.41E-01	9.46E-10	2.27E+00	3.97E-09	1.40E+00	2.45E-09	6.52E-01	1.14E-09	1.30E+00	2.27E-09
Benzo(b)fluoranthene	2.60E-01	4.55E-10	6.81E-01	1.19E-09	2.03E+00	3.56E-09	6.87E-01	1.20E-09	2.58E+00	4.50E-09	3.20E+00	5.60E-09	8.16E-01	1.43E-09	2.20E+00	3.85E-09
Benzo(k)fluoranthene	9.10E-02	1.59E-10	2.58E-01	4.51E-10	4.92E-01	8.61E-10	2.73E-01	4.77E-10	1.12E+00	1.95E-09	1.70E+00	2.97E-09	2.33E-01	4.08E-10	6.10E-01	1.07E-09
Chrysene	2.00E-01	3.50E-10	6.39E-01	1.12E-09	1.41E+00	2.46E-09	6.82E-01	1.19E-09	2.45E+00	4.28E-09	3.20E+00	5.60E-09	7.36E-01	1.29E-09	2.50E+00	4.37E-09
Dibenzo(a,h)anthracene	4.60E-02	8.05E-11	1.50E-01	2.62E-10	2.40E-01	4.20E-10	1.39E-01	2.43E-10	4.70E-01	8.22E-10	4.00E-01	7.00E-10	1.22E-01	2.13E-10	3.10E-01	5.42E-10
Indeno(1,2,3-cd)pyrene	1.50E-01	2.62E-10	4.42E-01	7.73E-10	9.69E-01	1.69E-09	4.37E-01	7.64E-10	1.51E+00	2.65E-09	1.30E+00	2.27E-09	3.91E-01	6.84E-10	7.80E-01	1.36E-09
Naphthalene	1.80E-02	3.15E-11	1.14E-01	1.99E-10	1.66E-01	2.90E-10	4.00E-02	7.00E-11	7.92E-02	1.39E-10	6.70E-02	1.17E-10	2.67E-02	4.67E-11	6.30E-01	1.10E-09
ТРН																
Diesel Range Organics (C10-C20)	1.30E+01	2.27E-08	1.49E+02	2.61E-07	3.40E+03	5.95E-06	1.70E+02	2.97E-07	ND	ND	2.00E+01	3.50E-08	8.00E+01	1.40E-07	3.80E+02	6.65E-07

Notes:

EPC - Exposure Point Concentration.

ND - Not Detected in this area.

PCB - Polychlorinated Biphenyl.

PEF - Particulate Emission Factor.

RME - Reasonable Maximum Exposure.

SVOC - Semivolatile Organic Compound

TCDD-TEQ - 2,3,7,8-Dioxin-Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon

(1) Estimated outdoor air EPCs were calculated by dividing the surface soil RME EPC by the PEF for the non-excavation scenario. See report text for details.

Exposure Point Concentration Summary — Surface Soil to Outdoor Air - Non-Excavation Scenario (RME)

Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Medium: Surface Soil (0-1 foot) Exposure Medium: Soil

al winds.		cal Future Green Space		ouse and vn Area		Yard and orage Area		and Fleet ance Area	Offices and	Parking Lot	Substa	ation #7	Transfor	mer Shop	Vehicle Ref	fueling Area
Chemical of Potential Concern	Surface Soil EPC	Outdoor Air EPC ⁽¹⁾														
	(mg/kg)	(mg/m³)														
Dioxin																
2,3,7,8-TCDD-TEQ	1.89E-06	3.31E-15	1.51E-05	2.64E-14	6.10E-05	1.07E-13	6.19E-06	1.08E-14	9.63E-06	1.68E-14	4.37E-06	7.64E-15	ND	ND	ND	ND
Inorganics																
Arsenic	2.20E+00	3.85E-09	1.83E+01	3.20E-08	1.14E+01	1.99E-08	5.25E+00	9.18E-09	2.97E+00	5.19E-09	1.00E+01	1.75E-08	1.70E+00	2.97E-09	ND	ND
Cobalt	1.11E+02	1.94E-07	1.95E+01	3.41E-08	1.03E+01	1.81E-08	4.48E+00	7.83E-09	6.87E+00	1.20E-08	4.03E+00	7.04E-09	2.70E+00	4.72E-09	ND	ND
Manganese	1.18E+02	2.06E-07	3.99E+02	6.98E-07	2.77E+02	4.84E-07	1.18E+02	2.06E-07	1.87E+02	3.27E-07	1.98E+02	3.45E-07	2.60E+02	4.55E-07	ND	ND
Nickel	1.04E+01	1.81E-08	5.13E+02	8.97E-07	1.69E+01	2.96E-08	1.13E+01	1.98E-08	2.27E+01	3.97E-08	1.04E+01	1.82E-08	1.60E+01	2.80E-08	ND	ND
Thallium	ND	ND	1.31E-01	2.29E-10	1.80E-01	3.15E-10	1.03E-01	1.80E-10	ND	ND	1.38E-01	2.41E-10	ND	ND	ND	ND
Vanadium	3.70E+01	6.47E-08	2.24E+03	3.92E-06	2.47E+01	4.31E-08	2.08E+01	3.63E-08	1.93E+01	3.38E-08	1.46E+01	2.55E-08	9.70E+00	1.70E-08	ND	ND
PCBs																
Total PCBs	4.42E-02	7.73E-11	1.28E+00	2.23E-09	1.14E+00	2.00E-09	6.80E-01	1.19E-09	2.34E-01	4.09E-10	4.62E-01	8.08E-10	1.89E+02	3.31E-07	7.40E-02	1.29E-10
SVOCs																
Benzo(a)anthracene	1.37E-01	2.40E-10	4.36E-01	7.63E-10	8.21E-01	1.44E-09	2.42E-01	4.23E-10	1.24E+00	2.16E-09	4.01E-01	7.01E-10	3.24E-01	5.67E-10	1.75E+00	3.07E-09
Benzo(a)pyrene	1.55E-01	2.71E-10	4.31E-01	7.54E-10	7.80E-01	1.36E-09	2.49E-01	4.36E-10	1.11E+00	1.93E-09	3.17E-01	5.54E-10	2.86E-01	5.00E-10	8.85E-01	1.55E-09
Benzo(b)fluoranthene	1.65E-01	2.89E-10	5.16E-01	9.02E-10	1.17E+00	2.04E-09	3.24E-01	5.67E-10	1.33E+00	2.33E-09	7.13E-01	1.25E-09	3.80E-01	6.65E-10	1.48E+00	2.58E-09
Benzo(k)fluoranthene	6.80E-02	1.19E-10	1.95E-01	3.41E-10	3.57E-01	6.24E-10	1.32E-01	2.31E-10	5.25E-01	9.18E-10	3.65E-01	6.38E-10	1.42E-01	2.48E-10	4.60E-01	8.05E-10
Chrysene	1.53E-01	2.68E-10	4.90E-01	8.57E-10	8.58E-01	1.50E-09	3.02E-01	5.28E-10	1.17E+00	2.04E-09	7.10E-01	1.24E-09	3.23E-01	5.65E-10	1.71E+00	2.99E-09
Dibenzo(a,h)anthracene	3.23E-02	5.65E-11	9.93E-02	1.74E-10	1.42E-01	2.48E-10	5.68E-02	9.93E-11	2.47E-01	4.32E-10	9.44E-02	1.65E-10	7.51E-02	1.31E-10	2.15E-01	3.76E-10
Indeno(1,2,3-cd)pyrene	1.04E-01	1.82E-10	3.19E-01	5.58E-10	5.90E-01	1.03E-09	1.92E-01	3.36E-10	7.78E-01	1.36E-09	2.95E-01	5.16E-10	2.41E-01	4.22E-10	5.55E-01	9.71E-10
Naphthalene	1.22E-02	2.13E-11	6.76E-02	1.18E-10	1.12E-01	1.96E-10	2.78E-02	4.86E-11	3.93E-02	6.87E-11	2.70E-02	4.72E-11	1.70E-02	2.97E-11	3.43E-01	6.00E-10
трн																
Diesel Range Organics (C10-C20)	1.30E+01	2.27E-08	9.62E+01	1.68E-07	1.30E+03	2.27E-06	3.98E+01	6.96E-08	ND	ND	1.90E+01	3.32E-08	8.00E+01	1.40E-07	3.80E+02	6.65E-07

Notes:

CTE - Central Tendency Exposure.

EPC - Exposure Point Concentration.

ND - Not Detected in this area.

PCB - Polychlorinated Biphenyl.

PEF - Particulate Emission Factor.

SVOC - Semivolatile Organic Compound

TCDD-TEQ - 2,3,7,8-Dioxin-Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon

(1) Estimated outdoor air EPCs were calculated by dividing the surface soil CTE EPC by the PEF for the non-excavation scenario. See report text for details.

Exposure Point Concentration Summary — Soil to Outdoor Air - Excavation Scenario (RME)

Reasonable Maximum Exposure

Benning Road Facility RI/FS Project

3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Soil (0-16 feet) Exposure Medium: Air

2	Hypotheti Park Land/0	cal Future Green Space		use and vn Area	-	Yard and orage Area		and Fleet ance Area	Offices and	Parking Lot	Substa	ition #7	Transfor	mer Shop	Vehicle Re	fueling Area
Chemical of Potential Concern	Soil EPC	Outdoor Air EPC ⁽¹⁾	Soil EPC	Outdoor Air EPC ⁽¹⁾	Soil EPC	Outdoor Air EPC ⁽¹⁾	Soil EPC	Outdoor Air EPC ⁽¹⁾	Soil EPC	Outdoor Air EPC ⁽¹⁾	Soil EPC	Outdoor Air EPC (1)	Soil EPC	Outdoor Air EPC ⁽¹⁾	Soil EPC	Outdoor Air EPC ⁽¹⁾
	(mg/kg)	(mg/m³)	(mg/kg)	(mg/m³)	(mg/kg)	(mg/m³)	(mg/kg)	(mg/m³)	(mg/kg)	(mg/m³)	(mg/kg)	(mg/m³)	(mg/kg)	(mg/m³)	(mg/kg)	(mg/m³)
Dioxin																
2.3.7.8-TCDD-TEQ	2.51E-06	3.49E-12	2.85E-05	3.97E-11	8.23E-05	1.14E-10	1.25E-05	1.73E-11	1.37E-05	1.91E-11	4.37E-06	6.08E-12	ND	ND	ND	ND
Inorganics																
Arsenic	2.60E+00	3.62E-06	2.70E+01	3.76E-05	1.40E+01	1.95E-05	5.56E+00	7.73E-06	4.20E+00	5.84E-06	3.30E+01	4.59E-05	7.70E+00	1.07E-05	3.70E+00	5.15E-06
Cobalt	1.30E+02	1.81E-04	2.99E+01	4.16E-05	1.70E+01	2.36E-05	5.09E+00	7.08E-06	1.30E+01	1.81E-05	4.70E+00	6.54E-06	6.50E+00	9.04E-06	7.30E+00	1.02E-05
Manganese	3.70E+02	5.15E-04	7.05E+02	9.80E-04	5.00E+02	6.95E-04	1.55E+02	2.16E-04	4.00E+02	5.56E-04	3.70E+02	5.15E-04	2.60E+02	3.62E-04	2.00E+02	2.78E-04
Nickel	1.20E+01	1.67E-05	9.36E+02	1.30E-03	2.70E+01	3.75E-05	2.19E+01	3.04E-05	3.00E+01	4.17E-05	1.40E+01	1.95E-05	2.30E+01	3.20E-05	1.20E+01	1.67E-05
Thallium	5.30E-02	7.37E-08	2.45E-01	3.41E-07	2.00E-01	2.78E-07	1.17E-01	1.63E-07	1.30E-01	1.81E-07	2.50E-01	3.48E-07	1.70E-01	2.36E-07	1.50E-01	2.09E-07
Vanadium	5.80E+01	8.07E-05	4.51E+03	6.27E-03	3.60E+01	5.01E-05	2.37E+01	3.30E-05	3.60E+01	5.01E-05	3.20E+01	4.45E-05	2.30E+01	3.20E-05	2.90E+01	4.03E-05
PCBs																
Total PCBs	2.66E-02	3.70E-08	8.34E+00	1.16E-05	1.32E+00	1.84E-06	7.14E-01	9.93E-07	1.73E-01	2.41E-07	1.56E+00	2.17E-06	1.26E+02	1.75E-04	6.03E-02	8.39E-08
SVOCs																
Benzo(a)anthracene	1.56E-01	2.17E-07	2.85E+00	3.96E-06	2.35E+01	3.27E-05	4.63E+00	6.43E-06	3.07E+01	4.27E-05	1.80E+00	2.50E-06	3.04E+00	4.22E-06	8.96E-01	1.25E-06
Benzo(a)pyrene	1.50E-01	2.09E-07	1.78E+00	2.47E-06	2.14E+01	2.98E-05	2.31E+00	3.21E-06	2.72E+01	3.78E-05	1.34E+00	1.86E-06	2.52E+00	3.50E-06	6.81E-01	9.47E-07
Benzo(b)fluoranthene	1.85E-01	2.57E-07	3.90E+00	5.42E-06	2.21E+01	3.07E-05	4.66E+00	6.49E-06	2.15E+01	2.99E-05	3.20E+00	4.45E-06	3.25E+00	4.52E-06	1.01E+00	1.40E-06
Benzo(k)fluoranthene	7.24E-02	1.01E-07	6.01E-01	8.36E-07	5.87E+00	8.16E-06	4.46E-01	6.20E-07	2.15E+01	2.99E-05	1.62E+00	2.25E-06	1.22E+00	1.70E-06	2.63E-01	3.66E-07
Chrysene	1.63E-01	2.27E-07	3.94E+00	5.48E-06	2.51E+01	3.49E-05	4.25E+00	5.91E-06	2.68E+01	3.73E-05	3.20E+00	4.45E-06	2.77E+00	3.86E-06	8.78E-01	1.22E-06
Dibenzo(a,h)anthracene	3.33E-02	4.63E-08	2.54E-01	3.53E-07	9.18E-01	1.28E-06	1.69E-01	2.35E-07	7.68E+00	1.07E-05	4.00E-01	5.56E-07	5.67E-01	7.88E-07	1.17E-01	1.63E-07
Indeno(1,2,3-cd)pyrene	1.06E-01	1.47E-07	1.21E+00	1.69E-06	1.29E+01	1.80E-05	6.11E-01	8.50E-07	1.68E+01	2.34E-05	1.30E+00	1.81E-06	1.82E+00	2.53E-06	4.50E-01	6.26E-07
Naphthalene	1.15E-02	1.60E-08	9.07E-02	1.26E-07	7.24E-01	1.01E-06	8.86E-02	1.23E-07	1.12E+00	1.56E-06	6.70E-02	9.32E-08	1.94E-01	2.70E-07	2.37E-01	3.30E-07
ТРН																
Diesel Range Organics (C10-C20)	1.30E+01	1.81E-05	8.23E+02	1.14E-03	2.09E+03	2.91E-03	7.82E+01	1.09E-04	2.30E+01	3.20E-05	2.00E+01	2.78E-05	8.00E+01	1.11E-04	3.80E+02	5.28E-04

Notes:

EPC - Exposure Point Concentration.

ND - Not Detected in this area.

PCB - Polychlorinated Biphenyl.

PEF - Particulate Emission Factor.

RME - Reasonable Maximum Exposure.

SVOC - Semivolatile Organic Compound

TCDD-TEQ - 2,3,7,8-Dioxin-Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon

(1) Estimated outdoor air EPCs were calculated by dividing the soil RME EPC by the PEF for the excavation scenario. See report text for details.

Exposure Point Concentration Summary — Soil to Outdoor Air - Excavation Scenario (CTE)

Central Tendency Exposure

Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Soil (0-16 feet) Exposure Medium: Air

	Hypotheti Park Land/0	cal Future Green Space		use and vn Area		Yard and orage Area	Stores a Maintena	ind Fleet ince Area	Offices and	Parking Lot	Substa	ation #7	Transfor	mer Shop	Vehicle Re	fueling Area
Chemical of Potential Concern	Soil EPC	Outdoor Air EPC ⁽¹⁾	Soil EPC	Outdoor Air EPC (1)	Soil EPC	Outdoor Air EPC (1)	Soil EPC	Outdoor Air EPC (1)	Soil EPC	Outdoor Air EPC (1)	Soil EPC	Outdoor Air EPC (1)	Soil EPC	Outdoor Air EPC ⁽¹⁾	Soil EPC	Outdoor Air EPC (1)
	(mg/kg)	(mg/m³)	(mg/kg)	(mg/m³)	(mg/kg)	(mg/m³)	(mg/kg)	(mg/m³)	(mg/kg)	(mg/m³)	(mg/kg)	(mg/m³)	(mg/kg)	(mg/m³)	(mg/kg)	(mg/m³)
Dioxin																
2,3,7,8-TCDD-TEQ	1.14E-06	1.58E-12	1.35E-05	1.88E-11	4.87E-05	6.78E-11	5.51E-06	7.66E-12	6.57E-06	9.14E-12	2.37E-06	3.29E-12	ND	ND	ND	ND
Inorganics																
Arsenic	1.81E+00	2.51E-06	1.40E+01	1.95E-05	5.42E+00	7.54E-06	4.49E+00	6.25E-06	3.08E+00	4.29E-06	6.64E+00	9.23E-06	3.40E+00	4.73E-06	2.48E+00	3.45E-06
Cobalt	5.85E+01	8.13E-05	1.41E+01	1.96E-05	6.11E+00	8.50E-06	3.99E+00	5.55E-06	8.25E+00	1.15E-05	3.79E+00	5.26E-06	3.47E+00	4.82E-06	5.52E+00	7.68E-06
Manganese	2.09E+02	2.91E-04	3.12E+02	4.33E-04	1.42E+02	1.98E-04	1.18E+02	1.64E-04	2.05E+02	2.84E-04	1.34E+02	1.86E-04	1.57E+02	2.18E-04	1.41E+02	1.96E-04
Nickel	7.08E+00	9.84E-06	3.20E+02	4.45E-04	1.08E+01	1.50E-05	9.05E+00	1.26E-05	1.83E+01	2.55E-05	7.56E+00	1.05E-05	1.39E+01	1.94E-05	6.34E+00	8.82E-06
Thallium	4.50E-02	6.26E-08	1.46E-01	2.03E-07	1.30E-01	1.81E-07	9.16E-02	1.27E-07	8.89E-02	1.24E-07	6.44E-02	8.96E-08	1.13E-01	1.57E-07	1.03E-01	1.43E-07
Vanadium	2.37E+01	3.29E-05	1.47E+03	2.05E-03	2.37E+01	3.29E-05	1.99E+01	2.77E-05	2.42E+01	3.36E-05	1.60E+01	2.23E-05	1.66E+01	2.30E-05	2.18E+01	3.03E-05
PCBs																
Total PCBs	1.42E-02	1.97E-08	1.16E+00	1.62E-06	6.59E-01	9.16E-07	4.94E-01	6.87E-07	1.08E-01	1.50E-07	2.41E-01	3.35E-07	7.46E+01	1.04E-04	2.32E-02	3.23E-08
SVOCs																
Benzo(a)anthracene	1.05E-01	1.46E-07	1.02E+00	1.42E-06	1.02E+01	1.42E-05	1.13E+00	1.57E-06	1.07E+01	1.48E-05	1.71E-01	2.38E-07	2.23E+00	3.09E-06	3.73E-01	5.19E-07
Benzo(a)pyrene	1.04E-01	1.45E-07	9.08E-01	1.26E-06	8.48E+00	1.18E-05	6.65E-01	9.25E-07	9.48E+00	1.32E-05	1.36E-01	1.89E-07	1.87E+00	2.60E-06	3.28E-01	4.56E-07
Benzo(b)fluoranthene	1.24E-01	1.72E-07	1.11E+00	1.54E-06	1.03E+01	1.43E-05	1.18E+00	1.64E-06	9.11E+00	1.27E-05	2.99E-01	4.16E-07	2.44E+00	3.39E-06	4.40E-01	6.12E-07
Benzo(k)fluoranthene	5.03E-01	6.99E-07	3.99E-01	5.55E-07	4.03E+00	5.60E-06	3.02E-01	4.20E-07	6.15E+00	8.56E-06	1.54E-01	2.14E-07	9.18E-01	1.28E-06	1.26E-01	1.75E-07
Chrysene	1.13E-01	1.57E-07	1.15E+00	1.60E-06	9.11E+00	1.27E-05	1.07E+00	1.48E-06	9.54E+00	1.33E-05	2.99E-01	4.16E-07	2.05E+00	2.86E-06	3.91E-01	5.44E-07
Dibenzo(a,h)anthracene	2.30E-02	3.20E-08	1.99E-01	2.77E-07	1.10E+00	1.52E-06	1.28E-01	1.78E-07	1.80E+00	2.50E-06	4.04E-02	5.62E-08	4.25E-01	5.91E-07	7.31E-02	1.02E-07
Indeno(1,2,3-cd)pyrene	7.09E-02	9.86E-08	5.70E-01	7.93E-07	5.45E+00	7.58E-06	3.87E-01	5.38E-07	6.29E+00	8.74E-06	1.26E-01	1.75E-07	1.38E+00	1.92E-06	2.11E-01	2.93E-07
Naphthalene	7.97E-03	1.11E-08	7.16E-02	9.96E-08	1.80E+00	2.50E-06	5.77E-02	8.02E-08	1.06E+00	1.47E-06	1.41E-02	1.96E-08	9.91E-02	1.38E-07	7.18E-02	9.98E-08
ТРН																
Diesel Range Organics (C10-C20)	1.30E+01	1.81E-05	6.53E+02	9.08E-04	6.63E+02	9.22E-04	5.15E+01	7.15E-05	2.30E+01	3.20E-05	2.00E+01	2.78E-05	1.86E+01	2.59E-05	7.07E+01	9.83E-05

Notes:

CTE - Central Tendency Exposure.

EPC - Exposure Point Concentration.

ND - Not Detected in this area.

PCB - Polychlorinated Biphenyl.

PEF - Particulate Emission Factor.

SVOC - Semivolatile Organic Compound

TCDD-TEQ - 2,3,7,8-Dioxin-Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon

(1) Estimated outdoor air EPCs were calculated by dividing the soil CTE EPC by the PEF for the excavation scenario. See report text for details.

Exposure Point Concentration Summary — Groundwater Volatilization to Excavation Trench Air Pathway (RME)

Reasonable Maximum Exposure Benning Road Facility RI/FS Project

3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Groundwater Exposure Medium: Air

Observiced of	Volatilization	Hypothetic Park Land/Gr		Warehou: Laydowr		Salvage Yard Storage		Stores an Maintenan		Offices and	•	Substat	ion #7	Transform	er Shop	Vehicle Refu	Jeling Area
Chemical of Potential Concern		Groundwater EPC	EPC ²	Groundwater EPC	EPC ²	EPC	EPC ²	EPC	EPC ²	EPC	EPC ²	EPC	EPC ²	EPC	EPC ²	Groundwater EPC	EPC ²
	(L/m³)	(ug/L)	(mg/m³)	(ug/L)	(mg/m³)	(ug/L)	(mg/m³)	(ug/L)	(mg/m³)	(ug/L)	(mg/m³)	(ug/L)	(mg/m³)	(ug/L)	(mg/m³)	(ug/L)	(mg/m³)
VOCs																	
Bromodichloromethane	6.36E+00	ND	ND	3.60E-01	2.29E-03	ND	ND	2.60E+00	1.65E-02	ND	ND	ND	ND	ND	ND	ND	ND
Butyl alcohol, tert-	1.21E+00	ND	ND	ND	ND	ND	ND	1.10E+02	1.33E-01	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7.53E+00	1.20E+00	9.03E-03	1.06E+00	8.00E-03	ND	ND	1.50E+01	1.13E-01	1.30E+00	9.78E-03	ND	ND	4.40E-01	3.31E-03	3.30E+00	2.48E-02
Methyl tert-Butyl Ether (MTBE)	8.07E+00	1.28E+00	1.03E-02	1.22E+00	9.87E-03	4.90E+00	3.95E-02	3.44E+01	2.77E-01	5.00E+00	4.03E-02	2.10E+01	1.69E-01	ND	ND	1.60E+00	1.29E-02
Tetrachloroethylene	6.47E+00	1.00E+01	6.47E-02	1.50E+01	9.70E-02	2.70E-01	1.75E-03	1.25E+01	8.08E-02	1.56E+02	1.01E+00	9.60E-01	6.21E-03	2.00E-01	1.29E-03	2.60E-01	1.68E-03
Trichloroethene	7.24E+00	1.34E+00	9.72E-03	2.30E+00	1.67E-02	ND	ND	5.80E-01	4.20E-03	1.29E+01	9.31E-02	1.70E-01	1.23E-03	ND	ND	ND	ND
Vinyl Chloride	1.05E+01	ND	ND	ND	ND	ND	ND	ND	ND	5.30E+00	5.59E-02	ND	ND	ND	ND	ND	ND

Notes:

EPC - Exposure Point Concentration.

ND - Not Detected.

RME - Reasonable Maximum Exposure.

VOC - Volatile Organic Compound

(1) Volatilization factor for groundwater to an excavation trench. Calculated in Attachment F.

(2) Trench air EPC = [Groundwater EPC (ug/L) * Volatilization Factor (L/m3)]/[1000 ug/mg]

Exposure Point Concentration Summary — Groundwater Volatilization to Excavation Trench Air Pathway (CTE) Central Tendency Exposure Repping Road Facility PUES Project

Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future

Medium: Groundwater Exposure Medium: Air

Observing of	Volatilizatio	Hypothetica Park Land/Gr		Warehou Laydowi		Salvage Yard Storage		Stores an Maintenan		Offices and	•	Substat	on #7	Transform	er Shop	Vehicle Refu	ieling Area
Chemical of Potential Concern		EPC	EPC ²	EPC	EPC ²	EPC	EPC ²	EPC	EPC ²	EPC	EPC ²	EPC	EPC ²	Groundwater EPC	Trench Air EPC ²	Groundwater EPC	EPC ²
	(L/m³)	(ug/L)	(mg/m ³)	(ug/L)	(mg/m ³)	(ug/L)	(mg/m ³)	(ug/L)	(mg/m ³)	(ug/L)	(mg/m ³)	(ug/L)	(mg/m ³)	(ug/L)	(mg/m ³)	(ug/L)	(mg/m³)
VOCs																	
Bromodichloromethane	6.36E+00	ND	ND	3.60E-01	2.29E-03	ND	ND	2.60E+00	1.65E-02	ND	ND	ND	ND	ND	ND	ND	ND
Butyl alcohol, tert-	1.21E+00	ND	ND	ND	ND	ND	ND	1.10E+02	1.33E-01	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7.53E+00	3.07E-01	2.31E-03	7.59E-01	5.71E-03	ND	ND	1.57E+00	1.18E-02	4.60E-01	3.46E-03	ND	ND	4.40E-01	3.31E-03	3.30E+00	2.48E-02
Methyl tert-Butyl Ether (MTBE)	8.07E+00	7.56E-01	6.10E-03	9.56E-01	7.71E-03	1.56E+00	1.26E-02	8.72E+00	7.03E-02	1.18E+00	9.48E-03	6.12E+00	4.93E-02	ND	ND	1.13E+00	9.14E-03
Tetrachloroethylene	6.47E+00	3.77E+00	2.44E-02	1.18E+00	7.63E-03	2.40E-01	1.55E-03	2.31E+00	1.49E-02	1.12E+02	7.21E-01	6.85E-01	4.43E-03	2.00E-01	1.29E-03	2.60E-01	1.68E-03
Trichloroethene	7.24E+00	7.64E-01	5.53E-03	6.62E-01	4.80E-03	ND	ND	3.85E-01	2.79E-03	9.24E+00	6.69E-02	1.70E-01	1.23E-03	ND	ND	ND	ND
Vinyl Chloride	1.05E+01	ND	ND	ND	ND	ND	ND	ND	ND	5.30E+00	5.59E-02	ND	ND	ND	ND	ND	ND

Notes:

EPC - Exposure Point Concentration.

ND - Not Detected.

CTE - Central Tendency Exposure.

VOC - Volatile Organic Compound

(1) Volatilization factor for groundwater to an excavation trench. Calculated in Attachment x.

(2) Trench air EPC = [Groundwater EPC (ug/L) * Volatilization Factor (L/m3)]/[1000 ug/mg]

Table 5-30 Evaluation of the Groundwater to Surface Water Migration Pathway Benning Road Facility RVFS Project 3400 Benning Rd, N.E., Washington DC 20019

										Upper	Aquifer					
						Estimated Surface		Estimated Surface		Estimated Surface	7 iquiioi	Estimated Surface		Estimated Surface		Estimated Surface
		Surface		Groundwat	ter	Water	Groundwater	Water								
		Water		Concentrat		Concentration (c)	Concentration	Concentration (c)								
		Screening	Location ID		MW	01A	MV	V02A	M	W03A	MW	/04A	MW08A		MV	V11A
Chemical (a)	CAS	Level (b)	DAF	İ	9.93			6E-05		44E-05		2E-06	4.17E-05		1.92	2E-04
Dioxins and Furans				•												
2,3,7,8-TCDD-TEQ	DFTEQ-HH	5.10E-08		2.77E-09		2.75E-13	NA	NA	1.25E-08	1.80E-13	1.28E-09	7.70E-15	NA	NA	9.81E-07 U	1.89E-10
Inorganics (Total)																
Aluminum	7429-90-5	2.00E+03		7.30E+02	J+	7.25E-02	1.60E+02 J+	9.06E-03	2.10E+02 J+	3.02E-03	5.00E+02 J+	3.01E-03	1.60E+03	6.67E-02	3.20E+02 J+	6.16E-02
Arsenic	7440-38-2	1.40E-01		2.50E+00	J+	2.48E-04	3.70E+00 J+	2.10E-04	6.10E+00 J+	8.78E-05	8.00E+00 J+	4.81E-05	1.40E+01 J+	5.84E-04	3.40E+00 J+	6.54E-04
Barium	7440-39-3	3.80E+02		2.70E+02		2.68E-02	1.80E+01	1.02E-03	9.80E+01	1.41E-03	1.10E+02	6.62E-04	1.00E+02 U	4.17E-03	4.20E+01	8.08E-03
Beryllium	7440-41-7	2.50E+00		7.20E-02	J+	7.15E-06	1.00E+00 U	5.66E-05	1.00E+00 U	1.44E-05	4.10E-02 J	2.47E-07	1.00E+01 U	4.17E-04	4.80E-02 J	9.23E-06
Calcium	7440-70-2	EN		8.00E+04		7.94E+00	5.30E+04	3.00E+00	3.90E+04	5.61E-01	6.80E+04	4.09E-01	4.60E+04	1.92E+00	2.10E+04	4.04E+00
Chromium	7440-47-3	2.20E+03		3.40E+00	U	3.38E-04	2.00E+00 U	1.13E-04	4.30E+00 U	6.19E-05	4.80E+00 U	2.89E-05	2.00E+01 U	8.34E-04	8.10E+00	1.56E-03
Cobalt	7440-48-4	6.00E-01		1.30E+01		1.29E-03	7.40E-01 J+	4.19E-05	6.70E+00	9.64E-05	3.30E+01	1.99E-04	7.90E+00	3.29E-04	2.60E+00	5.00E-04
Copper	7440-50-8	8.00E+01		2.00E+00	С	1.99E-04	2.00E+00 U	1.13E-04	3.10E+00 U	4.46E-05	2.40E+00 U	1.44E-05	2.00E+01 U	8.34E-04	3.20E+00 U	6.16E-04
Iron	7439-89-6	EN		4.40E+04		4.37E+00	8.20E+02	4.64E-02	1.90E+03	2.73E-02	1.20E+04	7.22E-02	7.90E+03	3.29E-01	1.80E+03	3.46E-01
Lead	7439-92-1	1.50E+01		1.40E+00	J	1.39E-04	1.00E+00 U	5.66E-05	4.80E-01 J	6.91E-06	7.30E-01 J	4.39E-06	1.00E+01 U	4.17E-04	1.00E+00 J	1.92E-04
Magnesium	7439-95-4	EN		1.20E+04		1.19E+00	5.10E+03	2.89E-01	3.80E+03	5.47E-02	1.70E+04	1.02E-01	8.60E+03	3.58E-01	3.80E+03	7.31E-01
Manganese	7439-96-5	1.00E+02		4.10E+03		4.07E-01	2.80E+02	1.59E-02	3.90E+03	5.61E-02	5.70E+03	3.43E-02	1.50E+03	6.25E-02	4.40E+02	8.46E-02
Nickel	7440-02-0	4.60E+03		2.30E+00		2.28E-04	8.50E-01 J-	4.81E-05	4.00E+00	5.76E-05	7.90E+00	4.75E-05	4.10E+00 J	1.71E-04	2.10E+00	4.04E-04
Potassium	7440-09-7	EN		7.10E+03		7.05E-01	7.90E+03	4.47E-01	6.60E+03	9.50E-02	8.20E+03	4.93E-02	7.20E+03	3.00E-01	4.60E+03	8.85E-01
Sodium	7440-23-5	EN		1.10E+05	J	1.09E+01	1.00E+05 J	5.66E+00	4.70E+04 J	6.76E-01	1.90E+05 J	1.14E+00	3.00E+04	1.25E+00	1.60E+04 J	3.08E+00
Vanadium	7440-62-2	8.60E+00		9.80E+00		9.73E-04	3.10E+00 J	1.76E-04	1.00E+00 U	1.44E-05	1.00E+00 U	6.02E-06	5.20E+01 J+	2.17E-03	3.60E+00 J+	6.92E-04
Zinc	7440-66-6	2.60E+04		6.10E+00	U	6.06E-04	5.00E+00 U	2.83E-04	5.00E+00 U	7.19E-05	5.00E+00 U	3.01E-05	5.00E+01 U	2.08E-03	5.00E+00 U	9.62E-04
Pesticides																
4,4'-DDT	50-29-3	2.20E-04		1.20E-03		1.19E-07	1.30E-03 U	7.36E-08	1.20E-03 U	1.73E-08	1.30E-03 U	7.82E-09	1.30E-03 U	5.42E-08	1.20E-03 U	2.31E-07
beta-BHC	319-85-7	1.70E-02		1.20E-03		1.19E-07	1.30E-03 U	7.36E-08	9.50E-04 J	1.37E-08	1.30E-03 U	7.82E-09	1.30E-03 U	5.42E-08	1.20E-03 U	2.31E-07
delta-BHC	319-86-8	7.20E-03		1.20E-03	U	1.19E-07	4.00E-04 J	2.27E-08	1.20E-03 U	1.73E-08	1.30E-03 U	7.82E-09	1.30E-03 U	5.42E-08	1.20E-03 U	2.31E-07
Dieldrin	60-57-1	5.40E-05		1.20E-03	U	1.19E-07	1.30E-03 U	7.36E-08	1.20E-03 U	1.73E-08	1.30E-03 U	7.82E-09	1.30E-03 U	5.42E-08	1.20E-03 U	2.31E-07
Heptachlor Epoxide	1024-57-3	3.90E-05		1.20E-03	U	1.19E-07	1.30E-03 U	7.36E-08	1.20E-03 U	1.73E-08	1.30E-03 U	7.82E-09	1.30E-03 U	5.42E-08	8.10E-04 J	1.56E-07
PCBs																
Total PCBs	1336-36-3	6.40E-05		9.50E-03	U	9.43E-07	9.60E-03 U	5.44E-07	9.50E-03 U	1.37E-07	9.80E-03 U	5.90E-08	9.70E-03 U	4.04E-07	9.50E-03 U	1.83E-06
SVOCs																
1,1'-Biphenyl	92-52-4	8.30E-02		1.00E+00	U	9.93E-05	2.70E-01 J	1.53E-05	1.00E+00 U	1.44E-05	1.10E+00 U	6.62E-06	1.00E+00 U	4.17E-05	1.00E+00 U	1.92E-04
2-Methylnaphthalene	91-57-6	3.60E+00		2.90E-02	J	2.88E-06	1.20E+00	6.80E-05	2.10E-01 U	3.02E-06	2.20E-01 U	1.32E-06	2.00E-01 U	8.34E-06	2.00E-01 U	3.85E-05
4-Methylphenol	106-44-5	1.90E+02		3.30E-01	J	3.28E-05	9.60E-01 U	5.44E-05	1.00E+00 U	1.44E-05	1.10E+00 U	6.62E-06	1.00E+00 U	4.17E-05	1.00E+00 U	1.92E-04
Carbazole	86-74-8	2.90E+01		1.00E+00	U	9.93E-05	2.70E-01 J	1.53E-05	1.00E+00 U	1.44E-05	1.10E+00 U	6.62E-06	1.00E+00 U	4.17E-05	1.00E+00 U	1.92E-04
Dibenzofuran	132-64-9	7.90E-01		1.00E+00	U	9.93E-05	7.10E-01 J	4.02E-05	1.00E+00 U	1.44E-05	1.10E+00 U	6.62E-06	1.00E+00 U	4.17E-05	1.00E+00 U	1.92E-04
Naphthalene	91-20-3	1.70E-01		2.00E-01		1.99E-05	1.80E-01 U	1.02E-05	2.10E-01 U	3.02E-06	2.20E-01 U	1.32E-06	4.60E-02 J	1.92E-06	2.00E-01 U	3.85E-05
Pentachlorophenol	87-86-5	3.00E+00		1.00E+00		9.93E-05	9.60E-01 U	5.44E-05	1.00E+00 U	1.44E-05	1.10E+00 U	6.62E-06	1.00E+00 U	4.17E-05	1.00E+00 U	1.92E-04
Phenol	108-95-2	8.60E+05		5.70E-01	J	5.66E-05	9.60E-01 U	5.44E-05	1.00E+00 U	1.44E-05	1.10E+00 U	6.62E-06	1.00E+00 U	4.17E-05	1.00E+00 U	1.92E-04
VOCs	70.00.0	E 60E - 00	1	E 00F : 00		4.065.04	E 00E : 00III	2 02 5 04	7.505.00	1.005.04	E 00E - 00 II	2.045.05	E 00E : 00 II :	2.005.04	E 00E : 00 III	0.625.04
2-Butanone Acetone	78-93-3 67-64-1	5.60E+02 1.40E+03	1	5.00E+00 5.00E+00	U	4.96E-04 4.96E-04	5.00E+00 U 5.00E+00 U	2.83E-04 2.83E-04	7.50E+00 4.10E+00 J	1.08E-04 5.90E-05	5.00E+00 U 5.00E+00 U	3.01E-05 3.01E-05	5.00E+00 U 5.00E+00 U	2.08E-04 2.08E-04	5.00E+00 U 5.00E+00 U	9.62E-04 9.62E-04
	71-43-2	1.40E+03 5.10E+01	 	1.00E+00	U	4.96E-04 9.93E-05	1.00E+00 U	2.83E-04 5.66E-05	4.10E+00 J 1.00E+00 U	5.90E-05 1.44E-05	1.00E+00 U	3.01E-05 6.02E-06	1.00E+00 U	2.08E-04 4.17E-05	1.00E+00 U	9.62E-04 1.92E-04
Benzene Bromodichloromothano	71-43-2 75-27-4	5.10E+01 1.70E+01	 	1.00E+00 1.00E+00	U	9.93E-05 9.93E-05	1.00E+00 U	5.66E-05	1.00E+00 U	1.44E-05 1.44E-05	1.00E+00 U	6.02E-06 6.02E-06	1.00E+00 U	4.17E-05 4.17E-05	1.00E+00 U	1.92E-04 1.92E-04
Bromodichloromethane Butyl alcohol, tert-	75-27-4 75-65-0	1.70E+01 1.40E+01	 	1.00E+00 4.00E+01	U	9.93E-05 3.97E-03	4.00E+00 U	5.66E-05 2.27E-03	1.00E+00 U NA	1.44E-05 NA	1.00E+00 U NA	6.02E-06 NA	1.00E+00 U NA	4.17E-05 NA	4.00E+00 U	1.92E-04 7.69E-03
Carbon Disulfide	75-65-0 75-15-0	1.40E+01 8.10E+01	1	4.00E+01 1.00E+00		3.97E-03 9.93E-05	1.00E+01 U	5.66E-05	1.00E+00 U	1.44E-05	1.00E+00 U	6.02E-06	1.00E+00 U	4.17E-05	1.00E+01 U	7.69E-03 1.92E-04
Chloroform	67-66-3	4.70E+01	1	1.00E+00 1.00E+00		9.93E-05 9.93E-05	1.00E+00 U	5.66E-05	1.00E+00 U	1.44E-05 1.73E-05	2.20E-01 J	1.32E-06	1.00E+00 U	4.17E-05 5.00E-05	1.00E+00 U	1.92E-04 1.92E-04
cis-1,2-Dichloroethylene	156-59-2	1.00E+04	1	8.30E-01	-	8.24E-05	3.40E-01 J	1.93E-05	1.00E+00 U	1.44E-05	1.00E+00 U	6.02E-06	1.00E+00 U	4.17E-05	1.00E+00 U	1.92E-04
Dibromochloromethane	124-48-1	1.30E+01	1	1.00E+00	J.	9.93E-05	1.00E+00 U	5.66E-05	1.00E+00 U	1.44E-05	1.00E+00 U	6.02E-06	1.00E+00 U	4.17E-05 4.17E-05	1.00E+00 U	1.92E-04
Diisopropyl ether	108-20-3	1.50E+01	1	2.90E-01	-	2.88E-05	1.00E+00 U	5.66E-05	NA NA	1.44E-05 NA	NA	0.02E-06 NA	NA	4.17E-05 NA	1.00E+00 U	1.92E-04
Ethyl-Tert-Butyl-Ether	637-92-3	NA	1	1.00E+00	J.	9.93E-05	1.00E+00 U	5.66E-05	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1.00E+00 U	1.92E-04
Methyl tert-Butyl Ether (MTBE)	1634-04-4	1.40E+01		1.70E+00	9	1.69E-04	1.00E+00 U	5.66E-05	1.00E+00 U	1.44E-05	2.90E-01 J	1.75E-06	1.00E+00 U	4.17E-05	1.00E+00 U	1.92E-04
Methylene Chloride	75-09-2	5.90E+02	 	1.00E+00	Ш	9.93E-05	1.00E+00 U	5.66E-05	1.00E+00 U	1.44E-05	1.00E+00 U	6.02E-06	1.00E+00 U	4.17E-05	1.00E+00 U	1.92E-04
Tertiary-Amyl Methyl Ether	994-05-8	4.10E+01	1	1.00E+00		9.93E-05 9.93E-05	1.00E+00 U	5.66E-05	NA NA	NA	NA	0.02E-06 NA	NA	4.17E-05 NA	1.00E+00 U	1.92E-04
Tetrachloroethylene	127-18-4	3.30E+00	1	5.50E+00	-	5.46E-04	1.80E+00	1.02E-04	3.20E-01 J	4.60E-06	2.50E-01 J	1.50E-06	1.00E+00 U	4.17E-05	1.00E+00 U	1.92E-04
Toluene	108-88-3	1.50E+04	1	1.00E+00	J.	9.93E-05	1.00E+00 U	5.66E-05	3.40E-01 J	4.89E-06	1.00E+00 U	6.02E-06	1.00E+00 U	4.17E-05	1.00E+00 U	1.92E-04
trans-1,2-Dichloroethene	156-60-5	1.00E+04	1	1.00E+00	IJ	9.93E-05 9.93E-05	1.00E+00 U	5.66E-05	1.00E+00 U	1.44E-05	1.00E+00 U	6.02E-06	1.00E+00 U	4.17E-05	1.00E+00 U	1.92E-04
Trichloroethene	79-01-6	3.00E+04	 	1.00E+00	9	1.19E-04	2.20E-01 J	1.25E-05	1.00E+00 U	1.44E-05	1.00E+00 U	6.02E-06	1.00E+00 U	4.17E-05 4.17E-05	1.00E+00 U	1.92E-04
See last page for footnotes	13-01-0	J.00LT01		1.202700		1.13L-04	2.20L-01J	1.2JL-03	1.00L+00 U	1.446-03	1.00L+00 U	0.02L-00	1.00LT00 U	4.17 L-03	1.00L+00 U	1.32L-04

See last page for footnotes.

Table 5-30 Evaluation of the Groundwater to Surface Water Migration Pathway Benning Road Facility RVFS Project 3400 Benning Rd, N.E., Washington DC 20019

										Lower	Aquifer					
1					E	stimated Surface		Estimated Surface		Estimated Surface	,	Estimated Surface		Estimated Surface		Estimated Surface
1		Surface		Groundwat		Water	Groundwater	Water	Groundwater	Water	Groundwater	Water	Groundwater	Water	Groundwater	Water
		Water		Concentrati	ion (Concentration (c)	Concentration	Concentration (c)	Concentration	Concentration (c)	Concentration	Concentration (c)	Concentration	Concentration (c)	Concentration	Concentration (c)
1		Screening	Location ID		MW0	1B	MV	V02B	M\	W03B	MV	/04B	M	W08B	M\	W11B
Chemical (a)	CAS	Level (b)	DAF	1	3.06E	-05	7.72	2E-05	7.2	2E-05	4.9	IE-05	7.6	88E-05	1.2	0E-04
Dioxins and Furans																
2,3,7,8-TCDD-TEQ	DFTEQ-HH	5.10E-08		7.11E-09		2.18E-13	NA	NA	8.49E-09	6.13E-13	2.53E-06 U	1.25E-10	NA	NA	1.35E-06 U	1.63E-10
Inorganics (Total)																
Aluminum	7429-90-5	2.00E+03		2.60E+02		7.95E-03	9.00E+02 J+	6.95E-02	6.90E+02 J+	4.98E-02	6.00E+02 J+	2.96E-02	9.90E+02 J	7.60E-02	1.30E+03 J+	1.57E-01
Arsenic	7440-38-2	1.40E-01		2.00E+00	J+	6.12E-05	1.00E+00 U	7.72E-05	3.60E+00 J+	2.60E-04	5.20E+00 J+	2.57E-04	3.30E+00 J	2.53E-04	5.40E+00 J+	6.51E-04
Barium	7440-39-3	3.80E+02		2.40E+02		7.34E-03	8.00E+01	6.18E-03	1.70E+02	1.23E-02	1.20E+02	5.92E-03	1.80E+02	1.38E-02	1.80E+02	2.17E-02
Beryllium	7440-41-7	2.50E+00		5.90E-02	J+	1.81E-06	9.10E-01 J	7.03E-05	9.60E-02 J	6.93E-06	6.40E-02 J	3.16E-06	5.30E-02 J	4.07E-06	1.40E-01 J	1.69E-05
Calcium	7440-70-2	EN		3.40E+04		1.04E+00	1.20E+04	9.27E-01	2.10E+04	1.52E+00	2.70E+04	1.33E+00	1.90E+04	1.46E+00	3.40E+04	4.10E+00
Chromium	7440-47-3	2.20E+03		2.00E+00	U	6.12E-05	3.00E+00 U	2.32E-04	6.50E+00 U	4.69E-04	6.10E+00 U	3.01E-04	2.20E+00 U	1.69E-04	7.80E+00	9.40E-04
Cobalt	7440-48-4	6.00E-01		8.00E+00		2.45E-04	2.60E+01	2.01E-03	2.80E+00	2.02E-04	2.80E+00	1.38E-04	2.10E+00	1.61E-04	2.50E+00	3.01E-04
Copper	7440-50-8	8.00E+01		2.00E+00	U	6.12E-05	2.00E+00 U	1.54E-04	4.80E+00	3.47E-04	2.70E+00 U	1.33E-04	4.50E+00 U	3.46E-04	5.00E+00	6.02E-04
Iron	7439-89-6	EN		3.70E+04		1.13E+00	4.10E+04	3.17E+00	2.40E+04	1.73E+00	7.60E+03	3.75E-01	5.70E+03	4.38E-01	1.70E+04	2.05E+00
Lead	7439-92-1	1.50E+01		4.80E-01	J	1.47E-05	1.20E+00 J	9.27E-05	1.50E+00 J	1.08E-04	7.50E-01 J	3.70E-05	3.20E+00 J	2.46E-04	2.20E+00 J	2.65E-04
Magnesium	7439-95-4	EN		1.50E+04		4.59E-01	4.70E+03	3.63E-01	5.70E+03	4.12E-01	7.70E+03	3.80E-01	6.90E+03	5.30E-01	7.00E+03	8.43E-01
Manganese	7439-96-5	1.00E+02		3.70E+03		1.13E-01	1.60E+03	1.24E-01	5.50E+02	3.97E-02	1.00E+03	4.94E-02	3.30E+02	2.53E-02	5.20E+02	6.27E-02
Nickel	7440-02-0	4.60E+03		4.70E+00	LL.	1.44E-04	1.20E+01	9.27E-04	3.90E+00	2.82E-04	3.50E+00	1.73E-04	2.90E+00	2.23E-04	3.90E+00	4.70E-04
Potassium	7440-09-7	EN	ļ	5.80E+03	<u>. </u>	1.77E-01	2.60E+03	2.01E-01	3.00E+03	2.17E-01	4.30E+03	2.12E-01	4.50E+03	3.46E-01	1.20E+04	1.45E+00
Sodium	7440-23-5	EN	.	1.30E+05	J	3.98E+00	3.50E+04 J	2.70E+00	1.50E+04 J	1.08E+00	2.10E+04 J	1.04E+00	2.10E+04 J	1.61E+00	5.60E+04 J	6.75E+00
Vanadium	7440-62-2	8.60E+00		2.00E+01		6.12E-04	1.20E+01 J+	9.27E-04	3.00E+00 J+	2.17E-04	1.00E+00 U	4.94E-05	2.30E+01 J	1.77E-03	4.80E+00 J+	5.78E-04
Zinc	7440-66-6	2.60E+04	L	6.40E+00	U	1.96E-04	3.70E+01	2.86E-03	9.90E+00	7.15E-04	6.70E+00 U	3.31E-04	7.50E+00 U	5.76E-04	8.50E+00	1.02E-03
Pesticides	50-29-3	0.005.04	1	1.005.00		0.005.00	4.005.00	9.27E-08	4 005 0011	0.005.00	4.005.00[1]	6.42E-08	4 005 0011	0.005.00	0.005.00	0.075.07
4,4'-DDT		2.20E-04	ļ	1.30E-03	U	3.98E-08	1.20E-03 U		1.30E-03 U	9.39E-08	1.30E-03 U		1.20E-03 U	9.22E-08	2.80E-03	3.37E-07
beta-BHC	319-85-7 319-86-8	1.70E-02 7.20E-03		1.30E-03 1.30E-03	U	3.98E-08 3.98E-08	1.10E-03 J 1.20E-03 U	8.50E-08 9.27E-08	1.30E-03 U 1.30E-03 U	9.39E-08	1.30E-03 U 1.30E-03 U	6.42E-08 6.42E-08	1.20E-03 U	9.22E-08	1.30E-03 U	1.57E-07 1.57E-07
delta-BHC					U					9.39E-08			1.20E-03 U	9.22E-08	1.30E-03 U	
Dieldrin Heptachlor Epoxide	60-57-1 1024-57-3	5.40E-05 3.90E-05		1.30E-03 1.30E-03	U	3.98E-08 3.98E-08	1.20E-03 U 1.20E-03 U	9.27E-08 9.27E-08	1.30E-03 U 1.30E-03 U	9.39E-08 9.39E-08	1.30E-03 U 1.30E-03 U	6.42E-08 6.42E-08	2.20E-03	1.69E-07 5.91E-08	1.30E-03 U 1.30E-03 U	1.57E-07 1.57E-07
PCBs	1024-57-3	3.90E-05	L	1.30E-03	U	3.98E-08	1.20E-03 U	9.27E-08	1.30E-03 U	9.39E-08	1.30E-03 U	6.42E-08	7.70E-04 J	5.91E-08	1.30E-03 U	1.5/E-0/
Total PCBs	1336-36-3	6.40E-05	1	9.60E-03		2.94E-07	9.50E-03 U	7.34E-07	9.70E-03 U	7.01E-07	9.40E-03 U	4.64E-07	1.10E-01	8.45E-06	9.60E-03 U	1.16E-06
SVOCs	1330-30-3	6.40E-03	L	9.60E-03	U	2.94E-07	9.50E-05 U	7.34E-07	9.70E-03 U	7.01E-07	9.40E-03 U	4.04E-07	1.10E-01	0.45E-06	9.60E-03 U	1.16E-06
1.1'-Biphenyl	92-52-4	8.30E-02	ı	1.00E+00		3.06E-05	1.00E+00 U	7.72E-05	1.00E+00 U	7.22E-05	1.00E+00 U	4.94E-05	1.00E+00 U	7.68E-05	9.60E-01 U	1.16E-04
2-Methylnaphthalene	91-57-6	3.60E+00		2.00E-02	ī	6.12E-07	2.00E-01 U	1.54E-05	2.00E-01 U	1.44E-05	2.10E-01 U	1.04E-05	2.10E-01 U	1.61E-05	1.90E-01 U	2.29E-05
4-Methylphenol	106-44-5	1.90E+02		1.00E+00	IJ	3.06E-05	1.00E+00 U	7.72E-05	1.00E+00 U	7.22E-05	1.00E+00 U	4.94E-05	4.90E-01 J	3.76E-05	9.60E-01 U	1.16E-04
Carbazole	86-74-8	2.90E+01		1.00E+00		3.06E-05	1.00E+00 U	7.72E-05	1.00E+00 U	7.22E-05	1.00E+00 U	4.94E-05	1.00E+00 U	7.68E-05	9.60E-01 U	1.16E-04
Dibenzofuran	132-64-9	7.90E-01		1.00E+00	U	3.06E-05	1.10E-01 J	8.50E-06	1.00E+00 U	7.22E-05	1.00E+00 U	4.94E-05	1.00E+00 U	7.68E-05	9.60E-01 U	1.16E-04
Naphthalene	91-20-3	1.70E-01	-	1.80E-01	U	5.51E-06	1.80E-01 U	1.39E-05	2.00E-01 U	1.44E-05	2.10E-01 U	1.04E-05	2.10E-01 U	1.61E-05	1.90E-01 U	2.29E-05
Pentachlorophenol	87-86-5	3.00E+00		5.30E-01	J	1.62E-05	1.00E+00 U	7.72E-05	1.00E+00 U	7.22E-05	1.00E+00 U	4.94E-05	1.00E+00 U	7.68E-05	9.60E-01 U	1.16E-04
Phenol	108-95-2	8.60E+05		2.60E-01	J	7.95E-06	1.00E+00 U	7.72E-05	1.00E+00 U	7.22E-05	1.00E+00 U	4.94E-05	2.20E-01 J	1.69E-05	9.60E-01 U	1.16E-04
VOCs																
2-Butanone	78-93-3	5.60E+02		5.00E+00	U	1.53E-04	5.00E+00 U	3.86E-04	5.00E+00 U	3.61E-04	5.00E+00 U	2.47E-04	5.00E+00 U	3.84E-04	5.00E+00 U	6.02E-04
Acetone	67-64-1	1.40E+03		5.00E+00		1.53E-04	5.00E+00 U	3.86E-04	5.00E+00 U	3.61E-04	2.80E+00 J	1.38E-04	5.00E+00 U	3.84E-04	5.00E+00 U	6.02E-04
Benzene	71-43-2	5.10E+01		1.00E+00		3.06E-05	1.00E+00 U	7.72E-05	1.00E+00 U	7.22E-05	1.00E+00 U	4.94E-05	6.80E-01 J	5.22E-05	1.00E+00 U	1.20E-04
Bromodichloromethane	75-27-4	1.70E+01		1.00E+00	U	3.06E-05	1.00E+00 U	7.72E-05	6.50E-01 J	4.69E-05	1.00E+00 U	4.94E-05	2.30E-01 J	1.77E-05	1.00E+00 U	1.20E-04
Butyl alcohol, tert-	75-65-0	1.40E+01		2.00E+02	U	6.12E-03	NA	NA	NA	NA	NA	NA	NA	NA	4.00E+01 U	4.82E-03
Carbon Disulfide	75-15-0	8.10E+01		1.00E+00	U	3.06E-05	1.00E+00 U	7.72E-05	1.80E+00	1.30E-04	1.10E+00	5.43E-05	1.00E+00 U	7.68E-05	1.00E+00 U	1.20E-04
Chloroform	67-66-3	4.70E+02		1.00E+00	U	3.06E-05	1.00E+00 U	7.72E-05	3.20E+00	2.31E-04	1.40E+00	6.91E-05	3.20E+00	2.46E-04	1.00E+00 U	1.20E-04
cis-1,2-Dichloroethylene	156-59-2	1.00E+04		7.00E+00		2.14E-04	1.00E+00 U	7.72E-05	1.00E+00 U	7.22E-05	1.00E+00 U	4.94E-05	1.00E+00 U	7.68E-05	1.00E+00 U	1.20E-04
Dibromochloromethane	124-48-1	1.30E+01		1.00E+00	U	3.06E-05	1.00E+00 U	7.72E-05	2.40E-01 J	1.73E-05	1.00E+00 U	4.94E-05	1.00E+00 U	7.68E-05	1.00E+00 U	1.20E-04
Diisopropyl ether	108-20-3	1.50E+02		2.60E+00	J	7.95E-05	NA	NA	NA	NA	NA	NA	NA	NA	1.00E+00 U	1.20E-04
Ethyl-Tert-Butyl-Ether	637-92-3	NA		5.00E+00	U	1.53E-04	NA	NA	NA	NA	NA	NA	NA	NA	1.00E+00 U	1.20E-04
Methyl tert-Butyl Ether (MTBE)	1634-04-4	1.40E+01		3.40E+00		1.04E-04	3.90E-01 J	3.01E-05	1.00E+00 U	7.22E-05	1.00E+00 U	4.94E-05	1.00E+00 U	7.68E-05	1.00E+00 U	1.20E-04
Methylene Chloride	75-09-2	5.90E+02		1.00E+00	U	3.06E-05	1.00E+00 U	7.72E-05	1.00E+00 U	7.22E-05	1.00E+00 U	4.94E-05	2.00E-01 J	1.54E-05	1.00E+00 U	1.20E-04
Tertiary-Amyl Methyl Ether	994-05-8	4.10E+01		5.00E+00	U	1.53E-04	NA	NA	NA	NA	NA	NA	NA	NA	1.00E+00 U	1.20E-04
Tetrachloroethylene	127-18-4	3.30E+00		7.80E+01		2.39E-03	1.00E+00 U	7.72E-05	1.00E+00 U	7.22E-05	1.00E+00 U	4.94E-05	1.00E+00 U	7.68E-05	1.00E+00 U	1.20E-04
Toluene	108-88-3	1.50E+04		1.00E+00	U	3.06E-05	1.00E+00 U	7.72E-05	2.80E-01 J	2.02E-05	1.00E+00 U	4.94E-05	1.90E-01 J	1.46E-05	1.00E+00 U	1.20E-04
trans-1,2-Dichloroethene	156-60-5	1.00E+04		5.10E-01	J	1.56E-05	1.00E+00 U	7.72E-05	1.00E+00 U	7.22E-05	1.00E+00 U	4.94E-05	1.00E+00 U	7.68E-05	1.00E+00 U	1.20E-04
Trichloroethene	79-01-6	3.00E+01		4.80E+01		1.47E-03	1.00E+00 U	7.72E-05	1.00E+00 U	7.22E-05	1.00E+00 U	4.94E-05	1.00E+00 U	7.68E-05	1.00E+00 U	1.20E-04
See last page for feetpetes																

See last page for footnotes.

Table 5-30 Evaluation of the Groundwater to Surface Water Migration Pathway Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Notes

All units are in microgram per liter (ug/L).

CAS - Chemical Abstracts Service.

DAF - Dilution Attenuation Factor.

EN - Essential Nutrient.

HH - Human health

- J The chemical was positively identified; however, the associated numerical value is an estimated concentration.
- +/- Likely to have a high (+) or low (-) bias.

NA - Not analyzed.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile organic compound.

TCDD TEQ - Dioxin toxicity equivalence.

VOC - Volatile organic compound.

U - Not detected above the laboratory reporting limit.

UJ - Not detected above laboratory reporting limit; Estimated value.

USEPA - United States Environmental Protection Agency.

- (a) Only chemicals detected at least once in nearshore groundwater monitoring wells are presented. For TCDD-TEQ, pesticides, SVOCs, and VOCs 2016 groundwater data were used, where available (See Section 5.6 of the text). Otherwise data collected in 2014 was used, such that for each chemical and well combination, the most recent data point is presented. The RI Report presents 2016 and 2016 data for all wells/chemicals.
- (b) Surface water screening levels were selected based on the following hierarchy:
- 1. District Department of the Environment. Title 21 of the District of Columbia Municipal Regulations, Chapter 11, Water Quality Standards. Effective November 1, 2013.
- 2. USEPA National Recommended Water Quality Criteria for Priority Pollutants. Value for Human Health for the consumption of organisms. Accessed September 2017.
- 3. USEPA Regional Screening Level for Tapwater based on 1x10-6 target risk level and target hazard quotient of 0.1. May 2018.

See Table 3-11 for surface water screening levels and surrogates used.

(c) Surface water concentrations were estimated by multiplying groundwater results from the nearshore monitoring wells by a site-specific dilution attenuation factor (DAF). DAFs were derived separately for the upper and lower aquifers as further discussed in the Remedial Investigation Report and shown in Attachment F of the BHHRA report.

Table 6-1 Total Potential Carcinogenic Risks for Construction Worker Receptor (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

								Potential Carc	inogenic Risks	i						
	Hypot	hetical Future P	ark Land/Greei	n Space		Warehouse and	Laydown Are	a	Sa	Ivage Yard and \	Waste Storage	Area	S	tores and Fleet	Maintenance A	rea
Chemical of Potential Concern				Total				Total				Total				Total
	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air
Dioxin																
2.3.7.8-TCDD-TEQ	2F-09	7F-14	NCOPC	2F-09	3F-08	8F-13	NCOPC	3F-08	8F-08	2F-12	NCOPC	8F-08	1F-08	3F-13	NCOPC	1F-08
Metals	22 00	72.14	110010	22 00	3L 00	OL 10	110010	3L 00	OL 00	ZL 12	110010	0L 00	12 00	OL 10	110010	12 00
Arsenic	2E-08	8E-12	NCOPC	2E-08	2E-07	8E-11	NCOPC	2E-07	9E-08	4E-11	NCOPC	9E-08	4E-08	2E-11	NCOPC	4E-08
Cobalt	NA NA	8E-10	NCOPC	8E-10	NA.	2E-10	NCOPC	2E-10	NA NA	1E-10	NCOPC	1E-10	NA NA	3E-11	NCOPC	3E-11
Manganese	NA NA	NA NA	NCOPC	NC NC	NA.	NA NA	NCOPC	NC NC	NA NA	NA NA	NCOPC	NC NC	NA.	NA NA	NCOPC	NC NC
Nickel	NA.	2E-12	NCOPC	2E-12	NA.	2E-10	NCOPC	2E-10	NA NA	5E-12	NCOPC	5E-12	NA.	4E-12	NCOPC	4E-12
Thallium	NA.	NA.	NCOPC	NC NC	NA.	NA NA	NCOPC	NC NC	NA NA	NA.	NCOPC	NC NC	NA.	NA.	NCOPC	NC NC
Vanadium	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
PCBs			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								110010	1
Total PCBs	5E-10	1E-14	NCOPC	5E-10	2E-07	3E-12	NCOPC	2E-07	2E-08	5E-13	NCOPC	2E-08	1E-08	3E-13	NCOPC	1E-08
SVOCs																1
Benzo(a)anthracene	1E-10	7E-15	NCOPC	1E-10	3F-09	1E-13	NCOPC	3F-09	2E-08	1E-12	NCOPC	2F-08	4F-09	2E-13	NCOPC	4F-09
Benzo(a)pyrene	1E-09	7E-14	NCOPC	1E-09	2E-08	8E-13	NCOPC	2E-08	2E-07	9E-12	NCOPC	2E-07	2E-08	1E-12	NCOPC	2E-08
Benzo(b)fluoranthene	2E-10	8E-15	NCOPC	2E-10	4E-09	2E-13	NCOPC	4E-09	2E-08	1E-12	NCOPC	2E-08	4E-09	2E-13	NCOPC	4E-09
Benzo(k)fluoranthene	7E-12	3E-16	NCOPC	7E-12	5E-11	3E-15	NCOPC	5E-11	5E-10	3E-14	NCOPC	5E-10	4E-11	2E-15	NCOPC	4E-11
Chrysene	1E-12	7E-17	NCOPC	1E-12	4E-11	2E-15	NCOPC	4E-11	2E-10	1E-14	NCOPC	2E-10	4E-11	2E-15	NCOPC	4E-11
Dibenzo(a,h)anthracene	3E-10	1E-14	NCOPC	3E-10	2E-09	1E-13	NCOPC	2E-09	8E-09	4E-13	NCOPC	8E-09	2E-09	7E-14	NCOPC	2E-09
Indeno(1,2,3-cd)pyrene	1E-10	5E-15	NCOPC	1E-10	1E-09	5E-14	NCOPC	1E-09	1E-08	6E-13	NCOPC	1E-08	6E-10	3E-14	NCOPC	6E-10
Naphthalene	NA	3E-16	NCOPC	3E-16	NA	2E-15	NCOPC	2E-15	NA	2E-14	NCOPC	2E-14	NA	2E-15	NCOPC	2E-15
VOCs																1
Bromodichloromethane	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	1E-11	1E-11	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	8E-11	8E-11
Butyl alcohol, tert-	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	NA	NC
Chloroform	NCOPC	NCOPC	3E-11	3E-11	NCOPC	NCOPC	2E-11	2E-11	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	3E-10	3E-10
Methyl tert-Butyl Ether (MTBE)	NCOPC	NCOPC	3E-13	3E-13	NCOPC	NCOPC	3E-13	3E-13	NCOPC	NCOPC	1E-12	1E-12	NCOPC	NCOPC	9E-12	9E-12
Tetrachloroethylene	NCOPC	NCOPC	2E-12	2E-12	NCOPC	NCOPC	3E-12	3E-12	NCOPC	NCOPC	6E-14	6E-14	NCOPC	NCOPC	3E-12	3E-12
Trichloroethene	NCOPC	NCOPC	5E-12	5E-12	NCOPC	NCOPC	9E-12	9E-12	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	2E-12	2E-12
Vinyl Chloride	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC
TPH																
Diesel Range Organics (C10-C20)	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Total	2E-08	9E-10	3E-11	2E-08	4E-07	5E-10	5E-11	4E-07	5E-07	2E-10	1E-12	5E-07	9E-08	6E-11	4E-10	9E-08
15.00				1	.=	1						1				

Notes:

NA - Not Applicable; no dose-response value.

NC - Not calculated.

NCOPC - Not a Chemical of Potential Concern in this media.

ND - Not Detected in this area.

PCB - Polychlorinated Biphenyl. SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon.

VOC - Volatile Organic Compound.

Table 6-1 Total Potential Carcinogenic Risks for Construction Worker Receptor (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

								Potential Carci	nogenic Risks	1						
		Offices and	Parking Lot			Substa	tion #7			Transfori	mer Shop			Vehicle Re	fueling Area	
Chemical of Potential Concern				Total				Total				Total				Total
	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air
Dioxin																-
2.3.7.8-TCDD-TEQ	1E-08	4E-13	NCOPC	1E-08	4E-09	1E-13	NCOPC	4E-09	ND	ND	NCOPC	NC	ND	ND	NCOPC	NC
Metals	12 00	12.10	110010	12 00	12 00	12.10	110010	12 00	115	110	110010	110			11001 0	+
Arsenic	3E-08	1E-11	NCOPC	3E-08	2E-07	1E-10	NCOPC	2E-07	5E-08	2E-11	NCOPC	5E-08	2E-08	1E-11	NCOPC	2E-08
Cobalt	NA	8E-11	NCOPC	8F-11	NA	3E-11	NCOPC	3E-11	NA	4E-11	NCOPC	4F-11	NA	5E-11	NCOPC	5E-11
Manganese	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Nickel	NA.	6E-12	NCOPC	6E-12	NA.	3E-12	NCOPC	3E-12	NA NA	4E-12	NCOPC	4E-12	NA.	2E-12	NCOPC	2E-12
Thallium	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Vanadium	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
PCBs																
Total PCBs	3E-09	7E-14	NCOPC	3E-09	3E-08	6E-13	NCOPC	3E-08	2E-06	5E-11	NCOPC	2E-06	1E-09	3E-14	NCOPC	1E-09
SVOCs										-						
Benzo(a)anthracene	3E-08	1E-12	NCOPC	3E-08	2E-09	8E-14	NCOPC	2E-09	3E-09	1E-13	NCOPC	3E-09	8E-10	4E-14	NCOPC	8E-10
Benzo(a)pyrene	2E-07	1E-11	NCOPC	2E-07	1E-08	6E-13	NCOPC	1E-08	2E-08	1E-12	NCOPC	2E-08	6E-09	3E-13	NCOPC	6E-09
Benzo(b)fluoranthene	2E-08	9E-13	NCOPC	2E-08	3E-09	1E-13	NCOPC	3E-09	3E-09	1E-13	NCOPC	3E-09	9E-10	4E-14	NCOPC	9E-10
Benzo(k)fluoranthene	2E-09	9E-14	NCOPC	2E-09	1E-10	7E-15	NCOPC	1E-10	1E-10	5E-15	NCOPC	1E-10	2E-11	1E-15	NCOPC	2E-11
Chrysene	2E-10	1E-14	NCOPC	2E-10	3E-11	1E-15	NCOPC	3E-11	3E-11	1E-15	NCOPC	3E-11	8E-12	4E-16	NCOPC	8E-12
Dibenzo(a,h)anthracene	7E-08	3E-12	NCOPC	7E-08	4E-09	2E-13	NCOPC	4E-09	5E-09	2E-13	NCOPC	5E-09	1E-09	5E-14	NCOPC	1E-09
Indeno(1,2,3-cd)pyrene	2E-08	7E-13	NCOPC	2E-08	1E-09	6E-14	NCOPC	1E-09	2E-09	8E-14	NCOPC	2E-09	4E-10	2E-14	NCOPC	4E-10
Naphthalene	NA	3E-14	NCOPC	3E-14	NA	2E-15	NCOPC	2E-15	NA	5E-15	NCOPC	5E-15	NA	6E-15	NCOPC	6E-15
VOCs																
Bromodichloromethane	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC
Butyl alcohol, tert-	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC
Chloroform	NCOPC	NCOPC	3E-11	3E-11	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	1E-11	1E-11	NCOPC	NCOPC	7E-11	7E-11
Methyl tert-Butyl Ether (MTBE)	NCOPC	NCOPC	1E-12	1E-12	NCOPC	NCOPC	6E-12	6E-12	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	4E-13	4E-13
Tetrachloroethylene	NCOPC	NCOPC	3E-11	3E-11	NCOPC	NCOPC	2E-13	2E-13	NCOPC	NCOPC	4E-14	4E-14	NCOPC	NCOPC	6E-14	6E-14
Trichloroethene	NCOPC	NCOPC	5E-11	5E-11	NCOPC	NCOPC	7E-13	7E-13	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC
Vinyl Chloride	NCOPC	NCOPC	3E-11	3E-11	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC
TPH																
Diesel Range Organics (C10-C20)	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Total	4E-07	1E-10	1E-10	4E-07	3E-07	1E-10	7E-12	3E-07	2E-06	1E-10	1E-11	2E-06	4E-08	6E-11	8E-11	4E-08
Iotai	4E-U/	15-10	1E-10	4E-07	3E-U1	15-10	/E-12	3E-U/	ZE-00	15-10	15-11	2E-00	4E-U0	0E-11	OE-11	4E-00

Notes:

NA - Not Applicable; no dose-response value.

NC - Not calculated.

NCOPC - Not a Chemical of Potential Concern in this media

ND - Not Detected in this area.

PCB - Polychlorinated Biphenyl.

 $\ensuremath{\mathsf{SVOC}}$ - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence. TPH - Total Petroleum Hydrocarbon.

VOC - Volatile Organic Compound.

Table 6-2 Total Potential Hazard Index for Construction Worker Receptor (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

								Potential H	azard Index							
	Hypot	hetical Future P	ark Land/Greer	n Space		Warehouse and	Laydown Are	a	Sa	Ivage Yard and \	Naste Storage	Area	S	tores and Fleet	Maintenance A	rea
Chemical of Potential Concern				Total				Total				Total				Total
	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air
Dioxin																+
2.3.7.8-TCDD-TEQ	2F-03	3F-06	NCOPC	2F-03	2F-02	4F-05	NCOPC	2E-02	6F-02	1F-04	NCOPC	6F-02	9F-03	2F-05	NCOPC	9E-03
Metals	2L 00	3E 00	110010	21 00	2L 02	4E 00	110010	21 02	OL 02	12.04	110010	02 02	3E 00	2L 00	110010	3L 00
Arsenic	3E-03	9E-03	NCOPC	1E-02	3E-02	9E-02	NCOPC	1E-01	1E-02	5E-02	NCOPC	6E-02	6E-03	2E-02	NCOPC	2E-02
Cobalt	2E-01	1E+00	NCOPC	1E+00	5E-02	3E-01	NCOPC	3E-01	3E-02	1E-01	NCOPC	2E-01	8E-03	4E-02	NCOPC	5E-02
Manganese	7E-03	4E-01	NCOPC	4E-01	1E-02	7E-01	NCOPC	7E-01	9E-03	5E-01	NCOPC	5E-01	3E-03	2E-01	NCOPC	2E-01
Nickel	3E-04	7E-03	NCOPC	7E-03	2E-02	5E-01	NCOPC	5E-01	6E-04	2E-02	NCOPC	2E-02	5E-04	1E-02	NCOPC	1E-02
Thallium	2E-03	NA	NCOPC	2E-03	1E-02	NA.	NCOPC	1E-02	9E-03	NA	NCOPC	9E-03	5E-03	NA.	NCOPC	5E-03
Vanadium	5E-03	3E-02	NCOPC	3E-02	4E-01	2E+00	NCOPC	3E+00	3E-03	2E-02	NCOPC	2E-02	2E-03	1E-02	NCOPC	1E-02
PCBs				v= v=												
Total PCBs	3E-04	NA	NCOPC	3E-04	1E-01	NA	NCOPC	1E-01	2E-02	NA	NCOPC	2E-02	9E-03	NA	NCOPC	9E-03
SVOCs												-				
Benzo(a)anthracene	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Benzo(a)pyrene	3E-04	4E-03	NCOPC	4E-03	4E-03	5E-02	NCOPC	5E-02	5E-02	5E-01	NCOPC	6E-01	5E-03	6E-02	NCOPC	6E-02
Benzo(b)fluoranthene	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Benzo(k)fluoranthene	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Chrysene	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Dibenzo(a,h)anthracene	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Indeno(1,2,3-cd)pyrene	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Naphthalene	4E-07	2E-07	NCOPC	6E-07	3E-06	2E-06	NCOPC	4E-06	2E-05	1E-05	NCOPC	4E-05	3E-06	2E-06	NCOPC	4E-06
VOCs																
Bromodichloromethane	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	NA	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	NA	NC
Butyl alcohol, tert-	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	6E-03	6E-03
Chloroform	NCOPC	NCOPC	8E-04	8E-04	NCOPC	NCOPC	7E-04	7E-04	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	1E-02	1E-02
Methyl tert-Butyl Ether (MTBE)	NCOPC	NCOPC	3E-05	3E-05	NCOPC	NCOPC	3E-05	3E-05	NCOPC	NCOPC	1E-04	1E-04	NCOPC	NCOPC	8E-04	8E-04
Tetrachloroethylene	NCOPC	NCOPC	1E-02	1E-02	NCOPC	NCOPC	2E-02	2E-02	NCOPC	NCOPC	4E-04	4E-04	NCOPC	NCOPC	2E-02	2E-02
Trichloroethene	NCOPC	NCOPC	4E-02	4E-02	NCOPC	NCOPC	8E-02	8E-02	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	2E-02	2E-02
Vinyl Chloride	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC
TPH																
Diesel Range Organics (C10-C20)	6E-04	7E-06	NCOPC	6E-04	4E-02	4E-04	NCOPC	4E-02	9E-02	1E-03	NCOPC	1E-01	4E-03	4E-05	NCOPC	4E-03
Total	2E-01	2E+00	6E-02	2E+00	7E-01	4E+00	1E-01	5E+00	3E-01	1E+00	5E-04	2E+00	5E-02	3E-01	6E-02	4E-01
Highest Target Endpoint Hazard Index (a)				1E+00				3E+00				7E-01				2E-01

Notes:

NA - Not Applicable; no dose-response value.

NC - Not calculated.

NCOPC - Not a Chemical of Potential Concern in this media.

ND - Not Detected in this area.

PCB - Polychlorinated Biphenyl.

 ${\sf SVOC - Semivolatile\ Organic\ Compound}.$

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon.

VOC - Volatile Organic Compound.

Values are presented to one significant figure.

Table 6-2 Total Potential Hazard Index for Construction Worker Receptor (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

								Potential H	azard Index							
		Offices and	Parking Lot			Substa	tion #7			Transfor	mer Shop			Vehicle Re	fueling Area	
Chemical of Potential Concern				Total				Total				Total				Total
	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air
Dioxin																
2.3.7.8-TCDD-TEQ	1E-02	2E-05	NCOPC	1E-02	3E-03	6E-06	NCOPC	3E-03	ND	ND	NCOPC	NC	ND	ND	NCOPC	NC
Metals	12 02	22 00	110010	12.02	02 00	02 00	110010	02 00	.,,,					110	11001 0	
Arsenic	4E-03	1E-02	NCOPC	2E-02	3E-02	1E-01	NCOPC	1E-01	8E-03	3E-02	NCOPC	3E-02	4E-03	1E-02	NCOPC	2E-02
Cobalt	2E-02	1E-01	NCOPC	1E-01	7E-03	4E-02	NCOPC	5E-02	1E-02	6E-02	NCOPC	6E-02	1E-02	6E-02	NCOPC	7E-02
Manganese	8E-03	4E-01	NCOPC	4E-01	7E-03	4E-01	NCOPC	4E-01	5E-03	3E-01	NCOPC	3E-01	4F-03	2E-01	NCOPC	2E-01
Nickel	7E-04	2E-02	NCOPC	2E-02	3E-04	8E-03	NCOPC	8E-03	5E-04	1E-02	NCOPC	1E-02	3E-04	7E-03	NCOPC	7E-03
Thallium	6E-03	NA	NCOPC	6E-03	1E-02	NA	NCOPC	1E-02	8E-03	NA	NCOPC	8E-03	7E-03	NA	NCOPC	7E-03
Vanadium	3E-03	2E-02	NCOPC	2E-02	3E-03	2E-02	NCOPC	2E-02	2E-03	1E-02	NCOPC	1E-02	3E-03	1E-02	NCOPC	2E-02
PCBs										.=						
Total PCBs	2E-03	NA	NCOPC	2E-03	2E-02	NA	NCOPC	2E-02	2E+00	NA	NCOPC	2E+00	8E-04	NA	NCOPC	8E-04
SVOCs																
Benzo(a)anthracene	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Benzo(a)pyrene	6E-02	7E-01	NCOPC	7E-01	3E-03	3E-02	NCOPC	4E-02	5E-03	6E-02	NCOPC	7E-02	1E-03	2E-02	NCOPC	2E-02
Benzo(b)fluoranthene	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Benzo(k)fluoranthene	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Chrysene	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Dibenzo(a,h)anthracene	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Indeno(1,2,3-cd)pyrene	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Naphthalene	4E-05	2E-05	NCOPC	5E-05	2E-06	1E-06	NCOPC	3E-06	6E-06	3E-06	NCOPC	9E-06	8E-06	4E-06	NCOPC	1E-05
VOCs																
Bromodichloromethane	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC
Butyl alcohol, tert-	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC
Chloroform	NCOPC	NCOPC	9E-04	9E-04	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	3E-04	3E-04	NCOPC	NCOPC	2E-03	2E-03
Methyl tert-Butyl Ether (MTBE)	NCOPC	NCOPC	1E-04	1E-04	NCOPC	NCOPC	5E-04	5E-04	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	4E-05	4E-05
Tetrachloroethylene	NCOPC	NCOPC	2E-01	2E-01	NCOPC	NCOPC	1E-03	1E-03	NCOPC	NCOPC	3E-04	3E-04	NCOPC	NCOPC	4E-04	4E-04
Trichloroethene	NCOPC	NCOPC	4E-01	4E-01	NCOPC	NCOPC	6E-03	6E-03	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC
Vinyl Chloride	NCOPC	NCOPC	5E-03	5E-03	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC
TPH																
Diesel Range Organics (C10-C20)	1E-03	1E-05	NCOPC	1E-03	9E-04	1E-05	NCOPC	9E-04	4E-03	4E-05	NCOPC	4E-03	2E-02	2E-04	NCOPC	2E-02
Total	1E-01	1E+00	7E-01	2E+00	9E-02	6E-01	8E-03	7E-01	2E+00	4E-01	6E-04	2E+00	5E-02	3E-01	3E-03	4E-01
Highest Target Endpoint Hazard Index (a)				8E-01				5E-01				2E+00			-	2E-01

Notes:

NA - Not Applicable; no dose-response value.

NC - Not calculated.

NCOPC - Not a Chemical of Potential Concern in this media

ND - Not Detected in this area.

PCB - Polychlorinated Biphenyl.

 ${\sf SVOC - Semivolatile\ Organic\ Compound}.$

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon.

VOC - Volatile Organic Compound.

Values are presented to one significant figure.

Table 6-3 Total Potential Carcinogenic Risks for Construction Worker Receptor (CTE) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

		·	•		•	•	·	Potential Carci	nogenic Risks	3			•	•	•	•
	Hypot	thetical Future P	ark Land/Green	Space		Warehouse and	d Laydown Are	1	Sa	Ivage Yard and	Naste Storage	Area		Stores and Fleet	Maintenance A	rea
Chemical of Potential Concern				Total				Total				Total				Total
	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air
Dioxin																
2.3.7.8-TCDD-TEQ	5E-10	2E-14	NCOPC	5E-10	6E-09	2E-13	NCOPC	6E-09	2E-08	7E-13	NCOPC	2E-08	3E-09	8E-14	NCOPC	3E-09
Metals												**				
Arsenic	6E-09	3E-12	NCOPC	6E-09	5E-08	2E-11	NCOPC	5E-08	2E-08	8E-12	NCOPC	2E-08	2E-08	7E-12	NCOPC	2E-08
Cobalt	NA	2E-10	NCOPC	2E-10	NA	5E-11	NCOPC	5E-11	NA	2E-11	NCOPC	2E-11	NA	1E-11	NCOPC	1E-11
Manganese	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Nickel	NA	7E-13	NCOPC	7E-13	NA	3E-11	NCOPC	3E-11	NA	1E-12	NCOPC	1E-12	NA	9E-13	NCOPC	9E-13
Thallium	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Vanadium	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
PCBs												-				-
Total PCBs	1E-10	3E-15	NCOPC	1E-10	1E-08	2E-13	NCOPC	1E-08	6E-09	1E-13	NCOPC	6E-09	5E-09	1E-13	NCOPC	5E-09
SVOCs																
Benzo(a)anthracene	5E-11	2E-15	NCOPC	5E-11	5E-10	2E-14	NCOPC	5E-10	5E-09	2E-13	NCOPC	5E-09	5E-10	2E-14	NCOPC	5E-10
Benzo(a)pyrene	5E-10	2E-14	NCOPC	5E-10	4E-09	2E-13	NCOPC	4E-09	4E-08	2E-12	NCOPC	4E-08	3E-09	1E-13	NCOPC	3E-09
Benzo(b)fluoranthene	6E-11	3E-15	NCOPC	6E-11	5E-10	2E-14	NCOPC	5E-10	5E-09	2E-13	NCOPC	5E-09	5E-10	3E-14	NCOPC	5E-10
Benzo(k)fluoranthene	2E-11	1E-15	NCOPC	2E-11	2E-11	9E-16	NCOPC	2E-11	2E-10	9E-15	NCOPC	2E-10	1E-11	7E-16	NCOPC	1E-11
Chrysene	5E-13	2E-17	NCOPC	5E-13	5E-12	3E-16	NCOPC	5E-12	4E-11	2E-15	NCOPC	4E-11	5E-12	2E-16	NCOPC	5E-12
Dibenzo(a,h)anthracene	1E-10	5E-15	NCOPC	1E-10	9E-10	4E-14	NCOPC	9E-10	5E-09	2E-13	NCOPC	5E-09	6E-10	3E-14	NCOPC	6E-10
Indeno(1,2,3-cd)pyrene	3E-11	2E-15	NCOPC	3E-11	3E-10	1E-14	NCOPC	3E-10	2E-09	1E-13	NCOPC	2E-09	2E-10	8E-15	NCOPC	2E-10
Naphthalene	NA	1E-16	NCOPC	1E-16	NA	9E-16	NCOPC	9E-16	NA	2E-14	NCOPC	2E-14	NA	7E-16	NCOPC	7E-16
VOCs																
Bromodichloromethane	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	6E-12	6E-12	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	4E-11	4E-11
Butyl alcohol, tert-	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	NA	NC
Chloroform	NCOPC	NCOPC	3E-12	3E-12	NCOPC	NCOPC	9E-12	9E-12	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	2E-11	2E-11
Methyl tert-Butyl Ether (MTBE)	NCOPC	NCOPC	1E-13	1E-13	NCOPC	NCOPC	1E-13	1E-13	NCOPC	NCOPC	2E-13	2E-13	NCOPC	NCOPC	1E-12	1E-12
Tetrachloroethylene	NCOPC	NCOPC	4E-13	4E-13	NCOPC	NCOPC	1E-13	1E-13	NCOPC	NCOPC	3E-14	3E-14	NCOPC	NCOPC	3E-13	3E-13
Trichloroethene	NCOPC	NCOPC	1E-12	1E-12	NCOPC	NCOPC	1E-12	1E-12	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	7E-13	7E-13
Vinyl Chloride	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC
ТРН																
Diesel Range Organics (C10-C20)	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Total	7E-09	2E-10	5E-12	8E-09	7E-08	1E-10	2E-11	7E-08	1E-07	3E-11	2E-13	1E-07	3E-08	2E-11	6E-11	3E-08
1014		10			00	12.10		00	01	1	0	01	22 00			

Notes:

NA - Not Applicable; no dose-response value.

NC - Not calculated.

NCOPC - Not a Chemical of Potential Concern in this media.

ND - Not Detected in this area.

PCB - Polychlorinated Biphenyl.

 $\ensuremath{\mathsf{SVOC}}$ - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.
TPH - Total Petroleum Hydrocarbon.

VOC - Volatile Organic Compound.

Table 6-3 Total Potential Carcinogenic Risks for Construction Worker Receptor (CTE) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Chemical of Potential Concern	Soil	Offices and Outdoor Air	Parking Lot Trench Air	Total Soil, Outdoor		Substa	tion #7		Potential Carcinogenic Risks Offices and Parking Lot Substation #7 Transformer Shop Vehicle Refueling Area										
		Outdoor Air	Trench Air								ner onop			TOTAL INCIDING	ueiling Area				
Noxin		Outdoor Air	Trench Air	Soil, Outdoor				Total				Total				Total			
Dioxin				Air, Trench Air	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air			
SIOXIII																-			
2.3.7.8-TCDD-TEQ	3F-09	9F-14	NCOPC	3F-09	1F-09	3F-14	NCOPC	1E-09	ND	ND	NCOPC	NC	ND	ND	NCOPC	NC			
Metals	3L-03	3L-14	NCOFC	3L-03	112-03	3L-14	NCOFC	112-03	IND	IND	NCOFC	INC	IND	IND	NCOFC	INC			
	1E-08	5E-12	NCOPC	1E-08	2E-08	1E-11	NCOPC	2E-08	1E-08	5E-12	NCOPC	1E-08	8E-09	4E-12	NCOPC	8E-09			
Cobalt	NA NA	3E-11	NCOPC	3E-11	NA NA	1E-11	NCOPC	1E-11	NA	1E-11	NCOPC	1E-11	NA	2E-11	NCOPC	2E-11			
Manganese	NA	NA NA	NCOPC	NC NC	NA NA	NA NA	NCOPC	NC NC	NA NA	NA NA	NCOPC	NC NC	NA NA	NA NA	NCOPC	NC NC			
Vickel	NA	2E-12	NCOPC	2E-12	NA NA	7E-13	NCOPC	7E-13	NA NA	1E-12	NCOPC	1E-12	NA NA	6E-13	NCOPC	6E-13			
Thallium	NA	NA NA	NCOPC	NC	NA NA	NA NA	NCOPC	NC NC	NA NA	NA	NCOPC	NC	NA NA	NA NA	NCOPC	NC NC			
Vanadium	NA NA	NA NA	NCOPC	NC NC	NA NA	NA NA	NCOPC	NC NC	NA NA	NA NA	NCOPC	NC NC	NA NA	NA NA	NCOPC	NC NC			
PCBs	INA	INA	NCOFC	INC	INA	IVA	NCOFC	INC	INA	INA	NCOFC	INC	INA	INA	NCOFC	INC			
	1E-09	2E-14	NCOPC	1E-09	2E-09	5E-14	NCOPC	2E-09	7E-07	2E-11	NCOPC	7E-07	2E-10	5E-15	NCOPC	2E-10			
SVOCs	12 00	26 17	110010	12 03	ZL 03	0L 14	140010	2L 03	72.07	26 11	140010	72 07	2L 10	3L 13	110010	22 10			
	5F-09	2F-13	NCOPC	5F-09	8E-11	4F-15	NCOPC	8E-11	1E-09	5E-14	NCOPC	1F-09	2E-10	8F-15	NCOPC	2E-10			
(-)	4E-08	2E-12	NCOPC	4E-08	6E-10	3E-14	NCOPC	6E-10	9E-09	4E-13	NCOPC	9E-09	2E-09	7E-14	NCOPC	2E-09			
	4E-09	2E-13	NCOPC	4E-09	1E-10	7E-15	NCOPC	1E-10	1E-09	5E-14	NCOPC	1E-09	2E-10	1E-14	NCOPC	2E-10			
	3E-10	1E-14	NCOPC	3E-10	7E-12	3E-16	NCOPC	7E-12	4E-11	2E-15	NCOPC	4E-11	6E-12	3E-16	NCOPC	6E-12			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4E-11	2E-15	NCOPC	4E-11	1E-12	7E-17	NCOPC	1E-12	9E-12	4E-16	NCOPC	9E-12	2E-12	9E-17	NCOPC	2E-12			
, ,	8E-09	4E-13	NCOPC	8E-09	2E-10	9E-15	NCOPC	2E-10	2E-09	9E-14	NCOPC	2E-09	3E-10	2E-14	NCOPC	3E-10			
	3E-09	1E-13	NCOPC	3E-09	6E-11	3E-15	NCOPC	6E-11	6E-10	3E-14	NCOPC	6E-10	1E-10	5E-15	NCOPC	1E-10			
Naphthalene	NA	1E-14	NCOPC	1E-14	NA	2E-16	NCOPC	2E-16	NA.	1E-15	NCOPC	1E-15	NA	9E-16	NCOPC	9E-16			
VOCs																1			
	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC			
	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC			
	NCOPC	NCOPC	5E-12	5E-12	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	5E-12	5E-12	NCOPC	NCOPC	4E-11	4E-11			
Methyl tert-Butyl Ether (MTBE)	NCOPC	NCOPC	2E-13	2E-13	NCOPC	NCOPC	8E-13	8E-13	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	2E-13	2E-13			
Tetrachloroethylene	NCOPC	NCOPC	1E-11	1E-11	NCOPC	NCOPC	8E-14	8E-14	NCOPC	NCOPC	2E-14	2E-14	NCOPC	NCOPC	3E-14	3E-14			
	NCOPC	NCOPC	2E-11	2E-11	NCOPC	NCOPC	3E-13	3E-13	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC			
	NCOPC	NCOPC	2E-11	2E-11	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC			
TPH																			
Diesel Range Organics (C10-C20)	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC			
Total	8E-08	4E-11	5E-11	8E-08	3E-08	2E-11	1E-12	3E-08	7E-07	3E-11	5E-12	7E-07	1E-08	2E-11	4E-11	1E-08			
Total	0L-00	4L-11	JE-11	0L-00	3L-06	20-11	1L-12	JL-00	/ L-0/	JL-11	JL-12	/ L-0/	11-00	2L-11	46-11	112-00			

Notes:

NA - Not Applicable; no dose-response value.

NC - Not calculated.

NCOPC - Not a Chemical of Potential Concern in this media

ND - Not Detected in this area.

PCB - Polychlorinated Biphenyl.

 ${\sf SVOC - Semivolatile\ Organic\ Compound}.$

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence. TPH - Total Petroleum Hydrocarbon.

VOC - Volatile Organic Compound.

Table 6-4 Total Potential Hazard Index for Construction Worker Receptor (CTE) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

								Potential H	azard Index							
	Hypot	thetical Future P	ark Land/Greei	n Space		Warehouse and	Laydown Are	1	Sa	Ivage Yard and \	Waste Storage	Area	5	Stores and Fleet	Maintenance A	rea
Chemical of Potential Concern				Total				Total				Total				Total
	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air
Dioxin														+		+
2.3.7.8-TCDD-TEQ	4E-04	7E-07	NCOPC	4E-04	5E-03	9E-06	NCOPC	5E-03	2E-02	3E-05	NCOPC	2E-02	2E-03	3E-06	NCOPC	2E-03
Metals	12 01	72 07	1100.0	01	02 00	02 00	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	02 00	22 02	02 00	110010	22.02	22 00	02 00	1100.0	22 00
Arsenic	9E-04	3E-03	NCOPC	4E-03	7E-03	2E-02	NCOPC	3E-02	3E-03	9E-03	NCOPC	1E-02	2E-03	8E-03	NCOPC	1E-02
Cobalt	4E-02	2E-01	NCOPC	3E-01	1E-02	6E-02	NCOPC	7E-02	5E-03	3E-02	NCOPC	3E-02	3F-03	2E-02	NCOPC	2E-02
Manganese	2E-03	1E-01	NCOPC	1E-01	3E-03	2E-01	NCOPC	2E-01	1E-03	7E-02	NCOPC	7E-02	1E-03	6E-02	NCOPC	6E-02
Nickel	8E-05	2E-03	NCOPC	2E-03	4E-03	9E-02	NCOPC	9E-02	1E-04	3E-03	NCOPC	3E-03	1E-04	3E-03	NCOPC	3E-03
Thallium	1E-03	NA NA	NCOPC	1E-03	3E-03	NA NA	NCOPC	3E-03	3E-03	NA NA	NCOPC	3E-03	2E-03	NA NA	NCOPC	2E-03
Vanadium	1E-03	6E-03	NCOPC	7E-03	7F-02	4E-01	NCOPC	4E-01	1E-03	6E-03	NCOPC	7E-03	9F-04	5F-03	NCOPC	6E-03
PCBs	12 00	02 00		72 00		12 01	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.20.	12 00	02 00		72 00	02 01	02 00	110010	02 00
Total PCBs	9E-05	NA	NCOPC	9E-05	8E-03	NA	NCOPC	8E-03	4E-03	NA	NCOPC	4E-03	3E-03	NA	NCOPC	3E-03
SVOCs																
Benzo(a)anthracene	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Benzo(a)pyrene	1E-04	1E-03	NCOPC	1E-03	1E-03	1E-02	NCOPC	1E-02	9E-03	1E-01	NCOPC	1E-01	7E-04	8E-03	NCOPC	9E-03
Benzo(b)fluoranthene	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Benzo(k)fluoranthene	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Chrysene	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Dibenzo(a,h)anthracene	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Indeno(1,2,3-cd)pyrene	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Naphthalene	1E-07	7E-08	NCOPC	2E-07	1E-06	6E-07	NCOPC	2E-06	3E-05	2E-05	NCOPC	4E-05	9E-07	5E-07	NCOPC	1E-06
VOCs																
Bromodichloromethane	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	NA	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	NA	NC
Butyl alcohol, tert-	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	3E-03	3E-03
Chloroform	NCOPC	NCOPC	1E-04	1E-04	NCOPC	NCOPC	3E-04	3E-04	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	6E-04	6E-04
Methyl tert-Butyl Ether (MTBE)	NCOPC	NCOPC	9E-06	9E-06	NCOPC	NCOPC	1E-05	1E-05	NCOPC	NCOPC	2E-05	2E-05	NCOPC	NCOPC	1E-04	1E-04
Tetrachloroethylene	NCOPC	NCOPC	3E-03	3E-03	NCOPC	NCOPC	9E-04	9E-04	NCOPC	NCOPC	2E-04	2E-04	NCOPC	NCOPC	2E-03	2E-03
Trichloroethene	NCOPC	NCOPC	1E-02	1E-02	NCOPC	NCOPC	1E-02	1E-02	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	6E-03	6E-03
Vinyl Chloride	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC
TPH																
Diesel Range Organics (C10-C20)	3E-04	3E-06	NCOPC	3E-04	1E-02	2E-04	NCOPC	1E-02	1E-02	2E-04	NCOPC	2E-02	1E-03	1E-05	NCOPC	1E-03
Total	5E-02	4E-01	2E-02	4E-01	1E-01	7E-01	1E-02	9E-01	6E-02	2E-01	2E-04	3E-01	2E-02	1E-01	1E-02	1E-01
Highest Target Endpoint Hazard Index (a)	-			3E-01				5E-01				1E-01				7E-02

Notes:

NA - Not Applicable; no dose-response value.

NC - Not calculated.

NCOPC - Not a Chemical of Potential Concern in this media.

ND - Not Detected in this area.

PCB - Polychlorinated Biphenyl.

 $\ensuremath{\mathsf{SVOC}}$ - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon. VOC - Volatile Organic Compound.

Values are presented to one significant figure.

Table 6-4 Total Potential Hazard Index for Construction Worker Receptor (CTE) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

								Potential Carc	inogenic Risks							
		Offices and	Parking Lot			Substa	tion #7			Transfor	mer Shop			Vehicle Re	fueling Area	
Chemical of Potential Concern				Total				Total				Total				Total
	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air	Soil	Outdoor Air	Trench Air	Soil, Outdoor Air, Trench Air
Dioxin																+
2.3.7.8-TCDD-TEQ	2F-03	4F-06	NCOPC	2F-03	8F-04	2F-06	NCOPC	8E-04	ND	ND	NCOPC	NC	ND	ND	NCOPC	NC
Metals	2L 00	4E 00	110010	2L 00	0L 04	22 00	110010	0L 04	IND	IND	110010	110	IND	IND	140010	140
Arsenic	2E-03	5E-03	NCOPC	7E-03	3E-03	1E-02	NCOPC	1E-02	2E-03	6E-03	NCOPC	8E-03	1E-03	4E-03	NCOPC	6E-03
Cobalt	6E-03	3E-02	NCOPC	4E-02	3E-03	2E-02	NCOPC	2E-02	3E-03	1E-02	NCOPC	2E-02	4E-03	2E-02	NCOPC	3E-02
Manganese	2E-03	1E-01	NCOPC	1E-01	1E-03	7E-02	NCOPC	7E-02	1E-03	8E-02	NCOPC	8E-02	1E-03	7E-02	NCOPC	7E-02
Nickel	2E-04	5E-03	NCOPC	5E-03	9E-05	2E-03	NCOPC	2E-03	2E-04	4E-03	NCOPC	4E-03	7E-05	2E-03	NCOPC	2E-03
Thallium	2E-03	NA.	NCOPC	2E-03	1E-03	NA NA	NCOPC	1E-03	3E-03	NA NA	NCOPC	3E-03	2E-03	NA NA	NCOPC	2E-03
Vanadium	1E-03	6E-03	NCOPC	7E-03	7E-04	4E-03	NCOPC	5E-03	7E-04	4E-03	NCOPC	5E-03	1E-03	6E-03	NCOPC	7E-03
PCBs	12 00	02 00	110010	72 00	1201	12 00	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	02 00	72 01	12 00		02 00	12 00	02 00	11001.0	72 00
Total PCBs	7E-04	NA	NCOPC	7E-04	2E-03	NA	NCOPC	2E-03	5E-01	NA	NCOPC	5E-01	2E-04	NA	NCOPC	2E-04
SVOCs																
Benzo(a)anthracene	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Benzo(a)pyrene	1E-02	1E-01	NCOPC	1E-01	1E-04	2E-03	NCOPC	2E-03	2E-03	2E-02	NCOPC	3E-02	4E-04	4E-03	NCOPC	5E-03
Benzo(b)fluoranthene	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Benzo(k)fluoranthene	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Chrysene	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Dibenzo(a,h)anthracene	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Indeno(1,2,3-cd)pyrene	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC
Naphthalene	2E-05	9E-06	NCOPC	3E-05	2E-07	1E-07	NCOPC	3E-07	2E-06	8E-07	NCOPC	2E-06	1E-06	6E-07	NCOPC	2E-06
VOCs																
Bromodichloromethane	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC
Butyl alcohol, tert-	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC
Chloroform	NCOPC	NCOPC	2E-04	2E-04	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	2E-04	2E-04	NCOPC	NCOPC	1E-03	1E-03
Methyl tert-Butyl Ether (MTBE)	NCOPC	NCOPC	1E-05	1E-05	NCOPC	NCOPC	8E-05	8E-05	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	1E-05	1E-05
Tetrachloroethylene	NCOPC	NCOPC	8E-02	8E-02	NCOPC	NCOPC	5E-04	5E-04	NCOPC	NCOPC	1E-04	1E-04	NCOPC	NCOPC	2E-04	2E-04
Trichloroethene	NCOPC	NCOPC	2E-01	2E-01	NCOPC	NCOPC	3E-03	3E-03	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC
Vinyl Chloride	NCOPC	NCOPC	3E-03	3E-03	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC	NCOPC	NCOPC	ND	NC
TPH																
Diesel Range Organics (C10-C20)	5E-04	6E-06	NCOPC	5E-04	5E-04	5E-06	NCOPC	5E-04	4E-04	5E-06	NCOPC	4E-04	2E-03	2E-05	NCOPC	2E-03
Total	3E-02	3E-01	2E-01	5E-01	1E-02	1E-01	3E-03	1E-01	5E-01	1E-01	3E-04	6E-01	1E-02	1E-01	1E-03	1E-01
Highest Target Endpoint Hazard Index (a)	3L-02	3L-01	22-01	2F-01	12-02		JL-03	8E-02	3L-01	12-01	3L-04	5E-01	12-02	12-01	12-03	8E-02
riignest rarget Eliupoliit Hazaru iliuex (a)			-	2L-01			-	0L-02			-	JL-01				0E-02

Notes:

NA - Not Applicable; no dose-response value.

NC - Not calculated.

NCOPC - Not a Chemical of Potential Concern in this media

ND - Not Detected in this area.

PCB - Polychlorinated Biphenyl.

 ${\sf SVOC - Semivolatile\ Organic\ Compound}.$

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence. TPH - Total Petroleum Hydrocarbon.

VOC - Volatile Organic Compound.

Values are presented to one significant figure.

Table 6-5 Total Potential Carcinogenic Risks for Outdoor Industrial Worker Receptor (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

						Potential Card	cinogenic Risks					
Chemical of Potential Concern	Hypothetical F	Future Park Land	d/Green Space	Wareho	ouse and Laydov	n Area	Salvage Ya	rd and Waste St	orage Area	Stores an	d Fleet Maintena	ince Area
	Surface Soil	Outdoor Air	Total	Surface Soil	Outdoor Air	Total	Surface Soil	Outdoor Air	Total	Surface Soil	Outdoor Air	Total
Plants												
Dioxin 2.3.7.8-TCDD-TEQ	1E-07	1E-14	1E-07	1E-06	2E-13	1E-06	4E-06	5E-13	4E-06	6E-07	7E-14	6E-07
Metals	1E-07	10-14	1E-07	1E-06	ZE-13	1E-06	4E-06	DE-13	4E-06	0E-U/	/E-14	0E-U/
Arsenic	8E-07	1E-12	8E-07	1E-05	2E-11	1E-05	4E-06	8E-12	4E-06	2E-06	4E-12	2E-06
Cobalt	NA	2E-10	2E-10	NA	5E-11	5E-11	NA	2E-11	2E-11	NA	9E-12	9E-12
Manganese	NA NA	NA NA	NC NC	NA NA	NA NA	NC NC	NA NA	NA NA	NC NC	NA NA	NA NA	NC NC
Nickel	NA NA	4E-13	4E-13	NA NA	5E-11	5E-11	NA NA	9E-13	9E-13	NA NA	1E-12	1E-12
Thallium	ND	ND	NC NC	NA NA	NA NA	NC NC	NA NA	NA NA	NC NC	NA NA	NA	NC NC
Vanadium	NA NA	NA NA	NC	NA NA	NA NA	NC	NA NA	NA NA	NC	NA NA	NA NA	NC
PCBs	INA	INA	INC	INA	INA	NO	IVA	INA	NO	INA	INA	NC
Total PCBs	8E-08	7E-15	8E-08	5E-06	4E-13	5E-06	2E-06	2E-13	2E-06	1E-06	1E-13	1E-06
SVOCs	02 00	72.10	02 00	02 00	12.10	02 00	22 00	22 10	22 00	12 00	12 10	12 00
Benzo(a)anthracene	8E-09	1E-15	8E-09	2E-08	4E-15	2E-08	6E-08	1E-14	6E-08	2E-08	3E-15	2E-08
Benzo(a)pyrene	8E-08	1E-14	8E-08	2E-07	4E-14	2E-07	5E-07	1E-13	5E-07	2E-07	4E-14	2E-07
Benzo(b)fluoranthene	1E-08	2E-15	1E-08	3E-08	5E-15	3E-08	9E-08	2E-14	9E-08	3E-08	5E-15	3E-08
Benzo(k)fluoranthene	4E-10	7E-17	4E-10	1E-09	2E-16	1E-09	2E-09	4E-16	2E-09	1E-09	2E-16	1E-09
Chrysene	9E-11	2E-17	9E-11	3E-10	5E-17	3E-10	6E-10	1E-16	6E-10	3E-10	5E-17	3E-10
Dibenzo(a,h)anthracene	2E-08	4E-15	2E-08	6E-08	1E-14	6E-08	1E-07	2E-14	1E-07	6E-08	1E-14	6E-08
Indeno(1,2,3-cd)pyrene	6E-09	1E-15	6E-09	2E-08	3E-15	2E-08	4E-08	7E-15	4E-08	2E-08	3E-15	2E-08
Naphthalene	NA	8E-17	8E-17	NA	5E-16	5E-16	NA	7E-16	7E-16	NA	2E-16	2E-16
ТРН												
Diesel Range Organics (C10-C20)	NA	NA	NC	NA	NA	NC	NA	NA	NC	NA	NA	NC
	45.00	05.40	45.00	05.05	45.40	05.05	45.05	05.44	45.05	45.00	45.44	45.00
Tota	1E-06	2E-10	1E-06	2E-05	1E-10	2E-05	1E-05	3E-11	1E-05	4E-06	1E-11	4E-06

EPC - Exposure point concentration.

NA - Not applicable; no dose-response value.

NC - Not calculated.

ND - Not detected in this area.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon.
Values are presented to one significant figure.

Table 6-5 Total Potential Carcinogenic Risks for Outdoor Industrial Worker Receptor (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

						Potential Card	cinogenic Risks					
Chemical of Potential Concern	Offic	ces and Parking	Lot		Substation #7		Т	ransformer Sho	р	Vel	nicle Refueling A	rea
	Surface Soil	Outdoor Air	Total	Surface Soil	Outdoor Air	Total	Surface Soil	Outdoor Air	Total	Surface Soil	Outdoor Air	Total
Dioxin												
2.3.7.8-TCDD-TEQ	6E-07	7E-14	6E-07	2E-07	2E-14	2E-07	ND	ND	NC	ND	ND	NC
Metals	0L-01	/L-14	0L-07	2L-07	2L-14	2L-07	ND	ND	NO	ND	IND	INC
Arsenic	1E-06	2E-12	1E-06	1E-05	2E-11	1E-05	5E-07	9E-13	5E-07	ND	ND	NC
Cobalt	NA NA	1E-11	1E-11	NA NA	5E-12	5E-12	NA NA	3E-12	3E-12	ND	ND ND	NC
Manganese	NA NA	NA NA	NC	NA NA	NA NA	NC NC	NA.	NA NA	NC NC	ND	ND ND	NC
Nickel	NA NA	1E-12	1E-12	NA NA	5E-13	5E-13	NA NA	5E-13	5E-13	ND	ND ND	NC
Thallium	ND	ND ND	NC	NA NA	NA NA	NC NC	ND	ND ND	NC NC	ND	ND ND	NC
Vanadium	NA	NA	NC	NA	NA	NC	NA	NA	NC	ND	ND	NC
PCBs												
Total PCBs	3E-07	2E-14	3E-07	4E-06	4E-13	4E-06	2E-03	1E-10	2E-03	1E-07	1E-14	1E-07
SVOCs												
Benzo(a)anthracene	1E-07	2E-14	1E-07	8E-08	1E-14	8E-08	3E-08	6E-15	3E-08	1E-07	2E-14	1E-07
Benzo(a)pyrene	1E-06	2E-13	1E-06	6E-07	1E-13	6E-07	3E-07	5E-14	3E-07	6E-07	1E-13	6E-07
Benzo(b)fluoranthene	1E-07	2E-14	1E-07	1E-07	2E-14	1E-07	3E-08	6E-15	3E-08	9E-08	2E-14	9E-08
Benzo(k)fluoranthene	5E-09	9E-16	5E-09	7E-09	1E-15	7E-09	1E-09	2E-16	1E-09	3E-09	5E-16	3E-09
Chrysene	1E-09	2E-16	1E-09	1E-09	2E-16	1E-09	3E-10	6E-17	3E-10	1E-09	2E-16	1E-09
Dibenzo(a,h)anthracene	2E-07	4E-14	2E-07	2E-07	3E-14	2E-07	5E-08	9E-15	5E-08	1E-07	2E-14	1E-07
Indeno(1,2,3-cd)pyrene	6E-08	1E-14	6E-08	6E-08	1E-14	6E-08	2E-08	3E-15	2E-08	3E-08	6E-15	3E-08
Naphthalene	NA	3E-16	3E-16	NA	3E-16	3E-16	NA	1E-16	1E-16	NA	3E-15	3E-15
TPH												
Diesel Range Organics (C10-C20)	ND	ND	NC	NA	NA	NC	NA	NA	NC	NA	NA	NC
Total	3E-06	2E-11	3E-06	2E-05	2E-11	2E-05	2E-03	2E-10	2E-03	1E-06	2E-13	1E-06

EPC - Exposure point concentration.

NA - Not applicable; no dose-response value.

NC - Not calculated.

ND - Not detected in this area.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon.
Values are presented to one significant figure.

Table 6-6 Total Potential Hazard Index for Outdoor Industrial Worker Receptor (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

						Potential H	lazard Index					
Chemical of Potential Concern	Hypothetical F	uture Park Land	I/Green Space	Wareho	ouse and Laydov	vn Area	Salvage Ya	rd and Waste St	orage Area	Stores an	d Fleet Maintena	ince Area
	Surface Soil	Outdoor Air	Total	Surface Soil	Outdoor Air	Total	Surface Soil	Outdoor Air	Total	Surface Soil	Outdoor Air	Total
Dioxin												
2,3,7,8-TCDD-TEQ	3E-03	2E-08	3E-03	4E-02	3E-07	4E-02	1E-01	1E-06	1E-01	2E-02	1E-07	2E-02
Metals												
Arsenic	5E-03	6E-05	5E-03	7E-02	9E-04	7E-02	3E-02	3E-04	3E-02	1E-02	2E-04	1E-02
Cobalt	3E-01	8E-03	3E-01	1E-01	3E-03	1E-01	4E-02	1E-03	4E-02	2E-02	5E-04	2E-02
Manganese	6E-03	1E-03	8E-03	3E-02	8E-03	4E-02	2E-02	4E-03	2E-02	7E-03	2E-03	9E-03
Nickel	5E-04	5E-05	5E-04	6E-02	6E-03	7E-02	1E-03	1E-04	1E-03	1E-03	1E-04	1E-03
Thallium	ND	ND	NC	1E-02	NA	1E-02	2E-02	NA	2E-02	1E-02	NA	1E-02
Vanadium	9E-03	2E-04	9E-03	1E+00	3E-02	1E+00	6E-03	1E-04	6E-03	5E-03	1E-04	5E-03
PCBs												
Total PCBs	6E-03	NA	6E-03	3E-01	NA	3E-01	1E-01	NA	1E-01	8E-02	NA	8E-02
SVOCs												
Benzo(a)anthracene	NA	NA	NC	NA	NA	NC	NA	NA	NC	NA	NA	NC
Benzo(a)pyrene	7E-04	3E-05	7E-04	2E-03	1E-04	2E-03	5E-03	2E-04	5E-03	2E-03	1E-04	2E-03
Benzo(b)fluoranthene	NA	NA	NC	NA	NA	NC	NA	NA	NC	NA	NA	NC
Benzo(k)fluoranthene	NA	NA	NC	NA	NA	NC	NA	NA	NC	NA	NA	NC
Chrysene	NA	NA	NC	NA	NA	NC	NA	NA	NC	NA	NA	NC
Dibenzo(a,h)anthracene	NA	NA	NC	NA	NA	NC	NA	NA	NC	NA	NA	NC
Indeno(1,2,3-cd)pyrene	NA	NA	NC	NA	NA	NC	NA	NA	NC	NA	NA	NC
Naphthalene	1E-06	2E-09	1E-06	7E-06	1E-08	7E-06	1E-05	2E-08	1E-05	2E-06	5E-09	2E-06
TPH												
Diesel Range Organics (C10-C20)	1E-03	5E-08	1E-03	1E-02	5E-07	1E-02	3E-01	1E-05	3E-01	1E-02	6E-07	1E-02
Total	4E-01	1E-02	4E-01	2E+00	4E-02	2E+00	6E-01	5E-03	6E-01	2E-01	3E-03	2E-01
Highest Target Endpoint Hazard Index (a)	NA	NA	3E-01	NA	NA	1E+00	NA	NA	3E-01	NA	NA	8E-02

Notes

EPC - Exposure point concentration.

NA - Not applicable; no dose-response value.

NC - Not calculated.

ND - Not detected in this area.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon.

Values are presented to one significant figure.

Table 6-6 Total Potential Hazard Index for Outdoor Industrial Worker Receptor (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

						Potential H	lazard Index					
Chemical of Potential Concern	Offi	ces and Parking	Lot		Substation #7		Т	ransformer Sho	р	Vel	nicle Refueling A	rea
	Surface Soil	Outdoor Air	Total	Surface Soil	Outdoor Air	Total	Surface Soil	Outdoor Air	Total	Surface Soil	Outdoor Air	Total
Dioxin												
2,3,7,8-TCDD-TEQ	2E-02	1E-07	2E-02	5E-03	4E-08	5E-03	ND	ND	NC	ND	ND	NC
Metals												
Arsenic	7E-03	9E-05	7E-03	6E-02	8E-04	6E-02	3E-03	4E-05	3E-03	ND	ND	NC
Cobalt	3E-02	7E-04	3E-02	1E-02	3E-04	1E-02	7E-03	2E-04	7E-03	ND	ND	NC
Manganese	8E-03	2E-03	1E-02	1E-02	3E-03	1E-02	8E-03	2E-03	1E-02	ND	ND	NC
Nickel	1E-03	1E-04	1E-03	5E-04	6E-05	6E-04	6E-04	6E-05	7E-04	ND	ND	NC
Thallium	ND	ND	NC	2E-02	NA	2E-02	ND	ND	NC	ND	ND	NC
Vanadium	4E-03	8E-05	4E-03	4E-03	8E-05	4E-03	1E-03	3E-05	2E-03	ND	ND	NC
PCBs												
Total PCBs	2E-02	NA	2E-02	3E-01	NA	3E-01	1E+02	NA	1E+02	9E-03	NA	9E-03
SVOCs												
Benzo(a)anthracene	NA	NA	NC	NA	NA	NC	NA	NA	NC	NA	NA	NC
Benzo(a)pyrene	9E-03	4E-04	9E-03	6E-03	3E-04	6E-03	3E-03	1E-04	3E-03	5E-03	2E-04	5E-03
Benzo(b)fluoranthene	NA	NA	NC	NA	NA	NC	NA	NA	NC	NA	NA	NC
Benzo(k)fluoranthene	NA	NA	NC	NA	NA	NC	NA	NA	NC	NA	NA	NC
Chrysene	NA	NA	NC	NA	NA	NC	NA	NA	NC	NA	NA	NC
Dibenzo(a,h)anthracene	NA	NA	NC	NA	NA	NC	NA	NA	NC	NA	NA	NC
Indeno(1,2,3-cd)pyrene	NA	NA	NC	NA	NA	NC	NA	NA	NC	NA	NA	NC
Naphthalene	5E-06	9E-09	5E-06	4E-06	8E-09	4E-06	2E-06	3E-09	2E-06	4E-05	8E-08	4E-05
TPH												
Diesel Range Organics (C10-C20)	ND	ND	NC	2E-03	7E-08	2E-03	6E-03	3E-07	6E-03	3E-02	1E-06	3E-02
Total	9E-02	3E-03	1E-01	4E-01	4E-03	4E-01	1E+02	2E-03	1E+02	4E-02	2E-04	4E-02
Highest Target Endpoint Hazard Index (a)	NA	NA	3E-02	NA	NA	3E-01	NA	NA	1E+02	NA	NA	3E-02

Notes:

EPC - Exposure point concentration.

NA - Not applicable; no dose-response value.

NC - Not calculated.

ND - Not detected in this area.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon.

Values are presented to one significant figure.

Table 6-7 Total Potential Carcinogenic Risks for Outdoor Industrial Worker Receptor (CTE) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Surface Soil 1E-08 1E-07 NA NA	Outdoor Air 2E-15 3E-13	Total	Surface Soil	Outdoor Air	n Area Total	Salvage Ya Surface Soil	rd and Waste St	orage Area Total	Stores an	d Fleet Maintena	nce Area Total
1E-08 1E-07 NA	2E-15 3E-13	1E-08			Total	Surface Soil	Outdoor Air	Total	Surface Soil	Outdoor Air	Total
1E-07 NA	3E-13		9E-08	25.44							
1E-07 NA	3E-13		9E-08	05.44		1					
1E-07 NA	3E-13		9E-00		9E-08	4E-07	8E-14	4E-07	4E-08	8E-15	4E-08
NA			11	2E-14	9E-06	4E-07	0E-14	4E-07	4E-06	0E-15	4E-06
NA		1E-07	8E-07	3E-12	8E-07	5E-07	2E-12	5E-07	2E-07	7E-13	2E-07
	3E-11	3E-11	NA	6E-12	6E-12	NA	3E-12	3E-07	NA	1E-12	1E-12
	NA NA	NC NC	NA NA	NA NA	NC	NA NA	NA	NC	NA NA	NA	NC
											1E-13
											NC NC
											NC
7E-09	8E-16	7E-09	2E-07	2E-14	2E-07	2E-07	2E-14	2E-07	1E-07	1E-14	1E-07
1E-09	3E-16	1E-09	3E-09	9E-16	3E-09	6E-09	2E-15	6E-09	2E-09	5E-16	2E-09
1E-08	3E-15	1E-08	3E-08	9E-15	3E-08	6E-08	2E-14	6E-08	2E-08	5E-15	2E-08
1E-09	3E-16	1E-09	4E-09	1E-15	4E-09	9E-09	2E-15	9E-09	2E-09	6E-16	2E-09
5E-11	1E-17	5E-11	1E-10	4E-17	1E-10	3E-10	7E-17	3E-10	1E-10	3E-17	1E-10
1E-11	3E-18	1E-11	4E-11	1E-17	4E-11	6E-11	2E-17	6E-11	2E-11	6E-18	2E-11
2E-09	6E-16	2E-09	7E-09	2E-15	7E-09	1E-08	3E-15	1E-08	4E-09	1E-15	4E-09
8E-10	2E-16	8E-10	2E-09	6E-16	2E-09	4E-09	1E-15	4E-09	1E-09	4E-16	1E-09
NA	1E-17	1E-17	NA	8E-17	8E-17	NA	1E-16	1E-16	NA	3E-17	3E-17
NA	NA	NC	NA	NA	NC	NA	NA	NC	NA	NA	NC
1E-07	3E-11	1E-07	1E-06	1E-11	1E-06	1E-06	5E-12	1E-06	4E-07	2E-12	4E-07
	1E-09 1E-08 1E-09 5E-11 1E-11 2E-09 8E-10 NA	ND ND NA	ND ND NC NA NA NC 7E-09 8E-16 7E-09 1E-09 3E-16 1E-09 1E-09 3E-16 1E-09 5E-11 1E-17 5E-11 1E-11 3E-18 1E-11 2E-09 6E-16 2E-09 8E-10 2E-16 8E-10 NA NA NA NC	ND ND NC NA NA NA NC NA 7E-09 8E-16 7E-09 2E-07 1E-09 3E-16 1E-09 3E-09 1E-08 3E-15 1E-08 3E-08 1E-09 3E-16 1E-09 4E-09 5E-11 1E-17 5E-11 1E-10 1E-11 3E-18 1E-11 4E-11 2E-09 6E-16 2E-09 7E-09 8E-10 2E-16 8E-10 2E-09 NA 1E-17 1E-17 NA NA NA NC NA	ND ND NC NA NA NA NA NA NA NA 7E-09 8E-16 7E-09 2E-07 2E-14 1E-09 3E-16 1E-09 3E-09 9E-16 1E-08 3E-08 9E-15 9E-16 9E-16 1E-09 3E-16 1E-09 4E-09 1E-15 5E-11 1E-17 5E-11 1E-10 4E-17 1E-11 3E-18 1E-11 4E-11 1E-17 2E-09 6E-16 2E-09 7E-09 2E-15 8E-10 2E-16 8E-10 2E-09 6E-16 NA 1E-17 1E-17 NA 8E-17 NA NA NA NA NA	ND ND NC NA NA NC NA NA NA NA NC 7E-09 8E-16 7E-09 2E-07 2E-14 2E-07 1E-09 3E-16 1E-09 3E-09 9E-16 3E-09 1E-08 3E-15 1E-08 3E-08 9E-15 3E-08 1E-09 3E-16 1E-09 4E-09 1E-15 4E-09 5E-11 1E-17 5E-11 1E-10 4E-17 1E-10 1E-11 3E-18 1E-11 4E-11 1E-17 4E-11 2E-09 6E-16 2E-09 7E-09 2E-16 7E-09 8E-10 2E-09 6E-16 2E-09 6E-16 2E-09 NA 1E-17 1E-17 NA 8E-17 8E-17 NA NA NA NA NC	ND ND NC NA NA NC NA NA NA NA NC NA NA NC NA 7E-09 8E-16 7E-09 2E-07 2E-14 2E-07 2E-07 2E-07 1E-09 3E-16 1E-09 3E-09 9E-16 3E-09 6E-09 1E-08 3E-15 1E-08 3E-08 9E-15 3E-08 6E-09 1E-09 3E-16 1E-09 4E-09 1E-15 4E-09 9E-09 5E-11 1E-17 5E-11 1E-10 4E-17 1E-10 3E-10 1E-11 3E-18 1E-11 4E-11 1E-17 4E-11 6E-11 2E-09 6E-16 2E-09 7E-09 2E-15 7E-09 1E-08 8E-10 2E-16 8E-10 2E-09 4E-09 4E-09 4E-09 NA 1E-17 1E-17 NA 8E-17 8E-17 NA	ND ND NC NA NA NC NA NA	ND ND NC NA NA NC NA NA NA NC NA NA NA NA NC NA NA NA NC 7E-09 8E-16 7E-09 2E-07 2E-14 2E-07 2E-07 2E-14 2E-07 2E-15 6E-09 2E-15 6E-09 2E-15 6E-09 3E-08 9E-15 3E-08 9E-15 3E-08 6E-09 2E-14 6E-08 2E-14 6E-08 3E-16 1E-08 4E-09 9E-09 2E-15 9E-09 2E-15 9E-09 3E-15 9E-09 3E-15 9E-09 2E-15 9E-09 3E-15 9E-09 3E-15 1E-08 3E-11 1E-10 4E-17 1E-10 3E-10 7E-17 3E-10 7E-17 3E-10 7E-17 3E-10 7E-17 6E-11 2E-17 6E-11	ND ND NC NA NA NC NA NA NC NA NA NA NA NC NA NA NC NA 7E-09 8E-16 7E-09 2E-07 2E-14 2E-07 2E-14 2E-07 2E-14 2E-07 1E-07 1E-07 1E-07 1E-07 1E-07 1E-07 1E-07 1E-07 1E-07 2E-14 2E-07 2E-14 2E-07 1E-07 1E-07 1E-08 2E-08 2E-09 1E-08 2E-08 2E-09 2E-09	ND NC NA NA NC NA NA NC NA NA<

EPC - Exposure point concentration.

NA - Not applicable; no dose-response value.

NC - Not calculated.

ND - Not detected in this area.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon.
Values are presented to one significant figure.

Table 6-7 Total Potential Carcinogenic Risks for Outdoor Industrial Worker Receptor (CTE) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

						Potential Card	inogenic Risks					
Chemical of Potential Concern	Offi	ces and Parking	Lot		Substation #7		Т	ransformer Sho	p	Veh	nicle Refueling A	rea
	Surface Soil	Outdoor Air	Total	Surface Soil	Outdoor Air	Total	Surface Soil	Outdoor Air	Total	Surface Soil	Outdoor Air	Total
Dioxin												
2.3.7.8-TCDD-TEQ	6E-08	1E-14	6E-08	3E-08	5E-15	3E-08	ND	ND	NC	ND	ND	NC
Z,3,7,6-1CDD-1EQ Metals	0E-U0	15-14	0E-00	3E-00	DE-10	3E-06	ND	ND	NC	ND	ND	INC
Arsenic	1E-07	4E-13	1E-07	5E-07	1E-12	5E-07	8E-08	2E-13	8E-08	ND	ND	NC
Cobalt	NA	4E-13 2E-12	2E-12	NA	1E-12 1E-12	1E-12	NA	2E-13 8E-13	8E-13	ND ND	ND ND	NC NC
Manganese	NA NA	NA NA	NC	NA NA	NA NA	NC	NA NA	NA NA	NC	ND ND	ND ND	NC
Nickel	NA NA	2E-13	2E-13	NA NA	9E-14	9E-14	NA NA	1E-13	1E-13	ND ND	ND ND	NC
Thallium	ND ND	ND ND	NC NC	NA NA	NA NA	NC	ND ND	ND	NC	ND ND	ND ND	NC
Vanadium	NA NA	NA NA	NC	NA NA	NA NA	NC	NA.	NA NA	NC	ND	ND ND	NC
PCBs	14/	107	110	10/	14/1	140	100	10/1	110	ND	IND	140
Total PCBs	4E-08	4E-15	4E-08	7E-08	9E-15	7E-08	3E-05	4E-12	3E-05	1E-08	1E-15	1E-08
SVOCs	12 00	12.10	.2 00	12 00	02 10	72 00	02 00		02 00	12 00	12.10	
Benzo(a)anthracene	9E-09	2E-15	9E-09	3E-09	8E-16	3E-09	2E-09	6E-16	2E-09	1E-08	3E-15	1E-08
Benzo(a)pyrene	8E-08	2E-14	8E-08	2E-08	6E-15	2E-08	2E-08	6E-15	2E-08	7E-08	2E-14	7E-08
Benzo(b)fluoranthene	1E-08	3E-15	1E-08	5E-09	1E-15	5E-09	3E-09	8E-16	3E-09	1E-08	3E-15	1E-08
Benzo(k)fluoranthene	4E-10	1E-16	4E-10	3E-10	7E-17	3E-10	1E-10	3E-17	1E-10	3E-10	9E-17	3E-10
Chrysene	9E-11	2E-17	9E-11	5E-11	1E-17	5E-11	2E-11	6E-18	2E-11	1E-10	3E-17	1E-10
Dibenzo(a,h)anthracene	2E-08	5E-15	2E-08	7E-09	2E-15	7E-09	6E-09	1E-15	6E-09	2E-08	4E-15	2E-08
Indeno(1,2,3-cd)pyrene	6E-09	2E-15	6E-09	2E-09	6E-16	2E-09	2E-09	5E-16	2E-09	4E-09	1E-15	4E-09
Naphthalene	NA	4E-17	4E-17	NA	3E-17	3E-17	NA	2E-17	2E-17	NA	4E-16	4E-16
ТРН												
Diesel Range Organics (C10-C20)	ND	ND	NC	NA	NA	NC	NA	NA	NC	NA	NA	NC
Total	4E-07	3E-12	4E-07	6E-07	3E-12	6E-07	3E-05	5E-12	3E-05	1E-07	3E-14	1E-07

EPC - Exposure point concentration.

NA - Not applicable; no dose-response value.

NC - Not calculated.

ND - Not detected in this area.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon.
Values are presented to one significant figure.

Table 6-8 Total Potential Hazard Index for Outdoor Industrial Worker Receptor (CTE) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Dioxin							Potential H	lazard Index					
Dioxin	Chemical of Potential Concern	Hypothetical F	Future Park Land	d/Green Space	Wareho	ouse and Laydov	n Area	Salvage Ya	rd and Waste St	orage Area	Stores an	d Fleet Maintena	nce Area
23,7,8-TCDD-TEQ		Surface Soil	Outdoor Air	Total	Surface Soil	Outdoor Air	Total	Surface Soil	Outdoor Air	Total	Surface Soil	Outdoor Air	Total
23,7,8-TCDD-TEQ	Plants												
Metals		45.00	05.00	45.00	45.00	45.07	45.00	45.00	FF 07	45.00	45.00	55.00	45.00
Arsenic 2E-03 5E-05 2E-03 2E-02 4E-04 2E-02 1E-02 3E-04 1E-02 6E-03 1E-04 6E-03 1E-04 6E-03 1E-01 6E-03 1E-01 6E-03 3E-04 3E-03 3E-04 3E-03 3E		1E-03	2E-08	1E-03	1E-02	1E-07	1E-02	4E-02	5E-07	4E-02	4E-03	5E-08	4E-03
Cobalt		25.02	EE 0E	25.02	25.02	45.04	25.02	45.00	25.04	45.00	CE 02	45.04	CE 02
Manganese 2E-03 8E-04 3E-03 6E-03 3E-03 9E-03 4E-03 2E-03 6E-03 2E-03 8E-04 3E-03 3E-03 3E-03 4E-03 2E-03 6E-03 2E-03 8E-04 3E-03 3E-03 3E-03 3E-04 7E-05 4E-04 2E-04 4E-05 3E-04 3E-03													
Nickel 2E-04 4E-05 2E-04 1E-02 2E-03 1E-02 3E-04 7E-05 4E-04 2E-04 4E-05 3E-04 7E-05 4E-04 2E-04 4E-05 3E-04 7E-05 3E-04 7E-05 3E-04 7E-05 3E-04 3E-03 NA 4E-03 NA NE NA NA NC NA NA NC NA NA													
Thallium													
Vanadium													
PCBs 2E-03													
Total PCBs 2E-03		3E-03	1E-04	3E-03	2E-01	8E-03	2E-01	2E-03	9E-05	2E-03	2E-03	/E-05	2E-03
SVOCs Benzo(a)anthracene NA NA NC NC NA NA NC NC NA NA NA NC NC NA		25.00		05.00	==		==	== 00		== 00	25.00		
Benzo(a)anthracene		2E-03	NA	2E-03	5E-02	NA	5E-02	5E-02	NA	5E-02	3E-02	NA	3E-02
Benzo(a)pyrene													
Benzo(b)fluoranthene													
Benzo(k)fluoranthene													
Chrysene NA NA NA NC <													
Dibenzo(a,h)anthracene NA NA NA NC NA NA<	` '												
Indeno(1,2,3-cd)pyrene NA NA NA NC NA NA NA NC NA NA<	*												
Naphthalene 5E-07 1E-09 5E-07 3E-06 8E-09 3E-06 4E-06 1E-08 4E-06 1E-06 3E-09 1E-06 TPH Diesel Range Organics (C10-C20) 5E-04 5E-08 5E-04 4E-03 3E-07 4E-03 5E-02 5E-06 5E-02 1E-03 1E-07 1E-03	Dibenzo(a,h)anthracene												
TPH Diesel Range Organics (C10-C20) 5E-04 5E-08 5E-04 4E-03 3E-07 4E-03 5E-02 5E-06 5E-02 1E-03 1E-07 1E-03													
Diesel Range Organics (C10-C20) 5E-04 5E-08 5E-04 4E-03 3E-07 4E-03 5E-02 5E-06 5E-02 1E-03 1E-07 1E-03		5E-07	1E-09	5E-07	3E-06	8E-09	3E-06	4E-06	1E-08	4E-06	1E-06	3E-09	1E-06
	TPH												
Total 15.01 95.03 25.01 35.01 35.01 25.01 25.03 25.01 55.02 15.03 55.02	Diesel Range Organics (C10-C20)	5E-04	5E-08	5E-04	4E-03	3E-07	4E-03	5E-02	5E-06	5E-02	1E-03	1E-07	1E-03
	Total	1E-01	8E-03	2E-01	3E-01	1E-02	3E-01	2F-01	3E-03	2E-01	5E-02	1E-03	5E-02
													3E-02

Notes:

EPC - Exposure point concentration.

NA - Not applicable; no dose-response value.

NC - Not calculated.

ND - Not detected in this area.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon.

Values are presented to one significant figure.

Table 6-8 Total Potential Hazard Index for Outdoor Industrial Worker Receptor (CTE) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

						Potential H	azard Index					
Chemical of Potential Concern	Offi	ces and Parking	Lot		Substation #7		Т	ransformer Sho	р	Vel	nicle Refueling A	rea
	Surface Soil	Outdoor Air	Total	Surface Soil	Outdoor Air	Total	Surface Soil	Outdoor Air	Total	Surface Soil	Outdoor Air	Total
Dioxin												
2,3,7,8-TCDD-TEQ	6E-03	8E-08	6E-03	3E-03	4E-08	3E-03	ND	ND	NC	ND	ND	NC
Metals												
Arsenic	3E-03	7E-05	3E-03	1E-02	2E-04	1E-02	2E-03	4E-05	2E-03	ND	ND	NC
Cobalt	9E-03	4E-04	9E-03	5E-03	2E-04	5E-03	3E-03	2E-04	4E-03	ND	ND	NC
Manganese	3E-03	1E-03	4E-03	3E-03	1E-03	4E-03	4E-03	2E-03	6E-03	ND	ND	NC
Nickel	4E-04	9E-05	5E-04	2E-04	4E-05	2E-04	3E-04	6E-05	4E-04	ND	ND	NC
Thallium	ND	ND	NC	5E-03	NA	5E-03	ND	ND	NC	ND	ND	NC
Vanadium	1E-03	7E-05	2E-03	1E-03	5E-05	1E-03	7E-04	3E-05	8E-04	ND	ND	NC
PCBs												
Total PCBs	1E-02	NA	1E-02	2E-02	NA	2E-02	8E+00	NA	8E+00	3E-03	NA	3E-03
SVOCs												
Benzo(a)anthracene	NA	NA	NC	NA	NA	NC	NA	NA	NC	NA	NA	NC
Benzo(a)pyrene	3E-03	2E-04	3E-03	8E-04	6E-05	9E-04	8E-04	5E-05	8E-04	2E-03	2E-04	2E-03
Benzo(b)fluoranthene	NA	NA	NC	NA	NA	NC	NA	NA	NC	NA	NA	NC
Benzo(k)fluoranthene	NA	NA	NC	NA	NA	NC	NA	NA	NC	NA	NA	NC
Chrysene	NA	NA	NC	NA	NA	NC	NA	NA	NC	NA	NA	NC
Dibenzo(a,h)anthracene	NA	NA	NC	NA	NA	NC	NA	NA	NC	NA	NA	NC
Indeno(1,2,3-cd)pyrene	NA	NA	NC	NA	NA	NC	NA	NA	NC	NA	NA	NC
Naphthalene	2E-06	5E-09	2E-06	1E-06	3E-09	1E-06	7E-07	2E-09	7E-07	1E-05	4E-08	1E-05
TPH												
Diesel Range Organics (C10-C20)	ND	ND	NC	7E-04	7E-08	7E-04	3E-03	3E-07	3E-03	1E-02	1E-06	1E-02
Total	4E-02	2E-03	4E-02	5E-02	2E-03	5E-02	8E+00	2E-03	8E+00	2E-02	2E-04	2E-02
Highest Target Endpoint Hazard Index (a)	NA	NA	1E-02	NA	NA	2E-02	NA	NA	8E+00	NA	NA	1E-02

Notes:

EPC - Exposure point concentration.

NA - Not applicable; no dose-response value.

NC - Not calculated.

ND - Not detected in this area.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon.

Values are presented to one significant figure.

February 2020

Table 6-9
Total Potential Carcinogenic Risks for Recreational Visitor Receptor (RME)
Reasonable Maximum Exposure
Benning Road Facility RI/FS Project
3400 Benning Rd, N.E., Washington DC 20019

	Potential Carcinogenic Risks								
Chemical of Potential Concern	Hypothetica	I Future Park Land/0	Green Space						
	Surface Soil	Outdoor Air	Total						
Dioxin									
2,3,7,8-TCDD-TEQ	6.E-09	3E-16	6E-09						
Inorganics									
Arsenic	4.E-08	3E-14	4E-08						
Cobalt	NA	3E-12	3E-12						
Manganese	NA	NA	NC						
Nickel	NA	8E-15	8E-15						
Thallium	ND	ND	NC						
Vanadium	NA	NA	NC						
PCBs									
Total PCBs	4.E-09	1E-16	4E-09						
SVOCs									
Benzo(a)anthracene	9.E-10	8E-17	9E-10						
Benzo(a)pyrene	9.E-09	7E-16	9E-09						
Benzo(b)fluoranthene	1.E-09	1E-16	1E-09						
Benzo(k)fluoranthene	4.E-11	4E-18	4E-11						
Chrysene	1.E-11	8E-19	1E-11						
Dibenzo(a,h)anthracene	2.E-09	2E-16	2E-09						
Indeno(1,2,3-cd)pyrene	7.E-10	6E-17	7E-10						
Naphthalene	NA	2E-18	2E-18						
TPH									
Diesel Range Organics (C10-C20)	NA	NA	NC						
Total	7.E-08	3E-12	7E-08						

Notes:

NA - Not applicable/no dose-response value.

NC - Not calculated.

ND - Not detected in this area.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon.

Table 6-10 Total Potential Hazard Index for Recreational Visitor Receptor (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

	F	Potential Hazard Index	(
Chemical of Potential Concern	Hypothetica	I Future Park Land/G	reen Space
	Surface Soil	Outdoor Air	Total
Dioxin			
2,3,7,8-TCDD-TEQ	4.E-04	1E-09	4E-04
Inorganics			
Arsenic	5.E-04	3E-06	5E-04
Cobalt	4.E-02	3E-04	4E-02
Manganese	8.E-04	6E-05	9E-04
Nickel	6.E-05	2E-06	6E-05
Thallium	ND	ND	NC
Vanadium	1.E-03	9E-06	1E-03
PCBs			
Total PCBs	5.E-04	NA	5E-04
SVOCs			
Benzo(a)anthracene	NA	NA	NC
Benzo(a)pyrene	7.E-05	1E-06	7E-05
Benzo(b)fluoranthene	NA	NA	NC
Benzo(k)fluoranthene	NA	NA	NC
Chrysene	NA	NA	NC
Dibenzo(a,h)anthracene	NA	NA	NC
Indeno(1,2,3-cd)pyrene	NA	NA	NC
Naphthalene	1.E-07	9E-11	1E-07
ТРН			
Diesel Range Organics (C10-C20)	1.E-04	2E-09	1E-04
Total	5.E-02	4E-04	5E-02
Highest Target Endpoint Hazard Index (a)			4E-02

Notes:

NA - Not applicable/no dose-response value.

NC - Not calculated.

ND - Not detected in this area.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon.

Values are presented to one significant figure.

Table 6-11 Total Potential Carcinogenic Risks for Recreational Visitor Receptor (CTE) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

	Pote	ential Carcinogenic F	Risks
Chemical of Potential Concern	Hypothetica	al Future Park Land/0	Green Space
	Surface Soil	Outdoor Air	Total
Dioxin			
2,3,7,8-TCDD-TEQ	5.E-10	2E-17	5E-10
Inorganics			
Arsenic	4.E-09	3E-15	4E-09
Cobalt	NA	3E-13	3E-13
Manganese	NA	NA	NC
Nickel	NA	9E-16	9E-16
Thallium	ND	ND	NC
Vanadium	NA	NA	NC
PCBs			
Total PCBs	2.E-10	8E-18	2E-10
SVOCs			
Benzo(a)anthracene	9.E-11	7E-18	9E-11
Benzo(a)pyrene	1.E-09	8E-17	1E-09
Benzo(b)fluoranthene	1.E-10	8E-18	1E-10
Benzo(k)fluoranthene	4.E-12	3E-19	4E-12
Chrysene	1.E-12	7E-20	1E-12
Dibenzo(a,h)anthracene	2.E-10	2E-17	2E-10
Indeno(1,2,3-cd)pyrene	7.E-11	5E-18	7E-11
Naphthalene	NA	1E-19	1E-19
TPH			
Diesel Range Organics (C10-C20)	NA	NA	NC
Total	7.E-09	3E-13	7E-09

Notes:

NA - Not applicable/no dose-response value.

NC - Not calculated.

ND - Not detected in this area.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon.

Table 6-12
Total Potential Hazard Index for Recreational Visitor Receptor (CTE)
Central Tendency Exposure
Benning Road Facility RI/FS Project
3400 Benning Rd, N.E., Washington DC 20019

	Potential Hazard Index									
Chemical of Potential Concern	Hypothetica	al Future Park Land/G	reen Space							
	Surface Soil	Outdoor Air	Total							
Dioxin										
2,3,7,8-TCDD-TEQ	7.E-05	2E-10	7E-05							
Inorganics										
Arsenic	1.E-04	6E-07	1E-04							
Cobalt	9.E-03	7E-05	9E-03							
Manganese	1.E-04	9E-06	1E-04							
Nickel	1.E-05	4E-07	1E-05							
Thallium	ND	ND	NC							
Vanadium	2.E-04	1E-06	2E-04							
PCBs										
Total PCBs	7.E-05	NA	7E-05							
SVOCs										
Benzo(a)anthracene	NA	NA	NC							
Benzo(a)pyrene	2.E-05	3E-07	2E-05							
Benzo(b)fluoranthene	NA	NA	NC							
Benzo(k)fluoranthene	NA	NA	NC							
Chrysene	NA	NA	NC							
Dibenzo(a,h)anthracene	NA	NA	NC							
Indeno(1,2,3-cd)pyrene	NA	NA	NC							
Naphthalene	2.E-08	2E-11	2E-08							
TPH										
Diesel Range Organics (C10-C20)	3.E-05	5E-10	3E-05							
Total	1.E-02	8E-05	1E-02							
Highest Target Endpoint Hazard Index (a)	NA	NA	9E-03							

Notes:

NA - Not applicable/no dose-response value.

NC - Not calculated.

ND - Not detected in this area.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

TPH - Total Petroleum Hydrocarbon.

Values are presented to one significant figure.

Table 6-13 Total Potential Carcinogenic Risks for the Angler Receptors - Mixed Fish Diet (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

						Poten	ial Carcinogenic	Risks					
Chemical of Potential Concern		Adult	Angler			Young Ch	ild Angler		Sum of Adult		Older Child/	Teen Angler	
	Fringe Surface Sediment	Surface Water	Fish Tissue Upper Anacostia (d)	Total	Fringe Surface Sediment	Surface Water	Fish Tissue Upper Anacostia (a)	Total	and Young Child Angler	Fringe Surface Sediment	Surface Water	Fish Tissue Upper Anacostia (d)	Total
<u> </u>													
Dioxin 2.3.7.8-TCDD-TEQ	6E-07	3E-10	NCOPC	6E-07	1E-06	4E-10	NCOPC	1E-06	2E-06	4E-07	2E-10	NCOPC	4E-07
Z,3,7,8-TCDD-TEQ Metals	6E-07	3E-10	NCOPC	6E-07	1E-06	4E-10	NCOPC	1E-06	2E-06	4E-07	2E-10	NCOPC	4E-07
Aluminum	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC	NC	NA	NCOPC	NCOPC	NC
Antimony	NA NA	NCOPC	NCOPC	NC NC	NA NA	NCOPC	NCOPC	NC NC	NC NC	NA NA	NCOPC	NCOPC	NC NC
	2E-07	6E-09	NCOPC	2E-07	3E-07	7E-09	NCOPC	3E-07	4E-07	1E-07	5E-09	NCOPC	1E-07
Arsenic	NCOPC	NCOPC	NCOPC	NC	NCOPC	NCOPC	NCOPC	NC	NC	NCOPC	NCOPC	NCOPC	NC
Arsenic, organic Cobalt	NCOPC NA	NA NA	NCOPC	NC NC	NCOPC NA	NCOPC NA	NCOPC	NC NC	NC NC	NCOPC NA	NA NA	NCOPC	NC NC
Cyanide	NA NA	NCOPC	NCOPC	NC	NA NA	NCOPC	NCOPC	NC NC	NC NC	NA NA	NCOPC	NCOPC	NC NC
Manganese	NA NA	NA NA	NCOPC	NC NC	NA NA	NA NA	NCOPC	NC NC	NC NC	NA NA	NA NA	NCOPC	NC NC
Mercury	NCOPC	NCOPC	NA NA	NC NC	NCOPC	NCOPC	NA NA	NC NC	NC NC	NCOPC	NCOPC	NA NA	NC NC
Nickel	NA NA	NCOPC	NCOPC	NC	NA NA	NCOPC	NCOPC	NC NC	NC NC	NA NA	NCOPC	NCOPC	NC NC
Thallium	NA NA	NCOPC	NCOPC	NC	NA NA	NCOPC	NCOPC	NC NC	NC NC	NA NA	NCOPC	NCOPC	NC
Vanadium	NA NA	NCOPC	NCOPC	NC	NA NA	NCOPC	NCOPC	NC NC	NC NC	NA NA	NCOPC	NCOPC	NC NC
Pesticides	INA	NCOFC	NCOFC	INC	INA	NCOFC	NCOFC	INC	INC	INA	NCOFC	NCOFC	INC
4.4'-DDT	NCOPC	2E-12	NCOPC	2E-12	NCOPC	3E-12	NCOPC	3E-12	4E-12	NCOPC	2E-12	NCOPC	2E-12
4,4'-DDD 4,4'-DDD	NCOPC	NCOPC	2E-07	2E-12 2E-07	NCOPC	NCOPC	8E-08	8E-08	2E-07	NCOPC	NCOPC	9E-08	9E-08
4.4'-DDE	NCOPC	NCOPC	3E-07	3E-07	NCOPC	NCOPC	1E-07	1E-07	4E-07	NCOPC	NCOPC	2E-07	2E-07
Aldrin	NCOPC	NCOPC	2E-07	2E-07	NCOPC	NCOPC	1E-07	1E-07	3E-07	NCOPC	NCOPC	1E-07	1E-07
alpha-Chlordane	NCOPC	NCOPC	3E-07	3E-07	NCOPC	NCOPC	2E-07	2E-07	5E-07	NCOPC	NCOPC	2E-07	2E-07
cis-Nonachlor	NCOPC	NCOPC	1E-07	1E-07	NCOPC	NCOPC	6E-08	6E-08	2E-07	NCOPC	NCOPC	7E-08	7E-08
Dieldrin	NCOPC	NCOPC	3E-06	3E-06	NCOPC	NCOPC	2E-06	2E-06	5E-06	NCOPC	NCOPC	7E-06	2E-06
gamma-Chlordane	NCOPC	NCOPC	6E-08	6E-08	NCOPC	NCOPC	3E-08	3E-08	1E-07	NCOPC	NCOPC	4E-08	4E-08
Heptachlor epoxide	NCOPC	NCOPC	6E-07	6E-07	NCOPC	NCOPC	3E-07	3E-07	9E-07	NCOPC	NCOPC	4E-07	4E-07
Mirex	NCOPC	NCOPC	2E-07	2E-07	NCOPC	NCOPC	9E-08	9E-08	3E-07	NCOPC	NCOPC	1E-07	1E-07
Oxychlordane	NCOPC	NCOPC	3E-08	3E-08	NCOPC	NCOPC	2E-08	2E-08	5E-08	NCOPC	NCOPC	2E-08	2E-08
trans-Nonachlor	NCOPC	NCOPC	2E-07	2E-07	NCOPC	NCOPC	1E-07	1E-07	3E-07	NCOPC	NCOPC	1E-07	1E-07
PCBs	NCOLC	NCOI C	2L-07	2L-01	NCOLC	NCOLC	112-07	12-07	3L-07	NCOI C	NCOLC	112-07	TL-07
Total PCBs	6E-08	1E-11	2E-05	2E-05	8E-08	2E-11	1E-05	1E-05	3E-05	4E-08	1E-11	1E-05	1E-05
PCB-TEQ			9E-06	9E-06	NCOPC	NCOPC	4E-06	4E-06	1E-05	NCOPC	NCOPC	5E-06	5E-06
SVOCs			02 00	02 00	110010	1100.0	12 00	12 00	12 00	11001.0	11001 0	02 00	
Benzo(a)anthracene	6E-09	NCOPC	NCOPC	6E-09	3E-08	NCOPC	NCOPC	3E-08	4E-08	1E-08	NCOPC	NCOPC	1E-08
Benzo(a)pyrene	4E-08	NCOPC	NCOPC	4E-08	2E-07	NCOPC	NCOPC	2E-07	2E-07	6E-08	NCOPC	NCOPC	6E-08
Benzo(b)fluoranthene	6E-09	NCOPC	NCOPC	6E-09	3E-08	NCOPC	NCOPC	3E-08	4E-08	9E-09	NCOPC	NCOPC	9E-09
Benzo(k)fluoranthene	2E-10	NCOPC	NCOPC	2E-10	1E-09	NCOPC	NCOPC	1E-09	1E-09	3E-10	NCOPC	NCOPC	3E-10
Chrysene	5E-11	NCOPC	NCOPC	5E-11	3E-10	NCOPC	NCOPC	3E-10	3E-10	8E-11	NCOPC	NCOPC	8E-11
Dibenzo(a,h)anthracene	9E-09	NCOPC	NCOPC	9E-09	5E-08	NCOPC	NCOPC	5E-08	6E-08	1E-08	NCOPC	NCOPC	1E-08
Indeno(1,2,3-cd)pyrene	3E-09	NCOPC	NCOPC	3E-09	2E-08	NCOPC	NCOPC	2E-08	2E-08	5E-09	NCOPC	NCOPC	5E-09
TPH	02.00	.,,,,,,		02 00	1			00	**	02.00			
Diesel Range Organics (C10-C20)	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC	NC	NA	NCOPC	NCOPC	NC
					1								
Total (Total PCBs) (b)	9E-07	6E-09	3E-05	3E-05	2E-06	8E-09	1E-05	2E-05	4E-05	7E-07	5E-09	2E-05	2E-05
Total (includes PCB-TEQ for fish) (c)	9E-07	6E-09	1E-05	2E-05	2E-06	8E-09	7E-06	9E-06	2E-05	7E-07	5E-09	9E-06	9E-06
, (1		. =						

Notes:

Values are presented to one significant figure.

NA - Not Applicable; no dose-response value.

NC - Not calculated.

NCOPC - Not a Chemical of Potential Concern in this media.

⁽a) Calculated based on data from Pinkney (2017). The samples collected in the Upper Anacostia River are assumed to reflect overall conditions within the several mile long river reach that was sampled (or the possibly larger home range for some of the fish species sampled), and may not reflect the specific conditions within the Waterside Investigation Area.

⁽b) Total (includes Total PCBs for fringe surface sediment, surface water, and fish).

⁽c) Total (includes Total PCBs for fringe surface sediment and surface water and PCB-TEQ for fish).

Table 6-14 Total Potential Hazard Index for the Angler Receptors - Mixed Fish Diet (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

						Potential H	lazard Index					
		Adult A	Angler			Young Cl	hild Angler			Older Child	l/Teen Angler	
Chemical of Potential Concern	Fringe Surface Sediment	Surface Water	Fish Tissue Upper Anacostia (d)	Total	Fringe Surface Sediment	Surface Water	Fish Tissue Upper Anacostia (d)	Total	Fringe Surface Sediment	Surface Water	Fish Tissue Upper Anacostia (d)	Total
Dioxin	05.00	45.05	Noono		15.01		Noono	.=	05.00	05.05		
2,3,7,8-TCDD-TEQ	2E-02	1E-05	NCOPC	2E-02	1E-01	5E-05	NCOPC	1E-01	3E-02	2E-05	NCOPC	3E-02
Metals	45.04	Noono	Noono		45.00	Hoone	Noono	45.00	05.04	HOODO		
Aluminum	4E-04	NCOPC	NCOPC	4E-04	4E-03	NCOPC	NCOPC	4E-03	6E-04	NCOPC	NCOPC	6E-04
Antimony	7E-04	NCOPC	NCOPC	7E-04	7E-03	NCOPC	NCOPC	7E-03	1E-03	NCOPC	NCOPC	1E-03
Arsenic	1E-03	5E-05	NCOPC	1E-03	7E-03	2E-04	NCOPC	7E-03	1E-03	6E-05	NCOPC	2E-03
Arsenic, organic	NCOPC	NCOPC	NCOPC	NC	NCOPC	NCOPC	NCOPC	NC	NCOPC	NCOPC	NCOPC	NC
Cobalt	2E-03	4E-05	NCOPC	2E-03	2E-02	2E-04	NCOPC	2E-02	4E-03	7E-05	NCOPC	4E-03
Cyanide	2E-04	NCOPC	NCOPC	2E-04	2E-03	NCOPC	NCOPC	2E-03	4E-04	NCOPC	NCOPC	4E-04
Manganese	4E-04	6E-04	NCOPC	1E-03	4E-03	2E-03	NCOPC	6E-03	7E-04	7E-04	NCOPC	1E-03
Mercury	NCOPC	NCOPC	2E-01	2E-01	NCOPC	NCOPC	3E-01	3E-01	NCOPC	NCOPC	2E-01	2E-01
Nickel	1E-04	NCOPC	NCOPC	1E-04	1E-03	NCOPC	NCOPC	1E-03	2E-04	NCOPC	NCOPC	2E-04
Thallium	1E-03	NCOPC	NCOPC	1E-03	1E-02	NCOPC	NCOPC	1E-02	2E-03	NCOPC	NCOPC	2E-03
Vanadium	1E-03	NCOPC	NCOPC	1E-03	1E-02	NCOPC	NCOPC	1E-02	2E-03	NCOPC	NCOPC	2E-03
Pesticides												
4,4'-DDT	NCOPC	4E-08	NCOPC	4E-08	NCOPC	2E-07	NCOPC	2E-07	NCOPC	6E-08	NCOPC	6E-08
4,4'-DDD	NCOPC	NCOPC	8E-02	8E-02	NCOPC	NCOPC	1E-01	1E-01	NCOPC	NCOPC	8E-02	8E-02
4,4'-DDE	NCOPC	NCOPC	1E-02	1E-02	NCOPC	NCOPC	2E-02	2E-02	NCOPC	NCOPC	1E-02	1E-02
Aldrin	NCOPC	NCOPC	1E-03	1E-03	NCOPC	NCOPC	2E-03	2E-03	NCOPC	NCOPC	1E-03	1E-03
alpha-Chlordane	NCOPC	NCOPC	7E-03	7E-03	NCOPC	NCOPC	1E-02	1E-02	NCOPC	NCOPC	7E-03	7E-03
cis-Nonachlor	NCOPC	NCOPC	3E-03	3E-03	NCOPC	NCOPC	4E-03	4E-03	NCOPC	NCOPC	2E-03	2E-03
Dieldrin	NCOPC	NCOPC	1E-02	1E-02	NCOPC	NCOPC	2E-02	2E-02	NCOPC	NCOPC	1E-02	1E-02
gamma-Chlordane	NCOPC	NCOPC	1E-03	1E-03	NCOPC	NCOPC	2E-03	2E-03	NCOPC	NCOPC	1E-03	1E-03
Heptachlor epoxide	NCOPC	NCOPC	2E-02	2E-02	NCOPC	NCOPC	3E-02	3E-02	NCOPC	NCOPC	2E-02	2E-02
Mirex	NCOPC	NCOPC	2E-04	2E-04	NCOPC	NCOPC	3E-04	3E-04	NCOPC	NCOPC	2E-04	2E-04
Oxychlordane	NCOPC	NCOPC	6E-04	6E-04	NCOPC	NCOPC	1E-03	1E-03	NCOPC	NCOPC	6E-04	6E-04
trans-Nonachlor	NCOPC	NCOPC	4E-03	4E-03	NCOPC	NCOPC	7E-03	7E-03	NCOPC	NCOPC	4E-03	4E-03
PCBs												
Total PCBs	6E-03	5E-06	2E+00	2E+00	2E-02	3E-05	3E+00	3E+00	6E-03	8E-06	2E+00	2E+00
PCB-TEQ		-	3E-01	3E-01	NCOPC	NCOPC	6E-01	6E-01			3E-01	3E-01
SVOCs												
Benzo(a)anthracene	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC
Benzo(a)pyrene	4E-04	NCOPC	NCOPC	4E-04	2E-03	NCOPC	NCOPC	2E-03	5E-04	NCOPC	NCOPC	5E-04
Benzo(b)fluoranthene	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC
Benzo(k)fluoranthene	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC
Chrysene	NA NA	NCOPC	NCOPC	NC	NA NA	NCOPC	NCOPC	NC	NA NA	NCOPC	NCOPC	NC
Dibenzo(a,h)anthracene	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC
Indeno(1,2,3-cd)pyrene	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC
TPH								***	1			***
Diesel Range Organics (C10-C20)	6E-04	NCOPC	NCOPC	6E-04	5E-03	NCOPC	NCOPC	5E-03	8E-04	NCOPC	NCOPC	8E-04
Total (Total PCBs) (b)	4E-02	7E-04	2E+00	2E+00	2E-01	2E-03	4E+00	4E+00	5E-02	8E-04	2E+00	2E+00
Total (includes PCB-TEQ for fish) (c)	4E-02	7E-04	7E-01	7E-01	2E-01	2E-03	1E+00	1E+00	5E-02	8E-04	7E-01	7E-01
Highest TE HI (Total PCBs) (b,d)	2E-02	6E-04	2E+00	2E+00	2E-01	2E-03	3E+00	3E+00	3E-02	7E-04	2E+00	2E+00
Highest TE HI (PCB-TEQ) (c,d)	2E-02	6E-04	4E-01	4E-01	2E-01	2E-03	6E-01	7E-01	3E-02	7E-04	3E-01	4E-01

Notes:

Values are presented to one significant figure.

NA - Not Applicable; no dose-response value.

HI - Hazard Index.

NC - Not calculated.

NCOPC - Not a Chemical of Potential Concern in this media.

TE - Target Endpoint.

(a) Calculated based on data from Pinkney (2017). The samples collected in the Upper Anacostia River are assumed to reflect overall conditions within the several mile long river reach that was sampled (or the possibly larger home range for some of the fish species sampled), and may not reflect the specific conditions within the Waterside Investigation Area.

⁽b) Total (includes Total PCBs for fringe surface sediment, surface water, and fish).

⁽c) Total (includes Total PCBs for fringe surface sediment and surface water and PCB-TEQ for fish).

⁽d) See Attachment H.

Table 6-15 Total Potential Carcinogenic Risks for the Angler Receptors - Mixed Fish Diet (CTE) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

						P	otential Carcinoge	nic Risks					
		Adult	Angler			Young	Child Angler				Older Ch	nild/Teen Angler	
Chemical of Potential Concern	Fringe Surface Sediment	Surface Water	Fish Tissue Upper Anacostia (d)	Total	Fringe Surface Sediment	Surface Water	Fish Tissue Upper Anacostia (d)	Total	Sum of Adult and Young Child Angler	Fringe Surface Sediment	Surface Water	Fish Tissue Upper Anacostia (d)	Total
Dioxin													
2,3,7,8-TCDD-TEQ	4E-08	1E-11	NCOPC	4E-08	4E-08	2E-10	NCOPC	4E-08	7E-08	2E-08	1E-11	NCOPC	2E-08
Metals													
Aluminum	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC	NC	NA	NCOPC	NCOPC	NC
Arsenic	3E-08	4E-10	NCOPC	3E-08	2E-08	6E-09	NCOPC	3E-08	6E-08	2E-08	4E-10	NCOPC	2E-08
Arsenic, organic	NCOPC	NCOPC	NCOPC	NC	NCOPC	NCOPC	NCOPC	NC	NC	NCOPC	NCOPC	NCOPC	NC
Antimony	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC	NC	NA	NCOPC	NCOPC	NC
Cobalt	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NC	NA	NA	NCOPC	NC
Cyanide	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC	NC	NA	NCOPC	NCOPC	NC
Manganese	NA	NA	NCOPC	NC	NA	NA	NCOPC	NC	NC	NA	NA	NCOPC	NC
Mercury	NCOPC	NCOPC	NA	NC	NCOPC	NCOPC	NA	NC	NC	NCOPC	NCOPC	NA	NC
Nickel	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC	NC	NA	NCOPC	NCOPC	NC
Thallium	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC	NC	NA	NCOPC	NCOPC	NC
Vanadium	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC	NC	NA	NCOPC	NCOPC	NC
Pesticides													
4,4'-DDT	NCOPC	1E-13	NCOPC	1E-13	NCOPC	2E-12	NCOPC	2E-12	2E-12	NCOPC	1E-13	NCOPC	1E-13
4,4'-DDD	NCOPC	NCOPC	4E-09	4E-09	NCOPC	NCOPC	1E-09	1E-09	5E-09	NCOPC	NCOPC	3E-09	3E-09
4,4'-DDE	NCOPC	NCOPC	2E-08	2E-08	NCOPC	NCOPC	5E-09	5E-09	2E-08	NCOPC	NCOPC	1E-08	1E-08
Aldrin	NCOPC	NCOPC	8E-09	8E-09	NCOPC	NCOPC	2E-09	2E-09	1E-08	NCOPC	NCOPC	5E-09	5E-09
alpha-Chlordane	NCOPC	NCOPC	1E-08	1E-08	NCOPC	NCOPC	3E-09	3E-09	1E-08	NCOPC	NCOPC	6E-09	6E-09
cis-Nonachlor	NCOPC	NCOPC	4E-09	4E-09	NCOPC	NCOPC	1E-09	1E-09	6E-09	NCOPC	NCOPC	3E-09	3E-09
Dieldrin	NCOPC	NCOPC	1E-07	1E-07	NCOPC	NCOPC	4E-08	4E-08	2E-07	NCOPC	NCOPC	9E-08	9E-08
gamma-Chlordane	NCOPC	NCOPC	4E-09	4E-09	NCOPC	NCOPC	1E-09	1E-09	5E-09	NCOPC	NCOPC	2E-09	2E-09
Heptachlor epoxide	NCOPC	NCOPC	4E-08	4E-08	NCOPC	NCOPC	1E-08	1E-08	5E-08	NCOPC	NCOPC	2E-08	2E-08
Mirex	NCOPC	NCOPC	1E-08	1E-08	NCOPC	NCOPC	3E-09	3E-09	1E-08	NCOPC	NCOPC	6E-09	6E-09
Oxychlordane	NCOPC	NCOPC	2E-09	2E-09	NCOPC	NCOPC	5E-10	5E-10	2E-09	NCOPC	NCOPC	1E-09	1E-09
trans-Nonachlor	NCOPC	NCOPC	1E-08	1E-08	NCOPC	NCOPC	3E-09	3E-09	1E-08	NCOPC	NCOPC	7E-09	7E-09
PCBs													
Total PCBs	1E-08	1E-12	1E-06	1E-06	7E-09	2E-11	3E-07	3E-07	2E-06	6E-09	9E-13	8E-07	8E-07
PCB-TEQ			4E-07	4E-07	NCOPC	NCOPC	1E-07	1E-07	5E-07			2E-07	2E-07
SVOCs			4E 01	72.07	110010	.,,,,,,,,	12 07	12 07	OL 07			25.01	2L VI
	6E-10	NCOPC	NCOPC	6E-10	2E-09	NCOPC	NCOPC	2E-09	3E-09	1E-09	NCOPC	NCOPC	1E-09
Benzo(a)anthracene													
Benzo(a)pyrene	7E-09	NCOPC	NCOPC	7E-09	2E-08	NCOPC	NCOPC	2E-08	3E-08	1E-08	NCOPC	NCOPC	1E-08
Benzo(b)fluoranthene	1E-09	NCOPC	NCOPC	1E-09	3E-09	NCOPC	NCOPC	3E-09	4E-09	2E-09	NCOPC	NCOPC	2E-09
Benzo(k)fluoranthene	4E-11	NCOPC	NCOPC	4E-11	1E-10	NCOPC	NCOPC	1E-10	2E-10	6E-11	NCOPC	NCOPC	6E-11
Chrysene	1E-11	NCOPC	NCOPC	1E-11	3E-11	NCOPC	NCOPC	3E-11	4E-11	1E-11	NCOPC	NCOPC	1E-11
Dibenzo(a,h)anthracene	2E-09	NCOPC	NCOPC	2E-09	5E-09	NCOPC	NCOPC	5E-09	6E-09	2E-09	NCOPC	NCOPC	2E-09
Indeno(1,2,3-cd)pyrene	6E-10	NCOPC	NCOPC	6E-10	2E-09	NCOPC	NCOPC	2E-09	2E-09	9E-10	NCOPC	NCOPC	9E-10
TPH													
Diesel Range Organics (C10-C20)	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC	NC	NA	NCOPC	NCOPC	NC
												L	
Total (Total PCBs) (b)	8E-08	5E-10	1E-06	2E-06	1E-07	7E-09	4E-07	5E-07	2E-06	6E-08	4E-10	9E-07	1E-06
Total (includes PCB-TEQ for fish) (c)	8E-08	5E-10	6E-07	7E-07	9E-08	7E-09	2E-07	3E-07	1E-06	6E-08	4E-10	4E-07	5E-07
li l		1			I	l					Ì	1	

Notes:

Values are presented to one significant figure.

NA - Not Applicable; no dose-response value.

NC - Not calculated.

NCOPC - Not a Chemical of Potential Concern in this media.

⁽a) Calculated based on data from Pinkney (2017). The samples collected in the Upper Anacostia River are assumed to reflect overall conditions within the several mile long river reach that was sampled (or the possibly larger home range for some of the fish species sampled), and may not reflect the specific conditions within the Waterside Investigation Area.

⁽b) Total (includes Total PCBs for fringe surface sediment, surface water, and fish).

⁽c) Total (includes Total PCBs for fringe surface sediment and surface water and PCB-TEQ for fish).

Table 6-16 Total Potential Hazard Index for the Angler Receptors - Mixed Fish Diet (CTE) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

						Potential I	lazard Index					
Chemical of Potential Concern		Adult An	gler			Young Ch	nild Angler			Older Child/T	een Angler	
	Fringe Surface Sediment	Surface Water	Fish Tissue Upper Anacostia (d)	Total	Fringe Surface Sediment	Surface Water	Fish Tissue Upper Anacostia (d)	Total	Fringe Surface Sediment	Surface Water	Fish Tissue Upper Anacostia (d)	Total
Disease.												
Dioxin	05.00	45.00	NOODO	05.00	4 5 00	05.05	NOODO	45.00	05.00	05.00	NOODO	05.00
2,3,7,8-TCDD-TEQ Metals	3E-03	1E-06	NCOPC	3E-03	1.E-02	3E-05	NCOPC	1E-02	3E-03	2E-06	NCOPC	3E-03
Aluminum	9E-05	NCOPC	NCOPC	9E-05	8.E-04	NCOPC	NCOPC	8E-04	1E-04	NCOPC	NCOPC	1E-04
Antimony	9E-05 5E-05	NCOPC	NCOPC	9E-05 5E-05	5.E-04	NCOPC	NCOPC	5E-04	1E-04 1E-04	NCOPC	NCOPC	1E-04 1E-04
Arsenic	4E-04	7E-06	NCOPC	4E-04	2.E-03	2E-04	NCOPC	2E-03	4E-04	9E-06	NCOPC	4E-04
Arsenic, organic	NCOPC	NCOPC	NCOPC	NC	NCOPC	NCOPC	NCOPC	NC	NCOPC	NCOPC	NCOPC	NC
Cobalt	6E-04	7E-06	NCOPC	6E-04	5.E-03	2E-04	NCOPC	5E-03	8E-04	1E-05	NCOPC	9E-04
Cyanide	2E-05	NCOPC	NCOPC	2E-05	1.E-04	NCOPC	NCOPC	1E-04	2E-05	NCOPC	NCOPC	2E-05
Manganese	1E-04	1E-04	NCOPC	2E-03	9.E-04	2E-03	NCOPC	2E-03	1E-04	1E-04	NCOPC	3E-04
Mercury	NCOPC	NCOPC	3E-02	3E-02	NCOPC	NCOPC	5E-02	5E-02	NCOPC	NCOPC	4E-02	4E-02
Nickel	3E-05	NCOPC	NCOPC	3E-05	3.E-04	NCOPC	NCOPC	3E-04	4E-05	NCOPC	NCOPC	4E-05
Thallium	2E-04	NCOPC	NCOPC	2E-04	2.E-03	NCOPC	NCOPC	2E-03	4E-04	NCOPC	NCOPC	4E-04
Vanadium	2E-04	NCOPC	NCOPC	2E-04	2.E-03	NCOPC	NCOPC	2E-03	3E-04	NCOPC	NCOPC	3E-04
Pesticides												
4.4'-DDT	NCOPC	5E-09	NCOPC	5E-09	NCOPC	1E-07	NCOPC	1E-07	NCOPC	7E-09	NCOPC	7E-09
4.4'-DDD	NCOPC	NCOPC	4E-03	4E-03	NCOPC	NCOPC	5E-03	5E-03	NCOPC	NCOPC	4E-03	4E-03
4.4'-DDE	NCOPC	NCOPC	1E-03	1E-03	NCOPC	NCOPC	2E-03	2E-03	NCOPC	NCOPC	1E-03	1E-03
Aldrin	NCOPC	NCOPC	1E-04	1E-04	NCOPC	NCOPC	1E-04	1E-04	NCOPC	NCOPC	1E-04	1E-04
alpha-Chlordane	NCOPC	NCOPC	4E-04	4E-04	NCOPC	NCOPC	6E-04	6E-04	NCOPC	NCOPC	4E-04	4E-04
cis-Nonachlor	NCOPC	NCOPC	2E-04	2E-04	NCOPC	NCOPC	2E-04	2E-04	NCOPC	NCOPC	2E-04	2E-04
Dieldrin	NCOPC	NCOPC	1E-03	1E-03	NCOPC	NCOPC	2E-03	2E-03	NCOPC	NCOPC	1E-03	1E-03
gamma-Chlordane	NCOPC	NCOPC	1E-04	1E-04	NCOPC	NCOPC	2E-04	2E-04	NCOPC	NCOPC	2E-04	2E-04
Heptachlor epoxide	NCOPC	NCOPC	2E-03	2E-03	NCOPC	NCOPC	3E-03	3E-03	NCOPC	NCOPC	2E-03	2E-03
Mirex	NCOPC	NCOPC	2E-05	2E-05	NCOPC	NCOPC	3E-05	3E-05	NCOPC	NCOPC	2E-05	2E-05
Oxychlordane	NCOPC	NCOPC	8E-05	8E-05	NCOPC	NCOPC	1E-04	1E-04	NCOPC	NCOPC	8E-05	8E-05
trans-Nonachlor	NCOPC	NCOPC	5E-04	5E-04	NCOPC	NCOPC	6E-04	6E-04	NCOPC	NCOPC	5E-04	5E-04
PCBs												
Total PCBs	2E-03	8E-07	2E-01	2E-01	6.E-03	3E-05	3E-01	3E-01	2E-03	1E-06	2E-01	2E-01
PCB-TEQ			3E-02	3E-02	NCOPC	NCOPC	4E-02	4E-02			3E-02	3E-02
SVOCs			52.52	0L 0L	1						02.02	0L 0L
Benzo(a)anthracene	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC
	2E-04			2E-04	-		NCOPC		2E-04		NCOPC	2E-04
Benzo(a)pyrene		NCOPC	NCOPC		6.E-04	NCOPC		6E-04		NCOPC		
Benzo(b)fluoranthene	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC	NA 	NCOPC	NCOPC	NC
Benzo(k)fluoranthene	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC
Chrysene	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC
Dibenzo(a,h)anthracene	NA	NCOPC	NCOPC	NC	NA NA	NCOPC	NCOPC	NC	NA NA	NCOPC	NCOPC	NC
Indeno(1,2,3-cd)pyrene	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC	NA	NCOPC	NCOPC	NC
TPH	45.04	NOODO	Noono	45.04	4.5.00	NOODO	NOODO	45.00	05.04	NOODO	NOODO	05.04
Diesel Range Organics (C10-C20)	1E-04	NCOPC	NCOPC	1E-04	1.E-03	NCOPC	NCOPC	1E-03	2E-04	NCOPC	NCOPC	2E-04
Total (Total PCBs) (b)	7E-03	1E-04	3E-01	3E-01	4E-02	2E-03	4E-01	4E-01	8E-03	2E-04	3E-01	3E-01
Total (includes PCB-TEQ for fish) (c)	7E-03	1E-04	7E-02	8E-02	4E-02	2E-03	1E-01	1E-01	8E-03	2E-04	8E-02	9E-02
Highest TE HI (Total PCBs) (b,d)	3E-03	1E-04	2E-01	2E-01	2E-02	2E-03	3E-01	3E-01	3E-03	1E-04	2E-01	2E-01
Highest TE HI (PCB-TEQ) (c,d)	3E-03	1E-04	3E-02	3E-02	2E-02	2E-03	5E-02	6E-02	3E-03	1E-04	4E-02	4E-02

Notes:

Values are presented to one significant figure.

NA - Not Applicable; no dose-response value.

NCOPC - Not a Chemical of Potential Concern in this media.

HI - Hazard Index. NC - Not calculated. TE - Target Endpoint.

(a) Calculated based on data from Pinkney (2017). The samples collected in the Upper Anacostia River are assumed to reflect overall conditions within the several mile long river reach that was sampled (or the possibly larger home range for some of the fish species sampled), and may not reflect the specific conditions within the Waterside Investigation Area.

- (b) Total (includes Total PCBs for fringe surface sediment, surface water, and fish).
- (c) Total (includes Total PCBs for fringe surface sediment and surface water and PCB-TEQ for fish).
- (d) See Attachment H.

Table 6-17 Total Potential Carcinogenic Risk for the Angler Receptors - Mixed Fish Diet - Regional Areas (RME Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

						Pot	ential Carcino	genic Risk - Fis	sh Tissue -	Mixed Fish	Diet					
Chemical of Potential Concern		Ad	ult Angler			Young Chil	d Angler (a)		Sum	of Adult ar	d Young Chi	ld Angler		Older Ch	ild/Teen Ang	ler
	Upper Potomac	Lower Potomac	Non-Tidal Anacostia	Lower Anacostia												
Dioxin																
2.3.7.8-TCDD-TEQ	NCOPC	NCOPC	3.95E-07	NCOPC	NCOPC	NCOPC	1.95E-07	NCOPC	NCOPC	NCOPC	5.90E-07	NCOPC	NCOPC	NCOPC	2.32E-07	NCOPC
Inorganics	NCOPC	NCOPC	3.95E-07	NCOPC	NCOPC	NCOPC	1.95E-07	NCOPC	NCOPC	NCOPC	5.90E-07	NCOPC	NCOPC	NCOPC	2.32E-07	NCOPC
Arsenic	2.13E-06	1.99E-05	4.06E-07	1.31E-06	1.05E-06	9.82E-06	2.01E-07	6.49E-07	3.19E-06	2.97E-05	6.07E-07	1.96E-06	1.26E-06	1.17E-05	2.39E-07	7.73E-07
Arsenic, organic	2.13L-00	NA	4.00L-07	NA	NA	9.82L-00 NA	NA	NA	NA	2.97E-03	NA	NA	NA	NA	2.39L=07	NA
Cobalt	NCOPC	NCOPC	NA NA	NCOPC	NCOPC	NCOPC	NA NA	NCOPC	NCOPC	NCOPC	NA NA	NCOPC	NCOPC	NCOPC	NA NA	NCOPC
Mercury	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
Thallium	NCOPC	NCOPC	NA NA	NCOPC	NCOPC	NCOPC	NA NA	NCOPC	NCOPC	NCOPC	NA NA	NCOPC	NCOPC	NCOPC	NA NA	NCOPC
Pesticides (d)	NCOFC	NCOFC	INA	NCOFC												
` '					l								H			
4,4'-DDD	3.26E-07	6.40E-08	NCOPC	2.56E-07	1.61E-07	3.16E-08	NCOPC	1.27E-07	4.86E-07	9.56E-08	NCOPC	3.83E-07	1.92E-07	3.76E-08	NCOPC	1.51E-07
4,4'-DDE	2.66E-06	4.48E-07	NCOPC	7.23E-07	1.31E-06	2.21E-07	NCOPC	3.57E-07	3.97E-06	6.69E-07	NCOPC	1.08E-06	1.56E-06	2.64E-07	NCOPC	4.26E-07
Aldrin	6.56E-07	NCOPC	NCOPC	2.20E-07	3.24E-07	NCOPC	NCOPC	1.09E-07	9.80E-07	NCOPC	NCOPC	3.28E-07	3.86E-07	NCOPC	NCOPC	1.29E-07
alpha-Chlordane	5.74E-07	1.73E-07	NCOPC	4.05E-07	2.84E-07	8.56E-08	NCOPC	2.00E-07	8.57E-07	2.59E-07	NCOPC	6.06E-07	3.38E-07	1.02E-07	NCOPC	2.39E-07
beta-BHC	1.00E-07	NCOPC	NCOPC	NCOPC	4.95E-08	NCOPC	NCOPC	NCOPC	1.50E-07	NCOPC	NCOPC	NCOPC	5.89E-08	NCOPC	NCOPC	NCOPC
cis-Nonachlor	2.48E-07	NCOPC	NCOPC	1.74E-07	1.22E-07	NCOPC	NCOPC	8.59E-08	3.70E-07	NCOPC	NCOPC	2.60E-07	1.46E-07	NCOPC	NCOPC	1.02E-07
Chlordane	NCOPC	NCOPC	2.94E-07	NCOPC	NCOPC	NCOPC	9.95E-08	NCOPC	NCOPC	NCOPC	3.93E-07	NCOPC	NCOPC	NCOPC	1.73E-07	NCOPC
Dieldrin	1.48E-05	3.40E-06	1.01E-06	9.15E-06	7.29E-06	1.68E-06	1.06E-08	4.52E-06	2.21E-05	5.09E-06	1.02E-06	1.37E-05	8.69E-06	2.00E-06	5.97E-07	5.39E-06
gamma-Chlordane	5.22E-08	8.97E-08	NCOPC	2.23E-07	2.58E-08	4.43E-08	NCOPC	1.10E-07	7.80E-08	1.34E-07	NCOPC	3.33E-07	3.07E-08	5.28E-08	NCOPC	1.31E-07
Heptachlor epoxide	9.92E-07	9.10E-07	5.02E-07	1.25E-06	4.90E-07	4.49E-07	4.63E-07	6.17E-07	1.48E-06	1.36E-06	9.65E-07	1.86E-06	5.84E-07	5.36E-07	2.95E-07	7.35E-07
Hexachlorobenzene	7.97E-08	NCOPC	NCOPC	NCOPC	3.94E-08	NCOPC	NCOPC	NCOPC	1.19E-07	NCOPC	NCOPC	NCOPC	4.69E-08	NCOPC	NCOPC	NCOPC
Mirex	1.99E-07	NCOPC	NCOPC	2.27E-07	9.85E-08	NCOPC	NCOPC	1.12E-07	2.98E-07	NCOPC	NCOPC	3.39E-07	1.17E-07	NCOPC	NCOPC	1.34E-07
Oxychlordane	6.19E-08	4.34E-08	NCOPC	9.15E-08	3.06E-08	2.15E-08	NCOPC	4.52E-08	9.24E-08	6.49E-08	NCOPC	1.37E-07	3.64E-08	2.56E-08	NCOPC	5.38E-08
trans-Nonachlor	7.04E-07	2.18E-07	NCOPC	5.04E-07	3.48E-07	1.08E-07	NCOPC	2.49E-07	1.05E-06	3.26E-07	NCOPC	7.53E-07	4.15E-07	1.28E-07	NCOPC	2.97E-07
PCBs																
Total PCBs	9.99E-05	1.57E-05	2.06E-06	3.28E-05	4.94E-05	7.74E-06	1.02E-06	1.62E-05	1.49E-04	2.34E-05	3.08E-06	4.90E-05	5.88E-05	9.22E-06	1.21E-06	1.93E-05
PCB-TEQ	1.41E-04	1.80E-05	2.89E-06	4.62E-05	6.96E-05	8.89E-06	1.43E-06	2.28E-05	2.10E-04	2.69E-05	4.31E-06	6.90E-05	8.29E-05	1.06E-05	1.70E-06	2.72E-05
Total (Total PCBs) (b)	1E-04	4E-05	5E-06	5E-05	6E-05	2E-05	2E-06	2E-05	2E-04	6E-05	7E-06	7E-05	7E-05	2E-05	3E-06	3E-05
Total (PCB-TEQ) (c)	2E-04	4E-05	5E-06	6E-05	8E-05	2E-05	2E-06	3E-05	2E-04	6E-05	8E-06	9E-05	1E-04	3E-05	3E-06	4E-05
		,														<u> </u>

Notes:

NA - Not Applicable; no dose-response value.

NC - Not calculated.

NCOPC - Not a Chemical of Potential Concern in this media.

- (a) The young child is assumed to not accompany the adult or older child anglers on fishing trips to the river, but is assumed to eat river fish that is brought home.
- (b) Total Receptor Risk/Hazard based on all COPCs except PCB-TEQ.
- (c) Total Receptor Risk/Hazard based on all COPCs except Total PCBs.
- (d) Tissue samples from the tidal Anacostia and Potomac Rivers were analyzed for individual chlordane isomers, and tissue samples from the Non-Tidal Anacostia River were analyzed for Chlordane (technical).

Table 6-18 Total Potential Hazard Index for the Angler Receptors - Mixed Fish Diet - Regional Areas (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

					Potential	Hazard Index - Fis	sh Tissue - Mixe	d Fish Diet				
Chemical of Potential Concern		Adu	lt Angler			Young Child	l Angler (a)			Older Child	d/Teen Angler	
	Upper Potomac	Lower Potomac	Non-Tidal Anacostia	Lower Anacostia	Upper Potomac	Lower Potomac	Non-Tidal Anacostia	Lower Anacostia	Upper Potomac	Lower Potomac	Non-Tidal Anacostia	Lower Anacostia
Dioxin												
2.3.7.8-TCDD-TEQ	NCOPC	NCOPC	1.52E-02	NCOPC	NCOPC	NCOPC	2.50E-02	NCOPC	NCOPC	NCOPC	1.49E-02	NCOPC
Inorganics	14001 0	14001 0	1.52L-02	140010	140010	14001 0	2.50L-02	110010	110010	14001 0	1.432-02	14001 0
Arsenic	1.66E-02	1.55E-01	3.16E-03	1.02E-02	2.73E-02	2.55E-01	5.20E-03	1.68E-02	1.63E-02	1.52E-01	3.10E-03	1.00E-02
Arsenic, organic	2.24E-03	2.09E-02	4.26E-04	1.38E-03	3.69E-03	3.44E-02	7.02E-04	2.27E-03	2.20E-03	2.05E-02	4.18E-04	1.35E-03
Cobalt	NCOPC	NCOPC	6.75E-03	NCOPC	NCOPC	NCOPC	1.11E-02	NCOPC	NCOPC	NCOPC	6.62E-03	NCOPC
Mercury	2.01E-01	1.38E-01	3.73E-01	1.22E-01	3.31E-01	2.26E-01	6.14E-01	2.01E-01	1.97E-01	1.35E-01	3.65E-01	1.20E-01
Thallium	NCOPC	NCOPC	4.81E-02	NCOPC	NCOPC	NCOPC	7.93E-02	NCOPC	NCOPC	NCOPC	4.72E-02	NCOPC
Pesticides (e)												
4.4'-DDD	1.58E-01	3.11E-02	NCOPC	1.25E-01	2.61E-01	5.12E-02	NCOPC	2.05E-01	1.55E-01	3.05E-02	NCOPC	1.22E-01
4,4'-DDE	9.11E-02	1.54E-02	NCOPC	2.48E-02	1.50E-01	2.53E-02	NCOPC	4.09E-02	8.94E-02	1.51E-02	NCOPC	2.44E-02
Aldrin	4.50E-03	NCOPC	NCOPC	1.51E-03	7.41E-03	NCOPC NCOPC	NCOPC	2.48E-03	4.42E-03	NCOPC	NCOPC	1.48E-03
alpha-Chlordane	1.15E-02	3.47E-03	NCOPC	8.11E-03	1.89E-02	5.71E-03	NCOPC	1.34E-02	1.13E-02	3.40E-03	NCOPC	7.96E-03
beta-BHC	NA	NCOPC	NCOPC	NCOPC	NA	NCOPC	NCOPC	NCOPC	NA	NCOPC	NCOPC	NCOPC
cis-Nonachlor	4.95E-03	NCOPC	NCOPC	3.48E-03	8.15E-03	NCOPC	NCOPC	5.73E-03	4.86E-03	NCOPC	NCOPC	3.41E-03
Chlordane	NCOPC	NCOPC	5.87E-03	NCOPC	NCOPC	NCOPC	1.61E-01	NCOPC	NCOPC	NCOPC	5.76E-03	NCOPC
Dieldrin	6.46E-02	1.49E-02	4.44E-03	4.01E-02	1.06E-01	2.45E-02	1.22E-03	6.60E-02	6.34E-02	1.46E-02	4.35E-03	3.93E-02
gamma-Chlordane	1.04E-03	1.79E-03	NCOPC	4.46E-03	1.72E-03	2.95E-03	NCOPC	7.35E-03	1.02E-03	1.76E-03	NCOPC	4.38E-03
Heptachlor epoxide	2.93E-02	2.69E-02	1.48E-02	3.69E-02	4.83E-02	4.43E-02	1.06E-02	6.08E-02	2.88E-02	2.64E-02	1.46E-02	3.62E-02
Hexachlorobenzene	2.18E-04	NCOPC	NCOPC	NCOPC	3.59E-04	NCOPC	NCOPC	NCOPC	2.14E-04	NCOPC	NCOPC	NCOPC
Mirex	1.94E-04	NCOPC	NCOPC	2.21E-04	3.19E-04	NCOPC	NCOPC	3.63E-04	1.90E-04	NCOPC	NCOPC	2.16E-04
Oxychlordane	1.24E-03	8.69E-04	NCOPC	1.83E-03	2.04E-03	1.43E-03	NCOPC	3.01E-03	1.21E-03	8.52E-04	NCOPC	1.79E-03
trans-Nonachlor	1.41E-02	4.37E-03	NCOPC	1.01E-02	2.32E-02	7.19E-03	NCOPC	1.66E-02	1.38E-02	4.28E-03	NCOPC	9.89E-03
PCBs												
Total PCBs	8.75E+00	1.37E+00	1.80E-01	2.87E+00	1.44E+01	2.26E+00	2.97E-01	4.73E+00	8.58E+00	1.34E+00	1.77E-01	2.82E+00
PCB-TEQ	5.42E+00	6.92E-01	1.11E-01	1.78E+00	8.92E+00	1.14E+00	1.83E-01	2.92E+00	5.32E+00	6.79E-01	1.09E-01	1.74E+00
Total (Total PCBs) (b)	9E+00	2E+00	7E-01	3E+00	2E+01	3E+00	1E+00	5E+00	9E+00	2E+00	6E-01	3E+00
Total (PCB-TEQ) (c)	6E+00	1E+00	6E-01	2E+00	1E+01	2E+00	1E+00	4E+00	6E+00	1E+00	6E-01	2E+00
Highest TE HI (Total PCBs) (b,d)	9E+00	1E+00	4E-01	3E+00	1E+01	2E+00	6E-01	5E+00	9E+00	1E+00	4E-01	3E+00
Highest TE HI (PCB-TEQ) (c,d)	6E+00	7E-01	4E-01	2E+00	9E+00	1E+00	6E-01	3E+00	5E+00	7E-01	4E-01	2E+00

Notes:

HI - Hazard Index.

NA - Not Applicable; no dose-response value.

NC - Not calculated.

NCOPC - Not a Chemical of Potential Concern in this media.

TE - Target Endpoint.

- (a) The young child is assumed to not accompany the adult or older child anglers on fishing trips to the river, but is assumed to eat river fish that is brought home.
- (b) Total Receptor Risk/Hazard based on all COPCs except PCB-TEQ.
- (c) Total Receptor Risk/Hazard based on all COPCs except Total PCBs.
- (d) See Attachment H.
- (e) Tissue samples from the tidal Anacostia and Potomac Rivers were analyzed for individual chlordane isomers, and tissue samples from the Non-Tidal Anacostia River were analyzed for Chlordane (technical).

Table 6-19 Total Potential Carcinogenic Risk for the Angler Receptors - Mixed Fish Diet - Regional Areas (CTE Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

						Pot	ential Carcino	genic Risk - Fi	sh Tissue -	Mixed Fish	Diet					
Chemical of Potential Concern		Adı	ult Angler			Young Chi	ld Angler (a)		Sum	of Adult ar	id Young Chi	ld Angler		Older Ch	ild/Teen Ang	ler
	Upper Potomac	Lower Potomac	Non-Tidal Anacostia	Lower Anacostia												
Dioxin		Noono			waana											
2,3,7,8-TCDD-TEQ	NCOPC	NCOPC	2.94E-08	NCOPC	NCOPC	NCOPC	8.30E-09	NCOPC	NCOPC	NCOPC	3.77E-08	NCOPC	NCOPC	NCOPC	1.86E-08	NCOPC
Inorganics																
Arsenic	1.60E-07	3.37E-07	4.31E-08	1.64E-07	4.52E-08	9.51E-08	1.22E-08	4.63E-08	2.05E-07	4.32E-07	5.52E-08	2.10E-07	1.01E-07	2.14E-07	2.73E-08	1.04E-07
Arsenic, organic	NA	NA	NA	NA												
Cobalt	NCOPC	NCOPC	NA	NCOPC												
Mercury	NA	NA	NA	NA												
Thallium	NCOPC	NCOPC	NA	NCOPC												
Pesticides (d)																
4,4'-DDD	7.50E-09	2.52E-09	NCOPC	7.89E-09	2.12E-09	7.12E-10	NCOPC	2.23E-09	9.62E-09	3.23E-09	NCOPC	1.01E-08	4.76E-09	1.60E-09	NCOPC	5.00E-09
4,4'-DDE	6.44E-08	1.76E-08	NCOPC	3.75E-08	1.82E-08	4.98E-09	NCOPC	1.06E-08	8.26E-08	2.26E-08	NCOPC	4.81E-08	4.08E-08	1.12E-08	NCOPC	2.38E-08
Aldrin	1.14E-08	NCOPC	NCOPC	1.05E-08	3.22E-09	NCOPC	NCOPC	2.97E-09	1.46E-08	NCOPC	NCOPC	1.35E-08	7.24E-09	NCOPC	NCOPC	6.67E-09
alpha-Chlordane	1.31E-08	6.07E-09	NCOPC	2.01E-08	3.69E-09	1.71E-09	NCOPC	5.67E-09	1.68E-08	7.78E-09	NCOPC	2.58E-08	8.29E-09	3.85E-09	NCOPC	1.27E-08
beta-BHC	3.78E-09	NCOPC	NCOPC	NCOPC	1.07E-09	NCOPC	NCOPC	NCOPC	4.84E-09	NCOPC	NCOPC	NCOPC	2.39E-09	NCOPC	NCOPC	NCOPC
cis-Nonachlor	4.11E-09	NCOPC	NCOPC	7.57E-09	1.16E-09	NCOPC	NCOPC	2.14E-09	5.27E-09	NCOPC	NCOPC	9.71E-09	2.61E-09	NCOPC	NCOPC	4.80E-09
Chlordane	NCOPC	NCOPC	2.29E-08	NCOPC	NCOPC	NCOPC	6.48E-09	NCOPC	NCOPC	NCOPC	2.94E-08	NCOPC	NCOPC	NCOPC	1.45E-08	NCOPC
Dieldrin	3.54E-07	1.86E-07	7.48E-08	3.02E-07	9.98E-08	5.24E-08	2.11E-08	8.52E-08	4.53E-07	2.38E-07	9.60E-08	3.87E-07	2.24E-07	1.18E-07	4.75E-08	1.91E-07
gamma-Chlordane	2.70E-09	2.96E-09	NCOPC	9.64E-09	7.62E-10	8.37E-10	NCOPC	2.72E-09	3.46E-09	3.80E-09	NCOPC	1.24E-08	1.71E-09	1.88E-09	NCOPC	6.11E-09
Heptachlor epoxide	5.44E-08	3.78E-08	3.42E-08	6.49E-08	1.54E-08	1.07E-08	9.65E-09	1.83E-08	6.98E-08	4.85E-08	4.38E-08	8.33E-08	3.45E-08	2.40E-08	2.17E-08	4.12E-08
Hexachlorobenzene	3.62E-09	NCOPC	NCOPC	NCOPC	1.02E-09	NCOPC	NCOPC	NCOPC	4.65E-09	NCOPC	NCOPC	NCOPC	2.30E-09	NCOPC	NCOPC	NCOPC
Mirex	9.54E-09	NCOPC	NCOPC	1.16E-08	2.69E-09	NCOPC	NCOPC	3.27E-09	1.22E-08	NCOPC	NCOPC	1.49E-08	6.05E-09	NCOPC	NCOPC	7.34E-09
Oxychlordane	1.99E-09	1.79E-09	NCOPC	3.73E-09	5.61E-10	5.04E-10	NCOPC	1.05E-09	2.55E-09	2.29E-09	NCOPC	4.79E-09	1.26E-09	1.13E-09	NCOPC	2.37E-09
trans-Nonachlor	1.12E-08	8.30E-09	NCOPC	2.09E-08	3.15E-09	2.34E-09	NCOPC	5.90E-09	1.43E-08	1.06E-08	NCOPC	2.68E-08	7.07E-09	5.26E-09	NCOPC	1.33E-08
PCBs	, , ,								1				1			
Total PCBs	2.87E-06	1.02E-06	1.78E-07	1.98E-06	8.10E-07	2.89E-07	5.01E-08	5.59E-07	3.68E-06	1.31E-06	2.28E-07	2.54E-06	1.82E-06	6.49E-07	1.13E-07	1.25E-06
PCB-TEQ	4.46E-06	1.03E-06	2.01E-07	2.46E-06	1.26E-06	2.90E-07	5.66E-08	6.94E-07	5.72E-06	1.32E-06	2.57E-07	3.15E-06	2.83E-06	6.52E-07	1.27E-07	1.56E-06
									1							
Total (Total PCBs) (b)	4E-06	2E-06	4E-07	3E-06	1E-06	5E-07	1E-07	7E-07	5E-06	2E-06	5E-07	3E-06	2E-06	1E-06	2E-07	2E-06
Total (PCB-TEQ) (c)	5E-06	2E-06	4E-07	3E-06	1E-06	5E-07	1E-07	9E-07	7E-06	2E-06	5E-07	4E-06	3E-06	1E-06	3E-07	2E-06
			-						1				1			

Notes:

NA - Not Applicable; no dose-response value.

NC - Not calculated.

NCOPC - Not a Chemical of Potential Concern in this media.

- (a) The young child is assumed to not accompany the adult or older child anglers on fishing trips to the river, but is assumed to eat river fish that is brought home.
- (b) Total Receptor Risk/Hazard based on all COPCs except PCB-TEQ.
- (c) Total Receptor Risk/Hazard based on all COPCs except Total PCBs.
- (d) Tissue samples from the tidal Anacostia and Potomac Rivers were analyzed for individual chlordane isomers, and tissue samples from the Non-Tidal Anacostia River were analyzed for Chlordane (technical).

Table 6-20 Total Potential Hazard Index for the Angler Receptors - Mixed Fish Diet - Regional Areas (CTE Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

					Potential	Hazard Index - Fis	sh Tissue - Mixe	d Fish Diet				
Chemical of Potential Concern		Adu	lt Angler			Young Child	l Angler (a)			Older Chile	i/Teen Angler	
	Upper Potomac	Lower Potomac	Non-Tidal Anacostia	Lower Anacostia	Upper Potomac	Lower Potomac	Non-Tidal Anacostia	Lower Anacostia	Upper Potomac	Lower Potomac	Non-Tidal Anacostia	Lower Anacostia
Dioxin												
2.3.7.8-TCDD-TEQ	NCOPC	NCOPC	2.26E-03	NCOPC	NCOPC	NCOPC	3.19E-03	NCOPC	NCOPC	NCOPC	2.39E-03	NCOPC
Inorganics	110010	110010	2.20L 00	110010	110010	110010	0.102 00	110010	110010	110010	2.002 00	140010
Arsenic	2.49E-03	5.24E-03	6.70E-04	2.55E-03	3.51E-03	7.40E-03	9.46E-04	3.60E-03	2.63E-03	5.54E-03	7.08E-04	2.70E-03
Arsenic, organic	3.36E-04	7.08E-04	9.05E-05	3.45E-04	4.74E-04	9.99E-04	1.28E-04	4.86E-04	3.55E-04	7.48E-04	9.56E-05	3.64E-04
Cobalt	NCOPC	NCOPC	1.26E-03	NCOPC	NCOPC	NCOPC	1.78E-03	NCOPC	NCOPC	NCOPC	1.33E-03	NCOPC
Mercury	3.84E-02	2.60E-02	8.03E-02	2.25E-02	5.43E-02	3.67E-02	1.13E-01	3.18E-02	4.06E-02	2.74E-02	2.83E-02	2.38E-02
Thallium	NCOPC	NCOPC	1.07E-02	NCOPC	NCOPC	NCOPC	1.51E-02	NCOPC	NCOPC	NCOPC	1.13E-02	NCOPC
Pesticides (e)												
4.4'-DDD	7.30E-03	2.45E-03	NCOPC	7.67E-03	1.03E-02	3.46E-03	NCOPC	1.08E-02	7.71E-03	2.59E-03	NCOPC	8.10E-03
4,4'-DDE	4.42E-03	1.21E-03	NCOPC	2.57E-03	6.24E-03	1.71E-03	NCOPC	3.63E-03	4.67E-03	1.28E-03	NCOPC	2.72E-03
Aldrin	1.57E-04	NCOPC	NCOPC	1.45E-04	2.21E-04	NCOPC	NCOPC	2.04E-04	1.66E-04	NCOPC	NCOPC	1.53E-04
alpha-Chlordane	5.23E-04	2.43E-04	NCOPC	8.04E-04	7.38E-04	3.43E-04	NCOPC	1.13E-03	5.52E-04	2.56E-04	NCOPC	8.49E-04
beta-BHC	NA	NCOPC	NCOPC	NCOPC	NA	NCOPC	NCOPC	NCOPC	NA	NCOPC	NCOPC	NCOPC
cis-Nonachlor	1.64E-04	NCOPC	NCOPC	3.03E-04	2.32E-04	NCOPC	NCOPC	4.28E-04	1.74E-04	NCOPC	NCOPC	3.20E-04
Chlordane	NCOPC	NCOPC	9.18E-04	NCOPC	NCOPC	NCOPC	1.30E-03	NCOPC	NCOPC	NCOPC	9.70E-04	NCOPC
Dieldrin	3.09E-03	1.62E-03	6.55E-04	2.64E-03	4.37E-03	2.29E-03	9.25E-04	3.73E-03	3.27E-03	1.72E-03	6.92E-04	2.79E-03
gamma-Chlordane	1.08E-04	1.19E-04	NCOPC	3.86E-04	1.52E-04	1.67E-04	NCOPC	5.44E-04	1.14E-04	1.25E-04	NCOPC	4.07E-04
Heptachlor epoxide	3.22E-03	2.24E-03	2.02E-03	3.84E-03	4.55E-03	3.16E-03	2.85E-03	5.42E-03	3.40E-03	2.37E-03	2.14E-03	4.06E-03
Hexachlorobenzene	1.98E-05	NCOPC	NCOPC	NCOPC	2.80E-05	NCOPC	NCOPC	NCOPC	2.09E-05	NCOPC	NCOPC	NCOPC
Mirex	1.86E-05	NCOPC	NCOPC	2.25E-05	2.62E-05	NCOPC	NCOPC	3.18E-05	1.96E-05	NCOPC	NCOPC	2.38E-05
Oxychlordane	7.95E-05	7.14E-05	NCOPC	1.49E-04	1.12E-04	1.01E-04	NCOPC	2.11E-04	8.40E-05	7.54E-05	NCOPC	1.58E-04
trans-Nonachlor	4.46E-04	3.32E-04	NCOPC	8.37E-04	6.30E-04	4.69E-04	NCOPC	1.18E-03	4.72E-04	3.51E-04	NCOPC	8.84E-04
PCBs												
Total PCBs	5.02E-01	1.79E-01	3.11E-02	3.46E-01	7.08E-01	2.53E-01	4.39E-02	4.89E-01	5.30E-01	1.89E-01	3.28E-02	3.66E-01
PCB-TEQ	3.43E-01	7.91E-02	1.54E-02	1.89E-01	4.84E-01	1.12E-01	2.18E-02	2.67E-01	3.62E-01	8.36E-02	1.63E-02	2.00E-01
Total (Total PCBs) (b)	6E-01	2E-01	1E-01	4E-01	8E-01	3E-01	2E-01	6E-01	6E-01	2E-01	8E-02	4E-01
Total (PCB-TEQ) (c)	4E-01	1E-01	1E-01 1E-01	4E-01 2E-01	8E-01 6E-01	3E-01 2E-01	2E-01	3E-01	4E-01	1E-01	8E-02 6E-02	2E-01
	4E-01 5E-01	1E-01 2E-01	1E-01 8E-02	2E-01 3E-01	6E-01 7E-01	2E-01 3E-01	2E-01 1E-01	3E-01 5E-01	4E-01 5E-01	1E-01 2E-01	6E-02 3E-02	4E-01
Highest TE HI (Total PCBs) (b,d) Highest TE HI (PCB-TEQ) (c,d)	3E-01	2E-01 8E-02	8E-02 8E-02	3E-01 2E-01	7E-01 5E-01	3E-01 1E-01	1E-01 1E-01	5E-01 3E-01	5E-01 4E-01	2E-01 8E-02	3E-02 3E-02	4E-01 2E-01
rignest 1E HI (PCB-1EQ) (c,d)	3E-01	δ⊑-02	8 ⊏- 02	∠E-01	⊃E-01	1E-01	1E-01	3E-01	4E-01	8E-02	3E-02	∠ ⊏- 01

Notes:

NA - Not Applicable; no dose-response value.

NC - Not calculated

NCOPC - Not a Chemical of Potential Concern in this media.

- (a) The young child is assumed to not accompany the adult or older child anglers on fishing trips to the river, but is assumed to eat river fish that is brought home.
- (b) Total Receptor Risk/Hazard based on all COPCs except PCB-TEQ.
- (c) Total Receptor Risk/Hazard based on all COPCs except Total PCBs.
- (d) See Attachment H.
- (e) Tissue samples from the tidal Anacostia and Potomac Rivers were analyzed for individual chlordane isomers, and tissue samples from the Non-Tidal Anacostia River were analyzed for Chlordane (technical).

Table 6-21 Total Potential Carcinogenic Risks for the Swimmer Receptors (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

				Pote	ential Carcinogen	ic Risks				
Chemical of Potential Concern		Adult Swimmer		You	ng Child Swimme	r	Sum of Adult	Older (Child/Teen Sw	/immer
	Fringe Surface Sediment	Surface Water	Total	Fringe Surface Sediment	Surface Water	Total	and Child Swimmer	Fringe Surface Sediment	Surface Water	Total
Dioxin										
2,3,7,8-TCDD-TEQ	3.E-07	4.E-07	7.E-07	6.E-07	9.E-10	6.E-07	1.E-06	4.E-07	7.E-10	4.E-07
Metals										
Aluminum	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
Antimony	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
Arsenic	8.E-08	8.E-09	9.E-08	1.E-07	2.E-08	2.E-07	2.E-07	1.E-07	1.E-08	1.E-07
Cobalt	NA	NA	NC	NA	NA	NC	NC	NA	NA	NC
Cyanide	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
Manganese	NA	NA	NC	NA	NA	NC	NC	NA	NA	NC
Nickel	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
Thallium	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
Vanadium	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
PCBs										
Total PCBs	3.E-08	1.E-08	5.E-08	4.E-08	4.E-11	4.E-08	8.E-08	4.E-08	3.E-11	4.E-08
SVOCs										
Benzo(a)anthracene	3.E-09	NCOPC	3.E-09	2.E-08	NCOPC	2.E-08	2.E-08	1.E-08	NCOPC	1.E-08
Benzo(a)pyrene	2.E-08	NCOPC	2.E-08	1.E-07	NCOPC	1.E-07	1.E-07	6.E-08	NCOPC	6.E-08
Benzo(b)fluoranthene	3.E-09	NCOPC	3.E-09	1.E-08	NCOPC	1.E-08	2.E-08	9.E-09	NCOPC	9.E-09
Benzo(k)fluoranthene	1.E-10	NCOPC	1.E-10	5.E-10	NCOPC	5.E-10	6.E-10	3.E-10	NCOPC	3.E-10
Chrysene	3.E-11	NCOPC	3.E-11	1.E-10	NCOPC	1.E-10	2.E-10	8.E-11	NCOPC	8.E-11
Dibenzo(a,h)anthracene	5.E-09	NCOPC	5.E-09	2.E-08	NCOPC	2.E-08	3.E-08	1.E-08	NCOPC	1.E-08
Indeno(1,2,3-cd)pyrene	2.E-09	NCOPC	2.E-09	9.E-09	NCOPC	9.E-09	1.E-08	5.E-09	NCOPC	5.E-09
Pesticides										
4,4'-DDT	NCOPC	2.E-09	2.E-09	NCOPC	6.E-12	6.E-12	2.E-09	NCOPC	4.E-12	4.E-12
ТРН										
Diesel Range Organics (C10-C20)	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
Diesel Range Organics (C10-C28)	NCOPC	NCOPC	NC	NCOPC	NCOPC	NC	NC	NCOPC	NCOPC	NC
Totals	4.E-07	5.E-07	9.E-07	9.E-07	2.E-08	9.E-07	2.E-06	7.E-07	1.E-08	7.E-07

Notes:

Values are presented to one significant figure.

NA - Not Applicable.

NC - Not Calculated.

NCOPC - Not a Chemical of Potential Concern in this media.

Table 6-22 Total Potential Hazard Index for the Swimmer Receptors (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

				Potential	Hazard Index				
Chemical of Potential Concern		Adult Swimmer		You	ng Child Swimme	r	Older (Child/Teen Sw	vimmer
	Fringe Surface Sediment	Surface Water	Total	Fringe Surface Sediment	Surface Water	Total	Fringe Surface Sediment	Surface Water	Total
Dioxin									
2,3,7,8-TCDD-TEQ	1E-02	2.E-02	3.E-02	7.E-02	1.E-04	7.E-02	3.E-02	4.E-05	3E-02
Metals									
Aluminum	2E-04	NCOPC	2.E-04	2.E-03	NCOPC	2.E-03	6.E-04	NCOPC	6E-04
Antimony	4E-04	NCOPC	4.E-04	3.E-03	NCOPC	3.E-03	1.E-03	NCOPC	1E-03
Arsenic	6E-04	6.E-05	7.E-04	4.E-03	4.E-04	4.E-03	1.E-03	2.E-04	2E-03
Cobalt	1E-03	6.E-05	1.E-03	1.E-02	4.E-04	1.E-02	4.E-03	2.E-04	4E-03
Cyanide	1E-04	NCOPC	1.E-04	1.E-03	NCOPC	1.E-03	4.E-04	NCOPC	4E-04
Manganese	2E-04	8.E-04	1.E-03	2.E-03	2.E-03	4.E-03	7.E-04	2.E-03	2E-03
Nickel	7E-05	NCOPC	7.E-05	6.E-04	NCOPC	6.E-04	2.E-04	NCOPC	2E-04
Thallium	5E-04	NCOPC	5.E-04	5.E-03	NCOPC	5.E-03	2.E-03	NCOPC	2E-03
Vanadium	7E-04	NCOPC	7.E-04	6.E-03	NCOPC	6.E-03	2.E-03	NCOPC	2E-03
PCBs									
Total PCBs	3E-03	6.E-03	9.E-03	1.E-02	6.E-05	1.E-02	6.E-03	2.E-05	6E-03
SVOCs									
Benzo(a)anthracene	NA	NCOPC	NC	NA	NCOPC	NC	NA	NCOPC	NC
Benzo(a)pyrene	2E-04	NCOPC	2.E-04	9.E-04	NCOPC	9.E-04	5.E-04	NCOPC	5E-04
Benzo(b)fluoranthene	NA	NCOPC	NC	NA	NCOPC	NC	NA	NCOPC	NC
Benzo(k)fluoranthene	NA	NCOPC	NC	NA	NCOPC	NC	NA	NCOPC	NC
Chrysene	NA	NCOPC	NC	NA	NCOPC	NC	NA	NCOPC	NC
Dibenzo(a,h)anthracene	NA	NCOPC	NC	NA	NCOPC	NC	NA	NCOPC	NC
Indeno(1,2,3-cd)pyrene	NA	NCOPC	NC	NA	NCOPC	NC	NA	NCOPC	NC
Pesticides									
4,4'-DDT	NCOPC	4.E-05	4.E-05	NCOPC	4.E-07	4.E-07	NCOPC	2.E-07	2E-07
ТРН									
Diesel Range Organics (C10-C20)	3E-04	NCOPC	3.E-04	3.E-03	NCOPC	3.E-03	8.E-04	NCOPC	8E-04
Diesel Range Organics (C10-C28)	NCOPC	NCOPC	NC	NCOPC	NCOPC	NC	NCOPC	NCOPC	NC
Totals	2E-02	2.E-02	4.E-02	1.E-01	3.E-03	1.E-01	5.E-02	2.E-03	5E-02
Highest Target Endpoint Hazard Index (a)	1.E-02	2.E-02	3.E-02	8.E-02	2.E-03	8.E-02	3.E-02	2.E-03	3.E-02

Notes:

Values are presented to one significant figure.

NA - Not Applicable.

NC - Not Calculated.

NCOPC - Not a Chemical of Potential Concern in this media.

Table 6-23 Total Potential Carcinogenic Risks for the Swimmer Receptors (CTE) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

				Pote	ential Carcinogen	ic Risks				
Chemical of Potential Concern		Adult Swimmer		You	ng Child Swimme	er	Sum of Adult	Older	Child/Teen Sw	vimmer .
	Fringe Surface Sediment	Surface Water	Total	Fringe Surface Sediment	Surface Water	Total	and Child Swimmer	Fringe Surface Sediment	Surface Water	Total
Dioxin										
2,3,7,8-TCDD-TEQ	2E-08	9E-12	2E-08	2E-08	2E-11	2E-08	4E-08	2E-08	4E-11	2E-08
Metals										
Aluminum	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
Antimony	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
Arsenic	1E-08	4E-10	1E-08	1E-08	5E-10	1E-08	3E-08	2E-08	1E-09	2E-08
Cobalt	NA	NA	NC	NA	NA	NC	NC	NA	NA	NC
Cyanide	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
Manganese	NA	NA	NC	NA	NA	NC	NC	NA	NA	NC
Nickel	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
Thallium	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
Vanadium	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
PCBs										
Total PCBs	5E-09	6E-13	5E-09	3E-09	1E-12	3E-09	9E-09	6E-09	3E-12	6E-09
SVOCs		NCOPC								
Benzo(a)anthracene	3E-10	NCOPC	3E-10	9E-10	NCOPC	9E-10	1E-09	1E-09	NCOPC	1E-09
Benzo(a)pyrene	4E-09	NCOPC	4E-09	1E-08	NCOPC	1E-08	1E-08	1E-08	NCOPC	1E-08
Benzo(b)fluoranthene	5E-10	NCOPC	5E-10	2E-09	NCOPC	2E-09	2E-09	2E-09	NCOPC	2E-09
Benzo(k)fluoranthene	2E-11	NCOPC	2E-11	6E-11	NCOPC	6E-11	8E-11	6E-11	NCOPC	6E-11
Chrysene	5E-12	NCOPC	5E-12	1E-11	NCOPC	1E-11	2E-11	1E-11	NCOPC	1E-11
Dibenzo(a,h)anthracene	8E-10	NCOPC	8E-10	2E-09	NCOPC	2E-09	3E-09	2E-09	NCOPC	2E-09
Indeno(1,2,3-cd)pyrene	3E-10	NCOPC	3E-10	9E-10	NCOPC	9E-10	1E-09	9E-10	NCOPC	9E-10
Pesticides										
4,4'-DDT	NCOPC	7E-14	7E-14	NCOPC	2E-13	2E-13	2E-13	NCOPC	3E-13	3E-13
TPH					NCOPC					
Diesel Range Organics (C10-C20)	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
Diesel Range Organics (C10-C28)	NCOPC	NCOPC	NC	NCOPC	NCOPC	NC	NC	NCOPC	NCOPC	NC
Totals	4E-08	4E-10	4E-08	5E-08	5E-10	5E-08	9E-08	6E-08	1E-09	7E-08

Notes:

Values are presented to one significant figure.

NA - Not Applicable.

NC - Not Calculated.

NCOPC - Not a Chemical of Potential Concern in this media.

Table 6-24 Total Potential Hazard Index for the Swimmer Receptors (CTE) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

				Potential	Hazard Index				
Chemical of Potential Concern		Adult Swimmer		You	ng Child Swimme	r	Older (Child/Teen Sw	immer
	Fringe Surface Sediment	Surface Water	Total	Fringe Surface Sediment	Surface Water	Total	Fringe Surface Sediment	Surface Water	Total
Dioxin									
2,3,7,8-TCDD-TEQ	1E-03	7E-07	1E-03	7E-03	7E-06	7E-03	3E-03	5E-06	3E-03
Metals									
Aluminum	4E-05	NCOPC	4E-05	4E-04	NCOPC	4E-04	1E-04	NCOPC	1E-04
Antimony	3E-05	NCOPC	3E-05	3E-04	NCOPC	3E-04	8E-05	NCOPC	8E-05
Arsenic	2E-04	6E-06	2E-04	9E-04	4E-05	1E-03	4E-04	3E-05	5E-04
Cyanide	8E-06	NCOPC	8E-06	7E-05	NCOPC	7E-05	2E-05	NCOPC	2E-05
Cobalt	3E-04	5E-06	3E-04	3E-03	4E-05	3E-03	8E-04	3E-05	9E-04
Manganese	5E-05	2E-04	2E-04	5E-04	4E-04	8E-04	1E-04	4E-04	6E-04
Nickel	1E-05	NCOPC	1E-05	1E-04	NCOPC	1E-04	4E-05	NCOPC	4E-05
Thallium	1E-04	NCOPC	1E-04	1E-03	NCOPC	1E-03	4E-04	NCOPC	4E-04
Vanadium	1E-04	NCOPC	1E-04	9E-04	NCOPC	9E-04	3E-04	NCOPC	3E-04
PCBs									
Total PCBs	9E-04	5E-07	9E-04	3E-03	6E-06	3E-03	2E-03	4E-06	2E-03
SVOCs		NCOPC							
Benzo(a)anthracene	NA	NCOPC	NC	NA	NCOPC	NC	NA	NCOPC	NC
Benzo(a)pyrene	8E-05	NCOPC	8E-05	3E-04	NCOPC	3E-04	2E-04	NCOPC	2E-04
Benzo(b)fluoranthene	NA	NCOPC	NC	NA	NCOPC	NC	NA	NCOPC	NC
Benzo(k)fluoranthene	NA	NCOPC	NC	NA	NCOPC	NC	NA	NCOPC	NC
Chrysene	NA	NCOPC	NC	NA	NCOPC	NC	NA	NCOPC	NC
Dibenzo(a,h)anthracene	NA	NCOPC	NC	NA	NCOPC	NC	NA	NCOPC	NC
Indeno(1,2,3-cd)pyrene	NA	NCOPC	NC	NA	NCOPC	NC	NA	NCOPC	NC
Pesticides	NCOPC								
4,4'-DDT	NCOPC	3E-09	3E-09	NCOPC	3E-08	3E-08	NCOPC	2E-08	2E-08
TPH									
Diesel Range Organics (C10-C20)	5E-05	NCOPC	5E-05	5E-04	NCOPC	5E-04	2E-04	NCOPC	2E-04
Diesel Range Organics (C10-C28)	NCOPC	NCOPC	NC	NCOPC	NCOPC	NC	NCOPC	NCOPC	NC
			·						<u> </u>
Totals		2E-04	3E-03	2E-02	5E-04	2E-02	8E-03	5E-04	8E-03
Highest Target Endpoint Hazard Index (a)	1E-03	2E-04	1E-03	8E-03	4E-04	8E-03	3E-03	4E-04	3E-03

Notes:

Values are presented to one significant figure.

NA - Not Applicable.

NC - Not Calculated.

NCOPC - Not a Chemical of Potential Concern in this media.

Table 6-25 Total Potential Carcinogenic Risks for the Wader Receptors (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

				Pote	ential Carcinogen	ic Risks				
Chemical of Potential Concern		Adult Wader			Child Wader		Sum of Adult		Teen Wader	
	Fringe Surface Sediment	Surface Water	Total	Fringe Surface Sediment	Surface Water	Total	and Child Wader	Fringe Surface Sediment	Surface Water	Total
Dioxin										
2,3,7,8-TCDD-TEQ	8E-07	3E-07	1E-06	2E-06	5E-10	2E-06	3E-06	7E-07	4E-10	7E-07
Metals										
Aluminum	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
Antimony	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
Arsenic	2E-07	8E-09	2E-07	4E-07	1E-08	4E-07	6E-07	2E-07	8E-09	2E-07
Cobalt	NA	NA	NC	NA	NA	NC	NC	NA	NA	NC
Cyanide	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
Manganese	NA	NA	NC	NA	NA	NC	NC	NA	NA	NC
Nickel	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
Thallium	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
Vanadium	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
PCBs										
Total PCBs	9E-08	1E-08	9E-08	1E-07	2E-11	1E-07	2E-07	7E-08	2E-11	7E-08
SVOCs										
Benzo(a)anthracene	8E-09	NCOPC	8E-09	4E-08	NCOPC	4E-08	5E-08	2E-08	NCOPC	2E-08
Benzo(a)pyrene	5E-08	NCOPC	5E-08	3E-07	NCOPC	3E-07	3E-07	1E-07	NCOPC	1E-07
Benzo(b)fluoranthene	8E-09	NCOPC	8E-09	4E-08	NCOPC	4E-08	5E-08	1E-08	NCOPC	1E-08
Benzo(k)fluoranthene	3E-10	NCOPC	3E-10	1E-09	NCOPC	1E-09	2E-09	5E-10	NCOPC	5E-10
Chrysene	7E-11	NCOPC	7E-11	4E-10	NCOPC	4E-10	4E-10	1E-10	NCOPC	1E-10
Dibenzo(a,h)anthracene	1E-08	NCOPC	1E-08	6E-08	NCOPC	6E-08	8E-08	2E-08	NCOPC	2E-08
Indeno(1,2,3-cd)pyrene	4E-09	NCOPC	4E-09	2E-08	NCOPC	2E-08	3E-08	9E-09	NCOPC	9E-09
Pesticides										
4,4'-DDT	NCOPC	1E-09	1E-09	NCOPC	3E-12	3E-12	1E-09	NCOPC	3E-12	3E-12
TPH										
Diesel Range Organics (C10-C20)	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
Totals	1E-06	3E-07	2E-06	2E-06	4F 00	2E-06	4E-06	1E-06	9E-09	15.06
lotais	1E-06	3E-U/	∠E-U6	∠E-U0	1E-08	∠E-U0	4E-06	1E-06	9E-09	1E-06

Notes:

Values are presented to one significant figure.

NA - Not Applicable.

NC - Not Calculated.

NCOPC - Not a Chemical of Potential Concern in this media.

Table 6-26 Total Potential Hazard Index for the Wader Receptors (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

				Potential	Hazard Index				
Chemical of Potential Concern		Adult Wader			Child Wader			Teen Wader	
	Fringe Surface Sediment	Surface Water	Total	Fringe Surface Sediment	Surface Water	Total	Fringe Surface Sediment	Surface Water	Total
Dioxin									
2,3,7,8-TCDD-TEQ	3E-02	1E-02	4E-02	2E-01	6E-05	2E-01	5E-02	3E-05	5E-02
Metals									
Aluminum	5E-04	NCOPC	5E-04	5E-03	NCOPC	5E-03	1E-03	NCOPC	1E-03
Antimony	1E-03	NCOPC	1E-03	9E-03	NCOPC	9E-03	2E-03	NCOPC	2E-03
Arsenic	2E-03	6E-05	2E-03	1E-02	3E-04	1E-02	2E-03	1E-04	3E-03
Cobalt	3E-03	6E-05	3E-03	3E-02	3E-04	3E-02	6E-03	1E-04	6E-03
Cyanide	3E-04	NCOPC	3E-04	3E-03	NCOPC	3E-03	6E-04	NCOPC	6E-04
Manganese	6E-04	8E-04	1E-03	6E-03	2E-03	8E-03	1E-03	1E-03	2E-03
Nickel	2E-04	NCOPC	2E-04	2E-03	NCOPC	2E-03	3E-04	NCOPC	3E-04
Thallium	1E-03	NCOPC	1E-03	1E-02	NCOPC	1E-02	3E-03	NCOPC	3E-03
Vanadium	2E-03	NCOPC	2E-03	2E-02	NCOPC	2E-02	3E-03	NCOPC	3E-03
PCBs									
Total PCBs	7E-03	4E-03	1E-02	3E-02	3E-05	3E-02	1E-02	1E-05	1E-02
SVOCs									
Benzo(a)anthracene	NA	NCOPC	NC	NA	NCOPC	NC	NA	NCOPC	NC
Benzo(a)pyrene	6E-04	NCOPC	6E-04	3E-03	NCOPC	3E-03	8E-04	NCOPC	8E-04
Benzo(b)fluoranthene	NA	NCOPC	NC	NA	NCOPC	NC	NA	NCOPC	NC
Benzo(k)fluoranthene	NA	NCOPC	NC	NA	NCOPC	NC	NA	NCOPC	NC
Chrysene	NA	NCOPC	NC	NA	NCOPC	NC	NA	NCOPC	NC
Dibenzo(a,h)anthracene	NA	NCOPC	NC	NA	NCOPC	NC	NA	NCOPC	NC
Indeno(1,2,3-cd)pyrene	NA	NCOPC	NC	NA	NCOPC	NC	NA	NCOPC	NC
Pesticides									
4,4'-DDT	NCOPC	2E-05	2E-05	NCOPC	2E-07	2E-07	NCOPC	9E-08	9E-08
TPH						-			
Diesel Range Organics (C10-C20)	7E-04	NCOPC	7E-04	7E-03	NCOPC	7E-03	1E-03	NCOPC	1E-03
Totals	5E-02	2E-02	7E-02	3E-01	3E-03	3E-01	8E-02	1E-03	8E-02
Highest Target Endpoint Hazard Index (a)	3E-02	1E-02	4E-02	2E-01	2E-03	2E-01	5E-02	1E-03	5E-02

Notes:

Values are presented to one significant figure.

NA - Not Applicable.

NC - Not Calculated.

NCOPC - Not a Chemical of Potential Concern in this media.

Table 6-27 Total Potential Carcinogenic Risks for the Wader Receptors (CTE) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

				Pote	ential Carcinogen	ic Risks				
Chemical of Potential Concern		Adult Wader			Child Wader		Sum of Adult		Teen Wader	
	Fringe Surface Sediment	Surface Water	Total	Fringe Surface Sediment	Surface Water	Total	and Child Wader	Fringe Surface Sediment	Surface Water	Total
Dioxin										
2,3,7,8-TCDD-TEQ	5E-08	2E-11	5E-08	5E-08	2E-11	5E-08	1E-07	4E-08	2E-11	4E-08
Metals										
Aluminum	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
Antimony	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
Arsenic	3E-08	6E-10	4E-08	3E-08	5E-10	3E-08	7E-08	3E-08	6E-10	3E-08
Cobalt	NA	NA	NC	NA	NA	NC	NC	NA	NA	NC
Cyanide	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
Manganese	NA	NA	NC	NA	NA	NC	NC	NA	NA	NC
Nickel	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
Thallium	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
Vanadium	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
PCBs										
Total PCBs	1E-08	1E-12	1E-08	9E-09	1E-12	9E-09	2E-08	1E-08	1E-12	1E-08
SVOCs										
Benzo(a)anthracene	9E-10	NCOPC	9E-10	2E-09	NCOPC	2E-09	3E-09	2E-09	NCOPC	2E-09
Benzo(a)pyrene	1E-08	NCOPC	1E-08	3E-08	NCOPC	3E-08	4E-08	2E-08	NCOPC	2E-08
Benzo(b)fluoranthene	1E-09	NCOPC	1E-09	4E-09	NCOPC	4E-09	5E-09	3E-09	NCOPC	3E-09
Benzo(k)fluoranthene	5E-11	NCOPC	5E-11	1E-10	NCOPC	1E-10	2E-10	1E-10	NCOPC	1E-10
Chrysene	1E-11	NCOPC	1E-11	4E-11	NCOPC	4E-11	5E-11	2E-11	NCOPC	2E-11
Dibenzo(a,h)anthracene	2E-09	NCOPC	2E-09	6E-09	NCOPC	6E-09	8E-09	4E-09	NCOPC	4E-09
Indeno(1,2,3-cd)pyrene	8E-10	NCOPC	8E-10	2E-09	NCOPC	2E-09	3E-09	2E-09	NCOPC	2E-09
Pesticides										
4,4'-DDT	NCOPC	1E-13	1E-13	NCOPC	1E-13	1E-13	3E-13	NCOPC	2E-13	2E-13
TPH										
Diesel Range Organics (C10-C20)	NA	NCOPC	NC	NA	NCOPC	NC	NC	NA	NCOPC	NC
Totals	1E-07	6E-10	1E-07	1E-07	5E-10	1E-07	2E-07	1E-07	6E-10	1E-07

Notes:

Values are presented to one significant figure.

NA - Not Applicable.

NC - Not Calculated.

NCOPC - Not a Chemical of Potential Concern in this media.

Table 6-28 Total Potential Hazard Index for the Wader Receptors (CTE) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

				Potential	Hazard Index				
Chemical of Potential Concern		Adult Wader			Child Wader			Teen Wader	
	Fringe Surface Sediment	Surface Water	Total	Fringe Surface Sediment	Surface Water	Total	Fringe Surface Sediment	Surface Water	Total
Dioxin									
2,3,7,8-TCDD-TEQ	4E-03	1E-06	4E-03	2E-02	6E-06	2E-02	5E-03	3E-06	5E-03
Metals									
Aluminum	1E-04	NCOPC	1E-04	1E-03	NCOPC	1E-03	2E-04	NCOPC	2E-04
Antimony	7E-05	NCOPC	7E-05	7E-04	NCOPC	7E-04	1E-04	NCOPC	1E-04
Arsenic	5E-04	9E-06	5E-04	2E-03	4E-05	2E-03	7E-04	2E-05	8E-04
Cyanide	2E-05	NCOPC	2E-05	2E-04	NCOPC	2E-04	4E-05	NCOPC	4E-05
Cobalt	7E-04	9E-06	8E-04	7E-03	4E-05	7E-03	1E-03	2E-05	1E-03
Manganese	1E-04	2E-04	3E-04	1E-03	5E-04	2E-03	2E-04	3E-04	5E-04
Nickel	4E-05	NCOPC	4E-05	4E-04	NCOPC	4E-04	7E-05	NCOPC	7E-05
Thallium	3E-04	NCOPC	3E-04	3E-03	NCOPC	3E-03	6E-04	NCOPC	6E-04
Vanadium	3E-04	NCOPC	3E-04	2E-03	NCOPC	2E-03	5E-04	NCOPC	5E-04
PCBs									
Total PCBs	2E-03	1E-06	2E-03	8E-03	5E-06	8E-03	3E-03	2E-06	3E-03
SVOCs									
Benzo(a)anthracene	NA	NCOPC	NC	NA	NCOPC	NC	NA	NCOPC	NC
Benzo(a)pyrene	2E-04	NCOPC	2E-04	8E-04	NCOPC	8E-04	3E-04	NCOPC	3E-04
Benzo(b)fluoranthene	NA	NCOPC	NC	NA	NCOPC	NC	NA	NCOPC	NC
Benzo(k)fluoranthene	NA	NCOPC	NC	NA	NCOPC	NC	NA	NCOPC	NC
Chrysene	NA	NCOPC	NC	NA	NCOPC	NC	NA	NCOPC	NC
Dibenzo(a,h)anthracene	NA	NCOPC	NC	NA	NCOPC	NC	NA	NCOPC	NC
Indeno(1,2,3-cd)pyrene	NA	NCOPC	NC	NA	NCOPC	NC	NA	NCOPC	NC
Pesticides									
4,4'-DDT	NCOPC	6E-09	6E-09	NCOPC	3E-08	3E-08	NCOPC	1E-08	1E-08
ТРН									
Diesel Range Organics (C10-C20)	1E-04	NCOPC	1E-04	1E-03	NCOPC	1E-03	3E-04	NCOPC	3E-04
Totals	9E-03	2E-04	9E-03	5E-02	6E-04	5E-02	1E-02	3E-04	1E-02
Highest Target Endpoint Hazard Index (a)	4E-03	2E-04	4E-03	2E-02	5E-04	2E-02	6E-03	3E-04	6E-03

Notes:

Values are presented to one significant figure.

NA - Not Applicable.

NC - Not Calculated.

NCOPC - Not a Chemical of Potential Concern in this media.

Table 6-29 Total Potential Carcinogenic Risks for the Shoreline Worker Receptor (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

	Potenti	al Carcinogenic Ri	sks
Chemical of Potential Concern	s	horeline Worker	
	Fringe Surface Sediment	Surface Water	Total
Dioxin	05.00	75.07	05.00
2,3,7,8-TCDD-TEQ	2E-06	7E-07	3E-06
Metals	N/A	NCODO	NO
Aluminum	NA NA	NCOPC	NC
Antimony	NA 05.05	NCOPC	NC
Arsenic	6E-07	2E-08	6E-07
Cobalt	NA	NA	NC
Cyanide	NA	NCOPC	NC
Manganese	NA	NA	NC
Nickel	NA	NCOPC	NC
Thallium	NA	NCOPC	NC
Vanadium	NA	NCOPC	NC
Pesticides			
4,4'-DDT	NCOPC	3E-09	3E-09
PCBs			
Total PCBs	2E-07	2E-08	2E-07
SVOCs			
Benzo(a)anthracene	2E-08	NCOPC	2E-08
Benzo(a)pyrene	1E-07	NCOPC	1E-07
Benzo(b)fluoranthene	2E-08	NCOPC	2E-08
Benzo(k)fluoranthene	6E-10	NCOPC	6E-10
Chrysene	1E-10	NCOPC	1E-10
Dibenzo(a,h)anthracene	3E-08	NCOPC	3E-08
Indeno(1,2,3-cd)pyrene	1E-08	NCOPC	1E-08
TPH			
Diesel Range Organics (C10-C20)	NA	NCOPC	NC
Totals	3E-06	8E-07	4E-06

Notes

Values are presented to one significant figure.

NA - Not Applicable.

NC - Not Calculated.

NCOPC - Not a Chemical of Potential Concern in this media.

Table 6-30 Total Potential Hazard Index for the Shoreline Receptor (RME) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

		Potential Hazard Index	
Chemical of Potential Concern		Shoreline Worker	
	Fringe Surface Sediment	Surface Water	Total
n			
Dioxin	7E-02	2E-02	9E-02
2,3,7,8-TCDD-TEQ Metals	7E-02	2E-02	9E-02
Metals Aluminum	2E-03	NCOPC	2E-03
Antimony	2E-03 3E-03	NCOPC	2E-03 3E-03
		1E-04	
Arsenic Cobalt	3E-03 9E-03	9E-05	4E-03 9E-03
Cyanide	9E-03 9E-04	NCOPC	9E-03 9E-04
7	9E-04 2E-03	2E-03	9E-04 4E-03
Manganese Nickel	2E-03 5E-04	NCOPC	4E-03 5E-04
Thallium	4E-03	NCOPC	4E-03
Vanadium	4E-03 5E-03	NCOPC	4E-03 5E-03
	5E-03	NCOPC	DE-U3
Pesticides	- Hoops		
4,4'-DDT	NCOPC	5E-05	5E-05
PCBs	15.00	25.00	05.00
Total PCBs	1E-02	8E-03	2E-02
SVOCs		Noono	110
Benzo(a)anthracene	NA 15.00	NCOPC	NC 15.00
Benzo(a)pyrene	1E-03	NCOPC	1E-03
Benzo(b)fluoranthene	NA NA	NCOPC	NC
Benzo(k)fluoranthene	NA NA	NCOPC	NC NC
Chrysene	NA NA	NCOPC	NC NC
Dibenzo(a,h)anthracene	NA NA	NCOPC	NC
Indeno(1,2,3-cd)pyrene	NA	NCOPC	NC NC
TPH	25.00	Noono	NC
Diesel Range Organics (C10-C20)	2E-03	NCOPC	2E-03
Totals	1E-01	3E-02	1E-01
	7E-01	3E-02 2E-02	1E-01 9E-02
Highest Target Endpoint Hazard Index (a)	/E-U2	ZE-UZ	9E-U2

Notoo

Values are presented to one significant figure.

NA - Not Applicable.

NC - Not Calculated.

NCOPC - Not a Chemical of Potential Concern in this media.

(a) See Attachment H...

Table 6-31 Total Potential Carcinogenic Risks for the Shoreline Worker Receptor (CTE) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Chemical of Potential Concern Dioxin 2,3,7,8-TCDD-TEQ	Fringe Surface Sediment	horeline Worker	
		Surface Water	
		Surface Water	Total
2,3,1,0-10DD-1EQ	6E-08	2E-11	6E-08
Metals	0E-00	ZE-11	0E-00
Aluminum	NA	NCOPC	NC
Antimony	NA NA	NCOPC	NC NC
Arsenic	4E-08	7E-10	4E-08
Cobalt	NA	NA NA	NC
Cyanide	NA NA	NCOPC	NC
Manganese	NA NA	NA NA	NC
Nickel	NA NA	NCOPC	NC
Thallium	NA NA	NCOPC	NC
Vanadium	NA	NCOPC	NC
Pesticides	1		
4,4'-DDT	NCOPC	1E-13	1E-13
PCBs			
Total PCBs	1E-08	1E-12	1E-08
SVOCs			
Benzo(a)anthracene	9E-10	NCOPC	9E-10
Benzo(a)pyrene	1E-08	NCOPC	1E-08
Benzo(b)fluoranthene	1E-09	NCOPC	1E-09
Benzo(k)fluoranthene	5E-11	NCOPC	5E-11
Chrysene	1E-11	NCOPC	1E-11
Dibenzo(a,h)anthracene	2E-09	NCOPC	2E-09
Indeno(1,2,3-cd)pyrene	9E-10	NCOPC	9E-10
TPH			·
Diesel Range Organics (C10-C20)	NA	NCOPC	NC
Totals	1E-07	7E-10	1E-07

Notes:

Values are presented to one significant figure.

NA - Not Applicable.

NC - Not Calculated.

NCOPC - Not a Chemical of Potential Concern in this media.

Table 6-32 Total Potential Hazard Index for the Shoreline Worker Receptor (CTE) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

		Potential Hazard Index	
Chemical of Potential Concern		Shoreline Worker	
	Fringe Surface Sediment	Surface Water	Total
Dioxin	==	05.00	
2,3,7,8-TCDD-TEQ	7E-03	2E-06	7E-03
Metals	25.04	NOODO	25.04
Aluminum	3E-04 2E-04	NCOPC NCOPC	3E-04 2E-04
Antimony	1E-03	2E-05	
Arsenic Cobalt	2E-03	2E-05 2E-05	1E-03 2E-03
Cvanide	2E-03 6E-05	NCOPC	2E-03 6E-05
	6E-05 4E-04		
Manganese	4E-04 1E-04	5E-04 NCOPC	8E-04 1E-04
Nickel Thallium	9E-04	NCOPC	9E-04
Vanadium	9E-04	NCOPC	9⊑-04
Pesticides			
4,4'-DDT	NCOPC	9E-09	9E-09
PCBs			
Total PCBs	4E-03	2E-06	4E-03
SVOCs			
Benzo(a)anthracene	NA 25.24	NCOPC	NC
Benzo(a)pyrene	3E-04	NCOPC	3E-04
Benzo(b)fluoranthene	NA NA	NCOPC	NC
Benzo(k)fluoranthene	NA NA	NCOPC	NC
Chrysene	NA NA	NCOPC	NC NC
Dibenzo(a,h)anthracene	NA NA	NCOPC	NC NC
Indeno(1,2,3-cd)pyrene	NA	NCOPC	NC
TPH	45.04	NOODO	NC 45.04
Diesel Range Organics (C10-C20)	4E-04	NCOPC	4E-04
Totals	2E-02	5E-04	2E-02
Highest Target Endpoint Hazard Index (a)	8E-03	5E-04	8E-03
inghest ranget Enuponit Hazaru index (a)	JI 0L-03	JL-04	0L-03

Notes:

Values are presented to one significant figure.

NA - Not Applicable. NC - Not Calculated.

NCOPC - Not a Chemical of Potential Concern in this media.

Table 7-1
Comparison of PCB Congener Results to PCB Aroclor Results for Soil
Benning Road Facility RI/FS Project
3400 Benning Rd, N.E., Washington DC 20019

Sample Area	Sample Location	Sample ID	Sample Date	Task Code	Surface or Subsurface	Start Depth (feet)	End Depth (feet)	Total Congeners (mg/kg)	Total Aroclors (mg/kg)	Ratio of Total Congener to Total Aroclor
Anacostia Park Property	KMY-DU01	SUSNPSMI0100N	4/12/2017	WP#3-2017	Surface	0	1	0.11	0.031	3.5
Anacostia Park Property	KMY-DU02	SUSNPSMI0200N	4/12/2017	WP#3-2017	Surface	0	1	0.25	0.083	3.0
Anacostia Park Property	KMY-DU03	SUSNPSMI0300N	4/13/2017	WP#3-2017	Surface	0	1	0.11	0.054	2.0
Maintenance	SUSDP15	DPS15F10-15N	2/2/2017	WP#3-2017	Subsurface	10	15	2.2	Not detected	
Maintenance	SUSDP15	DPS15F05-10N	2/2/2017	WP#3-2017	Subsurface	5	10	0.58	0.16	3.6
Maintenance	SUSDP15	DPS15F01N	1/30/2017	WP#3-2017	Subsurface	1	2	1.9	1.3	1.5
Maintenance	SUSDP15	DPS1510N	6/6/2013	Phase2-2013	Subsurface	9.5	10.5	1.18	1.1	1.1
Maintenance	SUSDP48	SUS48F00N	1/26/2017	WP#3-2017	Surface	0	1	1.8	2	0.9
Maintenance	SUSDP48	DPS48F05-10N	1/27/2017	WP#3-2017	Subsurface	5	10	0.29	0.23	1.3
Salvage	SUSDP10	SUS1000N	2/5/2013	Phase1-2013	Surface	0.5	1	4.71	1	4.7
Salvage	SUSDP12	SUS1200N	2/6/2013	Phase1-2013	Surface	0	1	5.18	2.9	1.8
Salvage	SUSDP12	DPS12F02-05N	1/26/2017	WP#3-2017	Subsurface	2	5	2	1.1	1.8
Salvage	SUSDP43	SUS43F00N	1/26/2017	WP#3-2017	Surface	0	1	3.3	2.7	1.2
Salvage	SUSDP43	DPS43F05-10N	1/30/2017	WP#3-2017	Subsurface	5	10	0.71	0.27	2.6
Salvage	SUSDP43	DPS43F02-05N	1/26/2017	WP#3-2017	Subsurface	2	5	3.3	1.4	2.4
Salvage	SUSDP44	DPS44F01N	1/27/2017	WP#3-2017	Subsurface	2.5	3.5	6.8	4.6	1.5
Salvage	SUSDP44	DPS4403N	5/21/2013	Phase2-2013	Subsurface	2.5	3.5	2.39	3.1	0.8
Substation #7	SUSDP20	SUS2000N	2/7/2013	Phase1-2013	Surface	0.42	1	6.45	5.1	1.3
Transformer Shop	SUSDP21	SUS2100N	2/7/2013	Phase1-2013	Surface (a)	1	1.75	4.84	7.2	0.7
Transformer Shop	SUSDP21	DPS21F01N	1/27/2017	WP#3-2017	Subsurface	1	2	1.3	1	1.3
Transformer Shop	SUSDP21-3G	SUS213G00N	8/28/2017	WP#3-2017	Surface	0	1	520000	8800	59.1
Transformer Shop	SUSDP21-3M	SUS213M00N	8/28/2017	WP#3-2017	Surface	0	1	4600	130	35.4
Vehicle Refueling	SUSDP39	DPS39F01N	1/25/2017	WP#3-2017	Subsurface	1	2	0.12	0.11	1.1
Warehouse	SUSDP04	DPS04F02-05N	1/25/2017	WP#3-2017	Subsurface	2	5	7.1	4.8	1.5
Warehouse	SUSDP05	SUS0500N	2/4/2013	Phase1-2013	Surface	0	1	9.56	5.7	1.7
Warehouse	SUSDP05	DPS0515N	5/21/2013	Phase2-2013	Subsurface	14.5	15.5	0.11	0.19	0.6
Warehouse	SUSDP06	SUS0600N	2/5/2013	Phase1-2013	Surface	0	1	4.22	1.9	2.2
Warehouse	SUSDP08	SUS0800N	2/5/2013	Phase1-2013	Surface	0	1	1.24	0.84	1.5
Warehouse	SUSDP08	DPS08F05-10N	1/24/2017	WP#3-2017	Subsurface	5	10	0.045	0.14	0.3
Warehouse	SUSDP08	DPS08F01N	1/24/2017	WP#3-2017	Subsurface	1	2	0.79	0.97	0.8
Warehouse	SUSDP11	DPS11F01N	1/25/2017	WP#3-2017	Subsurface	1	2	15	11	1.4

Notes:

Soil samples collected at depths greater than 16 feet bgs were not included in the BHHRA data set.

PCB - Polychlorinated Biphenyl.

(a) Sample collected beneath an obstruction (e.g., concrete or pavement). Sample depth measured from top of slab. Sample was collected immediately below slab and is therefore considered surface soil for potential future exposures.

Exposure Areas:

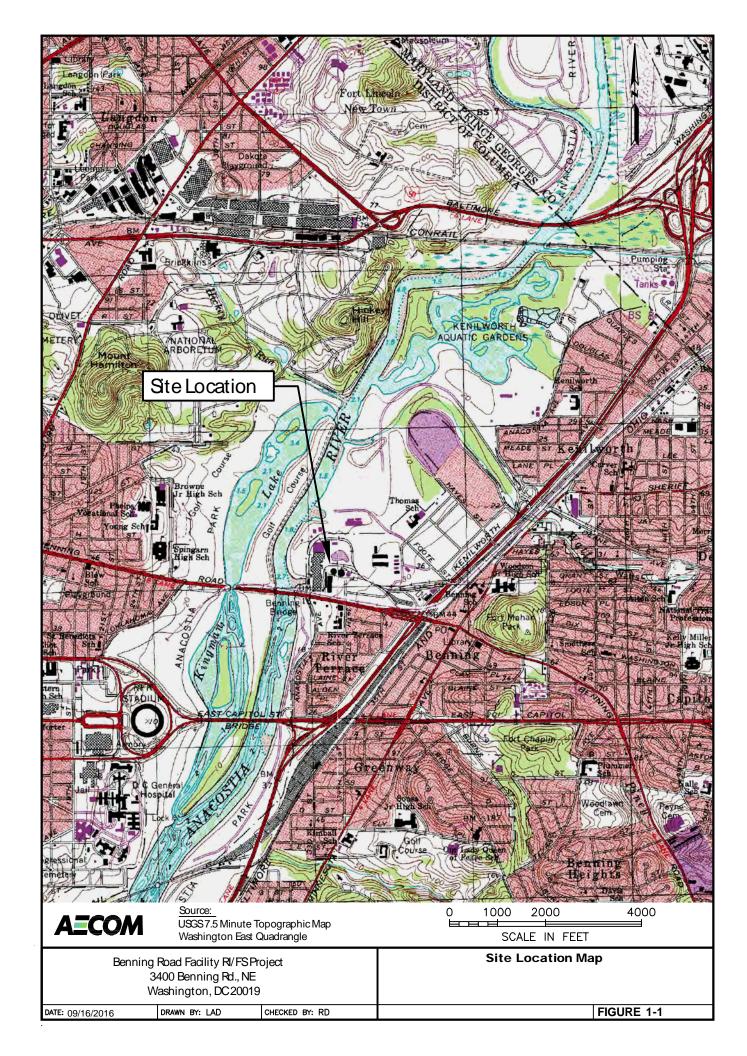
Maintenance: Stores and Fleet Maintenance Area Salvage: Salvage Yard and Waste Storage Area

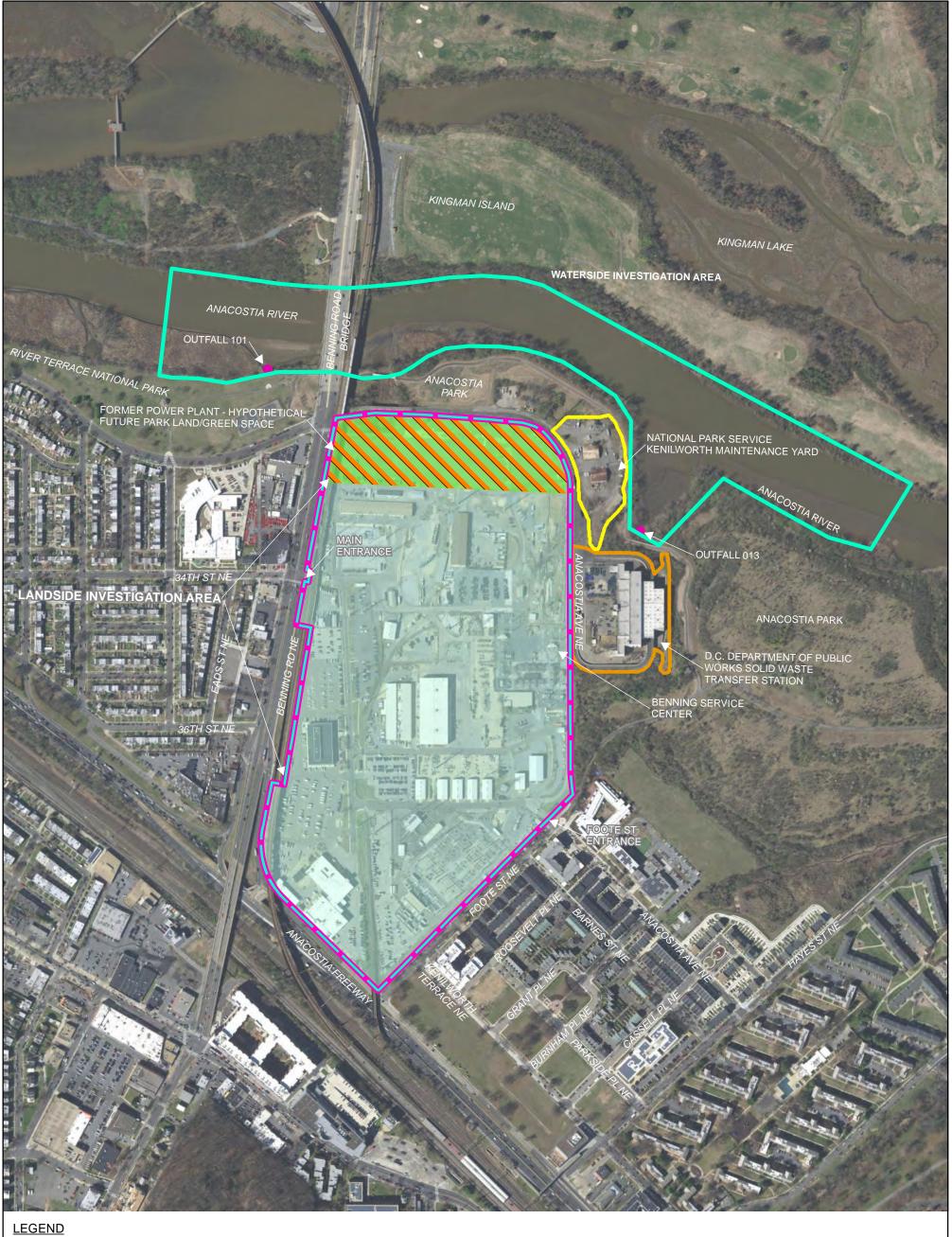
Substation #7: Substation #7
Transformer Shop: Transformer Shop
Vehicle Refueling: Vehicle Refueling Area
Warehouse: Warehouse and Laydown Area

	Summary Statistics												
Minimum	0.045	0.03	0.3										
Maximum	520000	8800	59.1										
Mean	16925	300	4.7										
Median	2	1.20	1.5										

Table 7-2
Comparison of PCB Congener Results to PCB Aroclor Results for Fringe Surface Sediment
Benning Road Facility RI/FS Project
3400 Benning Rd, N.E., Washington DC 20019

Sample Area	Sample Location	Sample ID	Sample Date	Task Code	Start Depth (feet)	End Depth (feet)	Total Congeners (mg/kg)	Total Aroclors (mg/kg)	Ratio of Total Congener to Total Aroclor
Waterside	R5-03	RI-R5-03-SS	7/25/2014	DOEE_Phase1	0	0.5	0.16	0.097	1.6
Waterside	R5-05	RI-R5-05-SS	7/30/2014	DOEE_Phase1	0	0.5	0.24	0.11	2.2
Waterside	R6-04	RI-R6-04-SS	7/28/2014	DOEE_Phase1	0	0.5	3.71	0.98	3.8
Waterside	R6-05	RI-R6-05-SS	8/4/2014	DOEE_Phase1	0	0.5	1.3	1.4	0.9
Waterside	R6-06	RI-R6-06-SS	8/4/2014	DOEE_Phase1	0	0.5	0.13	0.0845	1.5
Waterside	R6-18	RI-R6-18-SS	4/30/2015	DOEE_Phase1	0	0.5	0.19	0.088	2.2
Waterside	R6-21	RI-R6-21-SS	4/29/2015	DOEE_Phase1	0	0.5	0.96	0.42	2.3
Waterside	R6-22	RI-R6-22-SS	4/30/2015	DOEE_Phase1	0	0.5	0.19	0.089	2.1
Waterside	R6-23	RI-R6-23-SS	4/30/2015	DOEE_Phase1	0	0.5	0.15	0.066	2.3
Waterside	SED1.5C	SED1.5C00AN	6/21/2017	WP#3-2017 Waterside	0	0.33	0.18	0.087	2.1
Waterside	SED6.5E	SED6.5E00EN	6/8/2017	WP#3-2017 Waterside	0	0.33	0.76	0.25	3.0
Waterside	SED7.5E	SED7.5E00EN	6/8/2017	WP#3-2017 Waterside	0	0.33	1.4	0.78	1.8
Waterside	SED7.5E	SED7.5E00N	11/25/2013	Phase2-2013	0	0.5	11.8	1.9	6.2
Waterside	SED7E	SED7E00EN	6/8/2017	WP#3-2017 Waterside	0	0.33	0.98	0.63	1.6
Waterside	SED7F	SED7F00EN	6/8/2017	WP#3-2017 Waterside	0	0.33	1	0.3	3.3
Waterside	SED9.5B	SED9.5B00N	11/11/2013	Phase2-2013	0	0.5	0.17	0.38	0.4


Notes:


PCB - Polychlorinated Biphenyl.

T	Summary Statistics													
I	Minimum	0.1279	0.066	0.45										
Г	Maximum	11.8	1.9	6.2										
I	Mean	1	0.5	2.3										
I	Median	0.5	0.275	2.1										

Figures

INVESTIGATION

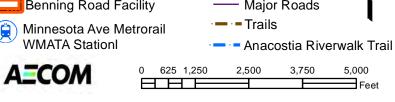
BENNING ROAD FACILITY PROPERTY

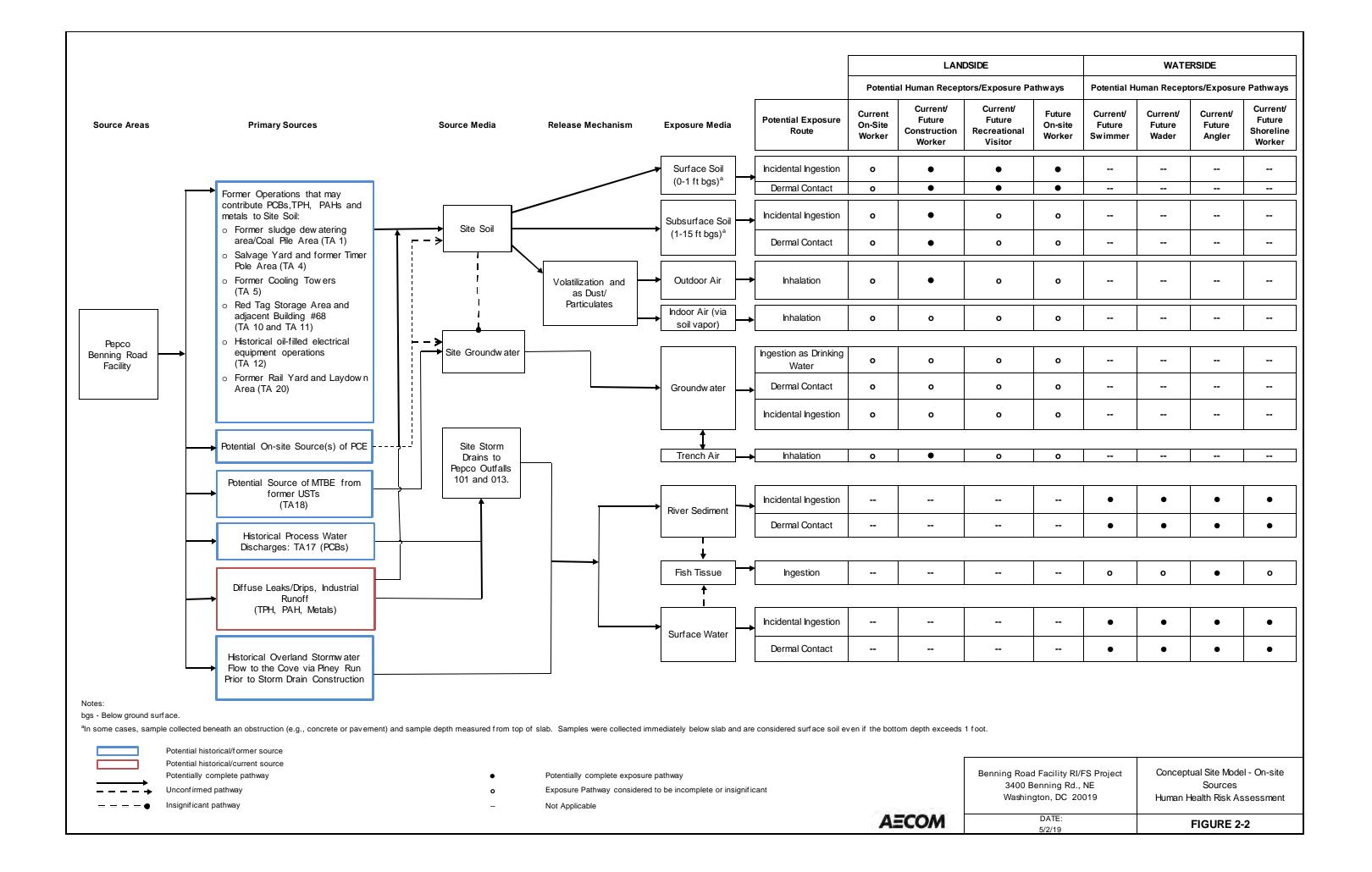
BENNING SERVICE CENTER

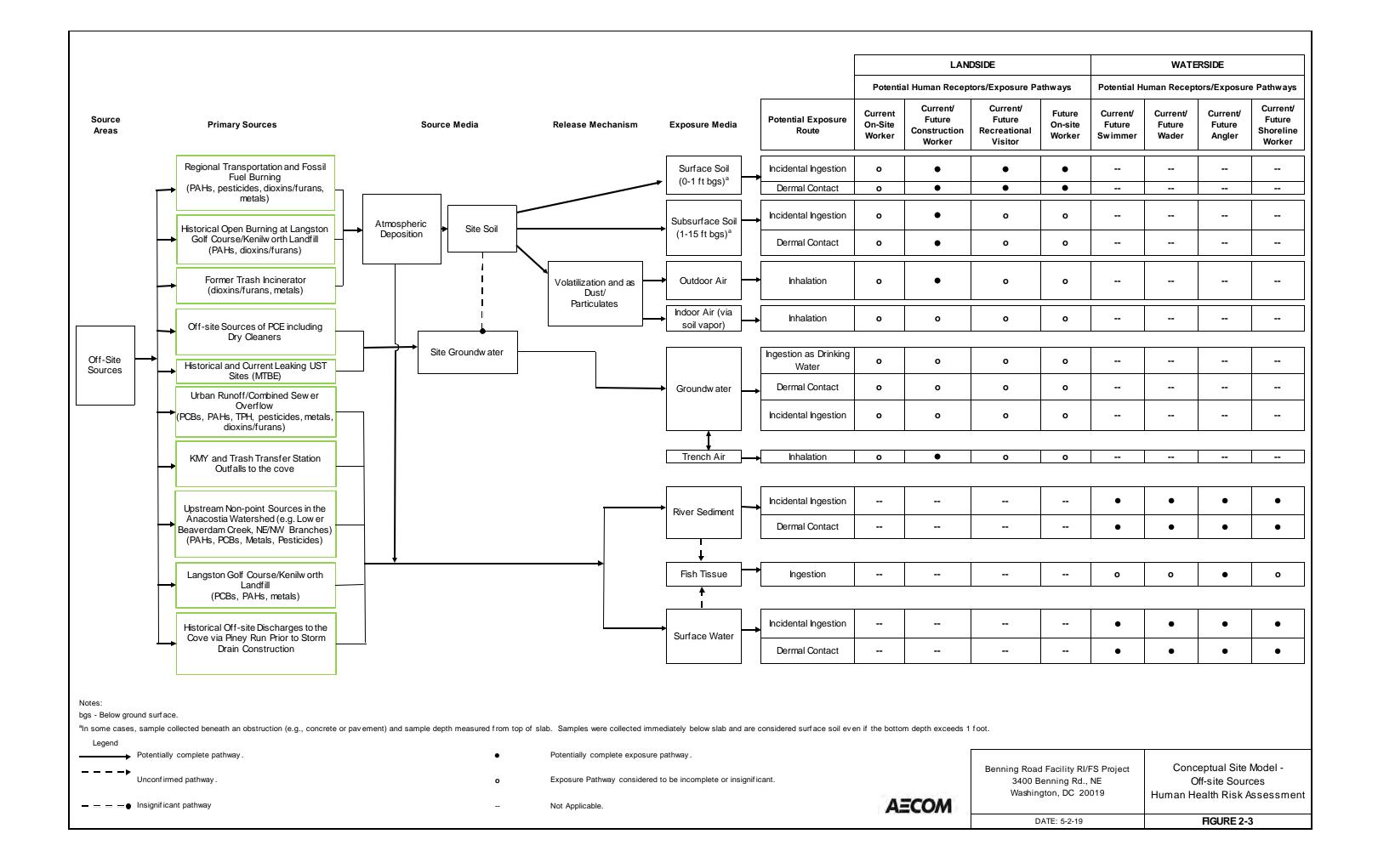
FORMER POWER PLANT - HYPOTHETICAL FUTURE PARK LAND/GREEN SPACE

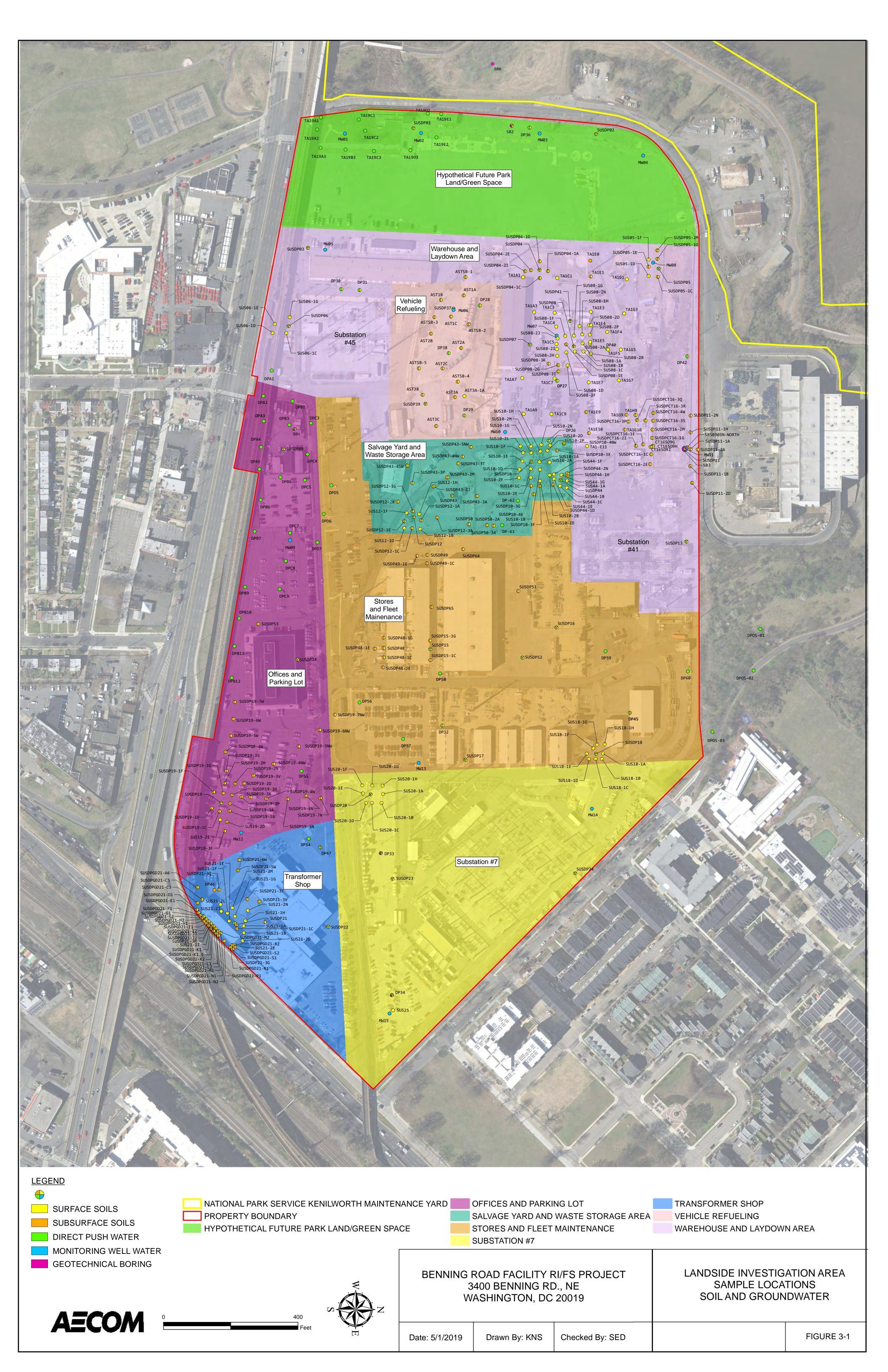
D.C. SOLID WASTE TRANSFER

NATIONAL PARK SERVICE KENILWORTH MAINTENANCE YARD




BENNING ROAD FACILITY RI/FS PROJECT 3400 BENNING RD., NE WASHINGTON, DC 20019


SITE PLAN AND INVESTIGATION AREAS

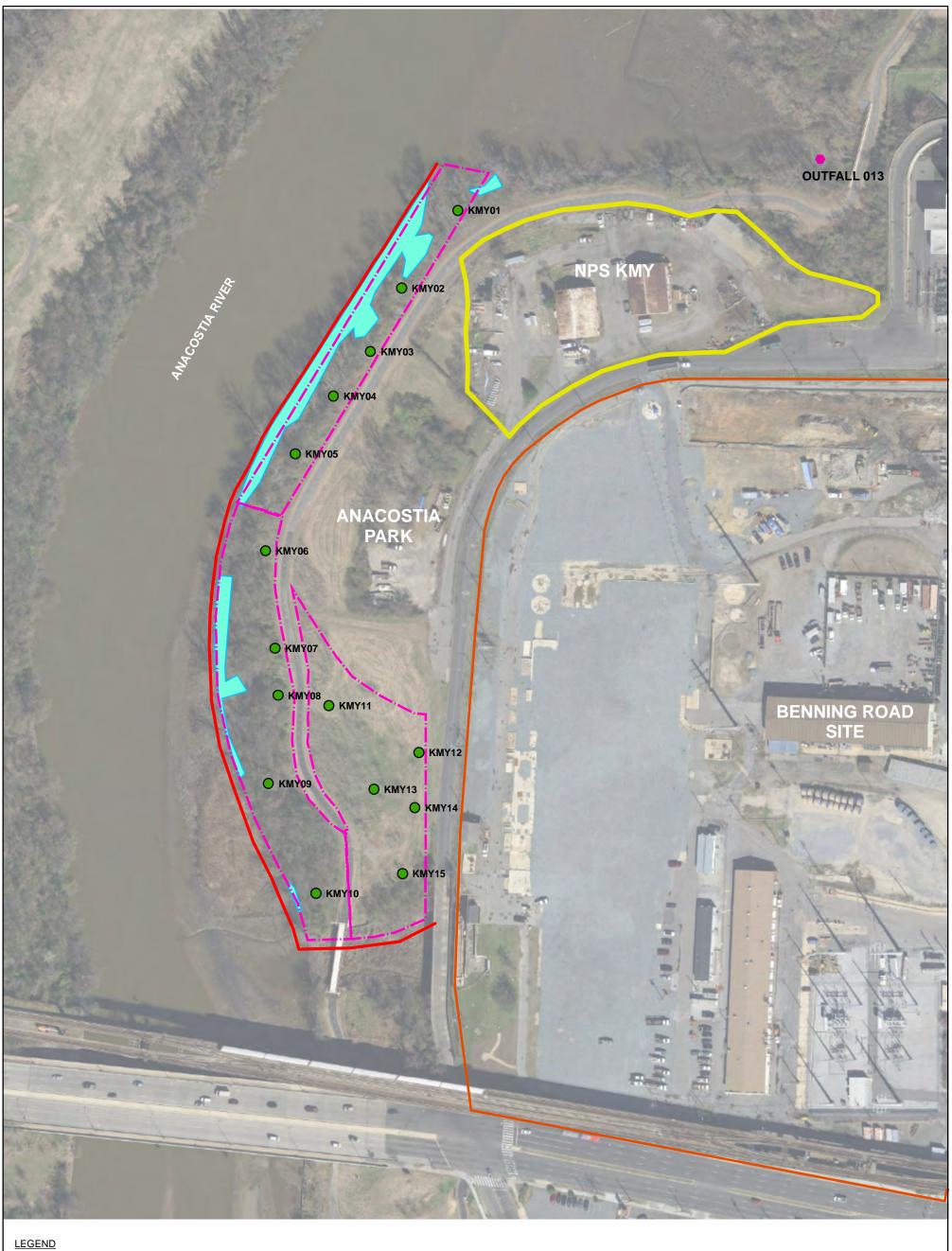

Date: 5/1/2019 Drawn By: KNS Checked By: SED FIGURE 1-2

340	oad Facility R 0 Benning Ro hington, DC	•	Land Use Along the Anacostia River
03/19/2015	CMH		FIGURE 2-1

- Geotechnical Soil Boring Location
- Surface Soil Sample Location (Approximate)
- Decision Unit Boundary
 - Proposed 1967 Dredge Spoils Area

Benning Road Facility Property Boundary

Approximate Location of Sea Wall


BENNING ROAD FACILITY RI/FS PROJECT 3400 BENNING RD., NE WASHINGTON, DC 20019

ANACOSTIA PARK INCREMENTAL SOIL SAMPLE LOCATIONS

Soil Sample Location

Approximate Location of Sea Wall

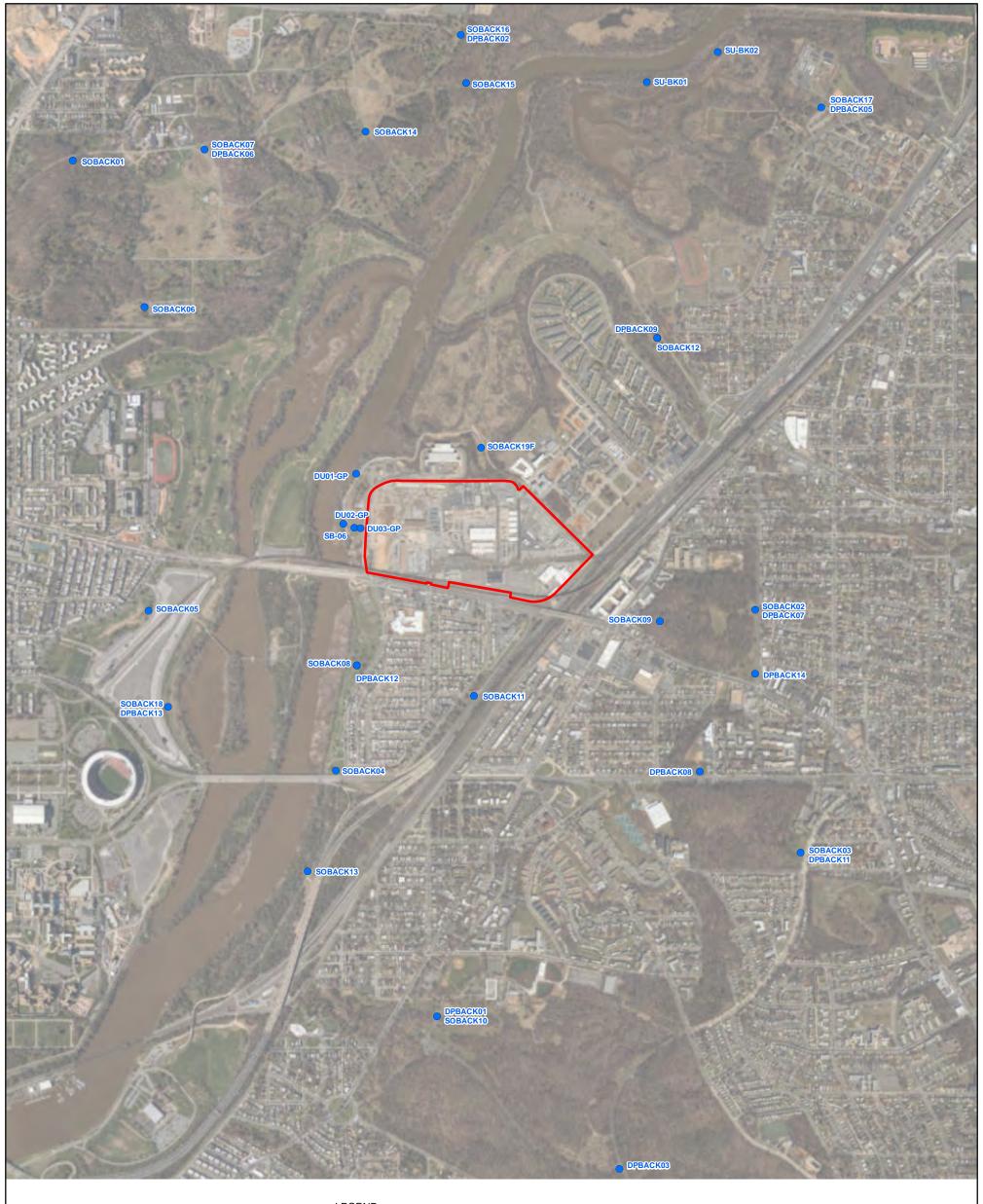
National Park Service Property Boundary

Benning Road Facility Property Boundary

Decision Unit Boundary

Wetland

BENNING ROAD FACILITY RI/FS PROJECT 3400 BENNING RD., NE WASHINGTON, DC 20019

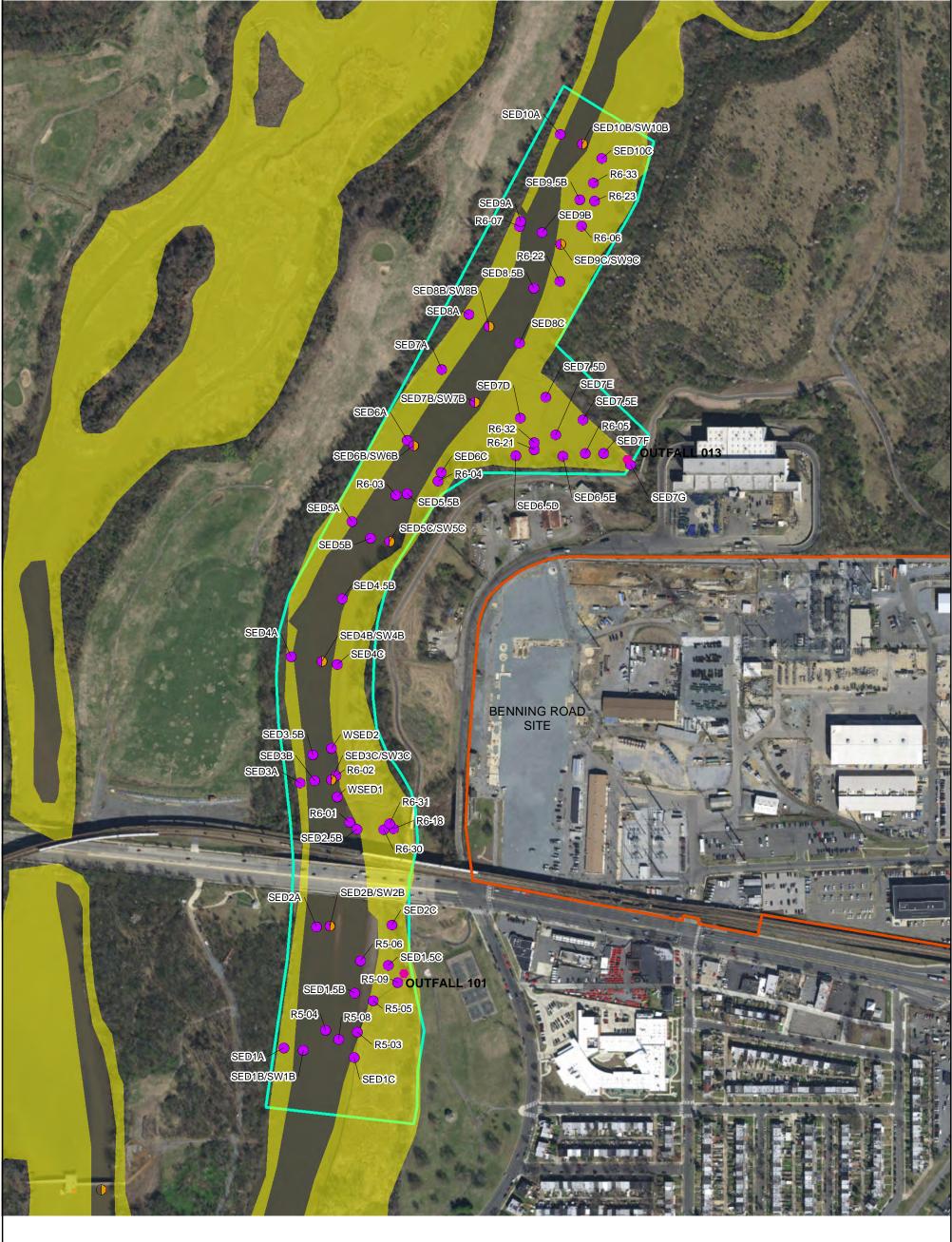

ANACOSTIA PARK SURFACE SOIL SAMPLE LOCATIONS

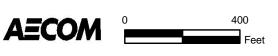
Date: 10/18/2018

Drawn By: KNS

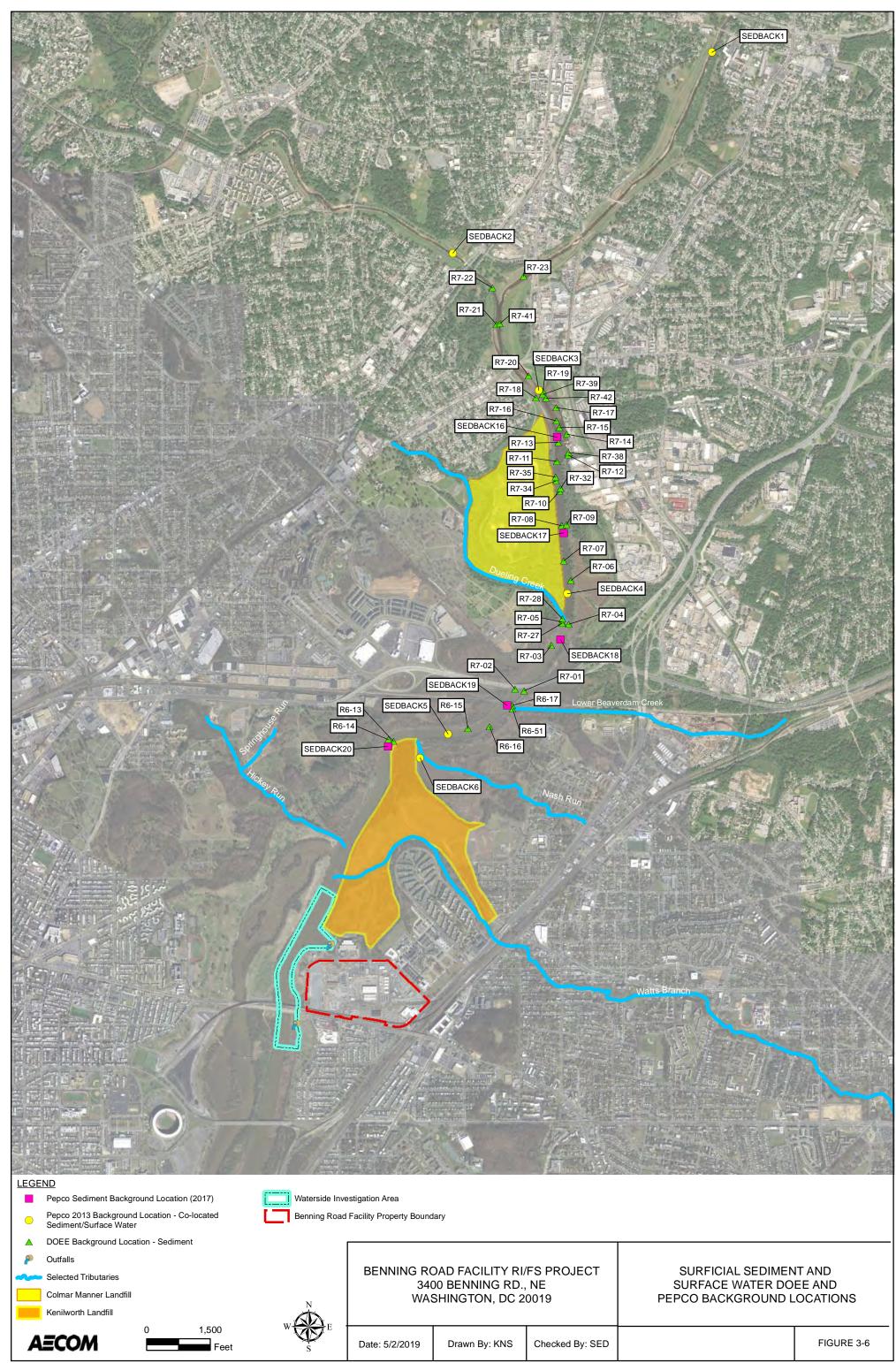
Checked By: SED

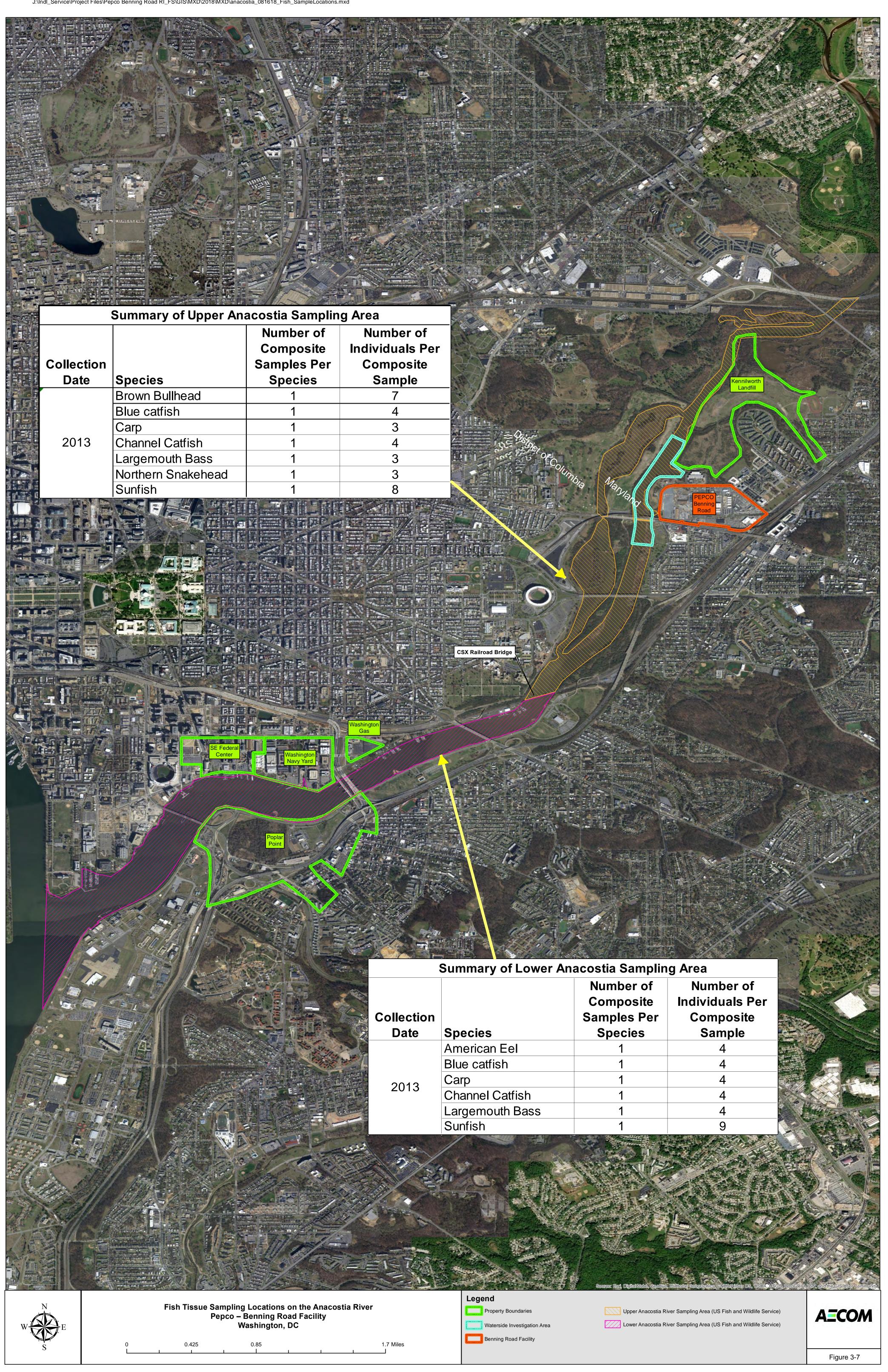
FIGURE 3-3





- Outfalls
- Surface Sediment Sampling Location
- Surface Water Sampling Location
- Digitized Fringe Sediment Low Tide Minus 1 Foot
- Waterside Investigation Area
- Benning Road Facility Property Boundary


BENNING ROAD FACILITY RI/FS PROJECT 3400 BENNING RD., NE WASHINGTON, DC 20019 FRINGE SURFACE SEDIMENT AND SURFACE WATER LOCATIONS LOW TIDE MINUS ONE FOOT


Date: 9/17/2018

Drawn By: KNS

Checked By: SED

FIGURE 3-5

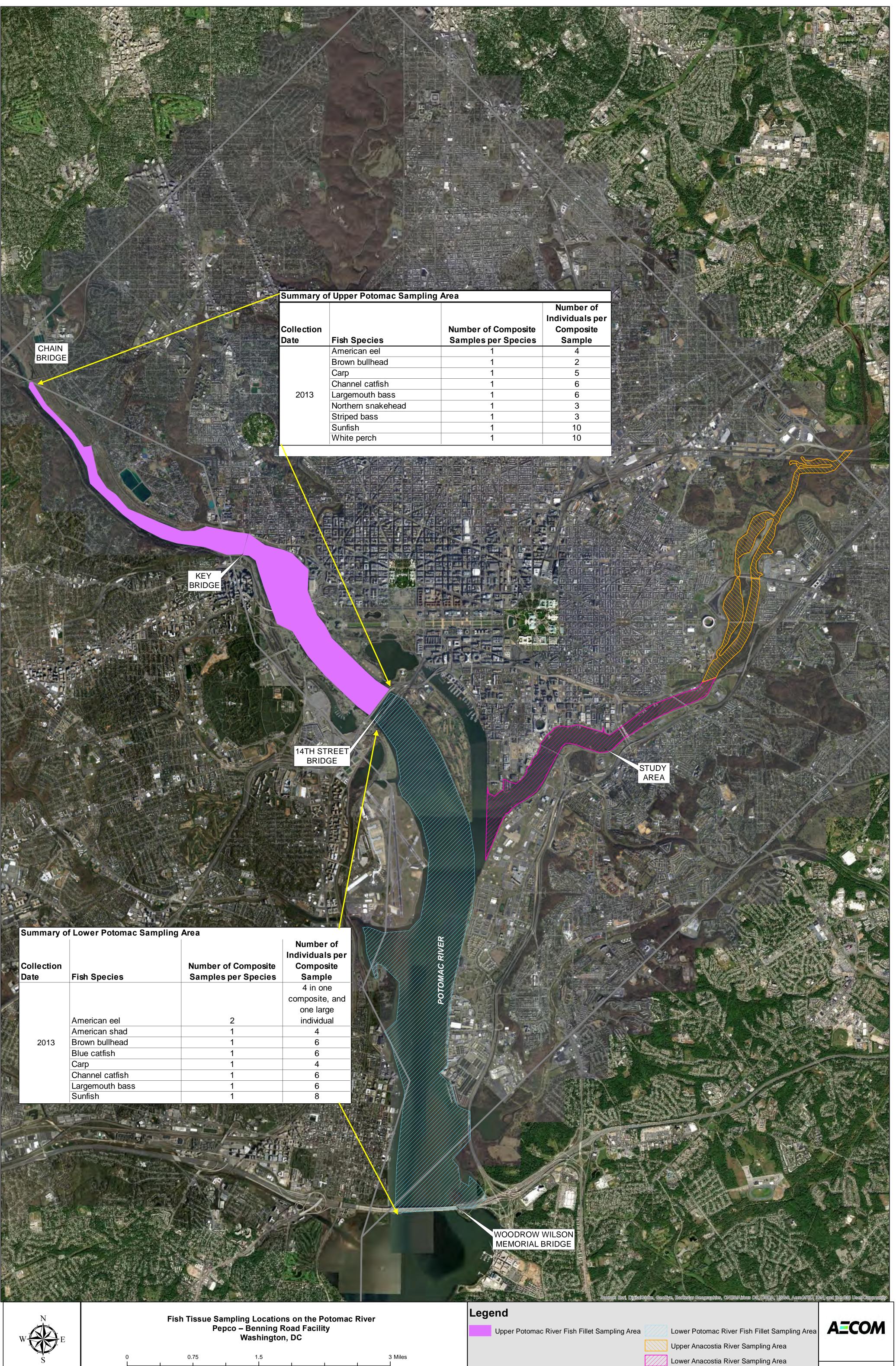


Figure 3-8

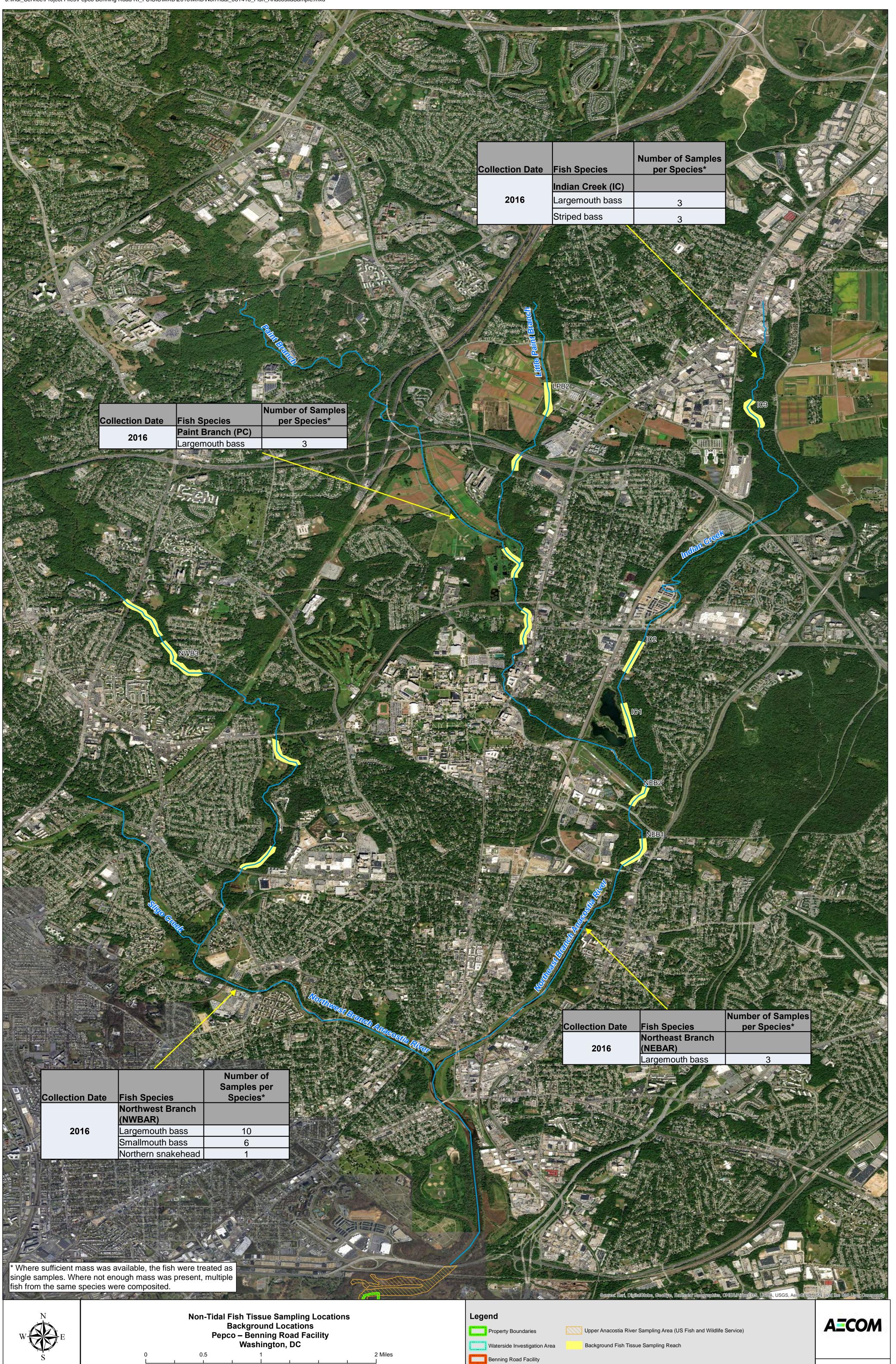


Figure 3-9

Attachments

Attachment A

Fringe Surface Sediment and Fish Tissue Data Used in the BHHRA

			Location ID	R5-03	R5-05	R5-09	R6-04	R6-04	R6-05	R6-06	R6-06	R6-18	R6-21
			Sample ID	RI-R5-03-SS	RI-R5-05-SS	P2-R5-09-SS	RI-R6-04-SS	RI-R6-80-SS	RI-R6-05-SS	RI-R6-06-SS	RI-R6-100-SS	RI-R6-18-SS	RI-R6-21-SS
		_	Sample Type	N	N	N	N	FD	N	N	FD	N	N
		Par	ent Sample ID					RI-R6-04-SS			RI-R6-06-SS	.,	
			Sample Date Task Code	7/25/2014 DOEE Phase1	7/30/2014 DOEE Phase1	6/28/2016 DOEE_Phase2	7/28/2014 DOEE Phase1	7/28/2014 DOEE_Phase1	8/4/2014 DOEE_Phase1	8/4/2014 DOEE_Phase1	8/4/2014 DOEE_Phase1	4/30/2015 DOEE_Phase1	4/29/2015 DOEE_Phase1
			Depth Interval	0 - 0.5 ft 0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft						
		1	Воритинства	0 0.0 10	0 0.0 10	0 0.010	0 0.0 10	0 0.0 1.	0 0.0 1.	0 0.0 1.	0 0.0 1.	0 0.0 K	0 0.0 10
Chemical	CAS	Units	Result Type										
Dioxins/Furans													
1,2,3,4,6,7,8-Heptachlorodibenzofuran	67562-39-4	mg/kg	TRG			2.2E-05 J						2.1E-05 J	0.00013
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	35822-46-9	mg/kg	TRG			0.00012						0.00012	0.00048
1,2,3,4,7,8,9-Heptachlorodibenzofuran	55673-89-7	mg/kg	TRG			1.7E-06 J						1.7E-06 J	2.1E-05
1,2,3,4,7,8-Hexachlorodibenzofuran	70648-26-9	mg/kg	TRG			3.1E-06 J						4.5E-06 J	5.8E-05
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin 1,2,3,6,7,8-Hexachlorodibenzofuran	39227-28-6 57117-44-9	mg/kg mg/kg	TRG			2.3E-06 J 2.3E-06 J						2.7E-06 J 4.3E-06 J	3.4E-05 3.2E-05 J
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	57653-85-7	mg/kg	TRG			5.1E-06						5.9E-06	5.9E-05
1,2,3,7,8,9-Hexachlorodibenzofuran	72918-21-9	mg/kg	TRG			5.9E-08 U						1.5E-07 U	3.2E-06 J
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	19408-74-3	mg/kg	TRG			5.9E-06						6.8E-06	8.6E-05
1.2.3.7.8-PeCDF	57117-41-6	mg/kg	TRG			6.3E-07 J						1.3E-06 J	1.4E-05
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	40321-76-4	mg/kg	TRG	1	†	1.5E-06 J			†	1		2.2E-06 J	2.7E-05 J
2,3,4,6,7,8-Hexachlorodibenzofuran	60851-34-5	mg/kg	TRG	İ	Ì	2E-06 J	İ		Ì	İ	İ	2.6E-06 J	3.6E-05 J
2,3,4,7,8-Pentachlorodibenzofuran	57117-31-4	mg/kg	TRG			1.7E-06 J						2.6E-06 J	2.6E-05
2,3,7,8-Tetrachlorodibenzofuran	51207-31-9	mg/kg	TRG			1.1E-06						2E-06 J	8.7E-06
2,3,7,8-Tetrachlorodibenzo-p-dioxin	1746-01-6	mg/kg	TRG			3.4E-07 J						7.2E-07 J	4.6E-06
Octachlorochlorodibenzofuran	39001-02-0	mg/kg	TRG			4.6E-05						3.9E-05	0.00012 J
Octachlorochlorodibenzo-p-dioxin	3268-87-9	mg/kg	TRG			0.0034						0.0036	0.0036
TCDD TEQ HH	DFTEQ-HH	mg/kg	CALC			7.02E-06						9.14E-06	7.89E-05
Total HpCDD	37871-00-4	mg/kg	TRG										
Total HpCDF	38998-75-3	mg/kg	TRG										
Total HxCDD	34465-46-8	mg/kg	TRG										
Total HxCDF	55684-94-1	mg/kg	TRG										
Total PeCDD Total PeCDF	36088-22-9 30402-15-4	mg/kg	TRG										-
Total TCDD	41903-57-5	mg/kg mg/kg	TRG										-
Total TCDF	55722-27-5	mg/kg	TRG										-
Inorganics	33122-21-3	ilig/kg	ING										+
Aluminum	7429-90-5	mg/kg	TRG	7500	8000		15500		4400	7100		12000	6000
Antimony	7440-36-0	mg/kg	TRG	0.62 J	0.39 J		0.64 J		1.7	0.46		0.58	0.67 J
Arsenic	7440-38-2	mg/kg	TRG	3.2 J	2.3		9.05 J		7.1	2.9		5.1	5.1 J
Barium	7440-39-3	mg/kg	TRG	62	63		105		130	66.5		98	88
Beryllium	7440-41-7	mg/kg	TRG	0.88	0.83		1.5		0.43	0.905		1.1	0.66
Cadmium	7440-43-9	mg/kg	TRG	0.65	0.63		1.15		2.8	0.56		0.9	1.2 J
Calcium	7440-70-2	mg/kg	TRG	2500	2100		12000 J		3600	2750		2900	1900
Chromium	7440-47-3	mg/kg	TRG	25	29		69 J		48	24.5		49	24
Cobalt	7440-48-4	mg/kg	TRG	11	10 J		19.5		6.9	11		25	9.8
Copper	7440-50-8	mg/kg	TRG	30 J	28 J		70 J		64	32.5		58	40 J
Iron	7439-89-6	mg/kg	TRG	15000	15000 J		28000		14000	15000		28000	16000
Lead	7439-92-1 7439-95-4	mg/kg	TRG	48	46 3100	1	120 3700 J	1	140 4400	42.5 2400	-	78	61 1800 J
Magnesium Manganese	7439-95-4 7439-96-5	mg/kg	TRG	3200 170	3100 180	-	3700 J 305	-	150	2400		3700 370	1800 J 120
Manganese Mercury	7439-96-5	mg/kg mg/kg	TRG	0.068	0.11	-	0.22	-	0.32	0.0945	-	0.24	0.13
Nickel	7440-02-0	mg/kg	TRG	22	20	1	59 J	1	110	0.0945	1	42	0.13 28 J
Potassium	7440-02-0	mg/kg	TRG	1100	1000 J		1300		390	1250		1900	650
Selenium	7782-49-2	mg/kg	TRG	0.32 J	0.19 J		0.875		0.32 J	0.345 J		0.97	0.6
Silver	7440-22-4	mg/kg	TRG	0.2	0.2		0.5		1.2	0.5		0.29	0.46 J
Sodium	7440-23-5	mg/kg	TRG	170 J	140 J		300 J		130	145		370	210
Thallium	7440-28-0	mg/kg	TRG	0.16	0.15		0.33		0.13	0.175		0.28 J+	0.15 J
Vanadium	7440-62-2	mg/kg	TRG	33 J	27 J		140 J		180	22		42	59 J
Zinc	7440-66-6	mg/kg	TRG	160 J	140 J		285		260	140		250	170 J
Cyanide	57-12-5	ug/kg	TRG	140 U	180 J		295 J		270 J	620 J		4900	170 U
Pesticides													1
4,4'-DDD	72-54-8	mg/kg	TRG	0.0037 J	0.0045 J		0.0057 J		0.0027 J	0.0052		0.0039 J	0.0019 J
4,4'-DDE	72-55-9	mg/kg	TRG	0.0067	0.0089		0.018		0.0028 J	0.00575		0.007 J	0.003 J
4,4'-DDT	50-29-3 309-00-2	mg/kg	TRG	0.0011 J 0.00041 J	0.0013 J 0.00053 J		0.038 0.00037 J		0.07	0.0025 J 0.000575		0.0014 J 0.00051 J	0.0026 J 0.0002 J
Aldrin alpha-BHC	309-00-2	mg/kg	TRG	0.00041 J 0.00013 U	0.00053 J 0.00013 U	1	0.00037 J 0.00016 U	1	0.00022 J 5.6E-05 U	0.000575 7.4E-05 U		0.00051 J 8.8E-05 U	7E-05 U
alpna-BHC beta-BHC	319-84-6	mg/kg	TRG	0.00013 U	0.00013 U	ļ	0.00016 U 0.000855 J	ļ	0.0039 J	0.00027 U		0.00014 U	0.00011 U
OIR-DI IO	313-03-7	mg/kg	ING	0.0002 0	0.0003 3	1	0.000000 J	1	0.0035 J	0.00021 0	l	0.00014 U	0.00011U

			Location ID Sample ID	R5-03 RI-R5-03-SS	R5-05 RI-R5-05-SS	R5-09 P2-R5-09-SS	R6-04 RI-R6-04-SS	R6-04 RI-R6-80-SS	R6-05 RI-R6-05-SS	R6-06 RI-R6-06-SS	R6-06 RI-R6-100-SS	R6-18 RI-R6-18-SS	R6-21 RI-R6-21-SS
			Sample Type	N N	N N	N	N N	FD	N N	N N	FD	N N	N N
		Par	ent Sample ID		,,,	.,	.,	RI-R6-04-SS	.,	,,,	RI-R6-06-SS	.,	.,
			Sample Date	7/25/2014	7/30/2014	6/28/2016	7/28/2014	7/28/2014	8/4/2014	8/4/2014	8/4/2014	4/30/2015	4/29/2015
			Task Code	DOEE_Phase1	DOEE_Phase1	DOEE_Phase2	DOEE_Phase1	DOEE_Phase1	DOEE_Phase1	DOEE_Phase1	DOEE_Phase1	DOEE_Phase1	DOEE_Phase1
			Depth Interval	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
Observiced	CAS	11.22	December Town										
Chemical Chlordane (Technical)	12789-03-6	Units mg/kg	Result Type TRG	0.045	0.071		0.084		0.00015 U	0.059		0.059 J	0.042 J
cis-Chlordane	5103-71-9	mg/kg	TRG	0.043	0.071		0.004		0.00013 0	0.039		0.009 0	0.042 3
delta-BHC	319-86-8	mg/kg		0.00075 J	0.00012 U		0.00015 U		5.3E-05 U	0.00046 J		0.00052 J	0.002 J
Dieldrin	60-57-1	mg/kg	TRG	0.0013 J	0.0013 J		0.014 J		0.0048 J	0.002 J		0.0014 J	0.0036 J
Endosulfan I	959-98-8	mg/kg	TRG	0.00015 U	0.00015 U		0.00045 J		0.00074 J	8.6E-05 U		0.0001 U	0.00037 J
Endosulfan II	33213-65-9	mg/kg	TRG	0.00077 J	0.00056 J		0.0068		0.0042 J	0.00094 J		0.00079 J	0.003 J
Endosulfan Sulfate	1031-07-8	mg/kg	TRG	0.00098	0.0013		0.00355 J		0.011	0.00061		0.0011 J	0.0027 J
Endrin	72-20-8	mg/kg	TRG	0.0021 J	0.0041		0.00765 J		0.021 J	0.00215		0.00036 J	0.0055 J
Endrin aldehyde	7421-93-4	mg/kg	TRG	0.00039 J	0.00015 U		0.00075 J		0.0015 J	0.00077		0.00017 J	0.00068 J
Endrin ketone	53494-70-5	mg/kg	TRG	0.00040.1	0.00004 1		0.0000711		0.00000 1	0.0007011		0.00044 1	0.00000 1
gamma-BHC (Lindane) Heotachlor	58-89-9 76-44-8	mg/kg mg/kg	TRG	0.00016 J 0.00069 J	0.00024 J 0.0012 J	ļ	0.00027 U 0.0033 J	ļ	0.00066 J 0.00097 J	0.00073 U 0.000655	ļ	0.00011 J 0.00079 J	0.00036 J 0.00048 J
Heptachlor Epoxide	1024-57-3	mg/kg mg/kg	TRG	0.00069 J 0.00061 J	0.0012 J 0.00067 J	1	0.0033 J	1	0.00097 J 0.0065 J	0.000655 0.00064 J	1	0.00079 J 0.00068 J	0.00048 J 0.0023 J
Methoxychlor	72-43-5	mg/kg	TRG	0.000010	0.00007 0		0.0000 0		0.0000	0.000040		0.000000	0.00200
Toxaphene	8001-35-2	mg/kg	TRG	0.0052 U	0.0052 U	1	0.0065 U	1	0.0023 U	0.003 U	1	0.0036 U	0.0029 U
trans-Chlordane	5103-74-2	mg/kg	TRG										
Pyrethroids													1
Allethrin	584-79-2	mg/kg	TRG			0.019 UJ							
BAYTHROID	68359-37-5	mg/kg	TRG			0.019 U							
BIPHENTHRIN (TALSTAR)	82657-04-3	mg/kg	TRG			0.019 U							
CYPERMETHRIN	52315-07-8	mg/kg	TRG			0.019 U							
DANITOL	39515-41-8	mg/kg	TRG			0.019 U							↓
DELTAMETHRIN/TRALOMETHRIN Dichloran	52820-00-5 99-30-9	mg/kg	TRG			0.019 U 0.019 U							
Fenvalerate	51630-58-1	mg/kg mg/kg	TRG			0.019 U			-				
LAMBDA CYHALOTHRIN	91465-08-6	mg/kg	TRG			0.019 U							
Penoxalin	40487-42-1	mg/kg	TRG			0.019 UJ							
Permethrin	52645-53-1	mg/kg	TRG			0.019 U							
PRALLETHRIN	23031-36-9	mg/kg	TRG			0.019 UJ							
SUMITHRIN	26002-80-2	mg/kg	TRG			0.019 U							
TEFLUTHRIN	79538-32-2	mg/kg	TRG			0.019 UJ							
PCB Aroclors													
Aroclor-1016	12674-11-2	mg/kg		0.00058 U	0.00058 U		0.0014 U		0.001 U	0.0014 U		0.0011 U	8.7E-05 U
Aroclor-1221 Aroclor-1232	11104-28-2 11141-16-5	mg/kg mg/kg	TRG	0.00075 U 0.00067 U	0.00074 U 0.00067 U		0.0019 U 0.0017 U		0.0013 U 0.0012 U	0.0017 U 0.0016 U		0.0014 U 0.0019 U	0.0011 U 0.0015 U
Aroclor-1232 Aroclor-1242	53469-21-9	mg/kg	TRG	0.00067 U	0.00067 U		0.0017 U		0.0012 U	0.0016 U		0.0019 U	0.0015 U
Aroclor-1248	12672-29-6	mg/kg		0.00064 0	0.063		0.38		0.81	0.051		0.056 J	0.26
Aroclor-1254	11097-69-1	mg/kg		0.00056 U	0.00055 U	1	0.0014 U	1	0.00098 U	0.0013 U	1	0.0013 U	0.001 U
Aroclor-1260	11096-82-5	mg/kg	TRG	0.049	0.045		0.6		0.6	0.0335		0.032 J	0.16 J
Aroclor-1262	37324-23-5	mg/kg	TRG										
Aroclor-1268	11100-14-4	mg/kg	TRG										
PCB, Total Aroclors	TOT-PCB-ARO-C	mg/kg	CALC	0.097	0.11		0.98		1.4	0.0845		0.088	0.42
TPH	1					ļ		ļ			ļ	ļ	L
Diesel Range Organics (C10-C20)	C10C20	mg/kg	TRG				ļ						
Oil Range Organics (C20-C36)	C20C36	mg/kg	TRG		1	1	1	1	1	1	1	1	
SVOCs 1,1'-Biphenyl	92-52-4	mg/kg	TRG		_		-		_	_		-	
1,1-Bipnenyi 1,2,4,5-Tetrachlorobenzene	95-94-3	mg/kg mg/kg	TRG		 	1	}	1	 	 	1	1	+
1,2,4-Trichlorobenzene	120-82-1	mg/kg	TRG	0.017 U	0.017 U		0.043 U		0.023 U	0.036 U		0.024 U	0.019 U
2,2'-oxybis(1-Chloropropane)	108-60-1	mg/kg		0.0067 U	0.0067 U	1	0.017 UJ	1	0.009 U	0.014 U	1	0.0093 U	0.0074 U
2,3,4,6-Tetrachlorophenol	58-90-2	mg/kg	TRG	-		İ		İ			İ		
2,3,7,8-Tetrachlorodibenzo-p-dioxin	1746-01-6	mg/kg	TRG	0.31 U	0.31 U		0.77 U		0.41 U	0.64 U			
2,4,5-Trichlorophenol	95-95-4	mg/kg	TRG										
2,4,6-Trichlorophenol	88-06-2	mg/kg		0.047 U	0.047 U		0.12 U		0.062 U	0.096 U		0.064 U	0.051 U
2,4-Dichlorophenol	120-83-2	mg/kg	TRG	0.0063 U	0.0062 U		0.016 U		0.0083 U	0.013 U		0.0086 U	0.0069 U
2,4-Dimethylphenol	105-67-9	mg/kg	TRG	0.049 U	0.049 U		0.12 U		0.065 U	0.1 U		0.067 U	0.054 U
2,4-Dinitrophenol	51-28-5	mg/kg		0.37 UJ	0.37 UJ		0.93 U		0.5 U	0.77 U		0.51 U	0.41 U
2,4-Dinitrotoluene 2,6-Dinitrotoluene	121-14-2 606-20-2	mg/kg	TRG	0.025 U 0.032 U	0.025 U 0.032 U		0.063 U 0.08 U		0.034 U 0.043 U	0.052 U 0.066 U	-	0.035 U 0.044 U	0.028 U 0.035 U
z,o-birinoloidelle	000-20-2	mg/kg	ING	U.U32 U	U.U32 U		U.U0 U		U.U43 U	U.UU0 U		U.U44 U	U.U33 U

												1	
			Location ID	R5-03	R5-05	R5-09	R6-04	R6-04	R6-05	R6-06	R6-06	R6-18	R6-21
			Sample ID	RI-R5-03-SS	RI-R5-05-SS	P2-R5-09-SS	RI-R6-04-SS	RI-R6-80-SS	RI-R6-05-SS	RI-R6-06-SS	RI-R6-100-SS FD	RI-R6-18-SS	RI-R6-21-SS
			Sample Type nt Sample ID	N	N	N	N	FD RI-R6-04-SS	N	N	RI-R6-06-SS	N	N
			Sample Date	7/25/2014	7/30/2014	6/28/2016	7/28/2014	7/28/2014	8/4/2014	8/4/2014	8/4/2014	4/30/2015	4/29/2015
			Task Code	DOEE_Phase1	DOEE_Phase1	DOEE_Phase2	DOEE_Phase1	DOEE_Phase1	DOEE_Phase1	DOEE_Phase1	DOEE_Phase1	DOEE_Phase1	DOEE_Phase1
		г	Depth Interval	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
Chemical	CAS	Units	Result Type										
2-Chloronaphthalene	91-58-7	mg/kg	TRG	0.0065 U	0.0065 U		0.016 U		0.0087 U	0.013 U		0.009 U	0.0071 U
2-Chlorophenol	95-57-8	mg/kg	TRG	0.026 U	0.025 U		0.064 U		0.034 U	0.053 U		0.035 U	0.028 U
2-Methylnaphthalene	91-57-6	mg/kg	TRG										
2-Methylphenol	95-48-7	mg/kg	TRG										
2-Nitroaniline	88-74-4	mg/kg	TRG										
2-Nitrophenol	88-75-5	mg/kg	TRG		0.034 U		0.086 U		0.046 U	0.071 U		0.047 U	0.038 U
3,3'-Dichlorobenzidine 3-Nitroaniline	91-94-1 99-09-2	mg/kg	TRG	0.033 U	0.033 U		0.082 U		0.044 U	0.068 U		0.045 U	0.036 U
4,6-Dinitro-2-methylphenol	534-52-1	mg/kg mg/kg	TRG	0.13 U	0.12 U		0.31 U		0.17 U	0.26 U		0.17 U	0.14 U
4-Bromophenyl-phenylether	101-55-3	mg/kg	TRG	0.027 U	0.027 U		0.068 UJ		0.036 U	0.056 U		0.037 U	0.03 U
4-Chloro-3-methylphenol	59-50-7	mg/kg	TRG	0.027 U	0.027 U		0.066 UJ 0.072 U		0.038 U	0.059 U		0.037 U	0.03 U
4-Chloroaniline	106-47-8	mg/kg	TRG	0.020 0	0.020 0		0.0.2 0		0.0000	0.000 0		0.0 . 0	0.002 0
4-Chlorophenyl-phenylether	7005-72-3	mg/kg	TRG	0.035 U	0.035 U		0.087 U		0.046 U	0.071 U		0.048 U	0.038 U
4-Methylphenol	106-44-5	mg/kg	TRG	· · · · · ·	-				· · · · ·			T	
4-Nitroaniline	100-01-6	mg/kg	TRG										
4-Nitrophenol	100-02-7	mg/kg	TRG	0.11 U	0.11 U		0.28 U	İ	0.15 U	0.23 U		0.16 U	0.12 U
Acenaphthene	83-32-9	mg/kg	TRG	0.051 J	0.061 J		0.051 J		0.43	0.0215 J		0.086	0.036 J
Acenaphthylene	208-96-8	mg/kg	TRG	0.12	0.076		0.1 J		0.051 J	0.053 J		0.075 J	0.026 J
Acetophenone	98-86-2	mg/kg	TRG										
Anthracene	120-12-7	mg/kg	TRG	0.16	0.2		0.105 J		0.86	0.0725 J		0.22	0.069 J
Atrazine	1912-24-9	mg/kg	TRG										
Benzaldehyde	100-52-7	mg/kg	TRG										
Benzidine	92-87-5	mg/kg	TRG		1.3 UJ		3.3 U		1.7 U	2.7 U		1.8 U	1.4 U
Benzo(a)anthracene	56-55-3	mg/kg	TRG		0.85		0.35		2.3	0.37		1	0.21 J
Benzo(a)pyrene	50-32-8	mg/kg	TRG	0.94	0.99		0.43		2	0.43		1.1	0.24 J
Benzo(b)fluoranthene	205-99-2	mg/kg	TRG		1.4		0.65		2.6	0.69		1.7	0.37 J
Benzo(g,h,i)perylene Benzo(k)fluoranthene	191-24-2 207-08-9	mg/kg	TRG TRG	0.43	0.59		0.515 0.295		0.96	0.515 0.245		0.42	0.26 J 0.13 J
Benzoic acid	65-85-0	mg/kg mg/kg	TRG		0.13 U		1.2 J		0.17 U	0.245 0.27 U		1.2 J	0.13 J
bis-(2-chloroethoxy)methane	111-91-1	mg/kg	TRG		0.02 U		0.051 U		0.027 U	0.042 U		0.028 U	0.023 U
bis-(2-Chloroethyl)ether	111-44-4	mg/kg	TRG		0.0083 U		0.021 U		0.011 U	0.017 U		0.012 U	0.0092 U
bis-(2-Ethylhexyl)phthalate	117-81-7	mg/kg	TRG	1.9	1.6		1.7 J		0.74 J	0.615 J		4	10
Butylbenzylphthalate	85-68-7	mg/kg	TRG	0.089 J	0.078 J		0.11 U		0.057 U	0.052 U		0.11 J	0.22 J
Caprolactam	105-60-2	mg/kg	TRG										
Carbazole	86-74-8	mg/kg	TRG										
Chrysene	218-01-9	mg/kg	TRG	1.3	1.3		0.575		2.4	0.575		1.3	0.34 J
Dibenzo(a,h)anthracene	53-70-3	mg/kg	TRG	0.22	0.25		0.13 U		0.47	0.11 J		0.27	0.058 J
Dibenzofuran	132-64-9	mg/kg	TRG										
Diethylphthalate	84-66-2	mg/kg	TRG	0.034 U	0.034 U		0.085 U		0.045 U	0.07 U		0.048 J	0.037 U
Dimethylphthalate	131-11-3	mg/kg	TRG		0.034 U		0.085 U		0.045 U	0.07 U		0.047 U	0.037 U
Di-n-butylphthalate	84-74-2	mg/kg	TRG	0.039 U	0.039 U		0.098 U		0.052 U	0.081 U		0.054 U	0.043 U
Di-n-octylphthalate	117-84-0 122-66-7	mg/kg	TRG	0.033 U 0.04 U	0.033 U 0.04 U		0.082 UJ 0.1 U		0.044 U 0.053 U	0.068 U 0.082 U		0.4 J 0.055 U	0.036 U 0.044 U
Diphenylhydrazine-1,2 Fluoranthene	122-66-7 206-44-0	mg/kg mg/kg	TRG		0.04 U 2.3		0.1 U 0.72		U.UDO U	U.U02 U		0.055 U 2.1	0.044 U 0.54 J
Fluoranthene	86-73-7	mg/kg mg/kg	TRG		0.084		0.72 0.059 U		0.41	0.035 J		0.094	0.54 J 0.051 J
Hexachlorobenzene	118-74-1	mg/kg	TRG	0.0067 U	0.0066 U		0.059 U 0.017 UJ		0.41 0.0089 U	0.035 J 0.014 U		0.0092 U	0.0073 U
Hexachlorobutadiene	87-68-3	mg/kg	TRG	0.007 U	0.000 U		0.017 UJ		0.0093 U	0.014 U		0.0092 U	0.0073 U
Hexachlorocyclo-pentadiene	77-47-4	mg/kg	TRG	0.034 U	0.034 U		0.084 U		0.045 U	0.069 U		0.046 U	0.037 U
Hexachloroethane	67-72-1	mg/kg	TRG	0.022 U	0.022 U		0.056 U		0.03 U	0.046 U		0.031 U	0.025 U
Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	TRG		0.94		0.38		1.4	0.41		1.1	0.18 J
Isophorone	78-59-1	mg/kg	TRG	0.024 U	0.023 U		0.059 U		0.031 U	0.048 U		0.032 U	0.026 U
Naphthalene	91-20-3	mg/kg	TRG	0.082	0.022 J		0.039 J		0.13	0.011 U		0.039 J	0.0059 U
Nitrobenzene	98-95-3	mg/kg	TRG	0.026 U	0.026 U		0.065 U		0.035 U	0.054 U		0.036 U	0.029 U
Nitrosodimethylamine-n	62-75-9	mg/kg	TRG	0.027 U	0.027 U		0.067 U		0.036 U	0.055 U		0.037 U	0.029 U
N-Nitroso-di-n-propylamine	621-64-7	mg/kg	TRG	0.0073 U	0.0073 U		0.018 U		0.0098 U	0.015 U		0.01 U	0.008 U
N-Nitrosodiphenylamine	86-30-6	mg/kg	TRG	0.029 U	0.029 U		0.072 U		0.038 U	0.06 U		0.04 U	0.032 U
Pentachlorophenol	87-86-5	mg/kg	TRG		0.028 U		0.07 UJ		0.037 U	0.058 U		0.038 U	0.031 U
Phenanthrene	85-01-8	mg/kg	TRG		0.66		0.305	ļ	4.4	0.325		0.81	0.19 J
Phenol	108-95-2	mg/kg	TRG	0.0074 U	0.0073 U		0.018 U		0.0098 U	0.015 U		0.01 U	0.0081 U

			Location ID Sample ID	R5-03 RI-R5-03-SS	R5-05 RI-R5-05-SS	R5-09 P2-R5-09-SS	R6-04 RI-R6-04-SS	R6-04 RI-R6-80-SS	R6-05 RI-R6-05-SS	R6-06 RI-R6-06-SS	R6-06 RI-R6-100-SS	R6-18 RI-R6-18-SS	R6-21 RI-R6-21-SS
			Sample Type	N N	N N	N	N-R0-04-55	FD	N N	N N	FD	N N	N N
			ent Sample ID		IN	IN IN	14	RI-R6-04-SS	IN IN	IN .	RI-R6-06-SS	IN IN	IN IN
			Sample Date	7/25/2014	7/30/2014	6/28/2016	7/28/2014	7/28/2014	8/4/2014	8/4/2014	8/4/2014	4/30/2015	4/29/2015
			Task Code	DOEE_Phase1	DOEE Phase1	DOEE_Phase2	DOEE Phase1	DOEE_Phase1	DOEE_Phase1	DOEE_Phase1	DOEE_Phase1	DOEE_Phase1	DOEE_Phase1
			Depth Interval	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft					
Chemical	CAS	Units	Result Type										
Pyrene	129-00-0	mg/kg	TRG	1.3	1.4		0.775		4	0.66		1.5	0.4 J
Polybrominated Diphenyl Ethers													
PBDE47	5436-43-1	mg/kg	TRG			0.11 U							
PBDE99	60348-60-9	mg/kg	TRG TRG			0.11 U 0.11 U							
PBDE-100	189084-64-8	mg/kg											
PBDE-153 PBDE-154	68631-49-2 207122-15-4	mg/kg mg/kg	TRG TRG			0.11 U 0.11 U							
VOCs	20/122-15-4	mg/kg	IKG			0.110							
1.1.1-Trichloroethane	71-55-6	mg/kg	TRG	0.00091 U	0.00092 U		0.0011 U		0.00081 U	0.0011 U		0.0013 U	0.001 U
1,1,2,2-Tetrachloroethane	79-34-5	mg/kg	TRG	0.0014 U	0.0014 U		0.0017 U		0.0012 U	0.0016 U		0.0019 U	0.001 U
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	mg/kg	TRG										
1,1,2-Trichloroethane	79-00-5	mg/kg	TRG	0.0016 U	0.0016 U	†	0.0019 U		0.0014 U	0.0018 U		0.0022 U	0.0017 U
1,1-Dichloroethane	75-34-3	mg/kg	TRG	0.0011 U	0.0011 U	İ	0.0013 U		0.00096 U	0.0013 U		0.0015 U	0.0012 U
1,1-Dichloroethene	75-35-4	mg/kg	TRG	0.0016 U	0.0016 U		0.002 U		0.0014 U	0.0019 U		0.0022 U	0.0017 U
1,2,3-Trichlorobenzene	87-61-6	mg/kg	TRG										
1,2,4-Trichlorobenzene	120-82-1	mg/kg	TRG										
1,2-Dibromo-3-chloropropane	96-12-8	mg/kg	TRG										
1,2-Dibromoethane	106-93-4	mg/kg	TRG		1	ļ		ļ	ļ	1			
1,2-Dichlorobenzene	95-50-1	mg/kg		0.0015 U	0.0015 U		0.0019 U		0.0013 U	0.0018 U		0.0021 U	0.0016 U
1,2-Dichloroethane	107-06-2	mg/kg		0.0012 U	0.0012 U		0.0014 U		0.001 U	0.0013 U		0.0016 U	0.0013 U
1,2-Dichloropropane	78-87-5	mg/kg	TRG	0.001 U	0.001 U		0.0013 U		0.0009 U	0.0012 U		0.0014 U	0.0011 U
1,3-Dichlorobenzene	541-73-1 106-46-7	mg/kg	TRG	0.0012 U 0.0012 U	0.0012 U		0.0015 U		0.0011 U	0.0014 U 0.0014 U		0.0017 U	0.0013 U
1,4-Dichlorobenzene 1,4-Dioxane	123-91-1	mg/kg mg/kg	TRG TRG	0.0012 0	0.0012 U		0.0015 U		0.0011 U	0.0014 U		0.0016 U	0.0013 U
2-Butanone	78-93-3	mg/kg	TRG										
2-Hexanone	591-78-6	mg/kg	TRG										
4-Methyl-2-pentanone	108-10-1	mg/kg	TRG										
Acetone	67-64-1	mg/kg	TRG										
Acrolein	107-02-8	mg/kg		0.013 U	0.013 U		0.016 U		0.012 U	0.015 U		0.018 U	0.014 U
Acrylonitrile	107-13-1	mg/kg	TRG	0.019 U	0.02 UJ		0.024 U		0.017 U	0.023 U		0.027 U	0.021 U
Benzene	71-43-2	mg/kg		0.0013 U	0.0013 U		0.0016 U		0.0011 U	0.0015 U		0.0017 U	0.0014 U
Bromochloromethane	74-97-5	mg/kg	TRG										
Bromodichloromethane	75-27-4	mg/kg		0.0011 U	0.0011 U		0.0013 U		0.00093 U	0.0012 U		0.0015 U	0.0012 U
Bromoform	75-25-2	mg/kg	TRG	0.00083 U	0.00083 U		0.001 U		0.00074 U	0.00097 U		0.0011 U	0.00091 U
Bromomethane	74-83-9	mg/kg	TRG	0.0014 U	0.0014 U		0.0017 U		0.0012 U	0.0016 U		0.0019 U	0.0015 U
Carbon Disulfide	75-15-0	mg/kg	TRG	0.0000411	0.00004111		0.004.11		0.0007411	0.0000011		0.0040.11	0.00000.11
Carbon Tetrachloride	56-23-5	mg/kg		0.00084 U	0.00084 UJ		0.001 U		0.00074 U	0.00098 U		0.0012 U	0.00092 U
Chlorobenzene Chloroethane	108-90-7 75-00-3	mg/kg mg/kg	TRG	0.0014 U 0.0029 U	0.0014 U 0.0029 U	-	0.0018 U 0.0036 U		0.0013 U 0.0026 UJ	0.0017 U 0.0034 UJ		0.002 U 0.004 U	0.0016 U 0.0032 U
Chloroform	67-66-3	mg/kg		0.0029 U	0.0029 U	1	0.0036 U	1	0.0026 UJ 0.00097 U	0.0034 UJ		0.004 U	0.0032 U
Chloromethane	74-87-3	mg/kg	TRG	0.0011 U	0.0011 U	 	0.0014 U		0.00097 U	0.0013 U		0.0013 U	0.0012 U
cis-1,2-Dichloroethylene	156-59-2	mg/kg	TRG			†	1	1	T			1	
cis-1,3-Dichloropropene	10061-01-5	mg/kg		0.0013 U	0.0013 U	İ	0.0016 U		0.0011 U	0.0015 U		0.0018 U	0.0014 U
Cyclohexane	110-82-7	mg/kg	TRG			İ	İ		İ				
Dibromochloromethane	124-48-1	mg/kg	TRG	0.0013 U	0.0013 U		0.0017 U		0.0012 U	0.0016 U		0.0018 U	0.0015 U
Dichlorodifluoromethane	75-71-8	mg/kg	TRG										
Dichloropropene, 1,3-	542-75-6	mg/kg		0.0024	0.0024		0.003		0.00209	0.0028		0.0033	0.0026
Ethylbenzene	100-41-4	mg/kg	TRG	0.0012 U	0.0012 U		0.0015 U		0.0011 U	0.0014 U		0.0017 U	0.0013 U
Isopropylbenzene	98-82-8	mg/kg	TRG										
m, p-Xylene	XYLMP	mg/kg	TRG										
Methyl Acetate	79-20-9	mg/kg	TRG				ļ						
Methyl tert-Butyl Ether (MTBE) Methylcyclohexane	1634-04-4 108-87-2	mg/kg	TRG		1	ļ	ļ		ļ	1		ļ	1
Methylene Chloride	75-09-2	mg/kg		0.0013 U	0.0013 U	 	0.0028 U		0.0011 U	0.0015 U		0.0066 U	0.0053 U
o-Xylene	95-47-6	mg/kg mg/kg	TRG	0.0013 0	0.0013 0	-	0.0020 0		0.00110	0.0010 0		0.0000 0	0.0000 0
Styrene	100-42-5	mg/kg	TRG	-	-	}	}	1	}	+		}	
				0.0013 U	0.0013 U	1	0.0016 U	1	0.0011 U	0.0015 U		0.0018 U	0.0014 U
Tetrachloroethylene	1127-18-4												
Tetrachloroethylene Toluene	127-18-4 108-88-3	mg/kg mg/kg		0.0014 U	0.0014 U		0.0017 U		0.0011 U	0.0016 U		0.0019 U	0.0015 U

			Location ID	R5-03	R5-05	R5-09	R6-04	R6-04	R6-05	R6-06	R6-06	R6-18	R6-21
			Sample ID	RI-R5-03-SS	RI-R5-05-SS	P2-R5-09-SS	RI-R6-04-SS	RI-R6-80-SS	RI-R6-05-SS	RI-R6-06-SS	RI-R6-100-SS	RI-R6-18-SS	RI-R6-21-SS
			Sample Type	N	N	N	N	FD	N	N	FD	N	N
		Par	ent Sample ID					RI-R6-04-SS			RI-R6-06-SS		
			Sample Date	7/25/2014	7/30/2014	6/28/2016	7/28/2014	7/28/2014	8/4/2014	8/4/2014	8/4/2014	4/30/2015	4/29/2015
			Task Code	DOEE_Phase1	DOEE_Phase1	DOEE_Phase2	DOEE_Phase1	DOEE_Phase1	DOEE_Phase1	DOEE_Phase1	DOEE_Phase1	DOEE_Phase1	DOEE_Phase1
			Depth Interval	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
Chemical	CAS	Units	Result Type										
trans-1,3-Dichloropropene	10061-02-6	mg/kg	TRG	0.0011 U	0.0011 U		0.0014 U		0.00099 U	0.0013 U		0.0015 U	0.0012 U
Trichloroethene	79-01-6	mg/kg	TRG	0.0012 U	0.0012 U		0.0015 U		0.0011 U	0.0014 U		0.0017 U	0.0013 U
Trichlorofluoromethane	75-69-4	mg/kg	TRG										
Vinyl Chloride	75-01-4	mg/kg	TRG	0.00088 U	0.00088 U		0.0011 U		0.00078 U	0.001 U		0.0012 U	0.00096 U
Vinyl ether, 2-chloroethyl	110-75-8	mg/kg	TRG	0.0015 UJ	0.0015 UJ		0.0018 U		0.0013 UJ	0.0017 UJ		0.002 U	0.0016 U
Xylenes (total)	1330-20-7	mg/kg	CALC										

	·		Location ID	R6-22	R6-23	R6-30	R6-30	R6-31	R6-32	R6-33	SED1.5C	SED1.5C	SED10C
			Sample ID	RI-R6-22-SS	RI-R6-23-SS	P2-R6-30-SS	P2-R6-40-SS	P2-R6-31-SS	P2-R6-32-SS	P2-R6-33-SS	SED1.5C00AN	SED1.5C00AR	SED10C00N
			Sample Type	N	N	N	FD	N	N	N	N	FD	N
		Par	ent Sample ID				P2-R6-30-SS					SED1.5C00AN	
			Sample Date	4/30/2015	4/30/2015	6/9/2016	6/9/2016	6/28/2016	6/28/2016	6/28/2016	6/21/2017	6/21/2017	11/11/2013
			Task Code Depth Interval	DOEE_Phase1 0 - 0.5 ft	DOEE_Phase1 0 - 0.5 ft	DOEE_Phase2 0 - 0.5 ft	DOEE_Phase2 0 - 0.5 ft	DOEE_Phase2 0 - 0.5 ft	DOEE_Phase2 0 - 0.5 ft	DOEE_Phase2 0 - 0.5 ft	WP#3-2017 Waterside 0 - 0.33 ft	WP#3-2017 Waterside 0 - 0.33 ft	Phase2-2013 0 - 0.5 ft
			Deptililiteiva	0 - 0.5 it	0 - 0.5 11	0 - 0.5 11	0 - 0.5 it	0 - 0.33 it	0 - 0.33 it	0 - 0.5 11			
Chemical	CAS	Units	Result Type										
Dioxins/Furans			1										
1,2,3,4,6,7,8-Heptachlorodibenzofuran	67562-39-4	mg/kg	TRG	3E-05 J	2.7E-05 J	4.65E-05 J		1.8E-05	0.00055	3.9E-06 J			
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	35822-46-9	mg/kg	TRG	0.00019	0.00015	0.00028		0.00011	0.0022	2.4E-05			
1,2,3,4,7,8,9-Heptachlorodibenzofuran	55673-89-7	mg/kg	TRG	2.5E-06 J	1.8E-06 J	4.1E-06 U		1.4E-06 U	8.3E-05	9.5E-08 U			
1,2,3,4,7,8-Hexachlorodibenzofuran	70648-26-9	mg/kg	TRG	5.7E-06	3.6E-06 J	1.3E-05 U		3.4E-06 J	0.00023 J	6.9E-07 U			
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	39227-28-6	mg/kg	TRG	4E-06 J	2.8E-06 J	7.6E-06 U		2.2E-06 J	0.00016	4.3E-07 U			
1,2,3,6,7,8-Hexachlorodibenzofuran	57117-44-9	mg/kg	TRG	3.3E-08 U	3.1E-08 U	7.6E-06 U		2.7E-06 J	0.00013 J	5.4E-07 U			
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	57653-85-7	mg/kg	TRG	7.8E-06	6.3E-06	1.3E-05		4.6E-06 J	0.00031	9.8E-07 J			
1,2,3,7,8,9-Hexachlorodibenzofuran	72918-21-9	mg/kg	TRG	2.2E-07 J	2.1E-07 J	4.3E-07 U		6.2E-08 U	1.3E-05	3.6E-08 U			
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	19408-74-3	mg/kg	TRG	1E-05	6.9E-06	2.1E-05		5.5E-06 J	0.00042	1.1E-06 U			
1,2,3,7,8-PeCDF	57117-41-6	mg/kg	TRG	1.4E-06 J	8.2E-07 J	2.9E-06 U		1.5E-06 J	6.2E-05	1.5E-07 U	!	-	
1,2,3,7,8-Pentachlorodibenzo-p-dioxin 2,3,4,6,7,8-Hexachlorodibenzofuran	40321-76-4 60851-34-5	mg/kg	TRG	2.5E-06 J 3.1E-06 J	1.6E-06 J 2.2E-06 J	6.3E-06 U 6.4E-06 U	 	2E-06 J 1.7E-06 J	0.00013 0.00015 J	3.6E-07 U 3E-07 U	1	 	
2,3,4,7,8-Pentachlorodibenzofuran	57117-31-4	mg/kg	TRG	2.8E-06 J	2.2E-06 J 1.8E-06 J	5.8E-06 U	-	1.7E-06 J 2.2E-06 J	0.00015 J	3E-07 U	1	-	
2,3,4,7,8-Pentachiorodibenzofuran 2,3,7,8-Tetrachlorodibenzofuran	51207-31-9	mg/kg mg/kg	TRG	2.4E-06 J	1.8E-06 J	2.85E-06 U	 	2.2E-06 J 1.5E-06	3.5E-05	5.8E-07 J	1	 	
2,3,7,8-Tetrachlorodibenzo-p-dioxin	1746-01-6	mg/kg	TRG	8.4E-07 J	4.7E-07 J	9.9E-07 J	 	5.4E-07 J	2.1E-05	8.8E-08 J	1	1	
Octachlorochlorodibenzofuran	39001-02-0	mg/kg	TRG	6.6E-05	5.5E-05	9.9E-05	 	3.4E-05	0.0005 J	1E-05 U	 	 	
Octachlorochlorodibenzo-p-dioxin	3268-87-9	mg/kg	TRG	0.0072 J	0.0053 J	0.0102 J	† 	0.0035	0.0003 J	0.00063	 	 	
TCDD TEQ HH	DFTEQ-HH	mg/kg	CALC	1.19E-05	8.4E-06	1.1E-05		7.75E-06	0.000369	7.12E-07			
Total HpCDD	37871-00-4	mg/kg	TRG										
Total HpCDF	38998-75-3	mg/kg	TRG										
Total HxCDD	34465-46-8	mg/kg	TRG										
Total HxCDF	55684-94-1	mg/kg	TRG										
Total PeCDD	36088-22-9	mg/kg	TRG										
Total PeCDF	30402-15-4	mg/kg	TRG										
Total TCDD	41903-57-5	mg/kg	TRG										
Total TCDF	55722-27-5	mg/kg	TRG										
Inorganics													
Aluminum	7429-90-5	mg/kg	TRG	12000	12000	7500 J		8200 J	4300 J	6300 J	5600		5300
Antimony	7440-36-0	mg/kg	TRG	0.48 J+	0.47 J+	0.785 J		0.82	1.2	0.68	0.6 J		0.31 J-
Arsenic	7440-38-2	mg/kg	TRG	4.3	3.8	4.55 J		4.1 J	4 J	3.3 J	3		2.1 J-
Barium	7440-39-3	mg/kg	TRG	85	78	69 J		83	54	70	52		63
Beryllium	7440-41-7	mg/kg	TRG	1.1	0.99	0.955 J		0.98 J	0.58 J	0.9 J	0.75		0.85
Cadmium	7440-43-9	mg/kg	TRG	0.65	0.63	0.705 J		0.71	1.9	0.54	0.77		0.6
Calcium	7440-70-2	mg/kg	TRG	3200	3500	2950 J		2300 J	2000 J	2500 J	1900		2700
Chromium Cobalt	7440-47-3 7440-48-4	mg/kg	TRG	42 18	38 18	34 J 14.5 J	1	36 J 14 J	24 J 9.6 J	29 J 14 J	28 J	1	24 J+ 16
	7440-48-4	mg/kg mg/kg	TRG	18	18 45	14.5 J 44.5 J	 	14 J 48	9.6 J 56	14 J 38	13 37 J	 	16 40
Copper Iron	7440-50-8	mg/kg mg/kg	TRG	27000	26000	21500 J	 	22000 J	12000 J	18000 J	37 J 15000	 	17000
Lead	7439-99-0	mg/kg	TRG	59	52	47.5 J	 	52	74	43	43	1	44
Magnesium	7439-95-4	mg/kg	TRG	3900	3800	2850 J	 	2700 J	2300 J	2700 J	2500	 	2500
Manganese	7439-96-5	mg/kg	TRG	260	230	220 J		200 J	97 J	170 J	130 J		210 J+
Mercury	7439-97-6	mg/kg	TRG	0.19	0.12	0.16 J	 	0.18	0.26	0.1	0.1 J		0.1 J
Nickel	7440-02-0	mg/kg	TRG	36	33	27.5 J	†	29 J	50 J	25 J	23		26
Potassium	7440-09-7	mg/kg	TRG	1700	1800	1045 J	1	1000 J	570 J	1000 J	1100		1000
Selenium	7782-49-2	mg/kg	TRG	0.88	0.79	2.75 J		2.4 J	1.3 J	2 J	0.59 J		0.76 J-
Silver	7440-22-4	mg/kg	TRG	0.26	0.2	0.235 J		0.28	0.79	0.29	0.52		0.18
Sodium	7440-23-5	mg/kg	TRG	280	300	245 J		180 J	150 J	140 J	110		100
Thallium	7440-28-0	mg/kg	TRG	0.25 J+	0.22 J+	0.18 J		0.19	0.13	0.16	0.15		0.17
Vanadium	7440-62-2	mg/kg	TRG	40	36	34 J		35 J	75 J	28 J	27		23
Zinc	7440-66-6	mg/kg	TRG	190	170	175 J		180 J	250 J	150 J	180		160 J
Cyanide	57-12-5	ug/kg	TRG	740	1800	895 J		380 J	550	480			
Pesticides													
4,4'-DDD	72-54-8	mg/kg	TRG	0.003 J	0.0028 J	0.0055 J		0.0046 J	0.0057 J	0.003 J			
4,4'-DDE	72-55-9	mg/kg	TRG	0.0056 J	0.0046 J	0.01 J		0.0083	0.0079 J	0.0031 J			
4,4'-DDT	50-29-3	mg/kg	TRG	0.001 J	0.00086 J	0.0029 J		5.7E-05 U	4.4E-05 U	0.0011 J			
Aldrin	309-00-2	mg/kg	TRG	0.00033 J	0.00048 J	0.00073 J+		5.8E-05 U	4.5E-05 U	4.1E-05 UJ			
alpha-BHC	319-84-6	mg/kg	TRG	6.9E-05 U	7.1E-05 U	0.00011 UJ		0.00016 U	0.00013 U	0.00011 UJ			
beta-BHC	319-85-7	mg/kg	TRG	0.00011 U	0.00011 U	0.00018 UJ		0.00012 U	9.6E-05 U	8.7E-05 UJ	1	1	

March 100-076 mg mg mg mg mg mg mg m							,		•	•	•	
Profession Pro												
Proceedings												
Section Sect					N	N	N	N	IN IN	IN IN	N	N
Tracket Description					4/30/2015	4/30/2015	6/9/2016	6/28/2016	6/28/2016	6/28/2016	6/21/2017	11/11/2013
Common												
March Marc												
Control Cont				i .								
Coloning Story 10												
March Marc					0.049 J	0.051 J						
March Marc												
Secondary Seco												
March Marc												
March Marc	Endosulfan II										<u> </u>	
March 172-04 mg/mg MG 2077 J 20001 J 20001 J 20001 J 20001 J 20000	Endosulfan Sulfate											
March Marc	Endrin											
March Marc	Endrin aldehyde		mg/kg	TRG	8.2E-05 U	0.0011 J	0.00014 UJ	0.00016 U	0.00013 U	0.00011 UJ		
Second S	Endrin ketone											
Property Property	gamma-BHC (Lindane)											
amouganeme	Heptachlor											
Marchane S00.542 Margh TRO 2028 U 20					0.00044 J	0.00052 J	0.00093 J	0.00067 J	0.0035 J	4.7E-05 UJ		
Memory					0.0020.11	0.002011	0.0047.111	0.048.11	0.04411	0.042.111	1	
March					U.UU28 U	0.0029 U	0.004/ UJ	U.U18 U	U.U14 U	U.U 13 UJ	_	
Methods Meth		0100-14-2	mg/kg	1110					 	 	 	
NYTHROID 6889-746	Allethrin	584-79-2	ma/ka	TRG			0.02 U	0.0041 UJ	0.0043 UJ	0.0092 UJ	†	
PRICENTIFIED 1985 1986	BAYTHROID											
ANTOL SSID-41-8 SSID	BIPHENTHRIN (TALSTAR)			TRG			0.02 U	0.0041 U	0.0043 U			
EL HAME PRINTFINAL CAME THRINN 930-00-06 mg/kg 1765 1766 1767 1766 1767 1766 1767 1766 1767	CYPERMETHRIN	52315-07-8	mg/kg	TRG			0.02 U	0.0041 U	0.0043 U	0.0092 U		
American	DANITOL	39515-41-8	mg/kg	TRG			0.02 U		0.0043 U			
MARIA CYMALOTHENN	DELTAMETHRIN/TRALOMETHRIN											
MBDA CFHADTHRN 91465-066 mg/kg 78C 0.025 U 0.0041 U 0.0043 U 0.0022 U	Dichloran											
March Mark												
Immethin S266-53-1												
RALLETHINN 2803-529 mg/kg 1RG												
MATHERN 2602-80-2 mg/kg 1RG 0.02 U 0.0041 U 0.0041 U 0.0052 U											<u> </u>	
BEUTHRN 7958-32-2 mg/hg RG	SUMITHRIN											
12674-11-2 mg/kg	TEFLUTHRIN											
Part Part	PCB Aroclors											
1141-16-5	Aroclor-1016	12674-11-2	mg/kg	TRG	0.00086 U	0.00089 U	0.0064 UJ	0.0051 U	0.0039 U	0.0036 U	0.0036 U	0.0078 U
Part Part	Aroclor-1221											
1987-29-6 mg/kg 1987-29-6 mg/kg 176 0.081 J 0.051 J 0.092 J 0.0026 U 0.002 U 0.0018 U 0.035 J + 0.046 J 0.006 U 0.006 U 0.007 U												
1097-69-1 1097-69-1 1097-69-1 1097-69-1 1097-69-1 1097-69-1 1098-69-5 1098												
Product 1860 1106-82-5 mg/kg TRG 0.028 J 0.015 J 0.072 J 0.043 0.26 0.022 0.02 J 0.021 0.031 J												
recior-1262 37324-25-5 mg/kg TRG												
Marcol M					0.020 J	0.010 0	0.0123	0.043	0.20	0.022		
CB, Total Aroclors TOT-PCB-ARO-C mg/kg CALC 0.089 0.066 0.24 0.043 0.73 0.022 0.087 0.077	Aroclor-1268								†	†		
PH	PCB, Total Aroclors				0.089	0.066	0.24	0.043	0.73	0.022		
Range Organics (C20-C36) C20-C36 mg/kg TRG	ТРН	İ	T .		İ	İ			İ	İ	İ	
VOCs	Diesel Range Organics (C10-C20)		mg/kg								1.0	
1'Biphenyl 92-52-4 mg/kg TRG	Oil Range Organics (C20-C36)	C20C36	mg/kg	TRG							420	
2.4.5-Tetrachlorobenzene 95-94-3 mg/kg TRG 0.019 U 0.019 U 0.003 UJ 0.024 U 0.019 U 0.017 U 0.0068 U 0.0074 U 0.0068 U 0.31 U 0.31 U 0.31 U 0.31 U 0.31 U 0.45-Tinchlorobenzene 95-94-3 mg/kg TRG 0.073 U 0.075 U 0.0075 U 0.006 U 0.009 U 0.0074 U 0.0068 U 0.0074 U 0.0068 U 0.0074 U 0.0068 U 0.0074 U 0.0068 U 0.0074 U 0.0068 U 0.0074 U 0.0068 U 0.0074 U 0.0068 U 0.0074 U 0.0068 U 0.0074 U 0.0068 U 0.0074 U 0.0068 U 0.0074 U 0.0068 U 0.0074 U 0.0068 U 0.0074 U 0.0068 U 0.0074 U 0.0068 U 0.0074 U 0.0068 U 0.0074 U 0.0068 U 0.0074 U 0.	SVOCs											
2,4-Trichlorobenzene 120-82-1 mg/kg TRG 0.019 U 0.019 U 0.093 UJ 0.024 U 0.019 U 0.017 U 2-oxybis(1-Chloropropane) 108-60-1 mg/kg TRG 0.0073 U 0.0075 U 0.036 UJ 0.0095 U 0.0074 U 0.0068 U 3,7,8-Tetrachlorodibenzo-p-dioxin 1746-01-6 mg/kg TRG I I I 4,8-Trichlorophenol 95-95-4 mg/kg TRG I I I 4,8-Trichlorophenol 95-95-4 mg/kg TRG 0.051 U 0.052 U 0.25 U 4-Dirichlorophenol 120-83-2 mg/kg TRG 0.0068 U 0.034 UJ 0.068 U 0.069 U 0.069 U 4-Dimitrophenol 105-67-9 mg/kg TRG 0.054 U 0.054 U 0.058 UJ 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.052 U 0.070 U 4-Dimitrophenol 105-67-9 mg/kg TRG 0.027 U 0.028 U 0.041 U 0.035 U 0.041 U 0.070 U 4-Dimitrophenol 121-14-2 mg/kg TRG 0.027 U 0.028 U 0.14 U 0.035 U 0.01 U 0.025 U 0.025 U 0.01 U	1,1'-Biphenyl											
2-oxybis(1-Chioropropane) 108-60-1 mg/kg TRG 0.0073 U 0.0075 U 0.036 UJ 0.0095 U 0.0074 U 0.0068 U 3.4,6-Tetrachiorophenol 58-90-2 mg/kg TRG 0.0073 U 0.0075 U 0.036 UJ 0.0095 U 0.0074 U 0.0068 U 0.31 U 0.34 U 0.31 U 0.31 U 0.31 U 0.31 U 0.32 U 0.0069					0.040.11	0.040.11	0.000 111	0.00411	0.040.11	0.047.11		
3.4.6-Tetrachlorophenol 58-90-2 mg/kg TRG											1	
3,7,8-Tetrachlorodibenze-p-dioxin 1746-01-6 mg/kg TRG					U.UU/3 U	U.UU/5 U	U.U36 UJ	U.UU95 U	U.UU/4 U	U.UU08 U	_	
4,5-Trichlorophenol 95-95-4 mg/kg TRG 0.051 U 0.052 U 0.25 UJ 0.066 U 0.051 U 0.047 U 4.6-Trichlorophenol 88-06-2 mg/kg TRG 0.051 U 0.052 U 0.25 UJ 0.066 U 0.051 U 0.047 U 4.6-Trichlorophenol 120-83-2 mg/kg TRG 0.068 U 0.0069 U 0.034 UJ 0.0089 U 0.0069 U 0.0609 U 0.065 U 4-Dimetrylphenol 105-67-9 mg/kg TRG 0.053 U 0.054 U 0.26 UJ 0.069 U 0.053 U 0.053 U 0.054 U 0.059 U 0.053 U 0.054 U 0.059 U 0.055 U 0.							17111	0.43 []	0.34 H	0.31 []	 	
4,6-Trichlorophenol 88-06-2 mg/kg TRG 0.051 U 0.052 U 0.25 UJ 0.066 U 0.051 U 0.047 U 0.047 U 0.047 U 0.051 U 0.051 U 0.051 U 0.051 U 0.051 U 0.051 U 0.052 U 0.051 U 0.051 U 0.051 U 0.052 U 0.053 U 0.055 U	2,4,5-Trichlorophenol						50	0.100	0.0 . 0	0.0.0	 	
4-Dichlorophenol 120-83-2 mg/kg TRG 0.0068 U 0.0069 U 0.034 UJ 0.0088 U 0.0069 U 0.0063 U 0.0063 U 0.0063 U 0.0069 U 0.0063 U 0.0069 U 0.0063 U 0.0069 U 0.0063 U 0.0069 U 0.0	2,4,6-Trichlorophenol			_	0.051 U	0.052 U	0.25 UJ	0.066 U	0.051 U	0.047 U		
4-Dinitrophenol 51-28-5 mg/kg TRG 0.4 U 0.41 U 0.52 U 0.41 U 0.37 U 4-Dinitrophenol 121-14-2 mg/kg TRG 0.027 U 0.028 U 0.14 UJ 0.035 U 0.028 U 0.025 U	2,4-Dichlorophenol										İ	
4-Dinitrotoluene 121-14-2 mg/kg TRG 0.027 U 0.028 U 0.14 UJ 0.035 U 0.028 U 0.025 U 0.025 U	2,4-Dimethylphenol	105-67-9	mg/kg	TRG	0.053 U	0.054 U	0.26 UJ	0.069 U	0.053 U	0.049 U		
	2,4-Dinitrophenol			_								
6-Dinitrotoluene 606-20-2 mg/kg TRG 0.035 U 0.036 U 0.17 UJ 0.045 U 0.035 U 0.032 U 0.032 U	2,4-Dinitrotoluene											
	2,6-Dinitrotoluene	606-20-2	mg/kg	TRG	0.035 U	0.036 U	0.17 UJ	0.045 U	0.035 U	0.032 U	l	

									1				
			Location ID	R6-22	R6-23	R6-30	R6-30	R6-31	R6-32	R6-33	SED1.5C	SED1.5C	SED10C
			Sample ID	RI-R6-22-SS	RI-R6-23-SS	P2-R6-30-SS	P2-R6-40-SS	P2-R6-31-SS	P2-R6-32-SS	P2-R6-33-SS	SED1.5C00AN	SED1.5C00AR	SED10C00N
			Sample Type	N	N	N	FD	N	N	N	N	FD	N
			nt Sample ID	4/00/0045	4/00/0045	0/0/0040	P2-R6-30-SS	0/00/0040	0/00/0040	0/00/0040	0/04/0047	SED1.5C00AN	44/44/0040
			Sample Date	4/30/2015	4/30/2015	6/9/2016	6/9/2016	6/28/2016	6/28/2016	6/28/2016	6/21/2017	6/21/2017	11/11/2013
			Task Code Depth Interval	DOEE_Phase1 0 - 0.5 ft	DOEE_Phase1 0 - 0.5 ft	DOEE_Phase2 0 - 0.5 ft	DOEE_Phase2 0 - 0.5 ft	DOEE_Phase2 0 - 0.5 ft	DOEE_Phase2 0 - 0.5 ft	DOEE_Phase2 0 - 0.5 ft	0 - 0.33 ft	WP#3-2017 Waterside 0 - 0.33 ft	Phase2-2013 0 - 0.5 ft
	ı		peptn interval	0 - 0.5 π	υ - υ.5 π	0 - 0.5 π	0 - 0.5 π	υ - υ.5 π	0 - 0.5 π	0 - 0.5 π	0 - 0.33 π	0 - 0.33 π	0 - 0.5 π
Chemical	CAS	Units	Result Type										
2-Chloronaphthalene	91-58-7	mg/kg	TRG	0.0071 U	0.0072 U	0.035 UJ		0.0092 U	0.0071 U	0.0066 U			
2-Chlorophenol	95-57-8	mg/kg	TRG	0.028 U	0.028 U	0.14 UJ		0.036 U	0.028 U	0.026 U			
2-Methylnaphthalene	91-57-6	mg/kg	TRG										
2-Methylphenol	95-48-7	mg/kg	TRG										
2-Nitroaniline	88-74-4	mg/kg	TRG										
2-Nitrophenol	88-75-5	mg/kg	TRG	0.037 U	0.038 U	0.19 UJ		0.048 U	0.038 U	0.035 U			
3,3'-Dichlorobenzidine	91-94-1	mg/kg	TRG	0.036 U	0.037 U			0.046 U	0.036 U	0.033 U			
3-Nitroaniline	99-09-2	mg/kg	TRG										
4,6-Dinitro-2-methylphenol	534-52-1	mg/kg	TRG	0.14 U	0.14 U			0.18 U	0.14 U	0.13 U			
4-Bromophenyl-phenylether	101-55-3	mg/kg	TRG	0.029 U	0.03 U	0.15 UJ		0.038 U	0.03 U	0.027 U			
4-Chloro-3-methylphenol	59-50-7	mg/kg	TRG	0.031 U	0.032 U	0.15 UJ		0.04 U	0.031 U	0.029 U			
4-Chloroaniline	106-47-8	mg/kg	TRG										
4-Chlorophenyl-phenylether	7005-72-3	mg/kg	TRG	0.038 U	0.038 U	0.19 UJ		0.049 U	0.038 U	0.035 U			
4-Methylphenol	106-44-5	mg/kg	TRG										
4-Nitroaniline	100-01-6	mg/kg	TRG						ļ				
4-Nitrophenol	100-02-7	mg/kg	TRG		0.13 U	0.61 UJ		0.16 U	0.12 U	0.11 U			
Acenaphthene	83-32-9	mg/kg	TRG		0.039 J	0.032 UJ		0.035 J	0.069	0.027 J	0.15 U		0.024 J
Acenaphthylene	208-96-8	mg/kg	TRG	0.067 J	0.065 J	0.11 J		0.097	0.11	0.083	0.15 U		0.033 J
Acetophenone	98-86-2	mg/kg	TRG										
Anthracene	120-12-7	mg/kg	TRG	0.11	0.15	0.17 J		0.13	0.2	0.12	0.078 J		0.082
Atrazine	1912-24-9	mg/kg	TRG										
Benzaldehyde	100-52-7	mg/kg	TRG	4.411	4511	7111		4.011	4.411	4.0.11			
Benzidine	92-87-5 56-55-3	mg/kg	TRG		1.5 U 0.72	7 UJ 0.56 J		1.8 U 0.58	1.4 U	1.3 U 0.52	0.4		0.48
Benzo(a)anthracene Benzo(a)pyrene	50-32-8	mg/kg mg/kg	TRG TRG		0.72	0.56 J		0.67	1.1 J	0.52 0.58 J	0.56		0.58
Benzo(b)fluoranthene	205-99-2	mg/kg	TRG		1.1	1.2 J		1.1	1.7 J	0.56 J	0.88		0.84
Benzo(g,h,i)perylene	191-24-2	mg/kg	TRG		1.1	1.2 J		0.84	1.1 J	0.68 J	0.52		0.49 J
Benzo(k)fluoranthene	207-08-9	mg/kg	TRG	•	0.42	0.43 J		0.43	0.58 J	0.3 J	0.31		0.35
Benzoic acid	65-85-0	mg/kg	TRG	1 J	1.1 J	0.7 UJ		0.97 J	0.84 J	0.75 J	0.01		0.00
bis-(2-chloroethoxy)methane	111-91-1	mg/kg	TRG		0.023 U	0.11 UJ		0.029 U	0.022 U	0.021 U			
bis-(2-Chloroethyl)ether	111-44-4	mg/kg	TRG		0.0093 U	0.045 UJ		0.012 U	0.0092 U	0.0084 U			
bis-(2-Ethylhexyl)phthalate	117-81-7	mg/kg	TRG	1.2	1.1	1.8 J		1.8	2.3	1.1			
Butylbenzylphthalate	85-68-7	mg/kg	TRG	0.086 J	0.059 J	0.23 UJ		0.06 U	2.5	0.082 J			
Caprolactam	105-60-2	mg/kg	TRG										
Carbazole	86-74-8	mg/kg	TRG										
Chrysene	218-01-9	mg/kg	TRG	0.94	1.1	1 J		0.98	1.5	0.81	0.65		0.7
Dibenzo(a,h)anthracene	53-70-3	mg/kg	TRG	0.2	0.19	0.037 UJ		0.16	0.25 J	0.15 J	0.13 J		0.14
Dibenzofuran	132-64-9	mg/kg	TRG										
Diethylphthalate	84-66-2	mg/kg	TRG	0.037 U	0.038 U	0.18 UJ		0.048 U	0.037 U	0.034 U			
Dimethylphthalate	131-11-3	mg/kg	TRG		0.038 U	0.18 UJ		0.048 U	0.037 U	0.034 U			
Di-n-butylphthalate	84-74-2	mg/kg	TRG	0.042 U	0.043 U	0.21 UJ		0.055 U	0.056 J	0.039 U			
Di-n-octylphthalate	117-84-0	mg/kg	TRG	0.036 U	0.036 U	0.18 UJ		0.046 U	0.34 J	0.29 J			
Diphenylhydrazine-1,2	122-66-7	mg/kg	TRG		0.044 U	0.21 UJ		0.056 U	0.044 U	0.04 U			
Fluoranthene	206-44-0	mg/kg	TRG		1.8	1.7 J		1.3	2.4	1.4	0.96		1.1
Fluorene	86-73-7	mg/kg	TRG		0.059 J	0.073 J		0.05 J	0.087	0.047 J	0.15 U	ļ	0.026 J
Hexachlorobenzene	118-74-1	mg/kg	TRG		0.0074 U	0.036 UJ		0.0094 U	0.0073 U	0.0067 U			
Hexachlorobutadiene	87-68-3	mg/kg	TRG	0.0076 U 0.037 U	0.0078 U	0.038 UJ		0.0098 U	0.0076 U	0.007 U 0.034 U	1		
Hexachlorocyclo-pentadiene Hexachloroethane	77-47-4 67-72-1	mg/kg	TRG TRG	0.037 U 0.024 U	0.037 U 0.025 U	0.12 UJ		0.047 U 0.032 U	0.037 U 0.025 U	0.034 U 0.023 U			
	193-39-5	mg/kg	TRG			0.12 UJ 0.92 J			0.025 U 0.91 J	0.023 U 0.55 J	0.44		0.42
Indeno(1,2,3-cd)pyrene Isophorone	78-59-1	mg/kg mg/kg	TRG	0.8 0.026 U	0.86 0.026 U	0.92 J 0.13 UJ		0.65 0.033 U	0.91 J 0.026 U	0.55 J 0.024 U	U. 111		0.42
Naphthalene	91-20-3	mg/kg	TRG	0.026 U	0.026 U	0.13 UJ 0.029 UJ		0.033 U	0.026 U	0.024 U	0.15 U		0.013 J
Nitrobenzene	98-95-3	mg/kg	TRG		0.029 U	0.14 UJ		0.027 J 0.037 U	0.028 U	0.026 U	0.10 0		0.0133
Nitrosodimethylamine-n	62-75-9	mg/kg	TRG	0.028 U	0.029 U	0.14 UJ		0.037 U	0.028 U	0.026 U	1		
N-Nitroso-di-n-propylamine	621-64-7	mg/kg	TRG	0.0079 U	0.0081 U	0.039 UJ		0.01 U	0.029 U	0.0074 U			
N-Nitrosodiphenylamine	86-30-6	mg/kg	TRG	0.031 U	0.032 U	0.16 UJ		0.041 U	0.032 U	0.029 U	<u> </u>		
Pentachlorophenol	87-86-5	mg/kg	TRG		0.031 U			0.039 U	0.031 U	0.028 U	1		
Phenanthrene	85-01-8	mg/kg	TRG		0.61	0.53 J		0.4	0.8	0.41	0.31		0.38
Phenol	108-95-2	mg/kg	TRG	0.008 U	0.0082 U	0.04 UJ		0.041 J	0.034 J	0.0074 U	1		
		~ ~							1		1		

								1			T		
			Location ID	R6-22	R6-23	R6-30	R6-30	R6-31	R6-32	R6-33	SED1.5C	SED1.5C	SED10C
			Sample ID Sample Type	RI-R6-22-SS N	RI-R6-23-SS N	P2-R6-30-SS N	P2-R6-40-SS FD	P2-R6-31-SS N	P2-R6-32-SS N	P2-R6-33-SS N	SED1.5C00AN N	SED1.5C00AR FD	SED10C00N N
			nt Sample Type	N	N	N	P2-R6-30-SS	IN IN	IN IN	IN IN	N	SED1.5C00AN	N
			Sample Date	4/30/2015	4/30/2015	6/9/2016	6/9/2016	6/28/2016	6/28/2016	6/28/2016	6/21/2017	6/21/2017	11/11/2013
			Task Code	DOEE_Phase1	DOEE_Phase1	DOEE_Phase2	DOEE_Phase2	DOEE Phase2	DOEE_Phase2	DOEE_Phase2		WP#3-2017 Waterside	Phase2-2013
			Depth Interval	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.33 ft	0 - 0.5 ft
			i .										
Chemical	CAS	Units	Result Type										
Pyrene	129-00-0	mg/kg	TRG	0.96	1.1	1.2 J		1.1	1.9	0.97	0.79		0.83
Polybrominated Diphenyl Ethers			TD 0										
PBDE47 PBDE99	5436-43-1 60348-60-9	mg/kg mg/kg	TRG TRG			0.024 U 0.024 U		0.024 U 0.024 U	0.023 U 0.023 U	0.022 U 0.022 U			
PBDE-100	189084-64-8	mg/kg	TRG			0.024 U		0.024 U	0.023 U	0.022 U			
PBDE153	68631-49-2	mg/kg	TRG			0.024 U		0.024 U	0.023 U	0.022 U	<u> </u>		
PBDE-154	207122-15-4	mg/kg	TRG			0.024 U		0.024 U	0.023 U	0.022 U			
VOCs													
1,1,1-Trichloroethane	71-55-6	mg/kg	TRG	0.00099 U	0.001 U			0.0029 U	0.0022 U	0.002 U			
1,1,2,2-Tetrachloroethane	79-34-5	mg/kg	TRG	0.0015 U	0.0015 U			0.011 U	0.0082 U	0.0075 U			
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	mg/kg	TRG										
1,1,2-Trichloroethane	79-00-5	mg/kg	TRG		0.0017 U			0.0074 U	0.0058 U	0.0053 U			
1,1-Dichloroethane	75-34-3	mg/kg	TRG		0.0012 U			0.003 U	0.0023 U	0.0021 U			
1,1-Dichloroethene	75-35-4	mg/kg	TRG	0.0017 U	0.0018 U			0.0038 U	0.003 U	0.0027 U	 		
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	87-61-6 120-82-1	mg/kg mg/kg	TRG TRG					-		_	_		
1,2-Dibromo-3-chloropropane	96-12-8	mg/kg	TRG										
1,2-Dibromoethane	106-93-4	mg/kg	TRG					†	t	†	†		
1,2-Dichlorobenzene	95-50-1	mg/kg	TRG	0.0016 U	0.0017 U			0.0086 U	0.0067 U	0.0061 U			
1,2-Dichloroethane	107-06-2	mg/kg	TRG		0.0013 U			0.003 U	0.0023 U	0.0021 U			
1,2-Dichloropropane	78-87-5	mg/kg	TRG	0.0011 U	0.0011 U			0.005 U	0.0038 U	0.0035 U			
1,3-Dichlorobenzene	541-73-1	mg/kg	TRG	0.0013 U	0.0014 U			0.0079 U	0.0061 U	0.0056 U			
1,4-Dichlorobenzene	106-46-7	mg/kg	TRG	0.0013 U	0.0013 U			0.0079 U	0.0061 U	0.0056 U			
1,4-Dioxane	123-91-1	mg/kg	TRG										
2-Butanone	78-93-3	mg/kg	TRG										
2-Hexanone	591-78-6	mg/kg	TRG										
4-Methyl-2-pentanone Acetone	108-10-1 67-64-1	mg/kg mg/kg	TRG TRG						-				
Acrolein	107-02-8	mg/kg	TRG	0.014 U	0.015 U			0.24 U	0.18 U	0.17 U	<u> </u>		
Acrylonitrile	107-13-1	mg/kg	TRG		0.022 U			0.066 U	0.051 U	0.047 U			
Benzene	71-43-2	mg/kg	TRG		0.0014 U			0.008 U	0.0062 U	0.0057 U			
Bromochloromethane	74-97-5	mg/kg	TRG										
Bromodichloromethane	75-27-4	mg/kg	TRG		0.0012 U			0.0053 U	0.0041 U	0.0038 U			
Bromoform	75-25-2	mg/kg	TRG	0.0009 U	0.00092 U			0.012 U	0.0094 U	0.0086 UJ			
Bromomethane	74-83-9	mg/kg	TRG	0.0015 U	0.0015 U			0.0046 U	0.0035 U	0.0032 U			
Carbon Disulfide	75-15-0	mg/kg	TRG	0.00004.11	0.0000011			0.000011	0.000011	0.000011			
Carbon Tetrachloride Chlorobenzene	56-23-5 108-90-7	mg/kg mg/kg	TRG TRG		0.00093 U 0.0016 U			0.0036 U 0.0059 U	0.0028 U 0.0046 U	0.0026 U 0.0042 U	-		
Chloroethane	75-00-3	mg/kg mg/kg	TRG		0.0016 U 0.0032 U			0.0059 U 0.0057 U	0.0046 U 0.0044 U	0.0042 U	-		
Chloroform	67-66-3	mg/kg	TRG		0.0032 U			0.0037 U	0.0026 U	0.004 U	 		
Chloromethane	74-87-3	mg/kg	TRG		0.0018 U			0.007 U	0.0054 U	0.005 U	1		
cis-1,2-Dichloroethylene	156-59-2	mg/kg	TRG										
cis-1,3-Dichloropropene	10061-01-5	mg/kg	TRG	0.0014 U	0.0014 U			0.0058 U	0.0045 U	0.0041 U			
Cyclohexane	110-82-7	mg/kg	TRG										
Dibromochloromethane	124-48-1	mg/kg	TRG	0.0014 U	0.0015 U			0.0066 U	0.0051 U	0.0047 U			
Dichlorodifluoromethane	75-71-8	mg/kg	TRG										
Dichloropropene, 1,3-	542-75-6	mg/kg	TRG		0.0026			0.0122 U	0.0094 U	0.0086 U			
Ethylbenzene	100-41-4 98-82-8	mg/kg	TRG TRG	0.0013 U	0.0013 U			0.0053 U	0.0041 U	0.0037 U	 		
Isopropylbenzene m, p-Xylene	98-82-8 XYLMP	mg/kg mg/kg	TRG					-		_	_		
Methyl Acetate	79-20-9	mg/kg	TRG					†	 	 	 		
Methyl tert-Butyl Ether (MTBE)	1634-04-4	mg/kg	TRG					†	t	†	†		
Methylcyclohexane	108-87-2	mg/kg	TRG					1	1	1	1		
Methylene Chloride	75-09-2	mg/kg	TRG	0.0045 U	0.0047 U			0.0072 U	0.0048 U	0.0055 U	İ		
o-Xylene	95-47-6	mg/kg	TRG					<u> </u>					
Styrene	100-42-5	mg/kg	TRG										
Tetrachloroethylene	127-18-4	mg/kg	TRG		0.0014 U			0.0033 U	0.0026 U	0.0023 U			
Toluene	108-88-3	mg/kg	TRG		0.0015 U			0.0096 U	0.0075 U	0.0069 U			
trans-1,2-Dichloroethene	156-60-5	mg/kg	TRG	0.0012 U	0.0012 U			0.0027 U	0.0021 U	0.0019 U			

			Location ID	R6-22	R6-23	R6-30	R6-30	R6-31	R6-32	R6-33	SED1.5C	SED1.5C	SED10C
			Sample ID	RI-R6-22-SS	RI-R6-23-SS	P2-R6-30-SS	P2-R6-40-SS	P2-R6-31-SS	P2-R6-32-SS	P2-R6-33-SS	SED1.5C00AN	SED1.5C00AR	SED10C00N
			Sample Type	N	N	N	FD	N	N	N	N	FD	N
		Pare	ent Sample ID				P2-R6-30-SS					SED1.5C00AN	
			Sample Date	4/30/2015	4/30/2015	6/9/2016	6/9/2016	6/28/2016	6/28/2016	6/28/2016	6/21/2017	6/21/2017	11/11/2013
			Task Code	DOEE_Phase1	DOEE_Phase1	DOEE_Phase2	DOEE_Phase2	DOEE_Phase2	DOEE_Phase2	DOEE_Phase2	WP#3-2017 Waterside	WP#3-2017 Waterside	Phase2-2013
			Depth Interval	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.33 ft	0 - 0.5 ft
Chemical	CAS	Units	Result Type										
trans-1,3-Dichloropropene	10061-02-6	mg/kg	TRG	0.0012 U	0.0012 U			0.0064 U	0.0049 U	0.0045 U			
Trichloroethene	79-01-6	mg/kg	TRG	0.0013 U	0.0014 U			0.003 U	0.0023 U	0.0021 U			
Trichlorofluoromethane	75-69-4	mg/kg	TRG										
Vinyl Chloride	75-01-4	mg/kg	TRG	0.00095 U	0.00098 U			0.0068 U	0.0053 U	0.0048 U			
Vinyl ether, 2-chloroethyl	110-75-8	mg/kg	TRG	0.0016 U	0.0016 U			0.012 U	0.0093 U	0.0085 U			
Xylenes (total)	1330-20-7	mg/kg	CALC										

			Location ID	SED1C	SED2.5B	SED2C	SED4C	SED6.5D	SED6.5D	SED6.5E	SED6.5E	SED6C	SED6C
			Sample ID	SED1C00N	SED2.5B00N	SED2C00N	SED4C00N	SED6.5D00EN	SED6.5D00N	SED6.5E00EN	SED6.5E00N	SED6C00EN	SED6C00N
			Sample Type	N N	N	N	N	N	N	N	N	N N	N
		Par	ent Sample ID										
			Sample Date	11/7/2013	11/7/2013	11/6/2013	11/12/2013	6/9/2017	11/25/2013	6/8/2017	11/25/2013	6/7/2017	11/14/2013
			Task Code	Phase2-2013	Phase2-2013	Phase2-2013	Phase2-2013	WP#3-2017 Waterside		WP#3-2017 Waterside	Phase2-2013	WP#3-2017 Waterside	Phase2-2013
			Depth Interval	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft
Chemical	CAS	Units	Result Type										
Dioxins/Furans 1.2.3.4.6.7.8-Heptachlorodibenzofuran	67562-39-4		TRG			0.000155		2.33E-05	-	6.58E-05	0.000307	2.51E-05	
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	35822-46-9	mg/kg mg/kg	TRG			0.000181	-	9.74E-05	-	0.000237	0.00108	0.000143	
1,2,3,4,7,8,9-Heptachlorodibenzofuran	55673-89-7	mg/kg	TRG			4.83E-06 JN		2.16E-06		7.66E-06	4.16E-05	2.14E-06 JN	
1.2.3.4.7.8-Hexachlorodibenzofuran	70648-26-9	mg/kg	TRG			0.000128 J		4.9E-06		1.62E-05	0.000158 JN	4.14E-06	
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	39227-28-6	mg/kg	TRG			1.28E-05		4.59E-06			8.35E-05	3.63E-06	
1,2,3,6,7,8-Hexachlorodibenzofuran	57117-44-9	mg/kg	TRG			3.58E-05 JN		5.37E-06		1.74E-05	8.54E-05	4.63E-06	
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	57653-85-7	mg/kg	TRG			1.79E-05		8.94E-06		2.69E-05	0.000131	7.98E-06	
1,2,3,7,8,9-Hexachlorodibenzofuran	72918-21-9	mg/kg	TRG			7.98E-07 JN		3.85E-07 JN		2.53E-06 J	6.56E-06	4.55E-07 JN	
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	19408-74-3	mg/kg	TRG			3.32E-05 J		7.44E-06		2.35E-05	0.000196	6.07E-06	
1,2,3,7,8-PeCDF	57117-41-6	mg/kg	TRG			1.71E-05		3.13E-06 J		1.05E-05 J	4.59E-05	2.09E-06 J	
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	40321-76-4	mg/kg	TRG			1.05E-05		4.43E-06		1.54E-05	7.6E-05	3.18E-06	
2,3,4,6,7,8-Hexachlorodibenzofuran	60851-34-5	mg/kg	TRG			2.66E-05 JN		7.04E-06		2.22E-05	8.13E-05 JN	6.01E-06	
2,3,4,7,8-Pentachlorodibenzofuran	57117-31-4	mg/kg	TRG			2.83E-05		6.82E-06 J		2.12E-05 J	6.65E-05	8.32E-06 J	
2,3,7,8-Tetrachlorodibenzofuran	51207-31-9	mg/kg	TRG		ļ	9.98E-06	ļ	2.29E-06		7.58E-06	2.56E-05 JN	2.23E-06	
2,3,7,8-Tetrachlorodibenzo-p-dioxin	1746-01-6	mg/kg	TRG		1	2.08E-06 JN	1	9.18E-07	1	3.05E-06	1.37E-05	7.43E-07	
Octachlorochlorodibenzofuran Octachlorochlorodibenzo-p-dioxin	39001-02-0 3268-87-9	mg/kg mg/kg	TRG		1	3.9E-05 0.00318	1	2.55E-05 0.00107	 	8.39E-05 0.00242	0.000289 0.00861 J	5.52E-05 0.00379	
TCDD TEQ HH	DFTEQ-HH	mg/kg	CALC			5.25E-05		1.31E-05		4.21E-05	0.000205	1.29E-05	
Total HpCDD	37871-00-4	mg/kg	TRG			0.000373		0.000202		0.000483	0.00204	0.000293	
Total HpCDF	38998-75-3	mg/kg	TRG			0.000373 0.000211 JN		4.6E-05		0.000403	0.002597	6.46E-05	
Total HxCDD	34465-46-8	mg/kg	TRG			0.000211314		0.0001		0.000132	0.000557	8.62E-05	
Total HxCDF	55684-94-1	mg/kg	TRG			0.000472 JN		6.35E-05		0.000198	0.000885 JN	7.76E-05	
Total PeCDD	36088-22-9	mg/kg	TRG			0.00031 JN		6.95E-05		0.000225	0.00216 JN	4.47E-05	
Total PeCDF	30402-15-4	mg/kg	TRG			0.000591 JN		7.15E-05		0.000243	0.00097 JN	9.08E-05	
Total TCDD	41903-57-5	mg/kg	TRG			7.13E-05 JN		3.34E-05		0.000114	0.000512 JN	2.02E-05	
Total TCDF	55722-27-5	mg/kg	TRG			0.000593 JN		5.97E-05		0.000235	0.000849 JN	6.25E-05	
Inorganics													
Aluminum	7429-90-5	mg/kg	TRG	5200	6500	6200	10000	8200	13000	7000	6000	13000	9800
Antimony	7440-36-0	mg/kg		0.39	0.39	0.5 J-	0.64 J-	1.3	0.77 J-	2.8	1.4 J-		0.49 J-
Arsenic	7440-38-2	mg/kg	TRG	2	1.9	2.6	3.4 J-	7	14 J-		5.9 J-		3.6 J-
Barium	7440-39-3	mg/kg	TRG	53	60	61	110	81	120 J-	70	79		89
Beryllium	7440-41-7	mg/kg		0.63	0.8	0.82	1.4	1.1	1.8	0.89	0.73		1.3
Calcium Calcium	7440-43-9 7440-70-2	mg/kg	TRG	0.58 1900	0.52 2300	0.92 2500	1.1	2.5 3600	2.8 J- 1400 J-	3000	3.8 J- 3000	0.99 4400	1.2 2800 J-
Chromium	7440-70-2	mg/kg mg/kg		24	30	29 J+	45	40	1400 J- 47 J-	31	31	51	45
Cobalt	7440-48-4	mg/kg		11	12	18	19	16	17 J-		16	22	19
Copper	7440-50-8	mg/kg		28	33	40 J+	66	74	130	71	96		65
Iron	7439-89-6	mg/kg	TRG	14000	17000	19000	27000	20000	17000	17000	16000		26000
Lead	7439-92-1	mg/kg		37	44	61	80	99	140	160	130	62	71
Magnesium	7439-95-4	mg/kg	TRG	2600	2800	2800	3600	3500	1800	2900	2400	4400	2500
Manganese	7439-96-5	mg/kg	TRG	160	210	200	390	190	130 J-	160	150	430	390
Mercury	7439-97-6	mg/kg	TRG	0.11	0.086	0.15	0.24	0.26	0.27 J	0.23	0.23 J	0.24	0.23 J+
Nickel	7440-02-0	mg/kg		19	22	29	37	47	91 J-		65 J-		36
Potassium	7440-09-7	mg/kg	TRG	1000	1100	1000	1200	1000	590		610		1100
Selenium	7782-49-2	mg/kg		0.53	0.62	0.84	1.3 J-	0.97	1.5 J-	0.86	0.78 J-	1.4	1.3 J-
Silver	7440-22-4	mg/kg		0.15	0.16	0.27	0.43	0.99	0.8	0.63	1.5 J-		0.58
Sodium	7440-23-5	mg/kg	TRG	110	120	140	160	220	140	190	140	250	120 J-
Thallium	7440-28-0	mg/kg		0.15	0.16	0.19	0.25	0.22	0.53	0.18	0.16 J-	0.24	0.23 J-
Vanadium	7440-62-2	mg/kg		21	22	27	41	63	250 J+	77	120		37
Zinc Cyanide	7440-66-6 57-12-5	mg/kg ug/kg	TRG TRG	140	130	200	260 J-	340	300 J-	340	420	290	260
	57-12-5	ug/Kg	ING	-	 	 	 	+	 	1		+	
Pesticides 4,4'-DDD	72-54-8	ma/ka	TRG		1	0.0041 J	1	0.0044 J	 	0.004 J	0.0024 J	0.0063 J	
4,4'-DDE	72-55-9	mg/kg mg/kg	TRG		 	0.0041 J	1	0.0044 J	-	0.004 J	0.0024 J	0.0063 J 0.02 J+	
4.4'-DDT	50-29-3	mg/kg	TRG		1	0.0028 J	1	0.00093 U	 	0.0001 J	0.0033 J	0.02 34 0.0013 U	
Aldrin	309-00-2	mg/kg	TRG		1	0.0028 J	1	0.00093 U	 		0.00025 J	0.0013 U	
							+	0.00093 U					
alpha-BHC	319-84-6	mg/kg	TRG			0.00083 U				0.001 U	0.00076 U	0.0013 U	

												_	
			Location ID	SED1C	SED2.5B	SED2C	SED4C	SED6.5D	SED6.5D	SED6.5E	SED6.5E	SED6C	SED6C
			Sample ID	SED1C00N	SED2.5B00N	SED2C00N	SED4C00N	SED6.5D00EN	SED6.5D00N	SED6.5E00EN	SED6.5E00N	SED6C00EN	SED6C00N
			Sample Type	N	N	N	N	N	N	N	N	N	N
			ent Sample ID Sample Date	11/7/2013	11/7/2013	11/6/2013	11/12/2013	6/9/2017	11/25/2013	6/8/2017	11/25/2013	6/7/2017	11/14/2013
			Task Code	Phase2-2013	Phase2-2013	Phase2-2013	Phase2-2013	WP#3-2017 Waterside		WP#3-2017 Waterside	Phase2-2013	WP#3-2017 Waterside	Phase2-2013
			Depth Interval	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft
			Deptirimerval	0 - 0.5 it	0 - 0.5 it	0 - 0.5 it	0 - 0.5 10	0 - 0.00 it	0 - 0.5 it	0 - 0.55 it	0 - 0.5 it	0 - 0.35 it	0 - 0.5 it
Chemical	CAS	Units	Result Type										
Chlordane (Technical)	12789-03-6	mg/kg	TRG										
cis-Chlordane	5103-71-9	mg/kg	TRG			0.0064 J		0.0078		0.0086	0.0058	0.01 J	
delta-BHC	319-86-8	mg/kg	TRG			0.00083 U		0.00093 U		0.001 U	0.0017 J	0.0013 U	
Dieldrin	60-57-1	mg/kg	TRG			0.0015 J		0.00093 U		0.001 U	0.0013 J	0.0035 J	
Endosulfan I	959-98-8	mg/kg	TRG			0.00083 U		0.00093 U		0.001 U	0.00076 U	0.0013 U	
Endosulfan II	33213-65-9	mg/kg	TRG			0.0012		0.00093 U			0.0015 J	0.0013 U	
Endosulfan Sulfate	1031-07-8	mg/kg	TRG			0.0015		0.00093 U		0.001 U	0.0029	R	
Endrin Endrin aldehyde	72-20-8 7421-93-4	mg/kg	TRG			0.0053 0.0006 J		0.00093 U 0.00093 U		0.001 U 0.001 U	0.0055 J 0.00049 J	0.0013 U 0.0013 U	
Endrin aldenyde Endrin ketone	53494-70-5	mg/kg	TRG		-	0.0008 J		0.00093 U		0.001 U	0.00049 J	0.0013 U	
gamma-BHC (Lindane)	58-89-9	mg/kg mg/kg	TRG			0.0024 J		0.00093 U		0.001 U	0.0027 J	0.0013 U	
Heptachlor	76-44-8	mg/kg	TRG	1	 	0.0002 J	1	0.00093 U	1	0.001 U	0.0004 J	0.0013 U	
Heptachlor Epoxide	1024-57-3	mg/kg	TRG		 	0.00072 J	1	0.0012 J	1	0.001 J	0.0021 J	0.0013 J	
Methoxychlor	72-43-5	mg/kg	TRG		1	0.013 J		0.00093 U		0.001 U	0.007 J	R	
Toxaphene	8001-35-2	mg/kg	TRG	İ	İ	0.033 U		0.037 U	İ	0.041 U	0.031 U	0.05 U	
trans-Chlordane	5103-74-2	mg/kg	TRG			0.011		0.0082		0.001 U	0.0077	0.014	
Pyrethroids													
Allethrin	584-79-2	mg/kg	TRG										
BAYTHROID	68359-37-5	mg/kg	TRG										
BIPHENTHRIN (TALSTAR)	82657-04-3	mg/kg	TRG										
CYPERMETHRIN	52315-07-8	mg/kg	TRG										
DANITOL DELTAMETHRIN/TRALOMETHRIN	39515-41-8 52820-00-5	mg/kg	TRG										
Dichloran	99-30-9	mg/kg mg/kg	TRG										
Fenvalerate	51630-58-1	mg/kg	TRG										
LAMBDA CYHALOTHRIN	91465-08-6	mg/kg	TRG										
Penoxalin	40487-42-1	mg/kg	TRG										
Permethrin	52645-53-1	mg/kg	TRG										
PRALLETHRIN	23031-36-9	mg/kg	TRG										
SUMITHRIN	26002-80-2	mg/kg	TRG										
TEFLUTHRIN	79538-32-2	mg/kg	TRG										
PCB Aroclors													
Aroclor-1016	12674-11-2	mg/kg		0.0069 U	0.0074 U	0.0042 U	0.011 U	0.0047 U	0.008 U		0.0076 U		0.011 U
Aroclor-1221 Aroclor-1232	11104-28-2 11141-16-5	mg/kg	TRG	0.0069 U 0.0069 U	0.0074 U 0.0074 U	0.0042 U 0.0042 U	0.011 U 0.011 U	0.0047 U 0.0047 U	0.008 U 0.008 U	0.0051 U 0.0051 U	0.0076 U 0.0076 U	0.0063 U 0.0063 U	0.011 U 0.011 U
Aroclor-1232 Aroclor-1242	53469-21-9	mg/kg	TRG	0.0069 U	0.0074 U	0.0042 U	0.011 U	0.0047 U	0.008 U	0.0051 U	0.0076 U	0.0063 U	0.011 U
Aroclor-1248	12672-29-6	mg/kg mg/kg		0.0069 U	0.0074 U	0.0042 U	0.28 J	0.0047 U	0.008 U	0.056 J+	0.24 J		0.13 J
Aroclor-1254	11097-69-1	mg/kg		0.0069 U	0.0074 U	0.0042 U	0.011 U	0.081 J+	0.008 U	0.082 J+	0.0076 UJ		0.011 U
Aroclor-1260	11096-82-5	mg/kg	TRG	0.038 J	0.023 J	0.097 J	0.11 J	0.081 J+	1 J	0.11 J+	0.16 J		0.11 J
Aroclor-1262	37324-23-5	mg/kg	TRG	0.0069 U	0.0074 U	0.0042 U	0.011 U	0.0047 U	0.008 U	0.0051 U	0.0076 UJ	0.0063 U	0.011 U
Aroclor-1268	11100-14-4	mg/kg	TRG	0.0069 U	0.0074 U	0.0042 U	0.011 U	0.0047 U	0.008 U	0.0051 U	0.0076 UJ	0.0063 U	0.011 U
PCB, Total Aroclors	TOT-PCB-ARO-C	mg/kg	CALC	0.11	0.076	0.23	0.39	0.16	1.8	0.25	0.4	0.29	0.24
TPH											-		
Diesel Range Organics (C10-C20)	C10C20	mg/kg	TRG					87		100		88	
Oil Range Organics (C20-C36)	C20C36	mg/kg	TRG					700		640		600	
SVOCs	92-52-4		TDC		1	4.211	1	1	-		0.211	1	
1,1'-Biphenyl 1,2,4,5-Tetrachlorobenzene	92-52-4 95-94-3	mg/kg mg/kg	TRG		_	1.3 U 1.3 U	-	1		-	0.3 U 0.3 U	+	
1,2,4,5-1etrachiorobenzene 1,2,4-Trichlorobenzene	120-82-1	mg/kg mg/kg	TRG	-	 	1.30	-	1	1	1	0.0 0	+ +	
2,2'-oxybis(1-Chloropropane)	108-60-1	mg/kg	TRG		 	0.27 U		 	 	 	0.061 U	+ -	
2,3,4,6-Tetrachlorophenol	58-90-2	mg/kg	TRG			1.3 U					0.3 U	+	
2,3,7,8-Tetrachlorodibenzo-p-dioxin	1746-01-6	mg/kg	TRG		1							1	
2,4,5-Trichlorophenol	95-95-4	mg/kg	TRG			1.3 U					0.3 U	1	
2,4,6-Trichlorophenol	88-06-2	mg/kg	TRG			1.3 U		<u> </u>			0.3 U	<u> </u>	
2,4-Dichlorophenol	120-83-2	mg/kg	TRG			0.27 U					0.061 U		
2,4-Dimethylphenol	105-67-9	mg/kg	TRG			1.3 U					0.3 U		-
2,4-Dinitrophenol	51-28-5	mg/kg	TRG			6.8 U					1.6 U		
2,4-Dinitrotoluene	121-14-2	mg/kg	TRG			1.3 U					0.3 U		
2,6-Dinitrotoluene	606-20-2	mg/kg	TRG		<u> </u>	1.3 U					0.3 U		

			1 ID	05040	OFFICE FR	OFFICE	05040	0500.50	0500.50	0500.55	0500.55	05000	05000
			Location ID Sample ID	SED1C SED1C00N	SED2.5B SED2.5B00N	SED2C SED2C00N	SED4C SED4C00N	SED6.5D SED6.5D00EN	SED6.5D SED6.5D00N	SED6.5E SED6.5E00EN	SED6.5E SED6.5E00N	SED6C SED6C00EN	SED6C SED6C00N
			Sample Type	N SEDICOON	N N	N SEDZCOON	N SED4COON	N N	N SED6.5D00N	N SEDO.SEOUEN	N SED6.SEGGIN	N N	N SEDECOON
		Par	ent Sample ID		.,	.,		.,		,,		"	.,
			Sample Date	11/7/2013	11/7/2013	11/6/2013	11/12/2013	6/9/2017	11/25/2013	6/8/2017	11/25/2013	6/7/2017	11/14/2013
			Task Code	Phase2-2013	Phase2-2013	Phase2-2013	Phase2-2013	WP#3-2017 Waterside	Phase2-2013	WP#3-2017 Waterside	Phase2-2013	WP#3-2017 Waterside	Phase2-2013
			Depth Interva	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft
Chemical	CAS	Units	Result Type			0.07.11					0.004.11		
2-Chlorophenol	91-58-7 95-57-8	mg/kg mg/kg	TRG			0.27 U 1.3 U					0.061 U 0.3 U		
2-Methylnaphthalene	91-57-6	mg/kg	TRG			0.27 U					0.074		
2-Methylphenol	95-48-7	mg/kg	TRG			1.3 U					0.3 U		
2-Nitroaniline	88-74-4	mg/kg	TRG			6.8 U					1.6 U		
2-Nitrophenol	88-75-5	mg/kg	TRG			1.3 U					0.3 U		
3,3'-Dichlorobenzidine	91-94-1	mg/kg	TRG			1.3 U					0.3 U		
3-Nitroaniline	99-09-2	mg/kg	TRG			6.8 U					1.6 U		
4,6-Dinitro-2-methylphenol	534-52-1	mg/kg	TRG			6.8 U					1.6 U		
4-Bromophenyl-phenylether	101-55-3	mg/kg	TRG			1.3 U					0.3 U		
4-Chloro-3-methylphenol 4-Chloroaniline	59-50-7 106-47-8	mg/kg mg/kg	TRG		 	1.3 U	 		 	1	0.3 U 0.3 U	+	
4-Chlorophenyl-phenylether	7005-72-3	mg/kg	TRG		 	1.3 U	1	1			0.3 U	+	
4-Methylphenol	106-44-5	mg/kg	TRG		<u> </u>	1.3 U	1				0.055 J	+	
4-Nitroaniline	100-01-6	mg/kg	TRG		1	6.8 U	1				1.6 U		
4-Nitrophenol	100-02-7	mg/kg	TRG	İ	İ	6.8 U	İ		İ	İ	1.6 U	1	
Acenaphthene	83-32-9	mg/kg	TRG	0.22 U	0.24 U	0.27 U	0.022 J		0.057 J		0.061 U		0.019 J
Acenaphthylene	208-96-8	mg/kg	TRG	0.22 U	0.24 U	0.067 J	0.08 J		0.035 J		0.048 J		0.061 J
Acetophenone	98-86-2	mg/kg	TRG			1.3 U					0.044 J		
Anthracene	120-12-7	mg/kg	TRG	0.082 J	0.12 J	0.13 J	0.087 J		0.06 J		0.089		0.061 J
Atrazine	1912-24-9	mg/kg	TRG			1.3 U					0.3 U		
Benzaldehyde	100-52-7 92-87-5	mg/kg	TRG			1.3 UJ					0.064 J		
Benzidine Benzo(a)anthracene	92-87-5 56-55-3	mg/kg mg/kg	TRG	0.49	0.61	0.59	0.47		0.19		0.4		0.42 J
Benzo(a)pyrene	50-32-8	mg/kg	TRG	0.55	0.61	0.59	0.55		0.19		0.46	+	0.42 J 0.53 J
Benzo(b)fluoranthene	205-99-2	mg/kg	TRG	0.73	1	0.73	0.94		0.32		0.73		0.85 J
Benzo(g,h,i)perylene	191-24-2	mg/kg	TRG	0.47	0.76	0.73	0.74		0.19		0.53		0.35 J
Benzo(k)fluoranthene	207-08-9	mg/kg	TRG	0.4	0.47	0.56	0.32		0.096 J		0.25		0.33 J
Benzoic acid	65-85-0	mg/kg	TRG										
bis-(2-chloroethoxy)methane	111-91-1	mg/kg	TRG			1.3 U					0.3 U		
bis-(2-Chloroethyl)ether	111-44-4	mg/kg	TRG			0.27 U					0.061 U		
bis-(2-Ethylhexyl)phthalate	117-81-7	mg/kg	TRG			1.5 J					1.3		
Butylbenzylphthalate Caprolactam	85-68-7 105-60-2	mg/kg	TRG			1.3 U 6.8 U					0.3 U 1.6 U		
Carbazole	86-74-8	mg/kg mg/kg	TRG			0.067 J					0.06 J		
Chrysene	218-01-9	mg/kg	TRG	0.71	0.94	0.9	0.83		0.32		0.74		0.85 J
Dibenzo(a,h)anthracene	53-70-3	mg/kg	TRG	0.11 J	0.17 J	0.2 J	0.16		0.052 J		0.14	+	0.089 J
Dibenzofuran	132-64-9	mg/kg	TRG		· ·	1.3 U	1			1	0.3 U	1	
Diethylphthalate	84-66-2	mg/kg	TRG			1.3 U					0.3 U		
Dimethylphthalate	131-11-3	mg/kg	TRG			1.3 U					0.3 U		
Di-n-butylphthalate	84-74-2	mg/kg	TRG			1.3 U					0.041 J		
Di-n-octylphthalate	117-84-0	mg/kg	TRG			1.3 U					0.3 U		
Diphenylhydrazine-1,2	122-66-7	mg/kg	TRG			1.0	<u> </u>		0.07				
Fluoranthene	206-44-0 86-73-7	mg/kg	TRG	1 0.22 U	1.4 0.24 U	1.3 0.27 U	0.039 J	+	0.37 0.063 J		1 0.05 J	1	1.1 J 0.044 J
Fluorene Hexachlorobenzene	86-73-7 118-74-1	mg/kg mg/kg	TRG	U.22 U	U.24 U	0.27 U 0.27 U	0.039 J	+	U.U03 J	-	0.05 J 0.061 U	+	U.U44 J
Hexachlorobutadiene	87-68-3	mg/kg	TRG		 	0.27 U	1	+		1	0.061 U	+	
Hexachlorocyclo-pentadiene	77-47-4	mg/kg	TRG		<u> </u>	1.3 U	1				0.3 U	+	
Hexachloroethane	67-72-1	mg/kg	TRG			1.3 U	1	1	1		0.3 U	1	
Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	TRG	0.4	0.61	0.58	0.59		0.14 J	1	0.42		0.35 J
Isophorone	78-59-1	mg/kg	TRG			1.3 U					0.3 U		
Naphthalene	91-20-3	mg/kg	TRG	0.22 U	0.24 U	0.27 U	0.022 J		0.052 J		0.033 J		0.022 J
Nitrobenzene	98-95-3	mg/kg	TRG			2.7 U					0.61 U		
Nitrosodimethylamine-n	62-75-9	mg/kg	TRG										
N-Nitroso-di-n-propylamine	621-64-7	mg/kg	TRG			0.27 U					0.061 U		
N-Nitrosodiphenylamine	86-30-6 87-86-5	mg/kg	TRG			1.3 U 1.3 U	ļ	-			0.3 U		
Pentachlorophenol Phenanthrene	87-86-5 85-01-8	mg/kg mg/kg	TRG	0.37	0.55	1.3 U 0.38	0.32		0.19		0.3 U 0.37	+	0.3 J
Phenol	108-95-2	mg/kg	TRG	0.01	0.50	0.27 U	0.02	+	0.10	-	0.061 U	+	0.00
1 1101101	100-33-2	mgrkg	.10	l	1	0.2. 0	1	1		ı	0.0010	ı	

							•					,	
			Location ID	SED1C	SED2.5B	SED2C	SED4C	SED6.5D	SED6.5D	SED6.5E	SED6.5E	SED6C	SED6C
			Sample ID	SED1C00N N	SED2.5B00N N	SED2C00N N	SED4C00N	SED6.5D00EN N	SED6.5D00N N	SED6.5E00EN N	SED6.5E00N N	SED6C00EN N	SED6C00N N
			Sample Type nt Sample ID	N	N	N	N	N N	IN IN	N	N	N	N
			Sample Date	11/7/2013	11/7/2013	11/6/2013	11/12/2013	6/9/2017	11/25/2013	6/8/2017	11/25/2013	6/7/2017	11/14/2013
			Task Code	Phase2-2013	Phase2-2013	Phase2-2013	Phase2-2013	WP#3-2017 Waterside		WP#3-2017 Waterside	Phase2-2013	WP#3-2017 Waterside	Phase2-2013
			Depth Interval	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft
Chemical	CAS	Units	Result Type										
Pyrene	129-00-0	mg/kg	TRG	0.96	1.2	1	0.84		0.41		0.91		0.86 J
Polybrominated Diphenyl Ethers PBDE47	5436-43-1	mg/kg	TRG										
PBDE99	60348-60-9	mg/kg	TRG										
PBDE-100	189084-64-8	mg/kg	TRG										
PBDE153	68631-49-2	mg/kg	TRG										
PBDE-154	207122-15-4	mg/kg	TRG										
VOCs													
1,1,1-Trichloroethane	71-55-6	mg/kg	TRG			0.0082 U					0.011 U		
1,1,2,2-Tetrachloroethane	79-34-5	mg/kg	TRG			0.0082 U					0.011 U		
1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane	76-13-1 79-00-5	mg/kg mg/kg	TRG			0.0082 U 0.0082 U	 	ļ			0.011 U 0.011 U		
1,1-Dichloroethane	75-34-3	mg/kg	TRG			0.0082 U	 	†			0.011 U		
1,1-Dichloroethene	75-35-4	mg/kg	TRG			0.0082 U	—	†			0.011 U		
1,2,3-Trichlorobenzene	87-61-6	mg/kg	TRG			0.0082 U	İ				0.011 U		
1,2,4-Trichlorobenzene	120-82-1	mg/kg	TRG			0.0082 U					0.011 U		
1,2-Dibromo-3-chloropropane	96-12-8	mg/kg	TRG			0.0082 U					0.011 U		
1,2-Dibromoethane	106-93-4	mg/kg	TRG			0.0082 U					0.011 U		
1,2-Dichlorobenzene	95-50-1	mg/kg	TRG			0.0082 U					0.011 U		
1,2-Dichloroethane 1,2-Dichloropropane	107-06-2 78-87-5	mg/kg mg/kg	TRG TRG			0.0082 U 0.0082 U					0.011 U 0.011 U		
1.3-Dichlorobenzene	541-73-1	mg/kg	TRG			0.0082 U					0.011 U		
1,4-Dichlorobenzene	106-46-7	mg/kg	TRG			0.0082 U					0.011 U		
1,4-Dioxane	123-91-1	mg/kg	TRG			1.6 U					2.1 U		
2-Butanone	78-93-3	mg/kg	TRG			0.012					0.011 U		
2-Hexanone	591-78-6	mg/kg	TRG			0.0082 U					0.011 U		
4-Methyl-2-pentanone	108-10-1	mg/kg	TRG			0.0082 U					0.011 U		
Acetone	67-64-1	mg/kg	TRG			0.055					0.043 U		
Acrolein Acrylonitrile	107-02-8 107-13-1	mg/kg mg/kg	TRG TRG										
Benzene	71-43-2	mg/kg	TRG			0.0082 U					0.011 U		
Bromochloromethane	74-97-5	mg/kg	TRG			0.0082 U					0.011 U		
Bromodichloromethane	75-27-4	mg/kg	TRG			0.0082 U					0.011 U		
Bromoform	75-25-2	mg/kg	TRG			0.0082 U					0.011 U		
Bromomethane	74-83-9	mg/kg	TRG			0.0082 U					0.011 U		
Carbon Disulfide	75-15-0	mg/kg	TRG			0.0082 U					0.011 U		
Carbon Tetrachloride	56-23-5	mg/kg	TRG			0.0082 U					0.011 U		
Chlorobenzene Chloroethane	108-90-7 75-00-3	mg/kg mg/kg	TRG TRG			0.0082 U 0.0082 U	+	 			0.011 U 0.011 U	+	
Chloroform	67-66-3	mg/kg	TRG			0.0082 U	†				0.011 U		
Chloromethane	74-87-3	mg/kg	TRG			0.0082 U	İ				0.011 U		
cis-1,2-Dichloroethylene	156-59-2	mg/kg	TRG			0.0082 U					0.011 U		
cis-1,3-Dichloropropene	10061-01-5	mg/kg	TRG			0.0082 U					0.011 U		
Cyclohexane	110-82-7	mg/kg	TRG			0.0082 U					0.011 U		
Dibromochloromethane	124-48-1	mg/kg	TRG			0.0082 U		ļ			0.011 U		
Dichlorodifluoromethane	75-71-8 542-75-6	mg/kg	TRG TRG			0.0082 U	 	ļ			0.011 U		
Dichloropropene, 1,3- Ethylbenzene	100-41-4	mg/kg mg/kg	TRG			0.0082 U	+	+			0.011 U	+	
Isopropylbenzene	98-82-8	mg/kg	TRG			0.0082 U	—	†		<u> </u>	0.011 U		
	XYLMP	mg/kg	TRG			0.016 U	İ				0.021 U		
Methyl Acetate	79-20-9	mg/kg	TRG			0.0082 U					0.011 U		
Methyl tert-Butyl Ether (MTBE)	1634-04-4	mg/kg	TRG			0.0082 U					0.011 U		
Methylcyclohexane	108-87-2	mg/kg	TRG			0.0082 U					0.011 U		
Methylene Chloride	75-09-2	mg/kg	TRG			0.0082 U		ļ			0.011 U		
o-Xylene Styrene	95-47-6 100-42-5	mg/kg mg/kg	TRG			0.0082 U 0.0082 U	 	ļ			0.011 U 0.011 U		
Tetrachloroethylene	127-18-4	mg/kg	TRG			0.0082 U	+	+			0.011 U	+	
Toluene	108-88-3	mg/kg	TRG			0.0082 U	<u> </u>				0.011 U		
trans-1,2-Dichloroethene	156-60-5	mg/kg	TRG			0.0082 U	1	Ì			0.011 U		

February 2020

					•					•			
			Location ID	SED1C	SED2.5B	SED2C	SED4C	SED6.5D	SED6.5D	SED6.5E	SED6.5E	SED6C	SED6C
			Sample ID	SED1C00N	SED2.5B00N	SED2C00N	SED4C00N	SED6.5D00EN	SED6.5D00N	SED6.5E00EN	SED6.5E00N	SED6C00EN	SED6C00N
			Sample Type	N	N	N	N	N	N	N	N	N	N
		Par	ent Sample ID										
			Sample Date	11/7/2013	11/7/2013	11/6/2013	11/12/2013	6/9/2017	11/25/2013	6/8/2017	11/25/2013	6/7/2017	11/14/2013
			Task Code	Phase2-2013	Phase2-2013	Phase2-2013	Phase2-2013	WP#3-2017 Waterside	Phase2-2013	WP#3-2017 Waterside	Phase2-2013	WP#3-2017 Waterside	Phase2-2013
			Depth Interval	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft
Chemical	CAS	Units	Result Type										
trans-1,3-Dichloropropene	10061-02-6	mg/kg	TRG			0.0082 U					0.011 U		
Trichloroethene	79-01-6	mg/kg	TRG			0.0082 U					0.011 U		
Trichlorofluoromethane	75-69-4	mg/kg	TRG			0.0082 U					0.011 U		
Vinyl Chloride	75-01-4	mg/kg	TRG			0.0082 U					0.011 U		
Vinyl ether, 2-chloroethyl	110-75-8	mg/kg	TRG										
Xylenes (total)	1330-20-7	mg/kg	CALC			0.016 U					0.021 U		_

			Landing ID	0507.50	0507.50	0ED7.5E	0507.55	05070	OFFITE	05075	05075	OFDTE	OFFITE
			Location ID Sample ID	SED7.5D SED7.5D00EN	SED7.5D SED7.5D00N	SED7.5E SED7.5E00EN	SED7.5E SED7.5E00N	SED7D SED7D00EN	SED7D SED7D00N	SED7E SED7E00AN	SED7E SED7E00EN	SED7E SED7E00N	SED7F SED7F00EN
			Sample Type	N N	SED7.5D00N N	N N	N SED7.5E00IN	N N	N SED/DOON	N SED/EUUAN	N N	N SED/EUUN	N N
			ent Sample ID		.,	.,		.,	"	.,	.,		.,,
			Sample Date	6/9/2017	11/25/2013	6/8/2017	11/25/2013	6/9/2017	11/25/2013	6/22/2017	6/8/2017	11/25/2013	6/8/2017
			Task Code	WP#3-2017 Waterside	Phase2-2013	WP#3-2017 Waterside	Phase2-2013	WP#3-2017 Waterside	Phase2-2013	WP#3-2017 Waterside	WP#3-2017 Waterside	Phase2-2013	WP#3-2017 Watersid
			Depth Interval	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft
Chemical	CAS	Units	Result Type										
Dioxins/Furans 1.2.3.4.6.7.8-Heptachlorodibenzofuran	67562-39-4		TDO	9.36E-05		6.67E-05		5.1E-05			6.11E-05		4.92E-05
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35822-46-9	mg/kg	TRG	0.000382		0.000244		0.000254			0.000204		4.92E-05 0.000166
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin 1,2,3,4,7,8,9-Heptachlorodibenzofuran	55673-89-7	mg/kg mg/kg	TRG	1.2E-05		7.79E-06		5.2E-06			6.2E-06		5.58E-06
1,2,3,4,7,8,9-1 epiacino odiberizoraran	70648-26-9	mg/kg	TRG	1.86E-05		1.21E-05		8.71E-06		-	1.14E-05		9.35E-06
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	39227-28-6	mg/kg		1.96E-05		1.45E-05		9.6E-06			1.04E-05		1.06E-05
1,2,3,6,7,8-Hexachlorodibenzofuran	57117-44-9	mg/kg	TRG	2.08E-05		1.49E-05		1E-05			1.2E-05		1.05E-05
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	57653-85-7	mg/kg	TRG	4E-05		2.64E-05		2.01E-05			2.11E-05		1.9E-05
1,2,3,7,8,9-Hexachlorodibenzofuran	72918-21-9	mg/kg	TRG	1E-06 J		1.19E-06 J		9.61E-07 J			1.95E-06		8.42E-07 JN
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	19408-74-3	mg/kg	TRG	3.24E-05		2.11E-05		1.65E-05			1.73E-05		1.51E-05
1,2,3,7,8-PeCDF	57117-41-6	mg/kg	TRG	1.01E-05 J		7.29E-06 J		4.54E-06 J			6.09E-06 J		4.99E-06 J
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	40321-76-4	mg/kg	TRG	1.84E-05		1.35E-05		8.79E-06			1.01E-05		9.72E-06
2,3,4,6,7,8-Hexachlorodibenzofuran	60851-34-5	mg/kg	TRG	2.95E-05		2E-05		1.39E-05			1.89E-05		1.48E-05
2,3,4,7,8-Pentachlorodibenzofuran	57117-31-4	mg/kg	TRG	2.63E-05 J		2.01E-05 J		1.37E-05 J	ļ	-	2.27E-05 J		1.48E-05 J
2,3,7,8-Tetrachlorodibenzofuran	51207-31-9	mg/kg	TRG	7.35E-06 3.94E-06		5.24E-06 2.36E-06	1	3.93E-06 1.65E-06	1	1	5.06E-06 1.93E-06		3.56E-06 1.6E-06
2,3,7,8-Tetrachlorodibenzo-p-dioxin Octachlorochlorodibenzofuran	1746-01-6 39001-02-0	mg/kg mg/kg	TRG	3.94E-06 0.000129		2.36E-06 9.57E-05	 	1.65E-06 8.72E-05	1	 	1.93E-06 8.21E-05		1.6E-06 6.25E-05
Octachlorochlorodibenzo-p-dioxin	3268-87-9	mg/kg	TRG	0.00457		0.00203		0.00437			0.00157		0.00139
TCDD TEQ HH	DFTEQ-HH	mg/kg	CALC	5.37E-05		3.75E-05		2.75E-05			3.2E-05		2.69E-05
Total HpCDD	37871-00-4	mg/kg		0.000758		0.00054		0.000578		-	0.000414		0.000353
Total HpCDF	38998-75-3	mg/kg	TRG	0.000197		0.000141		0.000114			0.000177		0.000102
Total HxCDD	34465-46-8	mg/kg	TRG	0.000461		0.000294		0.000224			0.000244		0.000219
Total HxCDF	55684-94-1	mg/kg	TRG	0.000248		0.000186		0.000132			0.000181		0.000128
Total PeCDD	36088-22-9	mg/kg	TRG	0.000321		0.000217		0.000138			0.00018		0.000167
Total PeCDF	30402-15-4	mg/kg	TRG	0.000259		0.000209		0.000136			0.000208		0.000136
Total TCDD	41903-57-5	mg/kg	TRG	0.000152		0.000102		6.19E-05			8.73E-05		7.08E-05
Total TCDF	55722-27-5	mg/kg	TRG	0.000212		0.000159		9.86E-05			0.00015		0.000105
Inorganics													
Aluminum	7429-90-5	mg/kg	TRG	12000	13000	8900	15000	10000	7300	3700		4500	7500
Antimony	7440-36-0	mg/kg			0.43 J-	2.3	1 J-	1.1	0.69 J-	1.4 J		1.2 J-	43
Arsenic Barium	7440-38-2 7440-39-3	mg/kg mg/kg	TRG	6.8 110	11 J- 97 J-	17 110	17 J- 150 J-	5.7 97	4.3 J- 110 J-	5.6 J 54		4.6 J- 72 J-	7.2 87
Beryllium	7440-39-3	mg/kg			1.7	1.1	2.2	1.4	1 10 J-			0.71	1
Cadmium	7440-43-9	mg/kg	TRG	2	1.3 J-	3.3	5.2 J-	1.5	4.7.J-	2.4 J		3.7 J-	2.6
Calcium	7440-70-2	mg/kg	TRG	4500	1400 J-	5700	2500 J-	3700	2000 J-	3500 J		4200 J-	4000
Chromium	7440-47-3	mg/kg		50	80 J-	62	76 J-	46	36 J-	19		29 J-	40
Cobalt	7440-48-4	mg/kg	TRG	20	15 J-	23	32 J-	19	16 J-	4.9	9.3	13 J-	14
Copper	7440-50-8	mg/kg	TRG	94	160	150	240	73	64	45 J	64	110	130
Iron	7439-89-6	mg/kg		29000	19000	25000	25000	28000	17000	7500	13000	14000	20000
Lead	7439-92-1	mg/kg	TRG	97	150	140	230	71	170	120	76	130	130
Magnesium	7439-95-4	mg/kg		4400	1800	5100	3100	4300	2700	2900 J	3100	3200	3900
Manganese	7439-96-5	mg/kg		250	180 J-	190	230 J-	270	180 J-	86	100	120 J-	200
Mercury	7439-97-6	mg/kg			0.28 J	0.44	0.69 J	0.29	0.24 J	0.21 J		0.27 J	0.36
Nickel Patronium	7440-02-0	mg/kg			59 J-	97	150 J-	46	50 J-			120 J-	75
Potassium Selenium	7440-09-7 7782-49-2	mg/kg		1300 1.2	650 1 J-	990 1.4	760 1.8 J-	1400	1100 0.72 J-			450 0.54 J-	870 0.93
Silver	7440-22-4	mg/kg mg/kg			1 J- 0.89	1.4	1.8 J- 3.3	0.45	0.72 J- 1.3	0.5 J 0.7 J		0.54 J- 0.92	1.6
Sodium	7440-22-4	mg/kg	TRG	230	110	270	220	220	100	91 J	140	110	200
Thallium	7440-23-5	mg/kg	TRG	0.26	0.35	0.27	0.63	0.24	0.25	0.14	0.13	0.15	0.2
Vanadium	7440-62-2	mg/kg		88	180 J+	160	360 J+	56	110 J+	94 J		150 J+	140
Zinc	7440-66-6	mg/kg		410	280 J-	600	580 J-	320	380 J-	180 J		430 J-	470
Cyanide	57-12-5	ug/kg	TRG	İ		İ	İ	1		İ			İ
Pesticides													
4,4'-DDD	72-54-8	mg/kg	TRG	0.0035 J		0.0044 J		0.0032 J			0.0035 J		0.0034 J
4,4'-DDE	72-55-9	mg/kg	TRG	0.0061 J		0.01 J		0.0083			0.0042 J		0.0051 J
4,4'-DDT	50-29-3	mg/kg	TRG	0.00098 U		0.0012 U		0.001 U			0.00073 U		0.00096 U
Aldrin	309-00-2	mg/kg		0.00098 U		0.0012 U		0.001 U			0.00013 J		0.00096 U
alpha-BHC	319-84-6	mg/kg		0.00098 U		0.0012 U		0.001 U			0.00073 U		0.00096 U
beta-BHC	319-85-7	mg/kg	TRG	0.00098 U		0.0012 U		0.001 U			0.00073 U		0.00096 U

			Location ID	SED7.5D	SED7.5D	SED7.5E	SED7.5E	SED7D	SED7D	SED7E	SED7E	SED7E	SED7F
			Sample ID	SED7.5D00EN	SED7.5D00N	SED7.5E00EN	SED7.5E00N	SED7D00EN	SED7D00N	SED7E00AN	SED7E00EN	SED7E00N	SED7F00EN
			Sample Type	N	N	N	N	N	N	N	N	N	N
		Par	ent Sample ID										
			Sample Date	6/9/2017	11/25/2013	6/8/2017	11/25/2013	6/9/2017	11/25/2013	6/22/2017	6/8/2017	11/25/2013	6/8/2017
				WP#3-2017 Waterside		WP#3-2017 Waterside	Phase2-2013	WP#3-2017 Waterside			WP#3-2017 Waterside	Phase2-2013	WP#3-2017 Waterside
		1	Depth Interval	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft
Oh'I	CAS	11-7-	December Town										
Chemical Chlordane (Technical)	12789-03-6	Units mg/kg	Result Type TRG										
cis-Chlordane	5103-71-9	mg/kg	TRG	0.0094		0.0096		0.0099			0.0077		0.008
delta-BHC	319-86-8	mg/kg		0.00094 0.00098 U		0.0012 U		0.0039 0.001 U			0.00077 0.00073 U		0.00096 U
Dieldrin	60-57-1	mg/kg	TRG	0.00098 U		0.0012 U		0.001 U			0.00073 U		0.00096 U
Endosulfan I	959-98-8	mg/kg	TRG	0.00098 U		0.0012 U		0.002 U			0.00073 U		0.00096 U
Endosulfan II	33213-65-9	mg/kg		0.00098 U		0.0012 U		0.001 U			0.00073 U		0.00096 U
Endosulfan Sulfate	1031-07-8	mg/kg	TRG	0.00098 U		0.0012 U		0.001 U			0.00073 U		0.00096 U
Endrin	72-20-8	mg/kg	TRG	0.00098 U		0.0012 U		0.001 U			0.00073 U		0.00096 U
Endrin aldehyde	7421-93-4	mg/kg	TRG	0.00098 U		0.0012 U		0.001 U			0.00073 U		0.00096 U
Endrin ketone	53494-70-5	mg/kg	TRG	0.00098 U		0.0012 U		0.001 U			0.00073 U		0.00096 U
gamma-BHC (Lindane)	58-89-9	mg/kg	TRG	0.00098 U		0.0012 U		0.001 U		İ	0.00073 U		0.00096 U
Heptachlor	76-44-8	mg/kg	TRG	0.00098 U		0.0012 U		0.001 U			0.00073 U		0.00096 U
Heptachlor Epoxide	1024-57-3	mg/kg	TRG	0.0018 J		0.0049 J		0.0012 J			0.0041 J		0.0022 J
Methoxychlor	72-43-5	mg/kg	TRG	0.00098 U		0.0012 U		0.001 U			0.00073 U		0.00096 U
Toxaphene	8001-35-2	mg/kg	TRG	0.039 U		0.047 U		0.041 U			0.029 U		0.038 U
trans-Chlordane	5103-74-2	mg/kg	TRG	0.0095		0.0012 U		0.0093			0.00073 U		0.00096 U
Pyrethroids													
Allethrin	584-79-2	mg/kg	TRG										
BAYTHROID	68359-37-5	mg/kg	TRG										
BIPHENTHRIN (TALSTAR)	82657-04-3	mg/kg	TRG										
CYPERMETHRIN	52315-07-8	mg/kg	TRG										
DANITOL	39515-41-8	mg/kg	TRG										
DELTAMETHRIN/TRALOMETHRIN	52820-00-5	mg/kg	TRG										
Dichloran	99-30-9	mg/kg	TRG										
Fenvalerate	51630-58-1	mg/kg	TRG										
LAMBDA CYHALOTHRIN	91465-08-6	mg/kg	TRG										
Penoxalin	40487-42-1	mg/kg	TRG										
Permethrin	52645-53-1	mg/kg	TRG										
PRALLETHRIN	23031-36-9	mg/kg	TRG										
SUMITHRIN	26002-80-2	mg/kg	TRG										
TEFLUTHRIN	79538-32-2	mg/kg	TRG										
PCB Aroclors													
Aroclor-1016	12674-11-2	mg/kg			0.0077 U		0.012 U	0.0051 U	0.0074 U			0.0072 U	0.0048 U
Aroclor-1221	11104-28-2	mg/kg	TRG		0.0077 U 0.0077 U	0.0059 U	0.012 U	0.0051 U 0.0051 U	0.0074 U 0.0074 U	0.0029 U	0.0037 U	0.0072 U	0.0048 U
Aroclor-1232	11141-16-5	mg/kg	TRG	0.0049 U		0.0059 U	0.012 U		0.0074 U 0.0074 U	0.0029 U	0.0037 U	0.0072 U	0.0048 U
Arcelor 1242	53469-21-9	mg/kg	TRG	0.0049 U	0.0077 U	0.0059 U	0.012 U	0.0051 U		0.0029 U	0.0037 U	0.0072 U	0.0048 U
Aroclor-1248 Aroclor-1254	12672-29-6 11097-69-1	mg/kg			0.39 J 0.0077 U	0.17 J+ 0.25 J+	0.89 J 0.012 U	0.0051 U 0.029 J+	0.4 J 0.0074 U	0.2 J+ 0.24 J	0.17 J+ 0.17 J+	0.55 J 0.0072 UJ	0.067 J+ 0.1 J+
Aroclor-1254 Aroclor-1260	11097-69-1	mg/kg mg/kg		0.17 J+ 0.25 J+	0.0077 U 0.48 J	0.25 J+ 0.36 J+	0.012 U 0.97 J	0.029 J+ 0.024 J+	0.0074 U 0.22 J	0.24 J 0.35 J+	0.17 J+ 0.29 J+	0.0072 UJ 0.41 J	0.1 J+ 0.13 J+
Aroclor-1260 Aroclor-1262	37324-23-5				0.0077 U	0.36 J+ 0.0059 U	0.97 J 0.012 U	0.024 J+ 0.0051 U	0.22 J 0.0074 U		0.0037 U	0.41 J 0.0072 UJ	0.13 J+ 0.0048 U
Aroclor-1262 Aroclor-1268	11100-14-4	mg/kg mg/kg	TRG	0.0049 U	0.0077 U	0.0059 U	0.012 U	0.0051 U	0.0074 U	0.0029 U	0.0037 U	0.0072 UJ	0.0048 U
PCB, Total Aroclors	TOT-PCB-ARO-C	mg/kg		0.54	0.87	0.78	1.9	0.053	0.62	0.0029 0	0.63	0.96	0.0048 0
TPH	101-F0B-ARO-C	mg/kg	OALO	0.04	0.07	0.70	1.0	0.000	0.02	0.13	0.03	0.00	0.0
Diesel Range Organics (C10-C20)	C10C20	mg/kg	TRG	79		100		51	 	220 J	110 J		69
Oil Range Organics (C20-C36)	C20C36	mg/kg		590		860		500		1100	790		610
SVOCs	520000	riigrky	1110	000		555		000	 	00			5.0
1,1'-Biphenyl	92-52-4	mg/kg	TRG					†					<u> </u>
1,2,4,5-Tetrachlorobenzene	95-94-3	mg/kg	TRG					 					
1,2,4-Trichlorobenzene	120-82-1	mg/kg	TRG			 		 	-	<u> </u>			
2,2'-oxybis(1-Chloropropane)	108-60-1	mg/kg	TRG					 					
2,3,4,6-Tetrachlorophenol	58-90-2	mg/kg	TRG					1					
2,3,7,8-Tetrachlorodibenzo-p-dioxin	1746-01-6	mg/kg	TRG					1					1
2,4,5-Trichlorophenol	95-95-4	mg/kg	TRG					t		<u> </u>			t
2,4,6-Trichlorophenol	88-06-2	mg/kg	TRG					†					†
2,4-Dichlorophenol	120-83-2	mg/kg	TRG					1					
2,4-Dimethylphenol	105-67-9	mg/kg	TRG					1					1
2,4-Dinitrophenol	51-28-5	mg/kg	TRG					İ					İ
2,4-Dinitrotoluene	121-14-2	mg/kg	TRG					İ					İ
2,6-Dinitrotoluene	606-20-2	mg/kg	TRG					İ					
						1		1					1

			Leasting ID	CED7 ED	CED7 ED	CED7 FE	CED7 FE	CED7D	CED7D	CEDZE	CED7E	CED7E	CEDZE
			Location ID Sample ID	SED7.5D SED7.5D00EN	SED7.5D SED7.5D00N	SED7.5E SED7.5E00EN	SED7.5E SED7.5E00N	SED7D SED7D00EN	SED7D SED7D00N	SED7E SED7E00AN	SED7E SED7E00EN	SED7E SED7E00N	SED7F SED7F00EN
			Sample Type	N N	3ED7.3D00N	N N	N N	N N	N SED/DOON	N N	N N	N N	N N
			ent Sample ID		• •						**	**	
			Sample Date	6/9/2017	11/25/2013	6/8/2017	11/25/2013	6/9/2017	11/25/2013	6/22/2017	6/8/2017	11/25/2013	6/8/2017
				WP#3-2017 Waterside		WP#3-2017 Waterside		WP#3-2017 Waterside			WP#3-2017 Waterside	Phase2-2013	WP#3-2017 Waterside
			Depth Interval	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft
Chemical	CAS	Units	Result Type										
2-Chloronaphthalene	91-58-7	mg/kg	TRG					†					+
2-Chlorophenol	95-57-8	mg/kg	TRG										1
2-Methylnaphthalene	91-57-6	mg/kg	TRG										
2-Methylphenol	95-48-7	mg/kg	TRG										
2-Nitroaniline	88-74-4	mg/kg	TRG										
2-Nitrophenol	88-75-5	mg/kg	TRG										
3,3'-Dichlorobenzidine 3-Nitroaniline	91-94-1 99-09-2	mg/kg mg/kg	TRG TRG										+
4,6-Dinitro-2-methylphenol	534-52-1	mg/kg	TRG					+					+
4-Bromophenyl-phenylether	101-55-3	mg/kg	TRG					+					+
4-Chloro-3-methylphenol	59-50-7	mg/kg	TRG					1					
4-Chloroaniline	106-47-8	mg/kg	TRG										
4-Chlorophenyl-phenylether	7005-72-3	mg/kg	TRG										
4-Methylphenol	106-44-5	mg/kg	TRG										
4-Nitroaniline	100-01-6	mg/kg	TRG			ļ		_					
4-Nitrophenol Acenaphthene	100-02-7 83-32-9	mg/kg mg/kg	TRG		0.035 J	ļ	0.059	+	0.035 J	0.1		0.046 J	+
Acenaphthene Acenaphthylene	208-96-8	mg/kg mg/kg	TRG		0.035 J 0.028 J	+	0.059 0.047 J	+	0.035 J 0.07 J	0.017 J		0.046 J 0.027 J	+
Acetophenone	98-86-2	mg/kg	TRG		0.020 0	1	0.047 0	†	5.57 0	5.517 0		0.021 0	+
Anthracene	120-12-7	mg/kg	TRG		0.047 J		0.12		0.11 J	0.2		0.13 J	_
Atrazine	1912-24-9	mg/kg	TRG										
Benzaldehyde	100-52-7	mg/kg	TRG										
Benzidine	92-87-5	mg/kg	TRG										
Benzo(a)anthracene	56-55-3	mg/kg	TRG		0.16		0.36		0.48	0.55		0.49	
Benzo(a)pyrene	50-32-8	mg/kg	TRG		0.16		0.31		0.54	0.44		0.52	
Benzo(b)fluoranthene Benzo(g,h,i)perylene	205-99-2 191-24-2	mg/kg mg/kg	TRG TRG		0.29		0.5 0.29		0.86 0.47	0.65		0.85	
Benzo(k)fluoranthene	207-08-9	mg/kg	TRG		0.17		0.14		0.47	0.22		0.27	_
Benzoic acid	65-85-0	mg/kg	TRG		0.1		0.11		0.10	ULL		0.27	+
bis-(2-chloroethoxy)methane	111-91-1	mg/kg	TRG										
bis-(2-Chloroethyl)ether	111-44-4	mg/kg	TRG										
bis-(2-Ethylhexyl)phthalate	117-81-7	mg/kg	TRG										
Butylbenzylphthalate	85-68-7	mg/kg	TRG										
Caprolactam	105-60-2	mg/kg	TRG										
Carbazole Chrysene	86-74-8 218-01-9	mg/kg mg/kg	TRG		0.27	ļ	0.49	+	0.63	0.62		0.76	+
Dibenzo(a,h)anthracene	53-70-3	mg/kg	TRG		0.04 J	+	0.055	+	0.086 J	0.084		0.094 J	+
Dibenzofuran	132-64-9	mg/kg	TRG			†		 					+
Diethylphthalate	84-66-2	mg/kg	TRG					1	İ				†
Dimethylphthalate	131-11-3	mg/kg	TRG										
Di-n-butylphthalate	84-74-2	mg/kg	TRG										
Di-n-octylphthalate	117-84-0	mg/kg	TRG										
Diphenylhydrazine-1,2	122-66-7 206-44-0	mg/kg	TRG		0.22		0.0	+	0.07	0.0		1.2	
Fluoranthene Fluorene	206-44-0 86-73-7	mg/kg mg/kg	TRG		0.32 0.044 J		0.8	 	0.87 0.053 J	0.9 0.085		1.2 0.055 J	
Hexachlorobenzene	118-74-1	mg/kg	TRG		0.074 3	†	0.11	+	0.000 0	0.000		0.000 0	+
Hexachlorobutadiene	87-68-3	mg/kg	TRG			İ		†	1				
Hexachlorocyclo-pentadiene	77-47-4	mg/kg	TRG			1		1	İ				
Hexachloroethane	67-72-1	mg/kg	TRG										
Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	TRG		0.12		0.23		0.37	0.26	-	0.38	
Isophorone	78-59-1	mg/kg	TRG										
Naphthalene	91-20-3 98-95-3	mg/kg	TRG		0.047 J		0.094		0.046 J	0.024 J		0.031 J	_
Nitrobenzene Nitropodimethylamina n		mg/kg	TRG					+					+
Nitrosodimethylamine-n N-Nitroso-di-n-propylamine	62-75-9 621-64-7	mg/kg mg/kg	TRG			-		 		_			+
N-Nitrosodiphenylamine	86-30-6	mg/kg	TRG			1	1	+	1	1			+
Pentachlorophenol	87-86-5	mg/kg	TRG			†		 					+
Phenanthrene	85-01-8	mg/kg	TRG		0.2		0.47	1	0.35	0.91		0.5	
Phenol	108-95-2	mg/kg	TRG										

						,							
			Location ID	SED7.5D	SED7.5D	SED7.5E	SED7.5E	SED7D	SED7D	SED7E	SED7E	SED7E	SED7F
			Sample ID	SED7.5D00EN N	SED7.5D00N N	SED7.5E00EN N	SED7.5E00N	SED7D00EN N	SED7D00N N	SED7E00AN N	SED7E00EN N	SED7E00N N	SED7F00EN N
			Sample Type nt Sample ID	N	N	N	N	N	IN IN	N	N	N	IN IN
			Sample Date	6/9/2017	11/25/2013	6/8/2017	11/25/2013	6/9/2017	11/25/2013	6/22/2017	6/8/2017	11/25/2013	6/8/2017
				WP#3-2017 Waterside	Phase2-2013	WP#3-2017 Waterside		WP#3-2017 Waterside		WP#3-2017 Waterside		Phase2-2013	WP#3-2017 Waterside
			Depth Interval	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft
Chemical	CAS	Units	Result Type										
Pyrene	129-00-0	mg/kg	TRG		0.34		0.73		0.95	1.1		1	
Polybrominated Diphenyl Ethers PBDE47	5436-43-1	mg/kg	TRG										
PBDE99	60348-60-9	mg/kg	TRG										
PBDE-100	189084-64-8	mg/kg	TRG										
PBDE153	68631-49-2	mg/kg	TRG										
PBDE-154	207122-15-4	mg/kg	TRG										
VOCs													
1,1,1-Trichloroethane	71-55-6	mg/kg	TRG										
1,1,2,2-Tetrachloroethane	79-34-5	mg/kg	TRG										
1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane	76-13-1 79-00-5	mg/kg mg/kg	TRG TRG										ļ
1,1-Dichloroethane	75-34-3	mg/kg	TRG					1		1			†
1,1-Dichloroethene	75-35-4	mg/kg	TRG					-		<u> </u>			†
1,2,3-Trichlorobenzene	87-61-6	mg/kg	TRG										
1,2,4-Trichlorobenzene	120-82-1	mg/kg	TRG										
	96-12-8	mg/kg	TRG								_		
1,2-Dibromoethane	106-93-4	mg/kg	TRG										
1,2-Dichlorobenzene	95-50-1	mg/kg	TRG										
1,2-Dichloroethane 1,2-Dichloropropane	107-06-2 78-87-5	mg/kg	TRG TRG										
1,3-Dichlorobenzene	541-73-1	mg/kg mg/kg	TRG										
1,4-Dichlorobenzene	106-46-7	mg/kg	TRG										
1,4-Dioxane	123-91-1	mg/kg	TRG										
2-Butanone	78-93-3	mg/kg	TRG										
2-Hexanone	591-78-6	mg/kg	TRG										
4-Methyl-2-pentanone	108-10-1	mg/kg	TRG										
Acetone	67-64-1	mg/kg	TRG										
Acrolein Acrylonitrile	107-02-8 107-13-1	mg/kg mg/kg	TRG TRG										
Benzene	71-43-2	mg/kg	TRG										
Bromochloromethane	74-97-5	mg/kg	TRG										
Bromodichloromethane	75-27-4	mg/kg	TRG										
Bromoform	75-25-2	mg/kg	TRG										
Bromomethane	74-83-9	mg/kg	TRG										
Carbon Disulfide	75-15-0	mg/kg	TRG										
Carbon Tetrachloride	56-23-5	mg/kg	TRG										
Chlorobenzene Chloroethane	108-90-7 75-00-3	mg/kg mg/kg	TRG TRG							<u> </u>			+
Chloroform	67-66-3	mg/kg	TRG										
Chloromethane	74-87-3	mg/kg	TRG										
cis-1,2-Dichloroethylene	156-59-2	mg/kg	TRG										
cis-1,3-Dichloropropene	10061-01-5	mg/kg	TRG										
Cyclohexane	110-82-7	mg/kg	TRG	,									
Dibromochloromethane	124-48-1	mg/kg	TRG										ļ
Dichlorodifluoromethane	75-71-8 542-75-6	mg/kg	TRG TRG										ļ
Dichloropropene, 1,3- Ethylbenzene	100-41-4	mg/kg mg/kg	TRG							<u> </u>			+
Isopropylbenzene	98-82-8	mg/kg	TRG					-		<u> </u>			†
m, p-Xylene	XYLMP	mg/kg	TRG										
Methyl Acetate	79-20-9	mg/kg	TRG										
Methyl tert-Butyl Ether (MTBE)	1634-04-4	mg/kg	TRG										
Methylcyclohexane	108-87-2	mg/kg	TRG	,									
Methylene Chloride	75-09-2	mg/kg	TRG										
o-Xylene Styrene	95-47-6 100-42-5	mg/kg mg/kg	TRG TRG					-		-			-
Tetrachloroethylene	127-18-4	mg/kg	TRG					1		1			†
Toluene	108-88-3	mg/kg	TRG					-		<u> </u>			†
trans-1,2-Dichloroethene	156-60-5	mg/kg	TRG			İ	İ		İ	1			Ì
		•											

			Location ID	SED7.5D	SED7.5D	SED7.5E	SED7.5E	SED7D	SED7D	SED7E	SED7E	SED7E	SED7F
			Sample ID		SED7.5D00N	SED7.5E00EN	SED7.5E00N	SED7D00EN	SED7D00N	SED7E00AN	SED7E00EN	SED7E00N	SED7F00EN
			Sample Type	N N	N	N	N	N	N	N	N	N	N
		Par	ent Sample ID)									
			Sample Date	6/9/2017	11/25/2013	6/8/2017	11/25/2013	6/9/2017	11/25/2013	6/22/2017	6/8/2017	11/25/2013	6/8/2017
			Task Code	WP#3-2017 Waterside	Phase2-2013	WP#3-2017 Waterside	Phase2-2013	WP#3-2017 Waterside	Phase2-2013	WP#3-2017 Waterside	WP#3-2017 Waterside	Phase2-2013	WP#3-2017 Waterside
			Depth Interval	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft
Chemical	CAS	Units	Result Type										
trans-1,3-Dichloropropene	10061-02-6	mg/kg	TRG										
Trichloroethene	79-01-6	mg/kg	TRG										
Trichlorofluoromethane	75-69-4	mg/kg	TRG										
Vinyl Chloride	75-01-4	mg/kg	TRG										
Vinyl ether, 2-chloroethyl	110-75-8	mg/kg	TRG										
Xylenes (total)	1330-20-7	mg/kg	CALC										1

FINAL

Seminary Seminary											
Part				Location ID	SED7F	SED7G	SED8C	SED8C	SED8C	SED9.5B	SED9C
Part											
Page Page					N	N	N	N		IN .	IN IN
Page Page					11/25/2013	1/30/2014	6/7/2017	11/14/2013		11/11/2013	11/11/2013
Description											
CASE CASE			г								
Document Property				l l	0 0.0 1.	0 0.0 K	0 0.00 K	0 0.0 K	0 0.0 K	0 0.0 10	0 0.0 10
Table Tabl	Chemical	CAS	Units	Result Type							
13.14.57 14.14.57	Dioxins/Furans			,,							
13.4.7.4 Pertamber of the content of the conten	1,2,3,4,6,7,8-Heptachlorodibenzofuran	67562-39-4	mg/kg	TRG	0.00108	1.83E-05 JN	2.14E-05	7.04E-06 JN	1.39E-05 JN		2.73E-06 J
13.4.7.4 Performance 1969-9-9 1960 1970	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	35822-46-9	mg/kg	TRG	0.0041 J	4.89E-05	0.000125	3.68E-05 J	6.46E-05 J		1.38E-05
13.4.1.7.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1			mg/kg								
1.3.5.6.7 February 1.3.5.6 February 1.3.5			mg/kg								
12.36.1.6.74 instanchmontherwordnam											
12.37.67 Personational procedures of plane 1960 146											
1.23.7.3.6.9.4.00m											
12.37.8 Prints Are continued 1.00											
2.3.1.6.Priestandinostenzero-person 40021-76-4 mg/hg 7FG 0.000277.8N 0.856.69 J 0.715-69 JN 0.946-07 JN 1.866.00 J 1.306.00 JN 1.466.0											
23.4.6.7.6.4 bioxed-incordementaryimm											
2.3.4.7.8 Fernischloroidenschulum											
23.7.5 Transchooleners pursuane \$1207.3 mg/s 786 \$6.77 \$2.57 \$1.73 \$1.686.00 \$1.72 \$1.75 \$1.586.00 \$1.75 \$1.586.00 \$1.75 \$1.586.00 \$1.75 \$1.586.00 \$1.75 \$1.586.00 \$1.75 \$1.586.00 \$1.75 \$1.586.00 \$											
23.7.8 Terms-from-themsep-person 1746-016 mg/kg RG 30.001 M 2186-05 4.772-06 1.506-08 M 5.786-07 J 1.506-08 M 1.506-05 M 1											
Section Sect											
Conscription S268-879 mg/kg TiG 0.0147 0.000341 0.00036 0.00073 0.00181 0.000388 1.00071 0.000388 1.00071 0.000388 1.00071 0.000388 1.00071 0.000388 1.00071 0.000388 1.00071 0.000389 0.00071 0.000387 0.00071 0.000389 0.00071 0.0											
TCDD TECH											
Total PspCDP 3987-50-94 mg/kg TRG 0.0078 J 0.000117 0.002677 8.126-03 J 0.00141 J 2.426-05 N 3.426-05 J 0.00141 J 2.426-05 N 2.726-06 N 7.726-06											
Total HyCDP 38989-75-3 mg/kg TRG	Total HpCDD			TRG	0.00785 J						
Total FACDP Total PACDD 1808-22-9 mg/kg 170-180-180-180-180-180-180-180-180-180-18				TRG							
Total PacCDP \$0698-22-9 mg/kg TRG 0.006941.N 0.000553.N 2,746-05 6.385-05.N 0.562-05.N 1.485-05.N	Total HxCDD	34465-46-8	mg/kg	TRG	0.00593 JN	4.92E-05 JN	6.29E-05	1.98E-05 JN	3.53E-05 JN		7.04E-06 JN
Total PeoDP	Total HxCDF	55684-94-1	mg/kg	TRG	0.00289 JN	6.18E-05 JN	4.89E-05	4.1E-05 JN	6.52E-05 JN		9.97E-06 JN
Total TCDP	Total PeCDD	36088-22-9	mg/kg	TRG	0.00644 JN	0.000553 JN	2.74E-05		9.62E-05 JN		1.49E-05 JN
Total TCDF S57227-5 mg/kg TRG 0.00224 JN 0.000122 JN 0.000122 JN 0.000122 JN 0.000122 JN 0.000122 JN 0.00012 JN 0			mg/kg	TRG							
	Total TCDD	41903-57-5	mg/kg	TRG		9.21E-06 JN	1.29E-05	5.15E-06 JN	1.05E-05 JN		1.4E-06 JN
Aluminum 7229-90-5 mykg TRG 2300 2400 10000 6800 7770 4500 6500 Arminory 7440-36-0 mykg TRG 28.J 0.38 0.89 0.35.J 0.31.J 0.27.J 0.48.J Armenic 7440-38-2 mykg TRG 11.J 2.5 5.1 3.J 3.8 J. 2.1.J 2.5.J Barlium 7440-38-2 mykg TRG 10.0 17 98 63 71 4.4.J 4.4.J 2.5.J Barlium 7440-41-7 mykg TRG 0.95 0.15 1.4 0.88 1 0.67 0.91 Cadicium 7440-76-2 mykg TRG 3.50 1700 3800 2200 J- 2400 J- 1500 J- 1900 J- Chromium 7440-7-2 mykg TRG 3200 17000 3800 2200 J- 2400 J- 1500 J- 1900 J- Chobit 7440-48-4 mykg TRG 30		55722-27-5	mg/kg	TRG	0.00224 JN	0.000122 JN	4.17E-05	0.000122 JN	0.0002 JN		2.13E-05 JN
Armenicy Arthonory Arthogon mg/kg TRG 28.J. 0.38 0.99 0.35.J. 0.31 J. 0.27 J. 0.48 J. Armenic T440.38-2 mg/kg TRG 11.J. 2.5 5.1 3.J. 3.6 J. 2.1 J. 25.											
Arsenic											
Bartum											
Beryllium											
Cadmium 7440-33-9 mg/kg TRG 44.J- 0.74 0.82 0.8 0.98 0.35 0.59 Calcium 7440-70-2 mg/kg TRG 23000 17000 3600 2200 J- 2400 J- 1500 J- 2400 J- 1500 J- 1500 J- 1500 J- 1500 J- 1500 J- 1500 J- 1500 J- 1500 J- 1500 J- 1500 J- 1500 J- 1500 J- 1500 J- 1500 J- 1500 J- 1500 J- 1500 J- 260 J- 1500 J- 1500 J- 261 J- 1500 J- 1500 J- 261 J- 1500 J- 1500 J- 1500 J- 1500 J- 1500 J- 1500 J- 1500 J- 1500 J- 1500 J- 1500 J- 261 J- 261 J- 261 J-						**			/1		
Calcium									0.00		****
Chromium											
Cobalt 7440-84-4 mg/kg TRG 13 7.1 18 14 16 9.1 J 12 J Copper 7440-50-8 mg/kg TRG 190 54 59 44 52 21 30 Iron 7439-86-6 mg/kg TRG 21000 12000 27000 19000 21000 12000 17000 Lead 7439-95-1 mg/kg TRG 280 48 55 66 62 36 J 49 J Mangansium 7439-95-6 mg/kg TRG 200 1200 350 280 330 140 230 Marcury 7439-97-6 mg/kg TRG 200 120 350 280 330 140 230 Nickel 7440-02-0 mg/kg TRG 160 J 44 35 25 28 15 20 Potassium 7440-02-7 mg/kg TRG 180 J 44 35 25 28			0 0								
Copper 7440-50-8 mg/kg TRG 190 54 59 44 52 21 30 Iron 7439-98-6 mg/kg TRG 2100 12000 27000 19000 21000 12000 17000 Lead 7439-95-4 mg/kg TRG 2300 48 55 56 62 35 J 49 J Magnesium 7439-95-4 mg/kg TRG 2800 12000 3800 200 2300 1900 2500 Marganesium 7439-95-6 mg/kg TRG 200 1200 350 280 330 140 230 Mercury 7439-97-6 mg/kg TRG 0.041 0.21 0.16 J+ 0.17 J+ 0.2 0.15 Nickel 7440-09-7 mg/kg TRG 180 J- 84 35 25 28 15 20 Polassium 7440-99-7 mg/kg TRG 180 J- 34 35 25 28								•			
fron 7439-89-6 mg/kg TRG 21000 12000 27000 19000 21000 12000 17000 Lead 7439-92-1 mg/kg TRG 320 48 55 56 62 36 J 49 J Magnesium 7439-95-4 mg/kg TRG 320 1200 3600 2000 2300 1900 2500 Manganese 7439-95-5 mg/kg TRG 200 120 350 280 330 140 230 Mercury 7439-97-6 mg/kg TRG 0.46 J 0.041 0.21 0.16 J+ 0.17 J+ 0.2 0.15 Nickel 7440-02-0 mg/kg TRG 160 J- 84 35 25 28 15 20 0.15 Potassium 7440-02-0 mg/kg TRG 160 J- 84 35 25 28 15 20 0.15 0.18 15 20 0.15 0.15 0.15 0.15								44			
Lead 7439-92-1 mg/kg TRG 320 48 55 66 62 36 J 49 J Magnesium 7439-95-4 mg/kg TRG 2800 1200 3600 2000 2300 1900 2500 Manganese 7439-97-6 mg/kg TRG 200 120 350 280 330 140 230 Mercury 7439-97-6 mg/kg TRG 0.64 J 0.041 0.21 0.16 H 0.17 J+ 0.2 0.15 Nickel 7440-02-0 mg/kg TRG 160 J- 84 35 25 28 15 20 Potassium 7440-02-7 mg/kg TRG 10 J- 84 35 25 28 15 20 Selenium 7782-49-2 mg/kg TRG 11 J- 0.034 J 1 1 J- 1.2 J- 0.19 J 0.53 Silver 7440-22-4 mg/kg TRG 160 420 200 89 J- 14 97 Totallium 7440-22-4 mg/kg TRG 160 420 200 89 J- 89 J- 74 97 Takenium 7440-22-5 mg/kg TRG 160											
Magnesium 7439-95-4 mg/kg TRG 2800 12000 3600 2000 2300 1900 2500 Manganese 7439-96-5 mg/kg TRG 200 120 350 280 330 140 230 Mercury 7439-97-6 mg/kg TRG 0.46 J 0.041 0.21 0.16 J+ 0.17 J+ 0.2 0.15 Nickel 7440-02-0 mg/kg TRG 160 J- 84 35 25 28 15 20 Potassium 7440-09-7 mg/kg TRG 160 J- 84 35 25 28 15 20 Selenium 7440-09-7 mg/kg TRG 11 J- 0.034 J 1 1 J- 1,2 J- 0.19 J 0.53 Silver 7440-29-2 mg/kg TRG 10.034 J 1 1 J- 1,2 J- 0.19 J 0.53 Silver 7440-22-4 mg/kg TRG 160 420 200 89 J- </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
Manganese 7439-96-5 mg/kg TRG 200 120 350 280 330 140 230 Mercury 7439-97-6 mg/kg TRG 0.46 J 0.041 0.21 0.16 J+ 0.17 J+ 0.2 0.15 Nikel 7440-02-0 mg/kg TRG 160 J- 84 35 25 28 15 20 Potassium 7440-02-7 mg/kg TRG 160 J- 84 35 25 28 15 20 Potassium 7440-02-7 mg/kg TRG 150 J- 0.034 J 1 1.J- 1,2 J- 0.19 J 0.53 Silver 7440-22-4 mg/kg TRG 35 J- 0.083 0.27 0.29 0.43 0.15 0.18 Sodium 7440-22-5 mg/kg TRG 160 420 200 89 J- 89 J- 74 97 Tallium 7440-23-6 mg/kg TRG 103 J- 0.037 J 0.22						12000	3600	2000	2300		2500
Nickel 7440-02-0 mg/kg TRG 160 J- 84 35 25 28 15 20 20 20 20 20 20 20 20 20 20 20 20 20				TRG	200	120	350	280	330	140	230
Nickel	Mercury	7439-97-6	mg/kg	TRG	0.46 J	0.041	0.21	0.16 J+	0.17 J+	0.2	0.15
Selenium 7782-49-2 mg/kg TRG 1.1 J- 0.034 J 1 1.J- 1.2 J- 0.19 J 0.53 Silver 7440-22-4 mg/kg TRG 3.5 J- 0.083 0.27 0.29 0.43 0.15 0.18 Sodium 7440-23-5 mg/kg TRG 180 420 200 89 J- 89 J- 74 97 Thallium 7440-28-0 mg/kg TRG 0.13 J- 0.037 J 0.22 0.16 J- 0.18 J- 0.12 0.16 Vanadium 7440-62-2 mg/kg TRG 440 56 39 29 36 25 J+ 29 J+ Zinc 7440-66-6 mg/kg TRG 630 260 240 180 210 97 J+ 130 J+ Cyanide 57-12-5 ug/kg TRG 1			mg/kg	TRG							
Silver 7440-22-4 mg/kg TRG 3.5 J 0.083 0.27 0.29 0.43 0.15 0.18 Sodium 7440-23-5 mg/kg TRG 160 420 200 89 J 89 J 74 97 Thallium 7440-28-0 mg/kg TRG 103 J 0.037 J 0.22 0.16 J 0.17 J 0.17			mg/kg				1200				
Sodium							1				
Thaillium 7440-28-0 mg/kg TRG 0.13 J- 0.037 J 0.22 0.16 J- 0.18 J- 0.12 0.16 Vanadium 7440-62-2 mg/kg TRG 440 56 39 29 36 25 J+ 29 J+ Zinc 7440-66-6 mg/kg TRG 630 260 240 180 210 97 J+ 13 J+ Cyanide 57-12-5 ug/kg TRG 630 260 240 180 210 97 J+ 13 J+ Pesticides 1											
Vanadium 7440-62-2 mg/kg TRG 440 56 39 29 36 25 J+ 29 J+ Zinc 7440-66-6 mg/kg TRG 630 260 240 180 210 97 J+ 130 J+ Cyanide 57-12-5 ug/kg TRG 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1											
Zinc											
Cyanide 57-12-5 ug/kg TRG Resticides <											
Pesticides					630	260	240	180	210	97 J+	130 J+
4,4*DDD 72-54-8 mg/kg TRG 0.012 J 0.009 0.0051 J 0.0093 J 0.0039 J 0.0033 J 4,4*DDE 72-55-9 mg/kg TRG 0.0059 J 0.0013 U 0.013 0.03 J 0.011 J 0.0071 4,4*DDT 50-29-3 mg/kg TRG 0.011 J 0.00091 J 0.0011 U 0.0055 J 0.00084 UJ 0.0025 J Aldrin 309-00-2 mg/kg TRG 0.00075 J 0.0013 U 0.0011 U 0.00023 J 0.00076 J 0.0006 J alpha-BHC 319-84-6 mg/kg TRG 0.0019 U 0.0013 U 0.0011 U 0.00078 U 0.00084 U 0.00082 U		5/-12-5	ug/kg	IKG							_
4,4*DDE 72-55-9 mg/kg TRG 0.0059 J 0.0013 U 0.013 0.03 J 0.011 J 0.0071 4,4*DDT 50-29-3 mg/kg TRG 0.011 J 0.00091 J 0.0011 U 0.0055 J 0.00084 UJ 0.0025 J Aldrin 309-0-2 mg/kg TRG 0.00075 J 0.0013 U 0.0011 U 0.00023 J 0.00076 J 0.0006 J alpha-BHC 319-84-6 mg/kg TRG 0.0019 U 0.0013 U 0.0011 U 0.00078 U 0.00084 U 0.00082 U		70.54.0		TDO	0.040.1	0.000	0.0054	0.0000 1	0.0000 1		0.000 1
4.4-DDT 50-29-3 mg/kg TRG 0.011 J 0.00091 J 0.0011 U 0.0055 J 0.00084 UJ 0.0025 J Aldrin 309-00-2 mg/kg TRG 0.00075 J 0.0013 U 0.0011 U 0.00023 J 0.00076 J 0.0006 J alpha-BHC 319-84-6 mg/kg TRG 0.0019 U 0.0013 U 0.0011 U 0.00078 U 0.00084 U 0.00082 U										ļ	
Aldrin 309-00-2 mg/kg TRG 0.00075 J 0.0013 U 0.0011 U 0.0023 J 0.00076 J 0.0006 J alpha-BHC 319-84-6 mg/kg TRG 0.0019 U 0.0013 U 0.0011 U 0.00078 U 0.00084 U 0.00082 U											
alpha-BHC 319-84-6 mg/kg TRG 0.0019 U 0.0013 U 0.0011 U 0.00078 U 0.00084 U 0.00082 U			0 0								
	beta-BHC	319-85-7	mg/kg	TRG	0.0019 U	0.0013 U	0.0011 U	0.00078 U	0.00054 J	1	0.00082 U

										1
			Location ID	SED7F	SED7G	SED8C	SED8C	SED8C	SED9.5B	SED9C
			Sample ID Sample Type	SED7F00N N	SED7G00N N	SED8C00EN N	SED8C00N N	SED8C00R FD	SED9.5B00N N	SED9C00N N
			sample Type nt Sample ID	N	N	N	N	SED8C00N	IN .	IN IN
			Sample Date	11/25/2013	1/30/2014	6/7/2017	11/14/2013	11/14/2013	11/11/2013	11/11/2013
			Task Code	Phase2-2013	Phase2-2013	WP#3-2017 Waterside		Phase2-2013	Phase2-2013	Phase2-2013
		г	Depth Interval	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
			Jopan mitorvan	0 0.0 K	0 0.0 10	0 0.00 K	0 0.0 K	0 0.0 K	0 0.0 10	0 0.0 10
Chemical	CAS	Units	Result Type							
Chlordane (Technical)	12789-03-6	mg/kg	TRG							
cis-Chlordane	5103-71-9	mg/kg	TRG	0.01	0.0017 J	0.016	0.0056 J	0.0049 J		0.0066 J
delta-BHC	319-86-8	mg/kg	TRG	0.0055 J	0.0024 J	0.0011 U	0.0015 J	0.00032 J		0.00082 U
	60-57-1	mg/kg	TRG	0.0049 J	0.0023 J	0.004	0.00078 U	0.0023		0.0014 J
Endosulfan I	959-98-8	mg/kg	TRG	0.0012 J	0.0015 J	0.0011 U	0.00078 U	0.00084 U		0.00082 U
Endosulfan II	33213-65-9	mg/kg	TRG	0.005 J	0.0013 U	0.0011 U	0.0012 J	0.00055 J		0.00023 J
Endosulfan Sulfate	1031-07-8	mg/kg	TRG	0.01	0.0036	0.0011 U	0.0027	0.0012		0.00028 J
Endrin Endrin aldehyde	72-20-8 7421-93-4	mg/kg	TRG	0.022 J 0.0014 J	0.0023 J 0.001 J	0.0011 U 0.0011 U	0.0054 J 0.0013 J	0.0025 J 0.00061 J		0.0029 0.00068 J
Endrin aldenyde Endrin ketone	7421-93-4 53494-70-5	mg/kg	TRG	0.0014 J 0.008 J	0.001 J 0.0013 U	0.0011 U	0.0013 J 0.00078 U	0.00061 J		0.00068 J
gamma-BHC (Lindane)	58-89-9	mg/kg mg/kg	TRG	0.006 J	0.0016 J	0.0011 U	0.00078 U	0.00084 U		0.00031 0.00023 J
Heotachlor	76-44-8	mg/kg	TRG	0.00077 J	0.00065 J	0.0011 U	0.0003 J	0.00084 U		0.00023 3
Heptachlor Epoxide	1024-57-3	mg/kg	TRG	0.0062 J	0.00065 J	0.00011 U	0.0022 J	0.00084 J	1	0.00065 J
Methoxychlor	72-43-5	mg/kg	TRG	0.023 J	0.019 J	0.0011 U	0.012 J	0.011 J		0.013
Toxaphene	8001-35-2	mg/kg	TRG	0.075 U	0.05 U	0.043 U	0.031 U	0.034 U		0.033 U
trans-Chlordane	5103-74-2	mg/kg	TRG	0.0082 J	0.0019	0.013	0.0095	0.0077		0.011
Pyrethroids										
Allethrin	584-79-2	mg/kg	TRG							İ
BAYTHROID	68359-37-5	mg/kg	TRG							
BIPHENTHRIN (TALSTAR)	82657-04-3	mg/kg	TRG							
CYPERMETHRIN	52315-07-8	mg/kg	TRG							
DANITOL	39515-41-8	mg/kg	TRG							
DELTAMETHRIN/TRALOMETHRIN	52820-00-5	mg/kg	TRG							
Dichloran	99-30-9	mg/kg	TRG							
Fenvalerate	51630-58-1	mg/kg	TRG							
	91465-08-6	mg/kg	TRG							
Penoxalin	40487-42-1	mg/kg	TRG							
Permethrin	52645-53-1	mg/kg	TRG							
PRALLETHRIN SUMITHRIN	23031-36-9 26002-80-2	mg/kg	TRG TRG							
TEFLUTHRIN	79538-32-2	mg/kg mg/kg	TRG							
PCB Aroclors	73030-32-2	mg/kg	ino							
Aroclor-1016	12674-11-2	mg/kg	TRG	0.0075 U	0.005 U	0.0055 U	0.0078 U	0.0084 U	0.0084 U	0.0082 U
Aroclor-1221	11104-28-2	mg/kg	TRG	0.0075 U	0.005 U	0.0055 U	0.0078 U	0.0084 U	0.0084 U	0.0082 U
Aroclor-1232	11141-16-5	mg/kg	TRG	0.0075 U	0.005 U	0.0055 U	0.0078 U	0.0084 U	0.0084 U	0.0082 U
Aroclor-1242	53469-21-9	mg/kg	TRG	0.0075 U	0.005 U	0.0055 U	0.0078 U	0.0084 U	0.0084 U	0.0082 U
Aroclor-1248	12672-29-6	mg/kg	TRG	0.39 J	0.1 J	0.064 J+	0.38 J	0.29 J	0.3 J	0.12 J
Aroclor-1254	11097-69-1	mg/kg	TRG	0.0075 U	0.005 U	0.081 J+	0.0078 U	0.0084 U	0.0084 U	0.0082 U
Aroclor-1260	11096-82-5	mg/kg	TRG	0.38 J	0.13 J	0.11 J+	0.21 J	0.12 J	0.084 J	0.054 J
Aroclor-1262	37324-23-5	mg/kg	TRG	0.0075 U	0.005 U	0.0055 U	0.0078 U	0.0084 U	0.0084 U	0.0082 U
Aroclor-1268	11100-14-4	mg/kg	TRG	0.0075 U	0.005 U	0.0055 U	0.0078 U	0.0084 U	0.0084 U	0.0082 U
PCB, Total Aroclors	TOT-PCB-ARO-C	mg/kg	CALC	0.77	0.23	0.26	0.59	0.41	0.38	0.17
TPH					ļ	ļ		ļ	ļ	ļ
Diesel Range Organics (C10-C20)	C10C20	mg/kg	TRG			50				
Oil Range Organics (C20-C36)	C20C36	mg/kg	TRG			490				ļ
SVOCs	92-52-4		TDC	0.3 U	0.211		0.4511	0.2211		0.32 U
1,1'-Biphenyl 1,2,4,5-Tetrachlorobenzene	92-52-4 95-94-3	mg/kg mg/kg	TRG TRG	0.3 U 0.3 U	0.2 U 0.2 U		0.15 U 0.15 U	0.33 U 0.33 U		0.32 U 0.32 U
1,2,4,5-Tetracniorobenzene 1,2,4-Trichlorobenzene	120-82-1	mg/kg mg/kg	TRG	U.3 U	U.Z U		U. 10 U	U.33 U		0.32 U
1,2,7-1 HOLING GUERIE			TRG	0.06 U	0.041 U		0.031 U	0.067 U		0.066 U
2 2'-oxybis(1-Chloropropage)		ma/ka			0.0 . 1 0					
2,2'-oxybis(1-Chloropropane) 2,3,4,6-Tetrachlorophenol	108-60-1	mg/kg mg/kg			0.2 U			0.33 U		
2,3,4,6-Tetrachlorophenol	108-60-1 58-90-2	mg/kg	TRG	0.3 U	0.2 U		0.15 U	0.33 U		0.32 U
	108-60-1	mg/kg mg/kg		0.3 U						
2,3,4,6-Tetrachlorophenol 2,3,7,8-Tetrachlorodibenzo-p-dioxin	108-60-1 58-90-2 1746-01-6	mg/kg mg/kg mg/kg	TRG TRG		0.2 U 0.2 U 0.2 U		0.15 U 0.15 U	0.33 U 0.33 U 0.33 U		0.32 U 0.32 U
2,3,4,6-Tetrachlorophenol 2,3,7,8-Tetrachlorodibenzo-p-dioxin 2,4,5-Trichlorophenol	108-60-1 58-90-2 1746-01-6 95-95-4	mg/kg mg/kg	TRG TRG TRG	0.3 U 0.3 U	0.2 U		0.15 U	0.33 U		0.32 U
2,3,4,6-Tetrachlorophenol 2,3,7,8-Tetrachlorodibenzo-p-dioxin 2,4,6-Trichlorophenol 2,4,6-Trichlorophenol	108-60-1 58-90-2 1746-01-6 95-95-4 88-06-2	mg/kg mg/kg mg/kg mg/kg	TRG TRG TRG TRG	0.3 U 0.3 U 0.3 U	0.2 U 0.2 U		0.15 U 0.15 U	0.33 U 0.33 U		0.32 U 0.32 U
2,3,4,6-Tetrachlorophenol 2,3,7,8-Tetrachlorodibenzo-p-dioxin 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol	108-60-1 58-90-2 1746-01-6 95-95-4 88-06-2 120-83-2	mg/kg mg/kg mg/kg mg/kg mg/kg	TRG TRG TRG TRG TRG	0.3 U 0.3 U 0.3 U 0.06 U	0.2 U 0.2 U 0.041 U		0.15 U 0.15 U 0.031 U	0.33 U 0.33 U 0.067 U		0.32 U 0.32 U 0.066 U
2.3.4.6-Tetrachlorophenol 2.4.5-Trichlorophenol 2.4.5-Trichlorophenol 2.4.0-Trichlorophenol 2.4-Dirlorophenol 2.4-Dirlorophenol 2.4-Dirlorophenol 2.4-Dirlorophenol	108-60-1 58-90-2 1746-01-6 95-95-4 88-06-2 120-83-2 105-67-9	mg/kg mg/kg mg/kg mg/kg mg/kg	TRG TRG TRG TRG TRG TRG	0.3 U 0.3 U 0.3 U 0.06 U 0.3 U	0.2 U 0.2 U 0.041 U 0.2 U		0.15 U 0.15 U 0.031 U 0.15 U	0.33 U 0.33 U 0.067 U 0.33 U		0.32 U 0.32 U 0.066 U 0.32 U

								1		
			Location ID	SED7F	SED7G	SED8C	SED8C	SED8C	SED9.5B	SED9C
			Sample ID Sample Type	SED7F00N N	SED7G00N N	SED8C00EN N	SED8C00N N	SED8C00R FD	SED9.5B00N N	SED9C00N N
			nt Sample Type	N	N	N	N	SED8C00N	IN IN	I N
			Sample Date	11/25/2013	1/30/2014	6/7/2017	11/14/2013	11/14/2013	11/11/2013	11/11/2013
			Task Code	Phase2-2013	Phase2-2013	WP#3-2017 Waterside		Phase2-2013	Phase2-2013	Phase2-2013
		г	Depth Interval	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
			Jopan Interval	0 0.0 K	0 0.0 10	0 0.00 K	0 0.0 K	0 0.0 K	0 0.0 K	0 0.0 1.
Chemical	CAS	Units	Result Type							
2-Chloronaphthalene	91-58-7	mg/kg	TRG	0.06 U	0.041 U		0.031 U	0.067 U		0.066 U
2-Chlorophenol	95-57-8	mg/kg	TRG	0.3 U	0.2 U		0.15 U	0.33 U		0.32 U
2-Methylnaphthalene	91-57-6	mg/kg	TRG	0.067	0.068		0.033	0.023 J		0.0092 J
2-Methylphenol	95-48-7	mg/kg	TRG	0.3 U	0.2 U		0.15 U	0.33 U		0.32 U
2-Nitroaniline	88-74-4	mg/kg	TRG	1.5 U	1 U		0.79 U	1.7 U		1.7 U
2-Nitrophenol	88-75-5	mg/kg	TRG	0.3 U	0.2 U		0.15 U	0.33 U		0.32 U
3,3'-Dichlorobenzidine 3-Nitroaniline	91-94-1 99-09-2	mg/kg	TRG TRG	0.3 U 1.5 U	0.2 U 1 U		0.15 U 0.79 U	0.33 U 1.7 U		0.32 U 1.7 U
4,6-Dinitro-2-methylphenol	534-52-1	mg/kg mg/kg	TRG	1.5 U	1 U		0.79 U	1.7 U		1.7 U
4-Bromophenyl-phenylether	101-55-3		TRG	0.3 U	0.2 U		0.15 U	0.33 U	-	0.32 U
4-Chloro-3-methylphenol	59-50-7	mg/kg mg/kg	TRG	0.3 U	0.2 U		0.15 U	0.33 U		0.32 U
4-Chloroaniline	106-47-8	mg/kg	TRG	0.3 U	0.2 U	1	0.15 U	0.33 U	-	0.32 U
4-Chlorophenyl-phenylether	7005-72-3	mg/kg	TRG	0.3 U	0.2 U	1	0.15 U	0.33 U	t	0.32 U
4-Methylphenol	106-44-5	mg/kg	TRG	0.3 U	0.11 J	<u> </u>	0.15 U	0.33 U		0.32 U
4-Nitroaniline	100-01-6	mg/kg	TRG	1.5 U	1 U		0.79 U	1.7 U		1.7 U
4-Nitrophenol	100-02-7	mg/kg	TRG	1.5 U	1 U		0.79 U	1.7 U	1	1.7 U
Acenaphthene	83-32-9	mg/kg	TRG	0.064	0.14		0.0089 J	0.067 U	0.017 J	0.016 J
Acenaphthylene	208-96-8	mg/kg	TRG	0.043 J	0.023 J		0.034	0.06 J	0.049 J	0.056 J
Acetophenone	98-86-2	mg/kg	TRG	0.03 J	0.027 J		0.15 U	0.33 U		0.32 U
Anthracene	120-12-7	mg/kg	TRG	0.14	0.21		0.049	0.077	0.087	0.095
Atrazine	1912-24-9	mg/kg	TRG	0.3 U	0.2 U		0.15 U	0.33 U		0.32 U
Benzaldehyde	100-52-7	mg/kg	TRG	0.3 UJ	0.19 J		0.057 J	R		0.063 J
Benzidine	92-87-5	mg/kg	TRG							
Benzo(a)anthracene	56-55-3	mg/kg	TRG	0.59	0.95		0.32	0.45	0.45	0.48
Benzo(a)pyrene	50-32-8	mg/kg	TRG	0.6	0.89		0.39	0.63	0.54	0.62
Benzo(b)fluoranthene	205-99-2	mg/kg	TRG	0.86	1.2		0.24 J	0.92 J	0.88	0.99
Benzo(g,h,i)perylene	191-24-2	mg/kg	TRG	0.64	0.78		0.3 J	0.77 J	0.56	0.74
Benzo(k)fluoranthene	207-08-9	mg/kg	TRG	0.3	0.43		0.57	0.41	0.2	0.29
Benzoic acid bis-(2-chloroethoxy)methane	65-85-0 111-91-1	mg/kg mg/kg	TRG TRG	0.3 U	0.2 U		0.15 U	0.33 U	-	0.32 U
bis-(2-Chloroethyl)ether	111-44-4	mg/kg	TRG	0.06 U	0.2 U 0.041 U		0.031 U	0.067 U		0.066 U
bis-(2-Ethylhexyl)phthalate	117-81-7	mg/kg	TRG	0.59 J	0.55		1.3	1.8		1.5
Butylbenzylphthalate	85-68-7	mg/kg	TRG	0.12 J	0.18 J		0.041 J	0.084 J		0.32 U
Caprolactam	105-60-2	mg/kg	TRG	1.5 U	1 U		0.39 J	1.7 U		1.7 U
Carbazole	86-74-8	mg/kg	TRG	0.1	0.25		0.03 J	0.075		0.09
Chrysene	218-01-9	mg/kg	TRG	0.89	1.2		0.53	0.75	0.79	0.88
Dibenzo(a,h)anthracene	53-70-3	mg/kg	TRG	0.16	0.15		0.031 U	0.16	0.12	0.14
Dibenzofuran	132-64-9	mg/kg	TRG	0.042 J	0.11 J		0.15 U	0.33 U		0.32 U
Diethylphthalate	84-66-2	mg/kg	TRG	0.3 U	0.2 U		0.035 J	0.12 J		0.32 U
Dimethylphthalate	131-11-3	mg/kg	TRG	0.3 U	0.2 U		0.15 U	0.33 U		0.32 U
Di-n-butylphthalate	84-74-2	mg/kg	TRG	0.3 U	0.2 U		0.023 J	0.33 U		0.32 U
Di-n-octylphthalate	117-84-0	mg/kg	TRG	0.3 U	0.15 J		0.15 U	0.33 U		0.32 U
Diphenylhydrazine-1,2	122-66-7	mg/kg	TRG							
Fluoranthene	206-44-0	mg/kg	TRG	1.3	2.6		0.67	0.97	0.92	0.95
Fluorene	86-73-7	mg/kg	TRG TRG	0.063	0.1		0.026 J	0.033 J	0.022 J	0.032 J
Hexachlorobenzene	118-74-1 87-68-3	mg/kg	TRG	0.06 U 0.06 U	0.041 U 0.041 U		0.031 U 0.031 U	0.067 U 0.067 U	 	0.066 U 0.066 U
Hexachlorobutadiene Hexachlorocyclo-pentadiene	77-47-4	mg/kg mg/kg	TRG	0.06 U 0.3 U	0.041 U 0.2 U	-	0.031 U 0.15 U	0.067 U	-	0.066 U
Hexachloroethane	67-72-1	mg/kg mg/kg	TRG	0.3 U	0.2 U	 	0.15 U	0.33 U	 	0.32 U
Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	TRG	0.51	0.64	1	0.15 U	0.62 J	0.43	0.57
Isophorone	78-59-1	mg/kg	TRG	0.3 U	0.2 U		0.15 U	0.33 U	1	0.32 U
	91-20-3	mg/kg	TRG	0.038 J	0.095		0.022 J	0.067 U	0.067 U	0.066 U
Naphthalene				0.6 U	0.4 U		0.31 U	0.67 U		0.66 U
	98-95-3	mg/kg	TRG	U.6 U						
Naphthalene		mg/kg mg/kg	TRG	0.6 0						
Naphthalene Nitrobenzene	98-95-3			0.06 U	0.041 U		0.031 U	0.067 U		0.066 U
Naphthalene Nitrobenzene Nitrosodimethylamine-n	98-95-3 62-75-9	mg/kg	TRG	0.06 U 0.3 U	0.2 U		0.15 U	0.067 U 0.33 U		0.32 U
Naphthalene Nitrobenzene Nitrobenzene Nitrosodimethylamine-n N-Nitrosodih-propylamine N-Nitrosodiphenylamine Pentachlorophenol	98-95-3 62-75-9 621-64-7 86-30-6 87-86-5	mg/kg mg/kg mg/kg mg/kg	TRG TRG TRG TRG	0.06 U 0.3 U 0.3 U			0.15 U 0.15 U	0.33 U 0.33 U		0.32 U 0.32 U
Naphthalene Nitrobenzene Nitrosodimethylamine-n N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine	98-95-3 62-75-9 621-64-7 86-30-6	mg/kg mg/kg mg/kg	TRG TRG TRG	0.06 U 0.3 U	0.2 U		0.15 U	0.33 U	0.37	0.32 U

			Location ID	SED7F	SED7G	SED8C	SED8C	SED8C	SED9.5B	SED9C
			Sample ID	SED7F00N	SED7G00N	SED8C00EN	SED8C00N	SED8C00R	SED9.5B00N	SED9C00N
			Sample Type	N	N	N	N	FD	N	N
			nt Sample ID					SED8C00N		
			Sample Date	11/25/2013	1/30/2014	6/7/2017	11/14/2013	11/14/2013	11/11/2013	11/11/2013
			Task Code	Phase2-2013	Phase2-2013	WP#3-2017 Waterside		Phase2-2013	Phase2-2013	Phase2-2013
			Depth Interva	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
Chemical	CAS	Units	Result Type							
Pyrene	129-00-0	mg/kg	TRG	1.1	2.1		0.66	0.93	0.92	1.1
Polybrominated Diphenyl Ethers		L .	TD 0							
PBDE47	5436-43-1	mg/kg	TRG							
PBDE99	60348-60-9	mg/kg	TRG							
PBDE-100	189084-64-8	mg/kg	TRG							
PBDE153	68631-49-2	mg/kg	TRG							
PBDE-154	207122-15-4	mg/kg	TRG							
VOCs 1.1.1-Trichloroethane	71-55-6		TRG	0.014 U	0.0058 U		0.011 U	0.014 U		0.011 U
.,.,.		mg/kg								
1,1,2,2-Tetrachloroethane	79-34-5	mg/kg	TRG	0.014 U	0.0058 U	ļ	0.011 U	0.014 U		0.011 U
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	mg/kg	TRG	0.014 U 0.014 U	0.0058 U	ļ	0.011 U	0.014 U	ļ	0.011 U
1,1,2-Trichloroethane	79-00-5	mg/kg	TRG	0.014 U 0.014 U	0.0058 U		0.011 U	0.014 U	<u> </u>	0.011 U
1,1-Dichloroethane	75-34-3	mg/kg	TRG		0.0058 U		0.011 U	0.014 U	<u> </u>	0.011 U
1,1-Dichloroethene	75-35-4	mg/kg	TRG	0.014 U	0.0058 U	ļ	0.011 U	0.014 U		0.011 U
1,2,3-Trichlorobenzene	87-61-6	mg/kg	TRG	0.014 U	0.0058 U	ļ	0.011 U	0.014 U		0.011 U
1,2,4-Trichlorobenzene	120-82-1	mg/kg	TRG	0.014 U	0.0058 U	ļ	0.011 U	0.014 U		0.011 U
1,2-Dibromo-3-chloropropane	96-12-8	mg/kg	TRG	0.014 U	0.0058 U	ļ	0.011 U	0.014 U		0.011 U
1,2-Dibromoethane	106-93-4	mg/kg	TRG	0.014 U	0.0058 U	ļ	0.011 U	0.014 U		0.011 U
1,2-Dichlorobenzene	95-50-1	mg/kg	TRG	0.014 U	0.0058 U		0.011 U	0.014 U		0.011 U
1,2-Dichloroethane	107-06-2	mg/kg	TRG	0.014 U	0.0058 U		0.011 U	0.014 U		0.011 U
1,2-Dichloropropane	78-87-5	mg/kg	TRG	0.014 U	0.0058 U		0.011 U	0.014 U		0.011 U
1,3-Dichlorobenzene	541-73-1	mg/kg	TRG	0.014 U	0.0058 U		0.011 U	0.014 U		0.011 U
1,4-Dichlorobenzene	106-46-7	mg/kg	TRG	0.014 U	0.0058 U		0.011 U	0.014 U		0.011 U
1,4-Dioxane	123-91-1	mg/kg	TRG	2.9 U	1.2 U		2.2 U	2.9 U		2.3 U
2-Butanone	78-93-3	mg/kg	TRG	0.014 U	0.0058 U		0.011 U	0.014 U		0.011 U
2-Hexanone	591-78-6	mg/kg	TRG	0.014 U	0.0058 U		0.011 U	0.014 U		0.011 U
4-Methyl-2-pentanone	108-10-1	mg/kg	TRG	0.014 U	0.0058 U		0.011 U	0.014 U		0.011 U
Acetone	67-64-1	mg/kg	TRG	0.057 U	0.023 U		0.045 U	0.057 U		0.045 U
Acrolein	107-02-8	mg/kg	TRG							
Acrylonitrile	107-13-1	mg/kg	TRG							
Benzene	71-43-2 74-97-5	mg/kg	TRG TRG	0.014 U 0.014 U	0.0058 U 0.0058 U		0.011 U 0.011 U	0.014 U 0.014 U		0.011 U 0.011 U
Bromochloromethane		mg/kg			0.0058 U					
Bromodichloromethane	75-27-4	mg/kg	TRG	0.014 U			0.011 U	0.014 U		0.011 U
Bromoform	75-25-2 74-83-9	mg/kg	TRG	0.014 U 0.014 U	0.0058 U 0.0058 U		0.011 U 0.011 U	0.014 U 0.014 U		0.011 U 0.011 U
Bromomethane Carbon Disulfide	74-83-9 75-15-0	mg/kg	TRG	0.014 U	0.0058 U		0.011 U	0.014 U		0.011 U
		mg/kg				ļ				
Carbon Tetrachloride	56-23-5	mg/kg	TRG	0.014 U	0.0058 U	1	0.011 U	0.014 U	1	0.011 U
Chlorobenzene Chloroethane	108-90-7 75-00-3	mg/kg	TRG	0.014 U 0.014 U	0.0058 U 0.0058 U		0.011 U 0.011 U	0.014 U 0.014 U	<u> </u>	0.011 U 0.011 U
	75-00-3 67-66-3	mg/kg	TRG	0.014 U 0.014 U	0.0058 U	1	0.011 U 0.011 U	0.014 U 0.014 U	1	0.011 U 0.011 U
Chloroform		mg/kg				1			1	
Chloromethane	74-87-3	mg/kg	TRG	0.014 U 0.014 U	0.0058 U		0.011 U	0.014 U	<u> </u>	0.011 U
cis-1,2-Dichloroethylene	156-59-2 10061-01-5	mg/kg	TRG	0.014 U 0.014 U	0.0058 U 0.0058 U	1	0.011 U 0.011 U	0.014 U 0.014 U	1	0.011 U 0.011 U
cis-1,3-Dichloropropene Cyclohexane	110-82-7	mg/kg	TRG	0.014 U	0.0058 U	-	0.011 U	0.014 U	-	0.011 U
Dibromochloromethane	110-82-7	mg/kg	TRG	0.014 U 0.014 U	0.0058 U 0.0058 U	1	0.011 U 0.011 U	0.014 U 0.014 U	1	0.011 U 0.011 U
Dichlorodifluoromethane Dichlorodifluoromethane	75-71-8	mg/kg	TRG	0.014 U	0.0058 U	-	0.011 U	0.014 U	-	0.011 U
	75-71-8 542-75-6	mg/kg	TRG	0.014 0	U.UU36 U	-	0.0110	U.U14 U	-	0.0110
Dichloropropene, 1,3- Ethylbenzene	100-41-4	mg/kg mg/kg	TRG	0.014 U	0.0058 U	-	0.011 U	0.014 U	-	0.011 U
Isopropylbenzene	98-82-8	mg/kg mg/kg	TRG	0.014 U	0.0058 U	-	0.011 U	0.014 U	-	0.011 U
m, p-Xylene	XYLMP		TRG	0.029 U	0.012 U	-	0.011 U	0.029 U	-	0.011 U
m, p-xylene Methyl Acetate	79-20-9	mg/kg	TRG	0.029 U 0.014 U	0.012 U 0.0058 U	-	0.022 U 0.011 U	0.029 U 0.014 U	-	0.023 U 0.011 U
Methyl tert-Butyl Ether (MTBE)	1634-04-4	mg/kg mg/kg	TRG	0.014 U	0.0058 U	-	0.011 U	0.014 U	 	0.011 U
Methylcyclohexane	108-87-2		TRG	0.014 U	0.0058 U	-	0.011 U	0.014 U	-	0.011 U
Methylene Chloride	75-09-2	mg/kg mg/kg	TRG	0.014 U	0.0058 U	-	0.011 U	0.014 U	-	0.011 U
o-Xylene	95-47-6	mg/kg	TRG	0.014 U	0.0058 U	-	0.011 U	0.014 U	-	0.011 U
Styrene	100-42-5	mg/kg	TRG	0.014 U	0.0058 U	-	0.011 U	0.014 U	-	0.011 U
Tetrachloroethylene	127-18-4	mg/kg	TRG	0.014 U	0.0058 U	-	0.011 U	0.014 U	-	0.011 U
Toluene	127-18-4	mg/kg mg/kg	TRG	0.014 U	0.0058 U	1	0.011 U	0.014 U	1	0.011 U
trans-1,2-Dichloroethene	156-60-5		TRG	0.014 U	0.0058 U	1	0.011 U	0.014 U	1	0.011 U
uans-1,2-Dignoloethene	130-00-3	mg/kg	IKU	U.U14 U	U.UU36 U	l	0.0110	U.U14 U	1	0.0110

			Location ID	SED7F	SED7G	SED8C	SED8C	SED8C	SED9.5B	SED9C
			Sample ID		SED7G00N	SED8C00EN	SED8C00N	SED8C00R	SED9.5B00N	SED9C00N
			Sample Type		N N	N N	N N	FD	N N	N N
			ent Sample ID		**	• •		SED8C00N		
			Sample Date		1/30/2014	6/7/2017	11/14/2013	11/14/2013	11/11/2013	11/11/2013
			Task Code	Phase2-2013	Phase2-2013	WP#3-2017 Waterside	Phase2-2013	Phase2-2013	Phase2-2013	Phase2-2013
			Depth Interval	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
Chemical	CAS	Units	Result Type							
trans-1,3-Dichloropropene	10061-02-6	mg/kg	TRG	0.014 U	0.0058 U		0.011 U	0.014 U		0.011 U
Trichloroethene	79-01-6	mg/kg	TRG	0.014 U	0.0058 U		0.011 U	0.014 U		0.011 U
Trichlorofluoromethane	75-69-4	mg/kg	TRG	0.014 U	0.0058 U		0.011 U	0.014 U		0.011 U
Vinyl Chloride	75-01-4	mg/kg	TRG	0.014 U	0.0058 U		0.011 U	0.014 U		0.011 U
Vinyl ether, 2-chloroethyl	110-75-8	mg/kg	TRG							
Xylenes (total)	1330-20-7	mg/kg	CALC	0.029 U	0.012 U		0.022 U	0.029 U		0.023 U

ARSENIC 74 BARIUM 74 BERYLLIUM 74 CADMIUM 74 CALCIUM 74 CHROMIUM 74 CHROMIUM 74 COPPER 74 IRON 74 IRON 74 MAGNESIUM 74 MANGANESE 74 MERCURY 74 NICKEL 74 SELENIUM 77 SODIUM 74 THALLIUM 74 THALLIUM 74 THALLIUM 74 THALLIUM 74 THALLIUM 74 Pesticides 74 Pesticides 74 Pesticides 74	429-90-5 m 440-38-2 m 440-39-3 m 440-41-7 m 440-43-9 m 440-70-2 m 440-47-3 m 440-48-4 m 440-50-8 m 439-89-6 m 439-92-1 m 439-95-4 m 439-96-5 m 439-97-6 m 440-02-0 m	Inits Ing/kg	UABB01 Brown bullh 9/26/2013 1.4 0.092 0.192 0.004 0.004 148 0.04 0.019 0.25 5.6 0.021		UABC0** Blue catfi 9/26/201 0.4 0.093 0.0252 0.004 0.004 238 0.04 0.004	sh	UACA01 Carp 9/26/201: 0.5 0.113 0.128 0.005 0.005 508	U U U	UACC01 Channel cat 9/26/2013 0.4 0.094 0.0407 0.004 0.004	UUUUUU	UALB01 Largemouth b 9/26/2013 0.4 0.101 0.0161	UUU	UANS01 Northern snake 9/26/2013 0.4 0.109 0.0238 0.004	ehead U U	UASF01 Sunfish 9/23/2013 1.5 0.094 U 0.0668 0.004 U
ALUMINUM 74 ARSENIC 74 BARIUM 74 BERYLLIUM 74 CADMIUM 74 CALCIUM 74 CHROMIUM 74 COBALT 74 COPPER 74 IRON 74 LEAD 74 MAGNESIUM 74 MARGANESE 74 MERCURY 74 SELENIUM 77 SODIUM 77 THALLIUM 77 VANADIUM 77 VANADIUM 77 Pesticides 74 Pesticides 74 Pesticides 74 P4 P4 P4 P4 P4 P4 P5 P5 P6 P6 P7 P6 P6 P7 P6 P6 P7 P6 P6	440-38-2 m 440-39-3 m 440-41-7 m 440-43-9 m 440-70-2 m 440-47-3 m 440-48-4 m 440-50-8 m 439-89-6 m 439-92-1 m 439-95-4 m 439-97-6 m 440-02-0 m	ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg	0.092 0.192 0.004 0.004 148 0.04 0.019 0.25 5.6 0.021	U	0.093 0.0252 0.004 0.004 238 0.04 0.004	U	0.113 0.128 0.005 0.005	U	0.094 0.0407 0.004	U	0.101 0.0161 0.004	U	0.109 0.0238 0.004	U	0.094 U 0.0668 0.004 U
ARSENIC 74 BARIUM 74 BERYLLIUM 74 CADMIUM 74 CALCIUM 74 CHROMIUM 74 CHROMIUM 74 COPER 74 IRON 74 ILEAD 74 MAGNESIUM 74 MANGANESE 74 MERCURY 74 NICKEL 74 SELENIUM 77 SODIUM 74 THALLIUM 74 THALLIUM 74 VANADIUM 74 Pesticides	440-38-2 m 440-39-3 m 440-41-7 m 440-43-9 m 440-70-2 m 440-47-3 m 440-48-4 m 440-50-8 m 439-89-6 m 439-92-1 m 439-95-4 m 439-97-6 m 440-02-0 m	ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg	0.092 0.192 0.004 0.004 148 0.04 0.019 0.25 5.6 0.021	U	0.093 0.0252 0.004 0.004 238 0.04 0.004	U	0.113 0.128 0.005 0.005	U	0.094 0.0407 0.004	U	0.101 0.0161 0.004	U	0.109 0.0238 0.004	U	0.094 U 0.0668 0.004 U
BARIUM 74 BERYLLIUM 74 CADMIUM 74 CALCIUM 74 CHROMIUM 74 COBALT 74 COPPER 74 IRON 74 LEAD 74 MAGNESIUM 74 MERCURY 74 NICKEL 74 SELENIUM 77 SODIUM 74 THALLIUM 74 VANADIUM 74 ZINC 74 Pesticides 1,2,3,4-TETRACHLOROBENZENE 63	440-38-2 m 440-39-3 m 440-41-7 m 440-43-9 m 440-70-2 m 440-47-3 m 440-48-4 m 440-50-8 m 439-89-6 m 439-92-1 m 439-95-4 m 439-96-5 m 439-97-6 m 440-02-0 m	ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg	0.192 0.004 0.004 148 0.04 0.019 0.25 5.6 0.021	U	0.0252 0.004 0.004 238 0.04 0.004	U	0.128 0.005 0.005	U	0.0407 0.004	U	0.0161 0.004	U	0.0238 0.004	U	0.0668 0.004 U
BERYLLIUM	440-41-7 mr 440-43-9 mr 440-43-9 mr 440-47-2 mr 440-47-3 mr 440-48-4 mr 440-50-8 mr 439-89-6 mr 439-92-1 mr 439-95-4 mr 439-96-5 mr 439-97-6 mr 440-02-0 mr	ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg	0.004 0.004 148 0.04 0.019 0.25 5.6 0.021	U	0.004 0.004 238 0.04 0.004	U	0.005 0.005	_	0.004	-	0.004	_	0.004	_	0.004 U
CADMIUM 74 CALCIUM 74 CHROMIUM 74 COBALT 74 COPPER 74 IRON 74 LEAD 74 MANGANESIUM 74 MERCURY 74 MICKEL 74 SELENIUM 77 SODIUM 74 THALLIUM 74 VANADIUM 74 ZINC 74 Pesticides 1,2,3,4-TETRACHLOROBENZENE 63	440-41-7 m 440-43-9 m 440-70-2 m 440-47-3 m 440-48-4 m 440-50-8 m 439-89-6 m 439-92-1 m 439-92-1 m 439-96-5 m 439-97-6 m 440-02-0 m	ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg	0.004 148 0.04 0.019 0.25 5.6 0.021	U	0.004 238 0.04 0.004	U	0.005	_		-		_		_	
CALCIUM 74 CHROMIUM 74 COBALT 74 COPPER 74 IRON 74 LEAD 74 MAGNESIUM 74 MANGANESE 74 MERCURY 74 NICKEL 74 SELENIUM 77 SODIUM 74 THALLIUM 74 VANADIUM 74 ZINC 74 Pesticides 1,2,3,4-TETRACHLOROBENZENE 63	#440-43-9 m #440-70-2 m #440-47-3 m #440-48-4 m #440-50-8 m #439-89-6 m #339-92-1 m #339-92-1 m #339-95-4 m #339-96-5 m #439-97-6 m #440-02-0 m	ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg	148 0.04 0.019 0.25 5.6 0.021		238 0.04 0.004			U	0.004		0.001		0.004	- 11	
CHROMIUM 74 COBALT 74 COPPER 74 IRON 74 LEAD 74 MAGNESIUM 74 MANGANESE 74 MERCURY 74 NICKEL 74 SELENIUM 77 SODIUM 74 THALLIUM 74 VANADIUM 74 ZINC 74 Pesticides 1,2,3,4-TETRACHLOROBENZENE 63	### description of the control of th	ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg	0.04 0.019 0.25 5.6 0.021	U	0.04 0.004		508			U	0.004	U	0.004	U	0.004 U
CHROMIUM 74 COBALT 74 COPPER 74 IRON 74 LEAD 74 MAGNESIUM 74 MANGANESE 74 MERCURY 74 NICKEL 74 SELENIUM 77 SODIUM 74 THALLIUM 74 VANADIUM 74 ZINC 74 Pesticides 1,2,3,4-TETRACHLOROBENZENE 63	440-47-3 m 440-48-4 m 440-50-8 m 439-89-6 m 439-92-1 m 439-95-4 m 439-96-5 m 439-97-6 m 440-02-0 m	ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg	0.019 0.25 5.6 0.021	U	0.004	- 11			364		134		131		311
COPPER 74 IRON 74 LEAD 74 MAGNESIUM 74 MANGANESE 74 MERCURY 74 NICKEL 74 SELENIUM 77 SODIUM 74 THALLIUM 74 VANADIUM 74 ZINC 74 Pesticides 1,2,3,4-TETRACHLOROBENZENE 63	440-50-8 m 439-89-6 m 439-92-1 m 439-95-4 m 439-96-5 m 439-97-6 m 440-02-0 m	ng/kg ng/kg ng/kg ng/kg ng/kg	0.25 5.6 0.021			U	0.05	U	0.04	U	0.04	U	0.04	U	0.04 U
COPPER 74 IRON 74 LEAD 74 MAGNESIUM 74 MARGANESE 74 MERCURY 74 NICKEL 74 SELENIUM 77 SODIUM 74 THALLIUM 74 VANADIUM 74 ZINC 74 Pesticides 1,2,3,4-TETRACHLOROBENZENE 63	440-50-8 m 439-89-6 m 439-92-1 m 439-95-4 m 439-96-5 m 439-97-6 m 440-02-0 m	ng/kg ng/kg ng/kg ng/kg ng/kg	0.25 5.6 0.021			U	0.016		0.004	U	0.007		0.007		0.014
LEAD 74 MAGNESIUM 74 MANGANESE 74 MERCURY 74 NICKEL 74 SELENIUM 77 SODIUM 74 THALLIUM 74 VANADIUM 74 ZINC 74 Pesticides 1,2,3,4-TETRACHLOROBENZENE 63	439-89-6 m 439-92-1 m 439-95-4 m 439-96-5 m 439-97-6 m 440-02-0 m	ng/kg ng/kg ng/kg ng/kg	0.021		0.201		0.777		0.227		0.164		0.19		0.155
LEAD 74 MAGNESIUM 74 MANGANESE 74 MERCURY 74 NICKEL 74 SELENIUM 77 SODIUM 74 THALLIUM 74 VANADIUM 74 ZINC 74 Pesticides 1,2,3,4-TETRACHLOROBENZENE 63	439-92-1 m 439-95-4 m 439-96-5 m 439-97-6 m 440-02-0 m	ng/kg ng/kg ng/kg	0.021		3.6		35.2		4.5		2.8		2.7		2.3
MANGANESE 74 MERCURY 74 NICKEL 74 SELENIUM 77 SODIUM 74 THALLIUM 74 VANADIUM 74 ZINC 74 Pesticides 1,2,3,4-TETRACHLOROBENZENE 63	439-95-4 m 439-96-5 m 439-97-6 m 440-02-0 m	ng/kg ng/kg			0.006		0.021		0.007		0.004	U	0.004	U	0.005
MANGANESE 74 MERCURY 74 NICKEL 74 SELENIUM 77 SODIUM 74 THALLIUM 74 VANADIUM 74 ZINC 74 Pesticides 1,2,3,4-TETRACHLOROBENZENE 63	439-96-5 m 439-97-6 m 440-02-0 m	ng/kg	241		242		224		235		284		260		256
NICKEL 74 SELENIUM 77 SODIUM 74 THALLIUM 74 VANADIUM 74 ZINC 74 Pesticides 1,2,3,4-TETRACHLOROBENZENE 63	439-97-6 m 440-02-0 m		0.173		0.211		0.266		0.19		0.0957		0.105		0.583
NICKEL 74 SELENIUM 77 SODIUM 74 THALLIUM 74 VANADIUM 74 ZINC 74 Pesticides 1,2,3,4-TETRACHLOROBENZENE 63	440-02-0 m	ıg/kg	0.033		0.121		0.063		0.125		0.236		0.124		0.055
SELENIUM 77.		ıg/kg	0.11		0.04	U	0.05	IJ	0.04	IJ	0.11		0.04	U	0.17
THALLIUM		ıg/kg	0.18	U	0.19	Ü	0.54		0.19	Ū	0.26		0.29		0.29
THALLIUM 74 VANADIUM 74 ZINC 74 Pesticides 1,2,3,4-TETRACHLOROBENZENE 63 63		ng/kg	567		480		541		589	Ť	400		351		720
VANADIUM 74 ZINC 74 Pesticides 1,2,3,4-TETRACHLOROBENZENE 63		ig/kg	0.004	U	0.004	U	0.005	U	0.004	U	0.004	U	0.004	U	0.004 U
ZINC 74 Pesticides 1,2,3,4-TETRACHLOROBENZENE 63		ng/kg	0.04	Ü	0.04	Ü	0.05	Ū	0.04	U	0.04	Ū	0.04	U	0.04 U
Pesticides 1,2,3,4-TETRACHLOROBENZENE 63		ng/kg	4.68	Ť	5.47		12.8	Ŭ	6.96	Ť	7.79		7.16		10.4
1,2,3,4-TETRACHLOROBENZENE 63	1	99				,	1=10	,							
	34-66-2 u	g/kg	0.048	U	0.0494	U	0.126		0.087	1	0.0487	U	0.0494	U	0.146
11,2,7,0-1L INACHEONODENZENE 190		g/kg	0.373		0.424		1.18		0.355		0.0487	U	0.284		0.655
2.4'-DDD 53		g/kg	0.253		0.477		2.66		1.37		0.48		0.169		0.0502 U
2.4'-DDE 34		g/kg	3.72		4.6		6.01		10.9		5.78		0.0494	U	0.133
		g/kg	0.115		0.53		1.83		1.26		0.306		0.112		0.286
4.4'-DDD 72		g/kg	1.87		2.76		21.89		7.2		2.29		1.38		0.92
•		g/kg	4.29		13.5		44.3		29.04		9.37		4.94		3.46
4,4'-DDT 50		g/kg	0.048	U	0.28		0.0497	U	1.25		0.37		0.21		0.0502 U
		g/kg	0.056		0.0494	U	0.06		0.351		0.069		0.382		0.0502 U
ALPHA-BHC 31		g/kg	0.11		0.142		0.09		0.119		0.095		0.126		0.054
		g/kg	5.41		7.03		30.97		15.1		4.65		2.65		1.23
		g/kg	0.599		0.894		0.54		0.518		0.652		0.777		0.68
		g/kg	0.048	U	0.0494	U	0.824		0.0434	U	0.117		0.0494	U	0.0502 U
		g/kg	1.44		2.48		12.9		6.08		3.11		1.64		1.29
DELTA-BHC 31		g/kg	0.048	U	0.0494	U	0.072		0.0434	U	0.0487	U	0.0494	U	0.0502 U
		g/kg	1.19		1.69		8.49		2.49		2.53		2.8		1.03
		g/kg	0.048	U	0.0494	U	0.0483	U	0.0434	U	0.0487	U	0.0494	U	0.0502 U
		g/kg	0.048	Ü	0.0494	U	0.28		0.044		0.0487	U	0.0494	U	0.095
		g/kg	3.98	Ť	4.34		4.37		9.19	t	1.76		0.459		0.217
		g/kg	0.06		0.077		0.0483	U	0.082	- 1	0.0487	U	0.0494	U	0.0502 U
		g/kg	0.048	U	0.0494	U	0.0483	U	0.0434	U	0.0487	U	0.0494	U	0.0502 U
		g/kg g/kg	0.593	-	0.737	-	3.69	_	1.12	-	1.07		1.63	Ť	0.357
		g/kg g/kg	0.175		0.207		0.999		0.378		0.139	-	0.156		0.126
		g/kg g/kg	0.051		0.135		0.533		0.268		0.138	-	0.0494	U	0.0502 U
		g/kg g/kg	0.635		1.01		4.82		1.71		2.1	\dashv	1.72	J	0.723
		g/kg g/kg	0.033	- 1	0.189	-	0.815		0.359		4.1	,	1.12		0.123

		Upper Anacostia River (Encompasses Waterside Investigation Area) (a) UABB01 UABC01 UACA01 UACC01 UALB01 UANS01 UASF01													
			UABB01	UAB	C01	UACA)1	UACCO	1	UALB01		UANS01		UASF	01
			Brown bullhead	Blue c	atfish	Carp		Channel ca		Largemouth	bass	Northern snak	ehead	Sunf	
CHEMICAL	CAS#	Units	9/26/2013	9/26/	2013	9/26/20	13	9/26/20	13	9/26/2013	3	9/26/2013	3	9/23/2	013
Semivolatile Organic Compounds															
2,3,5-TRIMETHYLNAPHTHALENE	2245-38-7	ug/kg	5.62	1.82		7.59		3.92		2.01		0.988	U	1.07	
1-METHYLNAPHTHALENE	90-12-0	ug/kg	2.53	2.74		18.8		5.89		3.24		0.988	U	1.01	
1-METHYLPHENANTHRENE	832-69-9	ug/kg	0.96 U		U	0.965	U	0.869	U	0.974	U	0.988	U	1.01	U
2,6-DIMETHYLNAPHTHALENE	581-42-0	ug/kg	4.36	2.26		11.5		5.33		3.7		0.988	U	1.12	
2-METHYLNAPHTHALENE	91-57-6	ug/kg	3.17	3.67		23.3		7.55		4.57		0.7	J	1.35	
ACENAPHTHENE	83-32-9	ug/kg	1.63 J+		J+	7.8		3.4	J+	2.04	J+	0.988	U	1.01	U
ACENAPHTHYLENE	208-96-8	ug/kg	1.13	0.8	J	2.7		1.81		0.4	J	0.988	U	1.01	U
ANTHRACENE	120-12-7	ug/kg	2.12	1.34		5.8		3.14		0.974	U	0.988	U	1.01	U
BENZO(A)ANTHRACENE	56-55-3	ug/kg	0.96 U	0.988		0.965	U	0.869	U	0.974	U	0.988	U	1.01	U
BENZO(A)PYRENE	50-32-8	ug/kg	0.96 U	0.988		0.965	U	0.869	U	0.974	U	0.988	U	1.01	U
BENZO(B)FLUORANTHENE	205-99-2	ug/kg	0.96 U	0.988		0.965	U	0.869	U	0.974	U	0.988	U	1.01	U
BENZO(E)PYRENE	192-97-2	ug/kg	0.96 U	0.988		0.965	U	0.869	U	0.974	U	0.988	U	1.01	U
BENZO(G,H,I)PERYLENE	191-24-2	ug/kg	0.96 U	0.988		0.965	U	0.869	U	0.974	U	0.988	U	1.01	U
BENZO(K)FLUORANTHENE	207-08-9	ug/kg	0.96 U	0.988	U	0.965	U	0.869	U	0.974	U	0.988	U	1.01	U
BIPHENYL	92-52-4	ug/kg	1.02	1.22		4		2.26		1.43		0.988	U	1.01	U
C1-CHRYSENES	TTNUS145	ug/kg	0.96 U	0.988	U	0.965	U	0.869	С	0.974	U	0.988	U	1.01	U
C1-DIBENZOTHIOPHENES	TTNUS146	ug/kg	1.91	0.988	U	2.15		1.87		0.974	U	0.988	U	1.01	U
C1-FLUORANTHENES/PYRENES	TTNUS147	ug/kg	1.56	1.1		4.7		0.869	U	0.974	U	0.988	U	1.01	U
C1-FLUORENES	TTNUS148	ug/kg	4.5	2.34		10.2		4.31		3.08		1.22		1.01	U
C1-NAPHTHALENES	TTNUS149	ug/kg	5.7	6.41		42.1		13.4		7.81		1.17		2.36	
C1-PHENANTHRENES/ANTHRACENES	TTNUS150	ug/kg	2.09	1.01		3.1		1.59		0.5	J	0.988	U	1.01	U
C2-CHRYSENES	TTNUS154	ug/kg	0.96 U	0.988	U U	0.965	U	0.869	U	0.974	U	0.988	U	1.01	U
C2-DIBENZOTHIOPHENES	TTNUS155	ug/kg	1.31	0.988	U	0.965	U	0.869	С	0.974	U	0.988	U	1.01	U
C2-FLUORENES	TTNUS156	ug/kg	3.15	1.15		6.8		2.12		1.31		0.988	U	1.01	U
C2-NAPHTHALENES	TTNUS157	ug/kg	11.5	8.41		37.6		19.6		10.5		1.01		3.67	
C2-PHENANTHRENES/ANTHRACENES	TTNUS158	ug/kg	1.75	0.7	J	3.3		1.42		0.5	J	0.988	U	1.01	U
C3-CHRYSENES	TTNUS159	ug/kg	0.96 U	0.988	. U	0.965	U	0.869	U	0.974	U	0.988	U	1.01	U
C3-DIBENZOTHIOPHENES	TTNUS160	ug/kg	0.99	0.988	. U	0.965	U	0.869	U	0.974	U	0.988	U	1.01	U
C3-FLUORENES	TTNUS161	ug/kg	2.23	1		3.8		2.15		1.18		0.988	U	1.01	U
C3-NAPHTHALENES	TTNUS162	ug/kg	12.9	5.91		22.6		11.1		5.77		1.6		3.79	
C3-PHENANTHRENES/ANTHRACENES	TTNUS163	ug/kg	1.38	2.68		8.8		5.93		1.05		0.988	U	1.01	U
C4-CHRYSENES	TTNUS164	ug/kg	0.96 U	0.988	U U	0.965	U	0.869	U	0.974	U	0.988	U	1.01	U
C4-NAPHTHALENES	TTNUS165	ug/kg	8.38	2.8		12.2		4.43		2.26		0.988	U	2.5	
C4-PHENANTHRENES/ANTHRACENES	TTNUS166	ug/kg	0.98	0.988	U U	0.965	U	0.869	U	0.974	U	0.988	U	1.01	U
CHRYSENE	218-01-9	ug/kg	1.31	0.988	. U	1.3		1.28		0.974	U	0.988	U	1.01	U
DIBENZO(A,H)ANTHRACENE	53-70-3	ug/kg	0.96 U	0.988	. U	0.965	U	0.869	U	0.974	U	0.988	U	1.01	U
DIBENZOTHIOPHENE	132-65-0	ug/kg	1.25	0.988	. U	1.69		0.96		0.974	U	0.988	U	1.01	U
FLUORANTHENE	206-44-0	ug/kg	6.96	1.29	J+	6.6		3.17		1.39	J+	0.988	U	2.01	
FLUORENE	86-73-7	ug/kg	2.62 J+	1.54	J+	7.2	J+	3.55	J+	2.4	J+	0.988	U	1.3	J+
INDENO(1,2,3-CD)PYRENE	193-39-5	ug/kg	0.96 U	0.988	. U	0.965	U	0.869	U	0.974	U	0.988	U	1.01	U
NAPHTHALENE	91-20-3	ug/kg	2.4	2.41		10.8		3.95		4.47		2.42		4.68	
PERYLENE	198-55-0	ug/kg	0.96 U	0.988	B U	0.965	U	0.869	U	0.974	U	0.988	U	1.01	U
PHENANTHRENE	85-01-8	ug/kg	5.82 J+		J+	10.5		3.86	J+	2.92	J+	0.988	U	2.15	J+
PYRENE	129-00-0	ug/kg	3.37	0.988		2.8		1.15		0.974	U	0.988	U	1.01	U

					Upp	er /	Anacostia	Rive	r (Encompass	es \	Waterside Inv	estiga	ation Area) (a)			
CHEMICAL	CAS#	Units	UABB01 Brown bullhea 9/26/2013	ıd	UABC01 Blue catfish 9/26/2013	n	UACA0 ² Carp 9/26/201		UACC01 Channel catfis 9/26/2013	sh	UALB01 Largemouth b 9/26/2013	oass	UANS01 Northern snake 9/26/2013	head	UASI Sunf 9/23/2	ish
Polybrominated diphenyl ethers																
PBDE-1	7025-06-1	ug/kg	0.12 l	U	0.124	U	0.121	U	0.109	U	0.122	U	0.124	U	0.126	U
PBDE-2	6876-00-2	ug/kg	0.12 l	U	0.124	U	0.121	U	0.109	U	0.122	U	0.124	U	0.126	U
PBDE-3	101-55-3	ug/kg	0.12 l	U	0.124	U	0.121	U	0.109	U	0.122	U	0.124	U	0.126	U
PBDE-7	171977-44-9	ug/kg	0.12 l	U	0.124	U	0.121	U	0.109	U	0.122	U	0.124	U	0.126	U
PBDE-8/11	TTPBDE8.11	ug/kg	0.12 l	U	0.124	U	0.121	U	0.109	U	0.122	U	0.124	U	0.126	U
PBDE-10	51930-04-2	ug/kg	0.12 l	U	0.124	U	0.121	U	0.109	U	0.122	U	0.124	U	0.126	U
PBDE-12	189084-59-1	ug/kg	0.12 l	U	0.124	U	0.121	U	0.109	U	0.122	U	0.124	U	0.126	U
PBDE-13	83694-71-7	ug/kg	0.12 l	U	0.124	U	0.121	U	0.109	U	0.122	U	0.124	U	0.126	U
PBDE-15	2050-47-7	ug/kg	0.12 l	U	0.124	U	0.121	U	0.109	U	0.122	U	0.124	U	0.126	U
PBDE-17	147217-75-2	ug/kg	0.12 l	U	0.124	U	0.121	U	0.109	U	0.122	U	0.124	U	0.126	U
PBDE-25	147217-77-4	ug/kg	0.12 l	U	0.124	U	0.121	U	0.109	U	0.122	U	0.124	U	0.126	U
PBDE-28	41318-75-6	ug/kg	0.15		0.19		5.92		0.25		0.35		0.22		0.126	U
PBDE-30	155999-95-4	ug/kg	0.12 l	U	0.124	U	0.121	U	0.109	U	0.122	U	0.124	U	0.126	U
PBDE-32	189084-60-4	ug/kg	0.12 l	U	0.124	U	0.121	U	0.109	U	0.122	U	0.124	U	0.126	U
PBDE-33	147217-78-5	ug/kg	0.12 l	U	0.124	U	0.121	U	0.109	U	0.122	U	0.124	U	0.126	U
PBDE-35	147217-80-9	ug/kg	0.12 l	U	0.124	U	0.121	U	0.109	U	0.122	U	0.124	U	0.126	U
PBDE-37	147217-81-0	ug/kg	0.12 l	U	0.124	U	0.121	U	0.109	U	0.122	U	0.124	U	0.126	U
PBDE-47	5436-43-1	ug/kg	3.71	T	8.27		72.5		24.9	T	10.2		5.9		2.94	
PBDE-49	243982-82-3	ug/kg	0.37		0.24		5.14		0.78		0.86		0.22		0.48	
PBDE-66	189084-61-5	ug/kg	0.12 l	U	0.32		0.121	U	0.65		0.45		0.124	U	0.16	
PBDE-71	189084-62-6	ug/kg	0.12 l	U	0.124	U	0.121	U	0.109	U	0.122	U	0.124	U	0.126	U
PBDE-75	189084-63-7	ug/kg	0.12 l	U	0.124	U	0.121	U	0.109	U	0.122	U	0.124	U	0.126	U
PBDE-77	93703-48-1	ug/kg	0.12 l	U	0.124	U	0.121	U	0.109	U	0.122	U	0.124	U	0.126	U
PBDE-85	182346-21-0	ug/kg	0.18 l	U	0.185	U	0.181	U	0.28		0.183	U	0.185	U	0.188	U
PBDE-99	60348-60-9	ug/kg	3.62		6.11		0.181	U	14.3		7.54		0.185	U	1.93	
PBDE-100	189084-64-8	ug/kg	0.91		2.28		11.6		7.54		2.35		0.89		0.73	
PBDE-116	189084-65-9	ug/kg	0.18 l	U	0.185	U	0.181	U	0.163	U	0.183	U	0.185	U	0.188	U
PBDE-118	446254-80-4	ug/kg	0.18 l	U	0.185	U	0.181	U	0.21		0.183	U	0.185	U	0.188	U
PBDE-119	189084-66-0	ug/kg	0.18 l	U	0.185	U	0.181	U	0.163	U	0.183	U	0.185	U	0.188	U
PBDE-126	366791-32-4	ug/kg	0.18 l	U	0.185	U	0.181	U	0.163	U	0.183	U	0.185	U	0.188	U
PBDE-138	182677-30-1	ug/kg	0.24 l	U	0.247	U	0.241	U	0.217	U	0.244	U	0.247	U	0.251	U
PBDE-153	68631-49-2	ug/kg	0.46		0.97		0.241	U	1.75		1.04		0.247	U	0.33	
PBDE-154	207122-15-4	ug/kg	0.3		0.61		3.35		1.53		0.64		0.247	U	0.251	U
PBDE-155	35854-94-5	ug/kg	0.24 l	U	0.247	U	0.92		0.27		0.244	U	0.247	U	0.251	U
PBDE-166	189084-58-0	ug/kg	0.24 l	U	0.247	U	0.241	U	0.217	U	0.244	U	0.247	U	0.251	U
PBDE-181	189084-67-1	ug/kg	0.3 l	U	0.309	U	0.302	U	0.272	U	0.305	U	0.309	U	0.314	U
PBDE-183	207122-16-5	ug/kg	0.3 l	U	0.309	U	0.302	U	0.272	U	0.305	U	0.309	U	0.314	U
PBDE-190	189084-68-2	ug/kg	0.3 l	U	0.309	U	0.302	U	0.272	U	0.305	U	0.309	U	0.314	U
PBDE-209	1163-19-5	ug/kg	19.2 l	U	19.8	U	19.3	U	17.4	U	19.5	U	19.8	U	20.1	U
Total PBDEs	TotalPBDE	ug/kg	9.52		18.99		99.43		52.46		23.43		7.23		6.57	
PCB Aroclors																
AROCLOR-1242	53469-21-9	ug/kg	13.5	T	0.988	U	0.995	U	0.869	U	0.975	U	9.57		7.47	
AROCLOR-1248	12672-29-6	ug/kg	12.4	T	44.1		275		45.5		39.9		10.4		8.97	
AROCLOR-1254	11097-69-1	ug/kg	7.87	T	0.988	U	137		65		0.975	U	3.48		6.73	
AROCLOR-1260	11096-82-5	ug/kg	22.5	T	88.2		268		143		79.7		26.1		18.7	
AROCLOR-1268	11100-14-4	ug/kg	0.961 l	U	8.82		0.995	U	0.869	U	0.975	U	0.988	U	1.01	U
Total Aroclors	TotalAroclor	ug/kg	56.27	T	141.12	7	680.00		253.50		119.60		49.55		41.87	

CAS					Upper	Anacostia Rive	r (Encompasses	Waterside Investiga	tion Area) (a)	
CHEMICAL CAS # Units Surphish Surphi				IIA DD04		•				IIA SEO1
CAS										
PCB-19	CHEMICAL	CAS#	Units					•		
PCR-979 TT_PCR-0042 ug/sq 0.00061 U 0.00088 U 0.222 0.00069 U 0.00075 U 0.022 0.109 PCR-96-66 TT_PCR-0014 ug/sq 0.066 0.00088 U 0.00086 U 0.00075 U 0.022 0.010 PCR-96-15 2050-68-2 ug/sq 0.066 0.00088 U 0.00086 U 0.00075 U 0.022 0.01 U PCR-96-171 TT_PCR-0014 ug/sq 0.066 0.00088 U 0.00086 U 0.00075 U 0.0022 0.01 U PCR-96-171 TT_PCR-0019 ug/sq 0.113 1.03 3.33 1.26 0.00075 U 0.00089 U 0.01 U PCR-96-171 TT_PCR-0019 ug/sq 0.113 1.03 3.33 1.26 0.00075 U 0.0008 0.00075 U 0.00089 U 0.00086 U PCR-96-28 SF71-271-3 ug/sq 0.016 U 0.0008 0.00086 U 0.0008 0.00086 U 0.0008 0.00086 U 0.0008 0.00086 U 0.000	PCB Congeners	•					•		•	
PCB-86	PCB-1	2051-60-7	ug/kg	0.047	0.00988 U	0.202	0.021	0.109	0.05	0.01 U
PCE-15	PCB-7/9	TT_PCBC042	ug/kg	0.00961 U	0.00988 U	0.225	0.00869 U	0.00975 U	0.022	0.109
PCB-15	PCB-8/5	TT_PCBC045	ug/kg	0.577	0.535	1.85	0.386	0.452	0.419	0.292
PCB-1817	PCB-15	2050-68-2	ug/kg	0.086	0.00988 U	0.00965 U	0.03	0.00975 U	0.032	0.01 U
PCB-1817	PCB-16/32	TT_PCBC014	ug/kg	0.00961 U	0.608	5.85	0.00869 U	0.00975 U	0.00988 U	0.01 U
PCB-22951	PCB-18/17	TT_PCBC019		1.13	1.03	8.33	1.26	0.979	0.121	0.614
PCB-34277 TT PCBC026 ug/sq 2.0961 U 0.0779 1.86 0.00965 U 0.00975 U 0.061 0.01 U 1.5 PCB-26 S67127-3 ug/sq 2.096 2.37 0.00965 U 3.25 2.29 1.66 1.5 PCB-26 TT PCBC027 ug/sq 1.57 1.53 0.00965 U 1.79 1.77 1.59 1.67 PCB-26 TT PCBC028 ug/sq 2.77 3.08 17.2 4.4 3.38 1.62 1.52 PCB-27 TT PCBC029 ug/sq 0.0965 U 0.022 0.054 0.058 U 0.00965 U 0.022 0.00988 U 0.066 PCB-31 1660-6023 ug/sq 0.026 0.022 0.00988 U 0.066 PCB-31 1660-6023 ug/sq 0.0496 0.026 0.022 0.00988 U 0.066 PCB-32 TT PCBC031 ug/sq 0.0496 0.0088 U 0.00965 U 0.00965 U 0.00975 U 0.0988 U 0.066 PCB-32 TT PCBC031 ug/sq 0.00961 U 0.0088 U 0.00965 U 0.00965 U 0.00975 U 0.00988 U 0.00965 PCB-34 Ug/sq 0.00961 U 0.0088 U 0.00965 U 0.00965 U 0.00975 U 0.00988 U 0.00965	PCB-22/51	TT_PCBC025		0.158	0.536	3.8	0.637	0.428	0.095	0.404
PCB-25	PCB-24/27	TT PCBC026		0.00961 U	0.079	1.86	0.00869 U	0.00975 U	0.081	0.01 U
PCB-28 TT_PCBC028 ug/kg 2.77 3.08 1.72 1.77 1.58 1.67 1.52	PCB-25	55712-37-3		2.08	2.37	0.00965 U	3.25	2.59	1.66	1.5
PCB-28	PCB-26	TT PCBC027		1.57	1.53	0.00965 U	1.79	1.77	1.58	1.67
PCB-29	PCB-28	TT PCBC028		2.7	3.08	17.2	4.44	3.38	1.62	1.52
PCB-30	PCB-29			0.00961 U	0.012	0.271	0.054	0.058	0.00988 U	0.06
PCB-317	PCB-30									
PCB-3170	PCB-31									
PCB-39	PCB-33/20									
PCB-410 TT PCBC0322	PCB-39									
PCB-41764										
PCB-42F087										
PCB-44 TT PCBC035 ug/kg 2.43 1.35 18.9 3.57 1.65 0.905 0.854 PCB-45 TT PCBC036 ug/kg 0.092 0.066 3.28 0.472 0.246 0.00988 U 0.0092 PCB-46 41464-47-5 ug/kg 0.0928 0.003 1.16 0.704 0.363 0.121 0.175 PCB-47/75 TT PCBC037 ug/kg 0.09861 U 0.00988 U 0.00985 U 0.00989 U 0.00975 U 0.00988 U 0.0044 PCB-48 70362-47-9 ug/kg 1.61 2.67 20.5 5.66 2.52 0.835 0.671 PCB-49 TT PCBC038 ug/kg 2.19 3.05 21.6 5.11 2.67 0.513 1.08 PCB-69 TT PCBC039 ug/kg 0.15 0.39 3.2 0.372 0.588 0.087 0.159 PCB-6066 TT PCBC039 ug/kg 0.0961 U 0.00988 U 0.00986 U 0.00975 U 0.00988 U 0.00975 PCB-63 TT PCBC039 ug/kg 0.15 0.39 3.2 0.372 0.588 0.087 0.159 PCB-643 TT PCBC049 ug/kg 0.047 0.00988 U 0.00869 U 0.00975 U 0.00898 U 0.013 PCB-646 32599-10-0 ug/kg 0.047 0.00988 U 0.00869 U 0.00975 U 0.00898 U 0.011 PCB-68 32599-10-0 ug/kg 0.047 0.00988 U 0.00869 U 0.00975 U 0.00898 U 0.011 PCB-68 32599-10-0 ug/kg 0.032 0.00988 U 0.00869 U 0.00975 U 0.00898 U 0.011 PCB-68 TT PCBC041 ug/kg 0.042 0.00988 U 0.00869 U 0.00975 U 0.00898 U 0.011 U 0.00899 PCB-70 TT PCBC041 ug/kg 0.032 0.00988 U 0.00969 U 0.00975 U 0.00988 U 0.011 U 0.00899 U 0.00975 U 0.00898 U 0.011 U 0.00899 U 0.00975 U 0.00888 U 0.011 U 0.00899 U 0.00975 U 0.00898 U 0.011 U 0.00899 U 0.00975 U 0.00888 U 0.011 U 0.00899 U 0.00975 U 0.00888 U 0.011 U 0.00899 U 0.00975 U 0.00888 U 0.011 U 0.00899 U 0.00975 U 0.00888 U 0.011 U 0.00899 U 0.00975 U 0.00888 U 0.011 U 0.00899 U 0.00975 U 0.00888 U 0.011 U 0.00899 U 0.00975 U 0.00888 U 0.011 U 0.00899 U 0.00975 U 0.00888 U 0.011 U 0.00899 U 0.00975 U 0.00888 U 0.011 U 0.00899 U 0.00975 U 0.00888 U 0.011 U 0.00899 U 0.00975 U 0.00888 U 0.011 U 0.00899 U 0.00975 U 0	PCB-42/59/37									
PCB-45	PCB-44	TT PCBC035		2.43	1.35	18.9	3.57	1.65	0.905	0.854
PCB-46	PCB-45									
PCB-4775 TT_PCBC037	PCB-46									
PCB-48 PCB-49 TT_PCBC038 Ug/kg 2.19 3.36 Ug/kg 2.19 3.36 S.11 D2.67 S.56 S.51 D2.67 S.56 S.51 D3.55 D4 S.56 D4 S.57 S.56 D5 S.56 S.51 D4 S.57 S.56 D5 S.56 S.57 S.57 S.57 S.57 S.57 S.57 S.57 S.57										
PCB-49 TT_PCBC038										
PCB-52 35693-99-3 ug/kg 3.34										
PCB-53										
PCB-60/56										
PCB-63										
PCB-66 32598-10-0										
PCB-67 PCB-67 PCB-69 PCB-70 PCB-69 PCB-70 PC	PCB-66	32598-10-0		1.56	2.3	16.2	4.73	2.48	0.863	0.649
PCB-69										0.01 U
PCB-70 TT_PCBC043 ug/kg 0.191 0.159 28.2 0.404 0.00975 U 0.853 0.063 PCB-72 41464-42-0 ug/kg 0.062 0.00988 U 0.00965 U 0.00869 U 0.00975 U 1.118 0.01 U PCB-74/611 TT_PCBC044 ug/kg 0.00961 U 0.00988 U 0.00965 U 0.00869 U 0.00975 U 1.118 0.01 U PCB-77 U 0.00988 U 0.00965 U 0.00965 U 0.00965 U 0.00975 U 0.00988 U 0.01 U 0.00988 U 0.00965 U 0.00965 U 0.00975 U 0.00988 U 0.01 U 0.00988 U 0.00965 U 0.00965 U 0.00975 U 0.00988 U 0.01 U 0.00988 U 0.00965 U 0.00965 U 0.00975 U 0.00988 U 0.01 U 0.00988 U 0.00965 U 0.00965 U 0.00965 U 0.00975 U 0.00988 U 0.01 U 0.00988 U 0.00965 U 0.00965 U 0.00975 U 0.00988 U 0.01 U 0.00988 U 0.00965 U 0.00965 U 0.00975 U 0.00988 U 0.01 U 0.00988 U 0.00965 U 0.00965 U 0.00975 U 0.00988 U 0.01 U 0.00988 U 0.00965 U 0.00965 U 0.00965 U 0.00975 U 0.00988 U 0.01 U 0.00988 U 0.00965 U 0.00965 U 0.00965 U 0.00988 U 0.01 U 0.00988 U 0.00965 U 0.00965 U 0.00965 U 0.00988 U 0.01 U 0.00965 U 0.00965 U 0.00965 U 0.00988 U 0.01 U 0.00965 U 0.00965 U 0.00965 U 0.00965 U 0.00988 U 0.01 U 0.00965 U 0.00965 U 0.00965 U 0.00965 U 0.00988 U 0.01 U 0.00965										
PCB-72										
PCB-74/61										
PCB-77 32598-13-3 ug/kg 0.00961 U 0.00988 U 0.00965 U 0.00975 U 0.00988 U 0.01 U									1.18	
PCB-81 70362-50-4 ug/kg 0.00961 U 0.00988 U 0.00965 U 0.00869 U 0.00975 U 0.00988 U 0.01 U 0.09 PCB-82 52663-62-4 ug/kg 0.344 0.15 3.5 0.6 0.371 0.058 0.183 PCB-83 TT_PCBC046 ug/kg 0.065 0.00988 U 0.442 0.00869 U 0.028 0.00988 U 0.01 U 0.09 PCB-84 52663-60-2 ug/kg 0.00961 U 0.916 5.6 0.00869 U 0.00975 U 3.42 0.381 PCB-85 TT_PCBC047 ug/kg 0.034 0.00988 U 0.00965 U 0.00869 U 0.00975 U 0.00988 U 0.01 U 0.0088 PCB-87/115 TT_PCBC047 ug/kg 0.919 1.03 12.2 2.46 1.24 0.367 0.677 PCB-92 52663-61-3 ug/kg 0.496 0.00988 U 4.14 1.39 0.323 0.34 0.01 U 0.00889 U 0.00988 U 0.01 U 0.00988 U 0.01 U 0.00869 U 0.00975 U 0.00988 U 0.01 U 0.00988 U 0.01 U 0.00988 U 0.00965 U 0.00975 U 0.00988 U 0.01 U 0.00988 U 0.01 U 0.00988 U 0.00988 U 0.00965 U 0.00975 U 0.00988 U 0.01 U 0.00988 U 0.01 U 0.00988 U 0.00965 U 0.00975 U 0.00988 U 0.01 U 0.00988 U 0.00965 U 0.00988 U 0.00975 U 0.00988 U 0.01 U 0.00988 U 0.00988 U 0.00965 U 0.00988 U 0.00975 U 0.00988 U 0.01 U 0.00988 U 0.00988 U 0.00965 U 0.00988 U 0.00975 U 0.00998 U 0.00975 U 0.009 U 0.00975 U 0.009 U 0.00975 U 0.009 U 0.00975 U 0.009 U 0.00975 U 0.009 U 0.00975 U 0.009 U 0.00975 U 0.009 U 0.00975 U 0.009 U 0.00975 U 0.009 U 0.00975 U 0.009 U 0.00975 U 0.009 U 0.00975 U 0.009 U 0.00975 U 0.009 U 0.00975 U 0	PCB-77	32598-13-3		0.00961 U	0.00988 U	0.00965 U	0.00869 U	0.00975 U	0.00988 U	0.01 U
PCB-82	PCB-81	70362-50-4		0.00961 U	0.00988 U	0.00965 U	0.00869 U	0.00975 U	0.00988 U	0.01 U
PCB-83	PCB-82								0.058	0.183
PCB-84 5263-60-2 ug/kg 0.00961 U 0.916 5.6 0.00869 U 0.00975 U 3.42 0.381 PCB-85 TT_PCBC047 ug/kg 0.034 0.00988 U 0.00985 U 0.00869 U 0.00975 U 0.00988 U 0.01 U 0.01 U 0.00887/115 TT_PCBC048 ug/kg 0.919 1.03 12.2 2.46 1.24 0.367 0.677 PCB-92 5263-61-3 ug/kg 0.496 0.00988 U 4.14 1.39 0.323 0.34 0.01 U 0.00985/00 TT_PCBC049 ug/kg 1.52 1.24 22.3 1.85 1.61 0.532 0.965 PCB-97 TT_PCBC050 ug/kg 0.00961 U 0.00988 U 0.00965 U 0.00869 U 0.00975 U 0.09 0.114 PCB-99 TT_PCBC051 ug/kg 1.34 4.6 16.9 9.63 2.99 1.22 0.847 PCB-101/90 TT_PCBC011 ug/kg 1.87 4.1 32.5 8.52 4.96 1.68 1.68 1.76 PCB-105 32598-14-4 ug/kg 0.804 2.58 10.9 4.55 1.72 0.572 0.806 PCB-107 70424-68-9 ug/kg 0.094 0.877 4.25 1.59 0.546 0.00988 U 0.0098 U 0.00975 U 0.00988 U 0.066 PCB-110 TT_PCBC002 ug/kg 0.00961 U 0.00988 U 0.00965 U 0.00869 U 0.00975 U 0.00988 U 0.0098 U 0.00975 U 0.00988 U 0.00975 U 0.0	PCB-83	TT PCBC046		0.065	0.00988 U	0.442	0.00869 U	0.028	0.00988 U	0.01 U
PCB-85 TT_PCBC047	PCB-84	52663-60-2	ug/kg	0.00961 U	0.916	5.6	0.00869 U	0.00975 U	3.42	0.381
PCB-87/115 TT_PCBC048 ug/kg 0.919 1.03 12.2 2.46 1.24 0.367 0.677 PCB-92 5263-61-3 ug/kg 0.496 0.00988 U 4.14 1.39 0.323 0.34 0.01 U PCB-95/80 TT_PCBC049 ug/kg 1.52 1.24 22.3 1.85 1.61 0.532 0.965 TT_PCBC050 ug/kg 0.00961 U 0.00988 U 0.00965 U 0.00869 U 0.00975 U 0.009 0.114 PCB-99 TT_PCBC051 ug/kg 1.34 4.6 16.9 9.63 2.99 1.22 0.847 PCB-101/90 TT_PCBC001 ug/kg 1.87 4.1 32.5 8.52 4.96 1.68 1.76 PCB-105 32598-14-4 ug/kg 0.804 2.58 10.9 4.55 1.72 0.572 0.806 PCB-107 70424-68-9 ug/kg 0.0094 0.877 4.25 1.59 0.546 0.00988 U 0.066 PCB-110 TT_PCBC002 ug/kg 2.67 4.39 26.5 8.74 3.65 1.43 1.62 PCB-114 74472-37-0 ug/kg 0.00961 U 0.00988 U 0.00965 U 0.00869 U 0.00975 U 0.00988 U 0.066 PCB-114 31508-00-6 ug/kg 2.37 8.55 29.9 17.4 5.25 1.87 1.95	PCB-85									0.01 U
PCB-92 5263-61-3 ug/kg 0.496 0.00988 U 4.14 1.39 0.323 0.34 0.01 U PCB-95/80 TT_PCBC049 ug/kg 1.52 1.24 22.3 1.85 1.61 0.532 0.965 PCB-97 TT_PCBC050 ug/kg 0.00961 U 0.00988 U 0.00965 U 0.00869 U 0.00975 U 0.00 0.011 U 0.00988 U 0.00965 U 0.00869 U 0.00975 U 0.00 0.014 U 0.00988 U 0.00965 U 0.00869 U 0.00975 U 0.00 0.00975 U 0.00 0.014 U 0.00989 U 0.00975 U 0.00975 U 0.009 0.014 U 0.00989 U 0.00975 U 0.0	PCB-87/115	TT_PCBC048		0.919	1.03	12.2	2.46	1.24	0.367	0.677
PCB-95/80 TT_PCBC049 ug/kg 1.52 1.24 22.3 1.85 1.61 0.532 0.965 PCB-97 TT_PCBC050 ug/kg 0.00961 U 0.00988 U 0.00965 U 0.00869 U 0.00975 U 0.009 0.114 PCB-99 TT_PCBC051 ug/kg 1.34 4.6 16.9 9.63 2.99 1.22 0.847 PCB-101/90 TT_PCBC001 ug/kg 1.87 4.1 32.5 8.52 4.96 1.68 1.76 PCB-105 32598-14-4 ug/kg 0.804 2.58 10.9 4.55 1.72 0.572 0.806 PCB-107 70424-68-9 ug/kg 0.094 0.877 4.25 1.59 0.546 0.00988 U 0.066 PCB-110 TT_PCBC002 ug/kg 2.67 4.39 26.5 8.74 3.65 1.43 1.62 PCB-114 74472-37-0 ug/kg 0.00961 U 0.00988 U 0.00965 U 0.00869 U 0.00975 U 0.00988 U 0.01 U PCB-118 31508-00-6 ug/kg 2.37 8.55 29.9 17.4 5.25 1.87 1.95	PCB-92	52663-61-3	ug/kg	0.496	0.00988 U	4.14	1.39	0.323	0.34	0.01 U
PCB-97 TT_PCBC050 ug/kg 0.00961 U 0.00988 U 0.00965 U 0.00869 U 0.00975 U 0.09 0.114 PCB-99 TT_PCBC051 ug/kg 1.34 4.6 16.9 9.63 2.99 1.22 0.847 PCB-101/90 TT_PCBC001 ug/kg 1.87 4.1 32.5 8.52 4.96 1.68 1.76 PCB-105 32598-14-4 ug/kg 0.804 2.58 10.9 4.55 1.72 0.572 0.806 PCB-107 70424-68-9 ug/kg 0.094 0.877 4.25 1.59 0.546 0.00988 U 0.066 PCB-110 TT_PCBC002 ug/kg 2.67 4.39 26.5 8.74 3.65 1.43 1.62 PCB-114 74472-37-0 ug/kg 0.00961 U 0.00988 U 0.00965 U 0.00869 U 0.00975 U 0.00988 U 0.01 U PCB-118 31508-00-6 ug/kg 2.37 8.55 29.9 17.4 5.25 1.87 1.95	PCB-95/80	TT_PCBC049		1.52	1.24	22.3	1.85	1.61	0.532	0.965
PCB-99 TT_PCBC051 ug/kg 1.34 4.6 16.9 9.63 2.99 1.22 0.847 PCB-101/90 TT_PCBC001 ug/kg 1.87 4.1 32.5 8.52 4.96 1.68 1.76 PCB-105 32598-14-4 ug/kg 0.804 2.58 10.9 4.55 1.72 0.572 0.806 PCB-107 70424-68-9 ug/kg 0.094 0.877 4.25 1.59 0.546 0.00988 U 0.066 PCB-110 TT_PCBC002 ug/kg 2.67 4.39 26.5 8.74 3.65 1.43 1.62 PCB-114 74472-37-0 ug/kg 0.00961 U 0.00988 U 0.00965 U 0.00869 U 0.00975 U 0.00988 U 0.01 U PCB-118 31508-00-6 ug/kg 2.37 8.55 29.9 17.4 5.25 1.87 1.95	PCB-97									
PCB-101/90 TT_PCBC001 ug/kg 1.87 4.1 32.5 8.52 4.96 1.68 1.76 PCB-105 32598-14-4 ug/kg 0.804 2.58 10.9 4.55 1.72 0.572 0.806 PCB-107 70424-68-9 ug/kg 0.094 0.877 4.25 1.59 0.546 0.00988 U 0.066 PCB-110 TT_PCBC002 ug/kg 2.67 4.39 26.5 8.74 3.65 1.43 1.62 PCB-114 74472-37-0 ug/kg 0.00961 U 0.00988 U 0.00965 U 0.00869 U 0.00975 U 0.00988 U 0.01 U PCB-118 31508-00-6 ug/kg 2.37 8.55 29.9 17.4 5.25 1.87 1.95	PCB-99									
PCB-105 32598-14-4 ug/kg 0.804 2.58 10.9 4.55 1.72 0.572 0.806 PCB-107 70424-68-9 ug/kg 0.094 0.877 4.25 1.59 0.546 0.00988 U 0.066 PCB-110 TT_PCBC002 ug/kg 2.67 4.39 26.5 8.74 3.65 1.43 1.62 PCB-114 74472-37-0 ug/kg 0.00961 U 0.00988 U 0.00965 U 0.00869 U 0.00975 U 0.00988 U 0.01 U PCB-118 31508-00-6 ug/kg 2.37 8.55 29.9 17.4 5.25 1.87 1.95	PCB-101/90									
PCB-107 70424-68-9 ug/kg 0.094 0.877 4.25 1.59 0.546 0.00988 U 0.066 PCB-110 TT_PCBC002 ug/kg 2.67 4.39 26.5 8.74 3.65 1.43 1.62 PCB-114 74472-37-0 ug/kg 0.00961 U 0.00988 U 0.00965 U 0.00869 U 0.00975 U 0.00988 U 0.01 U PCB-118 31508-00-6 ug/kg 2.37 8.55 29.9 17.4 5.25 1.87 1.95	PCB-105					10.9	4.55			
PCB-110 TT_PCBC002 ug/kg 2.67 4.39 26.5 8.74 3.65 1.43 1.62 PCB-114 74472-37-0 ug/kg 0.00961 U 0.00988 U 0.00965 U 0.00869 U 0.00975 U 0.00988 U 0.01 U PCB-118 31508-00-6 ug/kg 2.37 8.55 29.9 17.4 5.25 1.87 1.95	PCB-107									
PCB-114 74472-37-0 ug/kg 0.00961 U 0.00988 U 0.00965 U 0.00869 U 0.00975 U 0.00988 U 0.01 U 0.01 PCB-118 31508-00-6 ug/kg 2.37 8.55 29.9 17.4 5.25 1.87 1.95	PCB-110									
PCB-118 31508-00-6 ug/kg 2.37 8.55 29.9 17.4 5.25 1.87 1.95	PCB-114	74472-37-0		0.00961 U	0.00988 U	0.00965 U	0.00869 U	0.00975 U	0.00988 U	0.01 U
	PCB-118	31508-00-6		2.37	8.55	29.9	17.4	5.25	1.87	1.95
	PCB-119	TT_PCBC003	ug/kg	0.031	0.00988 U	0.00965 U	0.00869 U	0.00975 U	0.00988 U	0.03

					Upper	Anacostia	Rive	r (Encompasses	Waterside Invest	igat	tion Area) (a)			\neg
			UABB01		UABC01	UACA01	1	UACC01	UALB01		UANS01		UASF0	1
			Brown bullh	ead	Blue catfish	Carp		Channel catfish	Largemouth bass	5	Northern snakehea	ıd	Sunfisl	'n
CHEMICAL	CAS#	Units	9/26/2013	3	9/26/2013	9/26/201		9/26/2013	9/26/2013		9/26/2013		9/23/201	13
PCB-126	57465-28-8	ug/kg	0.00961	U	0.00988 U	0.00965	U		0.05		0.00988	U	0.01	U
PCB-128	TT_PCBC004	ug/kg	0.612		1.99	5.64		3.11	1.08		0.578		0.467	
PCB-129	TT_PCBC005	ug/kg	0.00961	U	0.00988 U	0.013		0.021	0.022		0.016		0.01	U
PCB-130	52663-66-8	ug/kg	0.02		0.00988 U	0.07		0.00869 U	0.013		0.024		0.01	U
PCB-135	TT_PCBC006	ug/kg	0.00961	U	0.00988 U	0.00965	U	0.00869 U	0.615		0.00988	U	0.01	U
PCB-136	38411-22-2	ug/kg	0.00961	С	0.33	1.79		0.00869 U	0.314		0.16		0.245	
PCB-138/160	TT_PCBC007	ug/kg	3.32		18.7	40.9		25	9.79		3.57		2.83	
PCB-141/179	TT_PCBC008	ug/kg	1.06		3.38	12.2		2.37	2.12		0.536		0.859	
PCB-146	51908-16-8	ug/kg	0.604		3.39	7.44		5.84	1.8		0.823		0.847	
PCB-149/123	TT_PCBC009	ug/kg	1.26		3.66	16.8		6.01	2.51		1.1		1.16	
PCB-151	TT_PCBC010	ug/kg	0.658		1.9	7.55		4.28	1.35		0.69		0.229	
PCB-153/132	TT_PCBC011	ug/kg	2.55		0.00988 U	50.2		42.1	11.9		4.3		3.34	
PCB-156	TT_PCBC012	ug/kg	0.35		1.6	4.32		1.77	1.02		0.278		0.228	
PCB-157/173/201	TT_PCBC013	ug/kg	0.207		0.663	1.69		1.13	0.347		0.055		0.176	
PCB-158	74472-42-7	ug/kg	0.459		2.13	5.89		3.15	1.22		0.441		0.396	
PCB-166	TT_PCBC015	ug/kg	0.00961	U	0.00988 U	0.00965	U	0.00869 U		U	0.055		0.019	
PCB-167	52663-72-6	ug/kg	0.00961	U	0.00988 U	0.00965	U	0.00869 U	0.00975	U	0.00988	U	0.01	U
PCB-169	32774-16-6	ug/kg	0.00961	U	0.00988 U	0.00965	U	0.00869 U		U	0.00988	U	0.01	U
PCB-170/190	TT_PCBC016	ug/kg	0.899		5.31	12.4		5.35	3.66		0.872		0.731	
PCB-171/202	TT_PCBC017	ug/kg	0.45		1.41	4.42		2.86	1.12		0.355		0.36	
PCB-172	52663-74-8	ug/kg	0.243		0.803	1.95		0.762	0.631		0.198		0.136	
PCB-174	38411-25-5	ug/kg	0.66		2.26	5.67		2.19	0.95		0.427		0.393	
PCB-175	40186-70-7	ug/kg	0.296		0.37	0.545		0.451	0.431		0.268		0.117	
PCB-176/137	TT_PCBC018	ug/kg	0.00961	U	0.00988 U	0.00965	U	0.00869 U	0.00975	U	0.00988	U	0.141	
PCB-177	52663-70-4	ug/kg	0.595		1.08	5.41		2.2	0.758		0.432		0.417	
PCB-178	52663-67-9	ug/kg	0.192		0.952	2.07		1.82	0.485		0.285		0.215	
PCB-180	TT_PCBC020	ug/kg	3.26		16.7	40		18	13.4		3.73		2.42	
PCB-183	TT_PCBC021	ug/kg	0.513		2.7	6.77		4.2	2.03		0.586		0.414	
PCB-185	TT_PCBC022	ug/kg	0.239		0.452	1.55		0.75	0.247		0.139		0.125	
PCB-187	52663-68-0	ug/kg	1.42		6.87	17.6		11.7	5.48		1.73		1.13	
PCB-189	39635-31-9	ug/kg	0.04		0.00988 U	0.61		0.214	0.015		0.012		0.014	
PCB-191	74472-50-7	ug/kg	0.077		0.00988 U	0.00965	U	0.00869 U		U	0.00988	U	0.01	U
PCB-193	TT_PCBC023	ug/kg	0.217		0.858	1.69		1.1	0.698		0.222		0.158	
PCB-194	35694-08-7	ug/kg	0.486		2.01	5.35		1.76	1.69		0.391		0.305	
PCB-195/208	TT_PCBC024	ug/kg	0.243		1.21	2.74		1.61	0.771		0.214		0.169	
PCB-196	42740-50-1	ug/kg	0.507		3.02	6.68		3.96	2.15		0.485		0.489	
PCB-197	TTNUS861	ug/kg	0.037		0.174	0.283		0.231	0.123		0.01		0.01	U
PCB-199	52663-75-9	ug/kg	0.573		2.47	5.94		2.6	1.71		0.589		0.566	
PCB-200	52663-73-7	ug/kg	0.05		0.00988 U	0.627		0.155	0.068	T	0.032		0.026	
PCB-205	74472-53-0	ug/kg	0.058		0.233	0.506		0.328	0.193		0.034		0.032	
PCB-206	40186-72-9	ug/kg	0.24		1	2.81		1.32	0.595	T	0.21		0.18	
PCB-207	52663-79-3	ug/kg	0.04		0.167	0.375		0.24	0.075	T	0.021		0.01	U
PCB-209	2051-24-3	ug/kg	0.384		0.893	1.72		1.05	0.45		0.629		0.496	
Total PCBs	1336-36-3	ug/kg	56.239		141.143	680.568		253.414	119.685		49.550		41.648	
PCB-TEQ	PCB-TEQ	ug/kg	1.51E-04		5.12E-04	1.93E-03		9.32E-04	5.33E-03		1.17E-04	Ī	1.30E-04	

Notes

Source: Pinkney, A.E. 2017. Analysis of contaminant concentrations in fish tissue collected from the waters of the District of Columbia. Final Report. CBFO-C14-03. U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, MD. 9/2014. Revised 11/2017.

⁽a) The samples collected in the Upper Anacostia River are assumed to reflect overall conditions within the several mile long river reach that was sampled (or the possibly larger home range for some of the fish species sampled), and may not reflect the specific conditions within the Waterside Investigation Area.

					Lower Ana	costia River		
			LAAE01	LABC01	LACA01	LACC01	LALB01	LASF01
			American eel	Blue catfish	Carp	Channel catfish	Largemouth bass	Sunfish
CHEMICAL	CAS#	Units	9/26/2013	9/26/2013	9/26/2013	9/26/2013	9/26/2013	9/26/2013
Inorganics	,							
ALUMINUM	7429-90-5	mg/kg	1.9	0.4 U	0.6 U	0.4 U	0.4 U	0.4
ARSENIC	7440-38-2	mg/kg	0.146 U	0.091 U	0.245	0.093 U	0.1 U	0.091 U
BARIUM	7440-39-3	mg/kg	1.14	0.0118	0.0364	0.0168	0.0182	0.0603
BERYLLIUM	7440-41-7	mg/kg	0.006 U	0.004 U	0.006 U	0.004 U	0.004 U	0.004 U
CADMIUM	7440-43-9	mg/kg	0.016	0.004 U	0.006 U	0.004 U	0.004 U	0.004 U
CALCIUM	7440-70-2	mg/kg	5800	77.8	215 J	71	276	439
CHROMIUM	7440-47-3	mg/kg	0.08	0.04 U	0.06 U	0.04 U	0.04 U	0.04 U
COBALT	7440-48-4	mg/kg	0.032	0.004 U	0.008	0.004 U	0.006	0.012
COPPER	7440-50-8	mg/kg	0.331	0.36	0.503	0.185	0.172	0.187
IRON	7439-89-6	mg/kg	6.4	1.7	9.8	2.1	2.8	2.3
LEAD	7439-92-1	mg/kg	0.37	0.004 U	0.012	0.005	0.015	0.01
MAGNESIUM	7439-95-4	mg/kg	300	239	230	230	266	246
MANGANESE	7439-96-5	mg/kg	4.56	0.147	0.163	0.1	0.106	0.619
MERCURY	7439-97-6	mg/kg	0.095	0.068	0.025	0.085	0.11	0.049
NICKEL	7440-02-0	mg/kg	0.06	0.04 U	0.06 U	0.04 U	0.05	0.1
SELENIUM	7782-49-2	mg/kg	0.35	0.18 U	0.39	0.19 U	0.31	0.26
SODIUM	7440-23-5	mg/kg	710	410	465	527	481	694
THALLIUM	7440-28-0	mg/kg	0.006 U	0.004 U	0.006 U	0.004 U	0.004 U	0.004 U
VANADIUM	7440-62-2	mg/kg	0.06 U	0.04 U	0.06 U	0.04 U	0.04 U	0.04 U
ZINC	7440-66-6	mg/kg	21.5	3.87	36	5	7.68	11.2
Pesticides	·							
1,2,3,4-TETRACHLOROBENZENE	634-66-2	ug/kg	0.1 U	0.05 U	0.432	0.0494 U	0.056	0.253
1,2,4,5-TETRACHLOROBENZENE	95-94-3	ug/kg	4.95	1.34	0.0502 U	0.619	0.598	0.964
2,4'-DDD	53-19-0	ug/kg	3.46	0.249	8.53	0.725	0.879	0.292
2,4'-DDE	3424-82-6	ug/kg	0.1 U	0.05 U	27.8	5.17	5.38	1.19
2,4'-DDT	789-02-6	ug/kg	0.1 U	0.865	2.8	0.425	0.524	0.422
4,4'-DDD	72-54-8	ug/kg	33.2	1.97	21.3	4.09	3.46	0.95
4,4'-DDE	72-55-9	ug/kg	100.7	53.1	34.3	13.5	13.4	2.96
4,4'-DDT	50-29-3	ug/kg	4.57	2.14	0.33	0.49	0.05	0.08
ALDRIN	309-00-2	ug/kg	0.1 U	0.089	0.617 J+	0.328	0.0472 U	0.073
ALPHA-BHC	319-84-6	ug/kg	0.1 U	0.636	0.262	0.0494 U	0.156	0.232
ALPHA-CHLORDANE	5103-71-9	ug/kg	52.7	8.16	36.8	8.84	6.02	0.957
BETA-BHC	319-85-7	ug/kg	0.78	0.214	0.562	0.856	0.488	0.067
CHLORPYRIFOS	2921-88-2	ug/kg	1.79	0.152	0.933	0.207	0.0472 U	0.0478 U
CIS-NONACHLOR	5103-73-1	ug/kg	26	0.05 U	10.3	2.38	2.94	1.09
DELTA-BHC	319-86-8	ug/kg	0.1 U	0.216	0.0502 U	0.0494 U	0.0472 U	0.0478 U
DIELDRIN	60-57-1	ug/kg	17.8	2.76	13.4 J+	1.32	1.24	0.753
ENDOSULFAN II	33213-65-9	ug/kg	0.1 U	1.9	0.0502 U	0.0494 U	0.0472 U	0.092
ENDRIN	72-20-8	ug/kg	0.794	3.27	0.406 J+	0.0494 U	0.0472 U	0.114
GAMMA CHLORDANE	5566-34-7	ug/kg	25.1	0.05 U	26.1	0.856	2.18	0.146
GAMMA-BHC (LINDANE)	58-89-9	ug/kg	0.132	0.132	0.162	0.141	0.0472 U	0.0478 U
HEPTACHLOR	76-44-8	ug/kg	0.143	0.455	0.052 J+	0.202	0.0472 U	0.094
HEPTACHLOR EPOXIDE	1024-57-3	ug/kg	5.36	3.36	4.46 J+	0.539	0.192 J+	0.193 J+
HEXACHLOROBENZENE	118-74-1	ug/kg	2.02	1.06	1.51	0.282	0.207	0.195
MIREX	2385-85-5	ug/kg	0.454	0.496	0.077	0.15	0.0472 U	0.0478 U
OXYCHLORDANE	27304-13-8	ug/kg	14.3	0.05 U	4.29	0.777	1.28	0.374
PENTACHLOROANISOLE	1825-21-4	ug/kg	0.752	0.847	1.12	0.219	0.088	0.106

		Lower Anacostia River LAAE01 LABC01 LACC01 LALB01 LASF01									
			LAAE01	LABC01	LACA01	LACC01	LALB01	LASF01			
			American eel	Blue catfish	Carp	Channel catfish	Largemouth bass	Sunfish			
CHEMICAL	CAS#	Units	9/26/2013	9/26/2013	9/26/2013	9/26/2013	9/26/2013	9/26/2013			
Semivolatile Organic Compounds											
2,3,5-TRIMETHYLNAPHTHALENE	2245-38-7	ug/kg	2 U	1.83	7.31	1.14	0.98	0.956 U			
1-METHYLNAPHTHALENE	90-12-0	ug/kg	2 U	4.27	26.6	1.86	2.41	0.7 J			
1-METHYLPHENANTHRENE	832-69-9	ug/kg	2 U	1.54	2.18	0.987 U	0.943 U	0.956 U			
2,6-DIMETHYLNAPHTHALENE	581-42-0	ug/kg	2 U	1.52	11.1	1.17	1.14	0.956 U			
2-METHYLNAPHTHALENE	91-57-6	ug/kg	2.12 J+	3.25 J+	21.2	1.96	1.78	0.7 J			
ACENAPHTHENE	83-32-9	ug/kg	18.3	4.51	38.8	2.58 J+	2.89 J+	0.956 U			
ACENAPHTHYLENE	208-96-8	ug/kg	2 U	3.1	8.05	1	0.7 J	0.956 U			
ANTHRACENE	120-12-7	ug/kg	2 U	5.11	19.1	1.71	1.07	0.956 U			
BENZO(A)ANTHRACENE	56-55-3	ug/kg	2 U	1 U	1 U	0.987 U	0.943 U	0.956 U			
BENZO(A)PYRENE	50-32-8	ug/kg	2 U	1 U	1 U	0.987 U	0.943 U	0.956 U			
BENZO(B)FLUORANTHENE	205-99-2	ug/kg	2 U	1 U	1 U	0.987 U	0.943 U	0.956 U			
BENZO(E)PYRENE	192-97-2	ug/kg	2 U	1 U	1 U	0.987 U	0.943 U	0.956 U			
BENZO(G,H,I)PERYLENE	191-24-2	ug/kg	2 U	1 U	1 U	0.987 U	0.943 U	0.956 U			
BENZO(K)FLUORANTHENE	207-08-9	ug/kg	2 U	1 U	1 U	0.987 U	0.943 U	0.956 U			
BIPHENYL	92-52-4	ug/kg	2 U	1 U	2.94	0.987 U	0.943 U	0.956 U			
C1-CHRYSENES	TTNUS145	ug/kg	2 U	1 U	1 U	0.987 U	0.943 U	0.956 U			
C1-DIBENZOTHIOPHENES	TTNUS146	ug/kg	5.13	1.57	3.46	0.987 U	0.943 U	0.956 U			
C1-FLUORANTHENES/PYRENES	TTNUS147	ug/kg	6.73	1 U	1 U	0.987 U	0.943 U	0.956 U			
C1-FLUORENES	TTNUS148	ug/kg	8.91	2.63	16.7	0.987 U	2.63	1.39			
C1-NAPHTHALENES	TTNUS149	ug/kg	4.45	7.52	47.8	3.82	4.19	1.43			
C1-PHENANTHRENES/ANTHRACENES	TTNUS150	ug/kg	3.53	1.63	8.49	1.08	0.943 U	0.956 U			
C2-CHRYSENES	TTNUS154	ug/kg	2 U	1 U	1 U	0.987 U	0.943 U	0.956 U			
C2-DIBENZOTHIOPHENES	TTNUS155	ug/kg	4.17	1.8	1 U	0.987 U	0.943 U	0.956 U			
C2-FLUORENES	TTNUS156	ug/kg	6.06	2.18	14.5	0.987 U	1.36	0.8 J			
C2-NAPHTHALENES	TTNUS157	ug/kg	8.24	6.01	47.1	4.34	3.85	1.03			
C2-PHENANTHRENES/ANTHRACENES	TTNUS158	ug/kg	5.91	1 U	7.99	0.7 J	0.5 J	0.956 U			
C3-CHRYSENES	TTNUS159	ug/kg	2 U	1 U	1 U	0.987 U	0.943 U	0.956 U			
C3-DIBENZOTHIOPHENES	TTNUS160	ug/kg	3.68	2.32	1 U	0.987 U	0.943 U	0.956 U			
C3-FLUORENES	TTNUS161	ug/kg	2 U	2.33	1 U	0.987 U	1.29	0.956 U			
C3-NAPHTHALENES	TTNUS162	ug/kg	11	6.02	27.8	3.78	3.94	1.8			
C3-PHENANTHRENES/ANTHRACENES	TTNUS163	ug/kg	14.8	1 U	13.9	2.06	1.68	0.9 J			
C4-CHRYSENES	TTNUS164	ug/kg	2 U	1 U	1 U	0.987 U	0.943 U	0.956 U			
C4-NAPHTHALENES	TTNUS165	ug/kg	8.9	5.35	30.4	3.5	2.76	1.28			
C4-PHENANTHRENES/ANTHRACENES	TTNUS166	ug/kg	3.85	1 U	1 U	0.7 J	0.5 J	0.6 J			
CHRYSENE	218-01-9	ug/kg	2 U	1 U	1.44	0.987 U	0.943 U	0.956 U			
DIBENZO(A,H)ANTHRACENE	53-70-3	ug/kg	2 U	1 U	1 U	0.987 U	0.943 U	0.956 U			
DIBENZOTHIOPHENE	132-65-0	ug/kg	2 U	1 U	3.64	0.987 U	0.943 U	0.956 U			
FLUORANTHENE	206-44-0	ug/kg	2.28 J+	2.29 J+	7.14	1.02 J+	0.9 J+	0.956 U			
FLUORENE	86-73-7	ug/kg	2 U	2.69 J+	18	1.34 J+	1.86 J+	1.01 J+			
INDENO(1,2,3-CD)PYRENE	193-39-5	ug/kg	2 U	1 U	1 U	0.987 U	0.943 U	0.956 U			
NAPHTHALENE	91-20-3	ug/kg	14	19.7	68.3	7.25	8.44	4.33			
PERYLENE	198-55-0	ug/kg	2 U	1 U	1 U	0.987 U	0.3 J+	0.956 U			
PHENANTHRENE	85-01-8	ug/kg	2.04 J+	3.24 J+	15.7	1.44 J+	2.12 J+	1.3 J+			
PYRENE	129-00-0	ug/kg	2 U	1 U	3.58	0.987 U	0.943 U	0.956 U			

		1 1			Lower Ana	costia River		
CHEMICAL	CAS#	Units	LAAE01 American eel 9/26/2013	LABC01 Blue catfish 9/26/2013	LACA01 Carp 9/26/2013	LACC01 Channel catfish 9/26/2013	LALB01 Largemouth bass 9/26/2013	LASF01 Sunfish 9/26/2013
Polybrominated diphenyl ethers							•	
PBDE-1	7025-06-1	ug/kg	0.25 U	0.125 U	0.125 U	0.123 U	0.118 U	0.12 U
PBDE-2	6876-00-2	ug/kg	0.25 U	0.125 U	0.125 U	0.123 U	0.118 U	0.12 U
PBDE-3	101-55-3	ug/kg	0.25 U	0.125 U	0.125 U	0.123 U	0.118 U	0.12 U
PBDE-7	171977-44-9	ug/kg	0.25 U	0.125 U	0.125 U	0.123 U	0.118 U	0.12 U
PBDE-8/11	TTPBDE8.11	ug/kg	0.25 U	0.125 U	0.125 U	0.123 U	0.118 U	0.12 U
PBDE-10	51930-04-2	ug/kg	0.25 U	0.125 U	0.125 U	0.123 U	0.118 U	0.12 U
PBDE-12	189084-59-1	ug/kg	0.25 U	0.125 U	0.125 U	0.123 U	0.118 U	0.12 U
PBDE-13	83694-71-7	ug/kg	0.25 U	0.125 U	0.125 U	0.123 U	0.118 U	0.12 U
PBDE-15	2050-47-7	ug/kg	0.25 U	0.125 U	0.125 U	0.123 U	0.118 U	0.12 U
PBDE-17	147217-75-2	ug/kg	0.25 U	0.125 U	1.91	0.123 U	0.22	0.12 U
PBDE-25	147217-77-4	ug/kg	0.25 U	0.125 U	0.23	0.123 U	0.118 U	0.12 U
PBDE-28	41318-75-6	ug/kg	1.87	0.42	2.67	0.123 U	0.34	0.12 U
PBDE-30	155999-95-4	ug/kg	0.25 U	0.125 U	0.125 U	0.123 U	0.118 U	0.12 U
PBDE-32	189084-60-4	ug/kg	0.25 U	0.125 U	0.125 U	0.123 U	0.118 U	0.12 U
PBDE-33	147217-78-5	ug/kg	2.05	0.53	0.125 U	0.123 U	0.118 U	0.12 U
PBDE-35	147217-80-9	ug/kg	0.25 U	0.125 U	0.125 U	0.123 U	0.118 U	0.12 U
PBDE-37	147217-81-0	ug/kg	0.25 U	0.125 U	0.125 U	0.123 U	0.118 U	0.12 U
PBDE-47	5436-43-1	ug/kg	21.7	8.71	41.9	7.41	10.3	2.32
PBDE-49	243982-82-3	ug/kg	1.3	0.37	4.57	0.19	1.19	0.35
PBDE-66	189084-61-5	ug/kg	0.25 U	0.17	0.125 U	0.19	0.42	0.13
PBDE-71	189084-62-6	ug/kg	0.25 U	0.125 U	0.125 U	0.123 U	0.118 U	0.12 U
PBDE-75	189084-63-7	ug/kg	0.25 U	0.125 U	0.125 U	0.123 U	0.118 U	0.12 U
PBDE-77	93703-48-1	ug/kg	0.25 U	0.125 U	0.125 U	0.123 U	0.118 U	0.12 U
PBDE-85	182346-21-0	ug/kg	0.375 U	0.188 U	0.188 U	0.185 U	0.177 U	0.179 U
PBDE-99	60348-60-9	ug/kg	0.93	4.11	0.188 U	6.19	4.05	1.51
PBDE-100	189084-64-8	ug/kg	12.4	2.14	5.1	1.91	2.15	0.58
PBDE-116	189084-65-9	ug/kg	0.375 U	0.188 U	0.188 U	0.185 U	0.177 U	0.179 U
PBDE-118	446254-80-4	ug/kg	0.375 U	0.188 U	0.188 U	0.185 U	0.177 U	0.179 U
PBDE-119	189084-66-0	ug/kg	0.375 U	0.188 U	0.188 U	0.185 U	0.177 U	0.179 U
PBDE-126	366791-32-4	ug/kg	0.375 U	0.188 U	0.188 U	0.185 U	0.177 U	0.179 U
PBDE-138	182677-30-1	ug/kg	0.5 U	0.25 U	0.251 U	0.247 U	0.236 U	0.239 U
PBDE-153	68631-49-2	ug/kg	0.76	0.42	0.251 U	0.91	0.49	0.25
PBDE-154	207122-15-4	ug/kg	0.97	0.31	1.47	0.6	0.6	0.239 U
PBDE-155	35854-94-5	ug/kg	0.5 U	0.25 U	0.37	0.247 U	0.236 U	0.239 U
PBDE-166	189084-58-0	ug/kg	0.5 U	0.25 U	0.251 U	0.247 U	0.236 U	0.239 U
PBDE-181	189084-67-1	ug/kg	0.625 U	0.313 U	0.313 U	0.308 U	0.295 U	0.299 U
PBDE-183	207122-16-5	ug/kg	0.625 U	0.313 U	0.313 U	0.308 U	0.295 U	0.299 U
PBDE-190	189084-68-2	ug/kg	0.625 U	0.313 U	0.313 U	0.308 U	0.295 U	0.299 U
PBDE-209	1163-19-5	ug/kg	40 U	20 U	20.1 U	19.7 U	18.9 U	19.1 U
Total PBDEs	TotalPBDE	ug/kg	41.98	17.18	58.22	17.40	19.76	5.14
PCB Aroclors								
AROCLOR-1242	53469-21-9	ug/kg	2 U	1 U	83	9.97	12	6.33
AROCLOR-1248	12672-29-6	ug/kg	215	101	141	21.9	23.9	9.49
AROCLOR-1254	11097-69-1	ug/kg	2 U	88	122	7.97	23.9	6.33
AROCLOR-1260	11096-82-5	ug/kg	430	239	196	79.7	54.3	19
AROCLOR-1268	11100-14-4	ug/kg	2 U	1 U	1 U	0.987 U	0.943 U	0.956 U
Total Aroclors	TotalAroclor	ug/kg	645.00	428.00	542.00	119.54	114.10	41.15

			I AAF01	LARC01			LALB01	LASF01				
CHEMICAL	CAS#	Units	American eel 9/26/2013	Blue catfish 9/26/2013	Carp 9/26/2013	Channel catfish 9/26/2013	Largemouth bass 9/26/2013	Sunfish 9/26/2013				
PCB Congeners			0,20,20.0	0.20.20.0	0,20,20.0	0/20/2010	0,20,20.0	0,20,20.10				
PCB-1	2051-60-7	ug/kg	1.01	0.304	0.01 U	0.038	0.107	0.00956 U				
PCB-7/9	TT PCBC042	ug/kg	0.04	0.01 U	0.01 U	0.00987 U	0.099	0.00956 U				
PCB-8/5	TT PCBC045	ug/kg	0.292	1.17	1.34	0.128	0.436	0.395				
PCB-15	2050-68-2	ug/kg	0.588	11.2	0.01 U	0.00987 U	0.00943 U	0.04				
PCB-16/32	TT PCBC014	ug/kg	0.02 U	0.167	6.08 J	0.544	0.00943 U	0.06				
PCB-18/17	TT_PCBC019	ug/kg	0.593	0.778	8.26 J+	0.744	1.07	0.242				
PCB-22/51	TT PCBC025	ug/kg	0.092	0.778 0.01 U	2.9	0.744	0.183	0.242				
PCB-24/27	TT_PCBC025		0.092	0.010	1.33	0.00987 U	0.00943 U	0.147				
PCB-25	55712-37-3	ug/kg	31.3	0.093 0.01 U	0.01 U	4.21	2.52	0.00956 U				
		ug/kg										
PCB-26	TT_PCBC027	ug/kg	1.53	0.233	4.39	1.94	1.66	1.97				
PCB-28	TT_PCBC028	ug/kg	8.67	0.396	13.3 J+	2.7	3.13	1.88				
PCB-29	TT_PCBC029	ug/kg	0.211	0.518	1.11 J+	0.025	0.017	0.124				
PCB-30	TT_PCBC030	ug/kg	0.02 U	0.561	0.01 U	0.052	0.133	0.038				
PCB-31	16606-02-3	ug/kg	0.02 U	8.86	3.99	0.338	0.749	0.56				
PCB-33/20	TT_PCBC031	ug/kg	0.025	0.27	0.159	0.00987 U	0.00943 U	0.047				
PCB-39	38444-88-1	ug/kg	0.198	0.01 U	0.01 U	0.01	0.093	0.00956 U				
PCB-40	TT_PCBC032	ug/kg	0.252	0.01 U	3.47	0.043	0.092	0.092				
PCB-41/64	TT_PCBC033	ug/kg	0.315	0.307	5.65	0.329	0.504	0.153				
PCB-42/59/37	TT_PCBC034	ug/kg	4.26	0.429	0.01 U	0.00987 U	0.00943 U	0.00956 U				
PCB-44	TT_PCBC035	ug/kg	11.1	0.217	16.1	1.95	2.55	0.919				
PCB-45	TT_PCBC036	ug/kg	0.171	0.298	2.3	0.052	0.134	0.222				
PCB-46	41464-47-5	ug/kg	0.736	0.01 U	1.47	0.01	0.102	0.00956 U				
PCB-47/75	TT_PCBC037	ug/kg	0.02 U	16.7	0.01 U	0.00987 U	0.072	0.00956 U				
PCB-48	70362-47-9	ug/kg	14.7	0.01 U	25.1	3.48	3.18	1.2				
PCB-49	TT PCBC038	ug/kg	3.25	0.01 U	18	2.76	3.1	1.32				
PCB-52	35693-99-3	ug/kg	21.1	0.892	23.6 J+	2.44 J+	4.37 J+	2.02 J+				
PCB-53	TT PCBC039	ug/kg	0.435	0.535	1.39	0.12	0.259	0.072				
PCB-60/56	TT PCBC040	ug/kg	0.02 U	0.01 U	7.54	0.00987 U	0.00943 U	0.00956 U				
PCB-63	74472-34-7	ug/kg	0.02 U	11.9	0.01 U	0.00987 U	0.00943 U	0.00956 U				
PCB-66	32598-10-0	ug/kg	8.52	2.61	6.56 J+	2.23	2.05	0.998				
PCB-67	73575-53-8	ug/kg	0.02 U	2.91	0.01 U	0.288	0.00943 U	0.00956 U				
PCB-69	TT_PCBC041	ug/kg	0.02 U	0.01 U	0.254	0.00987 U	0.00943 U	0.00956 U				
PCB-70	TT PCBC043	ug/kg	1.18	1.03	21.8 J	0.256	0.00943 U	0.014				
PCB-72	41464-42-0	ug/kg	0.25	1.26	0.01 U	0.00987 U	0.00943 U	0.042				
PCB-74/61	TT PCBC044	ug/kg	0.02 U	0.344	14.8	0.00987 U	0.00943 U	0.024				
PCB-77	32598-13-3	ug/kg	0.02 U	0.01 U	0.65	0.00987 U	0.00943 U	0.00956 U				
PCB-81	70362-50-4		0.02 U	0.01 U	0.03 0.01 U	0.00987 U	0.00943 U	0.00956 U				
PCB-81	70362-50-4 52663-62-4	ug/kg	2.12	0.01 U	0.01 U 3.41 J	0.00987 0	0.00943 U 0.585	0.00956 U				
PCB-82	TT PCBC046	ug/kg	0.02 U	0.01 0	0.734			0.674				
		ug/kg				0.119	0.091					
PCB-84	52663-60-2	ug/kg	6.3	0.01 U	3.92	1.16	1.28	0.00956 U				
PCB-85	TT_PCBC047	ug/kg	0.02 U	0.01 U	1.52	0.00987 U	0.00943 U	0.00956 U				
PCB-87/115	TT_PCBC048	ug/kg	4.71	0.141	6.21 J+	0.765	1.56	0.828				
PCB-92	52663-61-3	ug/kg	0.02 U	0.01 U	4.1	0.00987 U	0.00943 U	0.00956 U				
PCB-95/80	TT_PCBC049	ug/kg	3.2	2.88	18.4 J	0.611	3.03	0.349				
PCB-97	TT_PCBC050	ug/kg	0.02 U	0.01 U	1.98	0.307	0.00943 U	0.00956 U				
PCB-99	TT_PCBC051	ug/kg	13	48.1	13.7	3.52	3.46	1.09				
PCB-101/90	TT_PCBC001	ug/kg	15	52	23.9 J	3.56	6.17	1.39				
PCB-105	32598-14-4	ug/kg	10.8	6.14	5.11	1.82	1.54	0.664				
PCB-107	70424-68-9	ug/kg	15	0.01 U	1.34 J	0.635	0.657	0.408				
PCB-110	TT_PCBC002	ug/kg	27.6	3.74	20.3 J	2.57	4.85	1.81				
PCB-114	74472-37-0	ug/kg	0.02 U	0.01 U	0.01 U	0.00987 U	0.00943 U	0.00956 U				
PCB-118	31508-00-6	ug/kg	29.6	0.01 U	15.5 J+	5.87	5.44	1.77				
PCB-119	TT PCBC003	ug/kg	0.02 U	2.35	0.01 U	0.00987 U	0.00943 U	0.109				

					Lower Ana	costia River		
CHEMICAL	CAS#	Units	LAAE01 American eel 9/26/2013	LABC01 Blue catfish 9/26/2013	LACA01 Carp 9/26/2013	LACC01 Channel catfish 9/26/2013	LALB01 Largemouth bass 9/26/2013	LASF01 Sunfish 9/26/2013
PCB-126	57465-28-8	ug/kg	0.12	0.17	0.06	0.00987 U	0.09	0.01 U
PCB-128	TT PCBC004	ug/kg	7.43	4.52	3.35 J+	1.35	1.27	0.416
PCB-129	TT PCBC005	ug/kg	0.127	0.173	0.01 U	0.012	0.033	0.00956 U
PCB-130	52663-66-8	ug/kg	1.48	1.2	0.032	0.339	0.011	0.00956 U
PCB-135	TT PCBC006	ug/kg	0.02 U	1.89	0.01 U	0.00987 U	0.00943 U	0.00956 U
PCB-136	38411-22-2	ug/kg	0.02 U	0.01 U	3.1	0.218	0.268	0.5
PCB-138/160	TT PCBC007	ug/kg	70	39.2	30.9 J	10.9	9.52	2.42
PCB-141/179	TT PCBC008	ug/kg	13.9	6.73	2.67	1.98	2.1	0.741
PCB-146	51908-16-8	ug/kg	0.02 U	0.01 U	6.22	2.21	1.81	0.00956 U
PCB-149/123	TT PCBC009	ug/kg	12.6	24.7	19.6	1.52	3.36	1.31
PCB-151	TT PCBC010	ug/kg	3.26	0.01 U	12.5 J	1.53	1.63	1.01
PCB-153/132	TT PCBC011	ug/kg	71.7	73.6	39.5 J	17.1	11.7	2.96
PCB-156	TT PCBC012	ug/kg	3.89	0.01 U	2.08 J	0.899	0.879	0.00956 U
PCB-157/173/201	TT PCBC013	ug/kg	2.29	1.53	0.758 J+	0.418	0.262	0.138
PCB-158	74472-42-7	ug/kg	0.02 U	4.33	2.77	1.4	1,24	0.00956 U
PCB-166	TT PCBC015	ug/kg	0.02 U	1.09	0.01 U	0.00987 U	0.00943 U	0.00956 U
PCB-167	52663-72-6	ug/kg	0.02 U	0.01 U	0.01 U	0.00987 U	0.00943 U	0.035
PCB-169	32774-16-6	ug/kg	0.02 U	0.01 U	0.01 U	0.00987 U	0.00943 U	0.00956 U
PCB-170/190	TT PCBC016	ug/kg	17.3	7.2	9.06 J+	3.52	2.3	0.64
PCB-171/202	TT PCBC017	ug/kg	6.67	6.48	4.12	1.06	0.91	0.448
PCB-172	52663-74-8	ug/kg	3.92	0.01 U	1.23	0.476	0.36	0.313
PCB-174	38411-25-5	ug/kg	5.24	3.96	7.54 J	1.13	0.841	0.446
PCB-175	40186-70-7	ug/kg	1.01	0.928	0.651 J	0.308	0.27	0.29
PCB-176/137	TT PCBC018	ug/kg	0.02 U	1.11	1.18	0.00987 U	0.00943 U	0.00956 U
PCB-177	52663-70-4	ug/kg	10.5	1.9	6.4 J	0.219	0.709	0.566
PCB-178	52663-67-9	ug/kg	6.02	3.29	3.07	0.726	0.42	0.223
PCB-180	TT_PCBC020	ug/kg	48.1	32.2	29 J	11.3	8.64	2.16
PCB-183	TT_PCBC021	ug/kg	12.3	6.4	5.31	1.98	1.42	0.471
PCB-185	TT_PCBC022	ug/kg	0.02 U	0.01 U	1.33	0.276	0.245	0.189
PCB-187	52663-68-0	ug/kg	56.6	17.4	17.9	4.69	3.8	1.17
PCB-189	39635-31-9	ug/kg	0.02 U	0.045	0.128	0.01	0.00943 U	0.01
PCB-191	74472-50-7	ug/kg	0.02 U	0.097	0.01 U	0.00987 U	0.00943 U	0.00956 U
PCB-193	TT_PCBC023	ug/kg	4.28	0.01 U	0.01 U	0.552	0.419	0.195
PCB-194	35694-08-7	ug/kg	9.37	2.4	3.42	1.19	0.833	0.236
PCB-195/208	TT_PCBC024	ug/kg	4.64	2.06	2.4 J	0.896	0.413	0.14
PCB-196	42740-50-1	ug/kg	12	5.11	5.99 J	2.16	1.19	0.456
PCB-197	TTNUS861	ug/kg	0.664	0.01 U	0.01 U	0.078	0.026	0.079
PCB-199	52663-75-9	ug/kg	13.2	3.4	5.31	1.54	1.08	0.442
PCB-200	52663-73-7	ug/kg	0.02 U	0.01 U	0.657	0.00987 U	0.027	0.00956 U
PCB-205	74472-53-0	ug/kg	0.995	0.374	0.431	0.16	0.144	0.029
PCB-206	40186-72-9	ug/kg	4.08	2.28	1.22	0.71	0.409	0.269
PCB-207	52663-79-3	ug/kg	0.582	0.354	0.305	0.13	0.036	0.021
PCB-209	2051-24-3	ug/kg	2.67	1.58	1.18	0.53	0.218	0.519
Total PCBs	1336-36-3	ug/kg	645.165	437.156	543.039	119.541	114.156	41.114
PCB-TEQ	PCB-TEQ	ug/kg	1.38E-02	1.80E-02	7.36E-03	3.16E-04	9.34E-03	1.18E-04

Notes:

Source: Pinkney, A.E. 2017. Analysis of contaminant concentrations in fish tissue collected from the waters of the District of Columbia. Final Report. CBFO-C14-03. U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, MD. 9/2014. Revised 11/2017.

						Lower Po	tomac River				
			LPAS01	LPBB01	LPCA01	LPLB01	LPSF01	LPAE01	LPAE02	LPBC01	LPCC01
			American shad	Brown bullhead	Carp	Largemouth bass	Sunfish	American eel	American eel	Blue catfish	Channel catfish
CHEMICAL	CAS#	Units	4/30/2013	9/23/2013	9/23/2013 (M)	9/23/2013	9/23/2013 (M)	9/23/2013	9/23/2013	9/30/2013	9/23/2013
Metals											
ALUMINUM	7429-90-5	mg/kg	0.5 U	1	0.5 U	0.4 U	7.7	1.7	52	0.4 U	0.7
ARSENIC	7440-38-2	mg/kg	3.71	0.089 U	0.192	0.096 U	0.09 U	0.167 U	0.121 U	0.092 U	0.09 U
BARIUM	7440-39-3	mg/kg	0.0195	0.141	0.133	0.0184	0.0571	0.712	0.206	0.0184	0.0246
BERYLLIUM	7440-41-7	mg/kg	0.005 U	0.004 U	0.005 U	0.004 U	0.004 U	0.007 U	0.005 U	0.004 U	0.004 U
CADMIUM	7440-43-9	mg/kg	0.005 U	0.004 U	0.005 U	0.004 U	0.004 U	0.011	0.005 U	0.004 U	0.004 U
CALCIUM	7440-70-2	mg/kg	489	512	502	419	742	5440	3520	189	92.2
CHROMIUM	7440-47-3	mg/kg	0.05 U	0.05	0.05 U	0.04 U	0.04 U	0.07 U	0.06	0.04 U	0.04 U
COBALT	7440-48-4	mg/kg	0.006	0.02	0.005	0.005	0.005	0.022	0.021	0.004 U	0.004
COPPER	7440-50-8	mg/kg	1.1	0.457	0.289	0.185	0.202	0.313	0.294	0.193	0.261
IRON	7439-89-6	mg/kg	17.7	8.7	6.6	2.8	2.1	5.7	4.6	2.9	3.4
LEAD	7439-92-1	mg/kg	0.005 U	0.014	0.007	0.004 U	0.004 U	0.06	0.027	0.004 U	0.004
MAGNESIUM MANGANESE	7439-95-4 7439-96-5	mg/kg mg/kg	243 0.272	237 0.394	284 0.236	278 0.163	259 0,724	282 3.68	285 2.2	261 0.19	256 0.2
MERCURY	7439-96-5	mg/kg mg/kg	0.272	0.394	0.236	0.163	0.724	0.141	0.127	0.19	0.2
NICKEL	7440-02-0	mg/kg	0.039 0.05 U	0.058 0.04 U	0.048	0.143	0.037	0.141	0.127 0.05 U	0.064	0.091 0.04 U
SELENIUM	7782-49-2	mg/kg	0.33	0.04 U	0.35	0.00	0.11	0.33 U	0.03 U	0.08 0.18 U	0.04 U
SODIUM	7440-23-5	mg/kg	926	599	324	500	777	813	788	505	515
THALLIUM	7440-28-0	mg/kg	0.005 U	0.004 U	0.005 U	0.004 U	0.004 U	0.007 U	0.005 U	0.004 U	0.004 U
VANADIUM	7440-62-2	mg/kg	0.05 U	0.04 U	0.05 U	0.04 U	0.04 U	0.07 U	0.05 U	0.04 U	0.04 U
ZINC	7440-66-6	mg/kg	4.87	6.1	21.6	10.4	9.61	24.4	27.7	4.49	6.08
Pesticides								•			
1.2.3.4-TETRACHLOROBENZENE	634-66-2	ug/kg	0.0491 U	0.05 U	0.0497 U	0.0501 U	0.0496 U	0.0791 U	0.125	0.0503 U	0.069
1,2,4,5-TETRACHLOROBENZENE	95-94-3	ug/kg	3.89	3.22	3.85	0.0501 U	0.293	4.63	2.15	2.06	2.54
2.4'-DDD	53-19-0	ug/kg	1.15	1.4	1.17	0.56	0.207	1.37	4.15	0.208	1.84
2.4'-DDE	3424-82-6	ug/kg	0.124	0.05 U	0.0497 U	0.0501 U	0.0496 U	0.0791 U	0.0494 U	0.197	0.0501 U
2,4'-DDT	789-02-6	ug/kg	1.08	1.9	1.78	0.951	0.449	2.32	6.12	1.4	1.46
4.4'-DDD	72-54-8	ug/kg	2.4	1.71	4.2	0.54	0.452	14	3.26	2.93	1.61
4.4'-DDE	72-55-9	ug/kg	7.28	7.54	11	4.14	2.43	60.1	39.6	13.2	8.86
4.4'-DDT	50-29-3	ug/kg	0.88	0.248	0.215	0.144	0.104	6.16	0.986	0.435	0.237
ALDRIN	309-00-2	ug/kg	0.212	0.055	0.0497 U	0.0501 U	0.107	0.186	0.209	0.069	0.096
ALPHA-BHC	319-84-6	ug/kg	0.0491 U	0.05 U	0.149	0.0301 0	0.107 0.0496 U	0.180	0.209	0.009	0.065
ALPHA-CHLORDANE	5103-71-9		2.49	2.5	10.1	1.11	0.0496 0	24.1	2.24	5.91	2.54
BETA-BHC	319-85-7	ug/kg	0.475	0.695	0.287	0.32	0.417	0.886	0.389	0.271	0.588
	2921-88-2	ug/kg	0.475		0.287			0.886			
CHLORPYRIFOS CIS-NONACHLOR		ug/kg		0.05 U		0.0501 U	0.0496 U		0.535	0.202	0.063
	5103-73-1	ug/kg	1.04	1.54	2.68	0.835	0.497	10.7	3.86	2.19	1.45
DELTA-BHC	319-86-8	ug/kg	0.0491 U	0.076	0.0497 U	0.067	0.06	0.0791 U	0.056	0.059	0.0501 U
DIELDRIN	60-57-1	ug/kg	2.67	1.47	5.87	0.817	0.68	14.8	5.11	2.02	0.928
ENDOSULFAN II	33213-65-9	ug/kg	1.11	0.05 U	0.0497 U	0.0501 U	0.404	0.0791 U	0.0494 U	0.0503 U	0.095
ENDRIN	72-20-8	ug/kg	0.343	0.118	0.079	0.0501 U	0.078	0.818	0.11	0.217	0.083
GAMMA CHLORDANE	5566-34-7	ug/kg	1.08	1.38	6.65	0.384	0.0496 U	9.43	0.786	3.55	1.76
GAMMA-BHC (LINDANE)	58-89-9	ug/kg	0.057	0.05 U	0.168	0.054	0.065	0.309	0.0494 U	0.083	0.051
HEPTACHLOR	76-44-8	ug/kg	0.083	0.05 U	0.0497 U	0.0501 U	0.0496 U	0.0791 U	0.164	0.115	0.0501 U
HEPTACHLOR EPOXIDE	1024-57-3	ug/kg	0.798	0.539	2.23	0.414	0.468	5.6	0.752	1.1	0.45
HEXACHLOROBENZENE	118-74-1	ug/kg	0.847	0.064	1.37	0.367	0.261	1.96	0.265	0.139	0.0501 U
MIREX	2385-85-5	ug/kg	0.0491 U	0.05 U	0.13	0.0501 U	0.0496 U	0.21	0.0494 U	0.135	0.058
OXYCHLORDANE	27304-13-8	ug/kg	0.673	0.576	1.49	0.523	0.546	7.25	2.31	0.968	0.773
PENTACHLOROANISOLE	1825-21-4	ug/kg	0.668	0.135	0.722	0.078	0.065	0.836	0.139	0.215	0.175
TOXAPHENE	8001-35-2	ug/kg	0.982 U	1 U	0.994 U	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1 U
TRANS-NONACHLOR	39765-80-5	ug/kg	2.81	3.39	6.96	2.18	1.23	35.8	9.48	5.27	3.16

		1	Lower Potomac River										
			I DASO1	I DDD01	I DCA01			I DAE01	I DAE02	I DDC01	I DCC01		
			American shad	Brown bullhead	Carp	Largemouth bass	Sunfish	American eel	American eel	Blue catfish			
CHEMICAL	CAS#	Units	4/30/2013	9/23/2013	9/23/2013 (M)	9/23/2013	9/23/2013 (M)	9/23/2013	9/23/2013	9/30/2013	9/23/2013		
	CAS#	Units	4/30/2013	9/23/2013	9/23/2013 (IVI)	9/23/2013	9/23/2013 (IVI)	9/23/2013	9/23/2013	9/30/2013	9/23/2013		
Semivolatile Organic Compounds 2.3.5-TRIMETHYLNAPHTHALENE	2045 20 7	/!	0.000.11	1 U	3	1 U	0.004.11	4.50.11	0.007.11	4.04.11	1 U		
7-7-	2245-38-7	ug/kg	0.982 U				0.991 U	1.58 U	0.987 U	1.01 U			
1-METHYLNAPHTHALENE 1-METHYLPHENANTHRENE	90-12-0 832-69-9	ug/kg	2.79 J+ 0.982 U	1.19 J+ 1 U	4.41	1 U 1 U	0.991 U	1.61 J+ 1.58 U	0.987 U 0.987 U	1.01 J+ 1.01 U	1 U		
		ug/kg		1 U	0.994 U		0.991 U				1 U		
2,6-DIMETHYLNAPHTHALENE	581-42-0	ug/kg	1.12 J+		4.32	1 U	0.991 U	1.58 U	0.987 U	1.01 U			
	91-57-6	ug/kg	4.72 J+	1.59 J+	4.49 J+	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1.03 J+		
	83-32-9	ug/kg	30.8	1 U	4.47	1 U	0.991 U	3.13	0.987 U	1.01 U	1 U		
ACENAPHTHYLENE	208-96-8	ug/kg	1.03	1 U	1.35	1 U	0.991 U	1.58 U	0.987 U	1.46	1 U		
ANTHRACENE	120-12-7	ug/kg	1.38 J+	1.05 J+	2.35 J+	1 U	0.991 U	1.58 U	0.987 U	2.42 J+	1 U		
- ()	56-55-3	ug/kg	0.982 U	1 U	0.994 U	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1 U		
	50-32-8	ug/kg	0.982 U	1 U	0.994 U	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1 U		
	205-99-2	ug/kg	0.982 U	1 U	0.994 U	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1 U		
BENZO(E)PYRENE	192-97-2	ug/kg	0.982 U	1 U	0.994 U	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1 U		
BENZO(G,H,I)PERYLENE	191-24-2	ug/kg	0.982 U	1 U	0.994 U	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1 U		
BENZO(K)FLUORANTHENE	207-08-9	ug/kg	0.982 U	1 U	0.994 U	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1 U		
BIPHENYL	92-52-4	ug/kg	1.13	1 U	1.31	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1 U		
C1-CHRYSENES	TTNUS145	ug/kg	0.982 U	1 U	0.994 U	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1 U		
C1-DIBENZOTHIOPHENES	TTNUS146	ug/kg	0.982 U	1 U	1.71	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1 U		
C1-FLUORANTHENES/PYRENES	TTNUS147	ug/kg	0.982 U	1 U	0.994 U	1 U	0.991 U	3.26	0.987 U	1.01 U	1 U		
C1-FLUORENES	TTNUS148	ug/kg	2.82	2.13	5.39	1.83	1.45	2.97	0.987 U	1.01 U	1 U		
C1-NAPHTHALENES	TTNUS149	ug/kg	7.51 J+	2.78 J+	8.9 J+	1.06 J+	1.24 J+	3.17 J+	1.23 J+	1.95 J+	1.85 J+		
C1-PHENANTHRENES/ANTHRACENES	TTNUS150	ug/kg	0.982 U	1 U	0.994 U	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1 U		
C2-CHRYSENES	TTNUS154	ug/kg	0.982 U	1 U	0.994 U	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1 U		
C2-DIBENZOTHIOPHENES	TTNUS155	ug/kg	0.982 U	1 U	0.994 U	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1 U		
C2-FLUORENES	TTNUS156	ug/kg	2.21	1.31	2.94	1 U	1.3	4.18	0.987 U	1.01 U	1 U		
C2-NAPHTHALENES	TTNUS157	ug/kg	3.36	1.8	15	1.18	1.24	2	0.987 U	1.01 U	1.24		
C2-PHENANTHRENES/ANTHRACENES	TTNUS158	ug/kg	0.982 U	1 U	0.994 U	1 U	0.991 U	1.78	0.987 U	1.01 U	1 U		
C3-CHRYSENES	TTNUS159	ug/kg	0.982 U	1 U	0.994 U	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1 U		
C3-DIBENZOTHIOPHENES	TTNUS160	ug/kg	0.982 U	1 U	0.994 U	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1 U		
C3-FLUORENES	TTNUS161	ug/kg	0.982 U	1 U	0.994 U	1 U	1.34	3.07	0.987 U	1.01 U	1 U		
C3-NAPHTHALENES	TTNUS162	ug/kg	3.55	2.64	12.4	1.01	1.87	4.12	1.85	1.01 U	1 U		
C3-PHENANTHRENES/ANTHRACENES	TTNUS163	ug/kg	0.982 U	1 U	0.994 U	1 U	0.991 U	7.45	0.987 U	1.01 U	1 U		
C4-CHRYSENES	TTNUS164	ug/kg	0.982 U	1 U	0.994 U	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1 U		
C4-NAPHTHALENES	TTNUS165	ug/kg	0.982 U	2.95	7.3	1 U	0.991 U	2.46	1.77	1.01 U	1 U		
C4-PHENANTHRENES/ANTHRACENES	TTNUS166	ug/kg	0.982 U	1 U	0.994 U	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1 U		
CHRYSENE	218-01-9	ug/kg	0.982 U	1 U	0.994 U	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1 U		
DIBENZO(A,H)ANTHRACENE	53-70-3	ug/kg	0.982 U	1 U	0.994 U	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1 U		
DIBENZOTHIOPHENE	132-65-0	ug/kg	0.982 U	1 U	1.01 J+	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1 U		
FLUORANTHENE	206-44-0	ug/kg	3.18 J+	3.78 J+	2.42 J+	1 U	0.991 U	2.8 J+	0.987 U	1.96 J+	1 U		
FLUORENE	86-73-7	ug/kg	3.36	1.07 J+	3.78	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1 U		
INDENO(1,2,3-CD)PYRENE	193-39-5	ug/kg	0.982 U	1 U	0.994 U	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1 U		
NAPHTHALENE	91-20-3	ug/kg	4.42 J+	5.42 J+	3.65 J+	2.9 J+	1.64 J+	4.01 J+	1.69 J+	3.04 J+	2.17 J+		
PERYLENE	198-55-0	ug/kg	0.982 U	1 U	0.994 U	1 U	0.991 U	1.8 J+	0.987 U	1.01 U	1 U		
PHENANTHRENE	85-01-8	ug/kg	8.49	3.45 J+	4.73 J+	1 U	0.991 U	2.36 J+	0.987 U	1.34 J+	1.1 J+		
PYRENE	129-00-0	ug/kg	0.982 U	1.66 J+	1.24 J+	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1.1 J+		

		Lower Potomac River									
			LPAS01	LPBB01	LPCA01	LPLB01	LPSF01	LPAE01	LPAE02	LPBC01	LPCC01
			American shad	Brown bullhead	Carp	Largemouth bass	Sunfish	American eel	American eel	Blue catfish	Channel catfish
CHEMICAL	CAS#	Units	4/30/2013	9/23/2013	9/23/2013 (M)	9/23/2013	9/23/2013 (M)	9/23/2013	9/23/2013	9/30/2013	9/23/2013
Polybrominated Diphenyl Ethers									•		
PBDE-1	7025-06-1	ug/kg	0.123 U	0.125 U	0.124 U	0.125 U	0.124 U	0.198 U	0.123 U	0.126 U	0.125 U
PBDE-2	6876-00-2	ug/kg	0.123 U	0.125 U	0.124 U	0.125 U	0.124 U	0.198 U	0.123 U	0.126 U	0.125 U
PBDE-3	101-55-3	ug/kg	0.123 U	0.125 U	0.124 U	0.125 U	0.124 U	0.198 U	0.123 U	0.126 U	0.125 U
PBDE-7	171977-44-9	ug/kg	0.123 U	0.125 U	0.124 U	0.125 U	0.124 U	0.198 U	0.123 U	0.126 U	0.125 U
PBDE-8/11	TTPBDE8.11	ug/kg	0.123 U	0.125 U	0.124 U	0.125 U	0.124 U	0.198 U	0.123 U	0.126 U	0.125 U
PBDE-10	51930-04-2	ug/kg	0.123 U	0.125 U	0.124 U	0.125 U	0.124 U	0.198 U	0.123 U	0.126 U	0.125 U
PBDE-12	189084-59-1	ug/kg	0.123 U	0.125 U	0.124 U	0.125 U	0.124 U	0.198 U	0.123 U	0.126 U	0.125 U
PBDE-13	83694-71-7	ug/kg	0.123 U	0.125 U	0.124 U	0.125 U	0.124 U	0.198 U	0.123 U	0.126 U	0.125 U
PBDE-15	2050-47-7	ug/kg	0.123 U	0.125 U	0.124 U	0.125 U	0.124 U	0.198 U	0.123 U	0.126 U	0.125 U
PBDE-17	147217-75-2	ug/kg	0.123 U	0.125 U	0.124 U	0.125 U	0.124 U	0.198 U	0.123 U	0.126 U	0.125 U
PBDE-25	147217-77-4	ug/kg	0.123 U	0.125 U	0.124 U	0.125 U	0.124 U	0.198 U	0.123 U	0.126 U	0.125 U
PBDE-28	41318-75-6	ug/kg	0.123 U	0.125 U	0.35	0.125 U	0.124 U	1.33	0.4	0.126 U	0.125 U
PBDE-30	155999-95-4	ug/kg	0.123 U	0.125 U	0.124 U	0.125 U	0.124 U	0.198 U	0.123 U	0.126 U	0.125 U
PBDE-32	189084-60-4	ug/kg	0.123 U	0.125 U	0.124 U	0.125 U	0.124 U	0.198 U	0.123 U	0.126 U	0.125 U
PBDE-33	147217-78-5	ug/kg	0.123 U	0.125 U	0.54	0.125 U	0.124 U	0.198 U	0.123 U	0.42	0.125 U
PBDE-35	147217-80-9	ug/kg	0.123 U	0.125 U	0.124 U	0.125 U	0.124 U	0.198 U	0.123 U	0.126 U	0.125 U
PBDE-37	147217-81-0	ug/kg	0.123 U	0.125 U	0.124 U	0.125 U	0.124 U	0.198 U	0.123 U	0.126 U	0.125 U
PBDE-47	5436-43-1	ug/kg	1.59	2.19	7.18	2.93	1.22	22.3	4.59	3.38	3.41
PBDE-49	243982-82-3	ug/kg	0.28	0.26	0.76	0.24	0.21	1.08	0.15	0.39	0.125 U
PBDE-66	189084-61-5	ug/kg	0.123 U	0.125 U	0.124 U	0.125 U	0.124 U	0.198 U	0.123 U	0.126 U	0.13
PBDE-71	189084-62-6	ug/kg	0.123 U	0.125 U	0.124 U	0.125 U	0.124 U	0.198 U	0.123 U	0.126 U	0.125 U
PBDE-75	189084-63-7	ug/kg	0.123 U	0.125 U	0.124 U	0.125 U	0.124 U	0.198 U	0.123 U	0.126 U	0.125 U
PBDE-77	93703-48-1	ug/kg	0.123 U	0.125 U	0.124 U	0.125 U	0.124 U	0.198 U	0.123 U	0.126 U	0.125 U
PBDE-85	182346-21-0	ug/kg	0.184 U	0.188 U	0.186 U	0.188 U	0.186 U	0.32	0.185 U	0.189 U	0.188 U
PBDE-99	60348-60-9	ug/kg	0.42	1.54	0.28	0.74	0.4	1.1	0.21	0.92	2.26
PBDE-100	189084-64-8	ug/kg	0.4	0.95	1.05	0.63	0.39	6.64	1.15	1.06	1.51
PBDE-116	189084-65-9	ug/kg	0.184 U	0.188 U	0.186 U	0.188 U	0.186 U	0.297 U	0.185 U	0.189 U	0.188 U
PBDE-118	446254-80-4	ug/kg	0.22	0.188 U	0.186 U	0.188 U	0.186 U	0.297 U	0.185 U	0.189 U	0.188 U
PBDE-119	189084-66-0	ug/kg	0.184 U	0.188 U	0.186 U	0.188 U	0.186 U	0.297 U	0.185 U	0.189 U	0.188 U
PBDE-126	366791-32-4	ug/kg	0.184 U	0.188 U	0.186 U	0.188 U	0.186 U	0.297 U	0.185 U	0.189 U	0.188 U
PBDE-138	182677-30-1	ug/kg	0.246 U	0.25 U	0.249 U	0.25 U	0.248 U	0.396 U	0.247 U	0.252 U	0.25 U
PBDE-153	68631-49-2	ug/kg	0.246 U	0.25 U	0.249 U	0.25 U	0.248 U	0.86	0.247 U	0.252 U	0.44
PBDE-154	207122-15-4	ug/kg	0.246 U	0.25 U	0.42	0.25 U	0.248 U	0.95	0.28	0.252 U	0.37
PBDE-155	35854-94-5	ug/kg	0.246 U	0.25 U	0.249 U	0.25 U	0.248 U	0.396 U	0.247 U	0.252 U	0.37 0.25 U
PBDE-166	189084-58-0	ug/kg	0.246 U	0.25 U	0.249 U	0.25 U	0.248 U	0.396 U	0.247 U	0.252 U	0.25 U
PBDE-181	189084-67-1	ug/kg	0.307 U	0.313 U	0.311 U	0.313 U	0.240 U	0.494 U	0.308 U	0.314 U	0.313 U
PBDE-183	207122-16-5	ug/kg	0.307 U	0.313 U	0.311 U	0.313 U	0.31 U	0.494 U	0.308 U	0.314 U	0.313 U
PBDE-190	189084-68-2	ug/kg	0.307 U	0.313 U	0.311 U	0.313 U	0.31 U	0.494 U	0.308 U	0.314 U	0.313 U
PBDE-209	1163-19-5	ug/kg	19.6 U	20 U	19.9 U	20 U	19.8 U	31.6 U	19.7 U	20.1 U	20 U
Total PBDEs	TotalPBDE	ug/kg ug/kg	19.6 U	5	19.9 0	20 U	19.8 U	31.6 0	19.7 0	20.1 U	8
PCB Aroclors	TOTAL DDL	ag/ ng		<u>J</u>					· · ·		
AROCLOR-1242	53469-21-9	ug/kg	0.982 U	1 U	0.994 U	1 U I	0.991 U	1.58 U	0.987 U	1.01 U	1 U
AROCLOR-1248	12672-29-6	ug/kg	18.7	21.3	23.8	9.33	16.7	20.6	78.2	7.82	10.2
AROCLOR-1254	11097-69-1	ug/kg	11.2	31.9	17.9	12.4	0.991 U	82.4	0.987 U	39.1	40.8
AROCLOR-1260	11096-82-5	ug/kg	22.4	129	59.5	37.3	16.7	206	391	46.9	123
AROCLOR-1268	11100-14-4	ug/kg	0.982 U	1 U	0.994 U	1 U	0.991 U	1.58 U	0.987 U	1.01 U	1 U
TOTAL AROCLORS	TotalAroclor	ug/kg	52	182	101	59	33	309	469	94	174

			I			I ower Po	tomac River				
			LPAS01	LPBB01	LPCA01	LPLB01	LPSF01	LPAE01	LPAE02	LPBC01	LPCC01
			American shad	Brown bullhead	Carp	Largemouth bass	Sunfish	American eel	American eel	Blue catfish	Channel catfish
CHEMICAL	CAS#	Units	4/30/2013	9/23/2013	9/23/2013 (M)	9/23/2013	9/23/2013 (M)	9/23/2013	9/23/2013	9/30/2013	9/23/2013
PCB Congeners											
PCB-1	2051-60-7	ug/kg	0.367	0.142	0.122	0.01 U	0.987	0.061	3.76	0.17	0.74
PCB-7/9	TT_PCBC042	ug/kg	0.088	0.218	0.044	0.01 U	0.514	0.097	0.00987 U	0.034	0.409
PCB-8/5	TT_PCBC045	ug/kg	0.384	0.137	0.457	0.459	0.767	0.258	0.21	0.15	0.425
PCB-15	2050-68-2	ug/kg	0.135	0.099	0.23	0.319	0.68	0.638	0.3	0.085	0.342
PCB-16/32	TT_PCBC014	ug/kg	0.163	0.582	0.00994 U	0.01 U	0.248	0.104	0.00987 U	0.074	0.163
PCB-18/17	TT PCBC019	ug/kg	0.309	0.43	0.877	0.135	0.366	0.188	0.047	0.134	0.363
PCB-22/51	TT PCBC025	ug/kg	0.278	0.142	0.525	0.01 U	0.11	0.255	0.107	0.063	0.062
PCB-24/27	TT_PCBC026	ug/kg	0.021	0.098	0.00994 U	0.061	0.089	0.041	0.103	0.014	0.041
PCB-25	55712-37-3	ug/kg	0.595	0.718	2.2	0.758	0.924	10.1	1.58	1.45	0.588
PCB-26	TT_PCBC027	ug/kg	1.02	0.27	0.301	0.509	0.572	1.14	0.931	0.616	0.487
PCB-28	TT PCBC028	ug/kg	0.681	1.6	1.81	0.855	0.878	3.2	3.18	0.98	0.412
PCB-29	TT PCBC029	ug/kg	0.169	0.055	0.025	0.018	0.00991 U	0.055	0.274	0.133	0.01 U
PCB-30	TT_PCBC030	ug/kg	0.138	0.091	0.075	0.01 U	0.026	0.076	0.032	0.143	0.047
PCB-31	16606-02-3	ug/kg	0.00982 U	0.147	0.764	0.01 U	0.082	0.189	0.194	0.037	0.05
PCB-33/20	TT PCBC031	ug/kg	0.392	0.01 U	0.023	0.01 U	0.129	0.0158 U	0.258	0.029	0.051
PCB-39	38444-88-1	ug/kg	0.206	0.139	0.023	0.01 U	0.134	0.277	0.286	0.025	0.146
PCB-40	TT_PCBC032	ug/kg	0.223	0.099	0.296	0.18	0.043	0.0158 U	0.085	0.163	0.08
PCB-41/64	TT PCBC033	ug/kg	0.192	0.245	0.123	0.039	0.089	0.0158 U	0.049	0.0101 U	0.189
PCB-42/59/37	TT_PCBC034	ug/kg	0.723	0.117	0.344	0.116	0.034	1.59	0.00987 U	0.0101 U	0.165
PCB-44	TT_PCBC035	ug/kg	0.763	1.21	3.79	0.711	0.643	1.7	1.6	1.23	1.45
PCB-45	TT_PCBC036	ug/kg	0.373	0.252	0.043	0.01 U	0.067	0.173	0.025	0.071	0.052
PCB-46	41464-47-5	ug/kg	0.373	0.132	0.191	0.01 U	0.087	0.173	0.023	0.071	0.052
PCB-47/75	TT PCBC037	ug/kg	0.121	0.132 0.01 U	0.00994 U	0.01 U	0.00991 U	0.201	0.00987 U	0.003	0.01 U
PCB-47/73	70362-47-9	ug/kg	0.535	13.6	0.866	2.19	1.25	5.8	31.2	1.6	5.68
PCB-49	TT PCBC038	ug/kg	1.62	5.08	2.42	1.15	1.04	1.63	1.92	1.63	2.75
PCB-52	35693-99-3	ug/kg	2.27	3.07	3.65	1.55	1.03	8.33	6.62	1.76	2.11
PCB-53	TT_PCBC039	ug/kg	0.00982 U	0.024	0.28	0.01 U	0.101	0.37	0.1	0.095	0.09
PCB-63	74472-34-7	ug/kg	0.161	0.01 U	0.00994 U	0.214	0.074	0.0158 U	0.00987 U	0.205	0.124
PCB-60/56	TT PCBC040	ug/kg	0.741	0.01 U	0.139	0.256	0.288	0.0158 U	1.01	1.17	0.097
PCB-66	32598-10-0	ug/kg	0.00982 U	1.45	1.04	0.038 J+	0.048	2.06	2.27	0.892	1.06
PCB-67	73575-53-8	ug/kg	0.239	0.126	0.131	0.543	0.109	2.06	0.00987 U	0.099	0.01 U
PCB-69	TT_PCBC041	ug/kg	0.316	0.01 U	0.09	0.01 U	0.126	0.189	0.00987 U	0.0101 U	0.071
PCB-70	TT PCBC043	ug/kg	0.22	0.01 U	0.418	0.918	0.071	0.331	0.211	0.0101 U	0.01 U
PCB-72	41464-42-0	ug/kg	0.172	0.107	0.104	0.069	0.098	0.0158 U	0.545	0.248	0.111
PCB-74/61	TT PCBC044	ug/kg	0.634	0.568	0.00994 U	0.009 0.01 U	0.615	0.0138 0	2.68	0.063	0.507
PCB-77	32598-13-3	ug/kg	0.00982 U	0.01 U	0.00994 U	0.01 U	0.00991 U	0.0158 U	0.00987 U	0.0101 U	0.02
PCB-81	70362-50-4	ug/kg	0.00982 U	0.01 U	0.00994 U	0.01 U	0.00991 U	0.0158 U	0.00987 U	0.0101 U	0.02
PCB-82	52663-62-4	ug/kg	1.86	0.207	0.385	0.052	0.036	1.13	0.00987 0	0.0101 0	0.064
PCB-83	TT_PCBC046	ug/kg	0.2	0.12	0.085	0.032	0.036	0.0158 U	0.00987 U	0.000	0.004
PCB-84	52663-60-2	ug/kg	0.316	4.7	0.00994 U	1.12	0.715	0.0158 U	0.00987 U	0.113 0.0101 U	2.44
PCB-85	TT_PCBC047		0.204	0.067	0.00994 0	0.042	0.032	0.0158 U	0.00987 U	0.0101 U	0.074
PCB-87/115	TT_PCBC047	ug/kg ug/kg	0.829	1.51	1.4	0.597	0.032	2.48	0.00987 U	0.0101 0	1.16
PCB-92			0.458	0.01 U	0.00994 U	0.798	0.407	0.0158 U		0.0101 U	0.01 U
PCB-92 PCB-95/80	52663-61-3 TT_PCBC049	ug/kg	0.458	2.32	2.79	0.798	0.127	3.4	5.84 0.00987 U	1.82	1.07
PCB-95/80 PCB-97		ug/kg	0.23 0.00982 U		0.00994 U	0.512 0.01 U	0.135	0.0158 U		0.0101 U	0.101
PCB-97 PCB-99	TT_PCBC050	ug/kg	0.00982 U 2.08	0.039	0.00994 U 1.07				0.02		
	TT_PCBC051	ug/kg		3.15		1.25	2.99	8.63	9.07	2.42	4.56
PCB-101/90	TT_PCBC001	ug/kg	3.4	9.02	4.87	2.97	1.4	11	17.1	3.72	5.78
PCB-105	32598-14-4	ug/kg	0.663	1.64	1.27	0.54	0.344	4.96	3.71	1.37	1.33
PCB-107	70424-68-9	ug/kg	0.537	0.01 U	0.693	0.159	0.184	0.0158 U	0.00987 U	0.205	0.01 U
PCB-110	TT_PCBC002	ug/kg	2.3	4.73	4.13	1.52	0.37	12.6	7.65	2.89	3.56
PCB-114	74472-37-0	ug/kg	0.00982 U	0.01 U	0.00994 U	0.01 U	0.00991 U	0.0158 U	0.00987 U	0.0101 U	0.01 U
PCB-118	31508-00-6	ug/kg	2.24	5.56	3.97	1.85	0.804	12.4	12.7	4.87	5.96
PCB-119	TT_PCBC003	ug/kg	0.074	0.01 U	0.048	0.482	0.062	0.0158 U	0.00987 U	0.073	0.062

						Lower Po	tomac River				
CHEMICAL	CAS#	Units	LPAS01 American shad 4/30/2013	LPBB01 Brown bullhead 9/23/2013	LPCA01 Carp 9/23/2013 (M)	LPLB01 Largemouth bass 9/23/2013	LPSF01 Sunfish 9/23/2013 (M)	LPAE01 American eel 9/23/2013	LPAE02 American eel 9/23/2013	LPBC01 Blue catfish 9/30/2013	LPCC01 Channel catfish 9/23/2013
PCB-126	57465-28-8	ug/kg	0.00982 U	0.07	0.00994 U	0.01 U	0.02	0.06	0.00987 U	0.05	0.07
PCB-128	TT PCBC004	ug/kg	0.958	1.67	1.19	0.661	0.317	3.53	5.5	1.2	1.53
PCB-129	TT PCBC005	ug/kg	0.047	0.044	0.06	0.053	0.027	0.055	0.035	0.055	0.015
PCB-130	52663-66-8	ug/kg	0.047	0.01 U	0.00994 U	0.023	0.014	0.057	0.035	0.0101 U	0.01 U
PCB-135	TT PCBC006	ug/kg	0.00982 U	0.01 U	0.00994 U	0.01 U	0.018	0.0158 U	0.00987 U	0.0101 U	0.01 U
PCB-136	38411-22-2	ug/kg	0.276	0.849	0.612	0.225	0.00991 U	0.0158 U	0.00987 U	0.311	0.01 U
PCB-138/160	TT PCBC007	ug/kg	3.95	18	7.88	5.3 J+	2.03	34.1	55.8	8.84	18.5
PCB-141/179	TT PCBC008	ug/kg	0.173	0.01 U	2.24	1.33	0.718	5.87	9.66	0.0101 U	2.91
PCB-146	51908-16-8	ug/kg	1.22	0.01 U	1.71	1.23	0.618	8.29	14.3	2.48	0.01 U
PCB-149/123	TT_PCBC009	ug/kg	0.00982 U	6.91	3.62	2.07	0.823	9.48	0.00987 U	3.3	4.97
PCB-151	TT PCBC010	ug/kg	1.18	4.89	1.99	1.12	0.00991 U	2.6	1.76	2.46	3.71
PCB-153/132	TT_PCBC011	ug/kg	4.96	22.2	9.51	6.54 J+	2.45	41.9	73.5	15.9	37.4
PCB-156	TT_PCBC012	ug/kg	0.107	0.903	0.603	0.258	0.00991 U	1.62	2.65	0.613	1.16
PCB-157/173/201	TT_PCBC013	ug/kg	0.156	0.741	0.545	0.178	0.107	0.601	1.49	0.61	0.746
PCB-158	74472-42-7	ug/kg	0.478	1.81	0.00994 U	0.599	0.00991 U	3.3	0.00987 U	1.1	1.94
PCB-166	TT_PCBC015	ug/kg	0.064	0.01 U	0.00994 U	0.128	0.00991 U	0.645	0.00987 U	0.0101 U	0.01 U
PCB-167	52663-72-6	ug/kg	0.088	0.019	0.028	0.068	0.00991 U	0.0158 U	0.00987 U	0.0101 U	0.024
PCB-169	32774-16-6	ug/kg	0.01	0.01 U	0.00994 U	0.01 U	0.00991 U	0.0158 U	0.00987 U	0.0101 U	0.01 U
PCB-170/190	TT_PCBC016	ug/kg	0.352	5.3	2.18	1.54	0.477	6.3	19.1	1.71	3.32
PCB-171/202	TT_PCBC017	ug/kg	0.258	2.23	1.23	0.64	0.332	3.45	7.79	1.24	2.1
PCB-172	52663-74-8	ug/kg	0.00982 U	0.826	0.564	0.01 U	0.00991 U	1.35	0.00987 U	0.443	0.685
PCB-174	38411-25-5	ug/kg	0.247	2.89	1.12	0.636	0.291	2.55	3.19	0.717	2.06
PCB-175	40186-70-7	ug/kg	0.00982 U	0.743	0.695	0.01 U	0.00991 U	0.558	0.00987 U	0.382	0.686
PCB-176/137	TT_PCBC018	ug/kg	0.00982 U	0.554	0.114	0.01 U	0.022	0.0158 U	0.00987 U	0.49	0.101
PCB-177	52663-70-4	ug/kg	0.391	3.93	1.54	0.633	0.341	4.61	12	1.12	2.47
PCB-178	52663-67-9	ug/kg	0.026	2	0.761	0.051	0.00991 U	2.92	0.00987 U	0.91	1.72
PCB-180	TT_PCBC020	ug/kg	1.71	14.1	7.93	5.18	1.7	24.8	45.6	6.23	15.5
PCB-183	TT_PCBC021	ug/kg	1.6	3.04	1.56	1.16	0.421	5.3	16.5	1.64	3.92
PCB-185	TT_PCBC022	ug/kg	0.061	0.932	0.619	0.134	0.142	0.199	0.468	0.543	0.708
PCB-187	52663-68-0	ug/kg	1.9	10.5	3.57	3.06	1.14	23.7	37.4	4.07	10.1
PCB-189	39635-31-9	ug/kg	0.166	0.017	0.037	0.022	0.00991 U	0.0158 U	0.661	0.013	0.01 U
PCB-191	74472-50-7	ug/kg	0.037	0.01 U	0.00994 U	0.01 U	0.00991 U	0.0158 U	0.00987 U	0.154	0.01 U
PCB-193	TT_PCBC023	ug/kg	0.602	1.03	0.475	0.26	0.124	1.82	4.26	0.474	0.985
PCB-194	35694-08-7	ug/kg	0.249	2.04	0.892	0.61	0.226	2.85	9.53	0.529	1.63
PCB-195/208	TT_PCBC024	ug/kg	0.111	1.72	0.708	0.326	0.00991 U	2.07	4.17	0.474	1.35
PCB-196	42740-50-1	ug/kg	0.335	3.64	1.42	0.975	0.376	5.72	12.7	1.24	3.61
PCB-197	TTNUS861	ug/kg	0.016	0.19	0.38	0.01 U	0.00991 U	0.235	0.00987 U	0.249	0.205
PCB-199	52663-75-9	ug/kg	0.00982 U	2.45	1.3	0.728	0.293	6.52	10.7	0.924	2.12
PCB-200	52663-73-7	ug/kg	0.011	0.252	0.285	0.01 U	0.00991 U	0.0158 U	0.00987 U	0.161	0.113
PCB-205	74472-53-0	ug/kg	0.012	0.153	0.174	0.01 U	0.069	0.471	0.586	0.054	0.262
PCB-206	40186-72-9	ug/kg	0.269	0.786	0.385	0.258	0.011	2.5	1.79	0.509	0.701
PCB-207	52663-79-3	ug/kg	0.172	0.145	0.185	0.01 U	0.00991 U	0.289	0.332	0.081	0.153
PCB-209	2051-24-3	ug/kg	0.269	0.182	0.701	0.01 U	0.235	0.746	1.36	0.653	0.757
Total PCBs	1336-36-3	ug/kg	52	182	101	59	33	309	469	94	174
PCB-TEQ	PCB-TEQ	ug/kg	4.03E-04	7.47E-03	3.02E-04	1.50E-04	2.06E-03	6.87E-03	6.36E-04	5.32E-03	7.46E-03

Source: Pinkney, A.E. 2017. Analysis of contaminant concentrations in fish tissue collected from the waters of the District of Columbia. Final Report. CBFO-C14-03. U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, MD. 9/2014. Revised 11/2017.

							Upper Potomac	River			
			UPBB01	UPCA01	UPLB01	UPNS01	UPSB01	UPSF01	UPWP01	UPAE01	UPCC01
			Brown bullhead	Carp	Largemouth bass	N. snakehead	Striped bass	Sunfish	White perch	American eel	Channel catfish
CHEMICAL	CAS#	Units	9/24/2013	9/24/2013	9/24/2013	5/13/2013	5/9/2013	9/24/2013	5/9/2013	9/24/2013	9/24/2013
Metals	1=		·								
ALUMINUM	7429-90-5	mg/kg	0.4	0.5 U	0.4 U	0.4 U	0.5 U	0.3 U	0.5	1	0.4 U
ARSENIC	7440-38-2	mg/kg	0.095 U	0.247	0.101 U	0.108 U	0.846	0.112	0.328	0.235	0.1 U
BARIUM BERYLLIUM	7440-39-3 7440-41-7	mg/kg	0.0851 0.004 U	0.0792	0.0154 0.004 U	0.0183	0.0242	0.0598	0.0357 0.004 U	0.158 0.006 U	0.0175 0.004 U
CADMIUM	7440-41-7	mg/kg	0.004 U	0.005 U 0.005 U	0.004 U	0.004 U 0.004 U	0.005 U 0.005 U	0.003 U 0.003 U	0.004 U	0.006 U	0.004 U
CALCIUM	7440-43-9	mg/kg mg/kg	80.4	224	303	121	114	708	338	2980	64.5
CHROMIUM	7440-70-2	mg/kg	0.04 U	0.05 U	0.16	0.04 U	0.05 U	0.03 U	0.04 U	0.07	0.04 U
COBALT	7440-48-4	mg/kg	0.017	0.009	0.005	0.004 U	0.005 U	0.005	0.013	0.008	0.007
COPPER	7440-50-8	mg/kg	0.395	0.744	0.189	0.212	0.508	0.151	0.386	0.201	0.221
IRON	7439-89-6	mg/kg	7.9	22.5	2.4	3.2	6	2.4	3.9	2.5	2.6
LEAD	7439-92-1	mg/kg	0.01	0.008	0.004 U	0.004 U	0.005 U	0.003 U	0.004 U	0.036	0.004 U
MAGNESIUM	7439-95-4	mg/kg	243	244	287	257	260	246	259	221	256
MANGANESE	7439-96-5	mg/kg	0.122	0.175	0.14	0.0977	0.142	0.303	0.224	1.8	0.127
MERCURY	7439-97-6	mg/kg	0.05	0.099	0.241	0.11	0.117	0.097	0.104	0.209	0.076
NICKEL	7440-02-0	mg/kg	0.05	0.05 U	0.15	0.04 U	0.05 U	0.53	0.11	0.06 U	0.04 U
SELENIUM	7782-49-2	mg/kg	0.19 U	0.43	0.36	0.27	0.49	0.28	0.6	0.32 U	0.2 U
SODIUM	7440-23-5	mg/kg	610	491	516	462	496	588	680	583	486
THALLIUM	7440-28-0	mg/kg	0.004 U	0.005 U	0.004 U	0.004 U	0.005 U	0.003 U	0.004 U	0.006 U	0.004 U
VANADIUM	7440-62-2	mg/kg	0.04 U	0.05 U	0.04 U	0.04 U	0.05 U	0.03 U	0.04 U	0.06 U	0.04 U
ZINC	7440-66-6	mg/kg	6.17	31.8	9.78	8.46	6.75	14.7	12.7	19.4	5.17
Pesticides	-										
1,2,3,4-TETRACHLOROBENZENE	634-66-2	ug/kg	0.142	0.0499 U	0.723	0.0496 U	0.0497 U	0.0492 U	0.0498 U	0.05 U	0.0502 U
1,2,4,5-TETRACHLOROBENZENE	95-94-3	ug/kg	3.64	2.41	4.41	1.91	0.0497 U	2.15	2.91	0.331	2.59
2,4'-DDD	53-19-0	ug/kg	0.07	4.18	0.461	0.096	0.0497 U	0.367	1.2	2.75	2.78
2,4'-DDE	3424-82-6	ug/kg	0.05 U	10.8	0.055	0.127	117	0.0492 U	1.07	0.05 U	6.6
2,4'-DDT	789-02-6	ug/kg	0.154	3.98	0.0494 U	0.493	0.0497 U	0.365	0.458	9.96	1.57
4,4'-DDD	72-54-8	ug/kg	1.08	6.23	0.291	1.88	51.6	0.406	1.27	25.1	4.57
4,4'-DDE	72-55-9	ug/kg	5.15	22.8	4.7	9.67	237	4.16	7.81	243	27.3
4,4'-DDT	50-29-3	ug/kg	0.072	0.091	0.104	0.152	5.51	0.212	0.481	7.06	2.05
ALDRIN	309-00-2	ug/kg	0.05 U	0.0499 U	0.113	0.115	0.067	0.0492 U	0.3	1.2	0.0502 U
ALPHA-BHC	319-84-6	ug/kg	0.051	0.0499 U	0.0494 U	0.0496 U	0.0497 U	0.0492 U	0.0498 U	0.2	0.0502 U
ALPHA-CHLORDANE	5103-71-9	ug/kg	2.84	12	0.796	0.205	53.7	0.53	1.01	29.4	10.1
BETA-BHC	319-85-7	ug/kg	0.496	0.06	0.611	0.44	2.74	0.266	0.722	0.798	0.089
CHLORPYRIFOS	2921-88-2	ug/kg	0.19	0.3	0.139	0.479	0.0497 U	0.345	0.501	1.4	0.072
CIS-NONACHLOR	5103-73-1	ug/kg	1.25	4.98	0.102	0.912	0.0497 U	0.572	1.01	22.2	3.78
DELTA-BHC	319-86-8	ug/kg	0.05 U	0.0499 U	0.405	0.24	0.089	0.215	0.085	0.05 U	0.069
DIELDRIN	60-57-1	ug/kg	0.00 0	4.69	0.345	0.589	37.8	0.465	1.01	15.6	4.04
ENDOSULFAN II	33213-65-9		0.058	0.0499 U	0.051	0.057	7.25	0.0492 U	0.068	17.6	0.0502 U
ENDOSOLFAN II ENDRIN	72-20-8	ug/kg	0.056 0.05 U	0.0499 0	0.031	0.057	22.4	0.0492 U	0.194	0.05 U	0.0302 0
GAMMA CHLORDANE	5566-34-7	ug/kg			0.125		0.0497 U	0.0492 0			
		ug/kg	1.74	5.97		0.1			0.205	8.76	5.72
GAMMA-BHC (LINDANE)	58-89-9	ug/kg	0.05 U	0.07	0.056	0.12	0.163	0.067	0.163	0.05 U	0.0502 U
HEPTACHLOR	76-44-8	ug/kg	0.092	0.0499 U	0.0494 U	0.0496 U	0.0497 U	0.0492 U	0.102	0.529	0.0502 U
HEPTACHLOR EPOXIDE	1024-57-3	ug/kg	0.725	1.58	0.213	0.592	6.9	0.369	0.679	4.53	2.13
HEXACHLOROBENZENE	118-74-1	ug/kg	0.05 U	0.651	0.0494 U	0.0496 U	3.5	0.0492 U	0.0498 U	1.85	0.471
MIREX	2385-85-5	ug/kg	0.05 U	0.0499 U	0.0494 U	0.064	0.371	0.0492 U	0.0498 U	0.785	0.106
OXYCHLORDANE	27304-13-8	ug/kg	0.657	1.74	0.45	0.796	0.118	0.899	0.454	9.85	1.85
PENTACHLOROANISOLE	1825-21-4	ug/kg	0.087	0.611	0.0494 U	0.0496 U	1.28	0.052	0.116	0.581	0.646
TOXAPHENE	8001-35-2	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	0.994 U	0.984 U	0.996 U	1 U	1 U
TRANS-NONACHLOR	39765-80-5	ug/kg	3.33	10.4	1.95	1.45	0.0497 U	1.37	1.47	62.6	11.6

		1					Upper Potomac	River			
			UPBB01	UPCA01	UPLB01	UPNS01	UPSB01	UPSF01	UPWP01	UPAE01	UPCC01
			Brown bullhead	Carp	Largemouth bass	N. snakehead	Striped bass	Sunfish	White perch	American eel	Channel catfish
CHEMICAL	CAS#	Units	9/24/2013	9/24/2013	9/24/2013	5/13/2013	5/9/2013	9/24/2013	5/9/2013	9/24/2013	9/24/2013
Semivolatile Organic Compounds	•						•				
2,3,5-TRIMETHYLNAPHTHALENE	2245-38-7	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	0.994 U	0.985 U	0.996 U	1 U	1.09
1-METHYLNAPHTHALENE	90-12-0	ug/kg	0.999 U	2.68 J+	0.988 U	0.992 U	2.25 J+	0.985 U	0.996 U	2.69 J+	3.14 J+
1-METHYLPHENANTHRENE	832-69-9	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	1.33 J+	0.985 U	0.996 U	1 U	1 U
2,6-DIMETHYLNAPHTHALENE	581-42-0	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	0.994 U	0.985 U	0.996 U	1 U	1.52
2-METHYLNAPHTHALENE	91-57-6	ug/kg	0.999 U	2.87 J+	0.988 U	0.992 U	3.78 J+	0.985 U	0.996 U	2.13 J+	3.27 J+
ACENAPHTHENE	83-32-9	ug/kg	1.48 J+	4.78	0.988 U	0.992 U	10.6	0.985 U	0.996 U	15.6	8.55
ACENAPHTHYLENE	208-96-8	ug/kg	0.999 U	1.42	0.988 U	0.992 U	5.07	0.985 U	0.996 U	2.15	2.36
ANTHRACENE	120-12-7	ug/kg	0.999 U	2.13 J+	0.988 U	0.992 U	8.44	0.985 U	0.996 U	1.75	3.68 J+
BENZO(A)ANTHRACENE	56-55-3	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	0.994 U	0.985 U	0.996 U	1 U	1 U
BENZO(A)PYRENE	50-32-8	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	0.994 U	0.985 U	0.996 U	1 U	1 U
BENZO(B)FLUORANTHENE	205-99-2	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	1.79 J+	0.985 U	0.996 U	1 U	1 U
BENZO(E)PYRENE	192-97-2	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	0.994 U	0.985 U	0.996 U	1 U	1 U
BENZO(G,H,I)PERYLENE	191-24-2	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	0.994 U	0.985 U	0.996 U	1 U	1 U
BENZO(K)FLUORANTHENE	207-08-9	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	0.994 U	0.985 U	0.996 U	1 U	1 U
BIPHENYL	92-52-4	ug/kg	1.73	0.998 U	0.988 U	0.992 U	0.994 U	0.985 U	0.996 U	1 U	1 U
C1-CHRYSENES	TTNUS145	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	0.994 U	0.985 U	0.996 U	1 U	1 U
C1-DIBENZOTHIOPHENES	TTNUS146	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	0.994 U	0.985 U	0.996 U	3.09	1.05
C1-FLUORANTHENES/PYRENES	TTNUS147	ug/kg	0.999 U	5.48	0.988 U	0.992 U	6.99	0.985 U	0.996 U	12.5	2.8
C1-FLUORENES	TTNUS148	ug/kg	1.47	2.22	1.21	0.992 U	2.66	1.27	1.11	3.07	2.75
C1-NAPHTHALENES	TTNUS149	ug/kg	1.62 J+	5.55 J+	1.34 J+	0.992 U	6.03 J+	1.13 J+	1.02 J+	4.82 J+	6.41 J+
C1-PHENANTHRENES/ANTHRACENES	TTNUS150	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	3.21	0.985 U	0.996 U	2.37	1.65
C2-CHRYSENES	TTNUS154	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	0.994 U	0.985 U	0.996 U	1 U	1 U
C2-DIBENZOTHIOPHENES	TTNUS155	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	0.994 U	0.985 U	0.996 U	5.11	1 U
C2-FLUORENES	TTNUS156	ug/kg	0.999 U	1.7	0.988 U	0.992 U	2.87	0.985 U	0.996 U	4.51	1.15
C2-NAPHTHALENES	TTNUS157	ug/kg	1.52	3.08	0.988 U	0.992 U	2.53	0.985 U	0.996 U	5.39	5.88
C2-PHENANTHRENES/ANTHRACENES	TTNUS158	ug/kg	0.999 U	1.54	0.988 U	0.992 U	3.59	0.985 U	0.996 U	3.03	1.06
C3-CHRYSENES	TTNUS159	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	0.994 U	0.985 U	0.996 U	1 U	1 U
C3-DIBENZOTHIOPHENES	TTNUS160	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	0.994 U	0.985 U	0.996 U	2.15	1 U
C3-FLUORENES	TTNUS161	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	2.28	0.985 U	0.996 U	3.77	1.06
C3-NAPHTHALENES	TTNUS162	ug/kg	2.51	2.81	0.988 U	0.992 U	1.91	0.985 U	0.996 U	6.09	4.9
C3-PHENANTHRENES/ANTHRACENES	TTNUS163	ug/kg	0.999 U	15.4	0.988 U	2.04	32	0.985 U	0.996 U	43.4	5.33
C4-CHRYSENES	TTNUS164	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	0.994 U	0.985 U	0.996 U	1 U	1 U
C4-NAPHTHALENES	TTNUS165	ug/kg	0.999 U	2.87	0.988 U	0.992 U	0.994 U	0.985 U	0.996 U	1 U	2.66
C4-PHENANTHRENES/ANTHRACENES	TTNUS166	ug/kg	0.999 U	1.12	0.988 U	0.992 U	3.23	0.985 U	0.996 U	4.43	1.51
CHRYSENE	218-01-9	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	0.994 U	0.985 U	0.996 U	1 U	1 U
DIBENZO(A,H)ANTHRACENE	53-70-3	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	0.994 U	0.985 U	0.996 U	1 U	1 U
DIBENZOTHIOPHENE	132-65-0	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	0.994 U	0.985 U	0.996 U	1 U	1.02 J+
FLUORANTHENE	206-44-0	ug/kg	2.42 J+	3.32 J+	0.988 U	0.992 U	1.38 J+	0.985 U	0.996 U	3.84 J+	3 J+
FLUORENE	86-73-7	ug/kg	0.999 U	2.93 J+	0.988 U	0.992 U	2.74 J+	0.985 U	0.996 U	1 U	2.88 J+
INDENO(1,2,3-CD)PYRENE	193-39-5	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	0.994 U	0.985 U	0.996 U	1 U	1 U
NAPHTHALENE	91-20-3	ug/kg	8.25 J+	4.09 J+	2.52 J+	2.48 J+	4.95 J+	3.52 J+	3.07 J+	4.26 J+	3.84 J+
PERYLENE	198-55-0	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	0.994 U	0.985 U	0.996 U	1 U	1 U
PHENANTHRENE	85-01-8	ug/kg	3.71 J+	4.68 J+	1.36 J+	0.992 U	4.43 J+	1.11 J+	0.996 U	2.99 J+	5.68 J+
PYRENE	129-00-0	ug/kg	1.08 J+	1.58 J+	0.988 U	0.992 U	0.994 U	0.985 U	0.996 U	1.55 J+	1 U

							Upper Potomac	River			
			UPBB01	UPCA01	UPLB01	UPNS01	UPSB01	UPSF01	UPWP01	UPAE01	UPCC01
CHEMICAL	CAS#	Units	Brown bullhead 9/24/2013	Carp 9/24/2013	Largemouth bass 9/24/2013	N. snakehead 5/13/2013	Striped bass 5/9/2013	Sunfish 9/24/2013	White perch 5/9/2013	American eel 9/24/2013	Channel catfish 9/24/2013
Polybrominated Diphenyl Ethers	CAS#	Ullits	3/24/2013	3/24/2013	3/24/2013	3/13/2013	3/3/2013	3/24/2013	3/3/2013	3/24/2013	3/24/2013
PBDE-1	7025-06-1	ug/kg	0.125 U	0.125 U	0.124 U	0.124 U	0.124 U	0.123 U	0.124 U	0.125 U	0.125 U
PBDE-2	6876-00-2	ug/kg	0.125 U	0.125 U	0.124 U	0.124 U	0.124 U	0.123 U	0.124 U	0.125 U	0.125 U
PBDE-3	101-55-3		0.125 U	0.125 U	0.124 U	0.124 U	0.124 U	0.123 U	0.124 U	0.125 U	0.125 U
PBDE-3 PBDE-7	171977-44-9	ug/kg	0.125 U	0.125 U	0.124 U 0.124 U	0.124 U	0.124 U 0.124 U	0.123 U 0.123 U	0.124 U 0.124 U	0.125 U	0.125 U
PBDE-7 PBDE-8/11	TTPBDE8.11	ug/kg	0.125 U	0.125 0	0.124 U 0.124 U	0.124 U	0.124 U 0.124 U	0.123 U 0.123 U	0.124 U 0.124 U	0.125 U	0.125 U
		ug/kg		0.64 0.125 U	0.124 U 0.124 U						
PBDE-10 PBDE-12	51930-04-2 189084-59-1	ug/kg	0.125 U 0.125 U	0.125 U 0.125 U	0.124 U 0.124 U	0.124 U 0.124 U	0.124 U 0.124 U	0.123 U 0.123 U	0.124 U 0.124 U	0.125 U	0.125 U 0.125 U
		ug/kg								0.125 U	
PBDE-13	83694-71-7	ug/kg	0.125 U	0.125 U	0.124 U	0.124 U	0.124 U	0.123 U	0.124 U	0.125 U	0.125 U
PBDE-15	2050-47-7	ug/kg	0.125 U	0.5	0.124 U	0.124 U	0.124 U	0.123 U	0.124 U	0.125 U	0.125 U
PBDE-17	147217-75-2	ug/kg	0.125 U	0.21	0.124 U	0.124 U	1.47	0.123 U	0.124 U	0.125 U	0.125 U
PBDE-25	147217-77-4	ug/kg	0.125 U	0.125 U	0.124 U	0.124 U	0.26	0.123 U	0.124 U	0.125 U	0.18
PBDE-28	41318-75-6	ug/kg	0.14	1.65	0.124 U	0.124 U	2.01	0.123 U	0.124 U	0.39	0.18
PBDE-30	155999-95-4	ug/kg	0.125 U	0.125 U	0.124 U	0.124 U	0.124 U	0.123 U	0.124 U	0.125 U	0.125 U
PBDE-32	189084-60-4	ug/kg	0.125 U	0.125 U	0.124 U	0.124 U	0.124 U	0.123 U	0.124 U	0.125 U	0.125 U
PBDE-33	147217-78-5	ug/kg	0.125 U	0.5	0.124 U	0.124 U	3.13	0.123 U	0.124 U	4.48	0.47
PBDE-35	147217-80-9	ug/kg	0.125 U	0.125 U	0.124 U	0.124 U	0.124 U	0.123 U	0.124 U	0.125 U	0.125 U
PBDE-37	147217-81-0	ug/kg	0.125 U	0.125 U	0.124 U	0.124 U	0.124 U	0.123 U	0.124 U	0.125 U	0.125 U
PBDE-47	5436-43-1	ug/kg	0.62	16.8	1.42	0.86	54.2	1.19	0.75	43.4	7.08
PBDE-49	243982-82-3	ug/kg	0.125 U	1.5	0.18	0.124 U	7.01	0.19	0.16	3.1	0.23
PBDE-66	189084-61-5	ug/kg	0.125 U	0.125 U	0.124 U	0.124 U	0.124 U	0.123 U	0.124 U	0.3	0.19
PBDE-71	189084-62-6	ug/kg	0.125 U	0.125 U	0.124 U	0.124 U	0.124 U	0.123 U	0.124 U	0.125 U	0.125 U
PBDE-75	189084-63-7	ug/kg	0.125 U	0.21	0.124 U	0.124 U	0.124 U	0.123 U	0.124 U	0.125 U	0.125 U
PBDE-77	93703-48-1	ug/kg	0.125 U	0.125 U	0.124 U	0.124 U	0.124 U	0.123 U	0.124 U	0.125 U	0.125 U
PBDE-85	182346-21-0	ug/kg	0.187 U	0.187 U	0.185 U	0.186 U	0.186 U	0.185 U	0.187 U	0.25	0.188 U
PBDE-99	60348-60-9	ug/kg	0.63	0.25	0.33	0.186 U	0.35	0.48	0.187 U	0.81	4.29
PBDE-100	189084-64-8	ug/kg	0.29	3.18	0.42	0.23	7.06	0.35	0.19	19.4	2.39
PBDE-116	189084-65-9	ug/kg	0.187 U	0.187 U	0.185 U	0.186 U	0.186 U	0.185 U	0.187 U	0.188 U	0.188 U
PBDE-118	446254-80-4	ug/kg	0.187 U	0.187 U	0.185 U	0.186 U	0.186 U	0.185 U	0.187 U	0.188 U	0.188 U
PBDE-119	189084-66-0	ug/kg	0.187 U	0.187 U	0.185 U	0.186 U	0.186 U	0.185 U	0.187 U	0.188 U	0.188 U
PBDE-126	366791-32-4	ug/kg	0.187 U	0.187 U	0.185 U	0.186 U	0.186 U	0.185 U	0.187 U	0.188 U	0.188 U
PBDE-138	182677-30-1	ug/kg	0.25 U	0.25 U	0.247 U	0.248 U	0.249 U	0.246 U	0.249 U	0.25 U	0.45
PBDE-153	68631-49-2	ug/kg	0.25 U	0.25 U	0.247 U	0.248 U	0.29	0.246 U	0.249 U	0.63	0.47
PBDE-154	207122-15-4	ug/kg	0.25 U	0.79	0.247 U	0.248 U	1.27	0.246 U	0.249 U	1.49	0.39
PBDE-155	35854-94-5	ug/kg	0.25 U	0.79	0.247 U	0.248 U	0.63	0.246 U	0.249 U	0.75	0.251 U
PBDE-166	189084-58-0	ug/kg	0.25 U	0.5 U	0.247 U	0.248 U	0.249 U	0.246 U	0.249 U	0.75 0.25 U	0.251 U
PBDE-166 PBDE-181	189084-58-0	ug/kg ug/kg	0.25 U 0.312 U	0.25 U	0.247 U 0.309 U	0.248 U	0.249 U 0.311 U	0.246 U 0.308 U	0.249 U 0.311 U	0.25 U 0.312 U	0.251 U
PBDE-183	207122-16-5		0.312 U	0.312 U	0.309 U	0.31 U	0.311 U	0.308 U	0.311 U	0.312 U	0.313 U
PBDE-183 PBDE-190	189084-68-2	ug/kg	0.312 U 0.312 U	0.312 U 0.312 U	0.309 U	0.31 U 0.31 U	0.311 U 0.311 U	0.308 U 0.308 U	0.311 U 0.311 U	0.312 U 0.312 U	0.313 U 0.313 U
PBDE-190 PBDE-209		ug/kg									
Total PBDEs	1163-19-5 TotalPBDE	ug/kg	20 U	20 U 27	19.8 U	19.8 U	19.9 U 78	19.7 U 2	19.9 U	20 U 75	20.1 U
PCB Aroclors	TOTALPBUE	ug/kg		21	2	1	18	2	1	/5	16
AROCLOR-1242	53469-21-9	ug/kg	0.999 U	0.998 U	0.988 U	0.992 U	0.994 U	0.984 U	0.996 U	1 U	1 U
AROCLOR-1242 AROCLOR-1248	12672-29-6	ug/kg ug/kg	14.5	105	9.49	14.1	251	12.1	19.3	121	30
AROCLOR-1248 AROCLOR-1254	11097-69-1	ug/kg ug/kg	0.999 U	52.5	9.49	7.06	503	4.05	0.996 U	485	60.1
AROCLOR-1254 AROCLOR-1260	11097-69-1	ug/kg ug/kg	16.9	368	9.49	40.3	855	28.3	48.2	909	141
AROCLOR-1260 AROCLOR-1268	111096-82-5	ug/kg ug/kg	0.999 U	0.998 U	24.7 0.988 U	0.992 U	0.994 U	28.3 0.984 U	0.996 U	909 1 U	141 1 U
TOTAL AROCLORS	TotalAroclor	ug/kg	0.999 0	526	0.988 U	0.992 U 61	0.994 U 1609	0.984 U 44	0.996 0	1515	231

Chemical Case Units 924/2013 924/2013 934/2								Upper Potomac	River			
Chess C				UPBB01	UPCA01	UPLB01	UPNS01	UPSB01	UPSF01	UPWP01	UPAE01	UPCC01
Chess C				Brown bullhead			N. snakehead			White perch	American eel	Channel catfish
1959 1959	CHEMICAL	CAS#	Units		•	•						
PREPAIR TI_POSCOME wing 0.257 0.259 0.16 0.946 0.1595 0.213 0.117 0.242 0.027	PCB Congeners											
CSS-85	PCB-1		ug/kg	0.195	0.00998 U							
CRE-15	PCB-7/9	TT_PCBC042	ug/kg	0.257	0.259	0.16	0.546	0.155	0.213	0.117	0.242	0.017
PCE-1952 TI_PCECOTI glipq 0.153	PCB-8/5	TT_PCBC045	ug/kg	0.132	0.777	0.122	0.262	0.224	0.023	0.08	0.288	0.184
PCR-1817	PCB-15	2050-68-2	ug/kg	0.229	0.154	0.586	0.319	4.31	0.455	0.404	0.098	0.155
CRE-22971	PCB-16/32	TT_PCBC014	ug/kg	0.103	0.8	0.183	0.476	0.267	0.242	0.348	0.09	0.16
CE2-427	PCB-18/17	TT_PCBC019	ug/kg	0.352	1.23	0.057	0.143	0.698	0.158	0.212	0.105	0.397
CED-2477 TT_PEGGES shape 0.071 0.303 0.153 0.153 0.151 0.071 0.149 0.01 U 0.045	PCB-22/51	TT_PCBC025	ug/kg	0.123	0.00998 U	0.025	0.036	0.306	0.052	0.115	0.01 U	0.268
CROS-26	PCB-24/27	TT_PCBC026		0.071	0.303	0.153	0.139	0.151	0.071	0.149	0.01 U	0.143
CRE-96	PCB-25	55712-37-3		1.22	1.34	0.165	0.021	0.00994 U	0.137	0.00996 U	8.95	3.41
CG-26	PCB-26			0.143	0.238	0.629	0.423	0.00994 U	0.248	0.723	1.01	1.01
CRE-20	PCB-28	TT PCBC028		0.231	4.69	0.576	0.513	1.35	0.286	1.59	3.72	1.47
CR-30	PCB-29	TT PCBC029		0.00999 U	0.027	0.281	0.014	0.338	0.034	0.089	0.038	0.262
CRES-317 1866-02-3 wg/hg 0.094 0.0098 U 0.027 0.00982 U 6.29 0.00984 U 0.26 0.01 U 0.027 CRES-329 3344-48-1 wg/hg 0.074 0.105 0.091 0.00982 U 0.288 0.231 0.00980 U 0.01 U 0.23 CRES-404 TT_PCECCCCS wg/hg 0.068 0.0098 U 0.055 0.271 37.5 0.248 0.128 0.11 U 0.00 CRES-4164 TT_PCECCCCS wg/hg 0.068 0.00988 U 0.055 0.271 37.5 0.248 0.128 0.11 U 0.00 CRES-4164 TT_PCECCCCS wg/hg 0.088 0.00988 U 0.055 0.271 37.5 0.248 0.128 0.10 U 0.01 CRES-4278937 TT_PCECCCCS wg/hg 0.084 0.00988 U 0.053 0.14 0.00984 U 0.139 0.106 0.01 U 0.01 CRES-4278937 TT_PCECCCCS wg/hg 0.355 4.1 0.274 0.581 5.77 0.146 0.097 3.24 2.01 CRES-44 TT_PCECCCCS wg/hg 0.355 4.1 0.274 0.581 5.77 0.146 0.097 3.24 2.01 CRES-4778 TT_PCECCCCS wg/hg 0.17 0.097 0.025 0.11 0.197 0.153 0.36 2.06 0.055 CRES-4778 TT_PCECCCCS wg/hg 0.17 0.097 0.265 0.34 0.664 0.223 0.101 0.488 0.037 CRES-48 7082-47-9 wg/hg 0.422 1.13 0.456 1.45 0.00994 U 1.15 0.605 3.49 9.26 CRES-48 TT_PCECCCCS wg/hg 0.522 2.077 0.056 0.402 1.145 0.00994 U 0.637 1.85 3.15 2.98 CRES-3 3669-80-3 wg/hg 0.502 8.97 0.955 1.18 0.00994 U 0.637 1.85 3.15 2.98 CRES-3 TT_PCECCCCS wg/hg 0.00996 U 0.00986 U 0.0098 U 0.00996 U	PCB-30											
CRES-33/20	PCB-31											
CRE-39	PCB-33/20											
CRE-40	PCB-39	38444-88-1		0.074	0.105	0.091	0.00992 U	0.238	0.231	0.00996 U	0.01 U	0.203
PCB-41P64	PCB-40			0.096	0.00998 U	0.055	0.271	37.5	0.248	0.128	0.01 U	0.08
TPCB-0334 Up/kg	PCB-41/64											0.01 U
CRB-44	PCB-42/59/37	TT PCBC034		0.084	0.00998 U	0.053	0.14	0.00994 U	0.285	0.223	2.62	0.192
CRB-46	PCB-44	TT PCBC035		0.365	4.1	0.274	0.561	5.77	0.146	0.997	3.24	2.01
CB-8-6	PCB-45			0.207		0.035	0.11	0.197	0.153	0.36	2.06	0.053
CB-4775	PCB-46											
PCB-48 70362-47-9 9/kg	PCB-47/75											0.01 U
PCB-49	PCB-48					0.402	1.45	0.00994 U		0.605	34.9	9.26
CCB-52 35693-99-3 Ug/kg 0.502 8.97 0.955 1.18 0.00994 U 0.969 1.26 1.47 2.83												
PCB-53				0.502			1.18	0.00994 U				
Page Page	PCB-53			0.22	0.277		0.132	0.00994 U	0.046	0.237		0.078
CCB-80156 TT_PCBC040 Ug/Ng 0.17 0.00098 U 0.089 0.249 0.00994 U 0.113 0.127 3.97 1.3	PCB-63			0.00999 U	0.00998 U	0.401		0.00994 U	0.00984 U	0.17		0.01 U
1.67 1.67	PCB-60/56	TT PCBC040		0.17	0.00998 U	0.089	0.249	0.00994 U	0.113	0.127	3.97	1.3
PCB-67 73575-53-8 ug/kg	PCB-66	32598-10-0		1.24	2.78	0.032	0.282	25.9	0.203	2.55	1.3	1.67
PCB-69 TT_PCBC041 ug/kg	PCB-67	73575-53-8		0.123	0.00998 U	0.186	0.284	0.00994 U	0.219	0.216	0.01 U	2.29
PCB-70	PCB-69											
PCB-72	PCB-70			0.076	0.00998 U							0.01 U
PCB-74/61 TT_PCBC044 ug/kg 0.114 0.0098 U 0.039 0.286 0.00994 U 0.098 0.239 8.27 0.01 PCB-77 32598-13-3 ug/kg 0.00999 U 0.00998 U 0.00988 U 0.00992 U 1.05 0.00984 U 0.00996 U 0.01 U 0.01 PCB-81 70362-50-4 ug/kg 0.00999 U 0.00998 U 0.00988 U 0.00992 U 1.05 0.0094 U 0.00984 U 0.00996 U 0.01 U 0.01 PCB-82 52663-62-4 ug/kg 0.137 1.33 0.077 0.089 0.00994 U 0.00994 U 0.0029 0.357 2.74 0.646 PCB-83 TT_PCBC046 ug/kg 0.041 0.327 0.05 0.071 0.00994 U 0.017 0.177 0.01 U 0.152 PCB-84 52663-60-2 ug/kg 1.76 6.22 0.737 2.26 0.00994 U 0.017 0.177 0.01 U 0.152 PCB-85 TT_PCBC047 ug/kg 0.047 0.0098 U 0.059 0.086 0.00994 U 0.035 0.13 0.01 U 0.01 PCB-87/115 TT_PCBC048 ug/kg 0.563 5.78 0.541 0.399 0.00994 U 0.035 0.13 0.01 U 0.01 PCB-87/115 TT_PCBC049 ug/kg 0.066 0.00998 U 0.279 0.00992 U 0.00994 U 0.034 0.922 4.43 2.08 PCB-92 52663-61-3 ug/kg 0.066 0.00998 U 0.279 0.00992 U 0.00994 U 0.046 0.198 12.2 0.01 PCB-97 TT_PCBC050 ug/kg 0.00999 U 11.7 0.648 0.33 0.00994 U 0.046 0.198 12.2 0.01 PCB-99 TT_PCBC051 ug/kg 0.0888 10.7 1.57 2.46 99.4 1.37 2.98 41.9 5.83 PCB-101/90 TT_PCBC051 ug/kg 0.888 10.7 1.57 2.46 99.4 1.37 2.98 41.9 5.83 PCB-101/90 TT_PCBC051 ug/kg 0.0875 31.3 2.03 0.934 153 2.07 2.78 42.5 8.86 PCB-107 70424-68-9 ug/kg 0.00999 U 0.00998 U 0.112 0.628 0.00994 U 0.235 0.892 0.01 U 0.01 PCB-110 TT_PCBC050 ug/kg 0.00999 U 0.00998 U 0.012 0.0098 U 0.235 0.892 0.01 U 0.01 PCB-1116 3158-0.0-6 ug/kg 0.00999 U 0.00998 U 0.0098 U 0.00994 U 0.0094 U 0.035 0.892 0.01 U 0.01 PCB-1116 3158-0.0-6 ug/kg 0.00999 U 0.00998 U 0.00998 U 0.00999 U 0.00994 U 0.00994 U 0.035 0.0999 U 0.00996 U 0.009996 U 0.00996 U 0.009996 U 0.009996 U 0.00996 U 0.00996 U 0.009												
PCB-77	PCB-74/61											0.01 U
PCB-81 70362-50-4 ug/kg 0.00999 U 0.00998 U 0.00998 U 0.00998 U 0.00999 U 0.00994 U 0.00994 U 0.0098 U 0.00996 U 0.01 U 0.01 PCB-82 52663-62-4 ug/kg 0.137 1.33 0.077 0.089 0.00994 U 0.029 0.357 2.74 0.646 0.683 TT_PCBC046 ug/kg 0.041 0.327 0.05 0.071 0.00994 U 0.017 0.177 0.177 0.01 U 0.152 PCB-84 52663-60-2 ug/kg 1.76 6.22 0.737 2.26 0.0094 U 1.34 1.15 29 2.5 PCB-85 TT_PCBC047 ug/kg 0.047 0.00998 U 0.059 0.086 0.00994 U 0.035 0.13 0.01 U 0.01 PCB-87/115 TT_PCBC048 ug/kg 0.563 5.78 0.541 0.399 0.00994 U 0.334 0.922 4.43 2.08 PCB-92 52663-61-3 ug/kg 0.066 0.00998 U 0.279 0.00992 U 0.00994 U 0.034 0.922 4.43 2.08 PCB-95/80 TT_PCBC049 ug/kg 0.0099 U 11.7 0.648 0.38 0.00994 U 0.00994 U 0.046 0.198 12.2 0.01 PCB-95/80 TT_PCBC050 ug/kg 0.00999 U 11.7 0.648 0.38 0.00994 U 0.00994 U 0.00996 U 0.00996 U 0.00996 U 0.00996 U 0.00998 U 0.00994 U 0.00998 U 0.00996 U 0.00996 U 0.00998 U 0.00996 U 0.00998 U 0.00998 U 0.00999 U 0.00998 U 0.00999 U	PCB-77	32598-13-3		0.00999 U	0.00998 U	0.00988 U	0.00992 U	1.05	0.00984 U	0.00996 U	0.01 U	0.01 U
CCB-82 S2663-62-4 Ug/kg 0.137 1.33 0.077 0.089 0.00994 U 0.029 0.357 2.74 0.646 CCB-83 TT_PCBC046 Ug/kg 0.041 0.327 0.05 0.071 0.00994 U 0.017 0.177 0.01 U 0.152 CCB-84 S2663-60-2 Ug/kg 1.76 6.22 0.737 2.26 0.00994 U 1.34 1.15 29 2.5 CCB-85 TT_PCBC047 Ug/kg 0.047 0.00988 U 0.059 0.086 0.00994 U 0.035 0.13 0.01 U 0.01 CCB-87/115 TT_PCBC048 Ug/kg 0.563 5.78 0.541 0.399 0.00994 U 0.035 0.13 0.01 U 0.01 CCB-92 S2663-61-3 Ug/kg 0.066 0.00998 U 0.279 0.00992 U 0.00994 U 0.046 0.198 12.2 0.01 CCB-95/80 TT_PCBC049 Ug/kg 0.00999 U 11.7 0.648 0.38 0.00994 U 0.601 0.00996 U 7.72 2.32 CCB-97 TT_PCBC051 Ug/kg 0.00999 U 0.00998 U 0.012 0.073 0.00994 U 0.00984 U 0.048 0.01 U 0.01 CCB-99 TT_PCBC051 Ug/kg 0.888 10.7 1.57 2.46 99.4 1.37 2.98 41.9 5.83 CCB-101/90 TT_PCBC001 Ug/kg 0.0897 3.9 0.067 0.00992 U 30.8 0.00984 U 0.102 18.6 3.1 CCB-107 70424-68-9 Ug/kg 0.00999 U 0.00998 U 0.012 0.628 0.00994 U 0.235 0.892 0.01 U 0.01 CCB-110 TT_PCBC002 Ug/kg 0.00999 U 0.00998 U 0.012 0.628 0.00994 U 0.235 0.892 0.01 U 0.01 CCB-114 74472-37-0 Ug/kg 0.00999 U 0.00998 U 0.00988 U 0.00999 U 0.00998 U 0.009998 U 0.00998 U 0.00998 U 0.00998 U 0.00998 U 0.00998 U 0.009	PCB-81	70362-50-4		0.00999 U	0.00998 U	0.00988 U	0.00992 U	0.00994 U	0.00984 U	0.00996 U	0.01 U	0.01 U
PCB-83 TT_PCBC046	PCB-82						0.089	0.00994 U	0.029		2.74	0.646
CCB-84	PCB-83			0.041				0.00994 U			0.01 U	0.152
PCB-85 TT_PCBC047 ug/kg	PCB-84			1.76	6.22	0.737		0.00994 U	1.34	1.15	29	2.5
PCB-87/115 TT_PCBC048 ug/kg 0.563 5.78 0.541 0.399 0.00994 U 0.334 0.922 4.43 2.08 PCB-92 5263-61-3 ug/kg 0.066 0.00998 U 0.279 0.00992 U 0.00994 U 0.046 0.198 12.2 0.01 PCB-95/80 TT_PCBC049 ug/kg 0.00999 U 11.7 0.648 0.38 0.00994 U 0.601 0.00996 U 7.72 2.32 PCB-97 TT_PCBC050 ug/kg 0.00999 U 0.00998 U 0.012 0.073 0.00994 U 0.00984 U 0.048 0.01 U 0.046 PCB-99 TT_PCBC051 ug/kg 0.888 10.7 1.57 2.46 99.4 1.37 2.98 41.9 5.83 PCB-101/90 TT_PCBC001 ug/kg 0.875 31.3 2.03 0.934 153 2.07 2.78 42.5 8.86 PCB-105 32598-14-4 ug/kg 0.027 3.9 0.067 0.00992 U 30.8 0.00984 U 0.102 18.6 3.1 PCB-107 70424-68-9 ug/kg 0.00999 U 0.00998 U 0.112 0.628 0.00994 U 0.235 0.892 0.01 U 0.01 PCB-110 TT_PCBC002 ug/kg 1.41 18 1.22 1.88 16.4 0.857 2.32 36.5 5.37 PCB-114 74472-37-0 ug/kg 0.00999 U 0.00998 U 0.00998 U 0.00992 U 0.00994 U 0.00984 U 0.00996 U 0.01 U 0.01 PCB-118 31508-00-6 ug/kg 1.61 16.9 1.58 2.18 113 1.47 2.57 73.4 12.1	PCB-85	TT PCBC047		0.047	0.00998 U	0.059	0.086	0.00994 U	0.035	0.13	0.01 U	0.01 U
PCB-92	PCB-87/115											2.08
PCB-95/80 TT_PCBC049	PCB-92	52663-61-3				0.279	0.00992 U	0.00994 U		0.198	12.2	0.01 U
PCB-97 TT_PCBC050 ug/kg 0.00999 U 0.00998 U 0.012 0.073 0.00994 U 0.00984 U 0.048 0.01 U 0.01 0.01 0.01 0.01 0.01 0.01 0.	PCB-95/80			0.00999 U		0.648	0.38	0.00994 U	0.601	0.00996 U	7.72	2.32
PCB-99 TT_PCBC051 ug/kg	PCB-97	TT PCBC050		0.00999 U	0.00998 U	0.012	0.073	0.00994 U	0.00984 U	0.048	0.01 U	0.01 U
PCB-101/90 TT_PCBC001 ug/kg 0.875 31.3 2.03 0.934 153 2.07 2.78 42.5 8.86 PCB-105 32598-14-4 ug/kg 0.027 3.9 0.067 0.00992 U 30.8 0.00984 U 0.102 18.6 3.1 PCB-107 70424-68-9 ug/kg 0.00999 U 0.00998 U 0.112 0.628 0.00994 U 0.235 0.892 0.01 U 0.01 0.01 0.01 0.01 0.01 0.01 0.	PCB-99											5.83
PCB-105 32598-14-4 ug/kg 0.027 3.9 0.067 0.00992 U 30.8 0.00984 U 0.102 18.6 3.1 PCB-107 70424-68-9 ug/kg 0.00999 U 0.00998 U 0.112 0.628 0.00994 U 0.235 0.892 0.01 U 0.01	PCB-101/90											8.86
PCB-107 70424-68-9 ug/kg 0.00999 U 0.00998 U 0.112 0.628 0.00994 U 0.235 0.892 0.01 U 0.01 PCB-110 TT_PCBC002 ug/kg 1.41 18 1.22 1.88 16.4 0.857 2.32 36.5 5.37 PCB-114 74472-37-0 ug/kg 0.00999 U 0.00998 U 0.00988 U 0.00992 U 0.00994 U 0.00984 U 0.00984 U 0.0096 U 0.01 U 0.01 PCB-118 31508-00-6 ug/kg 1.61 16.9 1.58 2.18 113 1.47 2.57 73.4 12.1	PCB-105											
PCB-110 TT_PCBC002 \(\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \cdot \begin{array}{c} \begin{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c	PCB-107											0.01 U
PCB-114 74472-37-0 ug/kg 0.00999 U 0.00998 U 0.00988 U 0.00992 U 0.00994 U 0.00984 U 0.00984 U 0.00996 U 0.01 U 0.01 CPCB-118 31508-00-6 ug/kg 1.61 16.9 1.58 2.18 113 1.47 2.57 73.4 12.1	PCB-110											
PCB-118 31508-00-6 ug/kg 1.61 16.9 1.58 2.18 113 1.47 2.57 73.4 12.1												0.01 U
	PCB-118											
	PCB-119	TT_PCBC003	ug/kg	0.07	0.00998 U	0.089	0.1	11.6	0.036	0.195	0.01 U	0.01 U

							Upper Potomac	River			
			UPBB01	UPCA01	UPLB01	UPNS01	UPSB01	UPSF01	UPWP01	UPAE01	UPCC01
CHEMICAL	CAS#	Units	Brown bullhead 9/24/2013	Carp 9/24/2013	Largemouth bass 9/24/2013	N. snakehead 5/13/2013	Striped bass 5/9/2013	Sunfish 9/24/2013	White perch 5/9/2013	American eel 9/24/2013	Channel catfish 9/24/2013
PCB-126	57465-28-8	ua/ka	0.04	0.00998 U	0.03	0.08	0.5	0.03	0.02	0.34	0.14
PCB-128	TT PCBC004	ug/kg	0.356	4.66	0.604	0.771	31.6	0.651	0.843	23.5	2.45
PCB-129	TT PCBC005	ug/kg	0.035	0.055	0.063	0.04	0.544	0.00984 U	0.052	0.01 U	0.041
PCB-130	52663-66-8	ug/kg	0.013	0.00998 U	0.045	0.046	7.57	0.143	0.037	3.78	0.01 U
PCB-135	TT PCBC006	ug/kg	0.107	0.00998 U	0.046	0.00992 U	0.00994 U	0.00984 U	0.00996 U	0.01 U	0.01 U
PCB-136	38411-22-2	ug/kg	0.00999 U	2.26	0.032	0.00992 U	0.00994 U	0.00984 U	0.00996 U	0.01 U	0.88
PCB-138/160	TT PCBC007	ug/kg	2.49	47.6	4.49	6.19	215	3.98	6.01	217	23.7
PCB-141/179	TT PCBC008	ug/kg	0.915	16.5	0.829	0.528	25.7	0.839	1.54	25.6	3.22
PCB-146	51908-16-8	ug/kg	0.085	0.00998 U	1.32	0.00992 U	0.00994 U	1.15	2.45	55.3	0.01 U
PCB-149/123	TT PCBC009	ug/kg	0.804	29.9	1.51	2.15	0.00994 U	1.14	3	38.4	3.88
PCB-151	TT PCBC010	ug/kg	0.675	14.5	0.059	1.68	0.00994 U	0.807	1.48	11.5	4.24
PCB-153/132	TT PCBC011	ug/kg	1.29	67.2	5.86	8.96	286	4.5	10	340	50.9
PCB-156	TT PCBC012	ug/kg	0.048	3.05	0.324	0.00992 U	19.9	0.00984 U	0.00996 U	9.79	1.41
PCB-157/173/201	TT PCBC013	ug/kg	0.037	1.83	0.166	0.24	6.55	0.186	0.266	5.88	1.01
PCB-158	74472-42-7	ug/kg	0.402	0.00998 U	0.554	0.00992 U	21.8	0.391	0.058	23.7	0.01 U
PCB-166	TT PCBC015	ug/kg	0.126	0.00998 U	0.083	0.00992 U	3.63	0.053	0.148	2.38	0.233
PCB-167	52663-72-6	ug/kg	0.027	0.00998 U	0.00988 U	0.00992 U	0.00994 U	0.00984 U	0.058	0.01 U	0.01 U
PCB-169	32774-16-6	ug/kg	0.02	0.01	0.01	0.00992 U	0.04	0.00984 U	0.00996 U	0.01 U	0.01 U
PCB-170/190	TT PCBC016	ug/kg	0.74	17.9	1.37	1.4	40.2	1.24	1.36	48.4	5.19
PCB-171/202	TT PCBC017	ug/kg	0.074	6.61	0.456	0.867	16.8	0.674	0.864	30.6	2.92
PCB-172	52663-74-8	ug/kg	0.105	2.86	0.00988 U	0.334	0.00994 U	0.241	0.369	0.01 U	0.754
PCB-174	38411-25-5	ug/kg	0.502	9.83	0.00988 U	0.684	16.4	0.492	0.686	0.01 U	1.7
PCB-175	40186-70-7	ug/kg	0.29	1	0.276	0.474	1.99	0.315	0.406	2.5	0.618
PCB-176/137	TT PCBC018	ug/kg	0.077	1.89	0.122	0.00992 U	13.5	0.173	0.066	8.24	0.033
PCB-177	52663-70-4	ug/kg	0.411	9.64	0.335	0.818	15.6	0.545	0.431	19.7	1.01
PCB-178	52663-67-9	ug/kg	0.135	4.76	0.107	0.728	10.2	0.376	0.813	17.2	2.08
PCB-180	TT PCBC020	ug/kg	1.9	38.7	0.00988 U	3.78	118	3.12	0.06	0.01 U	21.1
PCB-183	TT PCBC021	ug/kg	0.46	11.3	0.88	1.16	29.3	0.857	1.16	37.7	4.66
PCB-185	TT PCBC022	ug/kg	0.102	2.41	0.00988 U	0.216	0.00994 U	0.287	0.00996 U	0.01 U	0.731
PCB-187	52663-68-0	ug/kg	1.3	28	2.47	3.8	84	2.29	4.02	118	11.7
PCB-189	39635-31-9	ug/kg	0.00999 U	0.00998 U	0.033	0.01	1.89	0.047	0.014	1.16	0.01 U
PCB-191	74472-50-7	ug/kg	0.011	0.816	0.015	0.00992 U	0.00994 U	0.083	0.013	0.01 U	0.01 U
PCB-193	TT PCBC023	ug/kg	0.129	2.82	0.019	0.364	0.00994 U	0.274	0.148	0.01 U	1.16
PCB-194	35694-08-7	ug/kg	0.279	7.42	0.489	0.568	13.2	0.48	0.61	16	1.54
PCB-195/208	TT PCBC024	ug/kg	0.198	3.79	0.337	0.434	7.74	0.3	0.116	10.9	1.52
PCB-196	42740-50-1	ug/kg	0.499	10	0.977	0.981	22.6	0.739	0.293	30.1	3.87
PCB-197	TTNUS861	ug/kg	0.019	0.517	0.00988 U	0.105	0.00994 U	0.026	0.062	0.01 U	0.233
PCB-199	52663-75-9	ug/kg	0.515	8.2	0.785	0.926	16.4	0.68	0.034	26.5	2.3
PCB-200	52663-73-7	ug/kg	0.063	0.981	0.00988 U	0.00992 U	0.00994 U	0.068	0.00996 U	0.013	0.01 U
PCB-205	74472-53-0	ug/kg	0.025	0.69	0.00988 U	0.04	1.16	0.084	0.029	1.26	0.248
PCB-206	40186-72-9	ug/kg	0.177	1.94	0.018	0.428	5.91	0.236	0.534	6.96	0.869
PCB-207	52663-79-3	ug/kg	0.028	0.445	0.02	0.094	1.06	0.058	0.067	1.13	0.19
PCB-209	2051-24-3	ug/kg	0.23	1.04	0.51	0.559	4.74	0.266	0.17	3.52	1.12
Total PCBs	1336-36-3	ug/kg	31	525	44	61	1608	44	67	1515	232
PCB-TEQ	PCB-TEQ	ug/kg	4.68E-03	1.97E-03	3.41E-03	8.14E-03	5.65E-02	3.09E-03	2.18E-03	3.84E-02	1.46E-02

Source: Pinkney, A.E. 2017. Analysis of contaminant concentrations in fish tissue collected from the waters of the District of Columbia. Final Report. CBFO-C14-03. U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, MD. 9/2014. Revised 11/2017.

				3400 B	enning Rd, N.E., Wa		,	
						Creek		
			P2-IC-008-GTA	P2-IC-009-GT1A	P2-IC-009-GT2A	P2-IC-010-GT1A	P2-IC-010-GT2A	P2-IC-010-GT3A
			Largemouth bass	Largemouth bass	Largemouth bass	Striped bass	Striped bass	Striped bass
CHEMICAL	CAS#	Units	8/3/2016	8/3/2016	8/3/2016	8/12/2016	8/12/2016	8/12/2016
Dioxins and Furans								
1,2,3,4,6,7,8,9-OCDD	3268-87-9	ug/kg	0.00037 U	0.00047 U	0.0004 U		0.00078 U	0.00033 U
1,2,3,4,6,7,8,9-OCDF	39001-02-0	ug/kg	0.00022 U	0.00015 U	0.000068 U		0.00013 U	0.000052 U
1,2,3,4,6,7,8-HPCDD	35822-46-9	ug/kg	0.000036 U	0.000034 U	0.000031 U		0.00002 U	0.000018 U
1,2,3,4,6,7,8-HPCDF	67562-39-4	ug/kg	0.00004 U	0.000037 U	0.000032 U		0.000031 U	0.000024 U
1,2,3,4,7,8,9-HPCDF	55673-89-7	ug/kg	0.000049 U	0.000046 U	0.000041 U		0.000047 U	0.000037 U
1,2,3,4,7,8-HXCDD	39227-28-6	ug/kg	0.000031 U	0.000032 U	0.000024 U		0.000013 U	0.000018 U
1,2,3,4,7,8-HXCDF	70648-26-9	ug/kg	0.0001 U	0.000028 U	0.000026 U		0.00013 U	0.000068 U
1,2,3,6,7,8-HXCDD	57653-85-7	ug/kg	0.000031 U	0.000034 U	0.000022 U		0.000015 U	0.00002 U
1,2,3,6,7,8-HXCDF	57117-44-9	ug/kg	0.00023 J	0.00029 J	0.00035 J		0.00044 J	0.00012 J
1,2,3,7,8,9-HXCDD	19408-74-3	ug/kg	0.000029 U	0.000031 U	0.000022 U		0.000013 U	0.000018 U
1,2,3,7,8,9-HXCDF	72918-21-9	ug/kg	0.000036 U	0.000039 U	0.000033 U		0.000024 U	0.000019 U
1,2,3,7,8-PECDD	40321-76-4	ug/kg	0.000038 U	0.000035 U	0.0001 J		0.00012 J	0.000071 J
1,2,3,7,8-PECDF	57117-41-6	ug/kg	0.000028 U	0.000026 U	0.000025 U		0.000023 U	0.000019 U
2,3,4,6,7,8-HXCDF	60851-34-5	ug/kg	0.000028 U	0.000034 U	0.000027 U		0.000019 U	0.000015 U
2,3,4,7,8-PECDF	57117-31-4	ug/kg	0.000026 U	0.000022 U	0.000025 U		0.000023 U	0.000018 U
2,3,7,8-TCDD	1746-01-6	ug/kg	0.000018 U	0.000035 J	0.000022 U		0.00003 J	0.000010 U
2,3,7,8-TCDF	51207-31-9	ug/kg	0.00003 U	0.000044 J	0.000025 U	-	0.00036 J	0.00003 J
TCDD-TEQ (HH)	TCDD-TEQ	ug/kg	2.30E-05	6.84E-05	1.35E-04	_	2.30E-04	8.60E-05
Metals		1 -55						
ALUMINUM	7429-90-5	mg/kg	0.64 J	0.75 J	0.94 J			
ANTIMONY	7440-36-0	mg/kg	0.024 U	0.024 U	0.027 U			
ARSENIC	7440-38-2	mg/kg	0.024 J	0.029 J	0.036 J			-
BARIUM	7440-39-3	mg/kg	0.061 U	0.026 U	0.081 U			
BERYLLIUM	7440-41-7	mg/kg	0.0063 U	0.0063 U	0.0071 U			
CADMIUM	7440-43-9	mg/kg	0.011 U	0.011 U	0.012 U			
CALCIUM	7440-70-2	mg/kg	1200	360	1400			
CHROMIUM	7440-47-3	mg/kg	2.6	0.72	1.5			
COBALT	7440-48-4	mg/kg	0.018 U	0.014 U	0.023 U			
COPPER	7440-50-8	mg/kg	0.28	0.014 0	0.023 0			
IRON	7439-89-6	mg/kg	19	6	25			
LEAD	7439-99-1	mg/kg	0.0076 J	0.021 J	0.01 J			
MAGNESIUM	7439-95-4		300	260	290	-	-	
MANGANESE	7439-96-5	mg/kg mg/kg	0.44	0.23 J	0.51			
MERCURY	7439-97-6	mg/kg	0.24 J-	0.23 J	0.21 J-	-	-	
NICKEL	7440-02-0	mg/kg	0.47	0.2 3-	0.44			
POTASSIUM	7440-02-0		3400	3300	3300			
SELENIUM	7782-49-2	mg/kg	0.42	0.37 U	0.29 U			
SILVER	7440-22-4	mg/kg mg/kg	0.0069 U	0.0068 U	0.0078 U			
SODIUM	7440-23-5	mg/kg	660	690	780			
THALLIUM	7440-28-0	mg/kg	0.0028 J	0.0022 U	0.0025 U	-		
VANADIUM	7440-62-2	mg/kg	0.059 U	0.058 U	0.067 U	-		
ZINC	7440-66-6	mg/kg	8.1	5.5	7.3			
Semivolatile Organic Compounds	11440 00 0	ilig/kg	0.1	0.0	7.0			
1,2,4-TRICHLOROBENZENE	120-82-1	ug/kg						
1,2-DIPHENYLHYDRAZINE	122-66-7	ug/kg	-			-		-
2,2'-OXYBIS(1-CHLOROPROPANE)	108-60-1	ug/kg	-	-				-
2,4,6-TRICHLOROPHENOL	88-06-2	ug/kg	-	-				-
2,4-DICHLOROPHENOL	120-83-2	ug/kg	-	-				
2,4-DIMETHYLPHENOL	105-67-9	ug/kg	-					
2,4-DINITROPHENOL	51-28-5	ug/kg	-					
2,4-DINITROTOLUENE	121-14-2	ug/kg	-					
2,6-DINITROTOLUENE	606-20-2	ug/kg	-					
2-CHLORONAPHTHALENE	91-58-7	ug/kg	-					
2-CHLOROPHENOL	95-57-8	ug/kg	-					
2-NITROPHENOL	88-75-5	ug/kg	-			-		-
3.3'-DICHLOROBENZIDINE	91-94-1	ug/kg	-			-		-
4,6-DINITRO-2-METHYLPHENOL	534-52-1	ug/kg	-			-		-
4-BROMOPHENYL PHENYL ETHER	101-55-3	ug/kg	-			-		_
. D. CO OF THE REFERENCE CONTINUENT	101 00 0	ug/ng			l			

	1	1			enning Ra, N.⊑., Wa	n Creek	-	
			DO 10 000 074	DO 10 000 07/1			DO 10 010 0701	Do 10 010 0701
			P2-IC-008-GTA	P2-IC-009-GT1A	P2-IC-009-GT2A	P2-IC-010-GT1A	P2-IC-010-GT2A	P2-IC-010-GT3A
			Largemouth bass	Largemouth bass	Largemouth bass	Striped bass	Striped bass	Striped bass
CHEMICAL	CAS#	Units	8/3/2016	8/3/2016	8/3/2016	8/12/2016	8/12/2016	8/12/2016
4-CHLORO-3-METHYLPHENOL	59-50-7	ug/kg				-		
4-CHLOROPHENYL PHENYL ETHER	7005-72-3	ug/kg	-			-		
4-NITROPHENOL	100-02-7	ug/kg		-		-		
ACENAPHTHENE	83-32-9	ug/kg		-		-		
ACENAPHTHYLENE	208-96-8	ug/kg		-		-		
ANTHRACENE	120-12-7	ug/kg		-		-		
BENZIDINE	92-87-5	ug/kg		-		-		
BENZO(A)ANTHRACENE	56-55-3	ug/kg						
BENZO(A)PYRENE	50-32-8	ug/kg						
BENZO(B)FLUORANTHENE	205-99-2	ug/kg						
BENZO(G,H,I)PERYLENE	191-24-2	ug/kg						
BENZO(K)FLUORANTHENE	207-08-9	ug/kg						
BENZOIC ACID	65-85-0	ug/kg						
BIS(2-CHLOROETHOXY)METHANE	111-91-1	ug/kg						
BIS(2-CHLOROETHYL)ETHER	111-44-4	ug/kg	-	-		-		-
BIS(2-ETHYLHEXYL)PHTHALATE	117-81-7	ug/kg	-	-		-		-
BUTYL BENZYL PHTHALATE	85-68-7	ug/kg						
CHRYSENE	218-01-9	ug/kg				-		
DIBENZO(A,H)ANTHRACENE	53-70-3	ug/kg				-		
DIETHYL PHTHALATE	84-66-2	ug/kg				-		
DIMETHYL PHTHALATE	131-11-3	ug/kg				-		
DI-N-BUTYL PHTHALATE	84-74-2	ug/kg				-		
DI-N-OCTYL PHTHALATE	117-84-0	ug/kg				-		
FLUORANTHENE	206-44-0	ug/kg						
FLUORENE	86-73-7	ug/kg				-		-
HEXACHLOROBENZENE	118-74-1	ug/kg						
HEXACHLOROBUTADIENE	87-68-3	ug/kg						
HEXACHLOROCYCLOPENTADIENE	77-47-4	ug/kg		-				
HEXACHLOROETHANE	67-72-1	ug/kg						
INDENO(1,2,3-CD)PYRENE	193-39-5	ug/kg	-					
ISOPHORONE	78-59-1	ug/kg			_			
NAPHTHALENE	91-20-3	ug/kg		-			-	
NITROBENZENE	98-95-3	ug/kg	-				-	
N-NITROSODIMETHYLAMINE	62-75-9	ug/kg				-		_
N-NITROSO-DI-N-PROPYLAMINE	621-64-7	ug/kg	-			-		
N-NITROSODIPHENYLAMINE	86-30-6	ug/kg	-	-				_
PENTACHLOROPHENOL	87-86-5	ug/kg				-		-
PHENANTHRENE	85-01-8	ug/kg						-
PHENOL	108-95-2	ug/kg				-		
PYRENE	129-00-0	ug/kg				-		-
Pesticides	1120-00-0	ug/Ng	<u> </u>					
4,4'-DDD	72-54-8	ug/kg	0.042 U	0.4 J	0.21 J		0.52 J	0.15 U
4,4'-DDE	72-54-6	ug/kg ug/kg	0.042 0	1.8	0.21 3		2.8	1.2 J
4,4'-DDT	50-29-3	ug/kg ug/kg	0.042 U	0.042 U	0.042 U		0.13 U	0.15 U
ALDRIN	309-00-2	ug/kg ug/kg	0.042 U	0.042 U	0.042 U		0.13 U	0.15 U
ALPHA-BHC	319-84-6	ug/kg ug/kg	0.043 U	0.043 U	0.044 U		0.14 U 0.38 U	0.16 U
BETA-BHC	319-85-7		0.12 U	0.12 U	0.12 U		0.38 U 0.29 UJ	0.43 UJ
CHLORDANE (ALL)	CHLORDANE ALL	ug/kg	10	19	12		0.29 UJ 25	0.33 UJ 13 J
		ug/kg					0.46 U	
DELTA-BHC DIELDRIN	319-86-8 60-57-1	ug/kg	0.15 U	0.15 U	0.15 U 0.43 J			0.52 U
		ug/kg	0.37 J	1.3			0.69 J	0.14 U
ENDOSULFAN I	959-98-8	ug/kg	0.026 U	0.026 U	0.026 U	-	0.082 U	0.094 U
ENDOSULFAN II	33213-65-9	ug/kg	0.13 U	0.13 U	0.13 U		0.39 U	0.45 U
ENDOSULFAN SULFATE	1031-07-8	ug/kg	0.052 U	0.052 U	0.053 U		0.16 U	0.19 U
ENDRIN AL DELIVE	72-20-8	ug/kg	0.12 U	0.12 U	0.12 U		0.38 U	0.43 U
ENDRIN ALDEHYDE	7421-93-4	ug/kg	0.12 U	0.12 U	0.12 U		0.38 U	0.43 U
GAMMA-BHC (LINDANE)	58-89-9	ug/kg	0.084 U	0.085 U	0.085 U		0.27 U	0.3 U
HEPTACHLOR	76-44-8	ug/kg	0.035 U	0.036 U	0.036 U		0.11 U	0.13 U
HEPTACHLOR EPOXIDE	1024-57-3	ug/kg	0.12 J	0.34 J	0.05 U		0.15 U	0.18 U
TOXAPHENE	8001-35-2	ug/kg	13 U	14 U	14 U		42 U	48 U

					Indian	Creek		
			P2-IC-008-GTA	P2-IC-009-GT1A	P2-IC-009-GT2A	P2-IC-010-GT1A	P2-IC-010-GT2A	P2-IC-010-GT3A
			Largemouth bass	Largemouth bass	Largemouth bass	Striped bass	Striped bass	Striped bass
CHEMICAL	CAS#	Units	8/3/2016	8/3/2016	8/3/2016	8/12/2016	8/12/2016	8/12/2016
	CA3#	Units	0/3/2010	0/3/2010	0/3/2010	0/12/2010	0/12/2010	0/12/2010
Aroclors AROCLOR-1016	12674-11-2	ua/ka	0.67 U	0.44 U	0.55 U			
AROCLOR-1016 AROCLOR-1221	11104-28-2	ug/kg ug/kg	1.1 U	0.44 U	0.86 U	-	-	
AROCLOR-1221 AROCLOR-1232	11141-16-5	ug/kg	0.37 U	0.7 U	0.80 U			
AROCLOR-1232 AROCLOR-1242	53469-21-9	ug/kg	0.54 U	0.36 U	0.3 U	-	-	
AROCLOR-1248	12672-29-6	ug/kg	0.34 U	0.23 U	0.44 U			
AROCLOR-1254	11097-69-1	ug/kg	9.1	5.8	5.8	-		
AROCLOR-1260	11096-82-5	ug/kg	12	6	6.3	-		
Total Aroclors	TotalAroclor	ug/kg	21.1	11.8	12.1	NA	NA	NA
PCB Congeners		1 -55					101	101
PCB-1	2051-60-7	ug/kg	0.0028 U	0.00023 U	0.00016 U	0.0013 J	0.00024 U	0.0023 J
PCB-2	2051-61-8	ug/kg	0.0024 J	0.00026 U	0.00016 U	0.0003 U	0.00029 U	0.0035 J
PCB-3	2051-62-9	ug/kg	0.0003 U	0.00028 U	0.0008 J	0.00033 U	0.00034 U	0.0034 J
PCB-4	TTNUS524	ug/kg	0.024 J	0.012 J	0.008 J	0.0097 J	0.0093 J	0.006 J
PCB-5	16605-91-7	ug/kg	0.0015 J	0.0019 U	0.0013 U	0.0018 U	0.0021 U	0.0023 U
PCB-6	25569-80-6	ug/kg	0.015 J	0.004 J	0.0041 J	0.0025 J	0.0045 J	0.0042 J
PCB-7	33284-50-3	ug/kg	0.0021 J	0.0018 U	0.0014 J	0.0018 U	0.0021 U	0.0018 J
PCB-8	34883-43-7	ug/kg	0.035 J	0.012 U	0.011 U	0.011 J	0.014 J	0.011 J
PCB-9	34883-39-1	ug/kg	0.0054 U	0.0018 U	0.0013 U	0.0018 J	0.0021 U	0.0022 U
PCB-10	33146-45-1	ug/kg	0.0021 U	0.0019 U	0.0014 U	0.0019 U	0.0022 U	0.0024 U
PCB-11	2050-67-1	ug/kg	0.012 U	0.012 U	0.0096 U	0.0087 U	0.008 U	0.011 J
PCB-12/13	TTNUS800	ug/kg	0.0031 U	0.001 U	0.0012 U	0.0017 U	0.002 U	0.0022 U
PCB-14	34883-41-5	ug/kg	0.0015 U	0.0015 U	0.0011 U	0.0015 U	0.0017 U	0.0019 U
PCB-15	2050-68-2	ug/kg	0.0079 U	0.0037 U	0.0029 U	0.0019 U	0.0035 J	0.0019 J
PCB-16	38444-78-9	ug/kg	0.049	0.016 J	0.016 J	0.0097 J	0.015 J	0.012 J
PCB-17	37680-66-3	ug/kg	0.058	0.023	0.019 J	0.017 J	0.027	0.016 J
PCB-18/30	TTNUS616	ug/kg	0.14	0.043 J	0.039 J	0.034 J	0.053	0.034 J
PCB-19	38444-73-4	ug/kg	0.025	0.0095 J	0.0057 J	0.0012 U	0.0016 U	0.0078 J
PCB-20/28	TTNUS519	ug/kg	0.3	0.15	0.11	0.15	0.24	0.17
PCB-21/33	TTNUS810	ug/kg	0.06	0.021 J	0.019 J	0.024	0.04	0.025
PCB-22	38444-85-8	ug/kg	0.069	0.035	0.017 J	0.036	0.052	0.043
PCB-23	55720-44-0	ug/kg	0.00086 U	0.00067 U	0.00047 U	0.00067 U	0.00082 U	0.00083 U
PCB-24	55702-45-9	ug/kg	0.0043 J	0.0024 J	0.0011 J	0.00083 U	0.0011 U	0.00093 U
PCB-25	55712-37-3	ug/kg	0.014 J	0.008 J	0.0047 J	0.0065 J	0.01 J	0.0092 J
PCB-26/29	TTNUS811	ug/kg	0.031	0.016 J	0.012 J	0.02	0.03	0.022 J
PCB-27	38444-76-7	ug/kg	0.02 J	0.005 J	0.0033 J	0.0045 J	0.006 J	0.004 J
PCB-31	16606-02-3	ug/kg	0.15	0.074	0.043 J	0.062	0.1	0.071
PCB-32	38444-77-8	ug/kg	0.067	0.02 J	0.024	0.019 J	0.028	0.023
PCB-34	TTNUS277	ug/kg	0.00085 U	0.00066 U	0.00046 U	0.00089 J	0.00081 U	0.00081 U
PCB-35	37680-69-6	ug/kg	0.00087 U	0.00068 U	0.00047 U	0.00068 U	0.00083 U	0.00084 U
PCB-36	38444-87-0	ug/kg	0.00084 U	0.00066 U	0.00046 U	0.00066 U	0.0008 U	0.0027 J
PCB-37	38444-90-5	ug/kg	0.011 J	0.0055 J	0.0032 J	0.0048 J	0.0063 J	0.0064 J
PCB-38	53555-66-1	ug/kg	0.00089 U	0.00069 U	0.00048 U	0.00069 U	0.00085 U	0.00085 U
PCB-39 PCB-41/40/71	38444-88-1	ug/kg	0.00079 U	0.00062 U	0.00043 U	0.00062 U	0.00075 U	0.00076 U
PCB-41/40/71 PCB-42	TTNUS813 36559-22-5	ug/kg	0.11 J 0.084	0.049 0.048 J	0.052 0.031 J	0.073 0.072	0.093 0.1	0.057 0.063
PCB-42 PCB-43/73	36559-22-5 TTNUSA51	ug/kg ug/kg	0.084 0.011 J	0.048 J 0.0049 J	0.031 J 0.0062 J	0.072 0.0046 J	0.1 0.01 J	0.063 0.0077 J
PCB-44/47/65	TTNUSA51	ug/kg ug/kg	0.011 3	0.0049 J	0.0062 J 0.13	0.0046 J	0.01 3	0.0077 3
PCB-44/47/65 PCB-45/51	TTNUS814	ug/kg ug/kg	0.052	0.024	0.13 0.018 J	0.41	0.036 J	0.29
PCB-46	41464-47-5	ug/kg	0.0076 J	0.0046 J	0.0057 J	0.0036 J	0.030 J	0.002 U
PCB-48	70362-47-9	ug/kg	0.053	0.023	0.0037 J	0.030 3	0.007 3	0.002 0
PCB-49/69	TTNUS818	ug/kg	0.033	0.023	0.017 3	0.031	0.36	0.028
PCB-49/09 PCB-50/53	TTNUS815	ug/kg	0.037	0.013 J	0.090 0.012 J	0.29 0.018 J	0.031	0.013 J
PCB-52	35693-99-3	ug/kg	0.49	0.33	0.012 3	0.57	0.74	0.42
PCB-54	15968-05-5	ug/kg	0.0009 U	0.00093 U	0.00057 U	0.0011 U	0.0015 U	0.0015 U
PCB-55	74338-24-2	ug/kg	0.005 J	0.0035 J	0.0037 J	0.011 J	0.013 J	0.011 J
PCB-56	41464-43-1	ug/kg	0.054	0.044	0.024 J	0.079	0.1	0.064
PCB-57	70424-67-8	ug/kg	0.0021 J	0.00078 U	0.00049 U	0.0027 J	0.0022 J	0.0012 U
PCB-58	41464-49-7	ug/kg	0.0021 J	0.0021 J	0.00043 J	0.0016 J	0.0016 J	0.003 J
				0.002.0	3.0000. 0	0.00.00		0.000 0

					Indian	r Creek		
			P2-IC-008-GTA	P2-IC-009-GT1A		P2-IC-010-GT1A	D2 IC 040 CT24	P2-IC-010-GT3A
					P2-IC-009-GT2A		P2-IC-010-GT2A	
0115111011			Largemouth bass 8/3/2016	Largemouth bass 8/3/2016	Largemouth bass 8/3/2016	Striped bass 8/12/2016	Striped bass 8/12/2016	Striped bass 8/12/2016
CHEMICAL	CAS#	Units						
PCB-60	33025-41-1	ug/kg	0.067	0.04	0.03	0.08	0.092	0.055 J
PCB-61/70/74/76	TTNUS817	ug/kg	0.35	0.29	0.18	0.58	0.7	0.39
PCB-63	74472-34-7	ug/kg	0.015 J	0.012 J	0.0062 J	0.023	0.025	0.017 J
PCB-64	52663-58-8	ug/kg	0.16	0.099	0.068	0.15	0.19	0.12
PCB-66	32598-10-0	ug/kg	0.26	0.2	0.13	0.4	0.47	0.26
PCB-67	73575-53-8	ug/kg	0.0046 J	0.0031 J	0.0028 J	0.0065 J	0.0093 J	0.0047 J
PCB-68	73575-52-7	ug/kg	0.0035 J	0.0053 J	0.00044 U	0.011 J	0.0087 J	0.0052 J
PCB-72	41464-42-0	ug/kg	0.0055 J	0.0045 J	0.0025 J	0.013 J	0.015 J	0.0082 J
PCB-77	32598-13-3	ug/kg	0.012 J	0.011 J	0.0056 U	0.024	0.025	0.015 J
PCB-78	70362-49-1	ug/kg	0.00084 U	0.0012 J 0.003 J	0.0005 U	0.00092 U	0.0014 J	0.0012 U
PCB-79	41464-48-6	ug/kg	0.0068 J		0.0021 J	0.0081 J	0.0072 J	0.0049 J
PCB-80	33284-52-5	ug/kg	0.00072 U	0.00069 U	0.00043 U	0.00079 U	0.001 U	0.0011 U
PCB-81	70362-50-4	ug/kg	0.00074 U	0.0021 J	0.0013 J	0.0029 J	0.0017 J	0.0011 U
PCB-82	52663-62-4	ug/kg	0.084	0.057	0.046	0.12	0.14	0.09
PCB-83/99	TTNUS863	ug/kg	0.63	0.58	0.4	1.6	1.7	1
PCB-84	52663-60-2	ug/kg	0.094	0.08	0.048	0.13	0.17	0.096
PCB-85/116/117	TTNUS799	ug/kg	0.2	0.17	0.12	0.35	0.4	0.24
PCB-86/87/97/109/119/125	TTNUS941	ug/kg	0.53	0.45	0.3 J	0.97	1.1	0.67
PCB-88/91	TTNUS819	ug/kg	0.12	0.092	0.06	0.24	0.27	0.15
PCB-89	73575-57-2	ug/kg	0.0041 J	0.0015 U	0.001 U	0.0025 U	0.0028 U	0.003 U
PCB-90/101/113	TTNUS619	ug/kg	1.2	0.97	0.7	2.2	2.7	1.5
PCB-92	52663-61-3	ug/kg	0.19	0.15	0.11	0.35	0.4	0.23
PCB-93/100	TTNUS864	ug/kg	0.0055 J	0.0014 J	0.0016 J	0.05 J	0.0081 J	0.025 J
PCB-94	73575-55-0	ug/kg	0.0015 U	0.0018 J	0.001 U	0.0025 U	0.0028 U	0.003 U
PCB-95	38379-99-6	ug/kg	0.57	0.45	0.28	0.82	1.1	0.53
PCB-96	73575-54-9	ug/kg	0.0011 U	0.0011 U	0.00078 U	0.0019 U	0.0021 U	0.0022 U
PCB-98/102	TTNUS865	ug/kg	0.018 J	0.011 J	0.003 U	0.021 J	0.015 J	0.016 J
PCB-103	TTNUS256	ug/kg	0.0064 J	0.0071 J	0.0047 J	0.034	0.039	0.014 J
PCB-104	TTNUS257	ug/kg	0.001 U	0.00099 U	0.0007 U	0.0017 U	0.0019 U	0.002 U
PCB-105	32598-14-4	ug/kg	0.36	0.3	0.22	0.58	0.68	0.38
PCB-106	70424-69-0	ug/kg	0.0013 U	0.0013 U	0.00091 U	0.0014 U	0.0016 U	0.0016 U
PCB-107	70424-68-9	ug/kg	0.081	0.061 J	0.049 J	0.18	0.2	0.11
PCB-108/124	TTNUS942	ug/kg	0.035 J	0.027 J	0.02 J	0.067	0.071	0.039
PCB-110/115	TTNUS797	ug/kg	1.2	0.9	0.59	1.8	2.3	1.3
PCB-111	39635-32-0	ug/kg	0.00096 U	0.0026 J	0.00065 U	0.0064 J	0.0052 J	0.0046 J
PCB-112	TTNUS259	ug/kg	0.0032 J	0.001 U	0.002 J	0.0076 J	0.0057 J	0.002 U
PCB-114	74472-37-0	ug/kg	0.023 J	0.015 J	0.016 J	0.033	0.038 J	0.024 J
PCB-118	31508-00-6	ug/kg	1.1	0.9	0.65	1.9	2.2	1.2
PCB-120	68194-12-7	ug/kg	0.0081 J	0.0078 J	0.0065 J	0.026	0.031	0.02 J
PCB-121	56558-18-0	ug/kg	0.00099 U	0.00097 U	0.00068 U	0.0016 U	0.0018 U	0.0019 U
PCB-122	76842-07-4	ug/kg	0.01 J	0.0046 J	0.0074 J	0.0096 J	0.012 J	0.015 J
PCB-123	65510-44-3 57465-28-8	ug/kg	0.02 J 0.0081 J	0.019 J	0.016 J 0.0048 U	0.028 J	0.047 0.0059 J	0.026 0.0026 J
PCB-126 PCB-127	39635-33-1	ug/kg		0.0031 U 0.0029 J	0.0048 U 0.0017 J	0.0072 J 0.0041 J	0.0059 J 0.003 J	0.0026 J 0.0023 J
PCB-127 PCB-128/166		ug/kg	0.0028 J					
PCB-128/166 PCB-129/138/160/163	TTNUS613 TTNUSA52	ug/kg	0.4 3.6	0.28 2.5	0.24	0.51 4.8	0.64	0.35
PCB-129/138/160/163 PCB-130		ug/kg	0.13	0.11	0.085	4.8 0.2	6 0.25	0.14
PCB-131	52663-66-8 61798-70-7	ug/kg	0.13 0.018 J	0.11 0.012 J	0.085 0.014 J	0.2 0.023 J	0.25 0.028 J	0.14 0.018 J
PCB-131 PCB-132	38380-05-1	ug/kg	0.018 J 0.36	0.012 J 0.23	0.014 J 0.17	0.023 J 0.49	0.028 J 0.63	0.018 J 0.34
PCB-132 PCB-133	35694-04-3	ug/kg	0.36 0.045 J	0.23	0.17	0.49	0.63 0.1 J	0.34
PCB-134/143	35694-04-3 TTNUS801	ug/kg ug/kg	0.045 J 0.057	0.043	0.03 0.031 J	0.096	0.1 J 0.13	0.06 0.056 J
PCB-135/151 PCB-136	TTNUS805 38411-22-2	ug/kg	0.73 0.084	0.43 0.059	0.35 0.028 J	0.99 0.21	1.2 0.24	0.65 0.11
PCB-136 PCB-137	38411-22-2 35694-06-5	ug/kg	0.084		0.028 J 0.064	0.21	0.24	0.11
PCB-139/140	35694-06-5 TTNUS803	ug/kg	0.036	0.068 J 0.028	0.064 0.022 J	0.13	0.16	0.095
PCB-139/140 PCB-141		ug/kg	0.036	0.028	0.022 J 0.28		0.072	0.045
PCB-141 PCB-142	52712-04-6 41411-61-4	ug/kg	0.44 0.0015 J	0.32 0.0024 U	0.28 0.0017 U	0.58 0.0036 U	0.78 0.0038 U	0.42 0.004 U
		ug/kg						
PCB-144	68194-14-9	ug/kg	0.093	0.065	0.045	0.13	0.15	0.088
PCB-145	74472-40-5	ug/kg	0.0016 U	0.0012 U	0.00086 U	0.0022 U	0.0024 U	0.0025 U
PCB-146	51908-16-8	ug/kg	0.62	0.44	0.33	1.1	1.3	0.64

		Indian Creek						
			P2-IC-008-GTA	P2-IC-009-GT1A	P2-IC-009-GT2A	P2-IC-010-GT1A	P2-IC-010-GT2A	P2-IC-010-GT3A
0.1514041	0.4.0 #	l	Largemouth bass	Largemouth bass	Largemouth bass	Striped bass	Striped bass	Striped bass
CHEMICAL	CAS#	Units	8/3/2016	8/3/2016	8/3/2016	8/12/2016	8/12/2016	8/12/2016
PCB-147/149	TTNUS804	ug/kg	2.1	1.3	0.99	2.7	3.3	1.7
PCB-148	74472-41-6	ug/kg	0.0022 U	0.0029 J	0.0012 U	0.017 J	0.017 J	0.011 J
PCB-150	68194-08-1	ug/kg	0.0015 U	0.0012 U	0.00084 U	0.014 J	0.016 J	0.0081 J
PCB-152	68194-09-2	ug/kg	0.0015 U	0.0012 U	0.00086 U	0.0022 U	0.0024 U	0.0025 U
PCB-153/168	TTNUS615	ug/kg	3.7	2.7	2.1	5.6	7	3.9
PCB-154	TTNUS860	ug/kg	0.018 J	0.019 J	0.018 J	0.15	0.13 J	0.07
PCB-155	33979-03-2	ug/kg	0.0015 U	0.0011 U	0.00082 U	0.0081 J	0.0077 J	0.009 J
PCB-156/157	TTNUS523	ug/kg	0.24	0.18	0.14	0.32	0.43	0.24
PCB-158	74472-42-7	ug/kg	0.27	0.2	0.17	0.33	0.41	0.24
PCB-159	39635-35-3	ug/kg	0.018 J	0.0088 U	0.0095 U	0.012 J	0.027 J	0.013 J
PCB-161	74472-43-8	ug/kg	0.0019 U	0.0016 U	0.0012 U	0.0024 U	0.0025 U	0.0027 U
PCB-162	39635-34-2	ug/kg	0.0096 J	0.012 J	0.0079 J	0.016 J	0.027	0.017 J
PCB-164	74472-45-0	ug/kg	0.18	0.11 J	0.093	0.21	0.27	0.15
PCB-165	74472-46-1	ug/kg	0.0021 U	0.0018 U	0.0013 U	0.0063 J	0.0094 J	0.0059 J
PCB-167	52663-72-6	ug/kg	0.13	0.087	0.073	0.15	0.21	0.12
PCB-169	32774-16-6	ug/kg	0.0072 J	0.0048 J	0.006 J	0.0077 J	0.013 J	0.0043 J
PCB-170	35065-30-6	ug/kg	0.88	0.57	0.47	1	1.5	0.78
PCB-171/173	TTNUS806	ug/kg	0.25	0.17	0.13	0.3	0.44	0.23
PCB-172	52663-74-8	ug/kg	0.19	0.13	0.1	0.21	0.33	0.19
PCB-174	38411-25-5	ug/kg	0.54	0.35	0.27	0.56	0.96	0.43
PCB-175	40186-70-7	ug/kg	0.033	0.021 J	0.02 J	0.046	0.05 J	0.031 J
PCB-176	52663-65-7	ug/kg	0.037	0.032	0.019 J	0.074	0.095	0.05
PCB-177	52663-70-4	ug/kg	0.35	0.25	0.18	0.48	0.84	0.4
PCB-178	52663-67-9	ug/kg	0.19	0.13	0.1	0.29	0.41	0.22
PCB-179	52663-64-6	ug/kg	0.1	0.091	0.051	0.29	0.38	0.19
PCB-180/193	TTNUS617	ug/kg	2.5	1.6	1.3	2.7	4.4	2.3
PCB-181	74472-47-2	ug/kg	0.012 J	0.0042 J	0.0045 J	0.014 J	0.017 J	0.0042 J
PCB-182	60145-23-5	ug/kg	0.0091 J	0.003 J	0.0052 J	0.015 J	0.0028 U	0.012 J
PCB-183/185	TTNUS807	ug/kg	0.65	0.43	0.37	0.81	1.2	0.64
PCB-184	74472-48-3	ug/kg	0.0014 U	0.0012 U	0.00083 U	0.0046 J	0.0024 U	0.0023 U
PCB-186	74472-49-4	ug/kg	0.0013 U	0.0012 U	0.0008 U	0.0015 U	0.0023 U	0.0023 U
PCB-187	52663-68-0	ug/kg	2.5	1.2	1.1	2.2	3.3	1.8
PCB-188	TTNUS272	ug/kg	0.0027 J	0.0026 J	0.00071 U	0.021	0.018 J	0.017 J
PCB-189	39635-31-9	ug/kg	0.029	0.016 J	0.02 J	0.035	0.058	0.029 J
PCB-190	41411-64-7	ug/kg	0.2	0.13	0.11	0.25	0.4	0.22
PCB-191	74472-50-7	ug/kg	0.04 J	0.027	0.021 J	0.046 J	0.08	0.04 J
PCB-192	74472-51-8	ug/kg	0.0014 U	0.0012 U	0.00085 U	0.0016 U	0.0025 U	0.0024 U
PCB-194	35694-08-7	ug/kg	0.43	0.29	0.23	0.49	0.72	0.43
PCB-195	52663-78-2	ug/kg	0.19	0.12	0.095	0.21	0.3	0.17
PCB-196	42740-50-1	ug/kg	0.17 J	0.12	0.1	0.22	0.3	0.2
PCB-197	TTNUS861	ug/kg	0.014 J	0.0097 J	0.0066 J	0.024	0.024 J	0.022 J
PCB-198/201	TTNUSA53	ug/kg	0.54	0.35	0.3	0.62	0.85	0.6
PCB-199	52663-75-9	ug/kg	0.016 J	0.01 J	0.0056 J	0.024 J	0.036	0.022 J
PCB-200	52663-73-7	ug/kg	0.035	0.022 J	0.022 J	0.072	0.089	0.063
PCB-202	2136-99-4	ug/kg	0.033	0.055	0.022 J	0.17	0.009	0.14
PCB-202	52663-76-0	ug/kg ug/kg	0.07	0.055	0.036 3	0.17	0.58	0.14
PCB-203	74472-52-9	ug/kg	0.00066 U	0.00068 U	0.00043 U	0.0011 U	0.0012 U	0.0014 U
PCB-205	74472-53-0	ug/kg	0.00000 U	0.016 U	0.00043 U	0.0011 0	0.0012 0	0.025
PCB-205	40186-72-9	ug/kg ug/kg	0.02 0	0.016 0	0.015 0	0.027	0.047	0.025
PCB-206	52663-79-3	ug/kg ug/kg	0.018 J	0.14 0.014 J	0.14 0.011 J	0.042	0.039 J	0.037
PCB-207 PCB-208	52663-79-3	ug/kg ug/kg	0.018 J	0.014 J	0.011 3	0.042	0.039 J 0.12	0.037
PCB-209	2051-24-3	ug/kg ug/kg	0.041	0.041 0.045 J	0.026	0.12	0.12	0.14
Total PCBs	1336-36-3	ug/kg ug/kg	34	0.045 J 23	18	46	60	33
PCB-TEQ			1.08E-03	1.91E-04	2.14E-04	1.05E-03	1.09E-03	4.51E-04
FUD-IEW	PCB-TEQ	ug/kg	1.08E-03	1.91E-04	2.14E-04	1.05E-03	1.09E-03	4.51E-U4

¹ Duplicate of P2-NWB-002-GT1A.

Source: TetraTech. 2018. Draft Remedial Investigation Report. Anacostia River Sediment Project. Washington D.C. Prepared for District of Columbia, Department of Energy and Environment. Prepared by TetraTech, Sterling, VA. March 30.

	Northeast Branch									
CHEMICAL	CAS#	P2-NEB-007-GTA Largemouth bass 8/3/2016	P2-NEB-011-GTA Largemouth bass 8/3/2016	P2-NEB-012-GTA Largemouth bass 8/3/2016	P2-NWB-001-GT1A Largemouth bass 8/8/2016	P2-NWB-001-GT2A Largemouth bass 8/8/2016	P2-NWB-002-GT1A Largemouth bass 8/9/2016	P2-NWB-200-GTA ¹ Largmouth Bass 8/9/2016	P2-NWB-002-GT2A Largemouth bass 8/9/2016	
Dioxins and Furans	1			,	_	,	1			
1,2,3,4,6,7,8,9-OCDD	3268-87-9	0.00052 U	0.00033 U	0.0004 U	0.00072 U	0.00052 U	0.00021 U	0.00033 U	0.00022 U	
1,2,3,4,6,7,8,9-OCDF	39001-02-0	0.001 U	0.00011 U	0.000075 U	0.000097 U	0.0001 U	0.000064 U	0.00011 U	0.000093 U	
1,2,3,4,6,7,8-HPCDD	35822-46-9	0.00014 U	0.000068 U	0.00012 U	0.00013 U	0.000067 U	0.000055 U	0.000075 U	0.000042 U	
1,2,3,4,6,7,8-HPCDF	67562-39-4	0.000073 U	0.000023 U	0.000034 U	0.000092 U	0.0001 U	0.00016 J	0.00012 U	0.000097 U	
1,2,3,4,7,8,9-HPCDF	55673-89-7	0.000084 U	0.000029 U	0.000043 U	0.00011 U	0.00011 U	0.0001 U	0.00012 U	0.00011 U	
1,2,3,4,7,8-HXCDD	39227-28-6	0.000045 U	0.000019 U	0.000031 U	0.000085 U	0.000049 U	0.000047 U	0.000082 U	0.000061 U	
1,2,3,4,7,8-HXCDF	70648-26-9	0.00041 U	0.00016 U	0.000029 U	0.000037 U	0.000051 U	0.000029 U	0.000049 U	0.000091 J	
1,2,3,6,7,8-HXCDD	57653-85-7	0.000042 U	0.000019 U	0.000033 U	0.000092 U	0.000052 U	0.000047 U	0.000096 U	0.000061 U	
1,2,3,6,7,8-HXCDF	57117-44-9	0.00046 J	0.00016 J	0.00016 J	0.00011 J	0.00044 J	0.00012 J	0.000099 J	0.00018 J	
1,2,3,7,8,9-HXCDD	19408-74-3	0.00004 U	0.000018 U	0.00003 U	0.000082 U	0.000047 U	0.000044 U	0.000083 U	0.000057 U	
1,2,3,7,8,9-HXCDF	72918-21-9	0.000046 U	0.00003 U	0.000038 U	0.000045 U	0.000067 U	0.000039 U	0.000063 U	0.000046 U	
1,2,3,7,8-PECDD	40321-76-4	0.000059 U	0.000026 U	0.000037 U	0.0001 U	0.00012 U	0.000092 U	0.00015 J	0.000079 U	
1,2,3,7,8-PECDF	57117-41-6	0.000054 U	0.000017 U	0.000034 U	0.000047 U	0.000062 U	0.000048 U	0.000048 U	0.000054 U	
2,3,4,6,7,8-HXCDF	60851-34-5	0.000038 U	0.000022 U	0.000029 U	0.00004 U	0.000054 U	0.000033 U	0.000051 U	0.000037 U	
2,3,4,7,8-PECDF	57117-31-4	0.000049 U	0.000016 U	0.000031 U	0.000048 U	0.00013 J	0.000085 J	0.000048 U	0.00015 J	
2,3,7,8-TCDD	1746-01-6	0.000038 U	0.000012 U	0.00001 U	0.00015 U	0.00012 U	0.00011 U	0.00011 U	0.000092 U	
2,3,7,8-TCDF	51207-31-9	0.00015 J	0.000052 J	0.00002 U	0.00013 U	0.00012 U	0.000092 U	0.000091 U	0.000066 U	
TCDD-TEQ (HH)	TCDD-TEQ	6.10E-05	2.12E-05	1.60E-05	1.10E-05	8.30E-05	3.91E-05	1.60E-04	7.21E-05	
Metals	1=						T			
ALUMINUM	7429-90-5	2.5 J	1.1 J	0.86 J	1.7 J	1 J	0.55 J	0.49 U	0.55 U	
ANTIMONY	7440-36-0	0.037 U	0.027 U	0.025 U	0.027 U	0.027 U	0.027 U	0.024 U	0.028 U	
ARSENIC	7440-38-2	0.045 J	0.066 J	0.045 J	0.091 J	0.073 J	0.078 J	0.07 J	0.058 J	
BARIUM	7440-39-3	0.058 U	0.13 U	0.057 U	0.053 J	0.062 J	0.065 J	0.061 J	0.12 J	
BERYLLIUM	7440-41-7	0.007 U	0.0069 U	0.0066 U	0.007 U	0.0071 U	0.0071 U	0.0064 U	0.0072 U	
CADMIUM	7440-43-9	0.012 U	0.012 U	0.011 U	0.012 U	0.012 U	0.012 U	0.011 U	0.013 U	
CALCIUM	7440-70-2	640	2800	870	750	850	910	760	2000	
CHROMIUM	7440-47-3	12	1.8	5.6	3.4 J	2.5 J	0.65 J	0.8 J	1.3 J	
COBALT	7440-48-4	0.046 U	0.015 U	0.047	0.02 U	0.017 U	0.008 U	0.0074 U	0.011 U	
IRON IRON	7440-50-8	0.33	0.3	0.26	0.29	0.22	0.26 7.4	0.23	0.26	
LEAD	7439-89-6 7439-92-1	82	13		26 0.049 J	19 0.0086 U	7.4 0.011 J	8.8	13	
		0.026 J	0.0083 U	0.034 J				0.0077 U	0.0088 U	
MAGNESIUM MANGANESE	7439-95-4 7439-96-5	280 0.98	380 0.65	260 0.51	340 0.36 U	300 0.48	360 0.3 U	300 0.24 U	310 0.39 U	
						0.48	0.3 0			
MERCURY NICKEL	7439-97-6 7440-02-0	0.19 J- 0.94	0.26 J- 0.28	0.28 J- 1.5	0.31 0.44	0.19	0.38	0.34 0.11	0.27 0.21	
	7440-02-0	3600	3900	3100	4200	3800	4500	3900	3700	
POTASSIUM SELENIUM	7782-49-2	0.26 U	0.3 U			0.32 J	0.39 J	0.27 J	0.3 J	
SILVER	7440-22-4	0.26 U	0.0075 U	0.3 U 0.0072 U	0.3 J 0.0077 U	0.0077 U	0.0077 U	0.27 J 0.0069 U	0.0079 U	
SODIUM	7440-23-5	850	790	700	660	630	680	610	730	
THALLIUM	7440-28-0	0.0024 U	0.0041 J	0.0029 J	0.0036 J	0.0026 J	0.0039 J	0.0032 J	0.0027 J	
VANADIUM	7440-62-2	0.068 J	0.064 U	0.061 U	0.065 U	0.066 U	0.066 U	0.052 J	0.067 U	
ZINC	7440-66-6	6.9	7.5	6.8	8.2	5.8	7.9	7.3	8	
Semivolatile Organic Compounds	17440 00 0	0.0	7.0	0.0	0.2	0.0	7.0	7.0		
1,2,4-TRICHLOROBENZENE	120-82-1				15 U	15 U	15 U	27 U	15 U	
1,2-DIPHENYLHYDRAZINE	122-66-7				34 U	34 U	34 U	63 U	34 U	
2,2'-OXYBIS(1-CHLOROPROPANE)	108-60-1				5.8 UJ	5.7 UJ	5.7 UJ	11 UJ	5.7 UJ	
2,4,6-TRICHLOROPHENOL	88-06-2				40 U	40 U	39 U	74 U	40 U	
2,4-DICHLOROPHENOL	120-83-2				5.4 U	5.3 U	5.3 U	9.9 U	5.3 U	
2,4-DIMETHYLPHENOL	105-67-9				42 U	41 U	41 U	77 U	41 U	
2,4-DINITROPHENOL	51-28-5				320 UJ	320 UJ	310 UJ	590 UJ	320 UJ	
2,4-DINITROTOLUENE	121-14-2				22 U	21 U	21 U	40 U	21 U	
2,6-DINITROTOLUENE	606-20-2				28 U	27 U	27 U	51 U	27 U	
2-CHLORONAPHTHALENE	91-58-7				5.6 U	5.5 U	5.5 U	10 U	5.5 U	
2-CHLOROPHENOL	95-57-8				22 U	22 U	22 U	40 U	22 U	
2-NITROPHENOL	88-75-5	-	-		29 U	29 U	29 U	54 U	29 U	
3,3'-DICHLOROBENZIDINE	91-94-1				28 U	28 U	28 U	52 U	28 U	
4,6-DINITRO-2-METHYLPHENOL	534-52-1				110 U	110 U	110 U	200 U	110 U	
4-BROMOPHENYL PHENYL ETHER	101-55-3				23 U	23 U	23 U	43 U	23 U	

		Northeast Branch									
		P2-NEB-007-GTA	P2-NEB-011-GTA	P2-NEB-012-GTA		P2-NWB-001-GT2A	P2-NWB-002-GT1A	P2-NWB-200-GTA ¹	P2-NWB-002-GT2A		
		Largemouth bass	Largemouth bass	Largemouth bass	Largemouth bass	Largemouth bass	Largemouth bass	Largmouth Bass	Largemouth bass		
CHEMICAL	CAS#	8/3/2016	8/3/2016	8/3/2016	8/8/2016	8/8/2016	8/9/2016	8/9/2016	8/9/2016		
4-CHLORO-3-METHYLPHENOL	59-50-7		-		25 U	24 U	24 U	45 U	24 U		
4-CHLOROPHENYL PHENYL ETHER	7005-72-3				30 U	29 U	29 U	55 U	29 U		
4-NITROPHENOL	100-02-7				97 UJ	97 UJ	96 U	180 U	97 U		
ACENAPHTHENE	83-32-9				5.1 U	5.1 U	5.1 U	9.5 U	5.1 U		
ACENAPHTHYLENE	208-96-8				6.1 U	6.1 U	6 U	11 U	6.1 U		
ANTHRACENE	120-12-7		-		5.2 U	5.2 U	5.2 U	9.7 U	5.2 U		
BENZIDINE	92-87-5		-		1100 U	1100 U	1100 UJ	2100 UJ	1100 UJ		
BENZO(A)ANTHRACENE	56-55-3		-		6.7 U	6.6 U	6.6 U	12 U	6.6 U		
BENZO(A)PYRENE	50-32-8		-		5.3 U	5.3 U	5.3 U	9.9 U	5.3 U		
BENZO(B)FLUORANTHENE	205-99-2		-		8.4 U	8.3 U	8.3 U	16 U	8.3 U		
BENZO(G,H,I)PERYLENE	191-24-2				5.3 U	5.3 U	5.2 U	9.8 U	5.3 U		
BENZO(K)FLUORANTHENE	207-08-9				11 U	11 U	11 U	20 U	11 U		
BENZOIC ACID	65-85-0				790 J	610 J	670 J	1100 J	700 J		
BIS(2-CHLOROETHOXY)METHANE	111-91-1				18 U	17 U	17 U	33 U	17 U		
BIS(2-CHLOROETHYL)ETHER	111-44-4				7.2 U	7.1 U	7.1 U	13 U	7.1 U		
BIS(2-ETHYLHEXYL)PHTHALATE	117-81-7				43 U	43 U	43 U	80 U	43 U		
BUTYL BENZYL PHTHALATE	85-68-7				36 UJ	36 UJ	36 U	68 U	36 U		
CHRYSENE	218-01-9		-		6.4 U	6.3 U	6.3 U	12 U	6.3 U		
DIBENZO(A,H)ANTHRACENE	53-70-3		-		5.9 U	5.9 U	5.9 U	11 U	5.9 U		
DIETHYL PHTHALATE	84-66-2		-		29 U	29 U	29 U	54 U	29 U		
DIMETHYL PHTHALATE	131-11-3		-		29 U	29 U	29 U	54 U	29 U		
DI-N-BUTYL PHTHALATE	84-74-2		-		33 U	33 U	33 U	62 U	33 U		
DI-N-OCTYL PHTHALATE	117-84-0				230 J	230 J	28 UJ	52 UJ	28 UJ		
FLUORANTHENE	206-44-0		-		5.7 U	5.7 U	5.6 U	11 U	5.7 U		
FLUORENE	86-73-7		-		7 U	7 U	6.9 U	13 U	7 U		
HEXACHLOROBENZENE	118-74-1		-		5.7 U	5.6 U	5.6 U	11 U	5.6 U		
HEXACHLOROBUTADIENE	87-68-3		-		6 U	5.9 U	5.9 U	11 U	5.9 U		
HEXACHLOROCYCLOPENTADIENE	77-47-4		-		29 U	29 U	28 UJ	53 UJ	29 UJ		
HEXACHLOROETHANE	67-72-1		-		19 U	19 U	19 U	36 U	19 U		
INDENO(1,2,3-CD)PYRENE	193-39-5		-		5.5 U	5.5 U	5.4 U	10 U	5.5 U		
ISOPHORONE	78-59-1		-		20 U	20 U	20 U	37 U	20 U		
NAPHTHALENE	91-20-3		-		4.6 U	4.6 U	4.5 U	8.5 U	4.6 U		
NITROBENZENE	98-95-3		-		22 U	22 U	22 U	41 U	22 U		
N-NITROSODIMETHYLAMINE	62-75-9		-		23 U	23 U	23 U	42 U	23 U		
N-NITROSO-DI-N-PROPYLAMINE	621-64-7		-		6.3 U	6.2 U	6.2 U	12 U	6.2 U		
N-NITROSODIPHENYLAMINE	86-30-6		-		25 U	25 U	24 U	46 U	25 U		
PENTACHLOROPHENOL	87-86-5		-		24 UJ	24 UJ	24 U	44 U	24 U		
PHENANTHRENE	85-01-8		-		8.5 U	8.4 U	8.4 U	16 U	14 J		
PHENOL	108-95-2		-		13 U	9 U	6.2 U	52 J	13 J		
PYRENE	129-00-0		-		5.4 U	5.4 U	5.3 U	10 U	5.4 U		
Pesticides											
4,4'-DDD	72-54-8	0.042 U	0.31 J	0.11 J	0.085 U	0.084 U	0.085 U	-	0.085 U		
4,4'-DDE	72-55-9	0.65	1.7	1	0.77 J	2.4	1.1		0.32 J		
4,4'-DDT	50-29-3	0.042 U	0.042 U	0.042 U	0.085 U	0.084 U	0.085 U		0.085 U		
ALDRIN	309-00-2	0.044 U	0.043 U	0.044 U	0.088 U	0.087 U	0.088 U		0.088 U		
ALPHA-BHC	319-84-6	0.12 U	0.12 U	0.12 U	0.25 U	0.24 U	0.25 U		0.25 U		
BETA-BHC	319-85-7	0.093 U	0.092 U	0.093 U	0.19 U	0.18 U	0.19 U		0.19 U		
CHLORDANE (ALL)	CHLORDANE_ALL	8	18	9.5	21	62	29		7.1 J		
DELTA-BHC	319-86-8	0.15 U	0.15 U	0.15 U	0.3 U	0.29 U	0.3 U		0.3 U		
DIELDRIN	60-57-1	0.33 J	1.4	0.36 J	1.8	4.7	2.3	-	0.079 U		
ENDOSULFAN I	959-98-8	0.026 U	0.026 U	0.026 U	0.053 U	0.052 U	0.053 U	-	0.053 U		
ENDOSULFAN II	33213-65-9	0.13 U	0.13 U	0.13 U	0.26 U	0.25 U	0.26 U		0.26 U		
ENDOSULFAN SULFATE	1031-07-8	0.053 U	0.052 U	0.053 U	0.11 U	0.1 U	0.11 U		0.11 U		
ENDRIN	72-20-8	0.12 U	0.12 U	0.12 U	0.24 U	0.24 U	0.24 U		0.24 U		
ENDRIN ALDEHYDE	7421-93-4	0.12 U	0.12 U	0.12 U	0.25 U	0.24 U	0.25 U		0.25 U		
GAMMA-BHC (LINDANE)	58-89-9	0.085 U	0.085 U	0.085 U	0.17 U	0.17 U	0.17 U		0.17 U		
HEPTACHLOR	76-44-8	0.036 U	0.036 U	0.036 U	0.072 U	0.071 U	0.072 U		0.072 U		
HEPTACHLOR EPOXIDE	1024-57-3	0.05 U	0.41 J	0.05 U	1 J	4.8	2.4		0.1 U		
TOXAPHENE	8001-35-2	14 U	14 U	14 U	27 U	27 U	27 U	-	27 U		

		P2-NEB-007-GTA Largemouth bass	P2-NEB-011-GTA Largemouth bass	Largemouth bass	P2-NWB-001-GT1A Largemouth bass	P2-NWB-001-GT2A Largemouth bass	P2-NWB-002-GT1A Largemouth bass	P2-NWB-200-GTA ¹ Largmouth Bass	P2-NWB-002-GT2A Largemouth bass
CHEMICAL	CAS#	8/3/2016	8/3/2016	8/3/2016	8/8/2016	8/8/2016	8/9/2016	8/9/2016	8/9/2016
Aroclors	1,007,1,1,0	0.70.11	0.40.11	0.00.11		0.011	0.011		0.011
AROCLOR-1016	12674-11-2	0.72 U	0.48 U	0.38 U	3.8 U	3.8 U 6 U	3.8 U 6 U		3.8 U
AROCLOR-1221 AROCLOR-1232	11104-28-2	1.1 U	0.75 U	0.6 U 0.21 U	6 U				6 U
AROCLOR-1232 AROCLOR-1242	11141-16-5 53469-21-9	0.39 U 0.58 U	0.26 U 0.39 U	0.21 U	2.1 U 3 U	2.1 U 3 U	2.1 U 3.1 U	-	2.1 U 3.1 U
AROCLOR-1242 AROCLOR-1248	12672-29-6	0.37 U	0.39 U	0.31 U	1.9 U	1.9 U	3.1 U		3.1 U
AROCLOR-1254	11097-69-1	13	6.4	5.5	3 U	3 U	3.1 U	-	3.1 U
AROCLOR-1260	11096-82-5	13	7.2	6.4	2.8 U	6.8 J	5.7 J		2.9 U
Total Aroclors	TotalAroclor	26	13.6	11.9	ND	6.8	5.7	NA	ND
PCB Congeners	Total Hooloi		10.0	11.0	1 140	0.0	0. ,	IVA	IND
PCB-1	2051-60-7	0.00024 U	0.0036 J	0.0014 U	0.00014 U	0.00085 J	0.0028 J	0.00013 U	0.00014 U
PCB-2	2051-61-8	0.00026 U	0.00028 U	0.00027 U	0.00057 J	0.0002 U	0.0061 J	0.00015 U	0.00017 U
PCB-3	2051-62-9	0.00029 U	0.00032 U	0.00029 U	0.00019 U	0.00022 U	0.0034 J	0.00018 U	0.0002 U
PCB-4	TTNUS524	0.0087 J	0.0074 J	0.0067 J	0.0057 U	0.008 J	0.0063 U	0.0039 U	0.002 U
PCB-5	16605-91-7	0.002 U	0.0023 U	0.0022 U	0.0012 U	0.00088 U	0.0019 U	0.0012 U	0.0013 U
PCB-6	25569-80-6	0.0037 J	0.0041 J	0.0022 J	0.0018 J	0.0032 J	0.0031 J	0.0015 J	0.0012 U
PCB-7	33284-50-3	0.0019 U	0.0022 U	0.0026 J	0.00071 U	0.0014 U	0.0012 U	0.0007 U	0.0012 U
PCB-8	34883-43-7	0.0086 U	0.0089 U	0.0058 U	0.0053 U	0.01 J	0.007 U	0.0048 U	0.0027 U
PCB-9	34883-39-1	0.0019 U	0.0031 U	0.0015 U	0.0012 U	0.0024 J	0.0018 U	0.0012 U	0.0012 U
PCB-10	33146-45-1	0.0021 U	0.0024 U	0.0016 U	0.0014 J	0.0012 U	0.0019 U	0.0012 U	0.0013 U
PCB-11	2050-67-1	0.012 U	0.012 U	0.0094 U	0.011 U	0.012 U	0.0086 U	0.007 U	0.0057 U
PCB-12/13	TTNUS800	0.0022 U	0.0022 U	0.0021 U	0.0011 U	0.0011 U	0.0018 U	0.0011 U	0.0012 U
PCB-14	34883-41-5	0.0017 U	0.0019 U	0.0018 U	0.00098 U	0.00095 U	0.0015 U	0.00097 U	0.001 U
PCB-15	2050-68-2	0.0031 U	0.0035 U	0.0018 U	0.0024 J	0.004 J	0.0038 J	0.0012 J	0.0017 J
PCB-16	38444-78-9	0.0097 J	0.007 J	0.0079 J	0.0078 J	0.012 J	0.01 J	0.0039 J	0.0024 J
PCB-17	37680-66-3	0.021 J	0.011 J	0.01 J	0.0092 J	0.016 J	0.01 J	0.006 J	0.0069 J
PCB-18/30	TTNUS616	0.032 J	0.03 J	0.028 J	0.023 J	0.043	0.029 J	0.019 J	0.015 J
PCB-19	38444-73-4	0.01 J	0.0068 J	0.0041 J	0.0055 J	0.0079 J	0.0064 J	0.0043 J	0.0026 J
PCB-20/28	TTNUS519	0.16	0.14	0.11	0.11	0.2	0.13	0.083	0.072
PCB-21/33	TTNUS810	0.02 J	0.018 J	0.013 J	0.012 J	0.023	0.015 J	0.0078 J	0.0099 J
PCB-22	38444-85-8	0.032 J	0.029	0.027	0.029	0.05	0.032	0.021 J	0.018 J
PCB-23 PCB-24	55720-44-0 55702-45-9	0.00063 U 0.0024 J	0.0007 U 0.00066 U	0.00065 U 0.00061 U	0.00029 U 0.0014 J	0.00036 U 0.0019 J	0.00048 U 0.0014 J	0.00032 U 0.0014 J	0.00034 U
PCB-24 PCB-25	55702-45-9	0.0024 J 0.0074 J	0.00066 U	0.00061 U	0.0014 J 0.0052 J	0.0019 J 0.0085 J	0.0014 J 0.0056 J	0.0014 J 0.0032 J	0.00046 U 0.0027 J
PCB-26/29	TTNUS811	0.0074 J	0.0055 J	0.0055 J	0.0052 J 0.013 J	0.0065 3	0.0056 J	0.0032 J 0.0085 J	0.0027 J
PCB-27	38444-76-7	0.02 J	0.0034 J	0.0031 J	0.003 J	0.023 0.0043 J	0.013 J	0.0085 J	0.0073 J
PCB-31	16606-02-3	0.0047 3	0.06	0.052	0.055	0.0043 3	0.065	0.038 J	0.032 J
PCB-32	38444-77-8	0.018 J	0.017 J	0.014 J	0.013 J	0.024	0.013 J	0.013 J	0.032 J 0.0087 J
PCB-34	TTNUS277	0.00062 U	0.00069 U	0.00064 U	0.00028 U	0.00036 U	0.00047 U	0.00031 U	0.00033 U
PCB-35	37680-69-6	0.00063 U	0.00071 U	0.00066 U	0.00029 U	0.00037 U	0.00048 U	0.00032 U	0.00034 U
PCB-36	38444-87-0	0.00061 U	0.00069 U	0.00063 U	0.00028 U	0.00035 U	0.00047 U	0.00031 U	0.00033 U
PCB-37	38444-90-5	0.0093 J	0.0086 J	0.0046 J	0.0062 J	0.01 J	0.0043 J	0.0034 J	0.004 J
PCB-38	53555-66-1	0.00065 U	0.00073 U	0.00067 U	0.0003 U	0.00037 U	0.00049 U	0.00032 U	0.00035 U
PCB-39	38444-88-1	0.00057 U	0.00065 U	0.00059 U	0.00026 U	0.00033 U	0.00044 U	0.00029 U	0.00031 U
PCB-41/40/71	TTNUS813	0.074	0.063 J	0.056	0.039	0.069	0.041	0.029	0.038
PCB-42	36559-22-5	0.073	0.053	0.05	0.03 J	0.06	0.037 J	0.026	0.031 J
PCB-43/73	TTNUSA51	0.0046 J	0.01 J	0.0043 J	0.0035 J	0.0048 J	0.0026 J	0.0022 J	0.0034 J
PCB-44/47/65	TTNUS618	0.43	0.31	0.27	0.16	0.27	0.18 J	0.11 J	0.14
PCB-45/51	TTNUS814	0.043	0.024 J	0.021 J	0.018 J	0.028	0.018 J	0.012 J	0.013 J
PCB-46	41464-47-5	0.0033 J	0.0039 J	0.0035 J	0.0028 J	0.0046 J	0.0039 J	0.0019 J	0.00098 U
PCB-48	70362-47-9	0.026 J	0.02 J	0.025	0.014 J	0.027	0.019 J	0.0095 J	0.014 J
PCB-49/69	TTNUS818	0.27	0.21	0.19	0.11	0.19	0.11	0.081	0.1
PCB-50/53	TTNUS815	0.032	0.017 J	0.013 J	0.01 J	0.018 J	0.0092 J	0.0086 J	0.0082 J
PCB-52	35693-99-3	0.62	0.48	0.46	0.3	0.51	0.33	0.2	0.27
PCB-54	15968-05-5	0.001 U	0.0012 U	0.00096 U	0.00072 U	0.00076 U	0.001 U	0.00063 U	0.00076 U
PCB-55	74338-24-2	0.0033 J	0.0059 J	0.0029 J	0.0029 J	0.0066 J	0.004 J	0.0028 J	0.0027 J
PCB-56	41464-43-1	0.064	0.06	0.045	0.044	0.071	0.046	0.031	0.034
PCB-57	70424-67-8	0.00089 U	0.001 U	0.00082 U	0.00048 U	0.001 J	0.00065 U	0.00046 U	0.00059 U
PCB-58	41464-49-7	0.0031 J	0.002 J	0.0086 J	0.002 J	0.00042 J	0.00065 U	0.00088 J	0.0012 J
PCB-59/62/75	TTNUS816	0.029 J	0.027	0.024 J	0.015 J	0.026	0.017 J	0.01 J	0.012 J

					N	ortheast Branch			
		P2-NEB-007-GTA Largemouth bass	P2-NEB-011-GTA Largemouth bass	P2-NEB-012-GTA Largemouth bass	P2-NWB-001-GT1A Largemouth bass	P2-NWB-001-GT2A Largemouth bass	P2-NWB-002-GT1A Largemouth bass	P2-NWB-200-GTA ¹ Largmouth Bass	P2-NWB-002-GT2A Largemouth bass
CHEMICAL	CAS#	8/3/2016	8/3/2016	8/3/2016	8/8/2016	8/8/2016	8/9/2016	8/9/2016	8/9/2016
PCB-60	33025-41-1	0.075	0.061	0.054	0.043	0.076	0.047	0.031	0.047
PCB-61/70/74/76	TTNUS817	0.49	0.42	0.37	0.29	0.48	0.32	0.2	0.23
PCB-63	74472-34-7	0.017 J	0.018 J	0.015 J	0.0076 J	0.014 J	0.0092 J	0.0069 J	0.0076 J
PCB-64	52663-58-8	0.16	0.13	0.11	0.079	0.14	0.094	0.059	0.074
PCB-66	32598-10-0	0.35	0.28	0.29	0.17	0.29	0.19	0.13	0.19
PCB-67	73575-53-8	0.0068 J	0.0051 J	0.003 J	0.0033 J	0.006 J	0.0025 J	0.0024 J	0.0021 J
PCB-68	73575-52-7	0.0065 J	0.0063 J	0.0033 J	0.0014 J	0.0024 J	0.0024 J	0.0024 0	0.0018 J
PCB-72	41464-42-0	0.0081 J	0.0073 J	0.0071 J	0.0022 J	0.0024 U	0.0024 J	0.0025 J	0.0021 J
PCB-77	32598-13-3	0.015 J	0.0099 J	0.01 J	0.011 J	0.024	0.014 J	0.0025 U	0.0082 J
PCB-78	70362-49-1	0.00092 U	0.0011 U	0.00085 U	0.0005 U	0.00064 J	0.00067 U	0.00048 U	0.00061 U
PCB-79	41464-48-6	0.00092 U	0.006 J	0.0066 J	0.003 J	0.0004 J	0.0044 J	0.00048 J	0.000 J
PCB-80	33284-52-5	0.0001 J	0.00091 U	0.00073 U	0.0003 U	0.00041 J	0.00044 3 0.00057 U	0.00041 U	0.00052 U
PCB-81	70362-50-4	0.00078 U	0.00091 U	0.00073 U	0.0012 J	0.0029 J	0.00037 U	0.00041 U	0.00032 U
PCB-82		0.003 J	0.00093 U		0.063		0.00097 3	0.0013 3	
	52663-62-4			0.1		0.1			0.058 J
PCB-83/99	TTNUS863	1.1	0.95	1	0.43	0.67	0.48 J	0.3 J	0.42
PCB-84	52663-60-2	0.17	0.12	0.12	0.11	0.16	0.1	0.065	0.095
PCB-85/116/117	TTNUS799	0.3	0.25	0.28	0.14	0.22	0.16 J	0.097 J	0.15
PCB-86/87/97/109/119/125	TTNUS941	0.82	0.7	0.72	0.42	0.65	0.47	0.29	0.43
PCB-88/91	TTNUS819	0.18	0.14	0.15	0.075	0.12	0.087	0.052	0.069
PCB-89	73575-57-2	0.0037 J	0.0019 U	0.0015 U	0.0011 U	0.0013 U	0.0016 U	0.0011 U	0.0011 U
PCB-90/101/113	TTNUS619	1.9	1.7	1.8	0.95	1.4	0.98	0.6	0.86
PCB-92	52663-61-3	0.34	0.29	0.3	0.14	0.2	0.14 J	0.086 J	0.12
PCB-93/100	TTNUS864	0.014 J	0.022 J	0.0089 J	0.0056 J	0.008 J	0.0063 J	0.0026 J	0.005 J
PCB-94	73575-55-0	0.002 U	0.0019 U	0.0015 U	0.0011 U	0.0013 U	0.0016 U	0.0011 U	0.0011 U
PCB-95	38379-99-6	1	0.77	0.76	0.47	0.69	0.47 J	0.28 J	0.41
PCB-96	73575-54-9	0.0015 U	0.0014 U	0.0011 U	0.00085 U	0.00097 U	0.0012 U	0.00084 U	0.00079 U
PCB-98/102	TTNUS865	0.02 J	0.013 J	0.018 J	0.0051 J	0.011 J	0.0057 J	0.0036 J	0.006 J
PCB-103	TTNUS256	0.02 J	0.016 J	0.018 J	0.001 U	0.006 J	0.0014 U	0.00099 U	0.00092 U
PCB-104	TTNUS257	0.0013 U	0.0013 U	0.00098 U	0.00076 U	0.00086 U	0.0011 U	0.00075 U	0.0007 U
PCB-105	32598-14-4	0.53	0.49	0.54	0.26	0.46	0.3	0.18	0.28
PCB-106	70424-69-0	0.0016 U	0.0017 U	0.0014 U	0.00063 U	0.00077 U	0.0013 J	0.00064 U	0.00066 U
PCB-107	70424-68-9	0.14	0.12	0.13	0.059	0.095	0.059 J	0.042	0.054
PCB-108/124	TTNUS942	0.046 J	0.051	0.059	0.029	0.048	0.037	0.019 J	0.026
PCB-110/115	TTNUS797	1.7	1.4	1.5	0.89	1.4	0.96	0.62	0.88
PCB-111	39635-32-0	0.0044 J	0.0012 U	0.0015 J	0.0019 J	0.00081 U	0.001 U	0.0007 U	0.0021 J
PCB-112	TTNUS259	0.0043 J	0.0013 U	0.001 U	0.0027 J	0.0045 J	0.0023 J	0.00076 U	0.0014 J
PCB-114	74472-37-0	0.036	0.033	0.039 J	0.017 J	0.029 J	0.016 J	0.013 J	0.019 J
PCB-118	31508-00-6	1.6	1.5	1.6	0.77	1.3	0.87	0.57	0.78
PCB-120	68194-12-7	0.015 J	0.0086 J	0.0088 J	0.003 J	0.0044 J	0.0038 J	0.0032 J	0.0028 J
PCB-121	56558-18-0	0.0035 J	0.0012 U	0.00095 U	0.00074 U	0.00084 U	0.001 U	0.00073 U	0.00068 U
PCB-122	76842-07-4	0.0084 J	0.008 J	0.015 J	0.0059 J	0.015 J	0.0063 J	0.003 J	0.0061 J
PCB-123	65510-44-3	0.027 J	0.03 J	0.023 J	0.017 J	0.024 J	0.016 J	0.012 J	0.018 J
PCB-126	57465-28-8	0.022 J	0.0036 U	0.0026 U	0.0048 J	0.006 J	0.0039 J	0.0026 J	0.0039 J
PCB-127	39635-33-1	0.003 J	0.0017 U	0.0041 J	0.0026 J	0.0028 J	0.002 J	0.0014 J	0.0022 J
PCB-128/166	TTNUS613	0.46	0.5	0.53	0.25	0.37	0.27 J	0.16 J	0.21
PCB-129/138/160/163	TTNUSA52	4.4	5.1	5.4	2.3	3.5	2.3	1.5	1.8
PCB-130	52663-66-8	0.18	0.2	0.21	0.1	0.16	0.099	0.061	0.081
PCB-131	61798-70-7	0.024	0.018 J	0.018 J	0.01 J	0.022	0.033 0.013 J	0.001 0.009 J	0.012 J
PCB-132	38380-05-1	0.024	0.42	0.47	0.36	0.51	0.013 3	0.009 3	0.26
PCB-132	35694-04-3	0.079	0.087	0.087	0.033	0.05	0.032	0.021 J	0.022 J
PCB-134/143	TTNUS801	0.079 0.09 J	0.09	0.086 J	0.059	0.085	0.052	0.021 3	0.022 3
PCB-135/151	TTNUS805	0.09 3	0.09	0.066 J	0.059	0.065	0.053	0.036	0.046
PCB-136	38411-22-2	0.95	0.96	0.12	0.54	0.74	0.46	0.044 J	0.065
PCB-136 PCB-137	35694-06-5	0.17	0.13	0.12	0.062	0.14	0.077	0.044 J 0.048	0.065
PCB-139/140	TTNUS803	0.047	0.042 J	0.053	0.02 J	0.031	0.024	0.018 J	0.015 J
PCB-141	52712-04-6	0.59	0.7	0.77	0.38	0.58	0.34	0.22	0.24
PCB-142	41411-61-4	0.0038 U	0.0029 U	0.0038 U	0.0017 U	0.0021 U	0.0022 U	0.0015 U	0.0018 U
PCB-144	68194-14-9	0.094 J	0.12	0.12	0.064	0.092	0.059	0.036	0.042
PCB-145	74472-40-5	0.0019 U	0.0015 U	0.0019 U	0.001 U	0.0013 U	0.0014 U	0.00096 U	0.0011 U
PCB-146	51908-16-8	0.78	0.85	0.98	0.36	0.55	0.38	0.24	0.26

		Northeast Branch									
		P2-NEB-007-GTA	P2-NEB-011-GTA	P2-NEB-012-GTA	P2-NWB-001-GT1A	P2-NWB-001-GT2A	P2-NWB-002-GT1A	P2-NWB-200-GTA ¹	P2-NWB-002-GT2A		
		Largemouth bass	Largemouth bass	Largemouth bass	Largemouth bass	Largemouth bass	Largemouth bass	Largmouth Bass	Largemouth bass		
CHEMICAL	CAS#	8/3/2016	8/3/2016	8/3/2016	8/8/2016	8/8/2016	8/9/2016	8/9/2016	8/9/2016		
PCB-147/149	TTNUS804	2.4	2.5	2.8	1.4	2	1.3	0.89	0.98		
PCB-148	74472-41-6	0.0078 J	0.01 J	0.0027 U	0.0014 U	0.0018 U	0.002 U	0.0013 U	0.0015 U		
PCB-150	68194-08-1	0.0051 J	0.0042 J	0.0069 J	0.001 U	0.0012 U	0.0014 U	0.00093 U	0.0011 U		
PCB-152	68194-09-2	0.0019 U	0.0015 U	0.0019 U	0.001 U	0.0013 U	0.0014 U	0.00095 U	0.0011 U		
PCB-153/168	TTNUS615	4.8	5.5	6	2.3	3.5	2.3	1.4	1.5		
PCB-154	TTNUS860	0.054 J	0.068	0.052	0.012 J	0.0085 J	0.012 J	0.0041 J	0.0099 J		
PCB-155	33979-03-2	0.0034 J	0.0014 U	0.0018 U	0.00097 U	0.0012 U	0.0014 U	0.00091 U	0.001 U		
PCB-156/157	TTNUS523	0.31	0.31	0.35	0.18	0.28	0.19	0.12	0.14		
PCB-158	74472-42-7	0.32	0.37	0.4	0.18	0.28	0.18 J	0.11 J	0.14		
PCB-159	39635-35-3	0.02 J	0.02 J	0.021 J	0.0011 U	0.019 J	0.013 J	0.0064 J	0.0097 J		
PCB-161	74472-43-8	0.0025 U	0.0019 U	0.0025 U	0.0011 U	0.0014 U	0.0015 U	0.001 U	0.0012 U		
PCB-162	39635-34-2	0.015 J	0.015 J	0.018 J	0.0011 U	0.012 J	0.0072 J	0.0053 J	0.0074 J		
PCB-164	74472-45-0	0.21	0.24	0.25	0.12	0.18	0.12	0.074	0.088		
PCB-165	74472-46-1	0.0034 J	0.0034 J	0.0027 U	0.0012 U	0.0015 U	0.0016 U	0.0011 U	0.0014 J		
PCB-167	52663-72-6	0.14	0.17	0.18	0.00079 U	0.13	0.092	0.058	0.062		
PCB-169	32774-16-6	0.0085 J	0.0098 J	0.011 J	0.0037 J	0.0042 J	0.004 J	0.0024 J	0.0036 J		
PCB-170	35065-30-6	0.98	1.3	1.3	0.56	0.9	0.56	0.36	0.36		
PCB-171/173	TTNUS806	0.26	0.33	0.36	0.16	0.24	0.15 J	0.096 J	0.097		
PCB-172	52663-74-8	0.19	0.26	0.26	0.13	0.2	0.14 J	0.088 J	0.074		
PCB-174	38411-25-5	0.67	0.73	0.8	0.49	0.7	0.46	0.3	0.28		
PCB-175	40186-70-7	0.039	0.046	0.049	0.022	0.037	0.022 J	0.013 J	0.011 J		
PCB-175	52663-65-7	0.059	0.052	0.054 J	0.022	0.068	0.022 3	0.023	0.0113		
PCB-176		0.059	0.052	0.054 3	0.049	0.49		0.023	0.024		
	52663-70-4		0.56			0.49	0.33				
PCB-178	52663-67-9	0.26	0.3	0.3 0.18	0.14 0.15	0.2	0.14 J 0.13	0.09 J 0.085	0.089		
PCB-179	52663-64-6	0.21							0.084		
PCB-180/193	TTNUS617	2.6	3.2	3.5	1.6	2.6	1.7	1.1 0.0044 J	0.96		
PCB-181	74472-47-2	0.0069 J	0.0092 J	0.012 J	0.0048 J	0.01 J	0.0066 J	0.0011	0.0012 U		
PCB-182	60145-23-5	0.0042 J	0.014 J	0.011 J	0.0043 J	0.0045 J	0.0042 J		0.0026 J		
PCB-183/185	TTNUS807	0.74	0.88	0.98	0.42	0.68	0.42	0.27	0.26		
PCB-184	74472-48-3	0.0015 U	0.0014 U	0.0015 U	0.00087 U	0.0012 U	0.0027 J	0.00089 U	0.0011 J		
PCB-186	74472-49-4	0.0014 U	0.0013 U	0.0014 U	0.00085 U	0.0012 U	0.0012 U	0.00086 U	0.00096 U		
PCB-187	52663-68-0	2	2.6	2.7	1.2	1.9	1.5	0.95	0.85		
PCB-188	TTNUS272	0.0074 J	0.0045 J	0.0056 J	0.00075 U	0.0011 U	0.0011 U	0.0008 U	0.00085 U		
PCB-189	39635-31-9	0.033	0.042	0.046	0.017 J	0.031	0.023 J	0.013 J	0.011 J		
PCB-190	41411-64-7	0.22	0.28 J	0.35	0.14	0.18	0.13 J	0.079 J	0.078		
PCB-191	74472-50-7	0.05	0.058	0.046 J	0.029	0.043	0.026	0.018 J	0.018 J		
PCB-192	74472-51-8	0.0015 U	0.0014 U	0.0015 U	0.0009 U	0.0013 U	0.0013 U	0.00091 U	0.001 U		
PCB-194	35694-08-7	0.42	0.56	0.6	0.3	0.47	0.34	0.21	0.2		
PCB-195	52663-78-2	0.21	0.25	0.27	0.11	0.18	0.12	0.076	0.074		
PCB-196	42740-50-1	0.17 J	0.24	0.24	0.11	0.19	0.13 J	0.082 J	0.088		
PCB-197	TTNUS861	0.017 J	0.017 J	0.021 J	0.0078 J	0.012 J	0.0084 J	0.0048 J	0.0054 J		
PCB-198/201	TTNUSA53	0.54	0.66	0.7	0.36	0.57	0.46	0.29	0.29		
PCB-199	52663-75-9	0.023	0.021 J	0.022 J	0.017 J	0.031	0.018 J	0.012 J	0.015 J		
PCB-200	52663-73-7	0.048	0.055	0.05	0.025	0.036	0.023 J	0.017 J	0.017 J		
PCB-202	2136-99-4	0.097	0.1	0.1	0.061	0.09	0.068	0.043	0.046		
PCB-203	52663-76-0	0.32	0.39	0.46	0.22	0.33	0.26	0.16	0.16		
PCB-204	74472-52-9	0.00086 U	0.00077 U	0.00076 U	0.00053 U	0.00079 U	0.00079 U	0.00056 U	0.00052 U		
PCB-205	74472-53-0	0.028	0.032	0.038	0.016 J	0.021 J	0.019 J	0.011 J	0.0089 J		
PCB-206	40186-72-9	0.14 J	0.17	0.18	0.15	0.21	0.17	0.12	0.14		
PCB-207	52663-79-3	0.02 J	0.017 J	0.022 J	0.012 J	0.02 J	0.014 J	0.0069 J	0.014 J		
PCB-208	52663-77-1	0.056	0.05	0.048	0.048	0.059	0.052	0.03 J	0.046		
PCB-209	2051-24-3	0.05	0.043 J	0.055	0.046	0.049 J	0.049	0.032	0.052		
Total PCBs	1336-36-3	41	43	46	22	35	23	15	17		
PCB-TEQ	PCB-TEQ	2.54E-03	3.72E-04	4.14E-04	6.30E-04	7.97E-04	5.57E-04	3.62E-04	5.38E-04		

¹ Duplicate of P2-NWB-002-GT1A.

Source: Tetra Tech. 2018. Draft Remedial Investigation Report. Anacostia Riv Sediment Project. Washington D.C. Prepared for District of Columbia, Departur Energy and Environment. Prepared by Tetra Tech, Sterling, VA. March 30.

		1		ining Ru, N.E., Was	Northwest B	ranch			
		P2-NWB-002-GT3A	P2-NWB-003-GTA	P2-NWB-004-GT1A	P2-NWB-004-GT2A	P2-NWB-013-GT1A	P2-NWB-013-GT2A	P2-NWB-013-GT3A	P2-NWB-014-GTA
		Largemouth bass	Northern snakehead	Largemouth bass	Largemouth bass	Largemouth bass	Largemouth bass	Largemouth bass	Smallmouth bass
CHEMICAL	CAS#	8/9/2016	8/16/2016	8/12/2016	8/12/2016	8/10/2016	8/10/2016	8/10/2016	8/4/2016
Dioxins and Furans	ICAG#	0/3/2010	0/10/2010	0/12/2010	0/12/2010	0/10/2010	0/10/2010	0/10/2010	0/4/2010
	10000 07 0	0.00031 U	0.004.11	0.00004.11	0.0004 U	0.00034 U	0.0007.11	0.00039 U	0.0005.11
1,2,3,4,6,7,8,9-OCDD 1,2,3,4,6,7,8,9-OCDF	3268-87-9 39001-02-0	0.00031 U 0.000092 U	0.001 U 0.00002 U	0.00034 U 0.000081 U	0.0004 U 0.00012 U	0.00034 U 0.000015 U	0.0007 U 0.00052 U	0.00039 U 0.000092 U	0.0005 U 0.00021 U
		0.000092 U	0.00002 U	0.000081 U		0.000015 U	0.00052 U	0.000092 U	0.00021 U
1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF	35822-46-9 67562-39-4	0.000062 U 0.000092 J	0.00015 J 0.000047 U	0.000019 U	0.000065 U 0.000022 U	0.000087 J 0.000029 U	0.00014 J 0.00015 U	0.000022 U 0.000033 U	0.000049 U 0.000035 U
1,2,3,4,7,8,9-HPCDF	55673-89-7	0.00092 J	0.000047 U	0.000041 U	0.000022 U	0.000029 U 0.000043 U	0.00013 U	0.000033 U 0.000049 U	0.000035 U
1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD	39227-28-6	0.00011 U	0.000043 U	0.000062 U	0.000032 U 0.000015 U	0.000043 U 0.000021 U	0.000034 U 0.00002 U	0.000049 U	0.000048 U 0.000025 U
1,2,3,4,7,8-HXCDF		0.00008 U	0.00002 U	0.00018 U	0.000015 U	0.000021 U	0.00002 U	0.00002 U	0.000025 U
1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD	70648-26-9 57653-85-7	0.000033 U	0.00016 J 0.000061 J	0.00012 U	0.000094 U 0.000015 U	0.00014 J 0.000021 U	0.00016 J 0.000021 U	0.00015 J 0.000021 U	0.00013 U 0.000026 U
	57117-44-9	0.00008 U	0.000061 J	0.000017 U	0.00015 U	0.000021 U	0.000021 U	0.00021 U	0.000026 U
1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD	19408-74-3	0.000036 U	0.0001 J 0.000019 U	0.00017 J	0.00017 J 0.000014 U	0.00052 J 0.000019 U	0.00047 J 0.000019 U	0.00027 J 0.000019 U	0.00022 J 0.000024 U
1,2,3,7,8,9-HXCDF	72918-21-9	0.000041 U	0.000026 U	0.000019 U	0.000016 U	0.000024 U	0.000025 U	0.000024 U	0.000026 U
1,2,3,7,8-PECDD	40321-76-4	0.000092 J	0.00023 U	0.000029 U	0.000027 U	0.000025 U	0.000024 U	0.00013 U	0.000029 U
1,2,3,7,8-PECDF	57117-41-6	0.000052 U	0.000024 U	0.000015 U	0.000013 U	0.000022 U	0.000022 U	0.00002 U	0.00003 U
2,3,4,6,7,8-HXCDF	60851-34-5	0.000035 U	0.000021 U	0.000015 U	0.000013 U	0.000018 U	0.000021 U	0.00002 U	0.000023 U
2,3,4,7,8-PECDF	57117-31-4	0.00005 U	0.00014 U	0.000014 U	0.000047 U	0.00002 U	0.000019 U	0.000072 U	0.000026 U
2,3,7,8-TCDD	1746-01-6	0.000075 U	0.000015 U	0.000024 J	0.000048 J	0.000028 J	0.000033 J	0.000012 U	0.000025 U
2,3,7,8-TCDF	51207-31-9	0.000098 U	0.000023 U	0.000083 J	0.000089 J	0.00022 J	0.00019 J	0.000093 J	0.000031 U
TCDD-TEQ (HH)	TCDD-TEQ	9.29E-05	1.24E-04	4.93E-05	7.39E-05	1.17E-04	1.16E-04	5.13E-05	2.20E-05
Metals									
ALUMINUM	7429-90-5	0.58 U	0.49 U	0.55 U	0.58 U	0.5 U	0.52 U		0.54 U
ANTIMONY	7440-36-0	0.029 U	0.025 U	0.028 U	0.029 U	0.033 U	0.026 U		0.058 U
ARSENIC	7440-38-2	0.068 J	0.027 J	0.074 J	0.059 J	0.073 J	0.041 J		0.1
BARIUM	7440-39-3	0.052 J	0.14 J	0.079 J	0.11 J	0.12 J	0.085 J		0.11 J
BERYLLIUM	7440-41-7	0.0075 U	0.0064 U	0.0072 U	0.0075 U	0.0065 U	0.0067 U		0.007 U
CADMIUM	7440-43-9	0.013 U	0.011 U	0.013 U	0.013 U	0.011 U	0.012 U		0.012 U
CALCIUM	7440-70-2	860	1200 J	950 J	1800 J	900 J	1300 J		870
CHROMIUM	7440-47-3	1.2 J	0.62	2.1	1.6	0.88	0.8		1.4
COBALT	7440-48-4	0.011 U	0.012 J	0.015 J	0.0066 J	0.013 J	0.0062 J		0.024 J
COPPER	7440-50-8	0.27	0.32	0.29	0.32	0.32	0.33		0.32
IRON	7439-89-6	11	9	15	14	7.9	8.1		10
LEAD	7439-92-1	0.012 J	0.0078 U	0.0088 U	0.0091 U	0.0078 U	0.0081 U		0.0085 U
MAGNESIUM	7439-95-4	320	290	320	330	300	330		330
MANGANESE	7439-96-5	0.27 U	0.39 J	0.34 J	0.35 J	0.28 J	0.39 J		0.3 U
MERCURY	7439-97-6	0.32	0.34 J	0.2 J	0.18 J	0.076 U	0.16 J		0.5 J-
NICKEL	7440-02-0	0.33	0.12	0.29	0.086 J	0.14	0.16		0.4
POTASSIUM	7440-09-7	3900	3800	4100	4100	3900	4300		4200
SELENIUM	7782-49-2	0.32 J	0.33 J	0.24 J	0.24 J	0.17 J	0.14 J		0.31 J
SILVER	7440-22-4	0.0082 U	0.007 U	0.0079 U	0.0082 U	0.0071 U	0.0073 U		0.0077 U
SODIUM	7440-23-5	690	600	630	620	520	530		610
THALLIUM	7440-28-0	0.0026 U	0.0041 J	0.0029 J	0.0033 J	0.0043 J	0.0024 J		0.006 J
VANADIUM	7440-62-2	0.07 U	0.06 U	0.067 U	0.07 U	0.064 J	0.063 U		0.065 U
ZINC	7440-66-6	6.9	10	8.9	8.4	12	7.7		9.7
Semivolatile Organic Compounds	1				***				***
1,2,4-TRICHLOROBENZENE	120-82-1	15 U	15 U						15 U
1,2-DIPHENYLHYDRAZINE	122-66-7	34 U	34 U				-		34 U
2,2'-OXYBIS(1-CHLOROPROPANE)	108-60-1	5.8 UJ	5.7 UJ						5.7 U
2,4,6-TRICHLOROPHENOL	88-06-2	40 U	40 U						39 U
2,4-DICHLOROPHENOL	120-83-2	5.4 U	5.3 U						5.3 U
2,4-DIMETHYLPHENOL	105-67-9	42 U	41 U				-		41 U
2,4-DINITROPHENOL	51-28-5	320 UJ	320 U				-		310 U
2,4-DINITROTOLUENE	121-14-2	22 U	21 U				-		21 U
2,6-DINITROTOLUENE	606-20-2	28 U	27 U						27 U
2-CHLORONAPHTHALENE	91-58-7	5.6 U	5.5 U						5.5 U
2-CHLOROPHENOL	95-57-8	22 U	22 U						22 U
2-NITROPHENOL	88-75-5	29 U	22 U						29 U
	91-94-1	28 U	28 UR						28 U
3 3'-DICHI OROBENZIDINE									
3,3'-DICHLOROBENZIDINE 4,6-DINITRO-2-METHYLPHENOL	534-52-1	110 U	110 U						110 U

				ining Rd, N.E., Was	Northwest B	ranch			
		P2-NWB-002-GT3A	P2-NWB-003-GTA	P2-NWB-004-GT1A		P2-NWB-013-GT1A	P2-NWB-013-GT2A	P2-NWB-013-GT3A	P2-NWB-014-GTA
		Largemouth bass	Northern snakehead	Largemouth bass	Largemouth bass	Largemouth bass	Largemouth bass	Largemouth bass	Smallmouth bass
CHEMICAL	CAS#	8/9/2016	8/16/2016	8/12/2016	8/12/2016	8/10/2016	8/10/2016	8/10/2016	8/4/2016
4-CHLORO-3-METHYLPHENOL	59-50-7	25 U	24 U		0/12/2010				24 U
4-CHLOROPHENYL PHENYL ETHER	7005-72-3	30 U	24 U 29 U	-					24 U
4-NITROPHENOL	100-02-7	97 U	29 U						29 U 96 UJ
ACENAPHTHENE	83-32-9	5.1 U	5.1 U						5.1 U
ACENAPHTHENE	208-96-8	6.1 U	6.1 U	-					6 U
ANTHRACENE	120-12-7	5.2 U	5.2 U						5.2 U
BENZIDINE	92-87-5	1100 UJ	1100 UR						1100 U
BENZO(A)ANTHRACENE	56-55-3	6.7 U	6.6 U						6.6 U
BENZO(A)PYRENE	50-32-8	5.3 U	5.3 U						5.3 U
BENZO(B)FLUORANTHENE	205-99-2	8.4 U	8.3 U						8.3 U
BENZO(G,H,I)PERYLENE	191-24-2	5.3 U	5.3 U						5.2 U
BENZO(K)FLUORANTHENE	207-08-9	11 U	11 U						11 U
BENZOIC ACID	65-85-0	670 J	640 J						650 J
BIS(2-CHLOROETHOXY)METHANE	111-91-1	18 U	17 U	-					17 U
BIS(2-CHLOROETHOXT)METHANE BIS(2-CHLOROETHYL)ETHER	111-44-4	7.2 U	7.1 U	-					7.1 U
BIS(2-ETHYLHEXYL)PHTHALATE	117-81-7	43 U	43 U						43 U
BUTYL BENZYL PHTHALATE	85-68-7	36 U	36 U		-				36 U
CHRYSENE	218-01-9	6.4 U	6.3 U	-	-				6.3 U
DIBENZO(A,H)ANTHRACENE	53-70-3	5.9 U	5.9 U						5.9 U
DIETHYL PHTHALATE	84-66-2	5.9 U	29 U						5.9 U 46 J
DIMETHYL PHTHALATE	131-11-3	29 U	29 U	-	-				29 U
DI-N-BUTYL PHTHALATE	84-74-2	33 U	33 U						29 U
DI-N-BOTTL PHTHALATE	117-84-0	28 UJ	28 UJ						270 J
	206-44-0	5.7 U	5.7 U		-				5.6 U
FLUORANTHENE FLUORENE	206-44-0 86-73-7								
		7 U	7 U		ļ				6.9 U
HEXACHLOROBENZENE	118-74-1	5.7 U	5.6 U		-				5.6 U
HEXACHLOROBUTADIENE	87-68-3	6 U	5.9 U						5.9 U
HEXACHLOROCYCLOPENTADIENE	77-47-4	29 UJ	29 U						28 U
HEXACHLOROETHANE	67-72-1	19 U	19 U						19 U
INDENO(1,2,3-CD)PYRENE ISOPHORONE	193-39-5	5.5 U	5.5 U						5.4 U
	78-59-1	20 U	20 U						20 U
NAPHTHALENE	91-20-3	4.6 U	4.6 U 22 U		-				4.5 U
NITROBENZENE	98-95-3	22 U							22 U
N-NITROSODIMETHYLAMINE	62-75-9	23 U	23 UJ						23 U
N-NITROSO-DI-N-PROPYLAMINE	621-64-7	6.3 U	6.2 U						6.2 U
N-NITROSODIPHENYLAMINE	86-30-6	25 U	25 U						24 U
PENTACHLOROPHENOL	87-86-5	24 U	24 U						24 U
PHENANTHRENE	85-01-8	8.5 U	8.4 U		-				8.4 U
PHENOL PYRENE	108-95-2	6.3 U 5.4 U	6.3 U 5.4 U						6.2 U
	129-00-0	5.4 U	5.4 U	-		-	-	-	5.3 U
Pesticides 4,4'-DDD	72-54-8	0.084 U	0.6 J	I	0.085 U	0.084 U	0.084 U	0.18 U	0.043 U
-									
4,4'-DDE 4,4'-DDT	72-55-9	0.28 J	1.9 0.084 UJ		1.1 0.085 U	1.5 0.084 U	1.1 0.084 U	1.2 J 0.18 U	0.37 J 0.043 U
	50-29-3	0.084 U							
ALDRIN	309-00-2	0.087 U	0.087 U	-	0.088 U	0.087 U	0.087 U	0.19 U	0.044 U
ALPHA-BHC	319-84-6	0.24 U	0.24 U		0.25 U	0.24 U	0.24 U	0.53 U	0.12 U
BETA-BHC	319-85-7	0.18 U	0.18 U		0.19 UJ	0.19 UJ	0.19 UJ	0.4 UJ	0.094 U
CHLORDANE (ALL)	CHLORDANE_ALL	6.3 J	22		27	39 J-	26	31	8.9
DELTA-BHC	319-86-8	0.29 U	0.29 U		0.3 U	0.3 U	0.3 U	0.64 U	0.15 U
DIELDRIN	60-57-1	0.078 U	2.9	-	1.6	3.4	2	1.4 J	0.44 J
ENDOSULFAN I	959-98-8	0.052 U	0.052 U		0.053 U	0.053 U	0.053 U	0.11 U	0.027 U
ENDOSULFAN II	33213-65-9	0.25 U	0.25 U	-	0.26 U	0.25 U	0.25 U	0.55 U	0.13 U
ENDOSULFAN SULFATE	1031-07-8	0.1 U	0.1 U		0.11 U	0.11 U	0.11 U	0.23 U	0.053 U
ENDRIN	72-20-8	0.24 U	0.24 U		0.24 U	0.24 U	0.24 U	0.52 U	0.12 U
ENDRIN ALDEHYDE	7421-93-4	0.24 U	0.24 U		0.25 U	0.24 U	0.24 U	0.53 U	0.12 U
GAMMA-BHC (LINDANE)	58-89-9	0.17 U	0.17 U		0.17 U	0.17 U	0.17 U	0.37 U	0.086 U
HEPTACHLOR	76-44-8	0.071 U	0.071 U		0.072 U	0.072 U	0.072 U	0.15 U	0.036 U
HEPTACHLOR EPOXIDE	1024-57-3	0.099 U	1.3 J		0.86 J	3.5	2.3	1.3 J	0.32 J
TOXAPHENE	8001-35-2	27 U	27 U		27 U	27 U	27 U	59 U	14 U

			Northwest Branch								
		P2-NWB-002-GT3A	P2-NWB-003-GTA	P2-NWB-004-GT1A		P2-NWB-013-GT1A	P2-NWB-013-GT2A	P2-NWB-013-GT3A	P2-NWB-014-GTA		
		Largemouth bass	Northern snakehead	Largemouth bass	Largemouth bass	Largemouth bass	Largemouth bass	Largemouth bass	Smallmouth bass		
CHEMICAL	CAS#	8/9/2016	8/16/2016	8/12/2016	8/12/2016	8/10/2016	8/10/2016	8/10/2016	8/4/2016		
Aroclors	10.10.	5,0,2010	0,10,2010	0,12,20.0	1 0/12/2010	1 31.11-1.1					
AROCLOR-1016	12674-11-2	3.8 U	3.8 U						0.38 U		
AROCLOR-1221	11104-28-2	6 U	6 U	-					0.6 U		
AROCLOR-1232	11141-16-5	2.1 U	2.1 U						0.21 U		
AROCLOR-1242	53469-21-9	3 U	3.1 U			-			0.31 U		
AROCLOR-1248	12672-29-6	1.9 U	1.9 U						0.19 U		
AROCLOR-1254	11097-69-1	3 U	3.1 U						4.8		
AROCLOR-1260	11096-82-5	2.8 U	25						3		
Total Aroclors	TotalAroclor	ND	25	NA	NA	NA	NA	NA	7.8		
PCB Congeners											
PCB-1	2051-60-7	0.00024 U	0.00051 UJ	0.00019 U	0.0003 U	0.00026 U	0.0038 J	0.00028 U	0.00023 U		
PCB-2	2051-61-8	0.00026 U	0.00061 UJ	0.00022 U	0.00036 U	0.0003 U	0.0057 J	0.00032 U	0.00026 U		
PCB-3	2051-62-9	0.00027 U	0.00074 UJ	0.00088 U	0.0015 U	0.0005 J	0.003 J	0.00038 U	0.00031 U		
PCB-4	TTNUS524	0.0042 U	0.0052 J	0.0038 J	0.0039 J	0.0065 J	0.0049 J	0.0042 J	0.0031 U		
PCB-5	16605-91-7	0.0015 U	0.0061 UJ	0.0017 U	0.0021 U	0.0016 U	0.0015 U	0.0018 U	0.0025 U		
PCB-6	25569-80-6	0.001 J	0.0058 UJ	0.0027 J	0.0019 U	0.0024 J	0.0031 J	0.0017 U	0.0023 U		
PCB-7	33284-50-3	0.0014 U	0.0059 UJ	0.0016 U	0.002 U	0.0015 U	0.0014 U	0.0018 U	0.0024 U		
PCB-8	34883-43-7	0.0043 U	0.0056 UJ	0.0067 J	0.0051 J	0.0087 J	0.0076 U	0.0074 U	0.007 U		
PCB-9	34883-39-1	0.0015 U	0.006 UJ	0.0017 U	0.0014 J	0.0014 J	0.0026 J	0.0018 U	0.0024 U		
PCB-10	33146-45-1	0.0016 U	0.0064 UJ	0.0018 U	0.0022 U	0.0016 U	0.002 J	0.0016 J	0.0026 U		
PCB-11	2050-67-1	0.0049 U	0.0093 U	0.0091 U	0.0075 U	0.0089 U	0.011 U	0.007 U	0.011 U		
PCB-12/13	TTNUS800	0.0014 U	0.0036 J	0.0016 U	0.0025 J	0.0015 U	0.0014 U	0.0017 U	0.0023 U		
PCB-14	34883-41-5	0.0012 U	0.005 UJ	0.0014 U	0.0017 U	0.0013 U	0.0012 U	0.0015 U	0.002 U		
PCB-15	2050-68-2	0.00085 J	0.0067 UJ	0.0014 J	0.0037 J	0.0031 U	0.0062 U	0.0034 U	0.0043 U		
PCB-16	38444-78-9	0.0034 J	0.0031 UJ	0.0079 J	0.0039 J	0.011 J	0.0092 J	0.0094 J	0.007 J		
PCB-17 PCB-18/30	37680-66-3 TTNUS616	0.0074 J 0.015 J	0.0026 UJ 0.0023 UJ	0.011 J 0.027 J	0.01 J 0.022 J	0.016 J 0.046 J	0.018 J 0.046 J	0.01 J 0.026 J	0.01 J 0.016 J		
PCB-19/30	38444-73-4	0.0082 U	0.0023 UJ	0.027 J	0.022 J 0.0012 U	0.046 J 0.0081 J	0.046 J 0.0093 J	0.026 J 0.0072 J	0.00094 U		
PCB-19 PCB-20/28	TTNUS519	0.00082 0	0.0032 03 0.76 J	0.001 0	0.0012 0	0.0061 3	0.0093 3	0.0072 3	0.00094 0		
PCB-20/26 PCB-21/33	TTNUS810	0.0079 J	0.0054 J	0.012 J	0.014 J	0.25 0.018 J	0.23 0.019 J	0.014 J	0.0077 J		
PCB-22	38444-85-8	0.015 J	0.026 J	0.024 J	0.014 3	0.07	0.019 3	0.038	0.0077 J		
PCB-23	55720-44-0	0.00043 U	0.026 J	0.00056 U	0.00066 U	0.00057 U	0.00067 U	0.00063 U	0.00074 U		
PCB-24	55702-45-9	0.00046 U	0.0022 UJ	0.00030 U	0.0024 J	0.00007 U	0.0011 J	0.00075 U	0.00065 U		
PCB-25	55712-37-3	0.0028 J	0.0054 J	0.0058 J	0.0024 J	0.012 J	0.011 J	0.0074 J	0.0028 J		
PCB-26/29	TTNUS811	0.0075 J	0.015 J	0.011 J	0.015 J	0.027	0.028	0.015 J	0.0089 J		
PCB-27	38444-76-7	0.00049 U	0.0019 UJ	0.0017 J	0.0018 J	0.0061 J	0.0086 J	0.004 J	0.0012 J		
PCB-31	16606-02-3	0.032 J	0.016 J	0.05	0.055	0.12	0.11	0.063	0.033 J		
PCB-32	38444-77-8	0.0052 U	0.0019 UJ	0.011 J	0.011 J	0.022 J	0.029	0.019 J	0.011 J		
PCB-34	TTNUS277	0.00043 U	0.0016 UJ	0.00055 U	0.00065 U	0.00056 U	0.0013 J	0.00062 U	0.00072 U		
PCB-35	37680-69-6	0.00044 U	0.0016 UJ	0.00057 U	0.00067 U	0.00058 U	0.00068 U	0.00064 U	0.00074 U		
PCB-36	38444-87-0	0.00042 U	0.0016 UJ	0.00055 U	0.00065 U	0.00056 U	0.00065 U	0.00062 U	0.00072 U		
PCB-37	38444-90-5	0.0041 J	0.0016 UJ	0.0058 J	0.0045 J	0.014 J	0.01 J	0.0082 J	0.0036 U		
PCB-38	53555-66-1	0.00045 U	0.0017 UJ	0.00058 U	0.00068 U	0.0011 J	0.00069 U	0.00065 U	0.00076 U		
PCB-39	38444-88-1	0.0004 U	0.0015 UJ	0.00052 U	0.00061 U	0.00052 U	0.00061 U	0.00058 U	0.00067 U		
PCB-41/40/71	TTNUS813	0.028	0.0039 UJ	0.036	0.039 J	0.063	0.063	0.042	0.025		
PCB-42	36559-22-5	0.021 J	0.028 J	0.029 J	0.035	0.065	0.061	0.038	0.023 J		
PCB-43/73	TTNUSA51	0.0034 J	0.0037 UJ	0.0056 J	0.0054 J	0.0046 J	0.006 J	0.0052 J	0.001 U		
PCB-44/47/65	TTNUS618	0.1	0.55 J	0.13	0.17	0.28	0.29	0.16	0.076 J		
PCB-45/51	TTNUS814	0.0098 J	0.0041 UJ	0.013 J	0.018 J	0.027	0.028	0.013 J	0.0081 J		
PCB-46	41464-47-5	0.0021 J	0.0048 UJ	0.0025 J	0.0024 J	0.0055 J	0.0034 J	0.0015 U	0.003 J		
PCB-48	70362-47-9	0.0088 J	0.0039 UJ	0.016 J	0.016 J	0.026	0.022 J	0.018 J	0.0065 J		
PCB-49/69	TTNUS818	0.072	0.041 J	0.092	0.12	0.19	0.19	0.11	0.061		
PCB-50/53	TTNUS815	0.0078 J	0.0038 UJ	0.0085 J	0.009 J	0.013 J	0.015 J	0.011 J	0.0038 J		
PCB-52	35693-99-3	0.2	0.63 J	0.25	0.29	0.49	0.52	0.3	0.15		
PCB-54	15968-05-5	0.00088 U	0.0037 UJ	0.0012 U	0.0014 U	0.0011 U	0.0012 U	0.0012 U	0.00091 U		
PCB-55	74338-24-2	0.0031 J	0.0099 J	0.0052 J	0.009 J	0.0087 J	0.0094 J	0.0031 J	0.0036 J		
PCB-56	41464-43-1	0.028	0.015 J	0.041	0.047	0.078	0.076 J	0.042	0.024 J		
PCB-57	70424-67-8	0.00066 U	0.0029 UJ	0.0009 U	0.001 U	0.00084 U	0.0024 J	0.00091 U	0.00079 U		
PCB-58	41464-49-7	0.00095 J	0.0029 UJ	0.0023 J	0.003 J	0.0019 J	0.0011 J	0.0026 J	0.00079 U		
PCB-59/62/75	TTNUS816	0.0086 J	0.051 J	0.015 J	0.019 J	0.03	0.026	0.014 J	0.0098		

	3400 Benning Rd, N.E., Washington DC 20019 Northwest Branch								
		P2-NWB-002-GT3A	P2-NWB-003-GTA	P2-NWB-004-GT1A		P2-NWB-013-GT1A	P2-NWB-013-GT2A	P2-NWB-013-GT3A	P2-NWB-014-GTA
		Largemouth bass	Northern snakehead	Largemouth bass	Largemouth bass	Largemouth bass	Largemouth bass	Largemouth bass	Smallmouth bass
CHEMICAL	CAS#	8/9/2016	8/16/2016	8/12/2016	8/12/2016	8/10/2016	8/10/2016	8/10/2016	8/4/2016
PCB-60	33025-41-1	0.033	0.22 J	0.045	0.044 J	0.075	0.077	0.044 J	0.031
PCB-61/70/74/76	TTNUS817	0.19	0.67 J	0.24	0.28	0.47	0.51	0.27	0.15
PCB-63	74472-34-7	0.005 J	0.045 J	0.0073 J	0.0093 J	0.012 J	0.011 J	0.0067 J	0.0051 J
PCB-64	52663-58-8	0.052	0.13 J	0.08	0.089	0.14	0.14	0.076	0.041
PCB-66	32598-10-0	0.12	0.97 J	0.15	0.2	0.28	0.29	0.18	0.099
PCB-67	73575-53-8	0.00059 U	0.0026 UJ	0.0029 J	0.0032 J	0.0051 J	0.0071 J	0.0035 J	0.00071 U
PCB-68	73575-52-7	0.0006 U	0.012 J	0.00081 U	0.0019 J	0.0028 J	0.0027 J	0.0013 J	0.00072 U
PCB-72	41464-42-0	0.0025 J	0.0066 J	0.0028 J	0.0023 J	0.0035 J	0.0046 J	0.00088 U	0.0016 J
PCB-77	32598-13-3	0.0078 J	0.0084 J	0.011 J	0.011 J	0.022 J	0.024	0.012 J	0.007 J
PCB-78	70362-49-1	0.00068 U	0.003 UJ	0.00093 U	0.0011 U	0.00087 U	0.00075 J	0.00094 U	0.00082 U
PCB-79	41464-48-6	0.0031 J	0.0051 J	0.0032 J	0.0033 J	0.006 J	0.0041 J	0.0036 J	0.0022 J
PCB-80	33284-52-5	0.00058 U	0.0026 UJ	0.00079 U	0.00091 U	0.00074 U	U 8000.0	0.0008 U	0.0007 U
PCB-81	70362-50-4	0.00061 U	0.0026 UJ	0.00082 U	0.00093 U	0.0028 J	0.0022 J	0.0029 J	0.00073 U
PCB-82	52663-62-4	0.049	0.031 J	0.062	0.089	0.11	0.13	0.077	0.033 J
PCB-83/99	TTNUS863	0.31	1.1 J	0.39	0.48	0.72	0.78	0.48	0.25
PCB-84	52663-60-2	0.061	0.023 J	0.074 J	0.11	0.17	0.18	0.089 J	0.057
PCB-85/116/117	TTNUS799	0.1	0.34 J	0.13	0.17	0.24	0.26	0.16	0.082
PCB-86/87/97/109/119/125	TTNUS941	0.3	0.33 J	0.38	0.45	0.74	0.79	0.46	0.24
PCB-88/91	TTNUS819	0.058	0.05 J	0.057 J	0.084	0.12	0.13	0.079	0.033 J
PCB-89	73575-57-2	0.0015 U	0.0063 UJ	0.002 U	0.0022 U	0.0018 U	0.0022 U	0.0019 U	0.0015 U
PCB-90/101/113 PCB-92	TTNUS619 52663-61-3	0.65 0.084 J	1.2 J 0.34 J	0.73 0.11	0.89 0.11 J	1.3	1.4 0.21	0.88 0.14	0.44 0.064
PCB-92 PCB-93/100	52663-61-3 TTNUS864	0.084 J 0.0052 J	0.0056 UJ	0.0042 J	0.11 J 0.0083 J	0.002 J	0.21 0.007 J	0.14 0.0016 U	0.064 0.0014 U
PCB-94	73575-55-0	0.0052 J 0.0015 U	0.0068 UJ	0.0042 J	0.0083 J 0.0022 U	0.002 J 0.0018 U	0.007 J	0.0018 U	0.0014 U
PCB-95	38379-99-6	0.0015 0	0.0063 UJ	0.002 0	0.0022 0	0.0018 0	0.0027 3	0.0019 0	0.0015 0
PCB-96	73575-54-9	0.0011 U	0.0047 UJ	0.0015 U	0.0016 U	0.0014 U	0.0016 U	0.0014 U	0.0012 U
PCB-98/102	TTNUS865	0.0025 J	0.0054 UJ	0.0013 U	0.0070 J	0.0034 J	0.0096 J	0.0014 U	0.0012 U
PCB-103	TTNUS256	0.0022 J	0.0055 UJ	0.0011 U	0.0038 J	0.0016 U	0.004 J	0.0016 U	0.0014 U
PCB-104	TTNUS257	0.00097 U	0.0042 UJ	0.0014 U	0.0014 U	0.0012 U	0.0014 U	0.0012 U	0.001 U
PCB-105	32598-14-4	0.2	0.69 J	0.26	0.31	0.45	0.52	0.32	0.16
PCB-106	70424-69-0	0.00088 U	0.0034 UJ	0.0012 U	0.0013 U	0.001 U	0.0032 J	0.001 U	0.0014 U
PCB-107	70424-68-9	0.038	0.15 J	0.059	0.074	0.1	0.11	0.069	0.034 J
PCB-108/124	TTNUS942	0.021 J	0.016 J	0.028	0.034	0.047	0.055	0.033	0.017 J
PCB-110/115	TTNUS797	0.61	1.3 J	0.75	0.93	1.5	1.5	0.96	0.45
PCB-111	39635-32-0	0.00091 U	0.0061 J	0.0013 U	0.0013 U	0.0026 J	0.0014 U	0.0012 U	0.00097 U
PCB-112	TTNUS259	0.00099 U	0.0071 J	0.0014 U	0.0015 U	0.0048 J	0.0018 J	0.0025 J	0.0011 U
PCB-114	74472-37-0	0.012 J	0.051 J	0.019 J	0.023	0.032	0.033	0.021 J	0.012 J
PCB-118	31508-00-6	0.56	1.9 J	0.73	0.91	1.3	1.6	0.98	0.45
PCB-120	68194-12-7	0.0036 J	0.0041 UJ	0.0027 J	0.0027 J	0.0071 J	0.0085 J	0.0039 J	0.00099 U
PCB-121	56558-18-0	0.00094 U	0.0041 UJ	0.0013 U	0.0014 U	0.0012 U	0.0014 U	0.0012 U	0.001 U
PCB-122	76842-07-4	0.0041 J	0.015 J	0.0031 J	0.0096 J	0.014 J	0.021 J	0.0076 J	0.0037 J
PCB-123	65510-44-3	0.014 J	0.036 J	0.016 J	0.022 J	0.026 J	0.031 J	0.027	0.012 J
PCB-126	57465-28-8	0.0017 J	0.0027 J	0.0034 J	0.0072 J	0.0048 J	0.0055 J	0.0035 J	0.0019 U
PCB-127	39635-33-1	0.00087 U	0.0042 J	0.0012 U	0.0013 U	0.0037 J	0.0031 J	0.001 U	0.0014 U
PCB-128/166	TTNUS613	0.18	0.48 J	0.18	0.23	0.31	0.36	0.24	0.12
PCB-129/138/160/163	TTNUSA52	1.6	4.1 J	1.5	1.9	2.5	2.8	1.9	0.92
PCB-130	52663-66-8	0.062	0.17 J	0.077	0.097	0.12	0.14	0.081 J	0.05
PCB-131	61798-70-7	0.0099 J	0.013 J	0.011 J	0.012 J	0.016 J	0.019 J	0.012 J	0.0041 J
PCB-132	38380-05-1	0.22	0.28 J	0.19	0.25	0.37	0.38	0.24	0.12
PCB-133	35694-04-3 TTNUS801	0.021 J 0.043	0.077 J 0.063 J	0.024 J 0.039	0.032 0.048	0.036 0.071	0.043 0.074	0.027 J 0.048	0.0084 J
PCB-134/143 PCB-135/151	TTNUS801	0.043	0.063 J 0.66 J	0.039	0.048	0.071	0.074	0.048	0.019 J 0.17
PCB-135/151 PCB-136	38411-22-2	0.44	0.66 J 0.014 J	0.26	0.32	0.42	0.4	0.31 0.051 J	0.17 0.027 J
PCB-136 PCB-137	35694-06-5	0.046	0.014 J 0.15 J	0.047	0.058	0.087 0.093 J	0.08	0.051 J	0.027 J 0.037 J
PCB-137 PCB-139/140	35694-06-5 TTNUS803	0.046 0.013 J	0.15 J 0.059 J	0.057 0.021 J	0.073	0.093 J	0.11	0.071 0.023 J	0.037 J 0.01 J
PCB-139/140 PCB-141	52712-04-6	0.013 3	0.059 J 0.5 J	0.021 3	0.028	0.034	0.035	0.025	0.01 3
PCB-141	41411-61-4	0.26 0.0021 U	0.0082 UJ	0.0028 U	0.0029 U	0.0026 U	0.0027 U	0.25 0.0026 U	0.0026 U
PCB-142	68194-14-9	0.0021 0	0.0062 UJ	0.0028 0	0.0029 0	0.0026 0	0.0027 0	0.0026 0	0.0026 U
PCB-144	74472-40-5	0.0013 U	0.0053 UJ	0.0017 U	0.0018 U	0.0015 U	0.0016 U	0.0015 U	0.023 J
PCB-146	51908-16-8	0.26	0.74 J	0.23	0.29	0.4	0.42	0.3	0.15
1 00 140	01000-10-0	0.20	U.14 J	0.23	0.29	U.4	U.4Z	0.3	0.15

					Northwest B	ranch			
		P2-NWB-002-GT3A	P2-NWB-003-GTA	P2-NWB-004-GT1A	P2-NWB-004-GT2A	P2-NWB-013-GT1A	P2-NWB-013-GT2A	P2-NWB-013-GT3A	P2-NWB-014-GTA
		Largemouth bass	Northern snakehead	Largemouth bass	Largemouth bass	Largemouth bass	Largemouth bass	Largemouth bass	Smallmouth bass
CHEMICAL	CAS#	8/9/2016	8/16/2016	8/12/2016	8/12/2016	8/10/2016	8/10/2016	8/10/2016	8/4/2016
PCB-147/149	TTNUS804	1.1	1.5 J	0.72	0.88	1.2	1.3	0.91	0.47
PCB-148	74472-41-6	0.0018 U	0.0074 UJ	0.0024 U	0.0025 U	0.0022 U	0.0022 U	0.0021 U	0.0018 U
PCB-150	68194-08-1	0.0013 U	0.0052 UJ	0.0017 U	0.0018 U	0.0018 J	0.0016 U	0.0015 U	0.0013 U
PCB-152	68194-09-2	0.0013 U	0.0053 UJ	0.0017 U	0.0018 U	0.0015 U	0.0016 U	0.0015 U	0.0013 U
PCB-153/168	TTNUS615	1.5	4.2 J	1.4	1.7	2.3	2.6	1.8	0.88
PCB-154	TTNUS860	0.0073 J	0.026 J	0.0076 J	0.0075 J	0.014 J	0.0094 J	0.0086 J	0.0046 J
PCB-155	33979-03-2	0.0012 U	0.005 UJ	0.0016 U	0.0017 U	0.0015 U	0.0015 U	0.0015 U	0.0012 U
PCB-156/157	TTNUS523	0.11	0.35 J	0.13	0.16	0.23	0.27	0.17	0.089
PCB-158	74472-42-7	0.12	0.35 J	0.13	0.16	0.2	0.23	0.15	0.082
PCB-159	39635-35-3	0.0081 J	0.0049 J	0.0073 J	0.007 J	0.01 J	0.0099 J	0.0046 J	0.0029 J
PCB-161	74472-43-8	0.0014 U	0.0054 UJ	0.0019 U	0.0019 U	0.0017 U	0.0018 U	0.0018 U	0.0017 U
PCB-162	39635-34-2	0.0053 J	0.02 J	0.0057 J	0.01 J	0.01 J	0.011 J	0.0068 J	0.0037 J
PCB-164	74472-45-0	0.091	0.19 J	0.072	0.097	0.12	0.14	0.09	0.051
PCB-165	74472-46-1	0.0015 U	0.006 UJ	0.002 U	0.0021 U	0.0019 U	0.002 U	0.0019 U	0.0019 U
PCB-167	52663-72-6	0.05	0.14 J	0.065	0.085	0.11	0.12	0.077	0.042
PCB-169	32774-16-6	0.0043 J	0.015 J	0.0014 U	0.0015 U	0.0024 J	0.0043 J	0.0029 J	0.0013 U
PCB-170	35065-30-6	0.42	1.1 J	0.28	0.36	0.42	0.47	0.34	0.19
PCB-171/173	TTNUS806	0.12	0.32 J	0.079	0.093	0.11	0.12	0.089	0.053
PCB-172	52663-74-8	0.084	0.27 J	0.064	0.082	0.097	0.1	0.078	0.039 J
PCB-174	38411-25-5	0.35	0.58 J	0.2	0.25	0.32	0.33	0.24	0.14
PCB-175	40186-70-7	0.015 J	0.039 J	0.0086 J	0.014 J	0.016 J	0.02 J	0.012 J	0.0065 J
PCB-176	52663-65-7	0.034	0.026 J	0.02 J	0.024	0.029	0.03	0.02 J	0.011 J
PCB-177	52663-70-4	0.23	0.47 J	0.15	0.19	0.24	0.25	0.18	0.095
PCB-178	52663-67-9	0.11	0.31 J	0.068	0.09	0.1	0.12	0.088	0.05
PCB-179	52663-64-6	0.11	0.18 J	0.062	0.08	0.11	0.11	0.071	0.039
PCB-180/193	TTNUS617	1.2	3.2 J	0.77	0.95	1.1	1.3	0.91	0.53
PCB-181	74472-47-2	0.0033 J	0.02 J	0.0017 U	0.0019 U	0.0018 U	0.0048 J	0.0017 U	0.0014 U
PCB-182	60145-23-5	0.0024 J	0.0063 UJ	0.0049 J	0.0056 J	0.0017 U	0.004 J	0.0017 U	0.004 J
PCB-183/185	TTNUS807	0.32	0.88 J	0.21	0.26	0.3	0.33	0.24	0.14
PCB-184	74472-48-3	0.0012 U	0.0054 UJ	0.0014 U	0.0015 U	0.0015 U	0.0015 U	0.0014 U	0.0012 U
PCB-186	74472-49-4	0.0012 U	0.0052 UJ	0.0013 U	0.0015 U	0.0014 U	0.0015 U	0.0014 U	0.0011 U
PCB-187	52663-68-0	1.4	2.6 J	0.58	0.72	0.91	1	0.79	0.48
PCB-188	TTNUS272	0.0011 U	0.0047 UJ	0.0012 U	0.0014 U	0.0013 U	0.0013 U	0.0012 U	0.001 U
PCB-189	39635-31-9	0.016 J	0.047 J	0.012 J	0.015 J	0.016 J	0.018 J	0.012 J	0.0053 U
PCB-190	41411-64-7	0.092	0.28 J	0.08	0.089	0.095	0.11	0.086	0.042
PCB-191	74472-50-7	0.021 J	0.059 J	0.014 J	0.014 J	0.021 J	0.018 J	0.022 J	0.0061 J
PCB-192	74472-51-8	0.0013 U	0.0055 UJ	0.0014 U	0.0016 U	0.0015 U	0.0016 U	0.0015 U	0.0012 U
PCB-194	35694-08-7	0.23	0.9 J	0.17	0.2	0.22	0.27	0.19	0.15
PCB-195	52663-78-2	0.087	0.32 J	0.053 J	0.065	0.078	0.086	0.072	0.037 J
PCB-196	42740-50-1	0.098	0.41 J	0.066	0.087	0.098	0.1	0.078	0.049
PCB-197	TTNUS861	0.0062 J	0.034 J	0.00091 U	0.00089 U	0.0061 J	0.0052 J	0.0051 J	0.0007 U
PCB-198/201	TTNUSA53	0.33	1.1 J	0.23	0.27	0.35	0.41	0.31	0.22
PCB-199	52663-75-9	0.015 J	0.027 J	0.01 J	0.013 J	0.015 J	0.016 J	0.015 J	0.0057 J
PCB-200	52663-73-7	0.018 J	0.098 J	0.015 J	0.016 J	0.019 J	0.021 J	0.017 J	0.011 J
PCB-202	2136-99-4	0.043	0.18 J	0.038 J	0.046	0.065	0.077	0.059	0.036
PCB-203	52663-76-0	0.17	0.56 J	0.14	0.17	0.19	0.22	0.17	0.11
PCB-204	74472-52-9	0.00072 U	0.0032 UJ	0.00095 U	0.00093 U	0.00083 U	0.00092 U	0.00084 U	0.00072 U
PCB-205	74472-53-0	0.011 J	0.034 J	0.0073 J	0.013 J	0.0087 J	0.011 J	0.0081 J	0.006 U
PCB-206	40186-72-9	0.12	0.52 J	0.11	0.14	0.16	0.21	0.17	0.11
PCB-207	52663-79-3	0.011 J	0.061 J	0.011 J	0.013 J	0.012 J	0.017 J	0.016 J	0.012 J
PCB-208	52663-77-1	0.034	0.16 J	0.041	0.042	0.051	0.061	0.052	0.032
PCB-209	2051-24-3	0.042	0.21 J	0.034	0.033 J	0.045 J	0.047 J	0.04	0.035
Total PCBs	1336-36-3	16	41	15	18	25	27	18	9
PCB-TEQ	PCB-TEQ	3.29E-04	8.17E-04	3.78E-04	7.67E-04	6.20E-04	7.60E-04	4.87E-04	2.37E-05
	. 00 .24	JU_ U7	U = 04	J J= U7		U.2U2 U7			

¹ Duplicate of P2-NWB-002-GT1A.

Source: Tetra Tech. 2018. Draft Remedial Investigation Report. Anacostia Riv Sediment Project. Washington D.C. Prepared for District of Columbia, Departur Energy and Environment. Prepared by Tetra Tech, Sterling, VA. March 30.

	1	1		3400 Benning Rd, N Northwest Branch	20013	Paint Branch			
		P2-NWB-015-GTA	P2-NWB-016-GTA	P2-NWB-017-GTA	P2-NWB-018-GT1A	DO NIME O49 CTOA	P2-PB-005-GT1A	P2-PB-005-GT2A	P2-PB-006-GTA
		Smallmouth bass		Smallmouth bass					
CUEMICAL	040#		Smallmouth bass 8/4/2016	8/4/2016	Smallmouth bass 8/4/2016	Smallmouth bass 8/4/2016	Largemouth bass	Largemouth bass 8/15/2016	Largemouth bass
CHEMICAL	CAS#	8/5/2016	0/4/2010	0/4/2010	0/4/2010	0/4/2010	8/15/2016	6/15/2016	8/3/2016
Dioxins and Furans 1,2,3,4,6,7,8,9-OCDD	3268-87-9	0.00081 U	0.00063 U	0.00036 U	0.00043 U	0.00035 U	0.00036 U	0.00056 U	0.00043 U
1,2,3,4,6,7,8,9-OCDF	39001-02-0	0.00081 U	0.00083 U	0.000057 U	0.00043 U	0.000055 U	0.000015 U	0.00036 U	0.00043 U
1,2,3,4,6,7,8-HPCDD	35822-46-9	0.000098 U	0.0002 U	0.000037 U	0.00014 U	0.000062 U	0.000015 U	0.00014 U	0.00016 U
1,2,3,4,6,7,8-HPCDF	67562-39-4	0.000086 U	0.000051 U	0.000031 U	0.0001 U	0.000033 U	0.000022 U	0.000091 U	0.00011 U
1,2,3,4,7,8,9-HPCDF	55673-89-7	0.000095 U	0.000087 U	0.000033 U	0.000042 U	0.000027 U	0.000026 U	0.000027 U	0.000033 U
1,2,3,4,7,8,9411 GDI	39227-28-6	0.000093 U	0.000037 U	0.000043 U	0.000034 U	0.000042 U	0.000030 U	0.000029 U	0.000041 U
1,2,3,4,7,8-HXCDF	70648-26-9	0.000051 J	0.00015 U	0.000081 U	0.000088 U	0.000064 U	0.00017 U	0.00021 U	0.0001 U
1,2,3,6,7,8-HXCDD	57653-85-7	0.000061 U	0.000034 U	0.00006 J	0.00004 J	0.000019 U	0.000022 U	0.000026 U	0.00002 U
1,2,3,6,7,8-HXCDF	57117-44-9	0.000072 J	0.00041 J	0.00025 J	0.00024 J	0.00018 J	0.00061 J	0.00015 J	0.00032 J
1,2,3,7,8,9-HXCDD	19408-74-3	0.000056 U	0.000033 U	0.000018 U	0.000021 U	0.000017 U	0.00002 U	0.000024 U	0.000019 U
1,2,3,7,8,9-HXCDF	72918-21-9	0.000046 U	0.000049 U	0.000023 U	0.000039 U	0.00003 U	0.000027 U	0.000018 U	0.000022 U
1,2,3,7,8-PECDD	40321-76-4	0.000074 U	0.00023 J	0.00004 J	0.000099 J	0.000023 U	0.000089 J	0.0001 J	0.00011 J
1,2,3,7,8-PECDF	57117-41-6	0.000044 U	0.000051 U	0.000025 U	0.000044 U	0.000029 U	0.000025 U	0.000018 U	0.000023 U
2,3,4,6,7,8-HXCDF	60851-34-5	0.000039 U	0.000043 U	0.000021 U	0.000032 U	0.000025 U	0.000023 U	0.000016 U	0.000018 U
2,3,4,7,8-PECDF	57117-31-4	0.000042 U	0.000056 U	0.000025 U	0.000039 U	0.000083 J	0.000024 U	0.000081 U	0.000089 U
2,3,7,8-TCDD	1746-01-6	0.00013 U	0.000051 U	0.000045 J	0.000021 U	0.000013 U	0.00002 U	0.000012 U	0.000019 J
2,3,7,8-TCDF	51207-31-9	0.000097 U	0.00018 J	0.000074 J	0.00019 J	0.000021 U	0.000086 J	0.00021 J	0.00017 J
TCDD-TEQ (HH)	TCDD-TEQ	1.23E-05	2.89E-04	1.23E-04	1.46E-04	4.29E-05	1.59E-04	1.36E-04	1.78E-04
Metals									
ALUMINUM	7429-90-5	0.7 J	0.88 J	0.82 J	1.2 J		0.51 U	0.7 J	0.58 J
ANTIMONY	7440-36-0	0.024 U	0.03 U	0.027 U	0.027 U		0.035 U	0.027 U	0.046 U
ARSENIC	7440-38-2	0.11	0.14	0.088 J	0.13		0.028 J	0.027 J	0.034 J
BARIUM	7440-39-3	0.053 J	0.05 J	0.043 J	0.12 J		0.1 J	0.084 J	0.11 U
BERYLLIUM	7440-41-7	0.0061 U	0.0074 U	0.0071 U	0.0071 U		0.0066 U	0.0071 U	0.0068 U
CADMIUM	7440-43-9	0.011 U	0.013 U	0.012 U	0.012 U		0.012 U	0.012 U	0.012 U
CALCIUM	7440-70-2	630	450	680	1700		890 J	1000 J	1100
CHROMIUM	7440-47-3	1.7 J	1.6	1.1	1.9		1.3	1.6	2.3
COBALT	7440-48-4	0.011 U	0.012 J	0.0082 J	0.01 J		0.02 J	0.011 J	0.029 U
COPPER	7440-50-8	0.23	0.29	0.26	0.27		0.26	0.28	0.28
IRON	7439-89-6	14	13	9.5	16		10	12	16
LEAD	7439-92-1	0.0075 U	0.031 J	0.0086 U	0.0087 U		0.0081 U	0.0086 U	0.015 J
MAGNESIUM	7439-95-4	290	340	300	360		310	300	280
MANGANESE	7439-96-5	0.27 U	0.3 J	0.32 J	0.55		0.33 J	0.28 J	0.45
MERCURY NICKEL	7439-97-6	0.17 0.24	0.16 J- 0.3	0.21 J- 0.18	0.2 J- 0.22		0.42 J 0.23	0.33 J 0.28	0.39 J- 0.54
POTASSIUM	7440-02-0 7440-09-7	3700	4300	3700	4100		3900	3800	3300
SELENIUM	7782-49-2	0.2 J	0.35 J	0.34 J	0.23 J		0.29 J	0.23 J	0.22 U
SILVER	7440-22-4	0.2 J	0.0081 U	0.0077 U	0.0078 U		0.0073 U	0.0077 U	0.0074 U
SODIUM	7440-23-5	770	650	570	670	_	590	570	680
THALLIUM	7440-28-0	0.0021 U	0.0041 J	0.003 J	0.003 J		0.0062 J	0.0053 J	0.0047 J
VANADIUM	7440-62-2	0.057 U	0.069 U	0.066 U	0.067 U		0.062 U	0.066 U	0.067 J
ZINC	7440-66-6	6.5	8.2	7.8	9.1		7.8	7.4	6.4
Semivolatile Organic Compounds									
1,2,4-TRICHLOROBENZENE	120-82-1		15 U	15 U					
1,2-DIPHENYLHYDRAZINE	122-66-7		34 U	34 U					
2,2'-OXYBIS(1-CHLOROPROPANE)	108-60-1		5.8 U	5.8 U			-		
2,4,6-TRICHLOROPHENOL	88-06-2		40 U	40 U			-		
2,4-DICHLOROPHENOL	120-83-2		5.4 U	5.4 U	-	-	-		
2,4-DIMETHYLPHENOL	105-67-9		42 U	42 U					
2,4-DINITROPHENOL	51-28-5		320 U	320 U					
2,4-DINITROTOLUENE	121-14-2		22 U	22 U	-		-		
2,6-DINITROTOLUENE	606-20-2		28 U	28 U	-		-		
2-CHLORONAPHTHALENE	91-58-7		5.6 U	5.6 U	-	-	-		
2-CHLOROPHENOL 2-NITROPHENOL	95-57-8		22 U	22 U					
3,3'-DICHLOROBENZIDINE	88-75-5 91-94-1		29 U 28 U	29 U 28 U	-				
4,6-DINITRO-2-METHYLPHENOL	534-52-1		28 U	28 U					
4-BROMOPHENYL PHENYL ETHER	101-55-3		23 U	23 U					
4-DROWOPHENTL PHENTL ETHER	101-55-3		23 U	23 U					

		1		Northwest Branch	i.E., washington DC		I	Paint Branch	
		P2-NWB-015-GTA	P2-NWB-016-GTA	P2-NWB-017-GTA	P2-NWB-018-GT1A	P2-NWB-018-GT2A	P2-PB-005-GT1A	P2-PB-005-GT2A	P2-PB-006-GTA
		Smallmouth bass	Smallmouth bass	Smallmouth bass	Smallmouth bass	Smallmouth bass	Largemouth bass	Largemouth bass	Largemouth bass
CHEMICAL	CAS#	8/5/2016	8/4/2016	8/4/2016	8/4/2016	8/4/2016	8/15/2016	8/15/2016	8/3/2016
4-CHLORO-3-METHYLPHENOL	59-50-7		25 U	25 U					
4-CHLOROPHENYL PHENYL ETHER	7005-72-3		30 U	30 U					
4-NITROPHENOL	100-02-7	-	97 UJ	97 UJ					
ACENAPHTHENE	83-32-9		5.1 U	5.1 U					
ACENAPHTHYLENE	208-96-8		6.1 U	6.1 U					
ANTHRACENE	120-12-7		5.2 U	5.2 U					
BENZIDINE	92-87-5		1100 U	1100 U					
BENZO(A)ANTHRACENE	56-55-3		6.7 U	6.7 U					
BENZO(A)PYRENE	50-32-8		5.3 U	5.3 U					
BENZO(B)FLUORANTHENE	205-99-2		8.4 U	8.4 U					
BENZO(G,H,I)PERYLENE	191-24-2		5.3 U	5.3 U					
BENZO(K)FLUORANTHENE	207-08-9		11 U	11 U					
BENZOIC ACID	65-85-0		650 J	620 J					
BIS(2-CHLOROETHOXY)METHANE	111-91-1		18 U	18 U					
BIS(2-CHLOROETHYL)ETHER	111-44-4		7.2 U	7.2 U					
BIS(2-ETHYLHEXYL)PHTHALATE	117-81-7		43 U	43 U	-				
BUTYL BENZYL PHTHALATE	85-68-7		36 U	36 U					
CHRYSENE	218-01-9		6.4 U	6.4 U					
DIBENZO(A,H)ANTHRACENE	53-70-3		5.9 U	5.9 U					
DIETHYL PHTHALATE	84-66-2		29 U	29 U					
DIMETHYL PHTHALATE	131-11-3		29 U	29 U					
DI-N-BUTYL PHTHALATE	84-74-2		33 U	33 U					
DI-N-OCTYL PHTHALATE	117-84-0	-	28 UJ	230 J		-			
FLUORANTHENE	206-44-0		5.7 U	5.7 U					
FLUORENE	86-73-7	-	7 U	7 U					
HEXACHLOROBENZENE	118-74-1		5.7 U	5.7 U					
HEXACHLOROBUTADIENE	87-68-3		6 U	6 U					
HEXACHLOROCYCLOPENTADIENE	77-47-4		29 U	29 U					
HEXACHLOROETHANE	67-72-1		19 U	19 U					
INDENO(1,2,3-CD)PYRENE	193-39-5		5.5 U	5.5 U					
ISOPHORONE	78-59-1		20 U	20 U					
NAPHTHALENE	91-20-3		4.6 U	4.6 U					
NITROBENZENE	98-95-3		22 U	22 U					
N-NITROSODIMETHYLAMINE	62-75-9		23 U	23 U					
N-NITROSO-DI-N-PROPYLAMINE	621-64-7		6.3 U	6.3 U					
N-NITROSODIPHENYLAMINE	86-30-6		25 U	25 U	-				-
PENTACHLOROPHENOL	87-86-5		24 U	24 U					
PHENANTHRENE	85-01-8		8.5 U	8.5 U					
PHENOL	108-95-2		6.3 U	15 U				-	
PYRENE	129-00-0	-	5.4 U	5.4 U			-	-	
Pesticides	120 00 0		0.7 0	0.4 0					L
4,4'-DDD	72-54-8	0.17 U	0.042 U	0.043 U	0.043 U		0.084 U	0.084 UJ	0.42 J
4,4'-DDE	72-55-9	0.17 G	1.3	0.96	1.4		1	1.6	1.9
4,4'-DDT	50-29-3	0.64 J	0.042 U	0.043 U	0.19 J		0.084 U	0.084 UJ	0.042 U
ALDRIN	309-00-2	0.17 U	0.044 U	0.043 U	0.044 U		0.087 U	0.087 U	0.042 U
ALPHA-BHC	319-84-6	0.18 U	0.044 U	0.044 U	0.044 U		0.087 U	0.087 U	0.043 U
BETA-BHC	319-85-7	0.49 U	0.093 U	0.094 U	0.094 U	-	0.19 UJ	0.19 U	0.092 U
CHLORDANE (ALL)	CHLORDANE ALL	19	37	22	37		17	35	0.092 U
DELTA-BHC	319-86-8	0.59 U	0.15 U	0.15 U	0.15 UJ		0.3 U	0.3 U	0.47 U
DIELDRIN	60-57-1	0.59 U	2.7	1.6	3.7		0.8 J	3	2.4
ENDOSULFAN I	959-98-8	0.2 J 0.11 U	0.026 U	0.027 U	0.027 U		0.053 U	0.053 U	0.026 U
ENDOSULFAN II	33213-65-9	0.11 U	0.026 U 0.13 U	0.027 U 0.13 U	0.027 U 0.13 U		0.053 U 0.25 U	0.053 U 0.25 U	0.026 U
ENDOSULFAN II ENDOSULFAN SULFATE	1031-07-8	0.51 U	0.13 U 0.053 U	0.13 U	0.13 U		0.25 U 0.11 U	0.25 U 0.11 U	0.13 U
ENDRIN ENDRIN ALDEHYDE	72-20-8 7421-93-4	0.49 U 0.49 U	0.12 U 0.12 U	0.12 U 0.12 U	0.12 U 0.12 U		0.24 U 0.24 U	0.24 U 0.24 U	0.12 U 0.12 U
GAMMA-BHC (LINDANE)	58-89-9	0.34 U	0.085 U	0.086 U	0.086 U		0.17 U	0.17 U	0.085 U
HEPTACHLOR	76-44-8	0.14 U	0.036 U	0.036 U	0.036 U		0.072 U	0.072 U	0.036 U
HEPTACHLOR EPOXIDE	1024-57-3	0.2 U	3.4	1.8	3.9	-	0.15 J	2.5	1.3
TOXAPHENE	8001-35-2	55 U	14 U	14 U	14 U		27 U	27 U	14 U

		3400 Benning Rd, N.E., Washington DC 20019										
				Northwest Branch				Paint Branch				
		P2-NWB-015-GTA	P2-NWB-016-GTA	P2-NWB-017-GTA	P2-NWB-018-GT1A	P2-NWB-018-GT2A	P2-PB-005-GT1A	P2-PB-005-GT2A	P2-PB-006-GTA			
		Smallmouth bass	Smallmouth bass	Smallmouth bass	Smallmouth bass	Smallmouth bass	Largemouth bass	Largemouth bass	Largemouth bass			
CHEMICAL	CAS#	8/5/2016	8/4/2016	8/4/2016	8/4/2016	8/4/2016	8/15/2016	8/15/2016	8/3/2016			
Aroclors												
AROCLOR-1016	12674-11-2		0.38 U	0.38 U	3.8 U		3.8 U	3.8 U	0.38 U			
AROCLOR-1221	11104-28-2		0.6 U	0.6 U	6 U		6 U	6 U	0.6 U			
AROCLOR-1232	11141-16-5		0.21 U	0.21 U	2.1 U		2.1 U	2.1 U	0.21 U			
AROCLOR-1242	53469-21-9		0.3 U	0.31 U	3 U		3.1 U	3 U	0.31 U			
AROCLOR-1248	12672-29-6		0.19 U	0.2 U	1.9 U		1.9 U	1.9 U	0.2 U			
AROCLOR-1254	11097-69-1		9.9	5.9	3 U		3.1 U	3 U	19			
AROCLOR-1260	11096-82-5		6.8	7	2.8 U		8.1 J	5.5 J	16			
Total Aroclors	TotalAroclor	NA	16.7	12.9	ND	NA	8.1	5.5	35			
PCB Congeners												
PCB-1	2051-60-7	0.00021 U	0.00041 U	0.00029 U	0.00035 U	0.00064 U	0.00025 U	0.0003 U	0.00024 U			
PCB-2	2051-61-8	0.00023 U	0.00047 U	0.00035 U	0.0004 U	0.0056 J	0.0003 U	0.00035 U	0.00026 U			
PCB-3	2051-62-9	0.00025 U	0.00055 U	0.00042 U	0.00045 U	0.00077 U	0.00036 U	0.00043 U	0.00029 U			
PCB-4	TTNUS524	0.0037 U	0.014 U	0.01 U	0.0093 U	0.0065 U	0.0034 J	0.0078 J	0.0054 J			
PCB-5	16605-91-7	0.0011 U	0.0042 U	0.0037 U	0.003 U	0.0051 U	0.0018 U	0.0027 U	0.0017 U			
PCB-6	25569-80-6	0.0014 J	0.0052 J	0.0035 U	0.0029 U	0.0048 U	0.0019 J	0.0025 J	0.0027 J			
PCB-7	33284-50-3	0.0017 U	0.0036 J	0.0036 U	0.0029 U	0.0049 U	0.0017 U	0.0026 U	0.0017 U			
PCB-8	34883-43-7	0.005 U	0.014 J	0.0069 U	0.0088 U	0.0089 U	0.0034 J	0.0058 J	0.0056 U			
PCB-9	34883-39-1	0.0017 U	0.0077 J	0.0036 U	0.0029 U	0.0049 U	0.0017 U	0.0026 U	0.0017 U			
PCB-10	33146-45-1	0.0018 U	0.0043 U	0.0038 U	0.0032 U	0.0053 U	0.00086 J	0.0028 U	0.0018 U			
PCB-11	2050-67-1	0.0081 U	0.012 U	0.012 U	0.011 U	0.01 U	0.0075 U	0.012 J	0.013 U			
PCB-12/13	TTNUS800	0.0017 U	0.0039 U	0.005 U	0.0029 U	0.0048 U	0.0017 U	0.0025 U	0.0017 U			
PCB-14	34883-41-5	0.0014 U	0.0034 U	0.003 U	0.0025 U	0.0042 U	0.0014 U	0.0022 U	0.0012 U			
PCB-15	2050-68-2	0.0017 U	0.0098 U	0.0068 U	0.0059 U	0.005 U	0.0013 J	0.0027 U	0.0029 U			
PCB-16	38444-78-9	0.0055 J	0.014 J	0.0014 U	0.011 J	0.006 J	0.003 J	0.01 J	0.0088 J			
PCB-17	37680-66-3	0.0041 J	0.021 J	0.0091 J	0.0092 J	0.0016 U	0.0045 J	0.012 J	0.013 J			
PCB-18/30	TTNUS616	0.015 J	0.041 J	0.029 J	0.035 J	0.021 J	0.011 J	0.035 J	0.025 J			
PCB-19	38444-73-4	0.00094 U	0.014 J	0.0044 J	0.0075 J	0.0019 U	0.0011 U	0.0019 U	0.0046 J			
PCB-20/28	TTNUS519	0.089	0.28	0.12 0.01 J	0.16	0.11	0.076	0.16	0.12			
PCB-21/33	TTNUS810 38444-85-8	0.007 J 0.022 J	0.025 0.075	0.01 3	0.016 J 0.045	0.014 J 0.034 J	0.0067 J 0.019 J	0.017 J 0.04	0.017 J 0.026			
PCB-22 PCB-23	55720-44-0	0.00039 U	0.007 U	0.00067 U	0.0058 U	0.0087 U	0.0064 U	0.00085 U	0.0068 U			
PCB-23	55702-45-9	0.00039 U	0.0007 U	0.0007 U	0.00038 U	0.00087 U	0.00076 U	0.00083 U	0.0008 U			
PCB-25	55712-37-3	0.00064 U	0.00097 U	0.001 J	0.00083 U	0.0013 U	0.00076 U	0.0013 U	0.0013 J			
PCB-26/29	TTNUS811	0.0033 J	0.035	0.014 J	0.016 J	0.0029 J	0.0037 J	0.0030 J	0.0032 J			
PCB-27	38444-76-7	0.00055 U	0.0095 J	0.00086 U	0.0063 J	0.0041 J	0.00065 U	0.0025 J	0.0034 J			
PCB-31	16606-02-3	0.04 J	0.13	0.062	0.081	0.054 J	0.043 J	0.076	0.053			
PCB-32	38444-77-8	0.007 J	0.033	0.017 J	0.021 J	0.013 J	0.0065 J	0.01 J	0.014 J			
PCB-34	TTNUS277	0.00038 U	0.00068 U	0.00066 U	0.00057 U	0.00086 U	0.00063 U	0.00084 U	0.00067 U			
PCB-35	37680-69-6	0.00039 U	0.0007 U	0.00068 U	0.00059 U	0.00089 U	0.00065 U	0.00086 U	0.00069 U			
PCB-36	38444-87-0	0.00038 U	0.00068 U	0.00066 U	0.00057 U	0.00086 U	0.00062 U	0.00083 U	0.00066 U			
PCB-37	38444-90-5	0.0049 J	0.014 J	0.0071 J	0.0081 J	0.0052 J	0.0042 J	0.011 J	0.0082 J			
PCB-38	53555-66-1	0.0004 U	0.00072 U	0.00069 U	0.0006 U	0.0009 U	0.00066 U	0.00088 U	0.0007 U			
PCB-39	38444-88-1	0.00035 U	0.00064 U	0.00062 U	0.00053 U	0.0008 U	0.00059 U	0.00078 U	0.00062 U			
PCB-41/40/71	TTNUS813	0.027	0.079	0.049 J	0.051	0.038	0.028	0.044	0.066			
PCB-42	36559-22-5	0.026	0.082	0.04 J	0.044 J	0.033 J	0.031	0.039	0.056			
PCB-43/73	TTNUSA51	0.003 J	0.0095 J	0.0049 J	0.0026 J	0.0015 U	0.0041 J	0.004 J	0.0051 J			
PCB-44/47/65	TTNUS618	0.16	0.36	0.18	0.2	0.18	0.15	0.18	0.27			
PCB-45/51	TTNUS814	0.012 J	0.039	0.016 J	0.02 J	0.014 J	0.0093 J	0.016 J	0.027			
PCB-46	41464-47-5	0.0018 J	0.0093 J	0.0059 J	0.0033 J	0.002 U	0.0016 U	0.004 J	0.0028 J			
PCB-48	70362-47-9	0.011 J	0.038	0.015 J	0.014 J	0.014 J	0.013 J	0.02 J	0.019 J			
PCB-49/69	TTNUS818	0.1	0.25	0.13	0.14	0.11	0.13	0.14	0.21			
PCB-50/53	TTNUS815	0.0047 J	0.02 J	0.011 J	0.011 J	0.009 J	0.0096 J	0.012 J	0.023 J			
PCB-52	35693-99-3	0.28	0.62	0.31	0.37	0.3	0.32	0.35	0.57			
PCB-54	15968-05-5	0.0008 U	0.0015 U	0.0011 U	0.0014 U	0.0017 U	0.0012 U	0.0019 U	0.0016 J			
PCB-55	74338-24-2	0.00061 U	0.016 J	0.0055 J	0.0084 J	0.0018 J	0.0081 J	0.0097 J	0.0027 J			
PCB-56	41464-43-1	0.036	0.091	0.052	0.058	0.051	0.041	0.061	0.067			
PCB-57	70424-67-8	0.00058 U	0.0011 U	0.0008 U	0.00091 U	0.0012 U	0.00095 U	0.0013 U	0.0018 J			
PCB-58	41464-49-7	0.00059 J	0.0017 J	0.0016 J	0.00042 J	0.0012 U	0.00095 U	0.0013 U	0.0019 J			
PCB-59/62/75	TTNUS816	0.014 J	0.036	0.014 J	0.018 J	0.014 J	0.015 J	0.018 J	0.02 J			

				3400 Benning Rd, N	.L., washington DC	20019		Dalat Danash	
		DO 1111/D 015 OT1	DO 1919 010 071	Northwest Branch		DO MINIO OLO OTOM	DO DD 005 0744	Paint Branch	Do DD 000 074
		P2-NWB-015-GTA	P2-NWB-016-GTA	P2-NWB-017-GTA	P2-NWB-018-GT1A	P2-NWB-018-GT2A	P2-PB-005-GT1A	P2-PB-005-GT2A	P2-PB-006-GTA
CHEMICAL	CAS#	Smallmouth bass 8/5/2016	Smallmouth bass 8/4/2016	Smallmouth bass 8/4/2016	Smallmouth bass 8/4/2016	Smallmouth bass 8/4/2016	Largemouth bass 8/15/2016	Largemouth bass 8/15/2016	Largemouth bass 8/3/2016
PCB-60	33025-41-1	0.04 J	0.1	0.062	0.056	0.055	0.036	0.066	0.061
PCB-61/70/74/76	TTNUS817	0.25	0.6	0.33	0.34	0.28	0.29	0.39	0.42
PCB-63	74472-34-7	0.0086 J	0.018 J	0.0086 J	0.0092 J	0.011 J	0.011 J	0.012 J	0.014 J
PCB-64	52663-58-8	0.075	0.18	0.092	0.095	0.087	0.072	0.1	0.12
PCB-66	32598-10-0	0.18	0.38	0.22	0.21	0.21	0.16	0.22	0.31
PCB-67	73575-53-8	0.0036 J	0.007 J	0.0041 J	0.004 J	0.0011 U	0.0024 J	0.0048 J	0.0059 J
PCB-68	73575-52-7	0.0021 J	0.003 J	0.002 J	0.0024 J	0.0011 U	0.00087 U	0.0027 J	0.004 J
PCB-72	41464-42-0	0.0029 J	0.0041 J	0.0028 J	0.0032 J	0.0012 U	0.0034 J	0.0035 J	0.011 J
PCB-77	32598-13-3	0.014 J	0.026	0.014 J	0.016 J	0.012 J	0.015 J	0.017 J	0.017 J
PCB-78	70362-49-1	0.0006 U	0.0022 J	0.00083 U	0.00094 U	0.0018 J	0.00099 U	0.0013 U	0.00072 J
PCB-79	41464-48-6	0.0034 J	0.009 J	0.0048 J	0.0038 J	0.0037 J	0.0029 J	0.0046 J	0.0074 J
PCB-80	33284-52-5	0.00051 U	0.00096 U	0.00071 U	0.00081 U	0.0011 U	0.00085 U	0.0011 U	0.00073 U
PCB-81	70362-50-4	0.00046 J	0.0033 J	0.00072 U	0.0026 J	0.0011 U	0.00087 U	0.0011 U	0.0036 J
PCB-82	52663-62-4	0.074	0.12	0.053 J	0.084	0.091	0.071	0.06	0.12
PCB-83/99	TTNUS863	0.5	0.87	0.55	0.49	0.51	0.63	0.57	1.1
PCB-84	52663-60-2	0.1	0.2	0.12	0.12	0.094 J	0.086	0.079	0.17
PCB-85/116/117	TTNUS799	0.15	0.28	0.18	0.16	0.17	0.18	0.19	0.33
PCB-86/87/97/109/119/125	TTNUS941	0.47	0.83	0.54	0.49	0.47	0.47	0.43	0.92
PCB-88/91	TTNUS819	0.085	0.13	0.084 J	0.081	0.087	0.096	0.076	0.18
PCB-89	73575-57-2	0.0014 U	0.0027 U	0.002 U	0.002 U	0.0029 U	0.002 U	0.003 U	0.002 U
PCB-90/101/113	TTNUS619	0.89	1.5	1	0.87	0.91	1.2	1.1	2.2
PCB-92	52663-61-3	0.12 J	0.25	0.14	0.15	0.14	0.21	0.13 J	0.35 J
PCB-93/100	TTNUS864	0.0022 J	0.0071 J	0.0017 U	0.0033 J	0.0073 J	0.0025 J	0.011 J	0.016 J
PCB-94	73575-55-0	0.0014 U	0.0027 U	0.002 U	0.002 U	0.0029 U	0.002 U	0.003 U	0.002 U
PCB-95	38379-99-6	0.4	0.76	0.46	0.46	0.42	0.57	0.46	1
PCB-96	73575-54-9	0.001 U	0.002 U	0.0015 U	0.0015 U	0.0022 U	0.0015 U	0.0022 U	0.0015 U
PCB-98/102 PCB-103	TTNUS865 TTNUS256	0.0048 J 0.004 J	0.0099 J 0.0023 U	0.0058 J 0.0017 U	0.0066 J 0.0018 U	0.0036 J 0.0026 U	0.0068 J 0.0097 J	0.0089 J 0.0085 J	0.017 J 0.024
PCB-103	TTNUS256	0.0004 J	0.0023 U	0.0017 U	0.0018 U	0.0026 U	0.0097 J	0.0085 J	0.024 0.0013 U
PCB-104 PCB-105	32598-14-4	0.0009 0	0.0018 0	0.0013 0	0.0014 0	0.0019 0	0.0013 0	0.002 0	0.62
PCB-106	70424-69-0	0.0017 J	0.0016 U	0.0012 U	0.0023 J	0.0016 U	0.0013 U	0.0014 U	0.0022 J
PCB-107	70424-68-9	0.065	0.11	0.08	0.072	0.071 J	0.083	0.065 J	0.0022 3
PCB-108/124	TTNUS942	0.03	0.053 J	0.041	0.039	0.038	0.045	0.04	0.062 J
PCB-110/115	TTNUS797	0.91	1.6	1	0.96	0.95	1.1	0.93	2
PCB-111	39635-32-0	0.00085 U	0.0036 J	0.0012 U	0.0013 U	0.0018 U	0.0013 U	0.0019 U	0.0036 J
PCB-112	TTNUS259	0.00092 U	0.0018 U	0.0013 U	0.0014 U	0.002 U	0.0014 U	0.002 U	0.0051 J
PCB-114	74472-37-0	0.018 J	0.033	0.026 J	0.021 J	0.019 J	0.02 J	0.019 J	0.042
PCB-118	31508-00-6	0.89	1.5	1	0.9	0.86	1.1	0.9	1.8
PCB-120	68194-12-7	0.004 J	0.0056 J	0.0044 J	0.0043 J	0.0019 U	0.012 J	0.0085 J	0.017 J
PCB-121	56558-18-0	0.00088 U	0.0017 U	0.0013 U	0.0013 U	0.0019 U	0.0013 U	0.0019 U	0.0013 U
PCB-122	76842-07-4	0.0087 J	0.011 J	0.011 J	0.0081 J	0.0067 J	0.0077 J	0.016 J	0.026
PCB-123	65510-44-3	0.017 J	0.036	0.022 J	0.021 J	0.017 J	0.025 J	0.019 J	0.023 J
PCB-126	57465-28-8	0.0029 J	0.01 J	0.0049 U	0.0016 U	0.005 U	0.0037 J	0.0044 J	0.0088 J
PCB-127	39635-33-1	0.00075 U	0.0015 U	0.0022 J	0.0012 U	0.0016 U	0.0013 U	0.0033 J	0.004 J
PCB-128/166	TTNUS613	0.23	0.36	0.25	0.22	0.21 J	0.32	0.28	0.56
PCB-129/138/160/163	TTNUSA52	1.8	2.9	1.9	1.8	1.7	3.4	3.1	6.2
PCB-130	52663-66-8	0.098	0.16	0.11	0.093	0.087	0.15	0.12	0.26
PCB-131	61798-70-7	0.016 J	0.022 J	0.015 J	0.015 J	0.0074 J	0.015 J	0.012 J	0.034
PCB-132	38380-05-1	0.27	0.44	0.27	0.26	0.24	0.37	0.28	0.69
PCB-133	35694-04-3	0.026 J	0.042	0.031	0.028	0.03 J	0.058	0.057	0.11
PCB-134/143	TTNUS801	0.048	0.087	0.049	0.054	0.042 J	0.072	0.056 J	0.13
PCB-135/151	TTNUS805	0.27	0.52	0.3	0.29	0.28	0.66	0.54	1.4
PCB-136	38411-22-2	0.058	0.11	0.066	0.062	0.052 J	0.1	0.074	0.19
PCB-137	35694-06-5	0.074	0.14	0.09	0.073 J	0.074	0.083	0.076	0.13
PCB-139/140	TTNUS803	0.026	0.044	0.025	0.024 J	0.018 J	0.029 J	0.027	0.044 J
PCB-141	52712-04-6	0.22	0.39	0.25	0.24	0.2 J	0.5	0.42	0.93
PCB-142	41411-61-4	0.0021 U	0.0035 U	0.0028 U	0.0029 U	0.0034 U	0.0032 U	0.0042 U	0.0034 U
PCB-144	68194-14-9	0.039	0.07	0.039	0.036	0.036 J	0.08	0.059 J	0.15
PCB-145	74472-40-5	0.0014 U	0.002 U	0.0018 U	0.0018 U	0.0022 U	0.0019 U	0.003 U	0.0018 U
PCB-146	51908-16-8	0.28	0.48	0.29	0.27	0.26	0.62	0.55	1.1

					Point Propoh				
				Northwest Branch				Paint Branch	
		P2-NWB-015-GTA	P2-NWB-016-GTA	P2-NWB-017-GTA	P2-NWB-018-GT1A	P2-NWB-018-GT2A	P2-PB-005-GT1A	P2-PB-005-GT2A	P2-PB-006-GTA
CHEMICAL	CAS#	Smallmouth bass 8/5/2016	Smallmouth bass 8/4/2016	Smallmouth bass 8/4/2016	Smallmouth bass 8/4/2016	Smallmouth bass 8/4/2016	Largemouth bass 8/15/2016	Largemouth bass 8/15/2016	Largemouth bass 8/3/2016
PCB-147/149	TTNUS804	0.92	1.6	1	0.89	0.85	1.9	1.5	3.5
PCB-147/149	74472-41-6	0.0019 U	0.0029 U	0.0025 U	0.0025 U	0.0031 U	0.0071 J	0.0042 U	0.0046 J
PCB-150	68194-08-1	0.0013 U	0.0023 U	0.0017 U	0.0028 U	0.0022 U	0.0019 U	0.0029 U	0.0031 J
PCB-152	68194-09-2	0.0013 U	0.002 U	0.0017 U	0.0018 U	0.0022 U	0.0019 U	0.0029 U	0.0031 J
PCB-153/168	TTNUS615	1.6	2.7	1.7	1.6	1.6	4	3.7	6.9
PCB-154	TTNUS860	0.015 J	0.012 J	0.006 J	0.0073 J	0.0075 J	0.028 J	0.019 J	0.033 J
PCB-155	33979-03-2	0.0013 U	0.0019 U	0.0017 U	0.0017 U	0.0021 U	0.0018 U	0.0029 U	0.0017 U
PCB-156/157	TTNUS523	0.16	0.27	0.18	0.16	0.15	0.23	0.22	0.4
PCB-158	74472-42-7	0.15	0.24	0.16	0.15	0.14	0.23	0.2	0.43
PCB-159	39635-35-3	0.0064 J	0.015 J	0.0082 J	0.007 J	0.0077 J	0.014 J	0.017 J	0.041
PCB-161	74472-43-8	0.0014 U	0.0023 U	0.0019 U	0.0019 U	0.0023 U	0.0021 U	0.0028 U	0.0023 U
PCB-162	39635-34-2	0.0081 J	0.012 J	0.0093 J	0.008 J	0.0076 J	0.012 J	0.013 J	0.018 J
PCB-164	74472-45-0	0.084	0.15	0.096	0.087 J	0.094	0.17	0.14	0.31
PCB-165	74472-46-1	0.0015 U	0.0025 U	0.0021 U	0.0028 J	0.0025 U	0.0023 U	0.003 U	0.0053 J
PCB-167	52663-72-6	0.082	0.12	0.082	0.075	0.081	0.13	0.12	0.2
PCB-169	32774-16-6	0.0042 J	0.014 J	0.009 J	0.0082 J	0.0017 U	0.0049 J	0.0076 J	0.0094 J
PCB-170	35065-30-6	0.3	0.53	0.3	0.31	0.28	0.85	0.71	1.5
PCB-171/173	TTNUS806	0.087	0.14	0.085	0.087	0.062 J	0.22	0.18	0.41
PCB-172	52663-74-8	0.076	0.12	0.069	0.072	0.069	0.2	0.16	0.29
PCB-174	38411-25-5	0.23	0.4	0.22 J	0.24	0.21	0.64	0.48	1.1
PCB-175	40186-70-7	0.011 J	0.019 J	0.012 J	0.0093 J	0.015 J	0.027	0.019 J	0.051
PCB-176	52663-65-7	0.024	0.039	0.021 J	0.015 J	0.02 J	0.043 J	0.029 J	0.084
PCB-177	52663-70-4	0.18	0.31	0.18	0.18	0.15	0.49	0.41	0.84
PCB-178	52663-67-9	0.074 J	0.14	0.084	0.081	0.062 J	0.22	0.2	0.36
PCB-179	52663-64-6	0.076	0.13	0.079	0.074 J	0.064	0.16	0.13	0.3
PCB-180/193	TTNUS617	0.86	1.4	0.84	0.81	0.76	2.5	2.1	3.8
PCB-181	74472-47-2	0.0043 J	0.007 J	0.006 J	0.0017 U	0.0021 U	0.011 J	0.0097 J	0.017 J
PCB-182	60145-23-5	0.0027 J	0.0022 U	0.0038 J	0.0034 J	0.0065 J	0.013 J	0.0036 J	0.01 J
PCB-183/185	TTNUS807	0.22	0.36	0.22	0.23	0.21	0.6	0.47	1
PCB-184	74472-48-3	0.001 U	0.0018 U	0.0014 U	0.0014 U	0.0017 U	0.0019 U	0.0019 U	0.00096 J
PCB-186	74472-49-4	0.001 U	0.0018 U	0.0013 U	0.0014 U	0.0016 U	0.0019 U	0.0019 U	0.0014 U
PCB-187	52663-68-0	0.7	1.3	0.74	0.68	0.58	1.8	1.6	2.9
PCB-188	TTNUS272	0.00092 U	0.0016 U	0.0012 U	0.0013 U	0.0015 U	0.0017 U	0.0018 U	0.002 J
PCB-189	39635-31-9	0.012 J	0.026 J	0.0092 U	0.0091 U	0.0081 U	0.034	0.03	0.052
PCB-190	41411-64-7	0.069	0.12	0.074	0.07	0.07	0.24	0.21	0.37
PCB-191	74472-50-7	0.013 J	0.022 J	0.014 J	0.012 J	0.0096 J	0.037 J	0.034 J	0.066
PCB-192	74472-51-8	0.0011 U	0.0019 U	0.0014 U	0.0015 U	0.0017 U	0.002 U	0.002 U	0.0015 U
PCB-194	35694-08-7	0.17	0.29	0.15	0.21	0.17	0.4	0.35	0.6
PCB-195	52663-78-2	0.052 J	0.098	0.06	0.062	0.063	0.18	0.15	0.28
PCB-196	42740-50-1	0.068	0.12	0.074 J	0.073	0.07	0.16	0.12	0.24
PCB-197	TTNUS861	0.0055 J	0.0056 J	0.0047 J	0.0031 J	0.0042 J	0.012 J	0.0075 J	0.015 J
PCB-198/201	TTNUSA53	0.27	0.44	0.23 J	0.24	0.23	0.49	0.46	0.7
PCB-199	52663-75-9	0.012 J	0.017 J	0.0096 J	0.011 J	0.0099 J	0.021 J	0.015 J	0.036
PCB-200	52663-73-7	0.015 J	0.025 J	0.017 J	0.015 J	0.015 J	0.029	0.022	0.049
PCB-202	2136-99-4	0.044	0.078	0.043	0.042	0.038 J	0.078	0.07	0.11
PCB-203	52663-76-0	0.15	0.26	0.15	0.15	0.14	0.3	0.27	0.43
PCB-204	74472-52-9	0.00068 U	0.0011 U	0.00078 U	0.00059 U	0.001 U	0.00088 U	0.0013 U	0.00075 U
PCB-205	74472-53-0	0.0059 J	0.015 J	0.0069 U	0.0095 U	0.0095 U	0.03	0.023	0.03 J
PCB-206	40186-72-9	0.13	0.2	0.12	0.14	0.14	0.12	0.15	0.14
PCB-207	52663-79-3	0.0093 J	0.024	0.0095 J	0.012 J	0.012 J	0.0099 J	0.013 J	0.016 J
PCB-208	52663-77-1	0.047	0.069	0.037	0.037	0.048	0.032	0.041	0.039
PCB-209	2051-24-3	0.033	0.054	0.03 J	0.033 J	0.038 J	0.036	0.048	0.031
Total PCBs	1336-36-3	17	30	18	18	17	31	28	53
PCB-TEQ	PCB-TEQ	4.62E-04	1.50E-03	3.22E-04	2.93E-04	4.40E-05	5.75E-04	7.18E-04	1.26E-03

¹ Duplicate of P2-NWB-002-GT1A.

Source: Tetra Tech. 2018. Draft Remedial Investigation Report. Anacostia Riv Sediment Project. Washington D.C. Prepared for District of Columbia, Departur Energy and Environment. Prepared by Tetra Tech, Sterling, VA. March 30.

Attachment B

Screening Level Evaluation of the Vapor Intrusion Pathway

Attachment B Screening Level Evaluation of the **Vapor Intrusion Pathway**

A screening level evaluation of the potential for vapors in the subsurface to migrate to indoor air (the vapor intrusion pathway) is provided below. The evaluation was conducted for all areas of the Site, regardless of the presence of buildings, in order to provide a conservative evaluation of potential current and future risk.

Extensive soil sampling was conducted at the Site, including analysis of volatile organic compounds (VOCs) on over 200 samples. VOCs were detected infrequently (in about 10% of the samples). Vapor intrusion screening levels for soil are not available from the United States Environmental Protection Agency (USEPA) or the District of Columbia Department of Energy and Environment (DOEE) because soil is not considered an appropriate medium for evaluation of vapor intrusion. Therefore, the vapor intrusion pathway was evaluated based on groundwater data.

As discussed in the of the main text of this Remedial Investigation Report, the Patapsco Formation underlying the Site is divided by a semi-confining layer into an upper water-bearing zone (UWZ) and a lower water-bearing zone (LWZ). The water table aquifer (UWZ) generally ranges from 9 to 16 feet (ft) below ground surface (bgs), but reaches as deep as 26 ft bgs in the vicinity of the topographic high in the southcentral portion of the Site. The piezometric surface of the LWZ aquifer at the Site generally averages 0 to 2 ft deeper than the UWZ water table. Groundwater samples were collected from monitoring wells and directpush borings from both the UWZ and LWZ. Depending on the analyte, up to 117 samples are available from the UWZ and up to 66 samples are available from the LWZ; all available samples were analyzed for VOCs. This vapor intrusion evaluation is based on the shallower UWZ.

VISL Screen

USEPA's Vapor Intrusion Screening Level (VISL)¹ calculator was used to derive groundwater screening levels for the vapor intrusion pathway. VISLs are applicable to chemicals that are volatile (defined by the VISL calculator as those chemicals with a Henry's Law constant greater than 10⁻⁵ atm-m³/mole and a vapor pressure greater than one millimeter of mercury) and for which inhalation toxicity data are available. As indicated in Table B-1, 30 of the organic chemicals detected in groundwater meet these criteria. VISLs were derived using the VISL calculator's default exposure assumptions for an industrial scenario (8 hours per day, 250 days per year for 25 years). A target cancer risk level of 1x10⁻⁶ and a target hazard quotient of 0.1 were used. The VISL calculator uses a default groundwater-to-indoor air attenuation factor of 0.001, which is recommended by USEPA as a reasonably conservative generic attenuation factor (USEPA, 2015a). The resulting groundwater VISLs are therefore conservative. An exceedance of a VISL does not necessarily

¹ https://www<u>.epa.gov/vaporintrusion/vapor-intrusion-screening-level-calculator</u>. Accessed February 2019.

indicate an unacceptable risk from the vapor intrusion pathway, but rather that further evaluation is warranted.

Maximum detected VOC concentrations in UWZ groundwater were compared to the VISLs in Table B-2. The following chemicals were found to have maximum detected concentrations greater than VISLs:

Chemical	Upper Water-Bearing Zone
Chloroform	X
Tetrachloroethylene (PCE)	X
Trichloroethene (TCE)	X
Vinyl Chloride	X
Diesel Range Organics (C10-C20) (DRO)	X

Each of these chemicals is evaluated below to select Chemicals of Potential Concern (COPCs) for further evaluation in this screening level vapor intrusion evaluation.

Chloroform

Chloroform was detected sporadically in Site wells, with only one exceedance of the VISL (3.55 micrograms per liter [μ g/L]) in the UWZ; detection limits are below the VISL. The exceedance occurred in well DP60, along the northern property boundary, at a depth of 15 to 20 feet bgs (15 μ g/L). There are no permanent buildings in this area, making the vapor intrusion pathway incomplete under the current scenario. Given the depth to groundwater, considerable attenuation is expected to occur in the vadose zone. The tight soils in this vicinity further reduce soil permeability and limit vapor migration. However, chloroform was conservatively selected as a COPC for the potential future vapor intrusion scenario.

TCE, PCE, and Vinyl Chloride

Areas where TCE, PCE, and vinyl chloride exceeded VISLs are co-located and are limited to two general areas: one along the southern boundary and another on the downgradient perimeter in the southwest area of the Site. There are no permanent buildings in these areas, making the vapor intrusion pathway incomplete under the current scenario.

Wells with exceedances of TCE and PCE along the southern boundary adjacent to Benning Road include DPA3, DPA4, DPA5, DPB3, DPB6, DPB7, DPB9, DPB10 (PCE only), DPC4, DPC5, DPC7, SUSDP09, and MW-09A. Vinyl chloride also exceeded its VISL in MW-09A. Detected concentrations of TCE in these wells ranged from less than 1 μ g/L to 41 μ g/L (MW-09A); the VISL for TCE is 2.2 μ g/L. Detected concentrations of PCE in these wells ranged from less than 1 μ g/L to 470 μ g/L (DPB7); the VISL for PCE is 24.2 μ g/L. Vinyl chloride was not detected in the majority of these wells at a reporting limit of 1 μ g/L, which is lower than the VISL of 2.45 μ g/L. One detected concentration in MW-09A exceeded the VISL at a concentration of 5.3 μ g/L.

Wells in the UWZ with exceedances of TCE and PCE at the downgradient perimeter adjacent to Anacostia Avenue include SUSDP09, TA19C1, and TA19C2. Detected concentrations of TCE in these wells ranged

from less than 1 μ g/L to 5.9 μ g/L (TA19C2) and detected concentrations of PCE ranged from less than 1 μ g/L to 30 μ g/L (TA19C1). As mentioned, the VISL is 2.2 μ g/L for TCE and 24.2 μ g/L for PCE.

TCE also exceeded the VISL in MW-05, located between the two general areas identified above. However, the concentration of $2.3 \mu g/L$ is only marginally greater than the VISL of $2.2 \mu g/L$.

Given the depth to groundwater in these areas, considerable attenuation is expected to occur in the vadose zone. The tight soils in this vicinity further reduce soil permeability and limit vapor migration. However, TCE, PCE, and vinyl chloride were conservatively selected as COPCs for the potential future vapor intrusion scenario.

DRO

DRO was detected in fewer than 10 groundwater samples at concentrations ranging from 270 μ g/L to 540 μ g/L. The VISL for DRO was derived using very conservative assumptions, including the use of a provisional screening toxicity value and volatility parameters based on n-nonane. The resulting VISL is less than 1 part per billion.

Both the forensic saturated hydrocarbon and DRO/oil range organics (ORO) chromatographic data indicate the highest concentrations of total petroleum hydrocarbon (TPH) on Site are likely from dielectric fluids, such as refined mineral oils used in transformers. Both the literature about dielectric fluids and previous analysis conducted by AECOM for Pepco indicate these severely hydrotreated naphthenic oils have extremely low aromatic content and consist primarily of aliphatic hydrocarbons in the C20-C40 range. Gasoline range organics (GRO) were not detected in the UWZ, and detections of benzene, toluene, ethylbenzene, and xylenes were below VISLs.

A key difference between vapor intrusion of chlorinated VOCs and petroleum hydrocarbons is biodegradation (ITRC, 2014; USEPA, 2015b). Biodegradation can reduce concentrations in the vadose zone thus reducing the potential for vapor intrusion by petroleum hydrocarbons. The Interstate Technology & Regulatory Council (ITRC) and USEPA vapor intrusion guidance documents established minimum vertical separation distances between a building foundation and the petroleum source of 5 feet (ITRC) and 6 feet (USEPA) for dissolved phase constituents and 18 feet (ITRC) and 15 feet (USEPA) for light non-aqueous phase liquid (LNAPL). Where the Site-specific vertical separation distance meets or exceeds the applicable minimum distance, petroleum hydrocarbons are expected to biodegrade to levels below those that would pose a health concern, and no further evaluation of the vapor intrusion pathway is considered necessary (ITRC, 2014; USEPA, 2015b). As the depth to groundwater is deeper than the separation distances, the vapor intrusion pathway is considered incomplete. Therefore, DRO was not included as a COPC for further evaluation in the vapor intrusion evaluation.

Further Evaluation of COPCs

The COPCs selected above were further evaluated to estimate the potential carcinogenic risk and noncarcinogenic hazard for an indoor commercial/industrial worker assuming a building is constructed in

the future. USEPA's VISL calculator was used to derive the potential risk/hazard estimates based on maximum detected concentrations in each of the areas discussed above (see Table B-3). Potential risks and hazards were compared to USEPA target levels, as described below.

USEPA has established target risk levels under the National Contingency Plan (NCP) (USEPA, 1990). Target risk levels refer to levels of cancer risk or hazard indices that are deemed acceptable by the USEPA or other regulatory agencies. These are levels below which the potential for adverse effects to humans are assumed to be negligible or inconsequential. The NCP establishes a target cancer risk range of 10⁻⁶ to 10⁻⁴ and a target hazard index (HI) of less than or equal to 1 (USEPA, 1990). The USEPA subsequently clarified that, "Where the cumulative carcinogenic site risk to an individual based on reasonable maximum exposure for both current and future land use is less than 10⁻⁴, and the non-carcinogenic hazard quotient is less than 1, action generally is not warranted, unless there are adverse environmental impacts" (USEPA, 1991). Potential chemicals of concern (COCs) are identified in this Baseline Human Health Risk Assessment, per DOEE request, as those COPCs with individual cancer risks greater than 1x10⁻⁶ or an HI greater than 1 on a target endpoint basis. The results are presented in the tables below.

		Potential (Cancer Risk	
COPC	Southern Boundary ^(a)	Northern Boundary (DP60)	Downgradient Perimeter (TA19C1, TA19C2)	MW-05A
Chloroform	4E-07	4E-06	ND	2E-07
Tetrachloroethylene	7E-06	7E-09	5E-07	2E-07
Trichloroethylene	6E-06	ND	8E-07	3E-07
Vinyl Chloride	2E-06	ND	ND	ND
Total	2E-05	4E-06	1E-06	8E-07

Notes:

ND = Not detected.

Blue highlighting indicates that the cumulative potential risk is within USEPA's target risk range of 10⁻⁶ to 10⁻⁴. (a) Wells with exceedances: DPA3, DPA4, DPA5, DPB10, DPB3, DPB5, DPB6, DPB7, DPB9, DPC4, DPC5, DPC7, MW-09A, and SUSDP09.

		Potential Noncancer Hazard Index (HI)								
COPC	Southern Boundary ^(a)	Northern Boundary (DP60)	Downgradient Perimeter (TA19C1, TA19C2)	MW-05A						
Chloroform	0.0005	0.005	ND	0.0003						
Tetrachloroethylene	2	0.002	0.1	0.06						
Trichloroethylene	2	ND	0.3	0.1						
Vinyl Chloride	0.01	ND	ND	ND						
Total	4	0.007	0.4	0.2						

Notes:

ND = Not detected.

Yellow highlighting indicates that the target endpoint HI exceeds 1.

^(a) Wells with exceedances: DPA3, DPA4, DPA5, DPB10, DPB3, DPB5, DPB6, DPB7, DPB9, DPC4, DPC5, DPC7, MW-09A, and SUSDP09.

The cumulative potential risk along the southern boundary, the northern boundary, and the downgradient perimeter is within the USEPA risk range of 10⁻⁶ to 10⁻⁴ (USEPA, 1991). The cumulative potential risk in MW-05A is below the risk range. These results indicate that the vapor intrusion pathway does not pose an inhalation risk in excess of USEPA target levels. The total noncancer HI along the southern boundary exceeds 1; the remaining areas have an HI below 1. COPCs with potential risks greater than 1x10⁻⁶ are indicated above in blue, and those with HI greater than 1 are indicated above in yellow.

Conclusions

Per the NCP, actions at Superfund sites are generally not warranted unless the total cumulative risk exceeds 10⁻⁴ or the HI exceeds 1 on a target endpoint basis. Based on the conservative screening level vapor intrusion evaluation and assuming a building is constructed in the future, potential cancer risks are within the risk range. Exceedances of a target endpoint HI of 1 occurred along the southern property boundary. At the request of DOEE, COPCs with potential risks above 10⁻⁶ were identified as potential COCs regardless of whether cumulative risk exceeded 10⁻⁴. The table below presents the potential COCs with potential risks greater than 10⁻⁶ or a target endpoint HI of 1; the hazard value representing the highest target endpoint HI is presented.

		Potential COCs for the Futur	e Vapor Intrusion Pathway ^(a)
COPC	Risk/HI	Southern Boundary	Northern Boundary (DP-60)
Chloroform	Risk		4E-06
Totrochloroothylono	Risk	7E-06	
Tetrachloroethylene	HI	2	
Trichloroothylono	Risk	6E-06	
Trichloroethylene	HI	2	
Vinyl Chloride	Risk	2E-06	

Notes:

⁻⁻ Indicates that the Excess Lifetime Cancer Risk is less than or equal to 10⁻⁶ or the HI is less than or equal to 1. Blue highlighting indicates that risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

Yellow highlighting indicates that risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1.

⁽a) Future outdoor industrial worker.

References

- ITRC. 2014. Petroleum Vapor Intrusion. Fundamentals of Screening, Investigation, and Management. Prepared by the ITRC Petroleum Vapor Intrusion Team. October 2014. https://www.itrcweb.org/PetroleumVI-Guidance/
- USEPA. 1990. National Oil and Hazardous Substances Pollution Contingency Plan. Final Rule. 55FR8666. March 8.
- USEPA. 1991. Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions. OSWER Directive #9355.0-30. April.
- USEPA. 2015a. Office of Solid Waste and Emergency Response (OSWER) Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air. OSWER Publication 9200.2-154. June 2015.
- USEPA. 2015b. Technical Guide for Addressing Petroleum Vapor Intrusion at Leaking Underground Storage Tank Sites. EPA 510-R-15-001. June 2015.

Table B-1
Evaluation of Chemicals Detected in Upper Water Bearing Zone to Include in Vapor Intrusion Evaluation
Benning Road Facility RI/FS Project
3400 Benning Rd, N.E., Washington DC 20019

			Criter	ia for Evaluation	1	
Cas Number	Detected Organic Chemical	Does the chemical meet the definition for volatility?	Does the chemical have inhalation toxicity data?	Source of Chemical Information	Evaluate for Vapor Intrusion? (b)	Target Groundwater Concentration (c) (ug/L)
Dioxins and Fura	ns					
DFTEQ-HH	TCDD TEQ HH	Yes	Yes	VISL	Yes	1.58E-04
PCBs	T (1000 (4))	1 ,	1 ,	\(\(\text{10}\) \(\text{1}\)	1 ,,	
TOT-PCB-ARO-C Pesticides	Total PCBs (Aroclors)	Yes	Yes	VISL (Aroclor 1254)	Yes	1.85E+00
72-54-8	4,4'-DDD	No	Yes	VISL	No	NA
50-29-3	4,4'-DDT	No	Yes	VISL	No	NA NA
319-85-7	beta-BHC	No	Yes	VISL	No	NA
5103-71-9	cis-Chlordane	Yes	Yes	VISL (chlordane)	Yes	6.17E+01
319-86-8	delta-BHC	No	No	HSDB	No	NA
60-57-1	Dieldrin	No	Yes	VISL	No	NA NA
58-89-9 1024-57-3	gamma-BHC (Lindane) Heptachlor Epoxide	No Yes	Yes Yes	VISL VISL	No Yes	NA 5.49E+00
5103-74-2	trans-Chlordane	Yes	Yes	VISL (chlordane)	Yes	6.17E+01
Petroleum Comp		100	100	viol (onlordano)	1 703	0.17.2101
C10C20	Diesel Range Organics (C10-C20)	Yes	Yes	VISL (aliphatic medium)	Yes	3.15E-01
C20C36	Oil Range Organics (C20-C36)	Yes	No	VISL (aliphatic high)	No	NA
SVOCs						
92-52-4	1,1'-Biphenyl	Yes	Yes	VISL	Yes	1.39E+01
91-57-6	2-Methylnaphthalene	Yes	No	VISL	No	NA NA
106-44-5 83-32-9	4-Methylphenol	No	Yes	VISL VISL	No	NA NA
208-96-8	Acenaphthene Acenaphthylene	Yes Yes	No No	RAIS	No No	NA NA
120-12-7	Anthracene	Yes	No	VISL	No	NA NA
100-52-7	Benzaldehyde	Yes	No	VISL	No	NA NA
56-55-3	Benzo(a)anthracene	Yes	Yes	VISL	Yes	4.17E+02
50-32-8	Benzo(a)pyrene	No	Yes	VISL	No	NA
205-99-2	Benzo(b)fluoranthene	No	Yes	VISL	No	NA
191-24-2	Benzo(g,h,i)perylene	No	No	RAIS	No	NA
207-08-9	Benzo(k)fluoranthene	No	Yes	VISL	No	NA NA
117-81-7 85-68-7	bis-(2-Ethylhexyl)phthalate Butylbenzylphthalate	No No	Yes No	VISL VISL	No No	NA NA
105-60-2	Caprolactam	No	Yes	VISL	No	NA NA
86-74-8	Carbazole	No	No	RAIS	No	NA NA
218-01-9	Chrysene	No	Yes	VISL	No	NA
53-70-3	Dibenzo(a,h)anthracene	No	Yes	VISL	No	NA
132-64-9	Dibenzofuran	No	No	VISL	No	NA
84-66-2	Diethylphthalate	No	No	VISL	No	NA
131-11-3 84-74-2	Dimethylphthalate Di-n-butylphthalate	No	No	HSDB VISL	No	NA NA
117-84-0	Di-n-octylphthalate	No No	No No	VISL	No No	NA NA
206-44-0	Fluoranthene	No	No	VISL	No	NA NA
86-73-7	Fluorene	Yes	No	VISL	No	NA
193-39-5	Indeno(1,2,3-cd)pyrene	No	Yes	VISL	No	NA
91-20-3	Naphthalene	Yes	Yes	VISL	Yes	2.01E+01
85-01-8	Phenanthrene	Yes	No	RAIS	No	NA
108-95-2	Phenol	No	Yes	VISL	No	NA NA
129-00-0 VOCs	Pyrene	Yes	No	VISL	No	NA
75-35-4	1,1-Dichloroethene	Yes	Yes	VISL	Yes	8.21E+01
78-93-3	2-Butanone	Yes	Yes	VISL	Yes	9.41E+05
591-78-6	2-Hexanone	Yes	Yes	VISL	Yes	3.45E+03
108-10-1	4-Methyl-2-pentanone	Yes	Yes	VISL	Yes	2.33E+05
67-64-1	Acetone	Yes	Yes	VISL	Yes	9.45E+06
71-43-2	Benzene	Yes	Yes	VISL	Yes	6.93E+00
75-27-4 75-65-0	Bromodichloromethane	Yes	Yes	VISL (isopropanol)	Yes	3.82E+00
75-65-0 75-15-0	Butyl alcohol, tert- Carbon Disulfide	Yes Yes	Yes Yes	VISL (Isopropanol) VISL	Yes Yes	2.65E+05 5.21E+02
67-66-3	Carbon Distillide Chloroform	Yes	Yes	VISL	Yes	3.55E+00
156-59-2	cis-1,2-Dichloroethylene	Yes	No	VISL (trans-12DCE)	No	NA NA
108-20-3	Diisopropyl ether	Yes	Yes	VISL	Yes	2.93E+03
XYLMP	m, p-Xylene	Yes	Yes	VISL (total xylenes)	Yes	1.62E+02
1634-04-4	Methyl tert-Butyl Ether (MTBE)	Yes	Yes	VISL	Yes	1.97E+03
75-09-2	Methylene Chloride	Yes	Yes	VISL	Yes	1.98E+03

Table B-1 Evaluation of Chemicals Detected in Upper Water Bearing Zone to Include in Vapor Intrusion Evaluation Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

			Criter	ia for Evaluation			
Cas Number	Detected Organic Chemical	Does the chemical meet the definition for volatility? (a) Does the chemical have inhalation toxicity data?		Source of Chemical Information	Evaluate for Vapor Intrusion? (b)	Target Groundwater Concentration (c) (ug/L)	
95-47-6	o-Xylene	Yes	Yes	VISL	Yes	2.07E+02	
994-05-8	Tertiary-Amyl Methyl Ether	Yes	Yes	VISL (MTBE)	Yes	1.97E+03	
127-18-4	Tetrachloroethylene	Yes	Yes	VISL	Yes	2.42E+01	
108-88-3	Toluene	Yes	Yes	VISL	Yes	8.07E+03	
156-60-5	trans-1,2-Dichloroethene	Yes	No	VISL	No	NA	
79-01-6	Trichloroethene	Yes	Yes	VISL	Yes	2.18E+00	
75-01-4	Vinyl Chloride	Yes	Yes	VISL	Yes	2.45E+00	
1330-20-7	Xylenes (total)	Yes	Yes	VISL	Yes	1.62E+02	

Notes:

CAS - Chemical Abstracts Service.

COPC - Chemical of Potential Concern.

HSDB - Hazardous Substances Databank. https://toxnet.nlm.nih.gov/cgi-bin/sis/search2. Accessed February 2019.

NA - Not Applicable.

PCB - Polychlorinated biphenyl.

RAIS - Risk Assessment Information System. https://rais.ornl.gov/cgi-bin/tools/TOX_search?select=chem_spef. Accessed February 2019.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - Dioxin Toxic Equivalence.

TPH - Total Petroleum Hydrocarbons.

VISL - Vapor Intrusion Screening Level Calculator.

VOC - Volatile Organic Compound.

- (a) Chemical meets the definition of volatility if the Henry's law constant is greater than 1E-05 atm-m³/mol or if the vapor pressure is greater than 1 millimeter mercury (mm Hg).
- (b) Chemical is evaluated for the vapor intrusion pathway if it meets the definiton of volatility and if it has inhalation toxicity data.
- (c) Calculated using VISL Calculator with default commercial/industrial parameters. Based on a cancer risk level of 1E-6 and an hazard quotient of 0.1. https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-level-calculator. Accessed February 2019.

Table B-2

Occurrence, Distribution and Selection of Chemicals of Potential Concern in Groundwater for the Volatilization to Indoor Air Pathway for Pepco Site Groundwater Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Groundwater

Exposure Point	Cas Number	Chemical	Minimum (1) Concentration	Maximum ⁽¹⁾ Concentration	1	Average Detected Concentration	Units	Location of Maximum Concentration	Detection Frequency	Range of Reporting Limits ⁽²⁾	Concentration Used for Screening ⁽³⁾	Screening Toxicity Value ⁽⁴⁾	COPC Flag (Y/N)	Rationale for Selection or Deletion ⁽⁶⁾
Pepco	Dioxins and Furan													
Site	DFTEQ-HH	TCDD TEQ	1.28E-09	1.41E-05		1.74E-06	ug/l	MW12A	11 / 14	0.000000981 - 0.00000263	1.41E-05	1.58E-04	N	BSL
Upper	PCBs													
Water	TOT-PCB-ARO-C	Total PCBs (Aroclors)	7.70E-03	1.50E-01		5.10E-02	ug/l	SUSDP05 (14 - 19 ft)	4 / 55	0.0094 - 0.01	1.50E-01	1.85E+00	N	BSL
Bearing	Pesticides													
Zone	5103-71-9	cis-Chlordane	9.60E-04	J 9.60E-04	J	9.60E-04	ug/l	SUSDP09 (25 - 30 ft)	1 / 27	0.0012 - 0.0013	9.60E-04	6.17E+01	N	BSL
	1024-57-3	Heptachlor Epoxide	8.10E-04	J 1.70E-02	J	5.70E-03	ug/l	MW06A	4 / 27	0.0012 - 0.0013	1.70E-02	5.49E+00	N	BSL
	5103-74-2	trans-Chlordane	1.20E-03	2.10E-03	J	1.60E-03	ug/l	MW13A	5 / 27	0.0012 - 0.0013	2.10E-03	6.17E+01	N	BSL
	Petroleum Hydroc	arbons												
	C10C20	Diesel Range Organics (C10-C20)	3.20E+02	J 5.40E+02		4.30E+02	ug/l	DP46 (15 - 20 ft)	6 / 41	480 - 520	5.40E+02	3.15E-01	Υ	ASL
	SVOCs													
	92-52-4	1,1'-Biphenyl	2.70E-01	J 2.70E-01	J	2.70E-01	ug/l	MW02A	1 / 21	0.93 - 1.1	2.70E-01	1.39E+01	N	BSL
	56-55-3	Benzo(a)anthracene	4.70E-02	J 3.40E+00		8.60E-01	ug/l	MW07A	9 / 58	0.18 - 0.23	3.40E+00	4.17E+02	N	BSL
	91-20-3	Naphthalene	4.40E-02	J 1.30E+01	J	1.60E+00	ug/l	MW12A	9 / 58	0.18 - 0.23	1.30E+01	2.01E+01	N	BSL
	VOCs			•										
	75-35-4	1,1-Dichloroethene	7.20E-01	J 7.20E-01	J	7.20E-01	ug/l	MW09A	1 / 114	1 - 1	7.20E-01	8.21E+01	N	BSL
	78-93-3	2-Butanone	7.40E-01	J 2.10E+01		7.50E+00	ug/l	MW09A	6 / 91	5 - 5	2.10E+01	9.41E+05	N	BSL
	591-78-6	2-Hexanone	4.70E-01	J 4.70E-01	J	4.70E-01	ug/l	MW09A	1 / 91	5 - 5	4.70E-01	3.45E+03	N	BSL
	108-10-1	4-Methyl-2-pentanone	6.40E-01	J 6.40E-01	J	6.40E-01	ug/l	MW09A	1 / 91	5 - 5	6.40E-01	2.33E+05	N	BSL
	67-64-1	Acetone	2.70E+00	J 7.30E+01		8.10E+00	ug/l	DP58 (15 - 20 ft)	33 / 91	5 - 5	7.30E+01	9.45E+06	N	BSL
	71-43-2	Benzene	2.10E-01	J 2.70E-01	J	2.50E-01	ug/l	MW09A	3 / 91	1 - 1	2.70E-01	6.93E+00	N	BSL
	75-27-4	Bromodichloromethane	3.60E-01	J 2.60E+00		1.50E+00	ug/l	DP60 (15 - 20 ft)	2/91	1-1	2.60E+00	3.82E+00	N	BSL
	75-65-0	Butyl alcohol, tert-	1.10E+02	J- 1.10E+02	J-	1.10E+02	ug/l	DP58 (15 - 20 ft)	1/34	40 - 800	1.10E+02	2.65E+05	N	BSL
	75-15-0	Carbon Disulfide	4.60E-01	J 1.50E+00		8.90E-01	ug/l	DP58 (15 - 20 ft)	9 / 91	1-1	1.50E+00	5.21E+02	N	BSL
	67-66-3	Chloroform	2.20E-01	J 1.50E+01		1.80E+00	ug/l	DP60 (15 - 20 ft)	18 / 91	1 - 1	1.50E+01	3.55E+00	Υ	ASL
	108-20-3	Diisopropyl ether	2.90E-01	J 6.30E-01	J	4.20E-01	ug/l	TA19C1 (15 - 20 ft)	3 / 34	1 - 20	6.30E-01	2.93E+03	N	BSL
	XYLMP	m, p-Xylene	2.70E-01	J 5.60E-01	J	4.40E-01	ug/l	SUSDP06 (14.5 - 19.5 ft)	4/91	1 - 2	5.60E-01	1.62E+02	N	BSL
	1634-04-4	Methyl tert-Butyl Ether (MTBE)	2.10E-01	J 4.80E+01		4.70E+00	ug/l	DP45 (15 - 20 ft)	51 / 91	1-1	4.80E+01	1.97E+03	N	BSL
	75-09-2	Methylene Chloride	2.00E-01	J 4.90E-01	J	3.10E-01	ug/l	SUSDP02 (12 - 17 ft)	5 / 91	1 - 1	4.90E-01	1.98E+03	N	BSL
	95-47-6	o-Xylene	1.10E-01	J 2.40E-01	J	1.60E-01	ug/l	SUSDP06 (14.5 - 19.5 ft)	4/91	1 - 1	2.40E-01	2.07E+02	N	BSL
	994-05-8	Tertiary-Amyl Methyl Ether	2.00E-01	J 1.30E+00	J	5.50E-01	ug/l	DP57 (15 - 20 ft)	4/34	1 - 20	1.30E+00	1.97E+03	N	BSL
	127-18-4	Tetrachloroethylene	1.80E-01	J 4.70E+02	-	5.80E+01	ug/l	DPB7	54 / 114	1 - 1	4.70E+02	2.42E+01	Y	ASL
	108-88-3	Toluene	1.50E-01	J 2.10E+00		4.30E-01	ug/l	SUSDP06 (14.5 - 19.5 ft)	33 / 91	1 - 1	2.10E+00	8.07E+03	N N	BSL
	79-01-6	Trichloroethene	1.70E-01	J 4.10E+01		9.10E+00	ug/l	MW09A	28 / 114	1-1	4.10E+01	2.18E+00	Y	ASL
	75-01-4	Vinyl Chloride	5.30E+00	5.30E+00		5.30E+00	ug/l	MW09A	1 / 114	1 - 1	5.30E+00	2.45E+00	Y	ASL
	1330-20-7	Xylenes (total)	1.10E-01	8.00E-01		4.00E-01	ug/l	SUSDP06 (14.5 - 19.5 ft)	6/91	1 - 2	8.00E-01	1.62E+02	N	BSL
	1000-20-1	Aylones (total)	1.102-01	0.00L-01		4.UUE-U I	ug/i	3030200 (14.5 - 19.5 π)	0/91	1-2	0.00L-01	1.02L+02	14	DOL

Notes:

(1) Minimum/maximum detected concentration and associated data flags.

- J = The chemical was positively identified; however, the associated numerical value is an estimated concentration only.
- (2) Lab Reporting Detection Limits (RDLs) are shown where the frequency of detection is less than 100%.
- (3) Maximum detected concentration used for screening.

(4) Screening levels are equal to the USEPA Vapor Intrusion Screening Level based on a target risk level of 1x10 -6 for carcinogens and a target hazard quotient of 0.1 for noncarcinogens. Calculated February 2019 via calculator. See Table F-1 for screening levels and surrogates used.

(6) Rationale Codes:

Deletion Reason: Below Screening Level (BSL). Selection Reason: Above Screening Level (ASL)

Definitions:

CAS - Chemical Abstracts Service COPC - Chemical of Potential Concern

PCB - Polychlorinated biphenyl. SVOC - Semivolatile Organic Compound.

TPH - Total Petroleum Hydrocarbons. VOC - Volatile Organic Compound.

TCDD TEQ - Dioxin Toxic Equivalence

Table B-3
Commercial Vapor Intrusion Risk
Benning Road Facility RI/FS Project
3400 Benning Rd, N.E., Washington DC 20019

Variable	Commercial Air Default Value	Value
AF _{gw} (Attenuation Factor Groundwater) unitless	0.001	0.001
AT _w (averaging time - composite worker)	365	365
ED _w (exposure duration - composite worker) yr	25	25
EF _w (exposure frequency - composite worker) day/yr	250	250
ET _w (exposure time - composite worker) hr	8	8
LT (lifetime) yr	70	70

Table B-3 Commercial Vapor Intrusion Risk Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Southern Boundary (Wells with exceedances: DPA3, DPA4, DPA5, DPB10, DPB3, DPB5, DPB6, DPB7, DPB9, DPC4, DPC5, DPC7, MW09A, SUSDP09)

Chemical	CAS Number	Area Maximum Groundwater Concentration C _{gw} (µg/L)	Indoor Air		Chronic Daily Intake (noncancer) (mg/m3)	VI Carcinogenic Risk CR	VI Hazard HQ	IUR (ug/m³) ⁻¹	IUR Ref	Chronic RfC (mg/m³)	RfC Ref	Critical Endpoint	Temperature () for Groundwater Vapor Concentration	Henry's Law Constant Used in Calcs (unitless)
Chloroform	67-66-3	1.3	0.2	1.59E-02	4.45E-05	3.66E-07	0.0005	2.30E-05	IRIS	9.77E-02	ATSDR	Hepatic effects	25	0.15
Tetrachloroethylene	127-18-4	470	340	2.77E+01	7.77E-02	7.21E-06	1.94	2.60E-07	IRIS	4.00E-02	IRIS	Neurological, Ocular	25	0.724
Trichloroethylene	79-01-6	41	17	1.35E+00	3.77E-03	5.52E-06	1.89	4.10E-06	IRIS	2.00E-03	IRIS	Thyroid, Vascular	25	0.403
Vinyl Chloride	75-01-4	5.3	6	4.93E-01	1.38E-03	2.17E-06	0.01	4.40E-06	IRIS	1.00E-01	IRIS	Liver	25	1.14
*Sum						1.53E-05	3.84							

Target Endpoint HQ

Liver/Hepatic: 0.01 Neurological, Ocular: 1.94 Thyroid, Vascular: 1.89 Maximum: 1.94

DP60 (Northern Boundary)

Chemical	CAS Number	Area Maximum Groundwater Concentration C _{gw} (µg/L)	Indoor Air		Chronic Daily Intake (noncancer) (mg/m3)		VI Hazard HQ	IUR (ug/m³) ⁻¹	IUR Ref	Chronic RfC (mg/m³)	RfC Ref	Critical Endpoint	Temperature () for Groundwater Vapor Concentration	Henry's Law Constant Used in Calcs (unitless)
Chloroform	67-66-3	15	2.3	1.83E-01	5.14E-04	4.22E-06	0.005	2.30E-05	IRIS	9.77E-02	ATSDR	Hepatic effects	25	0.15
Tetrachloroethylene	127-18-4	0.44	0	2.60E-02	7.27E-05	6.75E-09	0.002	2.60E-07	IRIS	4.00E-02	IRIS	Neurological, Ocular	25	0.724
Trichloroethylene	79-01-6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Thyroid, Vascular	ND	ND
Vinyl Chloride	75-01-4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Liver	ND	ND
*Sum						4.23E-06	0.007							

Target Endpoint HQ

Liver/Hepatic: 0.005
Neurological, Ocular: 0.002
Thyroid, Vascular: ND
Maximum: 0.005

FINAL

Table B-3 Commercial Vapor Intrusion Risk Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Downgradient Perimeter (Wells with exceedances: TA19C1, TA19C2)

Chemical	CAS Number	Area Maximum Groundwater Concentration C _{gw} (µg/L)	Indoor Air	Chronic Daily Intake (Cancer) (ug/m3)	Chronic Daily Intake (noncancer) (mg/m3)	VI Carcinogenic Risk CR	VI Hazard HQ	IUR (ug/m³) ⁻¹	IUR Ref	Chronic RfC (mg/m³)	RfC Ref	Critical Endpoint	Temperature () for Groundwater Vapor Concentration	Henry's Law Constant Used in Calcs (unitless)
Chloroform	67-66-3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Hepatic effects	ND	ND
Tetrachloroethylene	127-18-4	30	22	1.77E+00	4.96E-03	4.60E-07	0.12	2.60E-07	I	4.00E-02	IRIS	Neurological, Ocular	25	0.724
Trichloroethylene	79-01-6	5.9	2	1.94E-01	5.43E-04	7.95E-07	0.27	4.10E-06	I	2.00E-03	IRIS	Thyroid, Vascular	25	0.403
Vinyl Chloride	75-01-4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Liver	ND	ND
*Sum						1.26E-06	0.40							

Target Endpoint HQ

Liver/Hepatic: ND
Neurological, Ocular: 0.12
Thyroid, Vascular: 0.27

Maximum: 0.27

MW05A

Chemical	CAS Number	Area Maximum Groundwater Concentration C _{gw} (µg/L)	Site Indoor Air Concentration C _{i,a} (µg/m³)		Chronic Daily Intake (noncancer) (mg/m3)	VI Carcinogenic Risk CR	VI Hazard HQ	IUR (ug/m³) ⁻¹	IUR Ref	Chronic RfC (mg/m³)	RfC Ref	Critical Endpoint	Temperature () for Groundwater Vapor Concentration	Henry's Law Constant Used in Calcs (unitless)
Chloroform	67-66-3	0.77	0.1	9.42E-03	2.64E-05	2.17E-07	0.0003	2.30E-05	ı	9.77E-02	ATSDR	Hepatic effects	25	0.15
Tetrachloroethylene	127-18-4	15	11	8.86E-01	2.48E-03	2.30E-07	0.06	2.60E-07	ı	4.00E-02	IRIS	Neurological, Ocular	25	0.724
Trichloroethylene	79-01-6	2.3	1	7.56E-02	2.12E-04	3.10E-07	0.11	4.10E-06	ı	2.00E-03	IRIS	Thyroid, Vascular	25	0.403
Vinyl Chloride	75-01-4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Liver	ND	ND
*Sum						7.57E-07	0.1681						•	

Target Endpoint HQ

Liver/Hepatic: 0.0003

Neurological, Ocular: 0.06

Thyroid, Vascular: 0.11

Maximum: 0.11

Attachment C

Discussion of Key Exposure Parameters Used in the BHHRA

Attachment C Discussion of Key Exposure Parameters Used in the BHHRA

1 Introduction

This Baseline Human Health Risk Assessment (BHHRA) evaluated the following receptors:

Landside

- <u>Current/Future Construction Worker (adult).</u> Potential direct contact (ingestion and dermal) with surface and subsurface soil and potential inhalation of soil-derived fugitive dust during utility or other construction work requiring excavation. In addition, the construction worker may be exposed to volatiles in the air of an excavation trench due to volatilization from groundwater infiltrating the trench.
- <u>Future Outdoor Industrial Worker (adult).</u> Potential direct contact (ingestion and dermal) with surface soil and potential inhalation of surface soil-derived fugitive dust, in the event of a change in the existing soil cover on Site in the future.
- <u>Future Indoor Industrial Worker (adult).</u> A screening level evaluation of the potential vapor intrusion from groundwater to indoor air pathway is included in Attachment B. Default exposure parameters were used (exposure of 250 days per year for 25 years).
- <u>Future Recreational Visitors (older child/teen).</u> Potential direct contact (ingestion and dermal) with surface soil, and potential inhalation of surface soil-derived fugitive dust in the western portion of the Site next to Anacostia Avenue, if the area were to become publically accessible in the future (see Figure 3-1 of the main text of this BHHRA).

Waterside

- Current/Future Recreational Anglers (adult, older child/teen, young child). Potential direct contact
 with fringe surface sediment and surface water while fishing, and ingestion of fish from the
 Anacostia River. The BHHRA also included an evaluation of a high-end consuming angler for
 ingestion of fish only.
- <u>Current/Future Swimmers (adult, older child/teen, young child).</u> Potential direct contact with fringe surface sediment and surface water while swimming in the Anacostia River.

- <u>Current/Future Waders (adult, older child/teen, young child).</u> Potential direct contact with fringe surface sediment and surface water while wading in the Anacostia River.
- Shoreline Workers (adult). Potential direct contact with fringe surface sediment and surface water while performing maintenance, landscaping, or other activities along the shoreline of the Anacostia River.

Tables 5-2, 5-3, 5-4, 5-5, and 5-6 of the main text of this BHHRA present the exposure parameter values used to quantitatively estimate potential risks from exposures to soil, excavation trench air, fringe surface sediment, surface water, and fish tissue, respectively. Default exposure factors were used in the screening level vapor intrusion evaluation (8 hours per day, 250 days per year, 25 years). A description of each Landside receptor evaluated in the BHHRA is provided in Section 5.3 of the main text of this BHHRA. Key exposure parameters are discussed below for both the reasonable maximum exposure (RME) and central tendency exposure (CTE) scenarios, including:

- Fish Consumption Exposure Parameters
- Soil and Fringe Surface Sediment Ingestion Rates
- Surface Water Ingestion Rates
- Body Surface Areas Exposed
- Soil and Fringe Surface Sediment Adherence Factors
- Exposure Frequency
- Exposure Duration
- Body Weight

2 Fish Consumption Exposure Parameters

A number of parameters were used to calculate the potential risk from consumption of fish, including consumption rate, species, body parts consumed, fraction ingested from the Site, preparation and cooking methods, and years of fishing at the Site. In selecting appropriate fish consumption exposure parameters, U.S. Environmental Protection Agency (USEPA) guidance (USEPA, 1989a,b, 1998, 2000, 2011) discusses the importance of considering site-specific factors, including water quality, public access, abundance of desirable species, and proximity of other desirable water bodies, as well as characteristics of the angling population.

The Anacostia River is a tidal river with habitat suitable for a variety of freshwater and estuarine species, including American eel, brown bullhead, channel catfish, largemouth and smallmouth bass, carp, and

sunfish. Angling from shore and boat has been observed, as discussed below. A water body-specific fish consumption advisory is in effect for the Anacostia and Potomac Rivers recommending against consumption of some species (catfish, carp, and American eel) and limited consumption of other species (e.g., largemouth bass and sunfish) (DOEE, 2016). However, some people may not be aware of the advisory, or may choose to catch and eat river fish despite the advisory.

To aid in the development of appropriate fish consumption exposure parameters for the BHHRA, available local and regional angler studies were consulted. Fish consumption rates and fraction of diet/fraction ingested are discussed below.

2.1 Fish Consumption Rate

Available angler surveys were reviewed to identify data that could serve as a source of consumption rates for the Anacostia River. Four regional studies were identified, and are summarized below.

- Survey of Chesapeake Bay Occupational and Recreational Fishers (Harris et al., 2009)
- Chesapeake Bay Angler Survey (Gibson and McClafferty, 2005)
- Anacostia River Angler Survey (OpinionWorks, 2012)
- Subsistence Fishing on the Potomac and Anacostia Rivers (NPS, 2016)

Chesapeake Bay Occupational and Recreational Fishers Survey

Researchers from the University of Toronto and Virginia Commonwealth University, with support from the Virginia Department of Health, conducted a survey of occupational and recreational anglers that fish in Chesapeake Bay (Harris et al., 2009). The participants (n=99) were recruited from an existing cohort of an epidemiological study examining exposure to a seafood toxin (*Pfiesteria*), and included occupational anglers as well as recreational anglers with occupations not related to fishing. The majority (80%) were male, 85% had at least a high school education, and 98% were white (2% were black). In 2001, participants were administered an in-person questionnaire that focused on current fish consumption, species consumed, past fish consumption, and perceptions of risk. Fish consumption included all sources of fish meals, including store-bought, self-caught, restaurant, etc. Information on fish meal frequency was solicited two ways: 1) on the basis of average fish consumption on a weekly, monthly, or annual basis, and 2) on a species-specific basis. Using the two methods, the median number of annual fish meals was estimated to be 52 based on "average" reported fish meal frequency, and 65 based on summing species-specific reported fish meal frequencies. Species most frequently consumed included flounder, tuna (including canned tuna), striped bass, sea trout, and croaker. Approximately 70% of the fish consumed was self-caught (with about half of that from Virginia waters), and the average fish meal size was approximately 9 ounces (median of 8 ounces). The authors found a statistically significant relationship between consumption and occupation, with

higher consumption by occupational anglers and other water-related occupations versus non-water-related occupations. The authors suggest that the consumption estimates based on summation of different fish types are likely upwardly biased by approximately 30%.

The 2001 Chesapeake Bay occupational and recreational fishers survey is of limited usefulness to the Pepco Anacostia River risk assessment for several reasons: fish consumption represents all sources of fish, not just self-caught, the predominantly White study population differs from Anacostia River anglers (largely non-White), and marine fish that would not typically be present represent a large portion of the diet (e.g., flounder and sea trout).

Chesapeake Bay Angler Survey

In 2004, researchers from Virginia Polytechnic Institute and State University, under contract to the Chesapeake Bay Program, conducted on-site angler interviews in three regions of concern: 1) Baltimore, Maryland area, 2) Washington, DC area, and 3) Tidewater, Virginia area (Gibson and McClafferty, 2005). The purpose of the study was to characterize anglers' demographic characteristics and consumption behaviors, as well as their knowledge of consumption advisories. The interviews were conducted over 8 weeks in June–August at nine predetermined fishing sites in each study area. Of the nine intercept sites in the Washington, DC study area, seven were located on the Potomac River, one on the Anacostia River (Anacostia Park South¹), and one on the bay south of the confluence of the two rivers. The individual site sampling frequencies were weighted to sample the sites where anglers were expected more frequently, based on consultations with fishery managers and visual observations of survey staff (Gibson and McClafferty, 2005). Interview teams visited assigned sites for 8-hour shifts (morning shift of 6 am to 2 pm and afternoon shift of 12 noon to 8 pm).

A total of 247 interviews were conducted in the DC area. The study attempted to interview each angler only once, although the authors report that 9% of the 247 intercepts were with anglers that had been interviewed earlier in the summer. Most anglers (91%) were male, and the average age was 45. Most (84%) had obtained at least a high school education. Half of the anglers were African-American, 33% were White, 10% were Hispanic, and 6% were Asian. About 40% reported annual household incomes above \$80,000, about 30% reported annual household incomes of \$40,000 to \$80,000, and 30% reported less than \$40,000. About 9% reported annual household incomes of less than \$20,000.

¹ Gibson's 2005 Master's thesis: Fish Consumption Advisories in Tributaries to the Chesapeake Bay: Improving the Communication of Risk to Washington, DC Anglers, provided additional information on the 2004 survey. In the thesis, the Anacostia South Park survey site was depicted on a map on the east side of the river adjacent to the Pennsylvania Ave. Bridge (Sousa Bridge). This location is approximately 1.8 miles downriver from the Pepco Site. Anacostia South Park (site 9) was visited six times during the 8-week survey period. Two of the visits were conducted on weekend days, while the other four were on weekdays. Five of the six visits took place during the afternoon shift, and one visit took place during the morning shift. A total of 13% (about 30 interviews) of all DC area interviews were conducted at the Anacostia South Park site, ranking fourth out of the nine DC area sites.

About 37% reported eating some of their catch, and 63% reported practicing catch and release only. Of those who reported consuming their catch, 75% reported avoiding certain species. About half of anglers who reported not consuming their catch said they sometimes gave away their catch. When consuming anglers were asked to name up to four species consumed and consumption frequency, catfish (listed as a "do not eat" species) was the most popular species, followed by stripers and largemouth bass. For the other two "do not eat" listed species (carp and eel), only three anglers reported consuming carp, and none reported consuming eel.

Most anglers reported fishing and eating their catch in the warmer months (April–September). During these warmer months, 53% of consuming anglers reported a consumption rate of 1 to 3 times per month, and 20% reported a consumption rate of 1 to 2 times per week. On average throughout the year, anglers ate their catch less than once per month (44%) or between one and three times per month (29%). Only 2% reported eating self-caught fish more than twice a week throughout the year. Asian and Hispanic anglers were more likely to consume their fish than anglers of other ethnicities, and were also more likely to provide their catch to other family members. The majority (about 60%) reported removing the skin and trimming the fat, and most (78%) reported eating 8 ounces or less for a typical meal. Of the 247 DC area anglers interviewed, only 6 reported eating crabs. When asked about reasons for fishing, over 90% of the anglers reported being outdoors or relaxing as very important. About 20% reported getting fresh fish for a family meal as a very important reason. About 56% of the interviewed anglers reported awareness of the consumption advisories.

The 2004 Chesapeake Bay Angler Survey includes consumption and behavior data for anglers on the Potomac River and Anacostia River that may be useful for the risk assessment. The survey questions asked about consumption and sharing habits related to "self-caught" fish from the Washington, DC area, although not necessarily specific to the Anacostia River. Population statistics were not generated, and sampling weights were not provided. Thus, there is uncertainty as to the representativeness of the interview data to the larger population of Anacostia River anglers and consuming anglers. In addition, the survey was administered over an 8-week period of high fishing activity, and anglers were asked to recall year-round practices. There is uncertainty in using one-time recall data to estimate long-term consumption rates (USEPA, 2011). Recall survey methods tend to bias consumption rates high, especially for more avid anglers and with longer recall periods (USEPA, 1998; Connelly and Brown, 1995; Fisher et al., 1991). "Recall bias" may be further amplified when the respondent is interviewed at the height of the fishing season, and responses extrapolated to cold weather months when fishing activity is much lower. This bias will lead to overestimating annual consumption rates (USEPA, 2011).

Anacostia River Angler Survey

OpinionWorks, under contract to the Anacostia Riverkeeper and with multi-agency support, conducted a study to assess the characteristics, practices, and attitudes of Anacostia River anglers (OpinionWorks, 2012). On-site interviews were conducted on various days of the week and hours of the day from early morning to evening, over 5 weeks in August and September 2011 at 10 fishing sites between Bladensburg, Maryland and the mouth of the Anacostia River near Hains Point in the District of Columbia. Interviews were administered predominantly in English (85%), with the remainder in Spanish (14%) and Vietnamese (1%). Information was gathered on fishing practices, fish consumption and sharing, and awareness of health risks. Of the 111 anglers interviewed, 67% were African American, 18% were Hispanic, 8% were Asian, and 6% were White. About 62% had a high school education, and 25% never completed high school. About 63% of the interviewed anglers reported fishing at least once a week during the warm weather months, and 18% reported fishing daily during warm weather months. When shown a photo sheet of fish species in the river, catfish was reported as caught most often (65% of anglers), followed by brown bullhead (33% of anglers) and sunfish (20% of anglers). About 75% of anglers reported eating or sharing some or all of their catch, and about 25% practice catch and release only. About one third (35%) reported eating or sharing their catch once per week, and 7% reported eating fish every day. Nearly half (46%) reported sharing self-caught fish outside of their family. The goal of this study was to understand fishing, consumption, and sharing practices of anglers; however, the study was not designed and did not collect the data necessary to calculate longterm fish consumption rates and was therefore not used in developing fish consumption rates for this BHHRA.

National Park Service (NPS) Survey of Potomac and Anacostia River Anglers

The Interim report *Subsistence Fishing on the Potomac and Anacostia Rivers* (NPS, 2016) summarizes a survey of anglers who fish from NPS-managed land in the DC area. The study was initiated in 2014 with identification of popular fishing spots along 47 miles of riverfront along the Potomac and Anacostia Rivers, followed by in-field angler interviews in late spring through fall of 2015. The purpose of the study was to determine the extent of non-recreational fishing, and the social, cultural, and community context of fishing in the two rivers. By design, the study targeted anglers who appeared to be harvesting for consumption and/or sharing. The sampling design is based on an availability sample versus a random sample, which limits extrapolation of study findings to the broader population of anglers fishing in the study area (NPS, 2016). The authors state that four basic questions underlie the study: Why are people fishing on the rivers and eating their catch; what motivates them to do this and what does it mean to them? Who are the anglers and fisher women doing the fishing and what are they catching? How and what kind of sharing is going on? And what is the extent of food insecurity among people who are fishing?

As stated in the NPS report:

By using anthropological methodology and techniques, this study aims to provide a deeper understanding of the cultural communities represented by anglers, and their relation to the land and river resources. The resulting ethnographic resource study will provide (I) an ethnohistorical overview of fishing on the Potomac and Anacostia Rivers, (2) ethnographic data about contemporary anglers, and (3) an understanding about the cultural relevance of park resources to people and groups....

As such, the study focuses on the social, economic, and cultural reasons for fishing in the national park, and was not designed to collect the data necessary to estimate fish consumption rates for use in a risk assessment. Documentation of fish harvests, and plans for consumption and sharing captured through diaries or repeated intercepts with anglers, are more reliable methods of collecting data for deriving reliable estimates of long-term fish consumption rates. The initial study results are based on 35 angler interviews, the majority of which (31 of 35) were with anglers fishing on the Potomac River; only 4 of the interviewed anglers were fishing on the Anacostia River.² The documentation of the NPS study is limited, and the survey was designed with quantification of angler fishing and harvest as an objective. Further, the study represents the responses of a small sample size; a total of 35 anglers were interviewed, of which only 4 were intercepted on the Anacostia River. Therefore, this study was not used in developing fish consumption rates for this BHHRA.

Selected Fish Consumption Rates

The Chesapeake Bay angler survey was selected as the most appropriate study for use in deriving fish consumption rates for the Benning Road BHHRA. This study was selected because it followed general survey design methods, recorded 247 interviews over an 8-week period, included the Anacostia River, identified species preferences, and presented consumption frequency ranges. While the Chesapeake Bay angler survey was not conducted with the intention of collecting data for use in a BHHRA, the available data are sufficient to develop consumption estimates for DC area anglers. Since the survey was conducted during the warm weather period when fishing activity tends to be highest, angler responses regarding fishing and consuming frequency are likely to be biased upward (recall bias). As previously noted, this bias tends to result in overestimating annual consumption rates (USEPA, 2011). The angler surveys by OpinionWorks (2012) and NPS (2016) provide generally qualitative information on anglers, motivations for fishing, and general consuming and sharing practices; this information has also been considered in the development of the fish consumption exposure parameters.

For the RME scenario, a fish consumption rate of 20 grams/day was used for the adult angler. This rate equates to approximately 32 half-pound meals per year of self-caught fish, and was derived based on

_

² The authors report that a second phase of interviews is planned, with a final sample size goal of 100 interviews (NPS, 2016).

angler responses on frequency of eating their catch. The rate assumes one-half pound of self-caught fish meal per week during the six warmer months of the year (April through September) and one meal per month during the six cooler months of the year (October through March). For the CTE scenario, a fish consumption rate that is half of the RME rate (10 grams/day) was used for the adult angler. The assumption that a typical fish meal consists of a half-pound of fish is conservative, as nearly 80% of anglers reported consuming 8 ounces or less (Gibson and McClafferty, 2005).

Consumption rates for the older child/teen and young child were based on the assumption that intakes are approximately two-thirds and one-third, respectively, that of the adult. This assumption is based on the ratios of mean child-to-adult fish ingestion rates for fish consumption (USEPA, 2011). The derivation of the recreational angler consumption rates is presented in **Table C-1**. The RME and CTE fish consumption rates used in the BHHRA are shown below in units of grams per day and fish meals per year, assuming typical meal sizes of 8 ounces (227 grams) for the adult, 6 ounces (170 grams) for the older child, and 4 ounces (113 grams) for the young child.

	Fish Consumption Rates Recreational Angler					
	RME CTE					
Angler Age Group ^a	g/day	meals/year	g/day	meals/year		
Adult	20	32	10	16		
Older child/teen	13	28	7	15		
Young child	7	23	3	10		
a Age groups: adult =	19+ yrs; older child/	teen = 7 to < 19 yrs;	young child = 1 to <7	yrs.		

Based on the survey results presented in Gibson and McClafferty (2005), some anglers supplement a sizeable fraction of their diet with river fish. The BHHRA includes an analysis of a high-end consuming angler who fishes year-round and consumes two fish meals per week of Anacostia River fish, as indicated below.

	Fish Consumption Rates High-end Consuming Angler RME				
Angler Age Group ^a	g/day	meals/year			
Adult	65	104			
Older child/teen	43	69			
Young child	21	33			
^a Age groups: adult = 19+ yrs; ol	der child/teen = 7 to <19 yrs;	young child = 1 to <7 yrs.			

Because there is a current fish consumption advisory, it is possible that fish consumption rates would increase in the future if the advisory is lifted. Additional improvements in the river could also lead to

increased fish consumption in the future. Section 7.3.2 of the main text of this BHHRA discusses uncertainties in fish consumption rates and potential future changes in the advisory or river conditions.

2.2 Fraction Ingested

The Risk Assessment Guidance for Superfund (RAGS) Part A includes the term "fraction ingested" (FI), which is defined as the "fraction ingested from contaminated source (unitless)" (USEPA, 1989a). Anglers fish at multiple locations and likely obtain catch from several locations throughout the Anacostia River and the broader DC area, including the Potomac River and upper Chesapeake Bay. The use of a FI of less than 1 translates to assuming that a portion of the angler's self-caught fish diet comes from locations other than the Anacostia River in the vicinity of the Site. The size of the Pepco Waterside Investigation Area (approximately one-half mile of shoreline) relative to the length of the Anacostia River (approximately 8.4 miles from Bladensburg to the confluence with the Potomac River) is less than 6 percent. In addition, fish move throughout the river, with home ranges for some species of up to several miles (e.g., catfish, carp, striped bass). For the RME scenario, it was assumed that half of the fish consumed by the angler comes from the Anacostia River in the vicinity of the Site (FI = 0.5). For the CTE scenario, a FI of 0.25 was used to account for anglers who catch and eat fish from throughout the greater DC area. An FI was not applied to the high-end consuming angler scenario.

3 Soil and Fringe Sediment Ingestion Rates

While a number of studies on incidental ingestion of soil as a result of hand-to-mouth behaviors have been conducted, as summarized in USEPA guidance (2011), similar data for sediment are lacking. Incidental ingestion of sediment is generally expected to be limited since submerged sediments tend to be washed off of the exposed skin (USEPA, 2004). Since empirical, site-specific measurements of sediment ingestion are not feasible, the development of appropriate incidental sediment ingestion rates for the BHHRA entailed the use of soil ingestion rates published in USEPA guidance (USEPA, 2011, 2014).

The USEPA's default upper-bound residential soil ingestion rates are 200 mg/day for young children (1 to <7 years of age) and 100 mg/day for adults (USEPA, 2014). These soil ingestion rates are intended to capture exposure to outdoor soil and household dust of outdoor soil origin (USEPA, 2011). The rate for the young child is based on two soil ingestion studies (Özkaynak et al., 2010; Stanek and Calabrese, 1995). The rate for the adult is based on the 1991 version of the standard default exposure factors, because USEPA (2011) does not provide upper-bound values. USEPA has adopted the upper 95th percentile soil ingestion rate from Stanek et al. (1997) as the default construction worker ingestion rate of 330 mg/day (USEPA, 2002).

Because of uncertainty in the fraction of total daily intake that is composed of fringe surface sediment versus soil, and Site versus non-Site, and also to provide a conservative, upper-bound estimate, the default values

for incidental soil ingestion (USEPA, 2002, 2014) were used as the basis of the soil and fringe surface sediment ingestion rates for the BHHRA. The rates were adjusted for recreational receptors to account for the fraction of the total daily intake derived from river fringe surface sediment or Site soil relative to the fraction derived from the backyard, household dust, and other non-Site sources. It was conservatively assumed that on the days when the recreational receptor visits the River or Site, approximately 50% of the total daily intake would be derived from river fringe surface sediment or Site soil, and 50% would be from backyards, household dust, and other non-Site-related locations. The same relative source apportionment was applied to the CTE rates, which are assumed to be 50% of RME rates. For non-recreational receptors, it was assumed that 100% of the daily intake rate comes from river fringe surface sediment or Site soil. The selected fringe surface sediment and soil incidental ingestion rates for Waterside and Landside receptors are summarized below.

		ault Total Daily take Rate	Assumed River Fringe Surface Sediment Ingestion Rate		
Waterside	RME	CTE	RME	CTE	
Receptors	mg/day	mg/day	mg/day	mg/day	
Angler, Swimmer, Wader (adult)	100	50	50 ^a	25 ^a	
Angler, Swimmer, Wader (older child/teen)	100	50	50 ^a	25 ^a	
Angler, Swimmer, Wader (young child)	200	100	100 ^a	50 ^a	
Shoreline Worker (adult)	100	50	100	50	

Notes:

^a It is assumed that 50% of the receptor's total daily intake rate is associated with backyard soils, household dust, and other off-Site sources, which are not included in the BHHRA, and that 50% is river fringe surface sediment.

		ult Total Daily ake Rate	Assumed On-Site Soil Ingestion Rate		
Landside	RME	CTE	RME	CTE	
Receptors	mg/day	mg/day	mg/day	mg/day	
Construction Worker (adult)	330	330	330	330	
Outdoor Industrial Worker (adult)	100	50	100	50	
Recreational Visitor (older child/teen)	100	50	50 ^a	25 ^a	

Notes:

4 Surface Water Ingestion Rate

While a number of studies on drinking water ingestion rates have been conducted, as summarized in USEPA guidance (2011), similar data for incidental surface water ingestion are generally lacking, especially

^a It is assumed that 50% of the receptor's total daily intake rate is associated with backyard soils, household dust, and other off-Site sources, which are not included in the BHHRA, and that 50% is Site soil.

for activities such as wading or boating. However, USEPA (2011) provides incidental water ingestion rates during swimming. The ingestion rates are based on a pilot study in which 53 participants (12 adults and 41 children) swam for 45 minutes in a community outdoor swimming pool treated with chloroisocyanate. Cyanuric acid in the urine of each participant was used as an indicator of pool water ingestion exposure (see the table below). The upper percentile rates are based on the 97th percentile for children and the maximum value for adults. While the use of these values from a small-scale pilot study may not be appropriate, the upper-bound values reported in USEPA (2011) were used for the RME scenario, and the mean values were used for the CTE scenario. As the CTE scenario is meant to represent average conditions, the mean values are more appropriate than the upper-bound, which reflect greater than 95th percentiles.

Age	Mean (mL/hour)	Upper Percentile (mL/hour)
Children	49	120
Adults	21	71

Estimates of incidental water ingestion that occurs during water recreational activities other than swimming are not provided in USEPA guidance. However, a study of incidental water ingestion during limited-contact recreation was identified in the peer reviewed literature (Dorevitch et al., 2011). Self-reported estimates of incidental water ingestion were obtained from approximately 2,700 people (6 years of age or older) who were canoeing, kayaking, and fishing in Chicago area surface waters. A second study evaluated 662 people in swimming pools involved in full contact (i.e., swimming) and limited contact recreational activities, such as canoeing, kayaking (including capsizing), simulated fishing, and wading/splashing. The surface water study was an observational design study with no time limit on the duration of the activity. The swimming pool study was a controlled exposure design of 60 minutes and a subsequent urine analysis 24 hours later to measure levels of cyanuric acid (a tracer of swimming pool water). Of the surface water participants, less than 2% reported swallowing a teaspoon or more, and less than 0.5% reported swallowing a mouthful or more (Dorevitch et al., 2011).

The authors report the mean and upper confidence limit for incidental surface water ingestion rates of 3 to 4 mL per event and 10 to 15 mL per event, respectively, for limited-contact recreational exposures to surface water (e.g., canoeing, kayaking, fishing) (Dorevitch et al., 2011). The midpoint of the upper confidence limit rate of 13 mL per event and the mean rate of 4 mL per event was used for the RME and CTE incidental surface water ingestion rates, respectively, for the non-swimming exposure scenarios (angler, wader, worker) and all age groups.

5 Body Surface Area Exposed

Recreational visitors, as well as industrial workers and construction workers, may come into contact with soil while on-Site. Recreational receptors may come into contact with fringe surface sediment and surface water while wading in shallow areas of the River to play or fish, or occasionally swimming in the River. The shoreline worker receptor may contact fringe surface sediment and surface water while performing maintenance or other work-related activities along the shoreline. For the evaluation of potential risk from direct contact with fringe surface sediment during swimming, wading, and angling, it is assumed that some fringe surface sediment remains adhered to the skin surface after the event.

Tables C-2 through **C-6** present the calculation of the exposed body surface areas. The same exposed skin surface areas were used in the RME and CTE scenarios.

Worker Receptors

For the adult outdoor industrial worker, construction worker, and shoreline worker, the head, hands, and forearms are assumed to remain in contact with soil (industrial worker, construction worker) or fringe surface sediment and surface water (shoreline worker). USEPA derived a default value of 3,527 cm² using the average of males and females for this body surface area (USEPA, 2014). The default value is used in this BHHRA.

Recreational Visitor

The older child/teen recreational visitor may come into contact with surface soil on-Site. It is assumed that the head, hands, forearms, and lower legs are potentially exposed. Based on these body parts, a mean surface area of 3,950 cm² was calculated in **Table C-2** for males and females age 7 to <19.

Swimmer Receptor

For the swimmer receptor, the entire body surface area is assumed to be exposed to surface water. The body surface areas for the swimmer, calculated using the average of males and females, are as follows (USEPA, 2011, 2014):

- Adult swimmer = 20,900 cm²
- Older child/teen swimmer = 14,825 cm²
- Young child swimmer = 7,500 cm²

Table C-3 presents the calculation of the total body surface area for the young child and older child/teen swimmer. The total body surface area for the adult swimmer was taken from USEPA (2014).

For the swimmer's exposure to fringe surface sediment, not all of the body surface area is assumed to remain in contact with fringe surface sediment. Sediment from deeper water is expected to wash off of the body upon exiting the water (USEPA, 2004). For the adult and older child/teen swimmer, the lower legs and feet are assumed to remain in contact with fringe surface sediment. For the young child swimmer, more of the body surface is assumed to remain in contact with fringe surface sediment, including the hands, forearms, lower legs, and feet.

Thus, using the average of males and females and weighted averages by year for each child body part, the body surface areas exposed to fringe surface sediment are as follows for the swimmer (USEPA, 2011):

- Adult swimmer = 3,800 cm² (**Table C-4**)
- Older child/teen swimmer = 2,710 cm² (Table C-5)
- Young child swimmer = 2,057 cm² (**Table C-6**)

Wader and Angler Receptors

For the water and angler receptor's exposure to fringe surface sediment and surface water, the same body surface areas exposed to sediment for the swimmer are used.

6 Soil and Sediment Adherence Factors

To account for differences in adherence for different parts of the body, an area-weighted adherence factor is calculated using body part-specific adherence levels. For each receptor, the skin surface area of each exposed body part is multiplied by its body part-specific adherence factor to yield a total mass adhered to that body part. The total masses are then summed for all exposed body parts, and then divided by the total body surface area exposed to derive the area-weighted adherence factor.³

Soil

USEPA (2014) provides a default soil adherence factors for outdoor workers of 0.12 mg/m². USEPA (2002) provides a default soil adherence factor for construction workers of 0.3 mg/m². These defaults are used in this BHHRA. For the older child/teen recreational visitor to the Landside area, a soil adherence factor of 0.01 mg/m² was calculated based on soil loading rates for soccer players (see **Table C-2**).

³ An implicit assumption in the dermal dose model is that exposure (and absorption of contaminants by the skin) occurs for each event in which soil/sediment contacts the exposed body surface area without regard to the duration of the exposure event. This is a conservative assumption, as desorption of contaminants from soil/sediment is a slow diffusive process driven by the magnitude of the concentration gradient between internal regions where contaminants are sequestered and the surface where a low concentration is maintained (Shor et al., 2004). Further, not all of the soil contaminant may be absorbed for various reasons, including matrix effects, volatilization, skin loading, washing, or abrasion of soil from skin, etc. (Spalt et al., 2009).

Fringe Surface Sediment

USEPA (2004,) recommends sediment adherence data for children from several studies, including children playing indoors, at daycare, in dry soil, in wet soil, in mud, on tidal flats, during gardening, and while playing soccer. The activity and conditions that most closely align with receptor activities at the River is children playing in wet soil. Therefore, the fringe surface sediment adherence factors for the older child/teen and young child were based on the geometric mean surface area weighted soil adherence data for children playing in wet soil (USEPA, 2004, Exhibit C-2). The fringe surface sediment adherence factor is 0.25 mg/m² for the older child/teen (see **Table C-5**) and 0.28 mg/m² for the young child (see **Table C-6**).

USEPA (2011) provides sediment adherence data for adults from several studies, including one of adults gathering reeds on tidal flats ('reed gatherer'). Therefore, the fringe surface sediment adherence factors for adults were based on data for the reed gatherer (USEPA, 2011, Table 7-20). The calculated fringe surface sediment adherence factor for recreational adults and the shoreline worker is 0.3 mg/m² (See **Table C-4**).

7 Exposure Frequency and Exposure Time

Exposure frequency is the number of days per year that a receptor engages in a particular activity that could result in exposure. Exposure time is the duration of the event that brings the receptor into contact with the environmental medium.

Landside Exposure Pathways

An exposure frequency of 40 days per year is assumed for the construction worker, assuming 5 days per week for a period of 2 months (8 weeks) under the RME scenario. Under the CTE scenario, an exposure frequency of 20 days per year is assumed, assuming 5 days per week for one month (4 weeks).

The USEPA (2014) default for an outdoor worker of 225 days per year is used for the industrial worker under the RME scenario. Under the CTE scenario, an exposure frequency of 219 days per year is assumed based on the central tendency estimate for industrial workers in USEPA (2004).

The older child/teen recreational visitor is assumed to visit the site one day per week for May, September, and October, and two days per week for the summer, June through August (for a total of 39 days per year) under the RME scenario, and one day every other week from May to October (13 days per year) under the CTE scenario.

Waterside Exposure Pathways

Exposure frequencies and exposure times for recreational scenarios involving direct contact with fringe surface sediment and surface water were based on site-specific factors, including:

- Nature of the activity (e.g., swimming vs. wading)
- Characteristics of the area, including access and nearby land use
- Climate factors such as temperature and precipitation (e.g., sediment contact is curtailed during cold weather months when the sediment is frozen or snow covered)

Exposure to fringe surface sediment and surface water is expected to occur predominantly in the warmer months of the year, when people are more likely to visit the River and more of the skin surface area is exposed. It is assumed that swimming occurs during the three summer months (June, July, and August), when monthly average water temperatures are comfortable for swimming, typically above 70 degrees Fahrenheit (USGS, 2015). However, given the absence of designated swimming locations on the Anacostia, as well as aesthetic and safety considerations, swimming is expected to be an infrequent event now and in the future. It is assumed that wading may occur during the months of May, June, July, August, and September, when monthly average water temperatures are above 60 to 65 degrees Fahrenheit (USGS, 2015). While some anglers may fish year-round, most fishing takes place during the months of April through September (Gibson and McClafferty, 2005). It is assumed that the shoreline worker may contact shoreline fringe surface sediment and surface water once a week when the ground is not frozen or snow covered, or when such activity is not precluded by inclement weather.

Based on consideration of climate, characteristics of the Study Area, and the nature of the activity, the fringe surface sediment and surface water exposure frequencies for each receptor scenario are summarized below. The exposure frequency is assumed to be once or twice a week during the months of the year when the activity is assumed to take place. For the swimmer and wader receptors, exposure frequencies for the older child/teen are higher than for the young child and adult, as older children are more likely to engage in activities that may bring them into direct contact with river fringe surface sediment and surface water.

Receptor		Fringe Surface Sediment Exposure Frequency (days/year)		Surface Water Exposure Frequency (days/year)	
Population .	Age Group ^a	RME	CTE	RME	CTE
	Adult	26	13	26	13
Angler	Older child/teen	26	13	26	13
	Young child	26	13	26	13
	Adult	13	6	13	6
Swimmer	Older child/teen	26	13	26	13
	Young child	13	6	13	6
	Adult	35	17	35	17
Wader	Older child/teen	43	22	43	22
	Young child	35	17	35	17
Worker	Adult	50	25	50	25

The surface water and sediment exposure frequencies presented above were developed taking into consideration the existing parks, walking trails, boat docks, and fishing activity within the Waterside Investigation Area, as well as potential improvements in these resources. However, it is possible that River use could increase at a rate higher than assumed. Section 7.3 of the main text of this BHHRA discusses uncertainties associated with the assumed exposure frequencies.

The surface water exposure times for each receptor scenario were also selected taking into consideration the characteristics of the Study Area and the nature of the activity. As previously noted, exposure time is not used in the calculation of intake from fringe surface sediment dermal contact. The surface water exposure times are summarized in the table below.

Receptor		Surface Water Exposure Time (hour/day)				
Population	Age Group ^a	RME	CTE			
	Adult	1	0.5			
Angler	Older child/teen	1	0.5			
	Young child	1	0.5			
	Adult	0.5	0.25			
Swimmer	Older child/teen	0.5	0.25			
	Young child	0.5	0.25			
	Adult	1	0.5			
Wader	Older child/teen	1	0.5			
	Young child	1	0.5			
Worker	Adult	2	1			
^a Age groups: a	dult = 19+ yrs; older child	teen = 7 to < 19 yrs; young child = 1 to	o <7 yrs.			

8 Exposure Duration

Exposure duration is the estimate of the total time of exposure (in years) that a receptor engages in a particular activity that could result in exposure.

The older child/teen recreational visitor, angler, wader, and swimmer receptors are assumed to be potentially exposed at the Site for 12 years (from age 7 to <19 years) under the RME scenario. Under the CTE scenario, these receptors are assumed to be potentially exposed at the Site for half of that time, 6 years.

The outdoor industrial worker and the shoreline worker are assumed to be exposed at the Site for 25 years under the RME scenario (USEPA, 2014). Under the CTE scenario, workers are assumed to be potentially exposed at the Site for 6.6 years, which is the median tenure for workers at the same job (USEPA, 2011).

Construction activities are assumed to occur over a 1-year period under both the RME and CTE scenarios.

Anglers, swimmers, and waders are assumed to be nearby residents, and as such, residential exposure durations are used to evaluate adults and young children. To estimate residential exposure duration, both the total occupancy period for individuals in the target population and the likelihood that at the end of each occupancy period the individual moves out of the area must be known. Estimating exposure duration (i.e., residence time) is complicated by a number of factors, including data availability and the statistical treatment of the data. Few studies are available with which to estimate population mobility within a targeted area, and the use of county data requires a detailed analysis that accounts for age at onset, mortality, and county-to-county mobility.

In USEPA's 2014 recommended default exposure factors, USEPA identifies 26 years as the upper bound default for residential exposure duration (USEPA, 2014). Therefore, under the RME scenario, a 26-year exposure duration was selected for the recreational receptors (6 years during childhood and 20 years during adulthood), assuming that these individuals live within the vicinity of the Site. Under the CTE scenario, an exposure duration of 12 years (2 years during childhood and 10 during adulthood) was selected based on the mean residential occupancy period (USEPA, 2011).

9 Body Weight

In accordance with USEPA (1989a), the value for body weight is the average body weight over the exposure period. There are extensive data on human body weight, much of which has been compiled in the Exposure Factors Handbook (EFH) (USEPA, 2011). The EFH provides recommended body weights for adults and children, which are based on data derived from the National Health and Nutrition Examination Survey (NHANES) for the years 1999 through 2006. The NHANES study is a nationally representative sample of the U.S. population, with participants selected using a probability-based sampling design, and has been continuously conducted since 1999. Since the 2011 update to EFH, more recent anthropometric reference data for U.S. children and adults collected under NHANES for the years 2007 through 2010 have been published by the National Center for Health Statistics (Fryar et al., 2012). Not only are these data more recent, they are provided for each year of a child's age from birth to 19 years, unlike the body weight data in EFH, which are weighted averages for multi-year age groups (e.g., 3 to <6 yrs, 6 to <11 yrs). The use of single-year body weight data rather than averages for multiple years of age allows for calculation of age group-specific body weights on a more refined basis. Therefore, the NHANES 2007-2010 body weight data (Fryar et al., 2012) were used to estimate body weight for the young child and older child. Consistent with the approach in EFH, the average of the body weights for males and females for each year of age was used to calculate the average receptor body weight over the exposure period.

_

⁴ The NHANES 2007–2010 sample included participants of all ages. Those aged 60 and over, Hispanics, Blacks, and those with low incomes were oversampled to improve the precision of the statistical estimates for these groups (Fryar et al., 2012).

National values are typically used, unless a specific population that differs from the nation as a whole is targeted. Since the receptor population in the vicinity of the Anacostia River is not expected to differ from the rest of the United States, national average body weight values were used.

Body weights for children and teenagers were calculated as shown in **Table C-7.** The selected body weight for the young child receptor is 17 kilograms (kg) for both the RME and CTE scenarios, and the selected body weight for the older child/teen receptor is 53 kg for both the RME and CTE scenarios. The selected body weight for adult receptors under both the RME and CTE scenarios is 80 kg, which is the national average for male and female adults (USEPA, 2011, 2014).

10 References

- Connelly, N.A., and T.L. Brown. 1995. Use of Angler Diaries to Examine Biases Associated with 12-Month Recall on Mail Questionnaires. Transactions of the American Fisheries Society 124:413-422.
- DOEE. 2016. 2016 District of Columbia Fish Consumption Advisory. https://doee.dc.gov/service/fishing-district.
- Dorevitch, S., S. Panthi, Y. Huang, H. Li, A.M. Michalek, P. Pratap, M. Wroblewski, L. Liu, P.A. Scheff, and A. Li. 2011. Water ingestion during water recreation. Water Research 45(5): 2020-8.
- Fisher, W.L., A.E. Grambsch, D.L. Eisenhower, and D.R. Morganstein. 1991. Length of Recall Period and Accuracy of Estimates from the National Survey of Fishing, Hunting, and Wildlife-Associated Recreation. Pages 367-374 in D. Guthrie, J. M. Hoenig, M. Holliday, C. M. Jones, M. J. Mills, S. A. Moberly, K. H. Pollack, and D. R. Talhelm, editors. Creel and angler surveys in fisheries management. American Fisheries Society, Symposium 12, Bethesda, Maryland.
- Fryar, C.D., Q. Gu, and C.L. Ogden. 2012. Anthropometric reference data for children and adults: United States, 2007-2010. National Center for Health Statistics. Vital Health Stat 11(252).
- Gibson J.C., McClafferty J.A. 2005. Chesapeake Bay Angler Interviews: Identifying Populations at Risk for Consuming Contaminated Fish in Three Regions of Concern. Blacksburg, VA: Virginia Polytechnic Institute and State University. Final Report CMI-HDD-05-01.
- Gibson, J.C. 2005 Fish Consumption Advisories in Tributaries to the Chesapeake Bay: Improving the Communication of Risk to Washington, DC Anglers. Virginia State University, Blacksburg, VA.
- Harris, S.A., Urton, A, Turf, E., Monti, M.M. 2009. Fish and Shellfish Consumption Estimates and Perceptions of Risk in a Cohort of Occupational and Recreational Fishers of the Chesapeake Bay. Environmental Research, Volume 109, Issue 1, Pages 108-115.
- NPS. 2016. Subsistence Fishing on the Potomac and Anacostia Rivers, Interim Report 2016. National Capital Region Ethnography Program. Prepared under cooperative agreement with University of Maryland College Park # P11AC30805.
- OpinionWorks. 2012. Addressing the Risk: Understanding the Changing Anglers' Attitudes about the Dangers of Consuming Anacostia River Fish.
- Özkaynak, H; Xue, J; Zartarian, VG; Glen, G; Smith, L., 2010 Modeled estimates of soil and dust ingestion rates for children. Risk Anal 31(4):592–608.

- Shor, LM, DS Kosson, KJ Rockne, LY Young, and GL Taghorn. 2004. Combined effects of contaminant desorption and toxicity on risk from PAH contaminated sediments. Risk Analysis 24(5): 1109-1120.
- Spalt, EW, JC Kissel, JH Shirai, and AL Bunge. 2009. Dermal absorption of environmental contaminants from soil and sediment: a critical review. *Journal of Exposure Science and Environmental Epidemiology* 19(2):119-48.
- Stanek, E.J., E.J. Calabrese, R. Barnes, and P. Pekow. 1997. Soil ingestion in adults Results of a second pilot study. Toxicol. Environ Safety 36:249-257.
- Stanek, EJ and EJ Calabrese. 1995. Soil ingestion estimates for use in site evaluations based on the best tracer method. Hum Ecol Risk Assess 1(3):133–156.
- USEPA. 1989a. Risk Assessment Guidance for Superfund: Volume I. Human Health Evaluation Manual (Part A). Interim Final. Office of Emergency and Remedial Response. U.S. Environmental Protection Agency, Washington, D.C., EPA 540/1-89/002.
- USEPA. 1989b. Assessing Human Health Risks from Chemically Contaminated Fish and Shellfish: A Guidance Manual. EPA/503-8-89-002. US Environmental Protection Agency, Washington, DC.
- USEPA. 1998. EPA guidance for conducting fish and wildlife consumption surveys. EPA 823-B-98-007. Office of Water, US Environmental Protection Agency, Washington, DC.
- USEPA. 2000. Guidance for assessing chemical contaminant data for use in fish advisories. Volume 2: Risk assessment and fish consumption limits. Third ed. EPA 823-B-00-008. US Environmental Protection Agency, Washington, DC.
- USEPA. 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24. Office of Solid Waste and Emergency Response, US Environmental Protection Agency, Washington, DC.
- USEPA. 2004. Risk assessment guidance for Superfund: volume 1—Human health evaluation manual (Part E, supplemental guidance for dermal risk assessment). Final, July 2004. EPA/540/R/99/005. Office of Emergency and Remedial Response, US Environmental Protection Agency, Washington, DC.
- USEPA. 2011. Exposure Factors Handbook: 2011 edition. EPA/600/R-09-052F. National Center for Environmental Assessment, US Environmental Protection Agency, Washington, DC.
- USEPA. 2014. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors. OSWER Directive 9200.1-120. Assessment and Remediation Division, Office of

Superfund Remediation and Technology Innovation, US Environmental Protection Agency, Washington, DC. February 6, 2014.

USGS. 2015. U.S. Geological Survey. National Water Information System: Web Interface. Surface Water Monthly Statistics for Northeast Branch Anacostia River at Riverdale, Maryland. USGS 01649500. http://waterdata.usgs.gov/nwis. Site visited on: 3/12/2015.

Table C-1 Calculation of Fish Consumption Rates for Recreational Angler Receptor (a) Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Reasonable Maximum Exposure (RME)

Time period	Apr-Sept
number months	6
weeks/month	4.3
total weeks	26
meals/week	1.0
total meals (Apr-Sept)	26
Time period	Oct-Mar
number months	6
meals/month	1.0
total meals (Oct-Mar)	6
Total year-round meals	32
Meal size (grams)	227
Grams/day (annualized)	20

RME Adult Angler (g/day)	20	l
RME Older Child/Teen Angler (g/day)	13	(e)
RME Young Child (g/day)	7	(e)

Central Tendency Exposure (CTE)

Time period	Apr-Sept
number months	6
weeks/month	4.3
total weeks	26
meals/week	0.5
total meals (Apr-Sept)	13
Time period	Oct-Mar
number months	6
meals/month	0.5
total meals (Oct-Mar)	3
Total year-round meals	16
Meal size (grams)	227 (l
Grams/day (annualized)	10

CTE Adult Angler (g/day)	10	
CTE Older Child/Teen Angler (g/day)	7	(e)
CTE Young Child (g/day)	3	(e)

Notes:

- (a) Rates are based on responses of Washington DC area anglers that participated in 2004 Chesapeake Bay Angler Survey (Gibson & McClafferty, 2005). During warmer weather months (Apr-Sept), 53% of consuming anglers reported eating their catch 1 to 3 times/month, and 20% reported eating their catch 1-2 times/week. On average throughout the year, anglers ate their catch less than once per month (44%) or between one and three times per month (29%). Additional support obtained from Anacostia River Angler Survey (OpinionWorks, 2012).
- (b) Meal size assumed to be 8 ounces (227 grams). Most anglers (78%) reported eating 8 ounces or less at a meal. In addition, an 8-ounce serving size is used to set fish consumption advisories.
- (c) RME adult rate assumes one meal/week during 6 warmer months of the year (Apr-Sept) and 1 meal/month during 6 cooler months of the year (Oct-Mar) for a total of 32 meals/year (expressed in grams/day averaged over 365 days/year). RME rate equates to catching ~53 pounds of whole fish per year assuming ~30% is edible (USEPA, 1989).
- (d) CTE adult rate assumes one meal every other week during 6 warmer months of the year (Apr-Sept) and 1 meal every other month during 6 cooler months of the year (Oct-Mar) for a total of 16 meals/year (expressed in grams/day averaged over 365 days). CTE rate equates to catching ~27 pounds of whole fish per year assuming ~30% is edible (USEPA, 1989).
- (e) Consumption rates for older child and young child are assumed to be two thirds and one third of adult rate, respectively (USEPA, 2011). Rates are rounded to integers.

Table C-2 Calculation of Body Surface Area Exposed to Soil and Adherence Factor for Older Child/Teen Recreational Visitor Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Older Child/Teenager (7 to <19 years, from 7th birthday to the day before 19th birthday)							
Mean Surface Area by Body Part, m ² (EFH, Table 7-2, USEPA, 2011)							
Age	legs	lower legs (a)	head	hands	arms	forearms	
7<8 (data 6<11)	0.311	0.124 (b)	0.066	0.051	0.151	0.059	(e)
8<9 (data 6<11)	0.311	0.124 (b)	0.066	0.051	0.151	0.059	(e)
9<10 (data 6<11)	0.311	0.124 (b)	0.066	0.051	0.151	0.059	(e)
10<11 (data 6<11)	0.311	0.124 (b)	0.066	0.051	0.151	0.059	(e)
11<12 (data 11<16)	0.483	0.193 (c)	0.073	0.072	0.227	0.086	(e)
12<13 (data 11<16)	0.483	0.193 (c)	0.073	0.072	0.227	0.086	(e)
13<14 (data 11<16)	0.483	0.193 (c)	0.073	0.072	0.227	0.086	(e)
14<15 (data 11<16)	0.483	0.193 (c)	0.073	0.072	0.227	0.086	(e)
15<16 (data 11<16)	0.483	0.193 (c)	0.073	0.072	0.227	0.086	(e)
16<17 (data 16<21)	0.543	0.212 (d)	0.075	0.083	0.269	0.102	(g)
17<18 (data 16<21)	0.543	0.212 (d)	0.075	0.083	0.269	0.102	(g)
18<19 (data 16<21)	0.543	0.212 (d)	0.075	0.083	0.269	0.102	(g)
Average (cm²)	4,407	1,749	712	678	2,122	811	
Head, hands,forearms, and lower legs	3,950	950 Older Child/Teen					

	Older Child/Teenager (7 to <19 years)			
Body Part	Body Surface Area (see above) (cm²)	Soil Loading Rate Soccer Players No. 1 (h) (mg/cm²)	Total Soil Mass (mg)	
Head	712	0.012	9	
Hands	678	0.108	73	
Forearms	811	0.011	9	
Lower Legs	1,749	0.031	54	
Total	3,950	-	54	
Area-Weighted Adherence Factor (mg/cm²) = Soil mass/Surface area = 0.01				

Notes:

EFH - 2011 Edition of the Exposure Factors Handbook (USEPA, 2011).

- (a) Lower leg surface area = leg surface area x average of the ratios of the lower leg to the leg (EFH Table 7-8), average of male and female, consistent with methods used in USEPA, 2014.
- (b) Ratios of the lower leg to the leg for the 6, 8 and 10 year-olds (0.4) (Table 7-8).
- (c) Ratio of the lower leg to the leg for the 12 and 14 year-olds (0.4) (Table 7-8).
- (d) Ratios of the lower leg to the leg for the 16 and 18 year-olds (0.39) (Table 7-8).
- (e) Surface area for the arm x average of the ratios of the forearm to the arm for 6, 8 and 10 year-olds (0.39) (EFH Table 7-8).
- (f) Surface area for the arm x average of the ratios of the forearm to the arm for 12 and 14 year-olds (0.38) (EFH Table 7-8).
- (g) Surface area for the arm x average of the ratios of the forearm to the arm for 16 and 18 year-olds (0.38) (EFH Table 7-8).
- (h) Data from USEPA (2004; Exhibit C-2, 2011; Table 7-4). Geometric mean of soccer kids number 1 (ages 13 and 14; soccer players number 2 and 3 are adults).

Table C-3

Calculation of Body Surface Area Exposed to Surface Water while Swimming for Young Child and Older Child/Teen Swimmers

Benning Road Facility RI/FS Project

3400 Benning Rd, N.E., Washington DC 20019

Young Child (1 to <7 years, from 1st birthday to the day before 7th birthday)			
Age	Mean Surface Area (m²) (EFH, Table 7-9)		
1<2	0.53		
2<3	0.61		
3<4 (data 3<6)	0.76		
4<5 (data 3<6)	0.76		
5<6 (data 3<6)	0.76		
6<7 (data 6<11)	1.08		
Average (cm²)	7,500		

Older Child/Teenager (7 to <19 years, from 7th birthday to the day before 19th birthday)		
Age	Mean Surface Area (m²) (EFH, Table 7-9)	
7<8 (data 6<11)	1.08	
8<9 (data 6<11)	1.08	
9<10 (data 6<11)	1.08	
10<11 (data 6<11)	1.08	
11<12 (data 11<16)	1.59	
12<13 (data 11<16)	1.59	
13<14 (data 11<16)	1.59	
14<15 (data 11<16)	1.59	
15<16 (data 11<16)	1.59	
16<17 (data 16<21)	1.84	
17<18 (data 16<21)	1.84	
18<19 (data 16<21)	1.84	
Average ((cm²) 14,825	

Notes:

EFH - 2011 Edition of the Exposure Factors Handbook (USEPA, 2011).

Source:

USEPA, 2011. Exposure Factors Handbook: 2011 Edition. EPA/600/R-09/052F.

Table C-4
Calculation of Body Surface Area Exposed to Fringe Surface Sediment and Adherence Factor for Adult Waterside Receptors
Benning Road Facility RI/FS Project
3400 Benning Rd, N.E., Washington DC 20019

	•	Mean Body Surface Area for Adult EFH Tables 7-12 and 7-13 (USEPA 2011)				
Body Part	Male m²	Female m ²		Average of Males and Females cm ²		
Head	0.136	0.114		1,250		
Upper extremities						
Arms	0.314	0.237		2,755		
Upper arms	0.172	0.13035	(a)	1,512		
Forearms	0.148	0.11139	(a)	1,297		
Hands	0.107	0.089		980		
Lower extremities						
Legs	0.682	0.598		6,400		
Lower legs	0.268	0.233		2,505		
Feet	0.137	0.122		1,295		
	Adult Body Surface	Adult Body Surface Area Exposed to Fringe Surface Sediment (cm²)				
	swimmer, wader, angler	lower legs, feet	=	3,800		
	worker	hands, forearms, head	=	3,527		

		Adult (>18 yrs) swimmer, wader, angler		
Body Part	Body Surface Area Exposed to Sediment (cm²)	Soil Loading Rate Reed Gatherer (b) (mg/cm²)	Total Soil Mass (mg)	
Lower Legs	2,505	0.16	401	
Feet	1,295	0.63	816	
Total	3,800		1,217	
Area-Weighted Adhere	nce Factor (mg/cm²) = Soil mass/Surface are	a =	0.3	

		Adult (>18 yrs) worker		
Body Part	Body Surface Area Exposed to Sediment and Bank Soil (cm²)	Soil Loading Rate Reed Gatherer (b) (mg/cm²)		Total Soil Mass (mg)
Head	1,250	0.197	(c)	246
Hands	980	0.66		647
Forearms	1,297	0.036		47
Total	3,527	_		893

Notes:

EFH - 2011 Edition of the Exposure Factors Handbook (USEPA, 2011).

(a) In accordance with USEPA 2014 OSWER Directive on Recommended Default Exposure Factors (USEPA, 2014), the female forearms and upper arms surface areas were calculated as follows:

Female arms [0.237] x (Male forearm/Male arms) [0.47]

Female arms [0.237] x (Male upper arms/Male arms) [0.55]

- (b) Data from USEPA (2011) Table 7-20. Geometric mean of values for reed gatherers.
- (c) Adherence factor for face based on gardeners due to lack of face adherence data for reed gatherers.

Sources:

USEPA, 2011. Exposure Factors Handbook: 2011 Edition. EPA/600/R-09/052F.

USEPA, 2014. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors. OSWER Directive 9200.1-120.

Table C-5

Calculation of Body Surface Area Exposed to Fringe Surface Sediment and Adherence Factor for Older Child/Teen Waterside Receptors Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Older Child/Teenager (7 to <19 years, from 7th birthday to the day before 19th birthday)						
Mean Surface Area by Body Part, m² (EFH, Table 7-2, USEPA, 2011)						
Age	legs	lower legs (a)	feet			
7<8 (data 6<11)	0.311	0.124 (t				
8<9 (data 6<11)	0.311	0.124 (k	,			
9<10 (data 6<11)	0.311	0.124 (k				
10<11 (data 6<11)	0.311	0.124 (k				
11<12 (data 11<16)	0.483	,	0.105			
12<13 (data 11<16)	0.483	0.193	,			
13<14 (data 11<16)	0.483	0.193 (0	/			
14<15 (data 11<16)	0.483	0.193 (0	•			
15<16 (data 11<16)	0.483	0.193				
16<17 (data 16<21)	0.543	0.212				
17<18 (data 16<21)	0.543	0.212				
18<19 (data 16<21)	0.543	0.212				
Average (cm²)						
Lower legs and feet (cm ²)	2,710	Older C	hild/Teen			

	Older Child/Teenager (7 to <19 years)		
Body Part	Body Surface Area (see above) (cm²)	Soil Loading Rate (e) (mg/cm²)	Total Soil Mass (mg)
Lower Legs	1,749	0.026	45
Feet	961	0.656 (f)	630
Total	2,710	_	676
Area-Weighted Adherence Factor (mg/cm²) = Soil mass/Surface area = 0.25			

Notes:

EFH - 2011 Edition of the Exposure Factors Handbook (USEPA, 2011).

- (a) Lower leg surface area = leg surface area x average of the ratios of the lower leg to the leg (EFH Table 7-8), average of male and female, consistent with methods used in USEPA, 2014.
- (b) Ratios of the lower leg to the leg for the 6, 8 and 10 year-olds (0.4) (Table 7-8).
- (c) Ratio of the lower leg to the leg for the 12 and 14 year-olds (0.4) (Table 7-8).
- (d) Ratios of the lower leg to the leg for the 16 and 18 year-olds (0.39) (Table 7-8).
- (e) Data from USEPA (2004, Exhibit C-2). Geometric mean value, children playing in wet soil.
- (f) Data for feet are not available. Therefore, hand data are used as a proxy.

Sources:

USEPA, 2004. Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual,

Part E, Supplemental Guidance for Dermal Risk Assessment Final. EPA/540/R/99/005.

USEPA, 2011. Exposure Factors Handbook: 2011 Edition. EPA/600/R-09/052F.

USEPA, 2014. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors. OSWER Directive 9200.1-120.

Table C-6

Calculation of Body Surface Area Exposed to Fringe Surface Sediment and Adherence Factor for Young Child Waterside Receptors

Benning Road Facility RI/FS Project

3400 Benning Rd, N.E., Washington DC 20019

Young Child (1 to <7 years, from 1st birthday to the day before 7th birthday)							
Mean Surface Area by Body Part, m² (EFH, Table 7-2)							
Age	hands	arms	fore	arms	legs	lower legs	feet
1<2	0.030	0.069	0.028	(b)	0.122	0.051	e) 0.033
2<3	0.028	0.088	0.035	(b)	0.154	0.065	e) 0.038
3<4 (data 3<6)	0.037	0.106	0.042	(c)	0.195	0.078	(f) 0.049
4<5 (data 3<6)	0.037	0.106	0.042	(c)	0.195	0.078	(f) 0.049
5<6 (data 3<6)	0.037	0.106	0.042	(c)	0.195	0.078	g) 0.049
6<7 (data 6<11)	0.051	0.151	0.059	(d)	0.311	0.124	g) 0.073
Average (cm²)	367	1,043	415		1,953	791	485
hands, forearms, lower legs, feet (cm²) =	2,057			Youn	g Child		

	(cm²)	(mg/cm ²)	(mg)
Hands Forearms Lower Legs Feet Total	367 415 791 485 2,057	0.656 0.015 0.026 0.656 (i)	241 6 21 318 585

Notes:

EFH - 2011 Edition of the Exposure Factors Handbook (USEPA, 2011).

- (a) Lower leg surface area = leg surface area x average of the ratios of the lower leg to the leg

 Forearm surface area = arm surface area x ratio of the forearm to the arm

 (FELLTable 7.9) average of male and formula associated with mothed a year in LISERA 2004.
 - (EFH Table 7-8), average of male and female, consistent with methods used in USEPA, 2014.
- (b) Ratio of the forearm to the arm for the 2-year old, average of male and female (0.4) (EFH Table 7-8). (c) Ratio of the forearm to the arm for the 4-year old, average of male and female (0.4) (EFH Table 7-8).
- (d) Ratio of the forearm to the arm for 6, 8 and 10 year-olds (0.39) (EFH Table 7-8).
- (e) Ratio of the lower leg to the leg for the 2-year old, average of male and female (0.42) (EFH Table 7-8).
- (f) Ratio of the lower leg to the leg for the 4-year old, average of male and female (0.4) (EFH Table 7-8).
- (g) Ratio of the lower leg to the leg for the 6, 8 and 10 year-olds (0.4) (EFH Table 7-8).
- (h) Data from USEPA (2004, Exhibit C-2). Geometric mean value, children playing in wet soil.
- (i) Data for feet are not available. Therefore, hand data are used as a proxy.

Sources:

USEPA, 2004. Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual,

Part E, Supplemental Guidance for Dermal Risk Assessment Final. EPA/540/R/99/005.

USEPA, 2011. Exposure Factors Handbook: 2011 Edition. EPA/600/R-09/052F.

USEPA, 2014. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors. OSWER Directive 9200.1-120.

Table C-7
Calculation of Body Weights for Young Child and Older Child/Teen Receptors
Benning Road Facility RI/FS Project
3400 Benning Rd, N.E., Washington DC 20019

Age	Body Weight (kilograms)
1<2 yr	11.1
2<3 yr	13.7
3<4 yr	16
4<5 yr	18.1
5<6 yr	21.2
6<7 yr	24
Average Young Child, age 1 to <7 years	17

Age	Body Weight (kilograms)
7<8	26.8
8<9	31.6
9<10	36.1
10<11	40.6
11<12	47.1
12<13	51.9
13<14	58
14<15	62.8
15<16	66.7
16<17	68.8
17<18	70.6
18<19	73.4
Average Older Child/Teen (7 to <19 years)	53

Source:

Fryar, C.D., Q. Gu, and C.L. Ogden. 2012. Anthropometric reference data for children and adults: United States, 2007-2010. National Center for Health Statistics. Vital Health Stat 11(252).

Attachment D

Derivation of Cooking Loss Factors

Attachment D Derivation of Cooking Loss Factors

Loss of hydrophobic chemicals of potential concern (COPCs) upon cooking is a recognized phenomenon and can have a significant effect on the calculated COPC exposure dose from tissue consumption by humans. Numerous published studies have evaluated contaminant loss from fish tissue as a result of cooking, many of which have been summarized in scientific literature reviews (Sherer and Price, 1993; Wilson et al., 1998; Zabik and Zabik, 1999), as well as agency guidance on assessing contaminants in fish consumption advisories (USEPA, 2000).

The goals of the evaluation are as follows:

- Perform an updated literature review to include more recent studies on cooking loss in fish, focusing on lipophilic organic chemicals
- Evaluate relevant data on a consistent basis that accounts for changes in tissue mass as a result
 of cooking processes; this is most commonly done by considering the mass of COPC in the
 edible tissue before and after cooking
- Identify studies with sufficient data for quantitative analysis to determine the range and midpoint on a chemical- and cooking method-specific basis
- Evaluate the importance of other specific factors influencing the extent of cooking losses, such as species, skin-on versus skin-off preparation, lipid content, and cooking duration and temperature
- Identify cooking loss factors for use in the baseline human health risk assessment (BHHRA) for the Pepco Benning Road Facility for both reasonable maximum exposure (RME) and central tendency exposure (CTE) scenarios

A total of 34 relevant studies were identified, as summarized in **Table D-1**. Of the 34 relevant studies identified, 29 address polychlorinated biphenyls (PCBs) as mixtures or Aroclors, two address coplanar or so-called "dioxin-like" PCB congeners, 13 address one or more dichlorodiphenyltrichloroethane and its derivatives (DDx), and nine address one or more dioxin and furan congeners. The studies address a variety of fish species, including striped bass, carp, trout, bass, catfish, perch, flounder, salmon, walleye, and bluefish. A variety of cooking methods are represented, including baking/roasting, broiling, grilling, boiling, poaching, pan frying, deep frying, microwaving, and smoking. Four of the 34 studies are review articles; where possible, the original studies and data were used in this evaluation. The full list of studies reviewed is presented in the references. A number of other studies related to cooking loss in other foodstuffs, such as beef, and other contaminants, such as inorganics, were also identified. However, because this analysis focuses on lipophilic organic compounds and fish, they are not included.

The pool of studies was narrowed to 17 that used a relevant and appropriate experimental method and presented changes in raw and cooked fish tissue COPC levels on a mass basis or provided sufficient data for calculating mass loss of COPCs (see **Table D-2**). Comparison of concentrations in raw and cooked fish alone neglects the change in tissue mass that occurs, which is often significant. Therefore, this evaluation addresses the change in COPC levels on a consistent, mass basis. The percentage of COPC mass lost during cooking was calculated as follows:

COPC mass in uncooked fillet – COPC mass in cooked fillet x 100 COPC mass in uncooked fillet

For studies that did not report loss on this basis, but provided the necessary data (e.g., pre- and post-cooking tissue concentrations and weights, or weight loss factor), it was possible to calculate loss on a mass basis from the data provided.

The mass-based method of quantifying cooking loss is consistent with numerous studies, including those of Zabik and colleagues (1979, 1995a,b,c, 1996), Stachiw et al. (1988), Sherer and Price (1993), Moya et al. (1998), Wilson et al. (1998), and Wang and Harrad (2000). It is also the approach used in the PCB cooking loss analysis for the Hudson River HHRA. For one study (Smith et al. 1973), it was necessary to calculate mass loss differently due to the type of data provided. For Smith et al. (1973), mass loss was calculated following the method described in Sherer and Price (1993), as follows:

Mass of COPC in drippings x 100
COPC mass in cooked fillet + COPC mass in drippings

The mass of COPC in drippings and cooked fillet was calculated as:

 $M_{COPC} = C_{COPC} \times F \times M_r$

Where:

 M_{COPC} = Mass of COPC in fillet or drippings in μg

 C_{COPC} = Concentration of COPC in $\mu g/g$ fat in fillet or drippings

F = Percentage of fat in fillet or drippings

 M_r = Mass of fillet or drippings in g

Studies that reported results solely on a toxicity equivalence (TEQ) basis were not included because actual changes in mass are obscured by weighting of individual congener results on the basis of toxicity.

For each study, **Table D-2** presents the reported or calculated percent mass loss values for three key COPCs (PCBs, DDx compounds, and dioxins and furans) by each of seven cooking methods with available data: 1) deep fry, 2) pan fry, 3) bake/roast, 4) broil/grill, 5) boil/poach, 6) microwave, and 7) smoke. The bake and roast cooking methods were considered sufficiently similar to be grouped for the purposes of this analysis, as were broil and grill (including charbroil), and boil and poach. The cooking methods with the

most data points are broil/grill, bake/roast, pan fry, and deep fry. When all cooking methods are combined, the number of data points identified for each of the three COPCs is as follows: PCBs n = 79, dioxins and furans n = 12, and DDx n = 70. **Table D-3** presents mass loss results by cooking method for the three COPCs, as well as summary statistics and percentiles.

Analysis of Outliers and Extreme Values

An analysis was performed on the three combined cooking method data sets to determine if any individual data points may be statistical outliers or extreme values. Outliers and extreme values were defined using the Interquartile Range (IQR), which is equal to the difference between the 75th and 25th percentiles of the dataset. The IQR approach to the determination of outliers and extreme values has been referred to in the U.S. Environmental Protection Agency's (USEPA's) *Data Quality Assessment: Statistical Methods for Practitioners* (2006). Outliers and extreme values were defined as follows:

- Outliers: Those values that were less than (25th percentile 1.5 x IQR) or greater than (75th percentile + 1.5 x IQR)
- Extreme values: Those values that were less than (25th percentile 3 x IQR) or greater than (75th percentile + 3 x IQR)

The results of the outlier and extreme value evaluation are also presented in **Table D-3**. For each COPC dataset, those values determined to be outliers are highlighted yellow and those values determined to be extreme values are highlighted red. One value of 100% loss of dioxin following smoking (Zabik and Zabik 1995c) was identified as an extreme value. Two negative values for PCBs and five high end values for DDx compounds were identified as outliers. **Figure D-1** presents box and whisker plots with the outliers and extreme value identified by yellow and red dots, respectively.

Summary statistics and percentiles were calculated with and without the extreme values and outliers. As shown in **Table D-4**, midpoint values change only slightly when the extreme value and outliers are removed. **Figure D-2** presents the range and median cooking loss value by cooking method for each of the three COPCs (all values are included in **Figure D-2** with the exception of the extreme value of 100% loss of dioxin for smoking).

General observations include the following:

- Even when expressed on a consistent mass-loss basis, results are variable, with percent loss values ranging as high as 70 to 80% and as low as zero for the same COPC and cooking method
- For the study that reported an increase in mass after baking and broiling (Moya et al., 1998), the
 observations generally coincide with low initial COPC concentrations, and are likely an artifact of
 measurement error rather than a true net gain in COPC mass
- Median losses are generally in the range of 20 to 50% for typical cooking methods (i.e., pan frying, baking, broiling, deep frying), and consistent differences in mass loss between cooking methods are not apparent

- Based on the observation that the cooking loss results for each of the three categories of COPCs all fall into the same wide range, the case could be made for combining all studies into a single category of lipophilic organochlorinated compounds and assigning one cooking loss factor to the entire set of compounds
- Two studies examined the cooking loss of polychlorinated dibenzo-p-dioxins (PCDDs) and
 polychlorinated dibenzofurans (PCDFs) and coplanar PCB congeners in the same samples of fish
 under the same experimental protocols (Hori et al., 2005; Schecter et al., 1998). In each of these
 studies, the cooking losses of the PCDDs, PCDFs, and coplanar PCBs were nearly the same.
 Hence, the data indicate that these congeners comprise a group of compounds that should be
 assigned the same cooking loss factor.
- In keeping with USEPA's approach of differentiating cooking losses between COPC classes, a similar approach was taken here, and median and mean cooking loss values were computed for the three COPC classes
- Combining results for each COPC across all cooking methods and all data, the median (and mean) losses are: 30% (32%) for total PCBs; 50% (53%) for dioxins, furans, and coplanar PCBs; and 32% (34%) for DDx
- When statistical outliers and extreme values are removed, the median (and mean) losses change minimally: 30% (33%) for total PCBs; 48% (48%) for dioxins, furans, and coplanar PCBs; and 31% (31%) for DDx

There are a number of potential causes for the variability observed in the data, including differences in the specifics of the cooking methods (e.g., time, temperature), differences in fillet processing (e.g., trimming and thickness, part of body) and fillet geometry, variability in COPC concentrations between fish used within the same study, low initial COPC concentrations for some studies (e.g., less than 10-fold margin between concentration and the limit of detection [LOD]), and differences in extraction methods for raw and cooked tissue.

Another observation based on a review of the available data is that initial COPC concentration in the fish tissue does not appear to be a controlling factor when losses are reported on a mass basis. A relationship between skin removal or retention and cooking loss is not consistently apparent, although some studies did find greater loss with skin removal (Bayen et al., 2005; Salama et al., 1998; Zabik et al., 1979). Some studies suggest that higher internal temperatures and longer cooking times result in higher losses (Stachiw et al., 1998; Zabik et al., 1982). Lastly, while some data support a correlation between lipid loss and COPC loss during cooking (e.g., Bayen et al., 2005), analysis by others suggests that a loss of lipid is not consistently correlated with COPC loss (Wilson et al., 1998; Moya et al., 1998; Poston et al., 1995). In the analysis of PCB cooking loss studies conducted for the Hudson River HHRA, similar observations were reported (TAMS/Gradient 2000).

Combining data from various studies does involve several implicit assumptions:

- Behavior and analytical results for the different COPCs are sufficiently similar that data aggregation is legitimate (which is consistent with USEPA's approach)
- Two studies (Hori et al., 2005 and Schecter et al., 1998) provide evidence that cooking loss for dioxin-like PCB congeners may be more similar to that of PCDD/PCDF congeners than nondioxin-like PCB congeners (see PCB values identified with an asterisk in **Table D-3**)
- Details of the preparation and cooking methods, such as the internal temperature, cooking time, tissue size, and geometry, are not critical
- Differences between fish species and lipid contents are not significant

While these assumptions introduce uncertainty, the available data are too limited for segregation and analysis of each these variables.

Summary

An updated review of the scientific literature identified 17 studies with relevant and appropriate data for quantifying the change in COPC mass in fish tissue as a result of cooking by several methods (deep fry, pan fry, bake/roast, broil/grill, boil/poach, microwave, and smoke). The studies address a variety of fish species, including striped bass, carp, trout, bass, catfish, perch, flounder, salmon, walleye, and bluefish. For the three COPCs included in the analysis (PCBs, dioxins and furans, and DDx compounds), a total of 79 data points were identified for PCB compounds (Aroclor and congener data), 70 data points were identified for DDx compounds, and 12 data points were identified for dioxin and furan compounds (PCDDs and PCDFs).

For each COPC, mass loss was demonstrated regardless of the cooking method used. The amount of COPC mass loss was variable within and between studies, which is likely due to a variety of factors, such as cooking time, temperature, tissue preparation (skinning and trimming), fillet geometry, lipid content, initial chemical concentration, analytical methodology, and extraction efficiency, which are not consistently controlled for across the various studies. Despite the variability, the data are sufficiently consistent and robust to support inclusion of a quantitative cooking loss factor in the assessment of exposure dosage from consumption of fish. Because of the variability in the data, the median may be the most appropriate statistic for quantifying cooking loss, because it is the least affected by outliers and extreme values. As noted below, the essential approach used in the data reduction and selection is very similar to that used by USEPA in their derivation of cooking loss factors.

Based on analysis of the available data, estimates of cooking loss for each COPC are as follows:

• For total PCB mixtures, cooking loss ranged from no loss to 74% loss across the 14 studies with relevant data. Median losses by cooking method ranged from 25% (bake/roast) to 39% (smoke), with a median of 30% when all PCB data are combined regardless of cooking method.

¹ One study (Moya et al., 1998) did not show consistent PCB mass loss following baking and broiling of flounder; however, these results may be an artifact of highly variable initial PCB concentrations. Some studies have also speculated that negative values may be an artifact of incomplete COPC extraction from the raw tissue (Zabik et al., 1982; Sherer and Price, 1993).

- For dioxins, furans, and coplanar PCBs, cooking loss ranged from 28% to 63% across the four studies with relevant data. Median losses by cooking method ranged from 29% (boil/poach) to 57% (bake/roast), with a median of 48% when all dioxin and furan data (except the extreme value of 100%) are combined regardless of cooking method. Combining all dioxin, furan, and dioxin-like PCB congener data also results in a median of 48%.
- For DDx, cooking loss ranged from 3% to 80% across the 10 studies with relevant data. Median losses by cooking method ranged from 22% (boil/poach) to 45% (smoke), with a median of 32% when all DDx data are combined regardless of cooking method.

This analysis is consistent with how this issue has been evaluated in the past, both by USEPA and others (Bayen et al., 2005; Moya et al., 1998; Salama et al., 1998; Wilson et al., 1998; Sherer and Price, 1993; and Zabik and colleagues [1979, 1995a,b, 1996]). Additionally, the analysis reflects an updated data set, including several studies published since the USEPA's analysis for the Hudson River HHRA and the agency's fish consumption advisory guidance (USEPA, 2000).

Based on this updated analysis, the following cooking loss factors are supported for use in the BHHRA:

	Cooking Loss Factor				
COPC	10 th Percentile RME	Median CTE			
Total PCBs	0.13	0.30			
Dioxins, furans, and coplanar PCBs	0.29	0.48			
DDx	0.10	0.32			

The summary statistics for the full datasets were used because of the similarity of the statistics with and without outliers and extreme values. The exception to this is that the value of 100% for dioxins and furans was removed. For dioxin-like PCB congeners, available data support the use of the same cooking loss factor as that used for dioxins and furans. This consistency also makes sense when risks are assessed on the basis of a dioxin TEQ approach. While several of the pesticides included in the BHHRA (e.g., chlordane and it's isomers, dieldrin and hexachlorobenzene) were not specifically included in this analysis, it is expected that median cooking loss factors for other pesticides are in the same range as DDx (30% to 35%) based on studies where pesticides other than DDx have been evaluated (e.g., Zabik et al., 1995a,b, 1996).

References

Bayen, Stéphane, Barlow, Philip, Lee, Hian Kee and Obbard, Jeffrey Philip. 2005. "Effect of Cooking on the Loss of Persistent Organic Pollutants from Salmon." Journal of Toxicology and Environmental Health, Part A, 68:253-265.

Hori, Tsuguhide, Nakagawa, Reiko, Tobiishi, Kazuhiro, Iida, Takao, Tsutsumi, Tomoaki, Sasaki, Kumiko, and Toyoda, Masatake. 2005. "Effects of Cooking on Concentrations of Polychlorinated Dibenzo-P-Dioxins and Related Compounds in Fish and Meat." Journal of Agricultural and Food Chemistry 53:8820-8828.

Moya, J., Garrahan, K.G., Poston, T.M., Durell, G.S. 1998. "Effects of Cooking on Levels of PCBs in the Fillets of Winter Flounder." Bull. Environ. Contam. Toxicol. 60:845-851.

Poston, T.M., G.S. Durell, G. Koczwara, and A.M. Spellacy. 1995. "Effect of Cooking on Levels of PCBs in the Fillets of Winter Flounder (Pseudopleuronectes americanus). Prepared for the U.S. Environmental Protection Agency by Pacific Northwest Laboratory, Richland, Washington. PNL-8077, UC-602. August.

Salama, A.A., Mohamed, M.A.M, Duval, B., Potter, T.L., and Levin, R.E. 1998. "Polychlorinated Biphenyl Concentration in Raw and Cooked North Atlantic Bluefish (Pomatomus saltatrix) Fillets." Journal of Agricultural and Food Chemistry 46:1359-1362.

Schecter, Arnold, Dellarco, Michael, Papke, Olaf, Olson, James. 1998. "A Comparison of Dioxins, Dibenzofurans and Coplanar PCBs in Uncooked and Broiled Ground Beef, Catfish and Bacon." Chemosphere 37:1723-1730.

Sherer, R.A. and Price, P.S. 1993. "The Effect of Cooking Processes on PCB Levels in Edible Fish Tissue." Quality Assurance: Good Practice, Regulation and Law 2:396-407.

Smith, W.E., K. Funk, and M.E. Zabik. 1973. "Effects of Cooking on Concentrations of PCB and DDT Compounds in Chinook (Oncorhynchus tshawytscha) and Coho (O. kisutch) Salmon from Lake Michigan. J. Fish. Res. Board Can. 30(5):702-706.

Stachiw, Nancy C., Zabik, Mary E., Booren, Alden M., Zabik, Matthew J. 1988. "Tetrachlorodibenzo-P-Dioxin Residue Reduction through Cooking/Processing of Restructured Carp Fillets." Journal of Agricultural and Food Chemistry 36:848-852.

TAMS/Gradient. 2000. Phase 2 report. Further Site Characterization and Analysis. Vol. 2F—Revised Human Health Risk Assessment. Hudson River PCBs reassessment RI/FS. November. Available at: http://www.epa.gov/hudson/revisedhhra-text.pdf.

USEPA (United States Environmental Protection Agency). 2000. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories. Vol. 2. Appendix C, Dose Modifications Due to Food Preparation and Cooking. EPA 823-B-00-008.

USEPA. 2006. Data Quality Assessment: Statistical Methods for Practitioners. EPA QA/G-9S. EPA/240/B-06/003. February.

Wang, Y. and S. Harrad. 2000. "Cooking-induced Reductions in Concentrations of Polychlorinated Biphenyls (PCBs) in Fish: ΣPCB Versus ΣΤΕ." In: Organohalogen Compounds, 48:44-45.

Wilson, Natalie S., Shear, Nadine M., Paustenbach, Dennis J. and Price, Paul S. 1998. "The Effect of Cooking Practices on the Concentration of DDT and PCB Compounds in the Edible Tissue of Fish." Journal of Exposure Analysis and Environmental Epidemiology 8:423-440.

Zabik, M.E., P. Hoojjat, and C.M. Weaver. 1979. "Polychlorinated biphenyls, dieldrin and DDT in Lake Trout Cooked by Broiling, Roasting or Microwave. Bull. Environm. Contam. Toxicol. 21:136-143.

Zabik, M.E., C. Merrill, and M.J. Zabik. 1982. "PCBs and Other Xenobiotics in Raw and Cooked Carp." Bull. Environ. Contam. Toxicol. 238:710-715.

Zabik, Mary E., Zabik, Matthew J., Booren, Al, Daubenmire S., Pascall, M.A., Welch, R. and Humphrey, H. 1995a. "Pesticides and Total Polychlorinated Biphenyls Residue in Raw and Cooked Walleye and White Bass Harvested from the Great Lakes." Bull. Environm. Contam. Toxicol. 54:396-402.

Zabik, Mary E., Zabik, Matthew J., Booren, Al M., Nettles, Miriam, Song, Jeong-Hee, Welch, Robert and Humphrey, Harold. 1995b. "Pesticides and Total Polychlorinated Biphenyls in Chinook Salmon and Carp Harvested from the Great Lakes: Effects of Skin-on and Skin-off Processing and Selected Cooking Methods." Journal of Agricultural and Food Chemistry 43:993-1001.

Zabik, Mary E. and Zabik, Matthew J. 1995c. "Tetrachlorodibenzo-P-Dioxin Residue Reduction by Cooking/Processing of Fish Fillets Harvested from the Great Lakes." Bull. Environm. Contam. Toxicol. 55:264-269.

Zabik, Mary E., Booren, Al, Zabik, Matthew J. Welch, Robert, and Humphrey, Harold. 1996. "Pesticide Residues, PCBs and PAHs in Baked, Charbroiled, Salt Boiled and Smoked Great Lakes Lake Trout." Food Chemistry 55:231-239.

Zabik, M.E. and M.J. Zabik. 1999. "Polychlorinated biphenyls, Polybrominated Biphenyls, and Dioxin Reduction During Processing/Cooking Food." In: Impact of Processing on Food Safety, Jackson et al. ed. New York: Kluwer Academic/Plenum Publishers.

Study	Chemical(s) evaluated	Species	Source of fish	Cooking method(s)	Was study method appropriate?	Do authors report loss on mass basis?	Was a quantitative estimate of mass loss possible?	Was study used in mass loss calculations?
Armbruster et al. 1987	PCBs	Striped bass	Long Island Sound	Bake, broil, pan-fry, poach, microwave, boil	Yes	No, concentrations before and after cooking reported on dry weight basis	No, data needed to convert results to mass basis not provided	No, but authors report a statistically significant reductior in concentration for 6 cooking methods combined
Armbruster et al. 1989	PCBs	Bluefish	Atlantic Ocean near Long Island Sound	Bake, broil, fry, poach	No, concentration change includes trimming and cooking	No, concentrations before and after trimming/cooking reported on dry weight basis	No, data needed to convert results to mass basis not provided	No, cannot distinguish loss due to cooking alone, but authors report an overall mean reduction of 67%
Bayen et al. 2005	PCBs, DDT	Salmon	Norway	Bake, microwave, boil, pan-fry	Yes	Yes	NA	Yes
Cichy et al. 1979	PCBs	Lake trout	Hancock, MI	Irradiate and broil	No, gamma irradiation used as well as broiling	Yes, percent mass loss due to irradiation and broiling	NA	No, cooking method not relevar to typical cooking practices
Ciereszko and Witczak 2003	PCBs	Carp	Poland	Boil, stew, pan-fry, deep- fry, microwave	Yes	No	No, fillet mass not provided (only % dry weight and lipid)	No
Domingo 2011	PCBs, PCDDs, PCDFs, PAH, HCB, PBDE,			Review and summary of	other published studies.			No
Hori et al. 2005	PCDDs, PCDFs, and coplanar PCBs	Mackerel	Japan	Grill, boil, tsumire (chopped & boiled fish balls)	Yes	No; authors report "most isomers showed obvious downward trends"	Yes	Yes
Karl and Ruoff 2008	TCDD-TEQ and PCB- TEQ	Mackerel and Halibut	Bay of Biscay (mackerel) and Greenland (halibut)	Hot smoke	Yes	No	Yes	No, results presented on TEQ basis only; actual changes in concentrations obscured by weighting of results on basis of toxicity
Marmon et al. 2009	PCDDs, PCDFs, and PCBs	Herring	Baltic Sea	pH-shift processing	No	No	Possibly; mass balance data provided	No, method not relevant to typical cooking practice
Moses et al. 2009	Pesticides, PCBs, PBDEs	Sheefish	Northwest Alaska	Bake, dry, smoke	Yes	No	No, fillet weight data not provided	No
Moya et al. 1998	PCBs	Winter flounder	New Bedford Harbor, MA	Deep-fry, pan-fry, broil	Yes	Yes	NA	Yes, same data as Poston et al 1995, which is the original study
Perello et al. 2010	PCDDs, PCDFs, PCBs, and PCDEs	Sardine, hake, tuna	Markets in Catalonia, Spain	Pan-fry, grill, boil, roast	No, raw and cooked data appear to be from different groups of fish; also, initial concentrations were close to or at LOD	No	Yes	No, calculating difference between concentrations in cooked fillet from one fish and raw fillet from another fish may not yield accurate estimate of loss, because initial concentrations may not have been similar; also, it is difficult to measure change due to cooking with very low initial tissue concentrations
Poston et al. 1995	PCBs	Winter flounder	New Bedford Harbor, MA	Deep-fry, pan-fry, broil	Yes	Yes	NA	Yes, same study as Moya et al. 1998
Puffer and Gossett 1983	PCBs, DDT, Benzo(a)pyrene	White croaker	Santa Monica Bay and Orange County, CA	Pan-fry	Yes	No	Yes, weight loss factor provided	Yes
Reinert et al. 1972	DDT, DDE	Yellow perch, bloaters	Lake Michigan	Pan-fry, bake, broil, smoke	Yes	No	Yes	Yes
Salama et al. 1998	PCBs	Bluefish	Massachusetts waters	Smoke, charbroil, microwave, pan-fry, bake	Yes	Yes	NA	Yes

Study	Chemical(s) evaluated	Species	Source of fish	Cooking method(s)	Was study method appropriate?	Do authors report loss on mass basis?	Was a quantitative estimate of mass loss possible?	Was study used in mass loss calculations?
Schecter et al. 1998	PCDDs, PCDFs, and coplanar PCBs	Catfish	Market in Binghamton, NY	Broil	Author (A. Schecter) reports that raw and cooked samples were all cut from the same fish samples, so concentrations are assumed to be similar	No	Yes, mean weight of catfish samples (n=4) before and after cooking provided	Yes, although some uncertainty associated with question of internal controls (use of same fish for uncooked and cooked comparison) and use of mean sample weights
Sherer and Price 1993	PCBs			Review and summary of	other published studies.			No
Skea et al. 1979	Mirex, Aroclor 1254, DDT	Smallmouth bass, brown trout	Lake Ontario	Smoke, bake, broil, deep- fry	Yes	Yes	NA	Yes
Smith et al. 1973	Aroclor 1248 and 1254, DDT	Chinook, coho salmon	Manistee River, Michigan	Bake, poach, bake in bag	Yes	No	Yes, fillet weight and % fat in raw and cooked samples provided	Yes
Stachiw et al. 1988	2,3,7,8-TCDD	Carp	Saginaw Bay	Roast, charbroil	Study used "restructured carp fillet" (surimi), which involved mechanical deboning & processing of fillets	Yes	NA	Yes
Trotter et al. 1989	PCBs, pesticides	Bluefish	Massachusetts waters	Bake	Yes	No	Yes	Yes
Wang and Harrad 2000	PCBs	Salmon, trout	Not specified	Pan-fry	Yes	Yes, results corrected for mass loss	NA	Yes
Wilson et al. 1998	PCBs and DDT		Review and summary of other published studies.					No
Witczak 2009	PCBs	Herring, salmon, carp, trout, flounder, cod, loach	Market in Szczecin, Poland	Pan-fry	Yes	No	No, fillet weights not provided	No
Witczak and Ciereszko 2006	PCBs	Mackerel	Norwegian Sea	Smoke	No, sawdust used in smoker contained PCBs	No	No, fillet weights not provided	No, cross contamination from PCBs in sawdust is likely
Witczak and Ciereszko 2008	PCBs	Herring	Norwegian Sea	Smoke	No, sawdust used in smoker contained PCBs	No	No, fillet weights not provided	No, cross contamination from PCBs in sawdust is likely
Zabik et al. 1979	PCBs, DDT, dieldrin	Lake trout	Lake Superior	Broil, roast, microwave	Yes	Yes	NA	Yes
Zabik et al. 1982	PCBs, DDT	Carp	Saginaw Bay	Poach, roast, deep-fry, charbroil, microwave	No, the authors acknowledge issues with extraction from raw fillets	Yes	NA	No, cooking loss estimates from raw fillets in which extraction issues are noted will not provide accurate estimates
Zabik and Zabik 1995	Dioxin	Carp, salmon, trout, walley, white bass	Great Lakes	Bake, charbroil, deep fry, pan fry, salt boil, smoke	Yes	Yes	NA	Yes
Zabik et al. 1995a	PCBs, pesticides	Walleye, white bass	Lake Erie, Huron, Michigan	Bake, charbroil, deep fry, pan fry	Yes	Yes	NA	Yes
Zabik et al. 1995b	PCBs, pesticides	Carp, salmon	Lake Erie, Huron, Michigan	Bake, charbroil, deep fry, pan fry	Yes	Yes	NA	Yes
Zabik et al. 1996	PCBs, pesticides, PAH	Lake trout,siscowet	Lakes Huron, Michigan, Ontario, Superior	Bake, charbroil, salt boil, smoke	Yes	Yes	NA	Yes
Zabik and Zabik 1999 PCBs, PBBs, dioxin Review and summary of other published studies.								

Notes

DDD - dichlorodiphenyldichloroethane DDE - dichlorodiphenyldichloroethylene DDT - dichlorodiphenyltrichloroethane

DDx - dichlorodiphenyltrichloroethane and its derivatives

NA - Not applicable.

Sources are provided on the following pages.

PCB - polychlorinated biphenyls PCDD - polychlorinated dibenzo-p-dioxins

PCDF - polychlorinated dibenzofurans TCDD - tetrachlorodibenzo-p-dioxin

Study Chemical(s) evaluated Species So	Source of fish Cooking method(s)		o authors report loss on mass basis?	Was a quantitative estimate of mass loss possible?	Was study used in mass loss calculations?
--	----------------------------------	--	---	--	---

Sources

Armbruster, Gertrude, Gerow, K.G., Gutenmann, W.H., Littman, C.B., and Lisk, D.J. 1987. "The Effects of Several Methods of Fish Preparation on Residues of Polychlorinated Biphenyls and Sensory Characteristics in Striped Bass." J. Food Safety 8, 235-243.

Armbruster, Gertrude, Gall, Kenneth, Gutenmann, Walter H., and Lisk, Donald J. 1989. "Effects of Trimming and Cooking by Several Methods on Polychlorinated Biphenyls (PCB) Residues in Bluefish." J. Food Safety 9: 235-244

Bayen, Stéphane, Barlow, Philip, Lee, Hian Kee and Obbard, Jeffrey Philip. 2005. "Effect of Cooking on the Loss of Persistent Organic Pollutants from Salmon." Journal of Toxicology and Environmental Health, Part A, 68:253-265

Cichy, Ronald F., Zabik, M.E. and Weaver, C.M. 1979. "Polychlorinated Biphenyl Reduction in Lake Trout by Irradiation and Broiling." Bull. Environm. Contam. Toxicol. 22:807-812. Ciereszko, Wladyslaw and Witczak, Agata. 2003. "Zmiany W Zawartosciach Wybranych Kongenerow PCB W Miesie Karpia W Wyniku Obrobki Cieplnej." ACTA Technologia Alimentaria 2(1):155-164.

Domingo, Jose L. 2011. "Influence of Cooking Processes on the Concentrations of Toxic Metals and Various Organic Environmental Pollutants in Food: A Review of the Published Literature." Critical Reviews in Food Science and Nutrition, 51:29-37.

Hori, Tsuguhide, Nakagawa, Reiko, Tobiishi, Kazuhiro, Iida, Takao, Tsutsumi, Tomoaki, Sasaki, Kumiko, and Toyoda, Masatake. 2005. "Effects of Cooking on Concentrations of Polychlorinated Dibenzo-P-Dioxins and Related Compounds in Fish and Meat." Journal of Agricultural and Food Chemistry 53:8820-8828.

Karl, Horst and Ruoff, Ulrike. 2004. "Changes in Concentrations of Dioxin-Like PCBs during Processing of Fish." Eur Food Res Technol. 226:1175-1181.

Marmon, Sofia K., Liljelind, Per and Undeland, Ingrid. 2009. "Removal of Lipids, Dioxins and Polychlorinated Biphenyls during Production of Protein Isolates from Baltic Herring (Clupea harengus) Using pH-shift Processes." Journal of Agricultural and Food Chemistry 57:7819-7825.

Moses, Sara K., Whiting, Alex V., Muir, Derek C.G., Wang, Xiaowa, and O'Hara, Todd M. 2009. "Organic Nutrients and Contaminants in Subsistence Species of Alaska: Concentrations and Relationship to Food Preparation." International Journal of Circumpolar Health 68:354-37.

Moya, J., Garrahan, K.G., Poston, T.M., Durell, G.S. 1998. "Effects of Cooking on Levels of PCBs in the Fillets of Winter Flounder." Bull. Environ. Contam. Toxicol. 60:845-851.

Perello, Gemma, Marti-Cid, Roser, Llobet, Juan M., and Domingo, Jose L. 2010. "Influence of Various Cooking Processes on the Concentrations of PCDD/PCDFs, PCBs and PCDEs in Foods. Food Control 21:178-185.

Poston, T.M., G.S. Durell, G. Koczwara, and A.M. Spellacy. 1995. "Effect of Cooking on Levels of PCBs in the Fillets of Winter Flounder (Pseudopleuronectes americanus). Prepared for the U.S. Environmental Protection Agency by Pacific Northwest Laboratory, Richland, Washington. PNL-8077, UC-602. August.

Puffer, Harold W. and Gossett, Richard W. 1983. "PCB, DDT and Benzo(a)pyrene in Raw and Pan-fried White Croaker (Genyonemus lineatus)." Bull. Environm. Contam. Toxicol. 30:65-73.

Reinert, R.E., D. Stewart, and H.L. Seagran. 1972. Effects of dressing and cooking on DDT concentrations in certain fish from Lake Michigan." J. Fish Res. Board Can. 29:525-529.

Salama, A.A., Mohamed, M.A.M, Duval, B., Potter, T.L., and Levin, R.E. 1998. "Polychlorinated Biphenyl Concentration in Raw and Cooked North Atlantic Bluefish (Pomatomus saltatrix) Fillets." Journal of Agricultural and Food Chemistry 46:1359-1362.

Schecter, Arnold, Dellarco, Michael, Papke, Olaf, Olson, James. 1998. "A Comparison of Dioxins, Dibenzofurans and Coplanar PCBs in Uncooked and Broiled Ground Beef, Catfish and Bacon." Chemosphere 37:1723-1730.

Sherer, R.A. and Price, P.S. 1993. "The Effect of Cooking Processes on PCB Levels in Edible Fish Tissue." Quality Assurance: Good Practice, Regulation and Law 2:396-407.

Skea, J.C., Simonin, H.A., Harris, E.J., Jackling, S., Spagnoli, J.J., Symula, J. and Colquhoun, J.R. 1979. "Reducing Levels of Mirex, Aroclor 1254 and DDE by Trimming and Cooking Lake Ontario Brown Trout (Salmo Trutta Linnaeus) and Smallmouth Bass (Micropterus Dolomieui Lacepede)." J. Great Lakes Res., Internat. Assoc. Great Lakes Res.5(2):153-159.

Smith, W.E., K. Funk, and M.E. Zabik. 1973. "Effects of Cooking on Concentrations of PCB and DDT Compounds in Chinook (Oncorhynchus tshawytscha) and Coho (O. kisutch) Salmon from Lake Michigan. J. Fish. Res. Board Can. 30(5):702-706.

Stachiw, Nancy C., Zabik, Mary E., Booren, Alden M., Zabik, Matthew J. 1988. "Tetrachlorodibenzo-P-Dioxin Residue Reduction through Cooking/Processing of Restructured Carp Fillets." Journal of Agricultural and Food Chemistry 36:848-852.

Trotter, William J., Corneliussen, Paul E., Laski, Ronald R. and Vannelli, Joseph J. 1989 "Pesticide and Industrial Chemical Residues – Levels of Polychlorinated Biphenyls and Pesticides in Bluefish Before and After Cooking." J. Assoc. Off. Anal. Chem 72:501-503.

Wang, Y. and S. Harrad. 2000. "Cooking-induced Reductions in Concentrations of Polychlorinated Biphenyls (PCBs) in Fish: Σ PCB Versus Σ TE." In: Organohalogen Compounds, 48:44-45.

Study Chemical(s) evaluated Species	Source of fish	Cooking method(s)	Was study method appropriate?	Do authors report loss on mass basis?	Was a quantitative estimate of mass loss possible?	Was study used in mass loss calculations?
------------------	---------------------	----------------	-------------------	-------------------------------	---------------------------------------	--	---

Wilson, Natalie S., Shear, Nadine M., Paustenbach, Dennis J. and Price, Paul S. 1998. "The Effect of Cooking Practices on the Concentration of DDT and PCB Compounds in the Edible Tissue of Fish." Journal of Exposure Analysis and Environmental Epidemiology 8:423-440.

Witczak, Agata and Ciereszko, Wladyslaw. 2006. "Effect of Smoking Process on Changes in the Content of Selected Non-Ortho- and Mono-Ortho-PCB Congeners in Mackerel Slices." Journal of Agricultural and Food Chemistry 54:5664-5671.

Witczak, Agata and Ciereszko, Wladyslaw. 2008. "Effect of Hot Smoking on the Content of Selected Polychlorinated Biphenyl Congeners in Herring (Clupea Harengus) Slices." Journal of Agricultural and Food Chemistry 56:4278-4282.

Witczak, Agata. 2009. "Effects of Frying on Polychlorinated Biphenyls Content in Muscle Meat of Selected Fish Species." Polish Journal of Food and Nutrition Sciences 59:157-161.

Zabik, M.E., P. Hoojjat, and C.M. Weaver. 1979. "Polychlorinated biphenyls, dieldrin and DDT in Lake Trout Cooked by Broiling, Roasting or Microwave. Bull. Environm. Contam. Toxicol. 21:136-143.

Zabik, M.E., C. Merrill, and M.J. Zabik. 1982. "PCBs and Other Xenobiotics in Raw and Cooked Carp." Bull. Environ. Contam. Toxicol. 238:710-715.

Zabik, Mary E., Zabik, Matthew J., Booren, Al, Daubenmire S., Pascall, M.A., Welch, R. and Humphrey, H. 1995a. "Pesticides and Total Polychlorinated Biphenyls Residue in Raw and Cooked Walleye and White Bass Harvested from the Great Lakes." Bull. Environm. Contam. Toxicol. 54:396-402.

Zabik, Mary E., Zabik, Matthew J., Booren, Al M., Nettles, Miriam, Song, Jeong-Hee, Welch, Robert and Humphrey, Harold. 1995b. "Pesticides and Total Polychlorinated Biphenyls in Chinook Salmon and Carp Harvested from the Great Lakes: Effects of Skin-on and Skin-off Processing and Selected Cooking Methods." Journal of Agricultural and Food Chemistry 43:993-1001.

Zabik, Mary E. and Zabik, Matthew J. 1995c. "Tetrachlorodibenzo-P-Dioxin Residue Reduction by Cooking/Processing of Fish Fillets Harvested from the Great Lakes." Bull. Environm. Contam. Toxicol. 55:264-269.

Zabik, Mary E., Booren, Al, Zabik, Matthew J. Welch, Robert, and Humphrey, Harold. 1996. "Pesticide Residues, PCBs and PAHs in Baked, Charbroiled, Salt Boiled and Smoked Great Lakes Lake Trout." Food Chemistry

Zabik, M.E. and M.J. Zabik. 1999. "Polychlorinated biphenyls, Polybrominated Biphenyls, and Dioxin Reduction During Processing/Cooking Food." In: Impact of Processing on Food Safety, Jackson et al. ed. New York: Kluwer Academic/Plenum Publishers.

Table D-1 Summary of Studies Used for Mass Loss Calculations Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

	Chemical(s) evaluated	Species -	Percent Mass Loss							
Study			Deep Fry	Pan Fry	Bake/Roast	Broil/Grill	Boil/Poach	Microwave	Smoke	
Bayen et al. 2005	PCBs, DDT	Salmon		PCB 36% (sk-on) 44% (sk-off) DDT 31% (sk-on) 41% (sk-off)	PCB 28% (sk-on) 36% (sk-off) DDT 19% (sk-on) 28% (sk-off)		PCB 28% (sk-on) 38% (sk-off) DDT 25% (sk-on) 37% (sk-off)	PCB 23% (sk-on) 30% (sk-off) DDT 21% (sk-on) 29% (sk-off)		
Hori et al. 2005	PCDDs, PCDFs, and coplanar PCBs	Mackerel				PCDD/F 46% PCB 43%	PCDD/F 29% PCB 28%			
Moya et al. 1998; Poston et al. 1995	PCBs	Winter flounder	<u>PCB</u> 47%	<u>PCB</u> -17%		<u>PCB</u> -15%				
Puffer and Gossett 1983	PCBs, DDT, Benzo(a)pyrene	White croaker		PCB 29% ¹ 65% ¹ DDT 39% ¹ 74% ¹						
Reinert et al. 1972	DDT	Bloaters (B) Yellow perch (P)	DDT 75%/80% (B) ^b 4% (P)		<u>DDT</u> 6% (P)	<u>DDT</u> 74% (B) 4% (P)			<u>DDT</u> 40% (B)	
Salama et al. 1998	PCBs	Bluefish		<u>PCB</u> 27%	<u>PCB</u> 39%	PCB 37% (sk-on) 47% (sk-off)		PCB 60%	<u>PCB</u> 65%	
Schecter et al. 1998	PCDDs, PCDFs, and coplanar PCBs	<u>Catfish</u>				PCDD/F 51% PCB 52%				
Skea et al. 1979	Mirex, Aroclor 1254, DDT	Smallmouth bass, Brown trout	PCB 74% DDE 75%		PCB 16% DDE 16%	PCB 0% DDE 20%			PCB 27% DDE 27%	
Smith et al. 1973	PCBs, DDx	Chinook, Coho salmon			PCB 24% ^a (Chinook) 29% (Coho) DDx ^b 10% (Chinook) 8% (Coho)					
Stachiw et al. 1988	TCDD	Carp (Surimi)			TCDD 63% (covered) 57% (uncov.)	TCDD 62%				
Trotter et al. 1989	PCBs, pesticides	Bluefish			PCB 24% DDE 33%					

Table D-1 Summary of Studies Used for Mass Loss Calculations Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

	Chemical(s)		Percent Mass Loss									
Study	evaluated	Species	Deep Fry	Pan Fry	Bake/Roast	Broil/Grill	Boil/Poach	Microwave	Smoke			
				PCB								
Word and Harrad				31% (S, sk on)								
Wang and Harrad 2000	PCBs	Salmon (S), Trout (T)		30% (S, sk off)								
2000				25% (T, sk on)								
				26% (T, sk off)								
					<u>PCB</u>	<u>PCB</u>		<u>PCB</u>				
					34%	53%		26%				
					40% (sk on)	<u>DDT</u>		<u>DDT</u>				
Zabik et al. 1979	PCBs, DDT, Dieldrin	Lake trout			50% (sk off)	39%		55%				
					DDT 2007							
					30%							
					47% (sk on) 57% (sk off)							
		Carp, Salmon, Trout,	PCDD/F	PCDD/F	PCDD/F	PCDD/F	PCDD/F		PCDD/F			
Zabik and Zabik 1995	Dioxin	White bass, Walleye	47%	46%	54%	48%	28%		100%			
		,	PCB (W)	PCB (B)	PCB (W)	PCB (W)	2070		10070			
			15% °	18%°	13% °	20% °						
			DDT (W)	44% ^d	20% ^d	29% ^d						
	505 55	Walleye (W), White	3% ^e		23% ^e	27% ^e						
Zabik et al. 1995a	PCBs, DDx	bass (B)		DDT (B)	DDT (W)	DDT (W)						
				32% ^c	33% °	25% ^c						
				38% ^d	26% ^d	17% ^d						
					22% ^e	33% ^e						
		Carp (C)	PCB (C)	PCB (C)	PCB (S)	PCB (S)						
		Salmon (S)	16% (sk-on) ^c	22% (sk-on) ^c	49% (sk-on) d	40% (sk-on) d						
			32% (sk-off) ^c	19% (sk-off) ^c	45% (sk-off) d	62% (sk-off) d						
			67% (sk-on) d	42% (sk-on) d	25% (sk-on) e	61% (sk-on) df						
			32% (sk-off) ^d <u>DDx^b (C)</u>	37% (sk-off) ^d	29% (sk-off) ^e	52% (sk-off) df						
			29% (sk-on) ^c	DDxb (C)	DDx ^b (S)	44% (sk-on) e						
			40% (sk-off) ^c	45% (sk-on) ^c	38% (sk-on) d	33% (sk-off) e						
			38% (sk-on) d	29% (sk-off) c	29% (sk-off) d	37% (sk-on) ef						
Zabik et al. 1995b	PCBs, DDx		45% (sk-off) d	43% (sk-on) d	16% (sk-on) e	44% (sk-off) ef						
			` ,	34% (sk-off) d	27% (sk-off) e	DDx ^b (S)						
				,	, ,	39% (sk-on) d						
						58% (sk-off d						
						57% (sk-on) df						
						56% (sk-off) df						
						45% (sk-on) e						
						24% (sk-off) e						
						41% (sk-on) ef						
						40% (sk-off) ef						
		Lake Trout (T)			PCB (T)	PCB (T)	PCB (T/St)		PCB (T/St)			
		Siscowets (St)			18% ^d	15% ^d	10% ^e		41% ^e			
					10% ^e	7% ^e	19% ^h		37% ^h			
					11% ^g	12% ^g	DDx ^b (T/St)		DDx ^b (T/St)			
Zabik et al. 1996	PCBs, DDx				18% ^h	32% ^h	4% ^e		56% ^e			
∠avin 51 dl. 1990	r CD3, DDX				DDxb (T/St)	DDx ^b (T)	19% ^h		50% ^h			
					14% ^d	20% ^d						
					10% ^e	14% ^e						
					36% ^g	36% ^g						
					26% ^h	32%						

Table D-1 Summary of Studies Used for Mass Loss Calculations Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Study	Chemical(s)	Species	Percent Mass Loss							
Study	evaluated	Species	Deep Fry	Deep Fry Pan Fry Bake/Roast Broil/Grill Boil/Poach Microwave Smoke						

Notes:

(a) First value for frying in lard, second value for frying in corn oil.

(b) DDx mass loss was calculated by taking the average of mass loss values reported for DDD, DDE, and DDT (which are averages of replicates).

(c) Lake Erie

(g) Lake Ontario (h) Lake Superior

(d) Lake Huron

(i) Orange County

(e) Lake Michigan(f) Charred and scored

(j) Santa Monica

Acronyms:

DDD - dichlorodiphenyldichloroethane
DDE - dichlorodiphenyldichloroethylene
DDT - dichlorodiphenyltrichloroethane

DDx - dichlorodiphenyltrichloroethane and its derivatives

PCB - polychlorinated biphenyls
PCDD - polychlorinated dibenzo-p-dioxins

PCDF - polychlorinated dibenzofurans

TCDD - tetrachlorodibenzo-p-dioxin

Sources

Bayen, Stéphane, Barlow, Philip, Lee, Hian Kee and Obbard, Jeffrey Philip. 2005. "Effect of Cooking on the Loss of Persistent Organic Pollutants from Salmon". Journal of Toxicology and Environmental Health, Part A, 68:253-265.

Hori, Tsuguhide, Nakagawa, Reiko, Tobiishi, Kazuhiro, Iida, Takao, Tsutsumi, Tomoaki, Sasaki, Kumiko, and Toyoda, Masatake. 2005. "Effects of Cooking on Concentrations of Polychlorinated Dibenzo-P-Dioxins and Related Compounds in Fish and Meat". Journal of Agricultural and Food Chemistry 53:8820-8828.

Moya, J., Garrahan, K.G., Poston, T.M., Durell, G.S. 1998. "Effects of Cooking on Levels of PCBs in the Fillets of Winter Flounder". Bull. Environ. Contam. Toxicol. 60:845-851.

Puffer, Harold W. and Gossett, Richard W. 1983. "PCB, DDT and Benzo(a)pyrene in Raw and Pan-fried White Croaker (Genyonemus lineatus)". Bull. Environm. Contam. Toxicol. 30:65-73.

Reinert, R.E., D. Stewart, and H.L. Seagran. 1972. Éffects of dressing and cooking on DDT concentrations in certain fish from Lake Michigan." J. Fish Res. Board Can. 29:525-529.

Salama, A.A., Mohamed, M.A.M, Duval, B., Potter, T.L. and Levin, R.E. 1998. "Polychlorinated Biphenyl Concentration in Raw and Cooked North Atlantic Bluefish (Pomatomus saltatrix) Fillets". Journal of Agricultural and Food Chemistry 46:1359-1362.

Schecter, Arnold, Dellarco, Michael, Papke, Olaf, Olson, James. 1998. "A Comparison of Dioxins, Dibenzofurans and Coplanar PCBs in Uncooked and Broiled Ground Beef, Catfish and Bacon". Chemosphere 37:1723-1730.

Skea, J.C., Simonin, H.A., Harris, E.J., Jackling, S., Spagnoli, J.J., Symula, J. and Colquhoun, J.R. 1979. "Reducing Levels of Mirex, Aroclor 1254 and DDE by Trimming and Cooking Lake Ontario Brown Trout (Salmo Trutta Linnaeus) and Smallmouth Bass (Micropterus Dolomieui Lacepede)". J. Great Lakes Res., Internat. Assoc. Great Lakes Res.5(2):153-159.

Smith, W.E., K. Funk, and M.E. Zabik. 1973. "Effects of Cooking on Concentrations of PCB and DDT Compounds in Chinook (Oncorhynchus tshawytscha) and Coho (O. kisutch) Salmon from Lake Michigan. J. Fish. Res. Board Can. 30(5):702-706.

Trotter, William J., Corneliussen, Paul E., Laski, Ronald R. and Vannelli, Joseph J. 1989 "Pesticide and Industrial Chemical Residues – Levels of Polychlorinated Biphenyls and Pesticides in Bluefish Before and After Cooking". J. Assoc. Off. Anal. Chem 72:501-503.

Wang, Y. and S. Harrad. 2000. "Cooking-induced Reductions in Concentrations of Polychlorinated Biphenyls (PCBs) in Fish: ΣPCB Versus ΣΤΕ." In: Organohalogen Compounds, 48:44-45.

Zabik, M.E., P. Hoojjat, and C.M. Weaver. 1979. "Polychlorinated biphenyls, dieldrin and DDT in Lake Trout Cooked by Broiling, Roasting or Microwave. Bull. Environm. Contam. Toxicol. 21:136-143.

Zabik, Mary E. and Zabik, Matthew J. 1995. "Tetrachlorodibenzo-P-Dioxin Residue Reduction by Cooking/Processing of Fish Fillets Harvested from the Great Lakes". Bull. Environm. Contam. Toxicol. 55:264-269.

Zabik, Mary E., Zabik, Matthew J., Booren, Al, Daubenmire S., Pascall, M.A., Welch, R. and Humphrey, H. 1995a. "Pesticides and Total Polychlorinated Biphenyls Residue in Raw and Cooked Walleye and White Bass Harvested from the Great Lakes". Bull. Environm. Contam. Toxicol. 54:396-402.

Zabik, Mary E., Zabik, Matthew J., Booren, Al M., Nettles, Miriam, Song, Jeong-Hee, Welch, Robert and Humphrey, Harold. 1995b. "Pesticides and Total Polychlorinated Biphenyls in Chinook Salmon and Carp Harvested from the Great Lakes: Effects of Skin-on and Skin-off Processing and Selected Cooking Methods". Journal of Agricultural and Food Chemistry 43:993-1001.

Zabik, Mary E., Booren, Al, Zabik, Matthew J. Welch, Robert and Humphrey, Harold. 1996. "Pesticide Residues, PCBs and PAHs in Baked, Charbroiled, Salt Boiled and Smoked Great Lakes Lake Trout". Food Chemistry 55:231-239.

Table D-3
Cooking Loss Data and Summary Statistics for PCBs, DDx and Dioxins/Furans
Benning Road Facility RI/FS Project
3400 Benning Rd, N.E., Washington DC 20019

	J-
PCBs 0.15	1
0.16	ı
0.32 0.67	ı
0.32 0.74	ı
0.477 0.65	ı
0.29	
0.27 0.18	
0.44 0.22	
0.19 0.42	
0.37	
0.36 0.44	
0.31	
0.25 0.26	
<u>-0.17</u>	ı
0.24	
0.4 0.5	
0.39 0.23	
0.2 0.13	
0.49	
0.45 0.25	
0.29 0.18	
0.1 0.11	
0.18 0.28	
0.36	
0.16 0.29	
0.14 0.37	
0.47 0.53	
0.2 0.29	
0.27 0.4	
0.62	
0.44 0.33	
0.15 0.07	
0.12 0.32	
0.61 0.52	
0.37 0.44	
0.44 0 -0.15	
0.43*	
0.52* 0.1	
0.19 0.28	
0.38 0.28*	
0.6 0.26	
0.23 0.3	
0.65 0.41	
0.37	
U.LI	4

DDx Compounds
0.03 0.8 0.75 0.04 0.75 0.29
0.4 0.38
0.45
<u>0.74</u> 0.39
0.32
0.38 0.31
0.41
0.45 0.29
0.43 0.34
0.3
0.47 0.57
0.33
0.26 0.22
0.1
0.1 0.19
0.28
0.06 0.16
0.38
0.29 0.16
0.27 0.14
0.1
0.36 0.26
0.33
0.25 0.17
0.33 0.39
<u>0.74</u>
0.04 0.2
0.39
0.58 0.45
0.24 0.2
0.14
0.36 0.32
0.57
0.56 0.41
0.4 0.25
0.37
0.04 0.19
0.55
0.21 0.29
0.4 0.27
0.56
0.5

Dioxin Compounds
0.47
0.46
0.54
0.63
0.57
0.48
0.51
0.46
0.62
0.28
0.29
<u>1</u>

Outlier Extreme Value

Cooking Method Key						
Deep Fry						
Pan Fry						
Bake/Roast						
Broil/Grill						
Boil/Poach						
Microwave						
Smoke						

Table D-3
Cooking Loss Data and Summary Statistics for PCBs, DDx and Dioxins/Furans
Benning Road Facility RI/FS Project
3400 Benning Rd, N.E., Washington DC 20019

Statistic	PCBs	DDx Compounds	Dioxin Compounds
Median	0.3	0.32	0.5
Mean	0.32	0.34	0.53
Std. Dev.	0.17	0.18	0.18
Count	79	70	12
Minimum	-0.17	0.03	0.28
10th Percentile	0.13	0.1	0.31
25th Percentile	0.2	0.21	0.46
50th Percentile	0.3	0.32	0.5
75th Percentile	0.42	0.41	0.58
90th Percentile	0.53	0.57	0.63
Maximum	0.74	0.8	1
IQR (75th - 25th)	21.56	19.74	11.58
1.5 * IQR	32.34	29.61	17.36
75th + 1.5*IQR	74.69	70.6	75.31
25th - 1.5*IQR	-11.56	-8.37	29.01
3 * IQR	64.69	59.23	34.73
75th + 3*IQR	107.04	100.21	92.68
25th - 3*IQR	-43.9	-37.99	11.64

Notes:

Dioxin-like PCB denoted with an asterisk (*).

DDx = dichlorodiphenyltrichloroethane and its derivatives

PCB = polychlorinated biphenyls

Table D-4
Cooking Loss Statistics with and without Extreme Values and Outliers
Benning Road Facility RI/FS Project
3400 Benning Rd, N.E., Washington DC 20019

	PC	CBs	DDx Cor	npounds	Dioxins and Furans		
	All Data	w/o Outliers ^(a)	All Data	w/o Outliers ^(b)	All Data	w/o Extreme Value ^(c)	
Median	30	30	32	31	50	48	
Mean	32	33	34	31	53	48	
Count	79	77	70	65	12	11	
Minimum	-17	0	3	3	28	28	
10th Percentile	13	15	10	10	31	29	
25th Percentile	21	23	21	20	46	46	
50th Percentile	30	30	32	30	51	48	
75th Percentile	42	43	41	40	59	55	
90th Percentile	53	54	57	49	63	62	
Maximum	74	74	80	58	100	63	

Notes:

- (a) No extreme values were identified in the PCB data set; two negative values were identified as outliers.
- (b) No extreme values were identified in the DDx data set; five high-end values were identified as outliers.
- (c) One extreme value (100% loss) was identified in the dioxins and furans data set; no outliers were identified.

Figure D-1: Identification of Outliers and Extreme Values

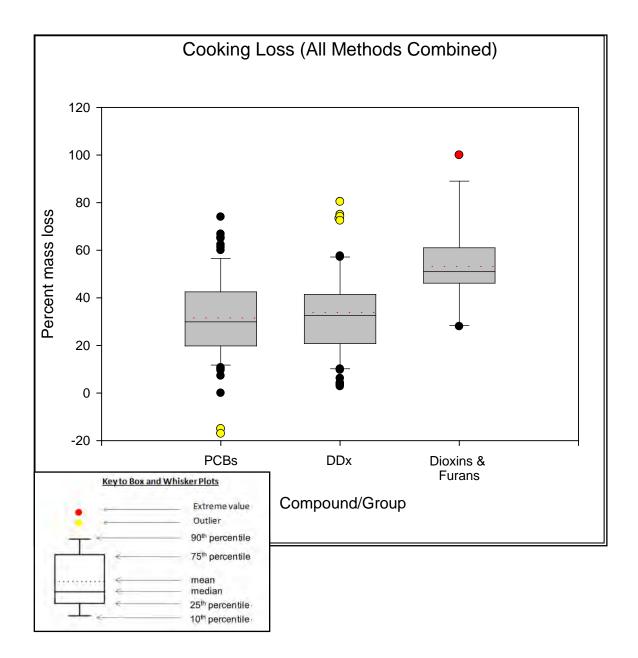
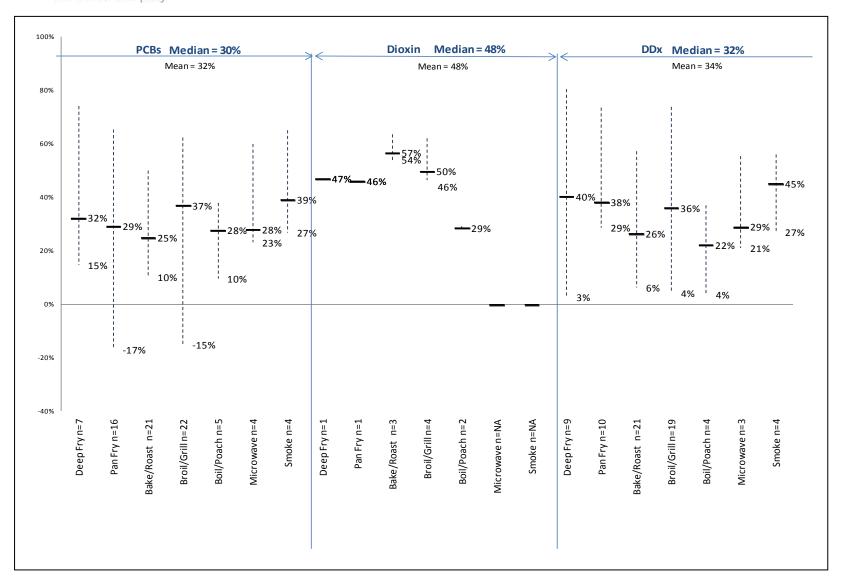



Figure D-2: Summary of Mass Loss by COPC and Cooking Method

^{*} Excluding extreme value of 100% dioxin loss (smoke).

Attachment E

Exposure Point Concentration Calculations (ProUCL Input and Output)

ProUCL Input Files

Matrix	horizon	Units	Pepco/Pepco(OpenLot)	Location	Collected	Depth	Arsenic	D_Arsenic	Benzo(a)anthracene	D_Benzo(a)anthracene	Benzo(a)pyrene	D_Benzo(a)pyrene
SO	Surface	mg/kg	Pepco (Open Lot)	SB2	1/25/2017	0 - 1 ft			0.077	1	0.099	1
SO	Surface	mg/kg	Pepco (Open Lot)	SUSDP01	2/4/2013	0.33 - 1 ft	2.6	1	0.12	1	0.18	1
SO	Surface	mg/kg	Pepco (Open Lot)	SUSDP02	2/4/2013	0.33 - 0.83 ft	1.8	1	0.16	1	0.16	1
SO	Surface	mg/kg	Pepco (Open Lot)	SUSDP02	1/25/2017	0 - 1 ft			0.19	1	0.18	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	5/17/2013	4.5 - 5.5 ft			0.0081	0	0.0081	0
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	5/20/2013	9.5 - 10.5 ft			0.0075	0	0.0075	0
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	5/20/2013	14.5 - 15.5 ft			0.0075	0	0.0075	0
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	6/13/2013	9.5 - 10.5 ft						
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/25/2017	1 - 2 ft			0.047	1	0.044	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/25/2017	2 - 5 ft			0.28	1	0.2	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/26/2017	5 - 10 ft			0.028	1	0.03	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/26/2017	10 - 15 ft			0.14	1	0.13	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP01	5/20/2013	2.5 - 3.5 ft						
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP01	5/20/2013	9.5 - 10.5 ft	0.93	1				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP01	5/20/2013	14 - 15 ft						
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	5/14/2013	4.5 - 5.5 ft	1.9	1				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	5/20/2013	9.5 - 10.5 ft						
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	5/20/2013	14.5 - 15.5 ft				·		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	6/13/2013	9.5 - 10.5 ft				·		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	6/13/2013	14.5 - 15.5 ft						
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	1/25/2017	1 - 2 ft			0.29	1	0.29	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	1/25/2017	2 - 5 ft			0.016	1	0.013	1

Matrix	horizon	Units	Pepco/Pepco(OpenLot)	Location	Collected	Depth	Benzo(b)fluoranthene	D_Benzo(b)fluoranthene	Benzo(k)fluoranthene	D_Benzo(k)fluoranthene
SO	Surface	mg/kg	Pepco (Open Lot)	SB2	1/25/2017	0 - 1 ft	0.13	1	0.04	1
SO	Surface	mg/kg	Pepco (Open Lot)	SUSDP01	2/4/2013	0.33 - 1 ft	0.098	1	0.091	1
SO	Surface	mg/kg	Pepco (Open Lot)	SUSDP02	2/4/2013	0.33 - 0.83 ft	0.17	1	0.071	1
SO	Surface	mg/kg	Pepco (Open Lot)	SUSDP02	1/25/2017	0 - 1 ft	0.26	1	0.07	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	5/17/2013	4.5 - 5.5 ft	0.0081	0	0.0081	0
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	5/20/2013	9.5 - 10.5 ft	0.0075	0	0.0075	0
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	5/20/2013	14.5 - 15.5 ft	0.0075	0	0.0075	0
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	6/13/2013	9.5 - 10.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/25/2017	1 - 2 ft	0.058	1	0.02	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/25/2017	2 - 5 ft	0.26	1	0.12	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/26/2017	5 - 10 ft	0.033	1	0.015	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/26/2017	10 - 15 ft	0.17	1	0.066	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP01	5/20/2013	2.5 - 3.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP01	5/20/2013	9.5 - 10.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP01	5/20/2013	14 - 15 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	5/14/2013	4.5 - 5.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	5/20/2013	9.5 - 10.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	5/20/2013	14.5 - 15.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	6/13/2013	9.5 - 10.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	6/13/2013	14.5 - 15.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	1/25/2017	1 - 2 ft	0.39	1	0.13	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	1/25/2017	2 - 5 ft	0.02	1	0.0085	1

Matrix	horizon	Units	Pepco/Pepco(OpenLot)	Location	Collected	Depth	Chrysene	D_Chrysene	Cobalt	D_Cobalt	Dibenzo(a,h)anthracene	D_Dibenzo(a,h)anthracene
SO	Surface	mg/kg	Pepco (Open Lot)	SB2	1/25/2017	0 - 1 ft	0.092	1			0.03	1
SO	Surface	mg/kg	Pepco (Open Lot)	SUSDP01	2/4/2013	0.33 - 1 ft	0.13	1	92	1	0.023	1
SO	Surface	mg/kg	Pepco (Open Lot)	SUSDP02	2/4/2013	0.33 - 0.83 ft	0.19	1	130	1	0.03	1
SO	Surface	mg/kg	Pepco (Open Lot)	SUSDP02	1/25/2017	0 - 1 ft	0.2	1			0.046	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	5/17/2013	4.5 - 5.5 ft	0.0081	0			0.0081	0
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	5/20/2013	9.5 - 10.5 ft	0.0075	0			0.0075	0
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	5/20/2013	14.5 - 15.5 ft	0.0075	0			0.0075	0
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	6/13/2013	9.5 - 10.5 ft						
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/25/2017	1 - 2 ft	0.062	1			0.011	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/25/2017	2 - 5 ft	0.25	1			0.029	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/26/2017	5 - 10 ft	0.03	1			0.0058	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/26/2017	10 - 15 ft	0.15	1			0.025	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP01	5/20/2013	2.5 - 3.5 ft						
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP01	5/20/2013	9.5 - 10.5 ft			4	1		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP01	5/20/2013	14 - 15 ft						
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	5/14/2013	4.5 - 5.5 ft			7.9	1		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	5/20/2013	9.5 - 10.5 ft						
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	5/20/2013	14.5 - 15.5 ft					·	
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	6/13/2013	9.5 - 10.5 ft						
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	6/13/2013	14.5 - 15.5 ft						
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	1/25/2017	1 - 2 ft	0.31	1			0.076	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	1/25/2017	2 - 5 ft	0.026	1			0.0059	1

Matrix	horizon	Units	Pepco/Pepco(OpenLot)	Location	Collected	Depth	Diesel Range Organics (C10-C20)	D_Diesel Range Organics (C10-C20)
SO	Surface	mg/kg	Pepco (Open Lot)	SB2	1/25/2017	0 - 1 ft		
SO	Surface	mg/kg	Pepco (Open Lot)	SUSDP01	2/4/2013	0.33 - 1 ft	13	1
SO	Surface	mg/kg	Pepco (Open Lot)	SUSDP02	2/4/2013	0.33 - 0.83 ft	92	0
SO	Surface	mg/kg	Pepco (Open Lot)	SUSDP02	1/25/2017	0 - 1 ft		
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	5/17/2013	4.5 - 5.5 ft	20	0
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	5/20/2013	9.5 - 10.5 ft	19	0
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	5/20/2013	14.5 - 15.5 ft	19	0
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	6/13/2013	9.5 - 10.5 ft		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/25/2017	1 - 2 ft		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/25/2017	2 - 5 ft		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/26/2017	5 - 10 ft		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/26/2017	10 - 15 ft		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP01	5/20/2013	2.5 - 3.5 ft	18	0
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP01	5/20/2013	9.5 - 10.5 ft	18	0
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP01	5/20/2013	14 - 15 ft	20	0
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	5/14/2013	4.5 - 5.5 ft	19	0
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	5/20/2013	9.5 - 10.5 ft	18	0
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	5/20/2013	14.5 - 15.5 ft	19	0
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	6/13/2013	9.5 - 10.5 ft		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	6/13/2013	14.5 - 15.5 ft		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	1/25/2017	1 - 2 ft		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	1/25/2017	2 - 5 ft		

Matrix	horizon	Units	Pepco/Pepco(OpenLot)	Location	Collected	Depth	Indeno(1,2,3-cd)pyrene	D_Indeno(1,2,3-cd)pyrene	Manganese	D_Manganese
SO	Surface	mg/kg	Pepco (Open Lot)	SB2	1/25/2017	0 - 1 ft	0.085	1		
SO	Surface	mg/kg	Pepco (Open Lot)	SUSDP01	2/4/2013	0.33 - 1 ft	0.082	1	200	1
SO	Surface	mg/kg	Pepco (Open Lot)	SUSDP02	2/4/2013	0.33 - 0.83 ft	0.097	1	36	1
SO	Surface	mg/kg	Pepco (Open Lot)	SUSDP02	1/25/2017	0 - 1 ft	0.15	1		
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	5/17/2013	4.5 - 5.5 ft	0.0081	0		
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	5/20/2013	9.5 - 10.5 ft	0.0075	0		
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	5/20/2013	14.5 - 15.5 ft	0.0075	0		
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	6/13/2013	9.5 - 10.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/25/2017	1 - 2 ft	0.033	1		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/25/2017	2 - 5 ft	0.1	1		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/26/2017	5 - 10 ft	0.017	1		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/26/2017	10 - 15 ft	0.074	1		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP01	5/20/2013	2.5 - 3.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP01	5/20/2013	9.5 - 10.5 ft			370	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP01	5/20/2013	14 - 15 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	5/14/2013	4.5 - 5.5 ft			230	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	5/20/2013	9.5 - 10.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	5/20/2013	14.5 - 15.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	6/13/2013	9.5 - 10.5 ft		_		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	6/13/2013	14.5 - 15.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	1/25/2017	1 - 2 ft	0.25	1		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	1/25/2017	2 - 5 ft	0.011	1		

Matrix	horizon	Units	Pepco/Pepco(OpenLot)	Location	Collected	Depth	Naphthalene	D_Naphthalene	Nickel	D_Nickel
SO	Surface	mg/kg	Pepco (Open Lot)	SB2	1/25/2017	0 - 1 ft	0.11	0		
SO	Surface	mg/kg	Pepco (Open Lot)	SUSDP01	2/4/2013	0.33 - 1 ft	0.039	0	12	1
SO	Surface	mg/kg	Pepco (Open Lot)	SUSDP02	2/4/2013	0.33 - 0.83 ft	0.018	1	8.7	1
SO	Surface	mg/kg	Pepco (Open Lot)	SUSDP02	1/25/2017	0 - 1 ft	0.0064	1		
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	5/17/2013	4.5 - 5.5 ft	0.0081	0		
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	5/20/2013	9.5 - 10.5 ft	0.0075	0		
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	5/20/2013	14.5 - 15.5 ft	0.0075	0		
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	6/13/2013	9.5 - 10.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/25/2017	1 - 2 ft	0.0075	1		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/25/2017	2 - 5 ft	0.018	1		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/26/2017	5 - 10 ft	0.0016	1		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/26/2017	10 - 15 ft	0.0023	1		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP01	5/20/2013	2.5 - 3.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP01	5/20/2013	9.5 - 10.5 ft			3.4	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP01	5/20/2013	14 - 15 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	5/14/2013	4.5 - 5.5 ft			4.2	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	5/20/2013	9.5 - 10.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	5/20/2013	14.5 - 15.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	6/13/2013	9.5 - 10.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	6/13/2013	14.5 - 15.5 ft	·			
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	1/25/2017	1 - 2 ft	0.013	1		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	1/25/2017	2 - 5 ft	0.0099	1		

Matrix	horizon	Units	Pepco/Pepco(OpenLot)	Location	Collected	Depth	PCB, Total Aroclors (AECOM Calc)	D_PCB, Total Aroclors (AECOM Calc)	TCDD TEQ HH	D_TCDD TEQ HH
SO	Surface	mg/kg	Pepco (Open Lot)	SB2	1/25/2017	0 - 1 ft	0.054	1		
SO	Surface	mg/kg	Pepco (Open Lot)	SUSDP01	2/4/2013	0.33 - 1 ft	0.0096	0	0.00000251	1
SO	Surface	mg/kg	Pepco (Open Lot)	SUSDP02	2/4/2013	0.33 - 0.83 ft	0.021	1	0.00000127	1
SO	Surface	mg/kg	Pepco (Open Lot)	SUSDP02	1/25/2017	0 - 1 ft	0.092	1		
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	5/17/2013	4.5 - 5.5 ft	0.001	0		
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	5/20/2013	9.5 - 10.5 ft	0.0047	0		
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	5/20/2013	14.5 - 15.5 ft	0.0047	0		
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	6/13/2013	9.5 - 10.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/25/2017	1 - 2 ft	0.00089	0		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/25/2017	2 - 5 ft	0.00083	1		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/26/2017	5 - 10 ft	0.0009	0		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/26/2017	10 - 15 ft	0.001	0		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP01	5/20/2013	2.5 - 3.5 ft	0.0045	0	0.000000213	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP01	5/20/2013	9.5 - 10.5 ft	0.0045	0		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP01	5/20/2013	14 - 15 ft	0.0049	0		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	5/14/2013	4.5 - 5.5 ft	0.00095	0	0.00000558	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	5/20/2013	9.5 - 10.5 ft	0.0045	0		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	5/20/2013	14.5 - 15.5 ft	0.0048	0		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	6/13/2013	9.5 - 10.5 ft	·			
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	6/13/2013	14.5 - 15.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	1/25/2017	1 - 2 ft	0.086	1		
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	1/25/2017	2 - 5 ft	0.0027	1		

Matrix	horizon	Units	Pepco/Pepco(OpenLot)	Location	Collected	Depth	Thallium	D_Thallium	Vanadium	D_Vanadium
SO	Surface	mg/kg	Pepco (Open Lot)	SB2	1/25/2017	0 - 1 ft				
SO	Surface	mg/kg	Pepco (Open Lot)	SUSDP01	2/4/2013	0.33 - 1 ft	0.11	0	58	1
SO	Surface	mg/kg	Pepco (Open Lot)	SUSDP02	2/4/2013	0.33 - 0.83 ft	0.11	0	16	1
SO	Surface	mg/kg	Pepco (Open Lot)	SUSDP02	1/25/2017	0 - 1 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	5/17/2013	4.5 - 5.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	5/20/2013	9.5 - 10.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	5/20/2013	14.5 - 15.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	DP36	6/13/2013	9.5 - 10.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/25/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/25/2017	2 - 5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/26/2017	5 - 10 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SB2	1/26/2017	10 - 15 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP01	5/20/2013	2.5 - 3.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP01	5/20/2013	9.5 - 10.5 ft	0.037	1	8.6	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP01	5/20/2013	14 - 15 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	5/14/2013	4.5 - 5.5 ft	0.053	1	12	1
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	5/20/2013	9.5 - 10.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	5/20/2013	14.5 - 15.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	6/13/2013	9.5 - 10.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	6/13/2013	14.5 - 15.5 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	1/25/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Pepco (Open Lot)	SUSDP02	1/25/2017	2 - 5 ft				

				1					11			
Matrix	horizon	Units	Area	Location	Collected	Depth	Arsenic	D_Arsenic	Benzo(a)anthracene	D_Benzo(a)anthracene	Benzo(a)pyrene	D_Benzo(a)pyrene
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS05-1D	1/24/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS05-1F	1/24/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS061C	3/13/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS061D	3/13/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS061E	3/13/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS061G	3/13/2017	0 - 1 ft	2.4	1				
SO SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1A SUS08-1B	1/24/2017	0 - 1 ft 0 - 1 ft	3.1	1				
SO	Surface Surface	mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUS08-1B	2/3/2017	0 - 1 ft	3.1 2.1	1				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1C	1/24/2017	0 - 1 ft	2.4	1				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1D	1/24/2017	0 - 1 ft	2.4	1				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1D	6/29/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1F	1/24/2017	0 - 1 ft	6.8	1				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1G	1/24/2017	0 - 1 ft	3.4	1				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1H	1/24/2017	0 - 1 ft	27	1				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1H	6/29/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1H	6/29/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2A	3/22/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2B	3/22/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2F	3/22/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2H	3/22/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2I	3/22/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2J	3/22/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2N	3/22/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-20	3/23/2017	0 - 1 ft						
SO SO	Surface Surface	mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUS08-2P SUSDP03	3/22/2017 2/4/2013	0 - 1 ft 0.5 - 1 ft	6.3	1	0.092	1	0.1	1
SO	Surface	mg/kg mg/kg	Warehouse and Laydown Area	SUSDP03 SUSDP04	2/4/2013	0.5 - 1 It 0 - 1 ft	7.7	1	0.092	1	0.1	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP04	1/25/2017	0 - 1 ft	7.7	'	0.56	1	0.45	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05	2/4/2013	0 - 1 ft	7.3	1	0.52	1	0.55	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05	1/24/2017	0 - 1 ft	7.5		0.26	1	0.33	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1C	1/24/2017	0 - 1 ft			0.20		0.2.	
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1C	7/31/2017	0 - 1 ft			0.11	1	0.092	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1E	1/24/2017	0 - 1 ft			-			
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1E	7/31/2017	0 - 1 ft			1.1	1	1.2	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1G	1/24/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1G	7/31/2017	0 - 1 ft			1.2	1	1.2	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-2M	2/1/2018	0 - 1 ft			0.31	1	0.31	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP06	2/5/2013	0 - 1 ft	11	1	0.098	1	0.1	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP06	3/13/2017	0 - 1 ft			0.02	1	0.015	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP07	2/5/2013	0 - 1 ft	3	1	0.98	1	0.82	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08	2/5/2013	0 - 1 ft	12	1	0.41	1	0.45	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	0 - 1 ft			0.18	1	0.15	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08	6/29/2018	0 - 1 ft	100	4				
SO SO	Surface Surface	mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP08-1E SUSDP08-1E	1/24/2017 6/29/2018	0 - 1 ft 0 - 1 ft	190	1				
SO	Surface	mg/kg mg/kg	Warehouse and Laydown Area	SUSDP08-1E SUSDP08-2G	3/22/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-2G SUSDP08-3I	8/2/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-3K	8/3/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11	2/5/2013	0 - 1 ft	3.6	1	0.27	1	0.28	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11	1/24/2017	0 - 1 ft	1		0.12	1	0.16	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-2D	4/5/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-2N	4/6/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP13	2/5/2013	0 - 1 ft	12	1	0.44	1	0.5	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	0 - 1 ft			0.48	1	0.46	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1C	2/1/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1E	2/1/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2E	2/22/2018	0 - 1 ft						
SO SO	Surface Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2I SUSDPCT16-2M	2/22/2018	0 - 1 ft						
3U	ourlace	mg/kg	Warehouse and Laydown Area	303DEC1 10-2M	212212018	0 - 1 ft	1				l	

					0 "	5 "		5.4	5 () "		5 ()	5.5 ()
Matrix SO	horizon	Units	Area	Location SUSDPCT16-3Q	Collected 6/29/2018	Depth 0 - 1 ft	Arsenic	D_Arsenic	Benzo(a)anthracene	D_Benzo(a)anthracene	Benzo(a)pyrene	D_Benzo(a)pyrene
SO	Surface Surface	mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDPCT16-3Q	6/29/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1A1	1/24/2017	0 - 1 ft	14	1				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1A3	1/24/2017	0 - 1 ft	6.3	1				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1A7	1/24/2017	0 - 1 ft	11	1				
SO SO	Surface Surface	mg/kg	Warehouse and Laydown Area	TA1A9 TA1C1	1/24/2017	0 - 1 ft 0 - 1 ft	9.5 11	1				
SO	Surface	mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	TA1C3	1/24/2017	0 - 1 ft	3.2	1				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C4	1/24/2017	0 - 1 ft	8.6	1				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C4	6/29/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C5	1/24/2017	0 - 1 ft	57	1				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C5	6/29/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C7	1/24/2017	0 - 1 ft	2	1				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C9	1/24/2017	0 - 1 ft	22	1				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E1	1/24/2017	0 - 1 ft	43	1				
SO SO	Surface Surface	mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	TA1E1 TA1E10	6/29/2018 8/8/2017	0 - 1 ft 0 - 1 ft	11	1				
SO	Surface	mg/kg mg/kg	Warehouse and Laydown Area	TA1-E11	1/30/2018	0 - 1 ft	19	1			1	
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E3	1/24/2017	0 - 1 ft	54	1				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E4	1/24/2017	0 - 1 ft	2.4	1				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E5	1/24/2017	0 - 1 ft	5.2	1				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E7	1/24/2017	0 - 1 ft	71	1				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E9	1/24/2017	0 - 1 ft	8.1	1				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E9	6/29/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1F4	1/24/2017	0 - 1 ft	16	1				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1F4	6/29/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1F5	1/24/2017	0 - 1 ft	11	1				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1G1	1/24/2017	0 - 1 ft	7.4	1				
SO SO	Surface	mg/kg	Warehouse and Laydown Area	TA1G10	8/4/2017	0 - 1 ft 0 - 1 ft	4	1				
SO	Surface Surface	mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	TA1G3 TA1G5	1/24/2017	0 - 1 ft	23 8.9	1				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1G5	1/24/2017	0 - 1 ft	8.2	1				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1G9	1/24/2017	0 - 1 ft	38	1				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1G9	6/29/2018	0 - 1 ft	- 00	·				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1H9	8/4/2017	0 - 1 ft	6.2	1				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	CT16SO9G	3/1/2017	1 - 2 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	CT16SO9H	8/4/2017	1 - 2 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	CT16SO9H	8/4/2017	2 - 3 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	CT16SO9I	8/4/2017	1 - 2 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	CT16SO9I	8/4/2017	2 - 3 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	CT16SO9I	8/4/2017	4 - 5 ft	0.5		0.04		0.00	4
SO	Subsurface	mg/kg	Warehouse and Laydown Area	DP27	3/26/2013	6.5 - 7.5 ft	9.5	1	0.34	1	0.33	1
SO SO	Subsurface Subsurface	mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	DP40 DP40	5/20/2013 5/28/2013	2.5 - 3.5 ft 9.5 - 10.5 ft	14	1	0.28 0.12	1	0.33 0.15	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	DP40 DP40	5/28/2013	14.5 - 15.5 ft			0.0072	0	0.0072	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	DP42	5/21/2013	4.5 - 5.5 ft			0.088	1	0.061	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	DP42	5/29/2013	14.5 - 15.5 ft	37	1	0.34	1	0.39	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	DP42	5/29/2013	9.5 - 10.5 ft	71	1	0.58	1	1.2	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SB3	3/13/2013	2.5 - 3.5 ft			0.079	1	0.15	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SBS0303N-North	2/15/2017	3 - 3.5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP03	5/14/2013	4.5 - 5.5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP03	5/21/2013	9.5 - 10.5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP03	5/21/2013	14.5 - 15.5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04	5/15/2013	2.5 - 3.5 ft	4.7	1	3.4	1	2.6	1
SO SO	Subsurface Subsurface	mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP04 SUSDP04	5/20/2013 5/20/2013	9.5 - 10.5 ft 14.5 - 15.5 ft			0.0055 0.029	1	0.0071	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04 SUSDP04	1/25/2017	14.5 - 15.5 IL			0.029	1	0.03	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04 SUSDP04	1/25/2017	2 - 5 ft			0.29	1	0.51	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04	1/27/2017	10 - 15 ft			0.20	'	0.20	'
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1A	8/1/2017	2 - 3 ft			0.62	1	0.5	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1A	8/1/2017	3 - 4 ft			0.17	1	0.14	1
SO		mg/kg	Warehouse and Laydown Area	SUSDP04-1A	8/1/2017	4 - 5 ft						

Matrix	harinan	Units	Area	Location	Collected	Donath	Arania	D. Areania	Danza (a) anthrosona	D. Donne (a) anthronous	Denze/e)nimene	D. Danna(a)nimana
	horizon		Area			Depth	Arsenic	D_Arsenic	Benzo(a)anthracene	D_Benzo(a)anthracene	Benzo(a)pyrene	D_Benzo(a)pyrene
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1C	8/1/2017	2 - 3 ft			0.13	1	0.09	1
SO SO	Subsurface Subsurface	mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP04-1C SUSDP04-1C	8/1/2017 8/1/2017	3 - 4 ft 4 - 5 ft			0.054	1	0.04	1
SO	Subsurface	mg/kg mg/kg	Warehouse and Laydown Area	SUSDP04-1C	8/1/2017	2 - 3 ft			0.071	1	0.047	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1E	8/1/2017	3 - 4 ft			0.15	1	0.11	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1E	8/1/2017	4 - 5 ft			0.13	'	0.11	ı
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1G	8/1/2017	2 - 3 ft			0.33	1	0.31	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1G	8/1/2017	3 - 4 ft			0.43	1	0.36	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1G	8/1/2017	4 - 5 ft			0.10		0.00	·
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1G	8/1/2017	5 - 6 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-2I	2/1/2018	2 - 3 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	5/15/2013	4.5 - 5.5 ft	1.8	1				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	5/21/2013	9.5 - 10.5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	5/21/2013	14.5 - 15.5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	1/24/2017	1 - 2 ft			39	1	34	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	1/24/2017	2 - 5 ft			0.013	1	0.0064	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-1C	7/31/2017	1 - 2 ft			0.54	1	0.56	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-1E	7/31/2017	1 - 2 ft			0.14	1	0.13	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-1G	7/31/2017	1 - 2 ft			2.3	1	2.4	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-1G	7/31/2017	2 - 3 ft			0.63	1	0.59	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-2M	2/1/2018	1 - 2 ft			1.2	1 1	1.1	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP06	5/15/2013	4.5 - 5.5 ft	2	1	0.0014	1	0.0082	0
SO SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP06	5/22/2013	9.5 - 10.5 ft			0.0078	0	0.0078	0
SO SO	Subsurface Subsurface	mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP06 SUSDP06	5/22/2013 3/13/2017	14.5 - 15.5 ft 1 - 2 ft			0.0072 0.0076	0	0.0072 0.0076	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP06	3/13/2017	2 - 5 ft			0.0076	0	0.0076	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP07	5/15/2013	4.5 - 5.5 ft	2.2	1	0.0073	1	0.022	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP07	5/22/2013	9.5 - 10.5 ft	2.3	1	0.19	1	0.21	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP07	5/22/2013	14.5 - 15.5 ft	2.3	1	0.016	0	0.016	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	5/15/2013	2.5 - 3.5 ft	2.1	1	0.71	1	0.64	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	5/23/2013	9.5 - 10.5 ft	3.4	1	0.15	1	0.17	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	5/23/2013	14.5 - 15.5 ft	3.9	1	0.08	1	0.099	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	1 - 2 ft			0.74	1	0.55	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	2 - 5 ft			0.41	1	0.26	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	5 - 10 ft			3.4	1	2.5	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	10 - 15 ft			0.91	1	1.2	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08-1E	8/2/2017	1 - 2 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08-2G	8/3/2017	1 - 2 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	5/14/2013	4.5 - 5.5 ft	2.8	1				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	5/28/2013	9.5 - 10.5 ft	1.5	1				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	5/28/2013	14.5 - 15.5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	1/25/2017	1 - 2 ft			0.7	0	0.7	0
SO SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	1/25/2017	2 - 5 ft 5 - 10 ft			0.12	1	0.24	0
SO	Subsurface Subsurface	mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP11 SUSDP11-1A	1/25/2017 2/22/2018	5 - 10 π 1 - 2 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	2 - 3 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	3 - 4 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	4 - 5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	5 - 6 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	3/28/2018	6 - 7 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	1 - 2 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	2 - 3 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	3 - 4 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	4 - 5 ft			-			
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	5 - 6 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	1 - 2 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	2 - 3 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	3 - 4 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	4 - 5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	5 - 6 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	1 - 2 ft						
SO SO	Subsurface Subsurface	mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP11-2A SUSDP11-2A	3/16/2018 3/16/2018	2 - 3 ft 3 - 4 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	4 - 5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	5 - 6 ft						
30	Gubauriace	mg/kg	vvarenduse and Laydowil Alea	GUGDE LI-ZA	3/10/2010	J-011	1				1	

Matrix	horizon	Units	Area	Location	Collected	Depth	Arsenic	D Arsenic	Benzo(a)anthracene	D Benzo(a)anthracene	Benzo(a)pyrene	D Benzo(a)pyrene
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2D	4/5/2018	1 - 2 ft	Alscillo	D_Arsenic	Delizo(a)antinacene	D_Benzo(a)antinacene	DC1120(a)pyrc11c	D_DC1120(a)py1c11c
SO	Subsurface		Warehouse and Laydown Area	SUSDP11-2D	4/6/2018	1 - 2 ft						
SO	Subsurface	mg/kg mg/kg	Warehouse and Laydown Area	SUSDP11-2N	4/6/2018	2 - 3 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2N	5/20/2013	4.5 - 5.5 ft	2.9	1				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP13	5/29/2013	14.5 - 15.5 ft	2.5					
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP13	5/29/2013	9.5 - 10.5 ft	0.48	1				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	5/22/2013	2.5 - 3.5 ft	2.8	1	1.1	1	0.99	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	5/24/2013	9.5 - 10.5 ft	2.0	1	0.57	1	0.53	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	5/24/2013	14.5 - 15.5 ft	0.74	1	0.0072	0	0.0072	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	1 - 2 ft	0.74		0.89	1	0.68	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	2 - 5 ft			1.1	1	0.72	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	5 - 10 ft			0.78	1	0.58	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	10 - 15 ft			0.019	1	0.012	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1C	2/1/2018	1 - 2 ft			0.019	·	0.012	-
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1C	2/1/2018	4 - 5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1E	2/1/2018	1 - 2 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1E	2/1/2018	1 - 2 ft					1	
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	2 - 3 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	3 - 4 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	4 - 5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/22/2018	1 - 2 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2E	2/22/2018	4 - 5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2L	2/22/2018	1 - 2 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	1 - 2 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	2 - 3 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	3 - 4 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	4 - 5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	1 - 2 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	2 - 3 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	3 - 4 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	4 - 5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	1 - 2 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	2 - 3 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	3 - 4 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	4 - 5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	1 - 2 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	2 - 3 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	3 - 4 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	4 - 5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E0	8/1/2017	1 - 2 ft	5.6	1				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E0	8/1/2017	2 - 3 ft	4.8	1			1	
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E0	8/1/2017	3 - 4 ft	3.2	1				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E1	7/31/2017	1 - 2 ft	13	1				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E10	8/8/2017	1 - 2 ft	3.6	1				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E9	8/3/2017	1 - 2 ft	12	1			1	
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1G10	8/4/2017	1 - 2 ft	3.2	1				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1G9	8/4/2017	1 - 2 ft	8.2	1				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1G9	8/4/2017	2 - 3 ft	3.4	1				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1H9	8/4/2017	1 - 2 ft	4.5	1				
		-33							1		1	

Matrix	horizon	Units	Area	Location	Collected	Depth	Benzo(b)fluoranthene	D_Benzo(b)fluoranthene	Benzo(k)fluoranthene	D_Benzo(k)fluoranthene	Chrysene	D_Chrysene
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS05-1D	1/24/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS05-1F	1/24/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS061C	3/13/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS061D	3/13/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS061E	3/13/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS061G	3/13/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1A	1/24/2017	0 - 1 ft						
SO SO	Surface Surface	mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUS08-1B SUS08-1B	1/24/2017 2/3/2017	0 - 1 ft 0 - 1 ft						
SO	Surface	mg/kg mg/kg	Warehouse and Laydown Area	SUS08-1C	1/24/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1D	1/24/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1D	6/29/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1F	1/24/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1G	1/24/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1H	1/24/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1H	6/29/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1H	6/29/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2A	3/22/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2B	3/22/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2F	3/22/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2H	3/22/2017	0 - 1 ft						
SO SO	Surface Surface	mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUS08-2I SUS08-2J	3/22/2017 3/22/2017	0 - 1 ft 0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2N	3/22/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-20	3/23/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2P	3/22/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP03	2/4/2013	0.5 - 1 ft	0.12	1	0.036	1	0.19	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP04	2/4/2013	0 - 1 ft	0.71	1	0.37	1	0.79	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP04	1/25/2017	0 - 1 ft	0.58	1	0.2	1	0.53	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05	2/4/2013	0 - 1 ft	0.63	1	0.36	1	0.7	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05	1/24/2017	0 - 1 ft	0.34	1	0.14	1	0.32	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1C	1/24/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1C	7/31/2017	0 - 1 ft	0.11	1	0.049	1	0.1	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1E	1/24/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1E	7/31/2017	0 - 1 ft	1.4	1	0.42	1	1.2	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1G	1/24/2017	0 - 1 ft	4.4		0.54		4.0	
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1G	7/31/2017	0 - 1 ft	1.4 0.42	1	0.54 0.14	1	1.3	1
SO SO	Surface Surface	mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP05-2M SUSDP06	2/1/2018 2/5/2013	0 - 1 ft 0 - 1 ft	0.42	1	0.14	1	0.31 0.25	1
SO	Surface	mg/kg mg/kg	Warehouse and Laydown Area	SUSDP06	3/13/2017	0 - 1 ft	0.024	1	0.0091	1	0.23	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP07	2/5/2013	0 - 1 ft	0.92	1	0.34	1	0.010	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08	2/5/2013	0 - 1 ft	0.44	1	0.22	1	0.4	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	0 - 1 ft	0.21	1	0.066	1	0.22	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08	6/29/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-1E	1/24/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-1E	6/29/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-2G	3/22/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-3I	8/2/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-3K	8/3/2017	0 - 1 ft	0.04	4	0.44		0.04	4
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11	2/5/2013	0 - 1 ft	0.31	1	0.11 0.038	<u> </u>	0.34	1
SO SO	Surface Surface	mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP11 SUSDP11-1A	1/24/2017 2/22/2018	0 - 1 ft 0 - 1 ft	0.16	I	0.036	I	0.2	ı
SO	Surface	mg/kg mg/kg	Warehouse and Laydown Area	SUSDP11-1A SUSDP11-1B	3/16/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-111	3/16/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-2D	4/5/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-2N	4/6/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP13	2/5/2013	0 - 1 ft	0.65	1	0.2	1	0.5	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	0 - 1 ft	0.64	1	0.22	1	0.53	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1C	2/1/2018	0 - 1 ft						-
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1E	2/1/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2E	2/22/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2I	2/22/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	0 - 1 ft						

SO S SO S SO S SO S	horizon Surface Surface Surface	Units mg/kg	Area Warehouse and Laydown Area	Location	Collected	Depth	Benzo(b)fluoranthene	D_Benzo(b)fluoranthene	Benzo(k)fluoranthene	D Benzo(k)fluoranthene	Chrysene	D Chrysene
SO S SO S SO S	Surface		Warehouse and Laydown Area									5_0,000
SO S SO S			Transmodes and Edyactini nasa	SUSDPCT16-3Q	6/29/2018	0 - 1 ft						
SO S	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3Q	6/29/2018	0 - 1 ft						
SO S		mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	0 - 1 ft						
SO S	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1A1	1/24/2017	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1A3	1/24/2017	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1A7	1/24/2017	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1A9	1/24/2017	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1C1	1/24/2017	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1C3	1/24/2017	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1C4	1/24/2017	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1C4	6/29/2018	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1C5	1/24/2017	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1C5	6/29/2018	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1C7	1/24/2017	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1C9	1/24/2017	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1E1	1/24/2017	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1E1	6/29/2018	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1E10	8/8/2017	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1-E11	1/30/2018	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1E3	1/24/2017	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1E4	1/24/2017	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1E5	1/24/2017	0 - 1 ft						
	Surface Surface	mg/kg	Warehouse and Laydown Area	TA1E7 TA1E9	1/24/2017	0 - 1 ft 0 - 1 ft						
		mg/kg	Warehouse and Laydown Area	TA1E9	1/24/2017	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1E9	6/29/2018 1/24/2017							
	Surface	mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	TA1F4	6/29/2018	0 - 1 ft						
	Surface Surface	mg/kg	Warehouse and Laydown Area	TA1F5	1/24/2017	0 - 1 ft 0 - 1 ft						
	Surface	mg/kg mg/kg	Warehouse and Laydown Area	TA1G1	1/24/2017	0 - 1 ft						
	Surface		Warehouse and Laydown Area	TA1G10	8/4/2017	0 - 1 ft						
	Surface	mg/kg mg/kg	Warehouse and Laydown Area	TA1G10	1/24/2017	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1G5	1/24/2017	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1G7	1/24/2017	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1G9	1/24/2017	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1G9	6/29/2018	0 - 1 ft						
	Surface	mg/kg	Warehouse and Laydown Area	TA1H9	8/4/2017	0 - 1 ft						
		mg/kg	Warehouse and Laydown Area	CT16SO9G	3/1/2017	1 - 2 ft						
	ubsurface	mg/kg	Warehouse and Laydown Area	CT16SO9H	8/4/2017	1 - 2 ft						
		mg/kg	Warehouse and Laydown Area	CT16SO9H	8/4/2017	2 - 3 ft						
		mg/kg	Warehouse and Laydown Area	CT16SO9I	8/4/2017	1 - 2 ft						
		mg/kg	Warehouse and Laydown Area	CT16SO9I	8/4/2017	2 - 3 ft						
	ubsurface	mg/kg	Warehouse and Laydown Area	CT16SO9I	8/4/2017	4 - 5 ft						
		mg/kg	Warehouse and Laydown Area	DP27	3/26/2013	6.5 - 7.5 ft	0.39	1	0.15	1	0.37	1
		mg/kg	Warehouse and Laydown Area	DP40	5/20/2013	2.5 - 3.5 ft	0.32	1	0.12	1	0.29	1
		mg/kg	Warehouse and Laydown Area	DP40	5/28/2013	9.5 - 10.5 ft	0.16	1	0.058	1	0.15	1
	ubsurface	mg/kg	Warehouse and Laydown Area	DP40	5/28/2013	14.5 - 15.5 ft	0.0072	0	0.0072	0	0.0072	0
		mg/kg	Warehouse and Laydown Area	DP42	5/21/2013	4.5 - 5.5 ft	0.11	1	0.035	1	0.22	1
		mg/kg	Warehouse and Laydown Area	DP42	5/29/2013		0.38	1	0.16	1	0.38	1
			Warehouse and Laydown Area	DP42	5/29/2013	9.5 - 10.5 ft	0.64	1	0.21	1	0.62	1
	ubsurface		Warehouse and Laydown Area	SB3	3/13/2013	2.5 - 3.5 ft	0.15	0	0.15	0	0.16	1
		mg/kg	Warehouse and Laydown Area	SBS0303N-North	2/15/2017	3 - 3.5 ft						
		mg/kg	Warehouse and Laydown Area	SUSDP03	5/14/2013	4.5 - 5.5 ft						
	ubsurface	mg/kg	Warehouse and Laydown Area	SUSDP03	5/21/2013	9.5 - 10.5 ft						
SO Su		mg/kg	Warehouse and Laydown Area	SUSDP03	5/21/2013	14.5 - 15.5 ft						
		mg/kg	Warehouse and Laydown Area	SUSDP04	5/15/2013	2.5 - 3.5 ft	1.8	1	0.85	1	3.3	1
	ubsurface	mg/kg	Warehouse and Laydown Area	SUSDP04	5/20/2013	9.5 - 10.5 ft	0.0068	1	0.0019	1	0.0063	1
SO Su	ubsurface		Warehouse and Laydown Area	SUSDP04	5/20/2013	14.5 - 15.5 ft	0.031	1	0.012	1	0.037	1
SO Su	ubsurface	mg/kg	Warehouse and Laydown Area	SUSDP04	1/25/2017	1 - 2 ft	0.64	1	0.27	1	0.64	1
SO Su	ubsurface	mg/kg	Warehouse and Laydown Area	SUSDP04	1/25/2017	2 - 5 ft	0.3	1	0.11	1	0.38	1
SO Su	ubsurface	mg/kg	Warehouse and Laydown Area	SUSDP04	1/27/2017	10 - 15 ft						
SO Su		mg/kg	Warehouse and Laydown Area	SUSDP04-1A	8/1/2017	2 - 3 ft	0.63	1	0.21	1	0.65	1
		mg/kg	Warehouse and Laydown Area	SUSDP04-1A	8/1/2017	3 - 4 ft	0.19	1	0.047	1	0.29	1
SO Su		mg/kg	Warehouse and Laydown Area	SUSDP04-1A	8/1/2017	4 - 5 ft						

Matrix	horizon	Units	Area	Location	Collected	Depth	Benzo(b)fluoranthene	D Benzo(b)fluoranthene	Benzo(k)fluoranthene	D Benzo(k)fluoranthene	Chrysene	D Chrysene
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1C	8/1/2017	2 - 3 ft	0.21	1	0.049	1	0.57	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1C	8/1/2017	3 - 4 ft	0.085	1	0.016	1	0.2	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1C	8/1/2017	4 - 5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1E	8/1/2017	2 - 3 ft	0.12	1	0.022	1	0.37	1
SO	Subsurface		Warehouse and Laydown Area	SUSDP04-1E	8/1/2017	3 - 4 ft	0.2	1	0.047	1	0.31	1
SO	Subsurface		Warehouse and Laydown Area	SUSDP04-1E	8/1/2017	4 - 5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1G	8/1/2017	2 - 3 ft	0.43	1	0.11	1	0.38	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1G	8/1/2017	3 - 4 ft	0.45	1	0.18	1	0.54	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1G	8/1/2017	4 - 5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1G	8/1/2017	5 - 6 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-2I	2/1/2018	2 - 3 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	5/15/2013	4.5 - 5.5 ft						
SO	Subsurface		Warehouse and Laydown Area	SUSDP05	5/21/2013	9.5 - 10.5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	5/21/2013	14.5 - 15.5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	1/24/2017	1 - 2 ft	45	1	16	1	45	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	1/24/2017	2 - 5 ft	0.0088	1	0.0059	1	0.013	1
SO	Subsurface		Warehouse and Laydown Area	SUSDP05-1C	7/31/2017	1 - 2 ft	0.84	1	0.25	1	0.76	1
SO	Subsurface		Warehouse and Laydown Area	SUSDP05-1E	7/31/2017	1 - 2 ft	0.16	1	0.065	1	0.16	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-1G	7/31/2017	1 - 2 ft	2.9	1	1.1	1	2.6	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-1G	7/31/2017	2 - 3 ft	0.75	1	0.28	1	0.77	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-2M	2/1/2018	1 - 2 ft	1.5	1	0.43	1	1.4	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP06	5/15/2013	4.5 - 5.5 ft	0.0017	1	0.0082	0	0.0023	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP06	5/22/2013	9.5 - 10.5 ft	0.0078	0	0.0078	· ·	0.0078	
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP06	5/22/2013	14.5 - 15.5 ft	0.0072	0	0.0072	0	0.0072	0
SO	Subsurface Subsurface	mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP06 SUSDP06	3/13/2017 3/13/2017	1 - 2 ft 2 - 5 ft	0.0076 0.0073	0	0.0076 0.0073	0	0.0076 0.0073	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP06 SUSDP07	5/15/2013	4.5 - 5.5 ft	0.0073	1	0.0073	1	0.0073	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP07	5/22/2013		0.022	1	0.079	1	0.023	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP07	5/22/2013		0.016	0	0.016	0	0.016	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	5/15/2013	2.5 - 3.5 ft	0.66	1	0.31	1	0.74	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	5/23/2013	9.5 - 10.5 ft	0.00	1	0.058	1	0.17	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	5/23/2013	14.5 - 15.5 ft	0.091	1	0.037	1	0.086	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	1 - 2 ft	0.66	1	0.26	1	0.72	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	2 - 5 ft	0.36	1	0.098	1	0.34	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	5 - 10 ft	2.3	1	0.66	1	3.1	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	10 - 15 ft	1	1	0.23	1	0.92	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08-1E	8/2/2017	1 - 2 ft			7.20			
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08-2G	8/3/2017	1 - 2 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	5/14/2013	4.5 - 5.5 ft						
SO	Subsurface		Warehouse and Laydown Area	SUSDP11	5/28/2013	9.5 - 10.5 ft						
SO	Subsurface		Warehouse and Laydown Area	SUSDP11	5/28/2013	14.5 - 15.5 ft						
SO	Subsurface		Warehouse and Laydown Area	SUSDP11	1/25/2017	1 - 2 ft	0.7	0	0.7	0	0.7	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	1/25/2017	2 - 5 ft	0.24	0	0.24	0	0.17	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	1/25/2017	5 - 10 ft						
SO	Subsurface		Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	1 - 2 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	2 - 3 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	3 - 4 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	4 - 5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	5 - 6 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	3/28/2018	6 - 7 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	1 - 2 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	2 - 3 ft						
SO	Subsurface		Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	3 - 4 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	4 - 5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	5 - 6 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	1 - 2 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	2 - 3 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	3 - 4 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018 3/16/2018	4 - 5 ft 5 - 6 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H SUSDP11-2A	3/16/2018	5 - 6 ft 1 - 2 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	1 - 2 π 2 - 3 ft						
SO	Subsurface Subsurface	mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP11-2A SUSDP11-2A	3/16/2018	2 - 3 π 3 - 4 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A SUSDP11-2A	3/16/2018	3 - 4 II 4 - 5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	5 - 6 ft						
30	Gubsuriace	my/kg	vvarchouse and Laydown Alea	GUGDE I I-ZA	3/10/2010	J-011	1				l	

Matrix	horizon	Units	Area	Location	Collected	Depth	Benzo(b)fluoranthene	D Benzo(b)fluoranthene	Benzo(k)fluoranthene	D Benzo(k)fluoranthene	Chrysene	D Chrysene
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2D	4/5/2018	1 - 2 ft			` `			
SO		mg/kg	Warehouse and Laydown Area	SUSDP11-2N	4/6/2018	1 - 2 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDP11-2N	4/6/2018	2 - 3 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDP13	5/20/2013	4.5 - 5.5 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDP13	5/29/2013	14.5 - 15.5 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDP13	5/29/2013	9.5 - 10.5 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDP41	5/22/2013	2.5 - 3.5 ft	0.89	1	0.47	1	1.1	1
SO		mg/kg	Warehouse and Laydown Area	SUSDP41	5/24/2013	9.5 - 10.5 ft	0.54	1	0.2	1	0.58	1
SO	Subsurface		Warehouse and Laydown Area	SUSDP41	5/24/2013		0.0072	0	0.0072	0	0.0072	0
SO		mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	1 - 2 ft	0.88	1	0.26	1	0.83	1
SO		mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	2 - 5 ft	0.92	1	0.38	1	1.1	1
SO		mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	5 - 10 ft	0.75	1	0.28	1	0.72	1
SO		mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	10 - 15 ft	0.017	1	0.0069	1	0.018	1
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-1C	2/1/2018	1 - 2 ft	0.017		0.0003		0.010	'
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-1C	2/1/2018	4 - 5 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-1E	2/1/2018	1 - 2 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	1 - 2 ft						
SO	Subsurface		Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	2 - 3 ft						
SO	Subsurface		Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	3 - 4 ft						
SO			Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	4 - 5 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-2E	2/22/2018	1 - 2 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-2E	2/22/2018	4 - 5 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-2I	2/22/2018	1 - 2 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	1 - 2 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	2 - 3 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	3 - 4 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	4 - 5 ft						
SO	Subsurface		Warehouse and Laydown Area	SUSDPCT16-2M	5/31/2018	1 - 2 ft						
SO			Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	2 - 3 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	3 - 4 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	4 - 5 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	1 - 2 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	2 - 3 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	3 - 4 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	4 - 5 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	1 - 2 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	2 - 3 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	3 - 4 ft						
SO			Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	4 - 5 ft						
SO		mg/kg	Warehouse and Laydown Area	TA1E0	8/1/2017	1 - 2 ft						
SO		mg/kg	Warehouse and Laydown Area	TA1E0	8/1/2017	2 - 3 ft						
SO		mg/kg	Warehouse and Laydown Area	TA1E0	8/1/2017	3 - 4 ft						
SO		mg/kg	Warehouse and Laydown Area	TA1E1	7/31/2017	1 - 2 ft						
SO		mg/kg	Warehouse and Laydown Area	TA1E10	8/8/2017	1 - 2 ft						
SO		mg/kg	Warehouse and Laydown Area	TA1E10	8/3/2017	1 - 2 ft						
SO	Subsurface		Warehouse and Laydown Area	TA1G10	8/4/2017	1 - 2 ft						
SO			Warehouse and Laydown Area	TA1G10	8/4/2017	1 - 2 ft						
SO	Subsurface		Warehouse and Laydown Area	TA1G9	8/4/2017	2 - 3 ft						
SO	Subsurface		Warehouse and Laydown Area	TA1H9	8/4/2017	1 - 2 ft						
00	Cabauriace	mg/kg	Traicilouse and Laydowii Alea	IAIII	31712011	1-211	I .	I		I	1	

Soc Surface mg/kg Warehouse and Laydom Area SUSS-10 124/2017 0 - 1 ft	Matrix	horizon	Units	Area	Location	Collected	Depth	Cobalt	D Cobalt	Dibenzo(a,h)anthracene	D_Dibenzo(a,h)anthracene
Sol Surface mg/kg Warehouse and Laydown Area SUSSE-1F 174/2017 0 - 1 ft								CODUIT	D_OODAIL	Dibenzo(a,n)antinacene	D_Discrizo(d,ri)dirarracerie
Sol Surface mg/kg Warehouse and Laydown Area SUSSBET 3132017 0 - 1 ft											
Soc Surface mg/kg Warehouse and Laydown Area SUS061E 3/13/2017 0 - 1 ft											
Sol Surface mg/kg Warehouse and Laydown Area SUSS616 3/13/2017 0 - 1 ft 5,9 1		Surface			SUS061D		0 - 1 ft				
Soc Surface mg/kg Warehouse and Laydown Area SUS98-18 124/2017 0 - 1 ft 4.1 1 1 1 1 1 1 1 1 1	SO	Surface		Warehouse and Laydown Area	SUS061E	3/13/2017					
Soc Surface mg/kg, Warehouse and Laydown Area SUS08-18 29/2017 0-1 ft 4.1 1 1 1 1 1 1 1 1 1											
SO Surface mg/kg Warehouse and Laydown Area SUS08-18 2/3/2017 0 - 1 ft 3.8 1											
SO Surface mg/kg Warehouse and Laydown Area SUS08-10 124/2017 0 - 1 ft 1.8 1 1 1 1 1 1 1 1 1											
SU Surface mg/kg Warehouse and Laydown Area SUSS8-10 1/24/2017 0 - 1 ft 1 1 1 1 1 1 1 1 1											
SO Surface myRig Warehouse and Laydown Area SUS08-1-D 6/28/2018 0 - 1 ft 5.9 1											
SO Surface mykg Warehouse and Laydown Area SUS98-1F 124/2017 0 - 1 ft 5 - 9 t 1								18	1		
SO Surface mg/kg Warehouse and Laydown Area SUSS08-16 12/4/2017 0 - 1 ft 9.1 1								5.0	1		
SO Surface mg/kg Warehouse and Laydown Area SUSS9-1H 124/2017 0 - 1 ft 30 1											
SO Surface mykg Warehouse and Laydown Area SUS08-1H 6/29/2018 0 - 1 ft											
SO Surface mg/kg Warehouse and Laydown Area SUSSP-1H 6/29/2018 0 - 1 ft											
SO Surface mg/kg Warehouse and Laydown Area SUSBN-2A 3222017 0 - 1 ft											
SO Surface mg/kg Warehouse and Laydown Area SUS08-2B 322/2017 0 - 1 ft											
SO Surface mg/kg Warehouse and Laydown Area SUS08-2H 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUS08-2J 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUS08-2J 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUS08-2J 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUS08-2J 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUS08-2D 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUS08-2D 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUS08-2D 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUS08-2D 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUS08-2D 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUS0P09 2/4/2013 0 - 1 ft 7.2 1 0.11 1 1 1 1 1 1 1 1 1	SO	Surface		Warehouse and Laydown Area	SUS08-2B	3/22/2017	0 - 1 ft				
SO Surface mg/kg Warehouse and Laydown Area SUSS9-21 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-21 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-23 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2013 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2013 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2013 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS9-29 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSS		Surface									
SO Surface mg/kg Warehouse and Laydown Area SUSSR-2D 32/22/017 0 - 1 ft											
SO Surface mg/kg Warehouse and Laydown Area SUSB-2N 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSB-2O 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSB-2O 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSB-2D 3/22/2017 0 - 1 ft mg/kg Warehouse and Laydown Area SUSB-2D 3/22/2013 0 - 1 ft 3.2 t 0.04											
SO Surface mg/kg Warehouse and Laydown Area SUSB-2O 3/23/2017 O - 1 ft 1								1			
SO Surface mg/kg Warehouse and Laydown Area SUSDP03 2/4/2013 0.5-1 ft 3.2 1 0.04 1											
SO Surface mg/kg Warehouse and Laydown Area SUSDP04 24/2013 0.5 - 1 ft 3.2 1 0.04 1 1 1 1 1 1 1 1 1											
SO								0.0	_	0.04	4
SO											·
SO Surface mg/kg								1.2	ı		
SO Surface mg/kg Warehouse and Laydown Area SUSDP06 1/24/2017 0 - 1 ft 0.052 1								4.6	1		
SO Surface mg/kg Warehouse and Laydown Area SUSDP05-1C 1/24/2017 0 - 1 ft 0 - 0.023 1								7.0			
SO Surface mg/kg Warehouse and Laydown Area SUSDP05-1C 7/31/2017 0 - 1 ft 0 - 1 ft 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP05-1E 1/24/2017 0 - 1 ft 0 - 1 ft 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP05-1E 7/31/2017 0 - 1 ft 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP05-1E 7/31/2017 0 - 1 ft 0 - 28 1 1 1 1 1 1 1 1 1										0.002	·
SO Surface mg/kg Warehouse and Laydown Area SUSDP05-1E 7/31/2017 0 - 1 ft										0.023	1
SO Surface mg/kg Warehouse and Laydown Area SUSDP05-1G 1/24/2017 0 - 1 ft 0.28 1	SO	Surface		Warehouse and Laydown Area	SUSDP05-1E	1/24/2017	0 - 1 ft				
SO Surface mg/kg Warehouse and Laydown Area SUSDP05-1G 7/31/2017 0 - 1 ft 0.28 1	SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1E	7/31/2017	0 - 1 ft			0.31	1
SO Surface mg/kg Warehouse and Laydown Area SUSDP05-2M 2/1/2018 0 - 1 ft 5.9 1 0.042 1 1 0.042 1 1 0.042 1 0.045 0.0075 0 0 0 0.0075 0 0 0 0.0075 0 0 0 0 0 0.0075 0 0 0 0 0 0 0 0 0											
SO Surface mg/kg Warehouse and Laydown Area SUSDP06 2/5/2013 0 - 1 ft 5.9 1 0.042 1											
SO Surface mg/kg Warehouse and Laydown Area SUSDP06 3/13/2017 0 - 1 ft 0.0075 0											
SO Surface mg/kg Warehouse and Laydown Area SUSDP07 2/5/2013 0 - 1 ft 8.2 1 0.16 1								5.9	1		
SO Surface mg/kg Warehouse and Laydown Area SUSDP08 2/5/2013 0 - 1 ft 23 1 0.086 1											
SO Surface mg/kg Warehouse and Laydown Area SUSDP08 1/24/2017 0 - 1 ft 0.16 0											
SO Surface mg/kg Warehouse and Laydown Area SUSDP08 6/29/2018 0 - 1 ft 67 1								23	ı		·
SO Surface mg/kg Warehouse and Laydown Area SUSDP08-1E 1/24/2017 0 - 1 ft 67 1										0.16	0
SO Surface mg/kg Warehouse and Laydown Area SUSDP08-1E 6/29/2018 0 - 1 ft								67	1		
SO Surface mg/kg Warehouse and Laydown Area SUSDP08-2G 3/22/2017 0 - 1 ft								- 0,			
SO Surface mg/kg Warehouse and Laydown Area SUSDP08-3I 8/2/2017 0 - 1 ft								1			
SO Surface mg/kg Warehouse and Laydown Area SUSDP08-3K 8/3/2017 0 - 1 ft 4.4 1 0.049 1 SO Surface mg/kg Warehouse and Laydown Area SUSDP11 2/5/2017 0 - 1 ft 4.4 1 0.049 1 SO Surface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 0 - 1 ft 0.07 0 SO Surface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 0 - 1 ft 0.1 ft <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td>								1			
SO Surface mg/kg Warehouse and Laydown Area SUSDP11 2/5/2013 0 - 1 ft 4.4 1 0.049 1		Surface			SUSDP08-3K						
SO Surface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP11-2D 4/5/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP11-2D 4/5/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP11-2N 4/5/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP11-2N 4/5/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP41 1/24/2017 0 - 1 ft 0.13 1 SO Surface mg/kg Warehouse and		Surface		Warehouse and Laydown Area	SUSDP11			4.4	1		-
SO Surface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP11-2D 4/5/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP11-2D 4/6/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP11-2D 4/6/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP11-2D 4/6/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP11-2D 4/6/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-1E 2/1/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDPCT										0.07	0
SO Surface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP11-2D 4/5/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP11-2N 4/6/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP11-2N 4/6/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP11-2N 4/6/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP11-2N 4/6/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-1C 2/1/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-1G 2/1/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDPC											
SO Surface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP11-2D 4/5/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP11-2N 4/6/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP3 2/5/2013 0 - 1 ft 15 1 0.095 1 SO Surface mg/kg Warehouse and Laydown Area SUSDP41 1/24/2017 0 - 1 ft 0.13 1 SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-1C 2/1/2018 0 - 1 ft 0 SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-1G 2/1/2018 0 - 1 ft 0								1			
SO Surface mg/kg Warehouse and Laydown Area SUSDP11-2D 4/5/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP11-2N 4/6/2018 0 - 1 ft 1 SO Surface mg/kg Warehouse and Laydown Area SUSDP13 2/5/2013 0 - 1 ft 15 1 0.095 1 SO Surface mg/kg Warehouse and Laydown Area SUSDP41 1/24/2017 0 - 1 ft 0.13 1 SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-1C 2/1/2018 0 - 1 ft 0.1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-1G 2/1/2018 0 - 1 ft 0.1 ft											
SO Surface mg/kg Warehouse and Laydown Area SUSDP11-2N 4/6/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDP13 2/5/2013 0 - 1 ft 15 1 0.095 1 SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-11 1/24/2017 0 - 1 ft 0.13 1 SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-1C 2/1/2018 0 - 1 ft 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-1G 2/1/2018 0 - 1 ft 0 - 1 ft								1			
SO Surface mg/kg Warehouse and Laydown Area SUSDP13 2/5/2013 0 - 1 ft 15 1 0.095 1 SO Surface mg/kg Warehouse and Laydown Area SUSDP41 1/24/2017 0 - 1 ft 0.13 1 SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-1C 2/1/2018 0 - 1 ft 0.13 0.14 0.14 0.14 0.14								+			
SO Surface mg/kg Warehouse and Laydown Area SUSDP41 1/24/2017 0 - 1 ft 0.13 1 SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-1C 2/1/2018 0 - 1 ft 0.18 SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-1E 2/1/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-1G 2/1/2018 0 - 1 ft								15	4	0.005	1
SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-1C 2/1/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-1E 2/1/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-1G 2/1/2018 0 - 1 ft								15	I		· ·
SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-1E 2/1/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-1G 2/1/2018 0 - 1 ft								+		0.13	1
SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-1G 2/1/2018 0 - 1 ft								1			
								+			
SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-2E 2/22/2018 0 - 1 ft	SO			Warehouse and Laydown Area	SUSDPCT16-2E	2/22/2018	0 - 1 ft				
SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-2I 2/22/2018 0 - 1 ft											
SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-2M 2/22/2018 0 - 1 ft											

Matrix	horizon	Units	Area	Location	Collected	Depth	Cobalt	D Cobalt	Dibenzo(a,h)anthracene	D Dibenzo(a,h)anthracene
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3Q	6/29/2018	0 - 1 ft		_		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3Q	6/29/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1A1	1/24/2017	0 - 1 ft	12	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1A3	1/24/2017	0 - 1 ft	4.9	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1A7	1/24/2017	0 - 1 ft	13	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1A9	1/24/2017	0 - 1 ft	8	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C1	1/24/2017	0 - 1 ft	5.4	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C3	1/24/2017	0 - 1 ft	5.3	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C4	1/24/2017	0 - 1 ft	23	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C4	6/29/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C5	1/24/2017	0 - 1 ft	41	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C5	6/29/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C7	1/24/2017	0 - 1 ft	3.2	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C9	1/24/2017	0 - 1 ft	11	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E1	1/24/2017	0 - 1 ft	120	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E1	6/29/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E10	8/8/2017	0 - 1 ft	14	1		1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1-E11	1/30/2018	0 - 1 ft	15	1		1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E3	1/24/2017	0 - 1 ft	3.5	1		1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E4	1/24/2017	0 - 1 ft	6.4	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E5	1/24/2017	0 - 1 ft	8.2	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E7	1/24/2017	0 - 1 ft	5.2	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E9	1/24/2017	0 - 1 ft	11	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E9	6/29/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1F4	1/24/2017	0 - 1 ft	35	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1F4	6/29/2018	0 - 1 ft	40			
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1F5	1/24/2017	0 - 1 ft	10	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1G1	1/24/2017	0 - 1 ft	4.7	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1G10	8/4/2017	0 - 1 ft	6.9	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1G3	1/24/2017	0 - 1 ft	3.1	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1G5	1/24/2017	0 - 1 ft	3.5	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1G7	1/24/2017	0 - 1 ft	6.5	1		
SO SO	Surface	mg/kg	Warehouse and Laydown Area	TA1G9	1/24/2017	0 - 1 ft	240	- 1		
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1G9 TA1H9	6/29/2018	0 - 1 ft 0 - 1 ft	18	1		
SO	Surface Subsurface	mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	CT16SO9G	8/4/2017 3/1/2017	1 - 2 ft	10	ı		
SO	Subsurface	mg/kg		CT16SO9G	8/4/2017	1 - 2 ft				
SO	Subsurface	mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	CT16SO9H CT16SO9H	8/4/2017	2 - 3 ft				+
SO	Subsurface		Warehouse and Laydown Area	CT16SO9H	8/4/2017	1 - 2 ft				
SO	Subsurface	mg/kg mg/kg	Warehouse and Laydown Area	CT16SO9I	8/4/2017	2 - 3 ft	1			+
SO	Subsurface	mg/kg	Warehouse and Laydown Area	CT16SO9I	8/4/2017	4 - 5 ft	1			+
SO	Subsurface	mg/kg	Warehouse and Laydown Area	DP27	3/26/2013	6.5 - 7.5 ft	6.9	1	0.062	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	DP40	5/20/2013	2.5 - 3.5 ft	9	1	0.002	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	DP40	5/28/2013	9.5 - 10.5 ft	-	'	0.044	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	DP40	5/28/2013	14.5 - 15.5 ft	1		0.0072	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	DP40 DP42	5/21/2013	4.5 - 5.5 ft	1		0.026	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	DP42	5/29/2013	14.5 - 15.5 ft	5.4	1	0.020	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	DP42	5/29/2013	9.5 - 10.5 ft	11	1	0.45	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SB3	3/13/2013	2.5 - 3.5 ft	1		0.15	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SBS0303N-North	2/15/2017	3 - 3.5 ft	1		0.10	<u> </u>
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP03	5/14/2013	4.5 - 5.5 ft	1			+
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP03	5/21/2013	9.5 - 10.5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP03	5/21/2013	14.5 - 15.5 ft	1			+
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04	5/15/2013	2.5 - 3.5 ft	7.7	1	0.25	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04	5/20/2013	9.5 - 10.5 ft		<u> </u>	0.0071	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04	5/20/2013	14.5 - 15.5 ft	1		0.0062	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04	1/25/2017	1 - 2 ft			0.14	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04	1/25/2017	2 - 5 ft			0.064	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04	1/27/2017	10 - 15 ft	1		U.JUT	<u> </u>
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1A	8/1/2017	2 - 3 ft	1		0.13	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1A	8/1/2017	3 - 4 ft	1		0.033	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1A	8/1/2017	4 - 5 ft				<u> </u>
50	2020011000	9.119		00007 04 171	5 20 17					

Matrix	horizon	Units	Area	Location	Collected	Depth	Cobalt	D_Cobalt	Dibenzo(a,h)anthracene	D_Dibenzo(a,h)anthracene
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1C	8/1/2017	2 - 3 ft			0.05	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1C	8/1/2017	3 - 4 ft			0.018	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1C	8/1/2017	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1E	8/1/2017	2 - 3 ft			0.029	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1E	8/1/2017	3 - 4 ft			0.042	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1E	8/1/2017	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1G	8/1/2017	2 - 3 ft			0.079	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1G	8/1/2017	3 - 4 ft			0.09	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1G	8/1/2017	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1G	8/1/2017	5 - 6 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-2I	2/1/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	5/15/2013	4.5 - 5.5 ft	2.6	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	5/21/2013	9.5 - 10.5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	5/21/2013	14.5 - 15.5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	1/24/2017	1 - 2 ft			7.4	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	1/24/2017	2 - 5 ft			0.0072	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-1C	7/31/2017	1 - 2 ft			0.14	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-1E	7/31/2017	1 - 2 ft			0.034	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-1G	7/31/2017	1 - 2 ft			0.62	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-1G	7/31/2017	2 - 3 ft			0.16	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-2M	2/1/2018	1 - 2 ft	7.0		0.2	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP06	5/15/2013	4.5 - 5.5 ft	7.8	1	0.0082	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP06	5/22/2013	9.5 - 10.5 ft	-		0.0078	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP06	5/22/2013	14.5 - 15.5 ft	1		0.0072	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP06	3/13/2017	1 - 2 ft			0.0076	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP06	3/13/2017	2 - 5 ft	0.0	4	0.0073	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP07	5/15/2013	4.5 - 5.5 ft	6.6	1	0.0029 0.04	1
SO SO	Subsurface Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP07 SUSDP07	5/22/2013 5/22/2013	9.5 - 10.5 ft 14.5 - 15.5 ft	6.5 4.7	1	0.04	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP08	5/15/2013	2.5 - 3.5 ft	3.5	1	0.095	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	5/23/2013	9.5 - 10.5 ft	2.5	1	0.034	1
SO	Subsurface	mg/kg mg/kg	Warehouse and Laydown Area	SUSDP08	5/23/2013	14.5 - 15.5 ft	8.3	1	0.017	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	1 - 2 ft	0.5	'	0.13	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	2 - 5 ft			0.066	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	5 - 10 ft			0.36	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	10 - 15 ft			0.2	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08-1E	8/2/2017	1 - 2 ft			0.2	
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08-2G	8/3/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	5/14/2013	4.5 - 5.5 ft	3.4	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	5/28/2013	9.5 - 10.5 ft	3.9	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	5/28/2013	14.5 - 15.5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	1/25/2017	1 - 2 ft			0.7	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	1/25/2017	2 - 5 ft			0.24	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	1/25/2017	5 - 10 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	3 - 4 ft			·	
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	5 - 6 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	3/28/2018	6 - 7 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	5 - 6 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	1 - 2 ft	1			
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	2 - 3 ft	1			
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	5 - 6 ft	-			
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	1 - 2 ft	ļ			
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	2 - 3 ft	1			
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	4 - 5 ft	1			
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	5 - 6 ft	1			

Matrix	horizon	Units	Area	Location	Collected	Depth	Cobalt	D Cobalt	Dibenzo(a,h)anthracene	D Dibenzo(a,h)anthracene
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2D	4/5/2018	1 - 2 ft		_	· · · · ·	
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2N	4/6/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2N	4/6/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP13	5/20/2013	4.5 - 5.5 ft	6.5	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP13	5/29/2013	14.5 - 15.5 ft	0.0	·		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP13	5/29/2013	9.5 - 10.5 ft	1.1	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	5/22/2013	2.5 - 3.5 ft	6.7	1	0.18	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	5/24/2013	9.5 - 10.5 ft	5.5	1	0.099	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	5/24/2013	14.5 - 15.5 ft	1.1	1	0.0072	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	1 - 2 ft			0.16	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	2 - 5 ft			0.16	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	5 - 10 ft			0.14	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	10 - 15 ft			0.0072	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1C	2/1/2018	1 - 2 ft			0.0072	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1C	2/1/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1E	2/1/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/22/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2E	2/22/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2L	2/22/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	5/31/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-38	3/15/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E0	8/1/2017	1 - 2 ft	2.3	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E0	8/1/2017	2 - 3 ft	3	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E0	8/1/2017	3 - 4 ft	2	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E1	7/31/2017	1 - 2 ft	9.2	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E10	8/8/2017	1 - 2 ft	5	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E10	8/3/2017	1 - 2 ft	29	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1G10	8/4/2017	1 - 2 ft	4.4	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1G10	8/4/2017	1 - 2 ft	8.4	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1G9	8/4/2017	2 - 3 ft	2	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1H9	8/4/2017	1 - 2 ft	9.1	1		
30	Gubsuriace	mg/kg	warehouse and Laydown Alea	IAIII	01412011	1-411	ð. I	'		

Matrix	horizon	Units	Area	Location	Collected	Depth	Diesel Range Organics (C10-C20)	D Diesel Range Organics (C10-C20)	Indeno(1,2,3-cd)pyrene	D_Indeno(1,2,3-cd)pyrene
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS05-1D	1/24/2017	0 - 1 ft	Dieser range organies (010 020)	D_Dieser range organies (010 020)	macrio(1,2,0 da)pyrene	B_indeno(1,2,0 cd)pyrene
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS05-1F	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS061C	3/13/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS061D	3/13/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS061E	3/13/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS061G	3/13/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1A	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1B	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1B	2/3/2017	0 - 1 ft				
SO SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1C	1/24/2017 1/24/2017	0 - 1 ft 0 - 1 ft				
SO	Surface Surface	mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUS08-1D SUS08-1D	6/29/2018	0 - 1 ft				
SO	Surface	mg/kg mg/kg	Warehouse and Laydown Area	SUS08-1F	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1G	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1H	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1H	6/29/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1H	6/29/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2A	3/22/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2B	3/22/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2F	3/22/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2H	3/22/2017	0 - 1 ft				1
SO	Surface Surface	mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUS08-2I SUS08-2J	3/22/2017 3/22/2017	0 - 1 ft 0 - 1 ft				
SO	Surface	mg/kg mg/kg	Warehouse and Laydown Area	SUS08-2N	3/22/2017	0 - 1 ft				1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-20	3/23/2017	0 - 1 ft				1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2P	3/22/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP03	2/4/2013	0.5 - 1 ft	15	1	0.068	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP04	2/4/2013	0 - 1 ft	66	1	0.44	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP04	1/25/2017	0 - 1 ft			0.38	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05	2/4/2013	0 - 1 ft	180	1	0.33	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05	1/24/2017	0 - 1 ft			0.16	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1C	1/24/2017	0 - 1 ft			0.070	
SO SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1C	7/31/2017	0 - 1 ft 0 - 1 ft			0.072	1
SO	Surface Surface	mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP05-1E SUSDP05-1E	1/24/2017 7/31/2017	0 - 1 ft			0.96	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1E	1/24/2017	0 - 1 ft			0.90	•
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1G	7/31/2017	0 - 1 ft			1.1	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-2M	2/1/2018	0 - 1 ft			0.25	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP06	2/5/2013	0 - 1 ft	95	0	0.098	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP06	3/13/2017	0 - 1 ft			0.012	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP07	2/5/2013	0 - 1 ft	97	0	0.56	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08	2/5/2013	0 - 1 ft	110	0	0.29	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	0 - 1 ft			0.11	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08 SUSDP08-1E	6/29/2018 1/24/2017	0 - 1 ft 0 - 1 ft				1
SO	Surface Surface	mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP08-1E SUSDP08-1E	6/29/2018	0 - 1 ft				1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-2G	3/22/2017	0 - 1 ft				1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-3I	8/2/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-3K	8/3/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11	2/5/2013	0 - 1 ft	88	0	0.14	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11	1/24/2017	0 - 1 ft			0.095	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	0 - 1 ft	280	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	0 - 1 ft	200	4		
SO	Surface Surface	mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP11-2A SUSDP11-2D	3/16/2018 4/5/2018	0 - 1 ft 0 - 1 ft	280	1		
SO	Surface	mg/kg mg/kg	Warehouse and Laydown Area	SUSDP11-2D SUSDP11-2N	4/6/2018	0 - 1 ft				1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-2N	2/5/2013	0 - 1 ft	90	0	0.31	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	0 - 1 ft	55		0.37	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1C	2/1/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1E	2/1/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2E	2/22/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2I	2/22/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	0 - 1 ft				

Matrix	havi-an	Linita	A ===	Location	Callastad	Donth	Discal Barra Organica (C10 C20)	D. Dissal Banco Organico (C10 C20)	Indone/4.2.2 ad/mimans	D. Indone/4.2.2 ad/mirrors
Matrix	horizon	Units	Area	Location	Collected	Depth	Diesel Range Organics (C10-C20)	D_Diesel Range Organics (C10-C20)	Indeno(1,2,3-cd)pyrene	D_Indeno(1,2,3-cd)pyrene
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3Q	6/29/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3Q	6/29/2018	0 - 1 ft	07			
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	0 - 1 ft	67	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	0 - 1 ft	00			
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	0 - 1 ft	36	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1A1	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1A3	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1A7	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1A9	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C1	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C3	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C4	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C4	6/29/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C5	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C5	6/29/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C7	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C9	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E1	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E1	6/29/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E10	8/8/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1-E11	1/30/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E3	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E4	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E5	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E7	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E9	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E9	6/29/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1F4	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1F4	6/29/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1F5	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1G1	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1G10	8/4/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1G3	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1G5	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1G7	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1G9	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1G9	6/29/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1H9	8/4/2017	0 - 1 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	CT16SO9G	3/1/2017	1 - 2 ft				
SO	Subsurface		Warehouse and Laydown Area	CT16SO9H	8/4/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	CT16SO9H	8/4/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	CT16SO9I	8/4/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	CT16SO9I	8/4/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	CT16SO9I	8/4/2017	4 - 5 ft	550	1		
SO	Subsurface		Warehouse and Laydown Area	DP27	3/26/2013	6.5 - 7.5 ft	68	1	0.2	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	DP40	5/20/2013	2.5 - 3.5 ft	14	1	0.23	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	DP40	5/28/2013	9.5 - 10.5 ft	20	0	0.11	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	DP40	5/28/2013	14.5 - 15.5 ft	18	0	0.0072	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	DP42	5/21/2013	4.5 - 5.5 ft	43	1	0.048	1
SO	Subsurface		Warehouse and Laydown Area	DP42	5/29/2013	14.5 - 15.5 ft	71	1	0.25	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	DP42	5/29/2013	9.5 - 10.5 ft	45	1	0.58	1
SO	Subsurface		Warehouse and Laydown Area	SB3	3/13/2013	2.5 - 3.5 ft	4700	1	0.15	0
SO	Subsurface		Warehouse and Laydown Area	SBS0303N-North	2/15/2017	3 - 3.5 ft	3000	1		
SO	Subsurface		Warehouse and Laydown Area	SUSDP03	5/14/2013	4.5 - 5.5 ft	19	0		
SO	Subsurface		Warehouse and Laydown Area	SUSDP03	5/21/2013	9.5 - 10.5 ft	19	0		
SO	Subsurface		Warehouse and Laydown Area	SUSDP03	5/21/2013	14.5 - 15.5 ft	18	0		
SO	Subsurface		Warehouse and Laydown Area	SUSDP04	5/15/2013	2.5 - 3.5 ft	66	1	0.82	1
SO	Subsurface		Warehouse and Laydown Area	SUSDP04	5/20/2013	9.5 - 10.5 ft	18	0	0.0071	0
SO	Subsurface		Warehouse and Laydown Area	SUSDP04	5/20/2013	14.5 - 15.5 ft	18	0	0.018	1
SO	Subsurface		Warehouse and Laydown Area	SUSDP04	1/25/2017	1 - 2 ft			0.4	1
SO	Subsurface		Warehouse and Laydown Area	SUSDP04	1/25/2017	2 - 5 ft			0.18	1
SO	Subsurface		Warehouse and Laydown Area	SUSDP04	1/27/2017	10 - 15 ft			-	
SO	Subsurface		Warehouse and Laydown Area	SUSDP04-1A	8/1/2017	2 - 3 ft			0.34	1
SO	Subsurface		Warehouse and Laydown Area	SUSDP04-1A	8/1/2017	3 - 4 ft			0.096	1
SO	Subsurface	0 0	Warehouse and Laydown Area	SUSDP04-1A	8/1/2017	4 - 5 ft				

Matrix	horizon	Units	Area	Location	Collected	Depth	Diesel Range Organics (C10-C20)	D_Diesel Range Organics (C10-C20)	Indeno(1,2,3-cd)pyrene	D_Indeno(1,2,3-cd)pyrene
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1C	8/1/2017	2 - 3 ft			0.069	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1C	8/1/2017	3 - 4 ft			0.029	1
SO		mg/kg	Warehouse and Laydown Area	SUSDP04-1C	8/1/2017	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1E	8/1/2017	2 - 3 ft			0.038	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1E	8/1/2017	3 - 4 ft			0.085	1
SO SO		mg/kg	Warehouse and Laydown Area	SUSDP04-1E	8/1/2017 8/1/2017	4 - 5 ft 2 - 3 ft			0.23	1
SO	Subsurface Subsurface	mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP04-1G SUSDP04-1G	8/1/2017	2 - 3 It 3 - 4 ft			0.25	1
SO		mg/kg	Warehouse and Laydown Area	SUSDP04-1G	8/1/2017	4 - 5 ft			0.23	'
SO		mg/kg	Warehouse and Laydown Area	SUSDP04-1G	8/1/2017	5 - 6 ft				
SO		mg/kg	Warehouse and Laydown Area	SUSDP04-2I	2/1/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	5/15/2013	4.5 - 5.5 ft	19	0		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	5/21/2013		18	0		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	5/21/2013	14.5 - 15.5 ft	18	0		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	1/24/2017	1 - 2 ft			21	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	1/24/2017	2 - 5 ft			0.0036	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-1C	7/31/2017	1 - 2 ft			0.43	1
SO		mg/kg	Warehouse and Laydown Area	SUSDP05-1E	7/31/2017	1 - 2 ft			0.11	1
SO		mg/kg	Warehouse and Laydown Area	SUSDP05-1G	7/31/2017	1 - 2 ft			1.9	1 1
SO		mg/kg	Warehouse and Laydown Area	SUSDP05-1G	7/31/2017	2 - 3 ft 1 - 2 ft			0.45	1
SO	Subsurface Subsurface	mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP05-2M SUSDP06	2/1/2018 5/15/2013	1 - 2 ft 4.5 - 5.5 ft	20	0	0.7 0.0082	0
SO		mg/kg	Warehouse and Laydown Area	SUSDP06	5/22/2013		19	0	0.0082	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP06	5/22/2013		18	0	0.0078	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP06	3/13/2017	1 - 2 ft	10	Ŭ	0.0076	0
SO		mg/kg	Warehouse and Laydown Area	SUSDP06	3/13/2017	2 - 5 ft			0.0073	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP07	5/15/2013	4.5 - 5.5 ft	20	0	0.014	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP07	5/22/2013	9.5 - 10.5 ft	36	1	0.11	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP07	5/22/2013	14.5 - 15.5 ft	20	0	0.016	0
SO		mg/kg	Warehouse and Laydown Area	SUSDP08	5/15/2013		100	0	0.35	1
SO		mg/kg	Warehouse and Laydown Area	SUSDP08	5/23/2013		190	1	0.12	1
SO		mg/kg	Warehouse and Laydown Area	SUSDP08	5/23/2013		21	0	0.06	1
SO		mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	1 - 2 ft			0.39	1
SO		mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	2 - 5 ft			0.17	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	5 - 10 ft			0.98	1
SO	Subsurface Subsurface	mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP08 SUSDP08-1E	1/24/2017 8/2/2017	10 - 15 ft 1 - 2 ft			0.73	I
SO	Subsurface	mg/kg mg/kg	Warehouse and Laydown Area	SUSDP08-2G	8/3/2017	1 - 2 ft				
SO		mg/kg	Warehouse and Laydown Area	SUSDP11	5/14/2013	4.5 - 5.5 ft	20	0		
SO		mg/kg	Warehouse and Laydown Area	SUSDP11	5/28/2013		21	0		
SO		mg/kg	Warehouse and Laydown Area	SUSDP11	5/28/2013		36	1		
SO	Subsurface		Warehouse and Laydown Area	SUSDP11	1/25/2017	1 - 2 ft		·	0.7	0
SO		mg/kg	Warehouse and Laydown Area	SUSDP11	1/25/2017	2 - 5 ft			0.24	0
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	1/25/2017	5 - 10 ft				
SO		mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	4 - 5 ft	00			
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	5 - 6 ft	3900	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	3/28/2018	6 - 7 ft	260	1		
SO SO		mg/kg	Warehouse and Laydown Area	SUSDP11-1B SUSDP11-1B	3/16/2018	1 - 2 ft 2 - 3 ft	73	ı		
SO		mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP11-1B SUSDP11-1B	3/16/2018	2 - 3 π 3 - 4 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	5 - 6 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	1 - 2 ft	210	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	2 - 3 ft		·		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	3 - 4 ft				
SO		mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	4 - 5 ft				
SO		mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	5 - 6 ft				
SO		mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	1 - 2 ft	900	1		
SO		mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	2 - 3 ft				
SO		mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	3 - 4 ft				
SO		mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	5 - 6 ft				

Matrix	horizon	Units	Area	Location	Collected	Depth	Diesel Range Organics (C10-C20)	D Diesel Range Organics (C10-C20)	Indone(1.2.2 ad)nyrone	D. Indono(1.2.2 ad)pyropo
							Diesei Range Organics (C10-C20)	D_Diesel Range Organics (C10-C20)	Indeno(1,2,3-cd)pyrene	D_Indeno(1,2,3-cd)pyrene
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2D	4/5/2018	1 - 2 ft				
SO	Subsurface		Warehouse and Laydown Area	SUSDP11-2N	4/6/2018	1 - 2 ft				
SO	Subsurface		Warehouse and Laydown Area	SUSDP11-2N	4/6/2018	2 - 3 ft	40	•		
SO	Subsurface		Warehouse and Laydown Area	SUSDP13	5/20/2013	4.5 - 5.5 ft	19	0		
SO		mg/kg	Warehouse and Laydown Area	SUSDP13	5/29/2013		22	0		
SO	Subsurface		Warehouse and Laydown Area	SUSDP13	5/29/2013		18	0		
SO		mg/kg	Warehouse and Laydown Area	SUSDP41	5/22/2013	2.5 - 3.5 ft	200	0	0.63	1
SO		mg/kg	Warehouse and Laydown Area	SUSDP41	5/24/2013		160	1	0.34	1
SO		mg/kg	Warehouse and Laydown Area	SUSDP41	5/24/2013		18	0	0.0072	0
SO	Subsurface		Warehouse and Laydown Area	SUSDP41	1/24/2017	1 - 2 ft			0.46	1
SO	Subsurface		Warehouse and Laydown Area	SUSDP41	1/24/2017	2 - 5 ft			0.46	1
SO		mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	5 - 10 ft			0.39	1
SO		mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	10 - 15 ft			0.0099	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1C	2/1/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1C	2/1/2018	4 - 5 ft	99	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1E	2/1/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	1 - 2 ft	6900	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	3 - 4 ft	440	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	4 - 5 ft	140	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2E	2/22/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2E	2/22/2018	4 - 5 ft	50	1		
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-2I	2/22/2018	1 - 2 ft	530	1		
SO	Subsurface		Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	1 - 2 ft				
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	2 - 3 ft	11000	1		
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	3 - 4 ft	5700	1		
SO	Subsurface		Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	4 - 5 ft	1600	1		
SO	Subsurface		Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	1 - 2 ft	15	1		
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	2 - 3 ft	260	1		
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	3 - 4 ft	89	1		
SO	Subsurface		Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	4 - 5 ft	110	1		
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	1 - 2 ft	110			
SO	Subsurface		Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	2 - 3 ft	3600	1		
SO	Subsurface		Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	3 - 4 ft	0000			
SO	Subsurface		Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	4 - 5 ft				
SO	Subsurface		Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	1 - 2 ft				
SO	Subsurface		Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	2 - 3 ft	18	1		
so		mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	3 - 4 ft	21	0		
SO	Subsurface		Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	4 - 5 ft	21	0		
SO	Subsurface		Warehouse and Laydown Area	TA1E0	8/1/2017	1 - 2 ft	21	0		
SO		mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	TA1E0	8/1/2017	2 - 3 ft				
SO		mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	TA1E0	8/1/2017	2 - 3 II 3 - 4 ft				
SO				TA1E0	7/31/2017	1 - 2 ft				
SO		mg/kg	Warehouse and Laydown Area							
		mg/kg	Warehouse and Laydown Area	TA1E10 TA1E9	8/8/2017 8/3/2017	1 - 2 ft 1 - 2 ft				
SO	Subsurface		Warehouse and Laydown Area							
SO	Subsurface		Warehouse and Laydown Area	TA1G10	8/4/2017	1 - 2 ft				
SO		mg/kg	Warehouse and Laydown Area	TA1G9	8/4/2017	1 - 2 ft				
SO		mg/kg	Warehouse and Laydown Area	TA1G9	8/4/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1H9	8/4/2017	1 - 2 ft				

Matrix	horizon	Units	Area	Location	Collected	Depth	Manganese	D Manganese	Naphthalene	D Naphthalene	Nickel	D Nickel
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS05-1D	1/24/2017	0 - 1 ft	gaeee					
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS05-1F	1/24/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS061C	3/13/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS061D	3/13/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS061E	3/13/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS061G	3/13/2017	0 - 1 ft	040	4			04	-
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1A	1/24/2017	0 - 1 ft	240	1			31	1
SO SO	Surface Surface	mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUS08-1B SUS08-1B	1/24/2017 2/3/2017	0 - 1 ft 0 - 1 ft	130 200	1			16 23	1
SO	Surface	mg/kg mg/kg	Warehouse and Laydown Area	SUS08-1C	1/24/2017	0 - 1 ft	120	1			24	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1D	1/24/2017	0 - 1 ft	1000	1			300	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1D	6/29/2018	0 - 1 ft					000	
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1F	1/24/2017	0 - 1 ft	130	1			87	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1G	1/24/2017	0 - 1 ft	320	1			52	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1H	1/24/2017	0 - 1 ft	440	1			700	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1H	6/29/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1H	6/29/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2A	3/22/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2B	3/22/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2F	3/22/2017	0 - 1 ft			1		1	
SO SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2H SUS08-2I	3/22/2017	0 - 1 ft 0 - 1 ft			1		-	
SO	Surface Surface	mg/kg	Warehouse and Laydown Area	SUS08-21 SUS08-2J	3/22/2017 3/22/2017	0 - 1 ft						
SO	Surface	mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUS08-2N	3/22/2017	0 - 1 ft			 		1	
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-20	3/23/2017	0 - 1 ft			1		1	
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2P	3/22/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP03	2/4/2013	0.5 - 1 ft	62	1	0.037	1	7.2	1
so	Surface	mg/kg	Warehouse and Laydown Area	SUSDP04	2/4/2013	0 - 1 ft	260	1	0.084	1	72	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP04	1/25/2017	0 - 1 ft			0.045	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05	2/4/2013	0 - 1 ft	150	1	0.042	1	16	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05	1/24/2017	0 - 1 ft			0.44	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1C	1/24/2017	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1C	7/31/2017	0 - 1 ft			0.0069	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1E	1/24/2017	0 - 1 ft			0.004			
SO SO	Surface Surface	mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP05-1E SUSDP05-1G	7/31/2017 1/24/2017	0 - 1 ft 0 - 1 ft			0.064	1		
SO	Surface	mg/kg mg/kg	Warehouse and Laydown Area	SUSDP05-1G SUSDP05-1G	7/31/2017	0 - 1 ft			0.065	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1G	2/1/2018	0 - 1 ft			0.003	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP06	2/5/2013	0 - 1 ft	49	1	0.042	1	28	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP06	3/13/2017	0 - 1 ft			0.0075	0		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP07	2/5/2013	0 - 1 ft	270	1	0.074	1	97	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08	2/5/2013	0 - 1 ft	690	1	0.052	1	610	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	0 - 1 ft			0.16	0		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08	6/29/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-1E	1/24/2017	0 - 1 ft	6600	1			460	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-1E	6/29/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-2G	3/22/2017	0 - 1 ft			1		ļ	
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-3I	8/2/2017	0 - 1 ft			-		-	
SO SO	Surface Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-3K SUSDP11	8/3/2017	0 - 1 ft 0 - 1 ft	280	1	0.042	1	33	1
SO	Surface	mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP11	2/5/2013 1/24/2017	0 - 1 ft	200	1	0.042	1	ుు	- 1
SO	Surface	mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	0 - 1 ft			0.000	1	 	
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	0 - 1 ft			1		1	
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	0 - 1 ft			1			
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	0 - 1 ft					1	
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-2D	4/5/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-2N	4/6/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP13	2/5/2013	0 - 1 ft	190	1	0.026	1	230	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	0 - 1 ft			0.059	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1C	2/1/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1E	2/1/2018	0 - 1 ft					ļ	
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	0 - 1 ft					1	
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2E	2/22/2018	0 - 1 ft						
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2I	2/22/2018	0 - 1 ft			-		-	
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	0 - 1 ft						1

SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-3Q 6/29/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-3Q 6/29/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-3R 5/31/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-3S 3/15/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-4W 4/6/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area TA1A1 1/24/2017 0 - 1 ft 280 1 SO Surface mg/kg Warehouse and Laydown Area TA1A3 1/24/2017 0 - 1 ft 130 1 SO Surface mg/kg Warehouse and Laydown Area TA1A7 1/24/2017 0 - 1 ft 160 1 SO Surface mg/kg Warehouse and Laydown Area TA1A9 1/24/2017 0 - 1 ft 130 1 <th></th> <th></th> <th></th> <th></th>				
SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-3Q 6/29/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-3R 5/31/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-3R 3/15/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-4W 4/6/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area TA1A1 1/24/2017 0 - 1 ft 280 1 SO Surface mg/kg Warehouse and Laydown Area TA1A3 1/24/2017 0 - 1 ft 130 1 SO Surface mg/kg Warehouse and Laydown Area TA1A7 1/24/2017 0 - 1 ft 160 1				
SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-3S 3/15/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-4W 4/6/2018 0 - 1 ft SUFACE SO Surface mg/kg Warehouse and Laydown Area TA1A1 1/2/4/2017 0 - 1 ft 280 1 SO Surface mg/kg Warehouse and Laydown Area TA1A3 1/2/4/2017 0 - 1 ft 130 1 SO Surface mg/kg Warehouse and Laydown Area TA1A7 1/2/4/2017 0 - 1 ft 160 1				
SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-3S 3/15/2018 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area SUSDPCT16-4W 4/6/2018 0 - 1 ft SUFD CT16-4W 4/6/2018 0 - 1 ft SUFD CT16-4W 4/6/2018 0 - 1 ft SUFD CT16-4W 4/6/2018 0 - 1 ft SUFD CT16-4W 4/6/2018 0 - 1 ft SUFD CT16-4W 4/6/2018 0 - 1 ft 1 280 1 1 1 280 1 1 1 280 1 1 3 1<				
SO Surface mg/kg Warehouse and Laydown Area TA1A1 1/24/2017 0 - 1 ft 280 1 SO Surface mg/kg Warehouse and Laydown Area TA1A3 1/24/2017 0 - 1 ft 130 1 SO Surface mg/kg Warehouse and Laydown Area TA1A7 1/24/2017 0 - 1 ft 160 1				
SO Surface mg/kg Warehouse and Laydown Area TA1A3 1/24/2017 0 - 1 ft 130 1 SO Surface mg/kg Warehouse and Laydown Area TA1A7 1/24/2017 0 - 1 ft 160 1				
SO Surface mg/kg Warehouse and Laydown Area TA1A3 1/24/2017 0 - 1 ft 130 1 SO Surface mg/kg Warehouse and Laydown Area TA1A7 1/24/2017 0 - 1 ft 160 1			120	1
			18	1
			18	1
			19	1
SO Surface mg/kg Warehouse and Laydown Area TA1C1 1/24/2017 0 - 1 ft 50 1			50	1
SO Surface mg/kg Warehouse and Laydown Area TA1C3 1/24/2017 0 - 1 ft 200 1			15	1
SO Surface mg/kg Warehouse and Laydown Area TA1C4 1/24/2017 0 - 1 ft 330 1			790	1
SO Surface mg/kg Warehouse and Laydown Area TA1C4 6/29/2018 0 - 1 ft				
SO Surface mg/kg Warehouse and Laydown Area TA1C5 1/24/2017 0 - 1 ft 1400 1			1300	1
SO Surface mg/kg Warehouse and Laydown Area TA1C5 6/29/2018 0 - 1 ft				
SO Surface mg/kg Warehouse and Laydown Area TA1C7 1/24/2017 0 - 1 ft 110 1			25	1
SO Surface mg/kg Warehouse and Laydown Area TA1C9 1/24/2017 0 - 1 ft 160 1			100	1
SO Surface mg/kg Warehouse and Laydown Area TA1E1 1/24/2017 0 - 1 ft 310 1			6800	1
SO Surface mg/kg Warehouse and Laydown Area TA1E1 6/29/2018 0 - 1 ft				
SO Surface mg/kg Warehouse and Laydown Area TA1E10 8/8/2017 0 - 1 ft 110 1			490	1
SO Surface mg/kg Warehouse and Laydown Area TA1-E11 1/30/2018 0 - 1 ft 240 1			130	1
SO Surface mg/kg Warehouse and Laydown Area TA1E3 1/24/2017 0 - 1 ft 10 1			8.5	1
SO Surface mg/kg Warehouse and Laydown Area TA1E4 1/24/2017 0 - 1 ft 210 1			26	1
SO Surface mg/kg Warehouse and Laydown Area TA1E5 1/24/2017 0 - 1 ft 320 1			70	1
SO Surface mg/kg Warehouse and Laydown Area TATE7 1/24/2017 0 - 1 ft 33 1			9.5	1
SO Surface mg/kg Warehouse and Laydown Area TA1E9 1/24/2017 0 - 1 ft 240 1			240	1
SO Surface mg/kg Warehouse and Laydown Area TA1E9 6/29/2018 0 - 1 ft			1	·
SO Surface mg/kg Warehouse and Laydown Area TA1F4 1/24/2017 0 - 1 ft 690 1			1000	1
SO Surface mg/kg Warehouse and Laydown Area TA1F4 6/29/2018 0 - 1 ft				·
SO Surface mg/kg Warehouse and Laydown Area TAIF5 1/24/2017 0 - 1 ft 170 1			150	1
SO Surface mg/kg Warehouse and Laydown Area TA1G1 1/24/2017 0 - 1 ft 150 1			16	1
SO Surface mg/kg Warehouse and Laydown Area TA1G10 8/4/2017 0 - 1 ft 86 1			8.1	1
SO Surface mg/kg Warehouse and Laydown Area TA1G3 1/24/2017 0 - 1 ft 49 1			12	1
SO Surface mg/kg Warehouse and Laydown Area TA165 1/24/2017 0 - 1 ft 47 1			19	1
SO Surface mg/kg Warehouse and Laydown Area TA167 1/24/2017 0 - 1 ft 200 1			43	1
SO Surface mg/kg Warehouse and Laydown Area TA159 1/24/2017 0 - 1 ft 200 1			8000	1
SO Surface mg/kg Warehouse and Laydown Area TA159 6/29/2018 0 - 1 ft			0000	<u> </u>
SO Surface mg/kg Warehouse and Laydown Area TATH9 8/4/2017 0 - 1 ft 400 1			300	1
SO Subsurface mg/kg Warehouse and Laydown Area CT16SO9G 3/1/2017 1 - 2 ft			300	'
SO Subsurface mg/kg Warehouse and Laydown Area CT16SO9H 8/4/2017 1 - 2 ft				
SO Subsurface mg/kg Warehouse and Laydown Area CT16SO9H 8/4/2017 2 - 3 ft				
SO Subsurface mg/kg Warehouse and Laydown Area CT16S091 8/4/2017 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area CT16S091 8/4/2017 1 - 2 ft				
SO Subsurface mg/kg Warehouse and Laydown Area CT16SO9I 8/4/2017 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area CT16SO9I 8/4/2017 4 - 5 ft		1		
,	0.087	1	18	1
SO Subsurface mg/kg Warehouse and Laydown Area DP27 3/26/2013 6.5 - 7.5 ft 150 1 SO Subsurface mg/kg Warehouse and Laydown Area DP40 5/20/2013 2.5 - 3.5 ft 580 1	0.067	1	59	1
	0.068	1	28	
SO Subsurface mg/kg Warehouse and Laydown Area DP40 5/28/2013 9.5 - 10.5 ft SO Subsurface mg/kg Warehouse and Laydown Area DP40 5/28/2013 14.5 - 15.5 ft	0.043	0		
	0.0072	1		
SO Subsurface mg/kg Warehouse and Laydown Area DP42 5/21/2013 4.5 - 5.5 ft SO Subsurface mg/kg Warehouse and Laydown Area DP42 5/29/2013 14.5 - 15.5 ft 110 1	0.061	1	9.6	1
		1	120	
	0.1 0.31	1	120	1
	0.31	1		
SO Subsurface mg/kg Warehouse and Laydown Area SBS0303N-North 2/15/2017 3 - 3.5 ft				
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP03 5/14/2013 4.5 - 5.5 ft				
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP03 5/21/2013 9.5 - 10.5 ft		1		
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP03 5/21/2013 14.5 - 15.5 ft	0.40		40	
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/15/2013 2.5 - 3.5 ft 230 1	0.18	1	12	1
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/20/2013 9.5 - 10.5 ft	0.0071	0		
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/20/2013 14.5 - 15.5 ft	0.0083	1		
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 1/25/2017 1 - 2 ft	0.034	1		
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 1/25/2017 2 - 5 ft S	0.12	1		
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 1/27/2017 10 - 15 ft		1		
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04-1A 8/1/2017 2 - 3 ft	0.07	1		
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04-1A 8/1/2017 3 - 4 ft	0.096	1		
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04-1A 8/1/2017 4 - 5 ft				L

Social Substantine mg/sq. Warehouse and Laydown Area SUSPPO4-10 81/2017 2 - 3 ft 0.072 1 1 1 1 1 1 1 1 1	Matrix	horizon	Units	Area	Location	Collected	Depth	Manganese	D Manganese	Naphthalene	D Naphthalene	Nickel	D Nickel
Social Substantine mg/sq	SO		mg/kg	Warehouse and Laydown Area		8/1/2017		Ü					
Social Substration Implica	SO				SUSDP04-1C	8/1/2017	3 - 4 ft			0.021	1		
Social Substration Implica	SO				SUSDP04-1C								
Social Social Continues and Lupdown Area SUSPPOH Em. 12077 3 - 4 ft	SO									0.098	1		
SO Subsurface Implicit Warehouse and Luydown Area SUSDPOR-116 81/2017 2 - 3 ft 0.093 1	SO	Subsurface		Warehouse and Laydown Area	SUSDP04-1E	8/1/2017	3 - 4 ft			0.11	1		
SO Subsurface mg/kg Warehouse and Luydown Area SUSDPO4-1G 81/2017 3 - 4 ft	SO	Subsurface			SUSDP04-1E	8/1/2017	4 - 5 ft						
So Subsurface mpkg Warehouse and Laydown Area SUSDPOEL-16 81/2017 4 - 5 ft	SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1G	8/1/2017	2 - 3 ft			0.093	1		
SO Subsurface Implicate	SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1G	8/1/2017	3 - 4 ft			0.15	1		
SO Subsurface mg/ng Warehouse and Laydown Area SUSDP04-21 21/2018 2 - 3 ft 1	SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1G	8/1/2017	4 - 5 ft						
SO Subsurface mg/kg Warehouse and Laydown Area SUSDPOS 527/2013 4.5 - 5.5 ft 1	SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1G	8/1/2017	5 - 6 ft						
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP06 527(2013) 1.5 ft 1.2 f	SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-2I	2/1/2018	2 - 3 ft						
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP05 527/2013 9.5-10.5 ft	SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	5/15/2013	4.5 - 5.5 ft	71	1			2.8	1
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP06 1/24/2017 2 - 5 ft 0.0072 0 0 0 0 0 0 0 0 0	SO	Subsurface		Warehouse and Laydown Area		5/21/2013							
So Subsurface mg/kg Warehouse and Laydown Area SUSDP06 17 712 71 72 71 71 71 71	SO	Subsurface	mg/kg	Warehouse and Laydown Area		5/21/2013	14.5 - 15.5 ft						
SO Subsurface mykg Warehouse and Laydown Area SUSDP05-1C 731/2017 1-2 ft 0.0067 1			mg/kg										
So Subsurface mykg Warehouse and Laydown Area SUSPP05-16 7731/2017 1 - 2 ft 0.093 1			mg/kg	Warehouse and Laydown Area									
So Subsurface mg/kg Warehouse and Laydown Area SUSDP05-1G 731/2017 1 - 2 ft		Subsurface		Warehouse and Laydown Area	SUSDP05-1C	7/31/2017					1		
So Subsurface mg/kg Warehouse and Laydown Area SUSDP06-1G 7/31/2017 2 - 3 ft 0.012 1 1 1 1 1 1 1 1 1		Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-1E	7/31/2017	1 - 2 ft				1		
So Subsurface mg/kg Warehouse and Laydown Area SUSDP06 S1/52013 4.5 · 5.5 ft 190 1 0.0982 0 5.8 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP06 5/22/2013 9.5 · 10.5 ft 0 0.0078 0 0 0 0 0 0 0 0 0											1		
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP06 \$1/52/013 4.5 · 5.5 ft 190 1 0.0082 0 5.8 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP06 \$2/22/013 14.5 · 10.5 ft 0.0072 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP06 \$2/22/013 14.5 · 10.5 ft 0.0072 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP06 \$2/22/013 14.5 · 10.5 ft 0.0073 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP06 \$3/13/2017 2 · 5 ft 0.0073 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP06 \$3/13/2017 2 · 5 ft 120 1 0.0026 1 4.8 1 1.5 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP07 \$5/22/013 10.5 · 10.5 ft 120 1 0.0026 1 4.8 1 1.5 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP07 \$5/22/013 9.5 · 10.5 ft 240 1 0.038 0 7.2 1 1 1.5 SO SUBSP07 \$5/22/013 10.5 · 10.5 ft 120 1 0.0066 1 4.8 1 1.5 SO SUBSP07 \$5/22/013 10.5 · 10.5 ft 1.5 SO 1 1.0 SO 1.0 SO SUBSP07 \$5/22/013 1.5 · 10.5 ft 1.0 SO 1 1.0 SO 1 1.0 SO SUBSP07 \$5/22/013 1.5 · 10.5 ft 1.0 SO 1 1.0 SO													
Soc Subsurface mg/kg Warehouse and Laydown Area SUSDP06 \$5222013 4.5-15.5 ft 0.0076 0													
So Subsurface mg/kg Warehouse and Laydown Area SUSDP06 \$722/2013 14.5-15.5 ft 0.0072 0	SO	Subsurface	mg/kg	Warehouse and Laydown Area		5/15/2013		190	1		0	5.8	1
Subsurface Sub													
So Subsurface mg/kg Warehouse and Laydown Area SUSDP06 31/3/2017 2 - 5 ft 1 0.0026 1 4.8.8 1													
Subsurface Sub													
Subsurface myRg Warehouse and Laydown Area SUSDP07 5/2/2013 9.5 - 10.5 ft 240 1 0.038 0 7.2 1 SO Subsurface myRg Warehouse and Laydown Area SUSDP08 5/2/2013 4.5 - 15.5 ft 360 1 0.016 0 3.7 1 1 1 1 1 1 1 1 1		Subsurface	mg/kg										
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP07 5/2/2013 14.5 - 15.5 ft 360 1 0.016 0 3.7 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP08 5/15/2013 2.5 - 3.5 ft 160 1 0.054 1 14 1 1 1 1 1 1 1		Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP07	5/15/2013	4.5 - 5.5 ft		1		1		1
SUBSURFACE Mg/kg Warehouse and Laydown Area SUSDP08 575/2013 2.5 - 3.5 ft 160 1 0.054 1 14 1 1 1 1 1 1 1									1				
SUBSURFACE Mg/kg Warehouse and Laydown Area SUSDP08 5/23/2013 4.5 - 10.5 ft 1 0.023 1 9.6 1													
SUBSURface mg/kg Warehouse and Laydown Area SUSDP08 5/23/2013 14.5 - 15.5 ft 230 1 0.0094 1 7.2 1 1 1 1 1 1 1 1 1													
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP08 1/24/2017 1 - 2 ft 0.043 1			mg/kg						1				
SUBSURFACE mg/kg Warehouse and Laydown Area SUSDPO8 1/24/2017 2 - 5 ft 0.043 1		Subsurface	mg/kg	Warehouse and Laydown Area				230	1		1	7.2	1
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP08 1/24/2017 5 - 10 ft													
SO Subsurface mg/kg													
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP08-1E 8/2/2017 1 - 2 ft													
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP08-2G 8/3/2017 1 - 2 ft 1 1 7.2 1 1 1 1 1 1 1 1 1										0.1	1		
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11 5/14/2013 4.5-5.ft 54 1 7.2 1			mg/kg										
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11 5/28/2013 9.5 - 10.5 ft 76 1 3.7 1													
SO													
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11 1/25/2017 1 - 2 ft								76	1			3.7	1
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11 1/25/2017 2 - 5 ft													
SU Subsurface mg/kg Warehouse and Laydown Area SUSDP11 1/25/2017 5 - 10 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 4 - 5 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 5 - 6 ft													
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 1 - 2 ft growth and subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 2 - 3 ft growth and subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 3 - 4 ft growth and subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 4 - 5 ft growth and subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 5 - 6 ft growth and subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 5 - 6 ft growth and subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 3/28/2018 6 - 7 ft growth and subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 1 - 2 ft growth and subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 2 - 3 ft growth and subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 3 - 4 ft growth and subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 3 - 4 ft growth and subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 3 - 2 ft growth and subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 3 - 3 ft growth and subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 3 - 4 ft growth and subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 5 - 6 ft growth and subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 3 - 4 ft growth and subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 2 - 3 ft growth and subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 3 - 4 ft growth and subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 3 - 4 ft growth and subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 3/16/2018 3 - 4 ft growth and subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 3 - 4 ft growth and subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 3 - 4 ft growth and subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 3 - 4 ft growth and subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 4 - 5 ft growth and sub										0.24	1		
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 4 - 5 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 6 - 7 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 4 - 5 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 1 - 2 ft SO Subsurface mg/kg													
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 4 - 5 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 3/22/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 4 - 5 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 1 - 2 ft SO Subsurface mg/kg													
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 4 - 5 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/22/2018 6 - 7 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 4 - 5 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 4 - 5 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 2 - 3 ft SO Subsurface mg/kg													
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 2/22/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/28/2018 6 - 7 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 3 - 5 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 2 - 3 ft SO Subsurface mg/kg													
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1A 3/28/2018 6 - 7 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 4 - 5 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 3 - 4 ft SO Subsurface mg/kg													
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 4 - 5 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 3 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 5 - 6 ft SO Subsurface mg/kg													
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 4 - 5 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 5 - 6 ft SO Subsurface mg/kg													
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 4 - 5 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 4 - 5 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 4 - 5 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 1 - 2 ft SO Subsurface mg/kg													
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 4 - 5 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 3 - 4 ft SO Subsurface mg/kg													
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1B 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 4 - 5 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 3 - 4 ft SO Subsurface mg/kg													
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 4 - 5 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 3 - 4 ft													
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 4 - 5 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 4 - 5 ft													
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 4 - 5 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 3 - 4 ft													
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 4 - 5 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 4 - 5 ft												1	
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-1H 3/16/2018 5 - 6 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 4 - 5 ft													
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 1 - 2 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 4 - 5 ft													
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 2 - 3 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 4 - 5 ft													
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 3 - 4 ft SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 4 - 5 ft													
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 4 - 5 ft													
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP11-2A 3/16/2018 5 - 6 ft													
	SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	5 - 6 ft						

Matrix	horizon	Units	Area	Location	Collected	Depth	Manganese	D Manganese	Naphthalene	D Naphthalene	Nickel	D Nickel
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2D	4/5/2018	1 - 2 ft	Ŭ					
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2N	4/6/2018	1 - 2 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2N	4/6/2018	2 - 3 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP13	5/20/2013	4.5 - 5.5 ft	150	1			7.5	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP13	5/29/2013	14.5 - 15.5 ft	100	<u>'</u>			7.0	
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP13	5/29/2013	9.5 - 10.5 ft	94	1			0.78	1
SO		mg/kg	Warehouse and Laydown Area	SUSDP41	5/22/2013	2.5 - 3.5 ft	230	1	0.089	1	68	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	5/24/2013	9.5 - 10.5 ft	220	1	0.28	1	19	1
SO			Warehouse and Laydown Area	SUSDP41	5/24/2013	14.5 - 15.5 ft	34	1	0.0072	0	3	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	1 - 2 ft	34	'	0.048	1	3	-
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	2 - 5 ft			0.08	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	5 - 10 ft			0.08	1		1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	10 - 15 ft			0.002	1		1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1C	2/1/2018	10 - 15 It 1 - 2 ft			0.002	ı		-
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-1C	2/1/2018	4 - 5 ft						-
SO	Subsurface		Warehouse and Laydown Area	SUSDPCT16-1E	2/1/2018	1 - 2 ft						-
		mg/kg										—
SO	Subsurface Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	1 - 2 ft 2 - 3 ft						—
SO			Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018							—
SO	Subsurface		Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	3 - 4 ft						1
SO		0 0	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	4 - 5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2E	2/22/2018	1 - 2 ft						1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2E	2/22/2018	4 - 5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2I	2/22/2018	1 - 2 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	1 - 2 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	2 - 3 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	3 - 4 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	4 - 5 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	1 - 2 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	2 - 3 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	3 - 4 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	4 - 5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	1 - 2 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	2 - 3 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	3 - 4 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	4 - 5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	1 - 2 ft						
SO		mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	2 - 3 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	3 - 4 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	4 - 5 ft						
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E0	8/1/2017	1 - 2 ft	100	1			5	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E0	8/1/2017	2 - 3 ft	94	1			4.7	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E0	8/1/2017	3 - 4 ft	55	1			3.4	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E1	7/31/2017	1 - 2 ft	160	1			62	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E10	8/8/2017	1 - 2 ft	89	1			8.5	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E9	8/3/2017	1 - 2 ft	490	1			380	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1G10	8/4/2017	1 - 2 ft	71	1			6	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1G9	8/4/2017	1 - 2 ft	56	1			130	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1G9	8/4/2017	2 - 3 ft	52	1			4.2	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1H9	8/4/2017	1 - 2 ft	180	1			140	1
		-55						<u>-</u>		1		

		1							T	
Matrix	horizon	Units	Area	Location	Collected	Depth	PCB, Total Aroclors (AECOM Calc)	D_PCB, Total Aroclors (AECOM Calc)	TCDD TEQ HH	D_TCDD TEQ HH
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS05-1D	1/24/2017	0 - 1 ft	0.0051	0		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS05-1F	1/24/2017	0 - 1 ft	0.94	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS061C	3/13/2017	0 - 1 ft	0.042	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS061D	3/13/2017	0 - 1 ft	0.047	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS061E	3/13/2017	0 - 1 ft	0.0093	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS061G	3/13/2017	0 - 1 ft	0.012	1	0.0000504	4
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1A	1/24/2017	0 - 1 ft	0.17	1	0.0000501	1
SO SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1B	1/24/2017	0 - 1 ft 0 - 1 ft	0.18 0.072	1	0.00000259	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1B	2/3/2017	0 - 1 ft	0.072	<u> </u>		1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1C SUS08-1D	1/24/2017 1/24/2017	0 - 1 ft		<u> </u> 1	0.00000291 0.0000352	1
SO	Surface Surface	mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUS08-1D	6/29/2018	0 - 1 ft	1.6	l l	0.0000332	ı
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1F	1/24/2017	0 - 1 ft	0.1	1	0.00000838	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1G	1/24/2017	0 - 1 ft	0.24	1	0.00000384	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1H	1/24/2017	0 - 1 ft	3.9	1	0.0000421	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1H	6/29/2018	0 - 1 ft	0.0	· · · · · · · · · · · · · · · · · · ·	0.0000421	
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1H	6/29/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2A	3/22/2017	0 - 1 ft			0.00000233	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2B	3/22/2017	0 - 1 ft			0.00000269	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2F	3/22/2017	0 - 1 ft	0.28	1	0.00000461	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2H	3/22/2017	0 - 1 ft	0.28	1	0.00000367	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2I	3/22/2017	0 - 1 ft	0.42	<u> </u>	0.0000116	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2J	3/22/2017	0 - 1 ft	0.69	1	0.00000745	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2N	3/22/2017	0 - 1 ft	0.81	1	0.0000116	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-20	3/23/2017	0 - 1 ft	0.46	1	0.00000353	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2P	3/22/2017	0 - 1 ft	0.34	1	0.00000471	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP03	2/4/2013	0.5 - 1 ft	0.0099	0		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP04	2/4/2013	0 - 1 ft	0.064	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP04	1/25/2017	0 - 1 ft	0.2	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05	2/4/2013	0 - 1 ft	5.7	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05	1/24/2017	0 - 1 ft	0.29	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1C	1/24/2017	0 - 1 ft	0.04	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1C	7/31/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1E	1/24/2017	0 - 1 ft	0.0085	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1E	7/31/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1G	1/24/2017	0 - 1 ft	0.31	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1G	7/31/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-2M	2/1/2018	0 - 1 ft	10			
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP06	2/5/2013	0 - 1 ft	1.9 0.0061	1 1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP06	3/13/2017	0 - 1 ft		<u>1</u> 1		
SO SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP07	2/5/2013	0 - 1 ft	0.15	<u>1</u> 1	0.0000364	1
SO	Surface Surface	mg/kg	Warehouse and Laydown Area	SUSDP08 SUSDP08	2/5/2013 1/24/2017	0 - 1 ft 0 - 1 ft	0.84 2.8	<u> </u>	0.0000304	1
SO	Surface	mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP08 SUSDP08	6/29/2018	0 - 1 π 0 - 1 ft	2.0	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-1E	1/24/2017	0 - 1 ft	2.2	1	0.0000287	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-1E	6/29/2018	0 - 1 ft	۷.۲	ı	0.0000207	'
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-2G	3/22/2017	0 - 1 ft	0.32	1	0.00000332	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-3I	8/2/2017	0 - 1 ft	0.02	ı	0.00000332	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-3K	8/3/2017	0 - 1 ft			0.00000213	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11	2/5/2013	0 - 1 ft	0.61	1	0.0000587	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11	1/24/2017	0 - 1 ft	6.2	<u>.</u> 1		·
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	0 - 1 ft	5.8	 1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	0 - 1 ft	4.6	<u>.</u> 1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	0 - 1 ft	0.19	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	0 - 1 ft	0.55	<u> </u>		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-2D	4/5/2018	0 - 1 ft	0.73	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-2N	4/6/2018	0 - 1 ft	0.11	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP13	2/5/2013	0 - 1 ft	0.7	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	0 - 1 ft	0.77	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1C	2/1/2018	0 - 1 ft	2.4	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1E	2/1/2018	0 - 1 ft	4.4	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	0 - 1 ft	8.6	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2E	2/22/2018	0 - 1 ft	0.13	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2I	2/22/2018	0 - 1 ft	0.3	1		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	0 - 1 ft	0.32	1		

Mains March Marc			1							T ====	
Stuffect Stuffect	Matrix	horizon	Units	Area	Location	Collected	Depth	PCB, Total Aroclors (AECOM Calc)	D_PCB, Total Aroclors (AECOM Calc)	TCDD TEQ HH	D_TCDD TEQ HH
Stafface									<u>-</u>		
Stuffice									•		
Surface myplig Warehouse and Laydown Area SUSPICT 16-W1 400018 0 - 1 ft											
Stuffeet mighty Wentforce and Lyspoon Area TACAT 15/2/2017 0 - 11 1 1 1 1 1 1 1 1											
Surface mg/hg Westerbase and Laydorn Area TALAY 1742-2017 0 - 1 ft 1								0.066	1		
So											
Stafface might Warrelease and Lingtown Area TALC 1742/2017 0 - 1 ft											
Surface Image											
Surface Region											
So											
Surface mg/kg Warehouse and Laydown Area TATC-4 6292018 0 - 1 ft											
Surface mg/sq Warehouse and Laydown Area TATCS 124/2017 0 - 1 ft											
Surface mg/kg Warehouse and Laydom Area TATICS 0.0290718 0 - 1.8				Warehouse and Laydown Area							
Surface mg/kg											
So Surface mg/sq Warehouse and Laydown Area TATCO 124/2017 0 - 1 ft 124/20											
So Surface mpkg Warehouse and Luydown Area TATET 12/4/2017 0 - 1 ft											
So Surface mg/kg Warehouse and Laydown Area TATE1 62/32/016 0 - 1 ft											
Sol Surface mg/hg											
So Surface mg/hg Warehouse and Laydown Area TAI-E11 1/30/2016 0 - 1 ft											
Surface mg/kg Warehouse and Laydown Area TATE3 1/24/2017 0 - 1 ft	SO				TA1-E11	1/30/2018					
SO Surface mg/kg Warehouse and Laydown Area TA1ES 124/2017 0-1 ft	SO										
SO Surface mg/kg Warehouse and Laydown Area TATEF 1/24/2017 0-1 ft			mg/kg								
SO Surface mykg Warehouse and Laydown Area TA1E9 12/4/2017 0-1 ft 1											
SO Surface mykg Warehouse and Laydown Area TA1E9 62:92:018 01 ft mykg mykg warehouse and Laydown Area TA1E4 42:42:017 01 ft mykg mykg warehouse and Laydown Area TA1E4 42:22:017 01 ft mykg mykg warehouse and Laydown Area TA1E4 42:22:017 01 ft mykg mykg mykg warehouse and Laydown Area TA1E4 42:22:017 01 ft mykg											
SO Surface my/kg Warehouse and Laydown Area TAIF4 1/24/2017 0 - 1 ft			mg/kg								
SO Surface myling Warehouse and Laydown Area TAIF4 6/29/2018 0 - 1 ft											
SO Surface mg/kg Warehouse and Laydown Area TA1F5 1/24/2017 0-1 ft SO Surface mg/kg Warehouse and Laydown Area TA1G1 1/24/2017 0-1 ft SO Surface mg/kg Warehouse and Laydown Area TA1G1 1/24/2017 0-1 ft SO Surface mg/kg Warehouse and Laydown Area TA1G3 1/24/2017 0-1 ft SO Surface mg/kg Warehouse and Laydown Area TA1G3 1/24/2017 0-1 ft SO Surface mg/kg Warehouse and Laydown Area TA1G3 1/24/2017 0-1 ft SO Surface mg/kg Warehouse and Laydown Area TA1G3 1/24/2017 0-1 ft SO Surface mg/kg Warehouse and Laydown Area TA1G3 1/24/2017 0-1 ft SO Surface mg/kg Warehouse and Laydown Area TA1G3 1/24/2017 0-1 ft SO Surface mg/kg Warehouse and Laydown Area TA1G3 1/24/2017 0-1 ft SO Surface mg/kg Warehouse and Laydown Area TA1G3 1/24/2017 0-1 ft SO Surface mg/kg Warehouse and Laydown Area TA1G3 1/24/2017 0-1 ft SO Subsurface mg/kg Warehouse and Laydown Area TA1G3 1/24/2017 0-1 ft SO Subsurface mg/kg Warehouse and Laydown Area CT16SO9H 8/4/2017 1-2 ft 2.9 1 SO Subsurface mg/kg Warehouse and Laydown Area CT16SO9H 8/4/2017 1-2 ft 2.5 1 SO Subsurface mg/kg Warehouse and Laydown Area CT16SO9H 8/4/2017 1-2 ft 2.8 1 SO Subsurface mg/kg Warehouse and Laydown Area CT16SO9H 8/4/2017 1-2 ft 2.8 1 SO Subsurface mg/kg Warehouse and Laydown Area CT16SO9H 8/4/2017 1-2 ft 2.8 1 SO Subsurface mg/kg Warehouse and Laydown Area CT16SO9H 8/4/2017 1-2 ft 2.8 1 SO Subsurface mg/kg Warehouse and Laydown Area CT16SO9H 8/4/2017 1-2 ft 3.8 1 SO Subsurface mg/kg Warehouse and Laydown Area SO Subsurface mg/kg Warehouse and Laydown Area SO Subsurface mg/kg Warehouse and Laydown Area SO Subsurface mg/kg Warehouse and Laydown Area SO Subsurface mg/kg Warehouse and Laydown Area SO Subsurface mg/kg Warehouse and Laydown Area SO Subsurface mg/kg Warehouse and											
SO Surface mg/kg Warehouse and Laydown Area TA1G1 1/24/2017 0-1 ft SO Surface mg/kg Warehouse and Laydown Area TA1G3 1/24/2017 0-1 ft SO Surface mg/kg Warehouse and Laydown Area TA1G3 1/24/2017 0-1 ft SO Surface mg/kg Warehouse and Laydown Area TA1G3 1/24/2017 0-1 ft SO Surface mg/kg Warehouse and Laydown Area TA1G3 1/24/2017 0-1 ft SO Surface mg/kg Warehouse and Laydown Area TA1G9 1/24/2017 0-1 ft SO Surface mg/kg Warehouse and Laydown Area TA1G9 6/29/2018 0-1 ft SO Surface mg/kg Warehouse and Laydown Area TA1G9 6/29/2018 0-1 ft SO Surface mg/kg Warehouse and Laydown Area TA1G9 6/29/2018 0-1 ft SO Subsurface mg/kg Warehouse and Laydown Area TA1G9 6/29/2018 0-1 ft SO Subsurface mg/kg Warehouse and Laydown Area CT16SO96 31/2017 1-2 ft 2.9 1 SO Subsurface mg/kg Warehouse and Laydown Area CT16SO91 8/4/2017 2-3 ft 0.48 1 SO Subsurface mg/kg Warehouse and Laydown Area CT16SO91 8/4/2017 2-3 ft 0.48 1 SO Subsurface mg/kg Warehouse and Laydown Area CT16SO91 8/4/2017 2-3 ft 0.54 1 SO Subsurface mg/kg Warehouse and Laydown Area CT16SO91 8/4/2017 2-3 ft 0.54 1 SO Subsurface mg/kg Warehouse and Laydown Area DP40 S/20/2013 5-7.5 ft 0.35 1 SO Subsurface mg/kg Warehouse and Laydown Area DP40 S/20/2013 5-7.5 ft 0.35 1 SO Subsurface mg/kg Warehouse and Laydown Area DP40 S/20/2013 5-7.5 ft 0.18 1 SO Subsurface mg/kg Warehouse and Laydown Area DP40 S/20/2013 5-7.5 ft 0.05 SUBsurface mg/kg Warehouse and Laydown Area DP40 S/20/2013 5-7.5 ft 0.04 SO Subsurface mg/kg Warehouse and Laydown Area DP40 S/20/2013 5-7.5 ft 0.04 SO Subsurface mg/kg Warehouse and Laydown Area S/20/2013 5-7.5 ft 0.04 SO Subsurface mg/kg Warehouse and Laydown Area S/20/2013 S/20/2013 S/20/2013 S/20/2013 S											
SO Surface mg/kg Warehouse and Laydown Area TA1G10 84/2017 0 - 1 ft											
SO Surface mg/kg Warehouse and Laydown Area TA1G3 124/2017 0 - 1 ft											
SO Surface mg/kg Warehouse and Laydown Area TA1G5 12/4/2017 0-1 ft mg/kg Warehouse and Laydown Area TA1G5 12/4/2017 0-1 ft mg/kg Warehouse and Laydown Area TA1G9 12/4/2017 0-1 ft mg/kg Warehouse and Laydown Area TA1G9 12/4/2017 0-1 ft mg/kg Warehouse and Laydown Area TA1G9 6/29/2018 0-1 ft mg/kg Warehouse and Laydown Area TA1G9 6/29/2018 0-1 ft mg/kg Warehouse and Laydown Area TA1G9 6/29/2018 0-1 ft mg/kg Warehouse and Laydown Area TA1G9 6/29/2018 0-1 ft mg/kg Warehouse and Laydown Area TA1G9 6/29/2018 0-1 ft mg/kg Warehouse and Laydown Area TA1G9 6/29/2018 0-1 ft mg/kg Warehouse and Laydown Area TA1G9 6/29/2018 0-1 ft mg/kg Warehouse and Laydown Area TA1G9 Mg/kg Warehouse and Laydown Area TA1G9											
SO Sufface mg/kg Warehouse and Laydown Area TA1G7 1/24/2017 0 - 1 ft 1 1 1 1 1 1 1 1 1											
SO Surface mg/kg Warehouse and Laydown Area TA169 1/24/2017 0 - 1 ft SO Surface mg/kg Warehouse and Laydown Area TA119 6/28/2018 0 - 1 ft Subsurface mg/kg Warehouse and Laydown Area TA119 8/4/2017 0 - 1 ft SUBsurface mg/kg Warehouse and Laydown Area TA119 8/4/2017 1 - 2 ft 2.9 1 SUBsurface mg/kg Warehouse and Laydown Area TA119 8/4/2017 1 - 2 ft 2.9 1 SUBsurface mg/kg Warehouse and Laydown Area CT16SO9H 8/4/2017 1 - 2 ft 2.5 1 SUBsurface mg/kg Warehouse and Laydown Area CT16SO9H 8/4/2017 2 - 3 ft 0.48 1 SUBSURFACE mg/kg Warehouse and Laydown Area CT16SO9H 8/4/2017 2 - 3 ft 0.48 1 SUBSURFACE mg/kg Warehouse and Laydown Area CT16SO9H 8/4/2017 2 - 3 ft 0.54 1 SUBSURFACE mg/kg Warehouse and Laydown Area CT16SO9H 8/4/2017 2 - 3 ft 0.54 1 SUBSURFACE mg/kg Warehouse and Laydown Area CT16SO9H 8/4/2017 2 - 3 ft 0.54 1 SUBSURFACE mg/kg Warehouse and Laydown Area CT16SO9H 8/4/2017 2 - 3 ft 0.54 1 SUBSURFACE mg/kg Warehouse and Laydown Area DP27 3/26/2013 6.5 - 7.5 ft 0.35 1 SUBSURFACE mg/kg Warehouse and Laydown Area DP27 3/26/2013 6.5 - 7.5 ft 0.35 1 SUBSURFACE mg/kg Warehouse and Laydown Area DP40 5/28/2013 3.5 - 10.5 ft 0.14 1 SUBSURFACE mg/kg Warehouse and Laydown Area DP40 5/28/2013 4.5 - 5.5 ft 0.014 1 SUBSURFACE mg/kg Warehouse and Laydown Area DP40 5/28/2013 4.5 - 5.5 ft 0.023 1 SUBSURFACE mg/kg Warehouse and Laydown Area DP42 5/28/2013 4.5 - 5.5 ft 0.023 1 SUBSURFACE mg/kg Warehouse and Laydown Area DP42 5/28/2013 4.5 - 5.5 ft 0.0045 0 SUBSURFACE mg/kg Warehouse and Laydown Area DP42 5/28/2013 4.5 - 5.5 ft 0.0045 0 SUBSURFACE mg/kg Warehouse and Laydown Area SUSDPO3 5/14/2013 5.5 - 3.5 ft 0.0045 0 SUBSURFACE mg/kg Warehouse and Laydown Area SUSDPO3 5/14/2013 5.5 - 3.5 ft 0.0045 0 SUBSURFACE mg/kg Warehouse and Layd											
SO Surface mg/kg Warehouse and Laydown Area TA169 6/29/2018 0 - 1 ft SO Subsurface mg/kg Warehouse and Laydown Area TA119 8/4/2017 1 - 2 ft 2.9 1											
SO Sufface mg/kg Warehouse and Laydown Area TATH9 8/4/2017 0 - 1 ft 1 c 2 ft 2 9 1 1 1 2 ft 2 5 1 1 2 ft 2 5 1 1 2 ft 2 5 1 2 ft 2 5 1 2 ft 2 5 1 2 ft 2 5 3 ft											
SO Subsurface mg/kg Warehouse and Laydown Area CT16SO96 31/2017 1 - 2 ft 2.5 1											
SO Subsurface mg/kg Warehouse and Laydown Area CT16SO9H 8/4/2017 1 - 2 ft 1 1 2.5 1 1 1 2.5 1 1 2.5 1 2.5 3 1 3 3 3 3 3 3 3 3					CT16SO9G			2.9	1		
SO Subsurface mg/kg Warehouse and Laydown Area CT16SO9H 8/4/2017 2 - 3 ft 0.48 1 1 1 2 ft 2 3 ft 0.48 1 1 1 2 ft 2 3 ft 1 3 ft 3	SO	Subsurface		Warehouse and Laydown Area	CT16SO9H	8/4/2017	1 - 2 ft	2.5	1		
SO Subsurface mg/kg Warehouse and Laydown Area CT16SO9 8/4/2017 2 - 3 ft 0.54 1	SO	Subsurface	mg/kg	Warehouse and Laydown Area	CT16SO9H	8/4/2017	2 - 3 ft	0.48	1		
SO Subsurface mg/kg Warehouse and Laydown Area DP27 3/26/2013 4.5 ft 5.5 ft 0.35 1 1 1 1 1 1 1 1 1		Subsurface	mg/kg	Warehouse and Laydown Area	CT16SO9I				1		
SO Subsurface mg/kg Warehouse and Laydown Area DP27 \$/26/2013 6.5 - 7.5 ft 0.35 1								0.54	1		
SO Subsurface mg/kg Warehouse and Laydown Area DP40 5/20/2013 2.5 - 3.5 ft 0.18 1 1 1 1 1 1 1 1 1											
SO Subsurface mg/kg Warehouse and Laydown Area DP40 5/28/2013 9.5 - 10.5 ft 0.014 1 SO Subsurface mg/kg Warehouse and Laydown Area DP40 5/28/2013 14.5 - 15.5 ft 0.0045 0 SO Subsurface mg/kg Warehouse and Laydown Area DP42 5/21/2013 14.5 - 15.5 ft 0.023 1 SO Subsurface mg/kg Warehouse and Laydown Area DP42 5/29/2013 14.5 - 15.5 ft 0.21 1 SO Subsurface mg/kg Warehouse and Laydown Area DP42 5/29/2013 9.5 - 10.5 ft 0.04 1 SO Subsurface mg/kg Warehouse and Laydown Area SBS 3/33/2013 2.5 - 3.5 ft 0.064 1 SO Subsurface mg/kg Warehouse and Laydown Area SBS0303N-North 2/15/2017 3 - 3.5 ft 1.3 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP03 5/21/2013 4.5 - 5.5 ft 0.00091 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP03									<u>-</u>		
SO Subsurface mg/kg Warehouse and Laydown Area DP40 5/28/2013 14.5 - 15.5 ft 0.0045 0											
SO Subsurface mg/kg Warehouse and Laydown Area DP42 5/21/2013 4.5 - 5.5 ft 0.023 1 SO Subsurface mg/kg Warehouse and Laydown Area DP42 5/29/2013 14.5 - 15.5 ft 0.21 1 SO Subsurface mg/kg Warehouse and Laydown Area DP42 5/29/2013 9.5 - 10.5 ft 0.064 1 SO Subsurface mg/kg Warehouse and Laydown Area SB3 3/13/2013 2.5 - 3.5 ft 0.064 1 SO Subsurface mg/kg Warehouse and Laydown Area SBS0303N-North 2/15/2017 3 - 3.5 ft 1.3 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP03 5/14/2013 4.5 - 5.5 ft 0.00091 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP03 5/21/2013 1.5 - 10.5 ft 0.0046 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/15/2013 2.5 - 3.5 ft 0.0045 0 SO Subsurface mg/kg Warehouse and Laydown Area			0 0							1	
SO Subsurface mg/kg Warehouse and Laydown Area DP42 5/29/2013 14.5 - 15.5 ft 0.21 1 1 1 1 1 1 1 1 1										<u> </u>	
SO Subsurface mg/kg Warehouse and Laydown Area DP42 5/29/2013 9.5 - 10.5 ft 0.064 1 SO Subsurface mg/kg Warehouse and Laydown Area SB3 3/13/2013 2.5 - 3.5 ft 1 SO Subsurface mg/kg Warehouse and Laydown Area SBS0303N-North 2/15/2017 3 - 3.5 ft 1.3 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP03 5/14/2013 4.5 - 5.5 ft 0.00091 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP03 5/21/2013 9.5 - 10.5 ft 0.0046 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP03 5/21/2013 14.5 - 15.5 ft 0.0045 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/15/2013 2.5 - 3.5 ft 0.00045 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/20/2013 2.5 - 10.5 ft 0.00045 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td>									· · · · · · · · · · · · · · · · · · ·		
SO Subsurface mg/kg Warehouse and Laydown Area SB3 3/13/2013 2.5 - 3.5 ft 1.3 1 SO Subsurface mg/kg Warehouse and Laydown Area SBS0303N-North 2/15/2017 3 - 3.5 ft 1.3 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP03 5/14/2013 4.5 - 5.5 ft 0.00091 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP03 5/21/2013 9.5 - 10.5 ft 0.0046 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP03 5/21/2013 14.5 - 15.5 ft 0.0045 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/15/2013 2.5 - 3.5 ft 0.00045 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/20/2013 2.5 - 10.5 ft 0.00045 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/20/2013 1.5 - 10.5 ft 0.0045 0 SO Subsurface mg/kg Warehouse and									•	-	
SO Subsurface mg/kg Warehouse and Laydown Area SBS0303N-North 2/15/2017 3 - 3.5 ft 1.3 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP03 5/14/2013 4.5 - 5.5 ft 0.00091 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP03 5/21/2013 1.5 - 10.5 ft 0.0046 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP03 5/21/2013 1.5 - 15.5 ft 0.0045 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/15/2013 2.5 - 3.5 ft 0.00045 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/20/2013 9.5 - 10.5 ft 0.00045 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/20/2013 1.5 - 10.5 ft 0.0045 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 1/25/2017 1 - 2 ft 0.31 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.004</td> <td>I.</td> <td></td> <td></td>								0.004	I.		
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP03 5/14/2013 4.5 - 5.5 ft 0.00091 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP03 5/21/2013 9.5 - 10.5 ft 0.0046 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP03 5/21/2013 14.5 - 15.5 ft 0.0045 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/15/2013 2.5 - 3.5 ft 0.00099 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/20/2013 9.5 - 10.5 ft 0.0045 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/20/2013 14.5 - 15.5 ft 0.0045 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 1/25/2017 1 - 2 ft 0.31 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 1/25/2017 2 - 5 ft 4.8 1 SO Subsurface mg/kg mg/kg Warehouse and L								13	1		
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP03 5/21/2013 9.5 - 10.5 ft 0.0046 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP03 5/21/2013 14.5 - 15.5 ft 0.0045 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/15/2013 2.5 - 3.5 ft 0.00099 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/20/2013 9.5 - 10.5 ft 0.00045 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/20/2013 14.5 - 15.5 ft 0.0044 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 1/25/2017 1 - 2 ft 0.31 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 1/25/2017 2 - 5 ft 4.8 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04-1A 8/1/2017 2 - 3 ft 0.0044											
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP03 5/21/2013 14.5 - 15.5 ft 0.0045 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/15/2013 2.5 - 3.5 ft 0.00099 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/20/2013 1.5 - 10.5 ft 0.0045 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/20/2013 1.5 - 10.0044 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 1/25/2017 1 - 2 ft 0.31 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 1/25/2017 2 - 5 ft 4.8 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04-1A 8/1/2017 2 - 3 ft 0.0044 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04-1A 8/1/2017 2 - 3 ft 0.044 1											
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/15/2013 2.5 - 3.5 ft 0.00099 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/20/2013 9.5 - 10.5 ft 0.0045 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/20/2013 14.5 - 15.5 ft 0.0044 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 1/25/2017 1 - 2 ft 0.31 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 1/25/2017 2 - 5 ft 4.8 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04-1 1/27/2017 10 - 15 ft 0.00088 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04-1A 8/1/2017 2 - 3 ft 0.044 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04-1A 8/1/2017 3 - 4 ft 1.1 1											
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/20/2013 9.5 - 10.5 ft 0.0045 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/20/2013 14.5 - 15.5 ft 0.0044 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 1/25/2017 1 - 2 ft 0.31 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 1/25/2017 2 - 5 ft 4.8 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04-1 1/27/2017 10 - 15 ft 0.00088 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04-1A 8/1/2017 2 - 3 ft 0.044 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04-1A 8/1/2017 3 - 4 ft 1.1 1										1	
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 5/20/2013 14.5 - 15.5 ft 0.0044 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 1/25/2017 1 - 2 ft 0.31 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 1/25/2017 2 - 5 ft 4.8 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 1/27/2017 10 - 15 ft 0.00088 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04-1A 8/1/2017 2 - 3 ft 0.044 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04-1A 8/1/2017 3 - 4 ft 1.1 1									-		
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 1/25/2017 1 - 2 ft 0.31 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 1/25/2017 2 - 5 ft 4.8 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 1/27/2017 10 - 15 ft 0.00088 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04-1A 8/1/2017 2 - 3 ft 0.044 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04-1A 8/1/2017 3 - 4 ft 1.1 1											
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 1/25/2017 2 - 5 ft 4.8 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04-1 1/27/2017 10 - 15 ft 0.00088 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04-1A 8/1/2017 2 - 3 ft 0.044 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04-1A 8/1/2017 3 - 4 ft 1.1 1											
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04 1/27/2017 10 - 15 ft 0.00088 0 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04-1A 8/1/2017 2 - 3 ft 0.044 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04-1A 8/1/2017 3 - 4 ft 1.1 1								4.8	1		
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04-1A 8/1/2017 2 - 3 ft 0.044 1 SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04-1A 8/1/2017 3 - 4 ft 1.1 1					SUSDP04		10 - 15 ft		0		
						8/1/2017	2 - 3 ft	0.044	1		
SO Subsurface mg/kg Warehouse and Laydown Area SUSDP04-1A 8/1/2017 4 - 5 ft 0.15											
	SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1A	8/1/2017	4 - 5 ft	0.15	1		

									T ==== ::::	
Matrix	horizon	Units	Area	Location	Collected	Depth	PCB, Total Aroclors (AECOM Calc)	D_PCB, Total Aroclors (AECOM Calc)	TCDD TEQ HH	D_TCDD TEQ HH
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1C	8/1/2017	2 - 3 ft	0.066	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1C	8/1/2017	3 - 4 ft	0.036	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1C	8/1/2017	4 - 5 ft	0.017	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1E	8/1/2017	2 - 3 ft	6.9	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1E	8/1/2017	3 - 4 ft	0.39			
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1E	8/1/2017	4 - 5 ft	0.03	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1G	8/1/2017	2 - 3 ft	0.033	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1G	8/1/2017	3 - 4 ft 4 - 5 ft	0.52 1.4	11		
SO SO	Subsurface Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1G SUSDP04-1G	8/1/2017 8/1/2017	4 - 5 it 5 - 6 ft	0.28	1 1		
SO		mg/kg	Warehouse and Laydown Area		2/1/2018	2 - 3 ft	0.28	<u> </u> 1		
SO	Subsurface Subsurface	mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP04-2I SUSDP05	5/15/2013	4.5 - 5.5 ft	0.0033	<u>'</u> 1		
so	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	5/21/2013	9.5 - 10.5 ft	0.003	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	5/21/2013	14.5 - 15.5 ft	0.19	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	1/24/2017	1 - 2 ft	0.068	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	1/24/2017	2 - 5 ft	0.064	 1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-1C	7/31/2017	1 - 2 ft	0.001			
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-1E	7/31/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-1G	7/31/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-1G	7/31/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-2M	2/1/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP06	5/15/2013	4.5 - 5.5 ft	0.013	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP06	5/22/2013	9.5 - 10.5 ft	0.0049	0		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP06	5/22/2013		0.012	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP06	3/13/2017	1 - 2 ft	0.0048	0		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP06	3/13/2017	2 - 5 ft	0.0044	0		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP07	5/15/2013	4.5 - 5.5 ft	0.0012	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP07	5/22/2013	9.5 - 10.5 ft	0.0048	0		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP07	5/22/2013		0.005	0		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	5/15/2013	2.5 - 3.5 ft	0.41		0.00000119	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	5/23/2013	9.5 - 10.5 ft	0.14	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	5/23/2013		0.0052	0		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	1 - 2 ft	0.97	11		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	2 - 5 ft	0.1	•		
SO SO	Subsurface Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08 SUSDP08	1/24/2017 1/24/2017	5 - 10 ft 10 - 15 ft	0.14 0.0051	<u>1</u> 0		
SO	Subsurface	mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP08-1E	8/2/2017	1 - 2 ft	0.6	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08-2G	8/3/2017	1 - 2 ft	0.0	<u>'</u>	0.00000345	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	5/14/2013	4.5 - 5.5 ft	0.0019	1	0.00000001	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	5/28/2013	9.5 - 10.5 ft	0.0052	0	0.00000000	·
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	5/28/2013	14.5 - 15.5 ft	0.0035	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	1/25/2017	1 - 2 ft	11	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	1/25/2017	2 - 5 ft	1.4	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	1/25/2017	5 - 10 ft	0.001	0		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	1 - 2 ft	10	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	2 - 3 ft	7.6	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	3 - 4 ft	9.1	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	4 - 5 ft	14	11		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	5 - 6 ft	5.5	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	3/28/2018	6 - 7 ft	0.37	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	1 - 2 ft	2	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	2 - 3 ft	1.3	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	3 - 4 ft	0.0055	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	4 - 5 ft	0.64	1 1	<u> </u>	
SO SO	Subsurface Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B SUSDP11-1H	3/16/2018 3/16/2018	5 - 6 ft 1 - 2 ft	0.024 5.7	<u>1</u> 1	<u> </u>	
SO	Subsurface	mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP11-1H SUSDP11-1H	3/16/2018	2 - 3 ft	1.5	1 1		
SO		mg/kg	Warehouse and Laydown Area	SUSDP11-1H SUSDP11-1H	3/16/2018	2 - 3 IL 3 - 4 ft	0.15	<u> </u> 1	1	
SO	Subsurface Subsurface	mg/kg mg/kg	Warehouse and Laydown Area	SUSDP11-1H SUSDP11-1H	3/16/2018	3 - 4 II 4 - 5 ft	0.15	<u> </u> 	1	
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	5 - 6 ft	0.019	1	1	
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H SUSDP11-2A	3/16/2018	1 - 2 ft	2.7	<u> </u> 1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	2 - 3 ft	0.65	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	3 - 4 ft	0.03	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	4 - 5 ft	0.053	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	5 - 6 ft	0.071	1		
		g/ng			J		5.51 1	T	T	

Matrix	bosi-on	Lleite	A	Lanation	Callantad	Danth	DCD Total Arealana (AECOM Cala)	D. DOD. Total Associate (AECOM Cale)	TODD TEO IIII	D. TODD TEO IIII
Matrix	horizon	Units	Area	Location	Collected	Depth	PCB, Total Aroclors (AECOM Calc)	D_PCB, Total Aroclors (AECOM Calc)	TCDD TEQ HH	D_TCDD TEQ HH
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2D	4/5/2018	1 - 2 ft	0.94	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2N	4/6/2018	1 - 2 ft	0.76	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2N	4/6/2018	2 - 3 ft	1.2	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP13	5/20/2013	4.5 - 5.5 ft	0.0041	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP13	5/29/2013	14.5 - 15.5 ft	0.0053	0		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP13	5/29/2013	9.5 - 10.5 ft	0.013	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	5/22/2013	2.5 - 3.5 ft	0.16	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	5/24/2013	9.5 - 10.5 ft	0.19	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	5/24/2013	14.5 - 15.5 ft	0.0044	0		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	1 - 2 ft	0.31	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	2 - 5 ft	0.38	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	5 - 10 ft	0.28	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	10 - 15 ft	0.0085	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1C	2/1/2018	1 - 2 ft	0.27	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1C	2/1/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1E	2/1/2018	1 - 2 ft	0.081	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	1 - 2 ft	1.9	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	2 - 3 ft	0.19	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2E	2/22/2018	1 - 2 ft	0.099	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2E	2/22/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2I	2/22/2018	1 - 2 ft	0.034	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	1 - 2 ft	7	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	2 - 3 ft	6.4	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	3 - 4 ft	0.66	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	4 - 5 ft	0.4	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	1 - 2 ft	0.082	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	2 - 3 ft	0.035	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	1 - 2 ft	0.14	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	2 - 3 ft	1.6	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	3 - 4 ft	0.0035	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	4 - 5 ft	0.033	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	1 - 2 ft	0.0061	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	2 - 3 ft	0.0038	1		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E0	8/1/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E0	8/1/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E0	8/1/2017	3 - 4 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E1	7/31/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E10	8/8/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E9	8/3/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1G10	8/4/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1G9	8/4/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1G9	8/4/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1H9	8/4/2017	1 - 2 ft				

Matrix	horizon	Units	Area	Location	Collected	Depth	Thallium	D Thallium	Vanadium	D Vanadium
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS05-1D	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS05-1F	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS061C	3/13/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS061D	3/13/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS061E	3/13/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS061G	3/13/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1A	1/24/2017	0 - 1 ft	0.12	0	44	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1B	1/24/2017	0 - 1 ft	0.12	0	35	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1B	2/3/2017	0 - 1 ft	0.057	1	64	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1C	1/24/2017	0 - 1 ft	0.037	0	23	1
SO	Surface		Warehouse and Laydown Area	SUS08-1D	1/24/2017	0 - 1 ft	0.12	1	900	1
SO	Surface	mg/kg mg/kg	Warehouse and Laydown Area	SUS08-1D	6/29/2018	0 - 1 ft	0.12		900	ı
SO	Surface		Warehouse and Laydown Area	SUS08-1F	1/24/2017	0 - 1 ft	0.11	0	260	1
SO	Surface	mg/kg		SUS08-1F SUS08-1G	1/24/2017	0 - 1 ft	0.11	1	190	1
SO		mg/kg	Warehouse and Laydown Area	SUS08-1H	1/24/2017	0 - 1 ft	0.17	1	1300	1
SO	Surface	mg/kg	Warehouse and Laydown Area		6/29/2018		0.13		1300	ı
	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1H		0 - 1 ft 0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-1H	6/29/2018					
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2A	3/22/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2B	3/22/2017	0 - 1 ft				,
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2F	3/22/2017	0 - 1 ft			23	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2H	3/22/2017	0 - 1 ft			59	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2I	3/22/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2J	3/22/2017	0 - 1 ft			1900	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2N	3/22/2017	0 - 1 ft			1400	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-20	3/23/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUS08-2P	3/22/2017	0 - 1 ft			56	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP03	2/4/2013	0.5 - 1 ft	0.12	0	9.9	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP04	2/4/2013	0 - 1 ft	0.13	1	140	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP04	1/25/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05	2/4/2013	0 - 1 ft	0.11	0	75	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1C	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1C	7/31/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1E	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1E	7/31/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1G	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-1G	7/31/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP05-2M	2/1/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP06	2/5/2013	0 - 1 ft	0.14	1	20	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP06	3/13/2017	0 - 1 ft	0.14		20	'
SO	Surface		Warehouse and Laydown Area	SUSDP00	2/5/2013	0 - 1 ft	0.12	0	45	1
SO		mg/kg				0 - 1 ft	0.12		1700	-
	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08	2/5/2013		0.13	0	1700	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	0 - 1 ft	-			
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08	6/29/2018	0 - 1 ft	0.40	_	4500	
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-1E	1/24/2017	0 - 1 ft	0.13	1	1500	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-1E	6/29/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-2G	3/22/2017	0 - 1 ft	1		52	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-3I	8/2/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP08-3K	8/3/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11	2/5/2013	0 - 1 ft	0.11	0	78	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	0 - 1 ft		-		
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-2D	4/5/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP11-2N	4/6/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP13	2/5/2013	0 - 1 ft	0.17	1	35	1
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1C	2/1/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1E	2/1/2018	0 - 1 ft				
	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	0 - 1 ft				
			TTUI CITOUSC ATTU LAYUUWIT ALEA	20000 0110-10						
SO			Warehouse and Laydown Area	SUSDECT16 2E	2/22/2019	0 - 1 ft				
	Surface Surface	mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDPCT16-2E SUSDPCT16-2I	2/22/2018 2/22/2018	0 - 1 ft 0 - 1 ft				

Matrix	horizon	Units	Area	Location	Collected	Depth	Thallium	D Thallium	Vanadium	D Vanadium
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3Q	6/29/2018	0 - 1 ft	THamain	D_IIIdilidili	Variadiani	D_variadiam
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3Q	6/29/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	0 - 1 ft				
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1A1	1/24/2017	0 - 1 ft	0.33	1	290	1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1A3	1/24/2017	0 - 1 ft	0.089	1	180	1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1A7	1/24/2017	0 - 1 ft	0.15	1	32	1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1A9	1/24/2017	0 - 1 ft	0.14	1	53	1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C1	1/24/2017	0 - 1 ft	0.29	1	470	1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C3	1/24/2017	0 - 1 ft	0.11	0	41	1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C4	1/24/2017	0 - 1 ft	0.18	1	7000	1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C4	6/29/2018	0 - 1 ft		-		-
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C5	1/24/2017	0 - 1 ft	0.22	1	3800	1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C5	6/29/2018	0 - 1 ft	0.22		0000	
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C7	1/24/2017	0 - 1 ft	0.033	1	16	1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1C9	1/24/2017	0 - 1 ft	0.17	1	200	1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E1	1/24/2017	0 - 1 ft	0.26	1	42000	1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E1	6/29/2018	0 - 1 ft	0.20		42000	
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E10	8/8/2017	0 - 1 ft	0.13	1	3800	1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1-E11	1/30/2018	0 - 1 ft	0.23	1	180	1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E3	1/24/2017	0 - 1 ft	0.22	1	57	1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E4	1/24/2017	0 - 1 ft	0.12	0	100	1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E5	1/24/2017	0 - 1 ft	0.12	0	190	1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E7	1/24/2017	0 - 1 ft	0.12	1	20	1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E9	1/24/2017	0 - 1 ft	0.089	1	1100	1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1E9	6/29/2018	0 - 1 ft	0.009		1100	1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1F4	1/24/2017	0 - 1 ft	0.12	1	3800	1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1F4	6/29/2018	0 - 1 ft	0.12	- '	3000	1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1F5	1/24/2017	0 - 1 ft	0.15	1	610	1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1G1	1/24/2017	0 - 1 ft	0.15	0	68	1
SO				TA1G10		0 - 1 ft	0.12	0	37	1
SO	Surface	mg/kg	Warehouse and Laydown Area		8/4/2017	0 - 1 ft	0.12		98	1
SO	Surface Surface	mg/kg	Warehouse and Laydown Area	TA1G3 TA1G5	1/24/2017	0 - 1 ft	0.13	1	330	1
		mg/kg	Warehouse and Laydown Area			0 - 1 ft		1		1
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1G7	1/24/2017	0 - 1 ft	0.069	1	190 37000	1
SO SO	Surface	mg/kg	Warehouse and Laydown Area	TA1G9		0 - 1 ft	0.14	ı	37000	ı
	Surface	mg/kg	Warehouse and Laydown Area	TA1G9	6/29/2018		0.40	0	450	4
SO	Surface	mg/kg	Warehouse and Laydown Area	TA1H9	8/4/2017	0 - 1 ft	0.12	U	450	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	CT16SO9G	3/1/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	CT16SO9H	8/4/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	CT16SO9H	8/4/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	CT16SO9I	8/4/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	CT16SO9I	8/4/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	CT16SO9I	8/4/2017	4 - 5 ft	0.44		440	
SO	Subsurface	mg/kg	Warehouse and Laydown Area	DP27	3/26/2013	6.5 - 7.5 ft	0.14	1	110	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	DP40	5/20/2013	2.5 - 3.5 ft	0.13	1	120	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	DP40	5/28/2013	9.5 - 10.5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	DP40	5/28/2013	14.5 - 15.5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	DP42	5/21/2013	4.5 - 5.5 ft	0.04		0.5	
SO	Subsurface	mg/kg	Warehouse and Laydown Area	DP42	5/29/2013	14.5 - 15.5 ft	0.61	1	25	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	DP42	5/29/2013	9.5 - 10.5 ft	1.6	1	49	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SB3	3/13/2013	2.5 - 3.5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SBS0303N-North	2/15/2017	3 - 3.5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP03	5/14/2013	4.5 - 5.5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP03	5/21/2013	9.5 - 10.5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP03	5/21/2013	14.5 - 15.5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04	5/15/2013	2.5 - 3.5 ft	0.12	1	25	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04	5/20/2013	9.5 - 10.5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04	5/20/2013	14.5 - 15.5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04	1/25/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04	1/25/2017	2 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04	1/27/2017	10 - 15 ft				
	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1A	8/1/2017	2 - 3 ft				
SO	Subsuriace	9,9								
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1A	8/1/2017	3 - 4 ft				

Matrix	horizon	Units	Area	Location	Collected	Depth	Thallium	D_Thallium	Vanadium	D Vanadium
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1C	8/1/2017	2 - 3 ft	mailium	D_ITIAIIIUIII	variaululli	D_variaululli
SO	Subsurface		Warehouse and Laydown Area	SUSDP04-1C	8/1/2017	3 - 4 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1C	8/1/2017	3 - 4 II 4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1C	8/1/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1E	8/1/2017	3 - 4 ft				
SO		mg/kg		SUSDP04-1E SUSDP04-1E		3 - 4 II 4 - 5 ft				
SO	Subsurface Subsurface	mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDP04-1E SUSDP04-1G	8/1/2017 8/1/2017	2 - 3 ft				
		mg/kg								
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1G SUSDP04-1G	8/1/2017	3 - 4 ft 4 - 5 ft				
	Subsurface	mg/kg	Warehouse and Laydown Area		8/1/2017					
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-1G	8/1/2017	5 - 6 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP04-2I	2/1/2018	2 - 3 ft	0.000		44	4
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	5/15/2013	4.5 - 5.5 ft	0.039	1	11	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	5/21/2013	9.5 - 10.5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	5/21/2013	14.5 - 15.5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	1/24/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05	1/24/2017	2 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-1C	7/31/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-1E	7/31/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-1G	7/31/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-1G	7/31/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP05-2M	2/1/2018	1 - 2 ft	0.55.			
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP06	5/15/2013	4.5 - 5.5 ft	0.081	1	18	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP06	5/22/2013	9.5 - 10.5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP06	5/22/2013	14.5 - 15.5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP06	3/13/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP06	3/13/2017	2 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP07	5/15/2013	4.5 - 5.5 ft	0.11	1	18	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP07	5/22/2013	9.5 - 10.5 ft	0.098	1	20	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP07	5/22/2013	14.5 - 15.5 ft	0.066	1	17	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	5/15/2013	2.5 - 3.5 ft	0.057	1	25	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	5/23/2013	9.5 - 10.5 ft	0.094	1	36	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	5/23/2013	14.5 - 15.5 ft	0.15	1	25	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	2 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	5 - 10 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08	1/24/2017	10 - 15 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08-1E	8/2/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP08-2G	8/3/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	5/14/2013	4.5 - 5.5 ft	0.11	1	21	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	5/28/2013	9.5 - 10.5 ft	0.066	1	14	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	5/28/2013	14.5 - 15.5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	1/25/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	1/25/2017	2 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11	1/25/2017	5 - 10 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	2/22/2018	5 - 6 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1A	3/28/2018	6 - 7 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1B	3/16/2018	5 - 6 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-1H	3/16/2018	5 - 6 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2A	3/16/2018	5 - 6 ft				
00	CabadilaCE	myrky	TTUISHOUSE AND LAYOUWIT AIRA	500DI 11-ZA	0/10/2010	J-01t			l	l .

Matrix	horizon	Units	Area	Location	Collected	Depth	Thallium	D Thallium	Vanadium	D Vanadium
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2D	4/5/2018	1 - 2 ft		_		
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2N	4/6/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP11-2N	4/6/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP13	5/20/2013	4.5 - 5.5 ft	0.1	1	16	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP13	5/29/2013	14.5 - 15.5 ft	0.1		10	
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP13	5/29/2013	9.5 - 10.5 ft	0.033	1	2.9	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	5/22/2013	2.5 - 3.5 ft	0.098	1	130	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	5/24/2013	9.5 - 10.5 ft	0.12	1	23	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	5/24/2013	14.5 - 15.5 ft	0.052	1	8.2	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	1 - 2 ft	0.002		0.2	•
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	2 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	5 - 10 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDP41	1/24/2017	10 - 15 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1C	2/1/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1C	2/1/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1E	2/1/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/1/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-1G	2/22/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2E	2/22/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2E	2/22/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	3 - 4 ft				
SO	Subsurface	0 0	Warehouse and Laydown Area	SUSDPCT16-2M	2/22/2018	4 - 5 ft				
SO	Subsurface	mg/kg mg/kg	Warehouse and Laydown Area	SUSDPCT16-2M	5/31/2018	1 - 2 ft				
SO	Subsurface		Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	5/31/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-3R	3/15/2018	1 - 2 ft				
SO	Subsurface	mg/kg mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	2 - 3 ft				
SO	Subsurface		Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	3 - 4 ft				
SO	Subsurface	mg/kg mg/kg	Warehouse and Laydown Area	SUSDPCT16-3S	3/15/2018	4 - 5 ft			1	
SO	Subsurface	mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	SUSDPCT16-3S	4/6/2018	4 - 5 II 1 - 2 ft			1	
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	2 - 3 ft			1	
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	3 - 4 ft			 	
SO	Subsurface	mg/kg	Warehouse and Laydown Area	SUSDPCT16-4W	4/6/2018	4 - 5 ft			1	
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E0	8/1/2017	1 - 2 ft	0.11	0	670	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E0	8/1/2017	2 - 3 ft	0.074	1	630	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E0	8/1/2017	3 - 4 ft	0.074	1	420	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E1	7/31/2017	1 - 2 ft	0.037	1	200	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	TA1E10	8/8/2017	1 - 2 It 1 - 2 ft	0.13	1	21	1
SO	Subsurface	mg/kg	Warehouse and Laydown Area	TA1E10	8/3/2017	1 - 2 ft	0.13	1	560	1
SO	Subsurface	0 0				1 - 2 ft		1	17	1
SO		mg/kg	Warehouse and Laydown Area	TA1G10 TA1G9	8/4/2017 8/4/2017	1 - 2 π 1 - 2 ft	0.11	1	1400	1
SO	Subsurface Subsurface	mg/kg	Warehouse and Laydown Area Warehouse and Laydown Area	TA1G9	8/4/2017	1 - 2 π 2 - 3 ft	0.11	1	540	1
SO		mg/kg	<u> </u>	TA1H9	8/4/2017	1 - 2 ft	0.044	1	530	1
3U	Subsurface	mg/kg	Warehouse and Laydown Area	IAIRS	0/4/2017	1 - Z IL	0.12	<u> </u>	530	I

Matrix	horizon	Units	Area	Location	Collected	Depth	Arconic	D. Arconio	Bonzo(a)anthracono	D_Benzo(a)anthracene	Bonzo(a)nyrono	D. Bonzo(a)pyropo
									. ,	, ,		D_Berizo(a)pyrene
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	DP26	3/28/2013		1.6	1	0.24	1	0.24	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	DP26		13.5 - 14.5 ft	1.9	1	0.0076	0	0.0076	0
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	5/15/2013	4.5 - 5.5 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10		14.5 - 15.5 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	6/10/2013	9.5 - 10.5 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	1/27/2017	1 - 2 ft			0.65	1	0.69	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	1/27/2017	2 - 5 ft			0.14	1	0.13	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3F	8/8/2017	1 - 2 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3G	8/8/2017	1 - 2 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3G	8/8/2017	2 - 3 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	1 - 2 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	2 - 3 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	3 - 4 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	4 - 5 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-4E	2/1/2018	1 - 2 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-4NW	1/30/2018	1 - 2 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-4NW	1/30/2018	2 - 3 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-4NW	1/30/2018	3 - 4 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	6/13/2013	4.5 - 5.5 ft			1.3	1	1.1	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	6/13/2013		1.1	1	0.048	1	0.046	1
so	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	6/13/2013	14.5 - 15.5 ft			0.045	1	0.041	1
so	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	1/26/2017	1 - 2 ft			0.06	1	0.045	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	1/26/2017	2 - 5 ft			100	1	100	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	1/30/2017	5 - 10 ft			1.4	1	1.3	1
so	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	1/30/2017	10 - 15 ft			3.4	1	3	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	1/30/2017				0.66	1	0.57	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	1 - 2 ft			200	1	160	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	2 - 3 ft			3.6	1	3.2	
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	3 - 4 ft			1.1	1	0.94	1
so	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	4 - 5 ft			1	1	0.83	1
so	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	10 - 11 ft			4.7	1	3.8	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	11 - 12 ft			0.072	1	0.068	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	12 - 13 ft			0.0059	1	0.0052	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	13 - 14 ft			0.0039	0	0.0032	0
SO		- 0				14 - 15 ft			0.0087	0	0.0087	0
SO	Subsurface Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	14 - 15 II 1 - 2 ft			0.0087	1	0.0087	
		mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017					•		1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017	2 - 3 ft			0.79	1	0.75	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017	3 - 4 ft			5.4	1	4.7	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017	4 - 5 ft			17	1	15	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/23/2017	5 - 6 ft			0.52	1	0.45	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/23/2017	10 - 11 ft			0.43	1	0.45	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/23/2017	11 - 12 ft			0.11	1	0.12	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	1 - 2 ft			0.15	1	0.14	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	2 - 3 ft			0.021	1	0.02	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	3 - 4 ft			0.0084	0	0.0084	0
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	4 - 5 ft			0.0036	1	0.0088	0
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/23/2017	10 - 11 ft			0.0044	1	0.0032	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/23/2017	11 - 12 ft			0.0079	0	0.0079	0
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/23/2017	12 - 13 ft			0.0082	0	0.0082	0
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/23/2017	13 - 14 ft			0.0081	0	0.0081	0
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/23/2017	14 - 15 ft			0.008	0	0.008	0
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/11/2017	1 - 2 ft			54	1	45	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/11/2017	2 - 3 ft			1.2	1	0.96	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/11/2017	3 - 4 ft			0.0077	0	0.0077	0
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/11/2017	4 - 5 ft			0.0085	0	0.0085	0
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	10 - 11 ft	1		0.0091	0	0.0091	0

Matrix	horizon	Units	Area	Location	Collected	Depth	Aroonio	D Aroonie	Panza(a)anthrasana	D. Banza(a)anthrasana	Panza/a\nyrana	D. Bonzo(o)pyropo
							Arsenic	D_Arsenic		D_Benzo(a)anthracene		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	11 - 12 ft			0.009	0	0.009	0
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	12 - 13 ft			0.0089	0	0.0089	0
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	13 - 14 ft			0.0083	0	0.0083	0
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	14 - 15 ft			0.008	0	0.008	0
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-2K	1/30/2018	1 - 2 ft			0.086	1	0.21	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-3A	2/1/2018	1 - 2 ft			0.53	1	0.47	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-3A	2/1/2018	2 - 3 ft			0.085	1	0.15	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-3A	3/28/2018	10 - 11 ft	0.00		0.25	1	0.23	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	5/17/2013	3.5 - 4.5 ft	0.39	1				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	6/7/2013	14.5 - 15.5 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	6/7/2013	9.5 - 10.5 ft	2.9	1				_
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	1/26/2017	1 - 2 ft			1.1	1	0.95	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	1/26/2017	2 - 5 ft			7	1	6.5	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	1/30/2017	5 - 10 ft			0.35	1	0.35	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	1/30/2017	10 - 15 ft			0.43	1	0.44	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	1 - 2 ft			15	1	13	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	2 - 3 ft			0.67	1	0.63	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	3 - 4 ft			0.049	1	0.047	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	4 - 5 ft			0.073	1	0.076	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	1 - 2 ft			11	1	9.7	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	2 - 3 ft			0.2	1	0.2	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	3 - 4 ft			0.13	1	0.11	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	4 - 5 ft			0.017	1	0.021	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3A	8/10/2017	1 - 2 ft			0.11	1	0.096	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3A	8/10/2017	2 - 3 ft			0.023	1	0.023	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3A	8/10/2017	3 - 4 ft			0.061	1	0.05	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3A	8/10/2017	4 - 5 ft			0.13	1	0.12	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3P	1/30/2018	1 - 2 ft			530	1	420	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3P	1/30/2018	2 - 3 ft			2.1	1	2.1	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3T	1/30/2018	1 - 2 ft			1.1	1	1.1	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-4NW	2/23/2018	1 - 2 ft			5.2	1	4.3	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-4NW	2/23/2018	2 - 3 ft			0.026	1	0.024	1
so	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-4SW	2/23/2018	1 - 2 ft			0.77	1	0.75	1
so	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-4SW	2/23/2018	2 - 3 ft			0.26	1	0.28	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-5NW	3/15/2018	1 - 2 ft			0.0087	1	0.0093	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44	5/21/2013		6.8	1	0.000			
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44		14.5 - 15.5 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44		9.5 - 10.5 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44	1/27/2017	2.5 - 3.5 ft			1.2	1	1.2	1
so	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44	1/27/2017	3.5 - 5 ft	1		0.017	1	0.018	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1D	8/9/2017	1 - 2 ft	1		5.511		3.310	•
so	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1D	8/9/2017	2 - 3 ft	1					
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1D	8/9/2017	3 - 4 ft	1					
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1H	8/9/2017	2 - 3 ft	1					,
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1H	8/9/2017	3 - 4 ft	1					,
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1H SUSDP44-2N	8/9/2017	1 - 2 ft	1					
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-2N	8/9/2017	2 - 3 ft	1					
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP44-2N	8/10/2017	2 - 3 It 1 - 2 ft	1		0.13	1	0.14	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50	8/10/2017	2 - 3 ft	1		0.13	1	0.14	1
SO		mg/kg				2 - 3 ft			0.30	I	U. 4 0	1
	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50-2A	8/8/2017		-					
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50-2A	8/15/2017	1 - 2 ft	-					
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50-3A	1/30/2018	1 - 2 ft	1					
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1A	1/27/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1B	1/25/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1C	1/25/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1D	1/25/2017	0 - 1 ft	<u> </u>	1				

1					0 "	5 4			D () "	5.5 () 1	D ()	5.5 ()
Matrix	horizon	Units	Area	Location	Collected	Depth	Arsenic	D_Arsenic	Benzo(a)anthracene	D_Benzo(a)anthracene	Benzo(a)pyrene	D_Benzo(a)pyrene
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1E	1/25/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1F	1/27/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1G	1/27/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1H	1/27/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1H	2/3/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2A	3/23/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2B	3/23/2017	0 - 1 ft						
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2D	3/23/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2E	3/23/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2F	3/22/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2L	3/22/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2M	3/22/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2N	3/22/2017	0 - 1 ft						
		0	0									
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-20	3/22/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2P	3/23/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS12-1B	1/25/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS12-1D	1/25/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS12-1F	1/25/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS12-1H	1/25/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1A	1/27/2017	1.5 - 2.5 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1B	1/27/2017	1.5 - 2.5 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1C	1/25/2017	1.5 - 2.5 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1E	1/25/2017	1.5 - 2.5 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1F	1/25/2017	1.5 - 2.5 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1G	1/25/2017	1.5 - 2.5 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	2/5/2013	0.5 - 1 ft	13	1	0.3	1	0.33	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	1/27/2017	0.5 - 1 ft	13	'	0.28	1	0.33	1
SO					8/8/2017				0.20	'	0.20	'
	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3F		0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3G	8/8/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-4NW	1/30/2018	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	2/6/2013	0 - 1 ft	14	1	1.7	1	1.8	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	1/26/2017	0 - 1 ft			0.11	1	0.089	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	1/25/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	0 - 1 ft			2	1	1.9	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	1/25/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017	0 - 1 ft			0.98	1	0.81	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	1/25/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	0 - 1 ft			0.46	1	0.39	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	1/25/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/11/2017	0 - 1 ft			1	1	0.82	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-2K	1/30/2018	0 - 1 ft			0.13	1	0.13	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-3A	2/1/2018	0 - 1 ft			0.13	1	0.13	<u></u>
SO			0	SUSDP12-3A SUSDP43		0 - 1 ft			0.26	1	0.22	<u> </u>
	Surface	mg/kg	Salvage Yard and Waste Storage Area		1/26/2017							
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	0 - 1 ft			2	1	1.9	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	0 - 1 ft			2.2	1	2	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3P	1/30/2018	0 - 1 ft			0.14	1	0.13	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3T	1/30/2018	0 - 1 ft			2.5	1	2.5	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-4SW	2/23/2018	0 - 1 ft			0.18	1	0.17	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-5NW	3/15/2018	0 - 1 ft			0.14	0	0.14	0
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44	1/27/2017	1.5 - 2.5 ft			0.85	1	0.84	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1D	1/25/2017	1.5 - 2.5 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1H	1/27/2017	1.5 - 2.5 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50	1/26/2017	0 - 1 ft	7.1	1	0.062	1	0.03	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50-2A	8/8/2017	0 - 1 ft			-			
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50-3A	1/30/2018	0 - 1 ft						
00	Junaos	g/.kg	Carrage Tara and Tracto Clorage Area	550D1 00 0A	.,00,2010	0 116	1	1			<u> </u>	

Matrix	hasi-aa	Units	A == 0	Lasation	Callantad	Danth	Danna/h\fluoraathaaa	D. Danna/h\fluorenthana	Danna (Ir) fluore ath an a	D. Danna (II) fluorenth and	Chrisana	D. Christian	Cabalt	D. Cahali
Matrix	horizon		Area	Location	Collected	Depth		D_Benzo(b)fluoranthene	. ,	. ,	-	D_Chrysene		D_Cobait
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	DP26	3/28/2013		0.24	1	0.13	1	0.23	1	4.4	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	DP26		13.5 - 14.5 f	0.0076	0	0.0076	0	0.0076	0	4.5	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	5/15/2013									
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10		14.5 - 15.5 f	i							
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	6/10/2013	9.5 - 10.5 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	1/27/2017	1 - 2 ft	0.95	1	0.37	1	0.74	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	1/27/2017	2 - 5 ft	0.16	1	0.061	1	0.13	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3F	8/8/2017	1 - 2 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3G	8/8/2017	1 - 2 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3G	8/8/2017	2 - 3 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	1 - 2 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	2 - 3 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	3 - 4 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	4 - 5 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-4E	2/1/2018	1 - 2 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-4NW	1/30/2018	1 - 2 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-4NW	1/30/2018	2 - 3 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-4NW	1/30/2018	3 - 4 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	6/13/2013	4.5 - 5.5 ft	1.3	1	0.56	1	1.4	1		-
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	6/13/2013		0.046	1	0.019	1	0.05	1	2.9	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	6/13/2013	14.5 - 15.5 f	0.039	1	0.026	<u> </u>	0.05	1	2.0	
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	1/26/2017	1 - 2 ft	0.084	1	0.020	1	0.098	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	1/26/2017	2 - 5 ft	120	1	52	1	97	1		
SO			, ,	SUSDP12		5 - 10 ft	1.6	<u>'</u> 1	0.61	1	1.3	1		
-	Subsurface	mg/kg	Salvage Yard and Waste Storage Area		1/30/2017			1				1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	1/30/2017	10 - 15 ft	3.5	-	1.2	1	3.1			
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	1/30/2017	14.5 - 15.5 f	0.59	1	0.23	1	0.66	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	1 - 2 ft	190	1	71	1	180	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	2 - 3 ft	4.4	1	0.97	1	3.4	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	3 - 4 ft	1.3	1	0.36	1	1	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	4 - 5 ft	1.1	1	0.38	1	0.92	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	10 - 11 ft	4.8	1	1.9	1	4.8	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	11 - 12 ft	0.086	1	0.031	1	0.074	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	12 - 13 ft	0.0073	1	0.0085	0	0.0054	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	13 - 14 ft	0.0086	0	0.0086	0	0.0086	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	14 - 15 ft	0.0087	0	0.0087	0	0.0087	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017	1 - 2 ft	0.081	1	0.02	1	0.077	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017	2 - 3 ft	0.92	1	0.33	1	0.84	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017	3 - 4 ft	5.8	1	2.1	1	5.1	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017	4 - 5 ft	19	1	6.2	1	17	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/23/2017	5 - 6 ft	0.61	1	0.23	1	0.51	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/23/2017	10 - 11 ft	0.61	1	0.19	1	0.53	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/23/2017	11 - 12 ft	0.17	1	0.04	1	0.13	1		-
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	1 - 2 ft	0.26	1	0.07	1	0.19	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	2 - 3 ft	0.031	1	0.012	1	0.024	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	3 - 4 ft	0.0084	0	0.0084	0	0.0034	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	4 - 5 ft	0.0088	0	0.0088	0	0.0042	1		-
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/23/2017	10 - 11 ft	0.0077	0	0.003	1	0.0033	1		-
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/23/2017	11 - 12 ft	0.0079	0	0.0079	0	0.0079	0		-
so	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/23/2017	12 - 13 ft	0.0082	0	0.0082	0	0.0082	0		-
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/23/2017	13 - 14 ft	0.0081	0	0.0081	0	0.0081	0		-
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/23/2017	14 - 15 ft	0.008	0	0.008	0	0.008	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/11/2017	1 - 2 ft	51	1	24	1	51	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/11/2017	2 - 3 ft	1.1	1	0.46	1	1.1	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/11/2017	3 - 4 ft	0.0077	0	0.0077	0	0.0077	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/11/2017	4 - 5 ft	0.0077	0	0.0077	0	0.0077	0		
	Subsurface			SUSDP12-1G	8/23/2017		0.0083	0	0.0083	0	0.0065	0		
30	Jupauriace	mg/kg	Carvage Taru and Waste Storage Area	303DF 12-1G	0/20/2017	10-1111	0.0091	U	0.0091	U	0.0091	U		

Matrix	horizon	Units	Area	Location	Collected	Depth	Panza(h)fluaranthana	D_Benzo(b)fluoranthene	Panza(k)fluaranthana	D. Banza(k)fluoranthana	Chrysono	D. Chrysons	Cobolt	D. Coholt
						·	. ,	, ,	. ,	. ,			Cobail	D_Cobait
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	11 - 12 ft	0.009	0	0.009	0	0.009	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	12 - 13 ft	0.0089	0	0.0089	0	0.0089	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	13 - 14 ft	0.0083	0	0.0083	0	0.0083	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	14 - 15 ft	0.008	0	0.008	0	0.008	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-2K	1/30/2018	1 - 2 ft	0.39	1	0.1	1	0.13	1		ļ
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-3A	2/1/2018	1 - 2 ft	0.39	1	0.47	1	0.55	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-3A	2/1/2018	2 - 3 ft	0.13	1	0.039	1	0.12	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-3A	3/28/2018	10 - 11 ft	0.24	1	0.12	1	0.23	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	5/17/2013	3.5 - 4.5 ft							4.1	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	6/7/2013	14.5 - 15.5 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	6/7/2013	9.5 - 10.5 ft							4.8	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	1/26/2017	1 - 2 ft	1.4	1	0.44	1	1.1	1	7.0	
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	1/26/2017	2 - 5 ft	7.8	1	2.9	1	6.4	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	1/30/2017	5 - 10 ft	0.42	1	0.17	1	0.36	1		
\vdash			0 0											
	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	1/30/2017	10 - 15 ft	0.53	1	0.2	1	0.44	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	1 - 2 ft	14	1	6.1	1	14	11		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	2 - 3 ft	0.73	1	0.3	1	0.69	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	3 - 4 ft	0.053	1	0.031	1	0.053	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	4 - 5 ft	0.089	1	0.04	1	0.078	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	1 - 2 ft	14	1	4.2	1	10	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	2 - 3 ft	0.23	1	0.082	1	0.2	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	3 - 4 ft	0.14	1	0.04	1	0.12	1		ļ
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	4 - 5 ft	0.021	1	0.009	1	0.017	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3A	8/10/2017	1 - 2 ft	0.14	1	0.052	1	0.15	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3A	8/10/2017	2 - 3 ft	0.033	1	0.013	1	0.033	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3A	8/10/2017	3 - 4 ft	0.078	1	0.031	1	0.086	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3A	8/10/2017	4 - 5 ft	0.18	1	0.073	1	0.19	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3P	1/30/2018	1 - 2 ft	510	1	200	1	450	1		
	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3P	1/30/2018	2 - 3 ft	2.7	1	1.1	1	2	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3T	1/30/2018	1 - 2 ft	1.9	1	0.59	1	1.1	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-4NW	2/23/2018	1 - 2 ft	6.5	1	1.8	1	4.7	1		
SO	Subsurface	0 0	Salvage Yard and Waste Storage Area	SUSDP43-4NW	2/23/2018	2 - 3 ft	0.039	1	0.01	<u>'</u> 1	0.027	1		
SO		mg/kg	0 0					1	0.39					
	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-4SW	2/23/2018	1 - 2 ft	1.4	•		1	0.89	1		
\vdash	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-4SW	2/23/2018	2 - 3 ft	0.48	1	0.13	1	0.3	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-5NW	3/15/2018	1 - 2 ft	0.012	1	0.0058	1	0.0089	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44	5/21/2013	2.5 - 3.5 ft							3.3	1
	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44		14.5 - 15.5 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44	6/10/2013	9.5 - 10.5 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44	1/27/2017	2.5 - 3.5 ft	1.8	1	0.58	1	1.4	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44	1/27/2017	3.5 - 5 ft	0.027	1	0.0094	1	0.019	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1D	8/9/2017	1 - 2 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1D	8/9/2017	2 - 3 ft		-						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1D	8/9/2017	3 - 4 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1H	8/9/2017	2 - 3 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1H	8/9/2017	3 - 4 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-2N	8/9/2017	1 - 2 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-2N	8/9/2017	2 - 3 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50	8/10/2017	1 - 2 ft	0.35	1	0.3	0	0.28	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50	8/10/2017	2 - 3 ft	0.45	1	0.13	1	0.25	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50-2A	8/8/2017	2 - 3 ft	0.40	'	5.15	<u> </u>	0.00			
SO	Subsurface	0 0	Salvage Yard and Waste Storage Area	SUSDP50-2A	8/15/2017	1 - 2 ft								
		mg/kg	•											
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50-3A	1/30/2018	1 - 2 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1A	1/27/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1B	1/25/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1C	1/25/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1D	1/25/2017	0 - 1 ft								

Matrix	horizon	Units	Area	Location	Collected	Depth	Benzo(b)fluoranthene	D_Benzo(b)fluoranthene	Benzo(k)fluoranthene	D_Benzo(k)fluoranthene	Chrysene	D_Chrysene	Cobalt	D_Cobalt
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1E	1/25/2017	0 - 1 ft	. ,	_	()	_	,			_
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1F	1/27/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1G	1/27/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1H	1/27/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1H	2/3/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2A	3/23/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2B	3/23/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2D	3/23/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2E	3/23/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2F	3/22/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2L	3/22/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2M	3/22/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2N	3/22/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-20	3/22/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2P	3/23/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS12-1B	1/25/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS12-1D	1/25/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS12-1F	1/25/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS12-1H	1/25/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1A	1/27/2017	1.5 - 2.5 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1B	1/27/2017	1.5 - 2.5 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1C	1/25/2017	1.5 - 2.5 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1E	1/25/2017	1.5 - 2.5 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1F	1/25/2017	1.5 - 2.5 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1G	1/25/2017	1.5 - 2.5 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	2/5/2013	0.5 - 1 ft	0.37	1	0.17	1	0.37	1	9.6	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	1/27/2017	0 - 1 ft	0.38	1	0.18	1	0.4	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3F	8/8/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3G	8/8/2017	0 - 1 ft								
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-4NW	1/30/2018	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	2/6/2013	0 - 1 ft	2.4	1	0.77	1	2	1	4.4	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	1/26/2017	0 - 1 ft	0.16	1	0.051	1	0.13	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	1/25/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	0 - 1 ft	2.3	1	0.72	1	1.9	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	1/25/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017	0 - 1 ft	1	1	0.49	1	0.95	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	1/25/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	0 - 1 ft	0.66	1	0.23	1	0.56	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	1/25/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/11/2017	0 - 1 ft	1.4	1	0.35	1	1.1	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-2K	1/30/2018	0 - 1 ft	0.19	1	0.071	1	0.13	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-3A	2/1/2018	0 - 1 ft	0.53	1	0.18	1	0.43	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	1/26/2017	0 - 1 ft	0.46	1	0.3	1	0.41	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	0 - 1 ft	2.9	1	0.83	1	1.9	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	0 - 1 ft	2.8	1	0.48	1	2.1	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3P	1/30/2018	0 - 1 ft	0.18	1	0.1	1	0.14	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3T	1/30/2018	0 - 1 ft	5	1	1.3	1	2.5	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-4SW	2/23/2018	0 - 1 ft	0.3	1	0.11	1	0.21	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-5NW	3/15/2018	0 - 1 ft	0.14	0	0.14	0	0.14	0		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44	1/27/2017	1.5 - 2.5 ft	1	1	0.36	1	0.88	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1D	1/25/2017	1.5 - 2.5 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1H	1/27/2017	1.5 - 2.5 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50	1/26/2017	0 - 1 ft	0.072	1	0.027	1	0.086	1	17	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50-2A	8/8/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50-3A	1/30/2018	0 - 1 ft								
			3				1				1			

							I I			
Matrix		Units	Area	Location	Collected			D_Dibenzo(a,h)anthracene D		D_Diesel Range Organics (C10-C20)
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	DP26	3/28/2013	3.5 - 4.5 ft	0.055	1	19	0
	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	DP26		13.5 - 14.5 ft	0.0076	0	19	0
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	5/15/2013	4.5 - 5.5 ft			19	0
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	6/10/2013	14.5 - 15.5 ft			20	0
SO	Subsurface	mg/kg		SUSDP10	6/10/2013	9.5 - 10.5 ft			19	0
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	1/27/2017	1 - 2 ft	0.18	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	1/27/2017	2 - 5 ft	0.023	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3F	8/8/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3G	8/8/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3G	8/8/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	3 - 4 ft				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	4 - 5 ft				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-4E	2/1/2018	1 - 2 ft				
SO	Subsurface	mg/kg	· ·	SUSDP10-4NW	1/30/2018	1 - 2 ft				
SO	Subsurface	mg/kg	· ·	SUSDP10-4NW	1/30/2018	2 - 3 ft				
so	Subsurface	mg/kg	-	SUSDP10-4NW	1/30/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	6/13/2013	4.5 - 5.5 ft	0.2	1	370	0
	Subsurface	mg/kg	· ·	SUSDP12		9.5 - 10.5 ft	0.01	1	75	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	6/13/2013	14.5 - 15.5 ft	0.044	0	22	0
	Subsurface	mg/kg	Ü	SUSDP12	1/26/2017	1 - 2 ft	0.012	1		Ü
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	1/26/2017	2 - 5 ft	16	1		
SO	Subsurface	mg/kg	-	SUSDP12	1/30/2017	5 - 10 ft	0.32	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	1/30/2017	10 - 15 ft	0.5	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	1/30/2017	14.5 - 15.5 ft	0.12	1		
SO	Subsurface	mg/kg	-	SUSDP12-1A	8/10/2017	1 - 2 ft	1.7	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	2 - 3 ft	0.86	0		
	Subsurface	mg/kg		SUSDP12-1A	8/10/2017	3 - 4 ft	0.25	1		
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	4 - 5 ft	0.23	1		
SO		mg/kg	· ·	SUSDP12-1A	8/23/2017	10 - 11 ft	0.23			
SO	Subsurface Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	10 - 11 It	0.018	1		
		mg/kg	-							
	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	12 - 13 ft	0.0085	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	13 - 14 ft	0.0086	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	14 - 15 ft	0.0087	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017	1 - 2 ft	0.017	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017	2 - 3 ft	0.16	1		
SO	Subsurface	mg/kg	-	SUSDP12-1C	8/10/2017	3 - 4 ft	1	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017	4 - 5 ft	3.1	1		
SO	Subsurface	mg/kg	-	SUSDP12-1C	8/23/2017	5 - 6 ft	0.029	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/23/2017	10 - 11 ft	0.11	1		
SO	Subsurface	mg/kg	-	SUSDP12-1C	8/23/2017	11 - 12 ft	0.027	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	1 - 2 ft	0.047	1		
	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	2 - 3 ft	0.0061	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	3 - 4 ft	0.0084	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	4 - 5 ft	0.0088	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/23/2017	10 - 11 ft	0.0077	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/23/2017	11 - 12 ft	0.0079	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/23/2017	12 - 13 ft	0.0082	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/23/2017	13 - 14 ft	0.0081	0		
SO	Subsurface	mg/kg		SUSDP12-1E	8/23/2017	14 - 15 ft	0.008	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/11/2017	1 - 2 ft	9.8	1		
	Subsurface	mg/kg	-	SUSDP12-1G	8/11/2017	2 - 3 ft	0.24	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/11/2017	3 - 4 ft	0.0077	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/11/2017	4 - 5 ft	0.0085	0		
			Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	10 - 11 ft	0.0091	0		
		٠ع	J					-		

					П					
Matrix		Units	Area	Location	Collected		, , ,	D_Dibenzo(a,h)anthracene	Diesel Range Organics (C10-C20)	D_Diesel Range Organics (C10-C20)
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	11 - 12 ft	0.009	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	12 - 13 ft	0.0089	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	13 - 14 ft	0.0083	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	14 - 15 ft	0.008	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-2K	1/30/2018	1 - 2 ft	0.058	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-3A	2/1/2018	1 - 2 ft	0.097	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-3A	2/1/2018	2 - 3 ft	0.21	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-3A	3/28/2018	10 - 11 ft	0.036	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	5/17/2013	3.5 - 4.5 ft			20	0
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	6/7/2013	14.5 - 15.5 ft			150	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	6/7/2013	9.5 - 10.5 ft			20	0
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	1/26/2017	1 - 2 ft	0.16	1		
so	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	1/26/2017	2 - 5 ft	1.1	1		
so	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	1/30/2017	5 - 10 ft	0.059	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	1/30/2017	10 - 15 ft	0.1	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	1 - 2 ft	2.3	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	2 - 3 ft	0.15	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	3 - 4 ft	0.012	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	4 - 5 ft	0.018	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	1 - 2 ft	1.2	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	2 - 3 ft	0.044	1		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	3 - 4 ft	0.021	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	4 - 5 ft	0.0053	1		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3A	8/10/2017	1 - 2 ft	0.0033	1	360	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3A	8/10/2017	2 - 3 ft	0.0082	0	300	'
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3A	8/10/2017	3 - 4 ft	0.0082	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3A	8/10/2017	4 - 5 ft	0.005	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3P	1/30/2018	1 - 2 ft	62	1		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3P	1/30/2018	2 - 3 ft	0.5	1		
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP43-3T	1/30/2018	1 - 2 ft	0.39	1		
SO		mg/kg mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-4NW	2/23/2018	1 - 2 ft	0.84	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-4NW	2/23/2018	2 - 3 ft	0.0083	1		
SO	Subsurface		-	SUSDP43-4NW	2/23/2018	1 - 2 ft	0.0063	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area Salvage Yard and Waste Storage Area	SUSDP43-4SW	2/23/2018	2 - 3 ft	0.18	1		
		mg/kg	ŏ					•		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-5NW	3/15/2018	1 - 2 ft	0.0076	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44	5/21/2013	2.5 - 3.5 ft			67	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44		14.5 - 15.5 ft			21	0
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP44		9.5 - 10.5 ft			18	0
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44	1/27/2017	2.5 - 3.5 ft	0.2	1		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP44	1/27/2017	3.5 - 5 ft	0.0046	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1D	8/9/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1D	8/9/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1D	8/9/2017	3 - 4 ft				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1H	8/9/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1H	8/9/2017	3 - 4 ft				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-2N	8/9/2017	1 - 2 ft				
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-2N	8/9/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50	8/10/2017	1 - 2 ft	0.3	0	7900	1
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP50	8/10/2017	2 - 3 ft	0.053	1	98	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50-2A	8/8/2017	2 - 3 ft			20	0
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50-2A	8/15/2017	1 - 2 ft			700	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50-3A	1/30/2018	1 - 2 ft			470	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1A	1/27/2017	0 - 1 ft				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1B	1/25/2017	0 - 1 ft				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1C	1/25/2017	0 - 1 ft				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1D	1/25/2017	0 - 1 ft				

SO	horizon	Units	Area	Location	Collected	Depth	Dibenzo(a.h)anthracene	שום שו penzo(a.h)anthracene	Diesel Range Organics (C10-C20)	D_Diesel Range Organics (C10-C20)
00	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1E	1/25/2017	0 - 1 ft	(4,)		31 1 31 1 31	
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1F	1/27/2017	0 - 1 ft				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1G	1/27/2017	0 - 1 ft				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1H	1/27/2017	0 - 1 ft				
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1H	2/3/2017	0 - 1 ft				
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2A	3/23/2017	0 - 1 ft				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2B	3/23/2017	0 - 1 ft				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2D	3/23/2017	0 - 1 ft				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2E	3/23/2017	0 - 1 ft				
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2F	3/22/2017	0 - 1 ft				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2L	3/22/2017	0 - 1 ft				
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2M	3/22/2017	0 - 1 ft				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2N	3/22/2017	0 - 1 ft				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-20	3/22/2017	0 - 1 ft				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2P	3/23/2017	0 - 1 ft				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS12-1B	1/25/2017	0 - 1 ft				
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS12-1D	1/25/2017	0 - 1 ft				
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS12-1F	1/25/2017	0 - 1 ft				
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS12-1H	1/25/2017	0 - 1 ft				
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1A	1/27/2017	1.5 - 2.5 ft				
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1B	1/27/2017	1.5 - 2.5 ft				
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1C	1/25/2017	1.5 - 2.5 ft				
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1E	1/25/2017	1.5 - 2.5 ft				
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1F	1/25/2017	1.5 - 2.5 ft				
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1G	1/25/2017	1.5 - 2.5 ft				
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	2/5/2017	0.5 - 1 ft	0.065	1	98	1
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	1/27/2017	0.5 - 1 ft	0.065	1	98	'
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3F	8/8/2017	0 - 1 ft	0.077	'		
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3F	8/8/2017	0 - 1 ft				
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	0 - 1 ft				
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	1/30/2017	0 - 1 ft				
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-4NW	2/6/2013	0 - 1 ft	0.42	1	79	1
SO	Surface		Salvage Yard and Waste Storage Area	SUSDP12	1/26/2017	0 - 1 ft	0.02	1	79	'
so		mg/kg	· ·	SUSDP12-1A	1/25/2017	0 - 1 ft	0.02	ı		
so	Surface	mg/kg	Salvage Yard and Waste Storage Area			0 - 1 ft	0.72	0		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017		0.72	U		
	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	1/25/2017	0 - 1 ft 0 - 1 ft	0.07	0		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017		0.07	U		
	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	1/25/2017	0 - 1 ft	0.44	4		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	0 - 1 ft	0.11	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	1/25/2017	0 - 1 ft	0.25	1		
	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/11/2017	0 - 1 ft	0.25	1 1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-2K	1/30/2018	0 - 1 ft				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-3A	2/1/2018	0 - 1 ft	0.063	1		
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	1/26/2017	0 - 1 ft	0.07	0		
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	0 - 1 ft	0.35	1		
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	0 - 1 ft	0.28	1		
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3P	1/30/2018	0 - 1 ft	0.025	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3T	1/30/2018	0 - 1 ft	0.51	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-4SW	2/23/2018	0 - 1 ft	0.053	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-5NW	3/15/2018	0 - 1 ft	0.14	0		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44	1/27/2017	1.5 - 2.5 ft	0.16	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1D	1/25/2017	1.5 - 2.5 ft				
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1H	1/27/2017	1.5 - 2.5 ft				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50	1/26/2017	0 - 1 ft	0.011	1	2900	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50-2A	8/8/2017	0 - 1 ft			3400	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50-3A	1/30/2018	0 - 1 ft			20	1

N. A. o. Carlos	to a stance	11-21-	A	1 1	0-1111	Donath	1-1(4.0.01)	D. I. d (4.00 - 1)		D. M	Marshith along D	No obtheten	lar at a d	D. Mister
Matrix		Units	Area	Location	Collected	Depth		D_Indeno(1,2,3-cd)pyrene	_	D_Manganese		_Naphthalene		D_Nickel
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	DP26	3/28/2013	3.5 - 4.5 ft	0.15	1	80	1	0.1	1	5.6	1
	Subsurface		Salvage Yard and Waste Storage Area	DP26		13.5 - 14.5 ft	0.0076	0	43	1	0.0076	0	2.5	1
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	5/15/2013	4.5 - 5.5 ft								
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP10		14.5 - 15.5 ft								
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP10		9.5 - 10.5 ft								
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	1/27/2017	1 - 2 ft	0.48	1			0.038	1		
so		0 0	Salvage Yard and Waste Storage Area	SUSDP10	1/27/2017	2 - 5 ft	0.092	1			0.0058	1		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3F	8/8/2017	1 - 2 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3G	8/8/2017	1 - 2 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3G	8/8/2017	2 - 3 ft								
so	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	1 - 2 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	2 - 3 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	3 - 4 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	4 - 5 ft								
so	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-4E	2/1/2018	1 - 2 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-4NW	1/30/2018	1 - 2 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-4NW	1/30/2018	2 - 3 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-4NW	1/30/2018	3 - 4 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	6/13/2013	4.5 - 5.5 ft	0.7	1			0.1	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	6/13/2013	9.5 - 10.5 ft	0.033	1	24	1	0.0067	1	4.2	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	6/13/2013	14.5 - 15.5 ft	0.029	1			0.0038	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	1/26/2017	1 - 2 ft	0.032	1			0.026	1		
so		mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	1/26/2017	2 - 5 ft	59	1			1.6	1		
so			Salvage Yard and Waste Storage Area	SUSDP12	1/30/2017	5 - 10 ft	1	1			0.35	1		
so		mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	1/30/2017	10 - 15 ft	1.7	1			0.069	1		
so		mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	1/30/2017	14.5 - 15.5 ft	0.37	1			0.024	1		
so		mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	1 - 2 ft	110	1			30	1		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	2 - 3 ft	2.4	1			0.43	1		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	3 - 4 ft	0.77	1			0.099	1		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	4 - 5 ft	0.69	1			0.038	1		
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	10 - 11 ft	2.9	1			0.22	1		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	11 - 12 ft	0.052	1			0.013	1		
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	12 - 13 ft	0.0034	1			0.0085	0		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	13 - 14 ft	0.0086	0			0.0086	0		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	14 - 15 ft	0.0087	0			0.0087	0		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017	1 - 2 ft	0.0007	1			0.0087	1		
SO					8/10/2017	2 - 3 ft	0.51	1			0.01	1		
SO		mg/kg mg/kg	Salvage Yard and Waste Storage Area Salvage Yard and Waste Storage Area	SUSDP12-1C SUSDP12-1C	8/10/2017	2 - 3 II 3 - 4 ft	3.2	1			0.04	1		
		0						1				1		
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017	4 - 5 ft	10	1			1.1	1	1	
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP12-1C	8/23/2017	5 - 6 ft	0.35	1			0.084	1	1	
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/23/2017	10 - 11 ft	0.41	1			0.26		1	
SO	Subsurface	0	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/23/2017	11 - 12 ft	0.1				0.022	1 1		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	1 - 2 ft	0.13	1			0.078	1 1		
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	2 - 3 ft	0.018	1			0.0039	1		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	3 - 4 ft	0.0084	0			0.0084	0	1	
SO		0	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	4 - 5 ft	0.0088	0			0.0088	0	1	
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/23/2017	10 - 11 ft	0.0077	0			0.0077	0		
SO		٥	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/23/2017	11 - 12 ft	0.0079	0			0.0079	0		
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP12-1E	8/23/2017	12 - 13 ft	0.0082	0			0.0082	0		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/23/2017	13 - 14 ft	0.0081	0			0.0081	0		
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP12-1E	8/23/2017	14 - 15 ft	0.008	0			0.008	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/11/2017	1 - 2 ft	33	1			3.8	1		
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP12-1G	8/11/2017	2 - 3 ft	0.78	1			0.06	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/11/2017	3 - 4 ft	0.0077	0			0.0077	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/11/2017	4 - 5 ft	0.0085	0			0.0085	0	<u> </u>	
SO	Subsurface	ma/ka	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	10 - 11 ft	0.0091	0		-	0.0091	0		

Matrix	horizon	Units	Area	Location	Collected			D_Indeno(1,2,3-cd)pyrene	Manganese D_Ma	nganese N			Nickel	D_Nickel
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	11 - 12 ft	0.009	0			0.009	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	12 - 13 ft	0.0089	0			0.0089	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	13 - 14 ft	0.0083	0			0.0083	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	14 - 15 ft	0.008	0			0.008	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-2K	1/30/2018	1 - 2 ft	0.18	1			0.041	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-3A	2/1/2018	1 - 2 ft	0.3	1			0.1	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-3A	2/1/2018	2 - 3 ft	0.17	1			0.079	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-3A	3/28/2018	10 - 11 ft	0.12	1			0.013	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	5/17/2013	3.5 - 4.5 ft			53	1			13	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	6/7/2013	14.5 - 15.5 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	6/7/2013	9.5 - 10.5 ft			140	1			15	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	1/26/2017	1 - 2 ft	0.63	1			0.15	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	1/26/2017	2 - 5 ft	3.6	1			0.83	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	1/30/2017	5 - 10 ft	0.24	1			0.063	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	1/30/2017	10 - 15 ft	0.32	1			0.03	1		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	1 - 2 ft	9.1	1			0.46	1		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	2 - 3 ft	0.52	1			0.0084	1		
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	3 - 4 ft	0.041	1			0.0081	0		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	4 - 5 ft	0.063	1			0.0078	0		
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	1 - 2 ft	5.5	1			0.41	1		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	2 - 3 ft	0.15	1			0.0091	1		
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	3 - 4 ft	0.082	1			0.0031	1		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	4 - 5 ft	0.016	1			0.0039	0		
SO	Subsurface							1			0.0082	1		
			Salvage Yard and Waste Storage Area	SUSDP43-3A	8/10/2017	1 - 2 ft	0.067	1						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3A	8/10/2017	2 - 3 ft	0.014	·			0.014	1		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3A	8/10/2017	3 - 4 ft	0.035	1			0.045	1		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3A	8/10/2017	4 - 5 ft	0.08	1			0.058	1		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3P	1/30/2018	1 - 2 ft	260	1			130	1		
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP43-3P	1/30/2018	2 - 3 ft	1.5	1			0.32	0		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3T	1/30/2018	1 - 2 ft	1.1	1			0.092	1		
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP43-4NW	2/23/2018	1 - 2 ft	2.7	1			0.36	1		
so	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-4NW	2/23/2018	2 - 3 ft	0.02	1			0.007	1		
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP43-4SW	2/23/2018	1 - 2 ft	0.58	1			0.27	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-4SW	2/23/2018	2 - 3 ft	0.27	1			0.19	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-5NW	3/15/2018	1 - 2 ft	0.0094	1			0.0018	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44	5/21/2013	2.5 - 3.5 ft			110	1			6	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44	6/10/2013	14.5 - 15.5 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44	6/10/2013	9.5 - 10.5 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44	1/27/2017	2.5 - 3.5 ft	0.76	1			0.16	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44	1/27/2017	3.5 - 5 ft	0.013	1			0.0019	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1D	8/9/2017	1 - 2 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1D	8/9/2017	2 - 3 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1D	8/9/2017	3 - 4 ft								
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP44-1H	8/9/2017	2 - 3 ft								
so	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1H	8/9/2017	3 - 4 ft								
so			Salvage Yard and Waste Storage Area	SUSDP44-2N	8/9/2017	1 - 2 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-2N	8/9/2017	2 - 3 ft								
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP50	8/10/2017	1 - 2 ft	0.15	1			0.3	0		
SO			Salvage Yard and Waste Storage Area	SUSDP50	8/10/2017	2 - 3 ft	0.3	1			0.17	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50-2A	8/8/2017	2 - 3 ft	2.0	,				-		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP50-2A	8/15/2017	1 - 2 ft								
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50-2A	1/30/2018	1 - 2 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1A	1/27/2017	0 - 1 ft								
SO			•		1/27/2017									
	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1B		0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1C	1/25/2017	0 - 1 ft								
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1D	1/25/2017	0 - 1 ft								

Surface Post Surf								L			1	I		
Societies Soci	Matrix	horizon	Units	Area	Location	Collected	Depth	Indeno(1,2,3-cd)pyrene	D_Indeno(1,2,3-cd)pyrene	Manganese D_Manga	inese Naphthalene	D_Naphthalene	Nickel	D_Nickel
Societies Particle				· ·										
So Surface mykle Subage Yard and Wasse Storage Ares SUSY-0+11 SUZZ0017 0-1 ft		Surface	mg/kg	-			0 - 1 ft							
So Surface mg/st Surfa		Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1G	1/27/2017	0 - 1 ft							
Sociation Complete	SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1H	1/27/2017	0 - 1 ft							
So	SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1H	2/3/2017	0 - 1 ft							
So Surface mykg Savinger Yand and Wases Storage Area \$3519-20 \$222017 0-1 ft	SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2A	3/23/2017	0 - 1 ft							
So Surface mg/kg Sarkoye Yeard and Wates Storage Area SUS10-2E S2/22/017 0 - 1 ft	so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2B	3/23/2017	0 - 1 ft							
SO Surface mg/lg Sulvage Yand and Waters Storage Area SUSTO-2E 2222017 0-1 ft	SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2D	3/23/2017	0 - 1 ft							
Stufface mg/kg sharpe Yand and Waters Storage Area SUSTICAL	SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2E	3/23/2017	0 - 1 ft							
Surface mg/kg Savinger Varied and Waters Storage Area SUSTIC-2M 2222017 0-1 ft	SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2F	3/22/2017	0 - 1 ft							
So Surface mg/kg Salvage Yard and Water Storage Area SUS19-2N 32/22/017 0 - 1 ft	SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2L	3/22/2017	0 - 1 ft							
So Surface mg/kg Salvage Yard and Wates Storage Area SUS19-20 32/22/017 0-1 ft	SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2M	3/22/2017	0 - 1 ft							
So Surface	SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2N	3/22/2017	0 - 1 ft							
So Surface So Surface Surf	SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-20	3/22/2017	0 - 1 ft							
So Surface So	so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2P	3/23/2017	0 - 1 ft							
So Surface So Surface So Surface Surface Sussessment Sussess	so	Surface		· ·	SUS12-1B	1/25/2017	0 - 1 ft							
So Surface So				· ·										
So Surface Surface Surface Surface Superior Surface Superior Surface				-										
Surface Mg/Hg Subange Yard and Waste Storage Area SUS44-16 127/2017 1.5 - 2.5 ft				· ·										
Surface mg/kg Subage Yard and Waste Storage Area SUS44-16 1272/017 1.5-2.5 ft				· ·										
So Surface mg/kg Salvage Yard and Waste Storage Area SUS44-1C 125/2017 15-2.5 ft			0 0	ŭ										
Surface mg/kg Salvage Yard and Waste Storage Area SUS44-1E 1/25/2017 1.5 - 2.5 ft				ŭ										
Surface mg/kg Salvage Yard and Waste Storage Area SUSAH-1F 1/25/2017 1.5 - 2.5 ft														
Surface mg/kg Salvage Yard and Waste Storage Area SUSDP10 2/6/2013 0.5 - 1 ft 0.21 1 210 1 0.12 1 9.8				· ·										
Surface mg/kg Salvage Yard and Waste Storage Area SUSDP10 26/5/2017 0-1 ft 0.2 1 0.07 0.07				· ·										
Surface				· ·				0.21	1	210 1	0.12	1	0.8	1
SO Surface mg/kg Sakage Yard and Waste Storage Area SUSDP10-3F 8/8/2017 0 - 1 ft SO Surface mg/kg Sakage Yard and Waste Storage Area SUSDP10-3K 8/8/2017 0 - 1 ft SO Surface mg/kg Sakage Yard and Waste Storage Area SUSDP10-3K 8/8/2017 0 - 1 ft SO Surface mg/kg Sakage Yard and Waste Storage Area SUSDP10-3K 8/8/2017 0 - 1 ft SO Surface mg/kg Sakage Yard and Waste Storage Area SUSDP10-3K 8/8/2017 0 - 1 ft SO Surface mg/kg Sakage Yard and Waste Storage Area SUSDP12 2/8/2013 0 - 1 ft 1.3 1 120 1 0.23 1 27 SO Surface mg/kg Sakage Yard and Waste Storage Area SUSDP12 2/8/2013 0 - 1 ft 1.3 1 120 1 0.23 1 27 SO Surface mg/kg Sakage Yard and Waste Storage Area SUSDP12 1/8/2017 0 - 1 ft 1 1 1 0.72 0 SO Surface mg/kg Sakage Yard and Waste Storage Area SUSDP12 1/8/2017 0 - 1 ft 1 1 1 0.72 0 SO Surface mg/kg Sakage Yard and Waste Storage Area SUSDP12 1/8/2017 0 - 1 ft 1 1 1 0.72 0 SO Surface mg/kg Sakage Yard and Waste Storage Area SUSDP12 1/8/2017 0 - 1 ft 1 0.68 1 0.15 1 SUSDP12				· ·						210			3.0	
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP10-3X 8/8/2017 0 - 1 ft SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP10-3X 8/8/2017 0 - 1 ft SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP10-3X 8/8/2017 0 - 1 ft SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP10-3X 8/8/2017 0 - 1 ft SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP10-3X 8/8/2017 0 - 1 ft SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP12 1/26/2013 0 - 1 ft 1.3 1 120 1 0.23 1 27 1 1 1 1 1 1 1 1 1								0.2	ı		0.07	'		
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP10-3X 8/8/2017 0 - 1 ft 1.3 1 120 1 0.23 1 27														
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP10-4NW 1/30/2018 0 - 1 ft 1.3 1 120 1 0.23 1 27 27 27 27 28 27 28 28														
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP12 26/2017 0 - 1 ft 0.085 1 0.056				· ·										
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP12 1/26/2017 0 - 1 ft 0 .085 1 0 .0566 1				· ·				4.0	4	100 1	0.00	4	27	
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 1/25/2017 0 - 1 ft 1.4 1 0.72 0				-						120 1			21	1
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/10/2017 0 - 1 ft 1.4 1 1 0.72 0				· ·				0.085	1		0.056	1		
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 1/25/2017 0 - 1 ft 0.68 1 0.15 1 1 1 1 1 1 1 1 1				-				4.4	4		0.70	•		
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 0 - 1 ft 0.68 1 0.15 1 1 1 1 1 1 1 1 1				· ·				1.4	1		0.72	U		
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 1/25/2017 0 - 1 ft 0.37 1 0.051 1 0.055 1 0.05				· ·							0.45			
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP12-IE 8/11/2017 0 - 1 ft 0.37 1 0.051 1 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP12-IG 1/25/2017 0 - 1 ft 0.75 1 0.14 1 0.14 1 0.15 0.16 0.15 0.16				· ·				0.68	1		0.15	1		
SU Surface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 1/25/2017 0 - 1 ft 0.75 1 0.14 1 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 0 - 1 ft 0.75 1 0.14 1 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP12-3G 8/11/2017 0 - 1 ft 0.1 1 0.14 1 0.18 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP12-3A 2/1/2018 0 - 1 ft 0.22 1 0.22 1 0.22 1 0.043 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP43 2/1/2018 0 - 1 ft 0.22 1 0.043 1 0.043 1 0.043 1 0.043 1 0.043 1 0.043 1 0.043 1 0.044 0 0.045 1 0.045				· ·										
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 0 - 1 ft 0.75 1 0.14 1 0.018 1 0.014 1 0.018 1 0.014 1 0.018 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 0.018 1 0.018 0								0.37	1		0.051	1		
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP12-2K 1/30/2018 0 - 1 ft 0.1 1 0.018 1 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP12-3A 2/1/2018 0 - 1 ft 0.22 1 0.22 1 0.22 1 1 0.22 1 0.043 1 0.043 1 0.043 1 0.043 1 0.043 1 0.043 1 0.044 1 0.048 1 0.044 1 0.048 1 0.044 1 0.044 1 0.048 1 0.044 1 0.048 1 0.044 1 0.048 1 0.044 1 0.048 1 0.044 1 0.048 1 0.044 1 0.048 1 0.044 1 0.048 1 0.048 1 0.044 1 0.048 1 0.044 1 0.048 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048 0.048 1 0.048 1 0.048 1 0.048 1 0.048 1 0.048				· ·								1		
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP12-3A 2/1/2018 0 - 1 ft 0.22 1 0.043 1 0.044 1 0.044 1 0.044 1 0.044 1 0.044 1 0.044 1 0.044 1 0.044 1 0.044 1 0.044 1 0.044 1 0.044 1 0.044 1 0.044 1 0.044 1 0.044 1 0.044 1 0.044 0 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045 0.045 1 0.045 1 0.045 1 0.045 1 0.045 1 0.045				· ·					·					
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP43 1/26/2017 0 - 1 ft 1.5 1 0.043 1 1 1 1 1 1 1 1 1				ŭ				· ·						
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP43-2J 8/8/2017 0 - 1 ft 1.5 1 1.5 1 0.14 1 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP43-2M 8/9/2017 0 - 1 ft 1.3 1 0.32 1 1 1 1 1 1 1 1 1				· ·										
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP43-2M 8/9/2017 0 - 1 ft 1.3 1 0.32 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP43-3P 1/30/2018 0 - 1 ft 0.11 1 0.0084 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP43-3T 1/30/2018 0 - 1 ft 2 1 0.27 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP43-4SW 2/23/2018 0 - 1 ft 0.16 1 0.055 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP43-5NW 3/15/2018 0 - 1 ft 0.14 0 0.055 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP44-5NW 3/15/2018 0 - 1 ft 0.14 0 0.032 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP44-1D 1/25/2017 1.5 - 2.5 ft				· ·										
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP43-3P 1/30/2018 0 - 1 ft 0.11 1 0.0084 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP43-3T 1/30/2018 0 - 1 ft 2 1 0.27 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP43-4SW 2/23/2018 0 - 1 ft 0.16 1 0.055 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP43-5NW 3/15/2018 0 - 1 ft 0.14 0 0.055 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP44-11 1/27/2017 1.5 - 2.5 ft 0.44 1 0.032 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP44-11 1/27/2017 1.5 - 2.5 ft Sulface 9/2017 9/2017 1.5 - 2.5 ft 9/2017 1.5 - 2.5 ft 9/2017 9/2017 1.5 - 2.5 ft 9/2017 1.5 - 2.5 ft 9/201			0 0	ŭ					·					
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP43-3T 1/30/2018 0 - 1 ft 2 1 0.27 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP43-4SW 2/23/2018 0 - 1 ft 0.16 1 0.055 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP43-5NW 3/15/2018 0 - 1 ft 0.14 0 0.14 0 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP44 1/27/2017 1.5 - 2.5 ft 0.44 1 0.032 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP44-1D 1/25/2017 1.5 - 2.5 ft 0.044 1 0.032 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP44-1D 1/25/2017 1.5 - 2.5 ft 0.036 1 0.036 1 14 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP50-0 1/26/2017				· ·										
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP43-4SW 2/23/2018 0 - 1 ft 0.16 1 0.055 1 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP43-5NW 3/15/2018 0 - 1 ft 0.14 0 0.14 0 0.14 0 0.055 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP44 1/27/2017 1.5 - 2.5 ft 0.44 1 0.032 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP44-1D 1/25/2017 1.5 - 2.5 ft SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP44-1D 1/25/2017 1.5 - 2.5 ft SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP50 1/26/2017 0 - 1 ft 0.028 1 500 1 0.036 1 14 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP50-2A 8/8/2017 0 - 1 ft 0.028 1 SO 1 0.036 1 14 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP50-2A 8/8/2017 0 - 1 ft SO SUrface mg/kg Salvage Yard and Waste Storage Area SUSDP50-2A 8/8/2017 0 - 1 ft SO SUrface mg/kg Salvage Yard and Waste Storage Area SUSDP50-2A 8/8/2017 SO SUrface mg/kg Salvage Yard and Waste Storage Area SUSDP50-2A 8/8/2017 SO SUrface mg/kg Salvage Yard and Waste Storage Area SUSDP50-2A 8/8/2017 SO SUrface mg/kg Salvage Yard and Waste Storage Area SUSDP50-2A 8/8/2017 SO SUrface mg/kg Salvage Yard and Waste Storage Area SUSDP50-2A 8/8/2017 SO SUrface mg/kg Salvage Yard and Waste Storage Area SUSDP50-2A 8/8/2017 SO SUrface mg/kg Salvage Yard and Waste Storage Area SUSDP50-2A 8/8/2017 SO SUrface mg/kg Salvage Yard and Waste Storage Area SUSDP50-2A 8/8/2017 SO SUrface mg/kg Salvage Yard and Waste Storage Area SUSDP50-2A 8/8/2017 SO SUrface mg/kg Salvage Yard and Waste Storage Area SUSDP50-2A 8/8/2017 SO SUrface mg/kg Salvage Yard and Waste Storage Area SUSDP50-2A 8/8/2017 SO SUrface Mg/kg Salvage Yard and Waste Storage Area			- 0	ŭ										
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP43-5NW 3/15/2018 0 - 1 ft 0.14 0 0.14 0 0.032 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP44 1/27/2017 1.5 - 2.5 ft 0.44 1 0.032 1 1 1 1 1 1 1 1 1			mg/kg	ŭ										
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP44 1/27/2017 1.5 - 2.5 ft 0.44 1 0.032 1 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP44-1D 1/25/2017 1.5 - 2.5 ft SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP44-1H 1/27/2017 1.5 - 2.5 ft SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP50 1/26/2017 0 - 1 ft 0.028 1 500 1 0.036 1 14 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP50-2A 8/8/2017 0 - 1 ft		Surface	mg/kg	Salvage Yard and Waste Storage Area			0 - 1 ft				0.055			
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP44-1D 1/25/2017 1.5 - 2.5 ft SUSDP44-1D 1/25/2017 1.5 - 2.5 ft SUSDP44-1D 1/27		Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-5NW	3/15/2018			0			0		
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP44-1H 1/27/2017 1.5 - 2.5 ft SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP50 1/26/2017 0 - 1 ft 0.028 1 500 1 0.036 1 14 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP50-2A 8/8/2017 0 - 1 ft 0 0.028 1 0.036 1 14	SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44	1/27/2017	1.5 - 2.5 ft	0.44	1		0.032	1		
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP44-1H 1/27/2017 1.5 - 2.5 ft SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP50 1/26/2017 0 - 1 ft 0.028 1 500 1 0.036 1 14 SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP50-2A 8/8/2017 0 - 1 ft 0 0.028 1 0.036 1 14	SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1D	1/25/2017	1.5 - 2.5 ft							
SO Surface mg/kg Salvage Yard and Waste Storage Area SUSDP50-2A 8/8/2017 0 - 1 ft	SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1H	1/27/2017	1.5 - 2.5 ft							
	SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50	1/26/2017	0 - 1 ft	0.028	1	500 1	0.036	1	14	1
SO Surface marks Salvage Vard and Waste Storage Area SUSDE50.34 1/30/2018 0 - 1 ft	SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50-2A	8/8/2017	0 - 1 ft							
OU Outrade Imgrity Carrage Fatu and waste Storage Area SOSDE SUSSA 1/30/2010 U - Fit	SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50-3A	1/30/2018	0 - 1 ft							

					ı							
Matrix	horizon	Units	Area	Location	Collected	Depth		D_PCB, Total Aroclors (AECOM Calc)	TCDD TEQ HH	D_TCDD TEQ HH	Thallium	D_Thallium
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	DP26	3/28/2013	3.5 - 4.5 ft	0.0047	0			0.12	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	DP26	3/29/2013	13.5 - 14.5 ft	0.0047	0			0.039	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	5/15/2013	4.5 - 5.5 ft	0.0047	0	0.00000138	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	6/10/2013	14.5 - 15.5 ft	0.0099	1				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	6/10/2013	9.5 - 10.5 ft	0.0046	0				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	1/27/2017	1 - 2 ft	0.0094	1				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	1/27/2017	2 - 5 ft	0.00095	0				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3F	8/8/2017	1 - 2 ft	0.32	1	0.00000542	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3G	8/8/2017	1 - 2 ft			0.0000235	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3G	8/8/2017	2 - 3 ft			0.00000542	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	1 - 2 ft	2.2	1				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	2 - 3 ft	1.9	1				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	3 - 4 ft	1.9	1				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	4 - 5 ft	0.53	1				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-4E	2/1/2018	1 - 2 ft	0.0022	1	0.00000125	1		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-4NW	1/30/2018	1 - 2 ft	0.17	1				
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP10-4NW	1/30/2018	2 - 3 ft	0.1	 1				
SO	Subsurface	0	Salvage Yard and Waste Storage Area	SUSDP10-4NW	1/30/2018	3 - 4 ft	0.012	 1				
SO	Subsurface	0	Salvage Yard and Waste Storage Area	SUSDP12	6/13/2013	4.5 - 5.5 ft	0.39	1				
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP12	6/13/2013	9.5 - 10.5 ft	0.0051	0			0.07	1
SO	Subsurface	0	Salvage Yard and Waste Storage Area	SUSDP12	6/13/2013	14.5 - 15.5 ft	0.0054	0			0.01	
SO	Subsurface	0	Salvage Yard and Waste Storage Area	SUSDP12	1/26/2017	1 - 2 ft	0.095	1				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	1/26/2017	2 - 5 ft	1.1					
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP12	1/30/2017	5 - 10 ft	0.22	1				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	1/30/2017	10 - 15 ft	0.019	1				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	1/30/2017	14.5 - 15.5 ft	0.019	ı				
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	1 - 2 ft	0.054	1				
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	2 - 3 ft	0.0011	0				
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	3 - 4 ft	0.0011	1				
			·					· · · · · · · · · · · · · · · · · · ·				
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	4 - 5 ft	0.00094	0				
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	10 - 11 ft						
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	11 - 12 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	12 - 13 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	13 - 14 ft						
SO	Subsurface	0	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	14 - 15 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017	1 - 2 ft	0.0093	0				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017	2 - 3 ft	0.0064	1				
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017	3 - 4 ft	0.065	1				
SO	Subsurface	,	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017	4 - 5 ft	0.0097	1				
SO	Subsurface	0	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/23/2017	5 - 6 ft						
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP12-1C	8/23/2017	10 - 11 ft						
SO	Subsurface	0	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/23/2017	11 - 12 ft						
SO	Subsurface	0	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	1 - 2 ft						
SO	Subsurface	,	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	2 - 3 ft	0.01	1				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	3 - 4 ft	0.00086	1				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	4 - 5 ft	0.0011	0				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/23/2017	10 - 11 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/23/2017	11 - 12 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/23/2017	12 - 13 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/23/2017	13 - 14 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/23/2017	14 - 15 ft						
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/11/2017	1 - 2 ft						
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP12-1G	8/11/2017	2 - 3 ft	0.0049	1				
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP12-1G	8/11/2017	3 - 4 ft	0.00099	0				
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/11/2017	4 - 5 ft	0.43	1				
	Subsurface	0	·	SUSDP12-1G	8/23/2017	10 - 11 ft						
<u> </u>		5 5	3									

Matrix	horizon Unit	Area	Location	Collected	Depth	PCB, Total Aroclors (AECOM Calc)	D_PCB, Total Aroclors (AECOM Calc)	TCDD TEQ HH	D_TCDD TEQ HH	Thallium	D_Thallium
SO	Subsurface mg/l	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	11 - 12 ft						
SO	Subsurface mg/l	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	12 - 13 ft						
SO	Subsurface mg/l	g Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	13 - 14 ft						
SO	Subsurface mg/l	g Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	14 - 15 ft						
SO	Subsurface mg/l	g Salvage Yard and Waste Storage Area	SUSDP12-2K	1/30/2018	1 - 2 ft						
SO	Subsurface mg/l		SUSDP12-3A	2/1/2018	1 - 2 ft						
SO	Subsurface mg/l		SUSDP12-3A	2/1/2018	2 - 3 ft						
SO	Subsurface mg/l		SUSDP12-3A	3/28/2018	10 - 11 ft						
so	Subsurface mg/l		SUSDP43	5/17/2013	3.5 - 4.5 ft	0.014	1			0.11	1
SO	Subsurface mg/l		SUSDP43	6/7/2013	14.5 - 15.5 ft	0.0071	1			0	
SO	Subsurface mg/l		SUSDP43	6/7/2013	9.5 - 10.5 ft	0.28	1			0.1	1
SO	Subsurface mg/l		SUSDP43	1/26/2017	1 - 2 ft	1.8	1			0.1	
SO	Subsurface mg/l		SUSDP43	1/26/2017	2 - 5 ft	1.4	1				
SO	Subsurface mg/l	0	SUSDP43	1/30/2017	5 - 10 ft	0.27	1				
SO	-	0 0	SUSDP43	1/30/2017	10 - 15 ft	0.036	1				
	Ū	0					1				
SO	Subsurface mg/l		SUSDP43-2J	8/8/2017	1 - 2 ft	0.16	0				
	Subsurface mg/l		SUSDP43-2J	8/8/2017	2 - 3 ft	0.00098	-				
SO	Subsurface mg/l		SUSDP43-2J	8/8/2017	3 - 4 ft	0.001	0	-			
SO	Subsurface mg/l		SUSDP43-2J	8/8/2017	4 - 5 ft	0.0023	•				
SO	Subsurface mg/l	5 5	SUSDP43-2M	8/9/2017	1 - 2 ft	0.18	1				
SO	Subsurface mg/l	5 5	SUSDP43-2M	8/9/2017	2 - 3 ft	0.00095	0				
	Subsurface mg/l		SUSDP43-2M	8/9/2017	3 - 4 ft	0.002	1				
SO	Subsurface mg/l		SUSDP43-2M	8/9/2017	4 - 5 ft	0.001	0				
SO	Subsurface mg/l		SUSDP43-3A	8/10/2017	1 - 2 ft	0.47	1				
SO	Subsurface mg/l		SUSDP43-3A	8/10/2017	2 - 3 ft	0.018	1				
SO	Subsurface mg/l		SUSDP43-3A	8/10/2017	3 - 4 ft	0.0023	1				
SO	Subsurface mg/l	Salvage Yard and Waste Storage Area	SUSDP43-3A	8/10/2017	4 - 5 ft	0.0049	1				
SO	Subsurface mg/l	Salvage Yard and Waste Storage Area	SUSDP43-3P	1/30/2018	1 - 2 ft						
SO	Subsurface mg/l	Salvage Yard and Waste Storage Area	SUSDP43-3P	1/30/2018	2 - 3 ft						
so	Subsurface mg/l	Salvage Yard and Waste Storage Area	SUSDP43-3T	1/30/2018	1 - 2 ft						
SO	Subsurface mg/l	Salvage Yard and Waste Storage Area	SUSDP43-4NW	2/23/2018	1 - 2 ft						
SO	Subsurface mg/l	Salvage Yard and Waste Storage Area	SUSDP43-4NW	2/23/2018	2 - 3 ft						
SO	Subsurface mg/l	g Salvage Yard and Waste Storage Area	SUSDP43-4SW	2/23/2018	1 - 2 ft						
SO	Subsurface mg/l	g Salvage Yard and Waste Storage Area	SUSDP43-4SW	2/23/2018	2 - 3 ft						
SO	Subsurface mg/l	g Salvage Yard and Waste Storage Area	SUSDP43-5NW	3/15/2018	1 - 2 ft						
SO	Subsurface mg/l	g Salvage Yard and Waste Storage Area	SUSDP44	5/21/2013	2.5 - 3.5 ft	3.1	1			0.19	1
SO	Subsurface mg/l		SUSDP44	6/10/2013	14.5 - 15.5 ft	0.0053	0				
SO	Subsurface mg/l		SUSDP44	6/10/2013	9.5 - 10.5 ft	0.0045	0				
SO	Subsurface mg/l		SUSDP44	1/27/2017	2.5 - 3.5 ft	4.6	1				
SO	Subsurface mg/l		SUSDP44	1/27/2017	3.5 - 5 ft	0.043	1				
SO	Subsurface mg/l		SUSDP44-1D	8/9/2017	1 - 2 ft	-		0.00000126	1		
SO	Subsurface mg/l		SUSDP44-1D	8/9/2017	2 - 3 ft	0.032	1				
SO	Subsurface mg/l		SUSDP44-1D	8/9/2017	3 - 4 ft	0.0099	1				
SO	Subsurface mg/l		SUSDP44-1H	8/9/2017	2 - 3 ft	1.8	1	1			
SO	Subsurface mg/l		SUSDP44-1H	8/9/2017	3 - 4 ft	0.22	1	1			
SO	Subsurface mg/l	0	SUSDP44-2N	8/9/2017	1 - 2 ft	0.36	1	0.0000219	1		
SO	Subsurface mg/l	0	SUSDP44-2N	8/9/2017	2 - 3 ft	0.51	1	0.0000210			
SO	Subsurface mg/l		SUSDP50	8/10/2017	1 - 2 ft	0.63	1	<u> </u>			
SO	Subsurface mg/l	0	SUSDP50	8/10/2017	2 - 3 ft	0.03	0	<u> </u>			
SO	Subsurface mg/l	0	SUSDP50-2A	8/8/2017	2 - 3 ft	0.01	U				
SO	Subsurface mg/l		SUSDP50-2A	8/15/2017	1 - 2 ft			1			
								-			
SO	Subsurface mg/l		SUSDP50-3A	1/30/2018	1 - 2 ft	3.0	4	0.0000000	4		
SO	Surface mg/l		SUS10-1A	1/27/2017	0 - 1 ft	3.2	<u> </u>	0.0000909	1		
SO	Surface mg/l		SUS10-1B	1/25/2017	0 - 1 ft	2.7		0.000129			
SO	Surface mg/l		SUS10-1C	1/25/2017	0 - 1 ft	0.78	1	0.000049	1		
SO	Surface mg/l	Salvage Yard and Waste Storage Area	SUS10-1D	1/25/2017	0 - 1 ft	0.0021	1	0.00000287	1		

		1								T		
Matrix	horizon	Units	Area	Location	Collected	Depth	PCB, Total Aroclors (AECOM Calc)	D_PCB, Total Aroclors (AECOM Calc)	TCDD TEQ HH	D_TCDD TEQ HH	Thallium	D_Thallium
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1E	1/25/2017	0 - 1 ft	0.028	1	0.00000237	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1F	1/27/2017	0 - 1 ft	0.13	1	0.0000201	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1G	1/27/2017	0 - 1 ft	0.031	1	0.0000335	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1H	1/27/2017	0 - 1 ft	0.94	1				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1H	2/3/2017	0 - 1 ft			0.000109	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2A	3/23/2017	0 - 1 ft	1.4	1	0.0000193	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2B	3/23/2017	0 - 1 ft	0.73	1	0.000484	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2D	3/23/2017	0 - 1 ft	2.3	1	0.0000875	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2E	3/23/2017	0 - 1 ft			0.000156	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2F	3/22/2017	0 - 1 ft			0.00000265	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2L	3/22/2017	0 - 1 ft			0.00000764	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2M	3/22/2017	0 - 1 ft			0.00000785	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2N	3/22/2017	0 - 1 ft			0.00000578	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-20	3/22/2017	0 - 1 ft			0.00000268	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2P	3/23/2017	0 - 1 ft	0.49	1	0.0000413	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS12-1B	1/25/2017	0 - 1 ft	0.0042	1				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS12-1D	1/25/2017	0 - 1 ft	0.014	 1				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS12-1F	1/25/2017	0 - 1 ft	0.0026	 1				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS12-1H	1/25/2017	0 - 1 ft	0.0067	1				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1A	1/27/2017	1.5 - 2.5 ft	0.17	 1				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1B	1/27/2017	1.5 - 2.5 ft	0.9	1				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1C	1/25/2017	1.5 - 2.5 ft	0.00092	0				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1E	1/25/2017	1.5 - 2.5 ft	0.019	1				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1F	1/25/2017	1.5 - 2.5 ft	0.033	1				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1G	1/25/2017	1.5 - 2.5 ft	0.012	1				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	2/5/2013	0.5 - 1 ft	1	1	0.000027	1	0.16	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	1/27/2017	0.5 - 1 ft	0.081	1	0.000027		0.10	'
SO	Surface		-	SUSDP10-3F	8/8/2017	0 - 1 ft	3.9	1	0.000079	1		
SO		mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3F		0 - 1 ft	0.83	1	0.000079	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area		8/8/2017		1.2	1 1		1		
	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	0 - 1 ft	0.034		0.00000578	1		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-4NW	1/30/2018	0 - 1 ft		1 1			0.40	
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	2/6/2013	0 - 1 ft	2.9				0.18	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	1/26/2017	0 - 1 ft	0.3	1				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	1/25/2017	0 - 1 ft	0.3	1				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	1/25/2017	0 - 1 ft	0.24	1				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	1/25/2017	0 - 1 ft	0.7	1				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	1/25/2017	0 - 1 ft	0.74	1				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/11/2017	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-2K	1/30/2018	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-3A	2/1/2018	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	1/26/2017	0 - 1 ft	2.7	1				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	0 - 1 ft	0.28	1				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	0 - 1 ft	0.44	1				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3P	1/30/2018	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3T	1/30/2018	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-4SW	2/23/2018	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-5NW	3/15/2018	0 - 1 ft						
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44	1/27/2017	1.5 - 2.5 ft	3.2	1				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1D	1/25/2017	1.5 - 2.5 ft	0.011	1				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1H	1/27/2017	1.5 - 2.5 ft	14	1				
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50	1/26/2017	0 - 1 ft	0.15	1	0.0000053	1	0.2	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50-2A	8/8/2017	0 - 1 ft						
SO	Surface	mg/kg		SUSDP50-3A	1/30/2018	0 - 1 ft						
							ı		l	1		

Subsurface mg/kg Salvage Yard and Waste Storage Area DP26 328/2013 3.5 - 4.5 ft 3.3 1 1 1 1 1 1 1 1 1	Matrix	horizon	Units	Area	Location	Collected	Depth	Vanadium	D Vanadium
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP10 ST/50013 3.5 - 14.5 ft 3 1									
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP10 6/10/2013 4.5 - 15.5 ft				,					
SO				•				13	'
SO				Ü					
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP10 127/2017 1 - 2 ft	-								
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP10 12/720/17 2 - 5 ft				Ü					
So Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP10-36 8/8/2017 1 - 2 ft				0					
So Subsurface mg/kg				•					
So Subsurface mg/kg				Ü					
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP10-3X 8/8/2017 1 - 2 ft	-								
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP10-3X 8/8/2017 3 - 4 ft				,					
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP10-3X 8/8/2017 3 - 4 ft									
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP10-3X 8/8/2017 4 - 5 ft							3 - 4 ft		
So				,					
So									
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP10-4NW 1/30/2018 2 - 3 ft				,					
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12 4.5-5.5 ft				,					
Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12 6/13/2013 4.5 - 5.5 ft 1	so			,			3 - 4 ft		
SU Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12 6/13/2013 9.5 - 10.5 ft 17 1	SO	Subsurface			SUSDP12		4.5 - 5.5 ft		
So Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12 6/13/2013 14.5 - 15.5 ft	so	Subsurface			SUSDP12			17	1
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12 1/26/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12 1/26/2017 2 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12 1/30/2017 5 - 10 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12 1/30/2017 10 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12 1/30/2017 14.5 - 15.5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12 1/30/2017 14.5 - 15.5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/10/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/10/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/10/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/10/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/10/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 12 - 13 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 12 - 13 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 12 - 13 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 12 - 13 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area	SO	Subsurface			SUSDP12	6/13/2013	14.5 - 15.5 ft		
SUSUBSURFACE mg/kg Salvage Yard and Waste Storage Area SUSDP12 1/26/2017 2 - 5 ft	SO	Subsurface			SUSDP12	1/26/2017	1 - 2 ft		
SUSDIFICATION SUBSURFACE MIGKING SAIVAGE YARD AND WASTE STORAGE AREA SUSDP12 1/30/2017 10 - 15 ft SUBSURFACE MIGKING SAIVAGE YARD AND WASTE STORAGE AREA SUSDP12 1/30/2017 14 - 5 ft SUBSURFACE MIGKING SAIVAGE YARD AND WASTE STORAGE AREA SUSDP12-1A 8/10/2017 1 - 2 ft SUBSURFACE MIGKING SAIVAGE YARD AND WASTE STORAGE AREA SUSDP12-1A 8/10/2017 2 - 3 ft SUBSURFACE MIGKING SAIVAGE YARD AND WASTE STORAGE AREA SUSDP12-1A 8/10/2017 3 - 4 ft SUBSURFACE MIGKING SAIVAGE YARD AND WASTE STORAGE AREA SUSDP12-1A 8/10/2017 3 - 4 ft SUBSURFACE MIGKING SAIVAGE YARD AND WASTE STORAGE AREA SUSDP12-1A 8/10/2017 3 - 4 ft SUBSURFACE MIGKING SAIVAGE YARD AND WASTE STORAGE AREA SUSDP12-1A 8/23/2017 10 - 11 ft SUBSURFACE MIGKING SAIVAGE YARD AND WASTE STORAGE AREA SUSDP12-1A 8/23/2017 10 - 11 ft SUBSURFACE MIGKING SAIVAGE YARD AND WASTE STORAGE AREA SUSDP12-1A 8/23/2017 11 - 12 ft SUBSURFACE MIGKING SAIVAGE YARD AND WASTE STORAGE AREA SUSDP12-1A 8/23/2017 12 - 13 ft SUBSURFACE MIGKING SAIVAGE YARD AND WASTE STORAGE AREA SUSDP12-1A 8/23/2017 12 - 13 ft SUBSURFACE MIGKING SAIVAGE YARD AND WASTE STORAGE AREA SUSDP12-1A 8/23/2017 1 - 2 ft SUBSURFACE MIGKING SAIVAGE YARD AND WASTE STORAGE AREA SUSDP12-1C 8/10/2017 1 - 2 ft SUBSURFACE MIGKING SAIVAGE YARD AND WASTE STORAGE AREA SUSDP12-1C 8/10/2017 1 - 2 ft SUBSURFACE MIGKING SAIVAGE YARD AND WASTE STORAGE AREA SUSDP12-1C 8/10/2017 1 - 2 ft SUBSURFACE MIGKING SAIVAGE YARD AND WASTE STORAGE AREA SUSDP12-1C 8/10/2017 1 - 2 ft SUBSURFACE MIGKING SAIVAGE YARD AND WASTE STORAGE AREA SUSDP12-1C 8/10/2017 4 - 5 ft SUBSURFACE MIGKING SAIVAGE YARD AND WASTE STORAGE AREA SUSDP12-1C 8/10/2017 4 - 5 ft SUBSURFACE MIGKING SAIVAGE YARD AND WASTE STORAGE AREA SUSDP12-1C 8/23/2017 10 - 11 ft SUBSURFACE MIGKING SAIVAGE YARD AND WASTE STORAGE AREA SUSDP12-1C 8/23/2017 10 - 11 ft SUBSURFACE MIGKING SAIVAGE YARD AND WASTE STORAGE AREA SUSDP12-1E 8/11/2017 1 - 2 ft SUBSURFACE MIGKING SAIVAGE YARD AND WASTE STORAGE AREA SUSDP12-1E 8/11/2017 1 - 2 ft SUBSURFACE MIGKING SAIVAGE YARD AND WASTE STORAGE AREA SUSDP12-1E	SO	Subsurface			SUSDP12	1/26/2017	2 - 5 ft		
SUSDP12-1A 8/10/2017 1-2.ft SUSDP12-1A 8/20/2017 10-11.ft SUSDP12-1A 8/20/2017 10-11.ft SUSDP12-1A 8/20/2017 10-11.ft SUSDP12-1A 8/20/2017 10-11.ft SUSDP12-1A 8/20/2017 10-11.ft SUSDP12-1A 8/20/2017 12-13.ft SUSDP12-1A 8/20/2017 12-15.ft SUSDP12-1A 8/20/2017 12-15.ft SUSDP12-1A 8/20/2017 12-15.ft SUSDP12-1A 8/20/2017 12-15.ft SUSDP12-1A 8/20/2017 12-15.ft SUSDP12-1A 8/20/2017 12-15.ft SUSDP12-1A 8/20/2017 12-15.ft SUSDP12-1A 8/20/2017 12-15.ft SUSDP12-1A 8/20/2017 12-15.ft SUSDP12-1A 8/20/2017 12-15.ft SUSDP12-1A 8/20/2017 12-15.ft SUSDP12-1A 8/20/2017 12-2.ft SUSDP12-1A 8/20/2017 12-2.ft SUSDP12-1A 8/20/2017 12-2.ft SUSDP12-1A 8/20/2017 12-2.ft SUSDP12-1A 8/20/2017 12-2.ft SUSDP12-1A 8/20/2017 12-2.ft SUSDP12-1A 8/20/2017 12-2.ft SUSDP12-1A 8/20/2017 12-2.ft SUSDP12-1A 8/20/2017 12-2.ft SUSDP12-1A 8/20/2017 12-2.ft SUSDP12-1A 8/20/2017 12-13.ft SUSDP12-1A 8/20/2017 12-13.ft SUSDP12-1A 8/20/2017 12-13.ft SUSDP12-1A 8/20/2017 12-13	SO	Subsurface		,			5 - 10 ft		
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/10/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/10/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/10/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/10/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 13 - 14 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 13 - 14 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 5 - 6 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 11 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste St	SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	1/30/2017	10 - 15 ft		
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/10/2017 2 - 3 ft SUSDP12-1A 8/10/2017 3 - 4 ft SUSDP12-1A 8/10/2017 3 - 4 ft SUSDP12-1A 8/10/2017 3 - 4 ft SUSDP12-1A 8/10/2017 3 - 4 ft SUSDP12-1A 8/10/2017 3 - 4 ft SUSDP12-1A 8/10/2017 4 - 5 ft SUSDP12-1A 8/10/2017 4 - 5 ft SUSDP12-1A 8/10/2017 4 - 5 ft SUSDP12-1A 8/10/2017 4 - 5 ft SUSDP12-1A 8/10/2017 4 - 5 ft SUSDP12-1A 8/10/2017 4 - 5 ft SUSDP12-1A 8/10/2017 4 - 5 ft SUSDP12-1A 8/10/2017 4 - 5 ft SUSDP12-1A 8/10/2017 4 - 5 ft SUSDP12-1A 8/10/2017 4 - 5 ft SUSDP12-1A 8/23/2017 10 - 11 ft SUSDP12-1A 8/23/2017 10 - 11 ft SUSDP12-1A 8/23/2017 11 - 12 ft SUSDP12-1A 8/23/2017 11 - 12 ft SUSDP12-1A 8/23/2017 12 - 13 ft SUSDP12-1A 8/23/2017 13 - 14 ft SUSDP12-1A 8/23/2017 13 - 14 ft SUSDP12-1A 8/23/2017 13 - 14 ft SUSDP12-1A 8/23/2017 13 - 14 ft SUSDP12-1A 8/23/2017 13 - 14 ft SUSDP12-1A 8/23/2017 14 - 15 ft SUSDP12-1A 8/23/2017 15 - 6 ft SUSDP12-1A 8/23/2017 15 - 6 ft SUSDP12-1A 8/23/2017 11 - 12 ft SUSDP12-1A 8/23/2017 11 - 12 ft SUSDP12-1A 8/23/2017 11 - 12 ft SUSDP12-1A 8/23/2017 11 - 12 ft SUSDP12-1A 8/23/2017 11 - 12 ft SUSDP12-1A 8/23/2017 11 - 12 ft SUSDP12-1A 8/23/2017 11 - 12 ft SUSDP12-1A 8/23/2017 11 - 12 ft SUSDP12-1A 8/23/2017 11 - 12 ft SUSDP12-1A 8/23/2017 11 - 12 ft SUSDP12-1A 8/23/2017 11 - 12 ft SUSDP12-1A 8/23/2017 11 - 12 ft SUSDP12-1A 8/23/2017 11 - 12 ft SUSDP12-1A 8/23/2017 11 - 12 ft SUSDP12-1A 8/23/2017 11 - 12 ft SUSDP12-	SO	Subsurface			SUSDP12	1/30/2017	14.5 - 15.5 ft		
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/10/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/10/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 12 - 13 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 13 - 14 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste S	SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	1 - 2 ft		
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/10/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 12 - 13 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 12 - 13 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 5 - 6 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Sto	SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	2 - 3 ft		
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 12 - 13 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 12 - 13 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 5 - 6 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 5 - 6 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 1 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 12 - 13 ft SO Subsurface mg/kg Salvage Yard and Waste Sto	SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	3 - 4 ft		
SU Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 12 - 13 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 13 - 14 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 5 - 6 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 5 - 6 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 1 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 1 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Stora	SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	4 - 5 ft		
SU Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 12 - 13 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 13 - 14 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 3 - 6 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 5 - 6 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 12 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/12/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste S	SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	10 - 11 ft		
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 13 - 14 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1A 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste	SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	11 - 12 ft		
SU Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 5 - 6 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 5 - 6 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage	SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	12 - 13 ft		
SU Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 5 - 6 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 5 - 6 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storag	SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	13 - 14 ft		
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 5 - 6 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 5 - 6 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste S	SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/23/2017	14 - 15 ft		
SU Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 5 - 6 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 5 - 6 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 12 - 13 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft	SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017	1 - 2 ft		
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/10/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 5 - 6 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 12 - 13 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 12 - 13 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft	SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017	2 - 3 ft		
SU Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 5 - 6 ft SU Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 10 - 11 ft SUSDP12-1C Mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 11 - 12 ft SUSDP12-1C Mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SUSDP12-1C Mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 2 - 3 ft SUSDP12-1C Mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 3 - 4 ft SUSDP12-1C Mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 3 - 4 ft SUSDP12-1C Mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 4 - 5 ft SUSDP12-1C Mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SUSDP12-1C Mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SUSDP12-1C Mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SUSDP12-1C Mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 12 - 13 ft SUSDP12-1C Mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 12 - 13 ft SUSDP12-1C Mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 14 - 15 ft SUSDP12-1C Mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 14 - 15 ft SUSDP12-1C Mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 1 - 2 ft SUSDP12-1G Mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 1 - 2 ft SUSDP12-1G Mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 2 - 3 ft SUSDP12-1G Mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SUSDP12-1G Mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SUSDP12-1G Mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 4 - 5 ft SUSDP12-1G Mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 4 - 5 ft SUSDP12-1G Mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 4 - 5 ft SUSDP12-1G Mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 4 - 5 ft SUSDP12-1G Mg/kg Salvage Yard	SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017	3 - 4 ft		
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 12 - 13 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 4 - 5 ft	SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017	4 - 5 ft		
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1C 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/12/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 12 - 13 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 13 - 14 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft									
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 12 - 13 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 13 - 14 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 1- 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft	_								
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 12 - 13 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 13 - 14 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 13 - 14 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 4 - 5 ft				,					
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 12 - 13 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 13 - 14 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 13 - 14 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 4 - 5 ft				,					
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/11/2017 4 - 5 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 12 - 13 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 13 - 14 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 4 - 5 ft	_								
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 10 - 11 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 12 - 13 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 13 - 14 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 4 - 5 ft									
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 11 - 12 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 12 - 13 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 13 - 14 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 4 - 5 ft									
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 12 - 13 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 13 - 14 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 4 - 5 ft									
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 13 - 14 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 4 - 5 ft									
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1E 8/23/2017 14 - 15 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 4 - 5 ft									
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 1 - 2 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 4 - 5 ft									
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 2 - 3 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 4 - 5 ft									
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 3 - 4 ft SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 4 - 5 ft				,					
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/11/2017 4 - 5 ft				,					
SO Subsurface mg/kg Salvage Yard and Waste Storage Area SUSDP12-1G 8/23/2017 10 - 11 ft									
	SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	10 - 11 ft		

Matrix	horizon	Units	Area	Location	Collected	Depth	Vanadium	D_Vanadium
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	11 - 12 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	12 - 13 ft		
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	13 - 14 ft		
SO	Subsurface	,	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/23/2017	14 - 15 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-2K	1/30/2018	1 - 2 ft		
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP12-3A	2/1/2018	1 - 2 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-3A	2/1/2018	2 - 3 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-3A	3/28/2018	10 - 11 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	5/17/2013	3.5 - 4.5 ft	25	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	6/7/2013	14.5 - 15.5 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	6/7/2013	9.5 - 10.5 ft	24	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	1/26/2017	1 - 2 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	1/26/2017	2 - 5 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	1/30/2017	5 - 10 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	1/30/2017	10 - 15 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	1 - 2 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	2 - 3 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	3 - 4 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	4 - 5 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	1 - 2 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	2 - 3 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	3 - 4 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	4 - 5 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3A	8/10/2017	1 - 2 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3A	8/10/2017	2 - 3 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3A	8/10/2017	3 - 4 ft		
SO	Subsurface	•	Salvage Yard and Waste Storage Area	SUSDP43-3A	8/10/2017	4 - 5 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3P	1/30/2018	1 - 2 ft		
SO	Subsurface	·	Salvage Yard and Waste Storage Area	SUSDP43-3P	1/30/2018	2 - 3 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3T	1/30/2018	1 - 2 ft		
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP43-4NW	2/23/2018	1 - 2 ft		
SO	Subsurface	•	Salvage Yard and Waste Storage Area	SUSDP43-4NW	2/23/2018	2 - 3 ft		
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP43-4SW	2/23/2018	1 - 2 ft		
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP43-4SW	2/23/2018	2 - 3 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-5NW	3/15/2018	1 - 2 ft		
SO	Subsurface	·	Salvage Yard and Waste Storage Area	SUSDP44	5/21/2013	2.5 - 3.5 ft	27	1
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44	6/10/2013	14.5 - 15.5 ft		
SO	Subsurface	0 0	Salvage Yard and Waste Storage Area	SUSDP44	6/10/2013	9.5 - 10.5 ft		
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP44	1/27/2017	2.5 - 3.5 ft		
SO SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44	1/27/2017	3.5 - 5 ft 1 - 2 ft		
	Subsurface	·	Salvage Yard and Waste Storage Area	SUSDP44-1D	8/9/2017			
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1D	8/9/2017	2 - 3 ft		
SO	Subsurface Subsurface	0 0	Salvage Yard and Waste Storage Area	SUSDP44-1D SUSDP44-1H	8/9/2017 8/9/2017	3 - 4 ft 2 - 3 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1H	8/9/2017	2 - 3 II 3 - 4 ft		
SO	Subsurface		Salvage Yard and Waste Storage Area Salvage Yard and Waste Storage Area	SUSDP44-1H SUSDP44-2N	8/9/2017	1 - 2 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-2N	8/9/2017	2 - 3 ft		
SO	Subsurface		Salvage Yard and Waste Storage Area	SUSDP44-2N	8/10/2017	1 - 2 ft		
SO	Subsurface	0 0	Salvage Yard and Waste Storage Area	SUSDP50	8/10/2017	2 - 3 ft		
so	Subsurface	·	Salvage Yard and Waste Storage Area	SUSDP50-2A	8/8/2017	2 - 3 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50-2A	8/15/2017	1 - 2 ft		
SO	Subsurface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50-3A	1/30/2018	1 - 2 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1A	1/27/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1B	1/25/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1C	1/25/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1D	1/25/2017	0 - 1 ft		
				-		1		

Matrix	horizon	Units	Area	Location	Collected	Depth	Vanadium	D Vanadium
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1E	1/25/2017	0 - 1 ft	variadiani	D_variadiani
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1F	1/27/2017	0 - 1 ft		
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-11	1/27/2017	0 - 1 ft		
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1H	1/27/2017	0 - 1 ft		
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-1H	2/3/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2A	3/23/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2B	3/23/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2D	3/23/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2E	3/23/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2F	3/22/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2L	3/22/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2M	3/22/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2N	3/22/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-20	3/22/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS10-2P	3/23/2017	0 - 1 ft		
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS12-1B	1/25/2017	0 - 1 ft		
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS12-1D	1/25/2017	0 - 1 ft		
so	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS12-1F	1/25/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS12-1F	1/25/2017	0 - 1 ft		
SO	Surface			SUS44-1A	1/23/2017	1.5 - 2.5 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area Salvage Yard and Waste Storage Area	SUS44-1A SUS44-1B	1/27/2017	1.5 - 2.5 ft		
SO	Surface	mg/kg		SUS44-1C	1/27/2017	1.5 - 2.5 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1E	1/25/2017			
SO		mg/kg	Salvage Yard and Waste Storage Area			1.5 - 2.5 ft		
-	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1F	1/25/2017	1.5 - 2.5 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUS44-1G	1/25/2017	1.5 - 2.5 ft	00	4
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	2/5/2013	0.5 - 1 ft	22	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10	1/27/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3F	8/8/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3G	8/8/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-3X	8/8/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP10-4NW	1/30/2018	0 - 1 ft	00	4
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	2/6/2013	0 - 1 ft	36	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12	1/26/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	1/25/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1A	8/10/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	1/25/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1C	8/10/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	1/25/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1E	8/11/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	1/25/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-1G	8/11/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-2K	1/30/2018	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP12-3A	2/1/2018	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43	1/26/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2J	8/8/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-2M	8/9/2017	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3P	1/30/2018	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-3T	1/30/2018	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-4SW	2/23/2018	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP43-5NW	3/15/2018	0 - 1 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44	1/27/2017	1.5 - 2.5 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1D	1/25/2017	1.5 - 2.5 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP44-1H	1/27/2017	1.5 - 2.5 ft		
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50	1/26/2017	0 - 1 ft	16	1
SO	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50-2A	8/8/2017	0 - 1 ft		
	Surface	mg/kg	Salvage Yard and Waste Storage Area	SUSDP50-3A	1/30/2018	0 - 1 ft	1	

									T	T	I	
Matrix	horizon	Units	Area	Location	Collected	Depth	Arsenic	D_Arsenic	Benzo(a)anthracene	D_Benzo(a)anthracene	Benzo(a)pyrene	D_Benzo(a)pyrene
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181A	1/25/2017	0 - 1 ft						
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181B	1/25/2017	0 - 1 ft						
SO SO	Surface Surface	mg/kg	Stores and Fleet Mainenance Stores and Fleet Mainenance	SUS181C SUS181D	1/25/2017 1/25/2017	0 - 1 ft 0 - 1 ft						
SO	Surface	mg/kg mg/kg	Stores and Fleet Mainenance	SUS181E	1/25/2017	0 - 1 ft						
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181F	1/25/2017	0 - 1 ft						
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181G	1/25/2017	0 - 1 ft						
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181H	1/25/2017	0 - 1 ft						
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP15	2/6/2013	0.17 - 1 ft	5.7	1	0.55	1	0.44	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP15	1/30/2017	0 - 1 ft			0.36	1	0.32	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1C	8/14/2017	0 - 1 ft						
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1G	8/15/2017	0 - 1 ft						
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP16	2/6/2013	0.5 - 1 ft	3.2	1	0.037	1	0.041	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP17	2/6/2013	0.5 - 1 ft	3	1	0.012	1	0.011	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP18	2/6/2013	0 - 1 ft	7	1	0.08	1	0.087	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP18	1/26/2017	0 - 1 ft			0.065	1	0.054	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP19-7NW	4/5/2018	0 - 1 ft			0.9	1	1.1	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/26/2017	0 - 1 ft	6.4	1	0.31	1	0.32	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/26/2017	0 - 1 ft			0.22	1	0.26	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP48-1C	8/15/2017	0 - 1 ft						
SO SO	Surface Surface	mg/kg mg/kg	Stores and Fleet Mainenance Stores and Fleet Mainenance	SUSDP48-2E SUSDP49	1/30/2018	0 - 1 ft 0 - 1 ft	7.5	1	0.32	1	0.26	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP49 SUSDP49-1C	8/11/2017	0 - 1 ft	7.5	ı	0.32	I	0.26	ı
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1C	8/11/2017	0 - 1 ft						
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP51	1/26/2017	0 - 1 ft	5.1	1	0.047	1	0.051	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP51	1/26/2017	0 - 1 ft	0.1		0.24	1	0.28	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP52	1/26/2017	0 - 1 ft	4.1	1	0.0071	0	0.0071	0
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP65	1/30/2018	0 - 1 ft				-		
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	DP32	4/1/2013	9.5 - 10.5 ft	2.8	1	0.008	0	0.008	0
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	DP45	5/23/2013	2.5 - 3.5 ft						
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	DP45		9.5 - 10.5 ft						
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	DP45	6/4/2013	14.5 - 15.5 ft						
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15	5/21/2013							
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15		9.5 - 10.5 ft						
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15		14.5 - 15.5 ft						
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15	1/30/2017	1 - 2 ft			0.14	1	0.11	1
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15	1/30/2017	2 - 5 ft			0.098	1	0.083	1
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15 SUSDP15	2/2/2017 2/2/2017	5 - 10 ft 10 - 15 ft			35 0.44	1	16 0.36	
	Subsurface Subsurface	mg/kg mg/kg	Stores and Fleet Mainenance Stores and Fleet Mainenance	SUSDP15-1C	8/14/2017	10 - 15 it			0.44	ı	0.30	1
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1C	8/14/2017	2 - 3 ft						
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1C	8/14/2017	3 - 4 ft						
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	5 - 6 ft			0.14	1	0.12	1
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	6 - 7 ft			0.1	1	0.089	1
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	7 - 8 ft			0.56	1	0.66	1
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	8 - 9 ft			0.087	1	0.074	1
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	9 - 10 ft			0.031	1	0.029	1
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	10 - 11 ft						
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1G	8/15/2017	1 - 2 ft						
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	5 - 6 ft			0.037	1	0.033	1
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	6 - 7 ft			0.17	1	0.13	1
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	7 - 8 ft			0.16	1	0.13	1
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	8 - 9 ft			0.055	1	0.052	1
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	9 - 10 ft			0.072	1	0.063	1
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	10 - 11 ft	2	4				
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP16	5/15/2013		3	1				
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP16 SUSDP16	6/10/2013	14.5 - 15.5 ft					 	
	Subsurface Subsurface	mg/kg mg/kg	Stores and Fleet Mainenance Stores and Fleet Mainenance	SUSDP16 SUSDP17		9.5 - 10.5 ft 4.5 - 5.5 ft					 	
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP17		9.5 - 10.5 ft					 	
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP17	6/11/2013							
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP18		2.5 - 3.5 ft	1.6	1			+	
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP18	6/4/2013		1.0					
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP18	1/26/2017	1 - 2 ft			0.081	1	0.078	1
	Subsurface	mg/kg		SUSDP18	1/26/2017	2 - 5 ft			0.0029	1	0.0012	1
										·		

Soil ProUCL Input - Stores and Fleet Maintenance Area

Matrix	basinas	Llmita	A ===	Lagation	Callagtad	Donath	A == == i=	D. Areania	Danza/a)anthrasana	D. Danza/a\anthusasas	Dansa(a)nimana	D. Dansa(a)nimana
Matrix		Units	Area	Location	Collected		Arsenic	D_Arsenic		D_Benzo(a)anthracene		D_Berizo(a)pyrene
SO		mg/kg	Stores and Fleet Mainenance	SUSDP19-7NW	4/5/2018	1 - 2 ft			0.61	1	0.49	1
SO		mg/kg	Stores and Fleet Mainenance	SUSDP19-7NW	4/5/2018	2 - 3 ft			0.26	1	0.24	1
SO	Subsurface		Stores and Fleet Mainenance	SUSDP19-7NW	4/5/2018	3 - 4 ft			0.43	1	0.39	1
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP19-7NW	4/5/2018	4 - 5 ft			6.5	1	5.4	1
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/26/2017	1 - 2 ft			0.037	1	0.024	1
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/26/2017	2 - 5 ft			0.56	1	0.58	1
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/27/2017	5 - 10 ft			0.27	1	0.26	1
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/27/2017	10 - 15 ft			0.43	1	0.41	1
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48-1C	8/15/2017	1 - 2 ft						
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48-1E	8/16/2017	1 - 2 ft						
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48-1G	8/16/2017	1 - 2 ft						
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48-2E	1/30/2018	1 - 2 ft						
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49	8/11/2017	1 - 2 ft						
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49	8/11/2017	2 - 3 ft						
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1C	8/11/2017	1 - 2 ft						
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1C	8/11/2017	2 - 3 ft						
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1E	8/11/2017	1 - 2 ft						
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1E	8/11/2017	2 - 3 ft						
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1E	8/11/2017	3 - 4 ft			0.081	1	0.042	1
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1E	8/11/2017	4 - 5 ft			0.014	1	0.0092	1
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP51	1/26/2017	1 - 2 ft			0.15	1	0.14	1
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP51	1/26/2017	2 - 5 ft			0.022	1	0.021	1
SO		mg/kg	Stores and Fleet Mainenance	SUSDP51	1/27/2017	5 - 10 ft			0.0074	0	0.0074	0
SO	Subsurface		Stores and Fleet Mainenance	SUSDP51	1/27/2017	10 - 15 ft			0.0075	0	0.0075	0
SO			Stores and Fleet Mainenance	SUSDP64	8/10/2017	1 - 2 ft				•		
SO	Subsurface		Stores and Fleet Mainenance	SUSDP65	1/30/2018	1 - 2 ft						

						1				1		
Matrix	horizon	Units	Area	Location	Collected	Depth	Benzo(b)fluoranthene D_Benzo(b)fluoranth	ene Benzo(k)fluoranthene	D_Benzo(k)fluoranthene Chrysene	D_Chrysene	Cobalt D	_Cobalt
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181A	1/25/2017	0 - 1 ft						
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181B	1/25/2017	0 - 1 ft						
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181C	1/25/2017	0 - 1 ft						
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181D	1/25/2017	0 - 1 ft						
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181E	1/25/2017	0 - 1 ft						
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181F	1/25/2017	0 - 1 ft						
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181G	1/25/2017	0 - 1 ft						
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181H	1/25/2017	0 - 1 ft						
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP15	2/6/2013	0.17 - 1 ft	0.54 1	0.31	1 0.59	1	4.8	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP15	1/30/2017	0 - 1 ft	0.42 1	0.16	1 0.36	1		
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1C	8/14/2017	0 - 1 ft						
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1G	8/15/2017	0 - 1 ft						
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP16	2/6/2013	0.5 - 1 ft	0.05 1	0.021	1 0.049	1	3.2	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP17	2/6/2013	0.5 - 1 ft	0.015 1	0.0078	1 0.025	1	3.1	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP18	2/6/2013	0 - 1 ft	0.15 1	0.036	1 0.19	1	3.8	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP18	1/26/2017	0 - 1 ft	0.076 1	0.036	1 0.066	1		
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP19-7NW	4/5/2018	0 - 1 ft	1.4 1	0.52	1 1.4	1		
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/26/2017	0 - 1 ft	0.43 1	0.17	1 0.33	1	7.9	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/26/2017	0 - 1 ft	0.32 1	0.14	1 0.26	1		
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP48-1C	8/15/2017	0 - 1 ft				1		
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP48-2E	1/30/2018	0 - 1 ft						
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP49	1/26/2017	0 - 1 ft	0.37 1	0.14	1 0.35	1	7.1	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1C	8/11/2017	0 - 1 ft				1		
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1E	8/11/2017	0 - 1 ft						
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP51	1/26/2017	0 - 1 ft	0.08 1	0.032	1 0.049	1	3.9	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP51	1/26/2017	0 - 1 ft	0.36 1	0.14	1 0.25	1		
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP52	1/26/2017	0 - 1 ft	0.0071 0	0.0071	0 0.0071	0	2	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP65	1/30/2018							
	Subsurface	mg/kg	Stores and Fleet Mainenance	DP32	4/1/2013		0.008 0	0.008	0 0.008	0	1	1
	Subsurface	mg/kg	Stores and Fleet Mainenance	DP45	5/23/2013							
		mg/kg	Stores and Fleet Mainenance	DP45		9.5 - 10.5 ft						
	Subsurface		Stores and Fleet Mainenance	DP45		14.5 - 15.5 ft						
			Stores and Fleet Mainenance	SUSDP15	5/21/2013							
			Stores and Fleet Mainenance	SUSDP15		9.5 - 10.5 ft						
	Subsurface		Stores and Fleet Mainenance	SUSDP15		14.5 - 15.5 ft						
	Subsurface		Stores and Fleet Mainenance	SUSDP15	1/30/2017		0.23 1	0.063	1 0.21	1		
	Subsurface		Stores and Fleet Mainenance	SUSDP15	1/30/2017		0.12 1	0.046	1 0.098	1		
		mg/kg	Stores and Fleet Mainenance	SUSDP15	2/2/2017	5 - 10 ft	35 1	7.1	1 32	1		
		mg/kg	Stores and Fleet Mainenance	SUSDP15	2/2/2017	10 - 15 ft	0.44 1	0.18	1 0.57	1		
		mg/kg	Stores and Fleet Mainenance	SUSDP15-1C	8/14/2017	1 - 2 ft						
			Stores and Fleet Mainenance	SUSDP15-1C	8/14/2017	2 - 3 ft						
			Stores and Fleet Mainenance	SUSDP15-1C	8/14/2017	3 - 4 ft	0.47	2.242				
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	5 - 6 ft	0.17 1	0.042	1 0.16	1		
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	6 - 7 ft	0.13 1	0.046	1 0.14	1		
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	7 - 8 ft	0.78 1	0.26	1 0.65	1		
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	8 - 9 ft	0.095 1	0.035	1 0.099	1	1	
			Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	9 - 10 ft	0.044 1	0.013	1 0.041	1		
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	10 - 11 ft				1		
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1G	8/15/2017	1 - 2 ft	0.050	0.040		1		
			Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	5 - 6 ft	0.059 1	0.018	1 0.049	1		
		mg/kg	Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	6 - 7 ft	0.19 1	0.063	1 0.16	1		
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	7 - 8 ft	0.21 1	0.079	1 0.17	1		
			Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	8 - 9 ft	0.077 1	0.021	1 0.058	1		
		mg/kg	Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	9 - 10 ft	0.09 1	0.029	1 0.068	1		
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017					1	1	
	Subsurface		Stores and Fleet Mainenance	SUSDP16	5/15/2013					1	3.1	1
	Subsurface		Stores and Fleet Mainenance	SUSDP16		14.5 - 15.5 ft				1		
	Subsurface		Stores and Fleet Mainenance	SUSDP16		9.5 - 10.5 ft				1		
		mg/kg	Stores and Fleet Mainenance	SUSDP17		4.5 - 5.5 ft				1		
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP17		9.5 - 10.5 ft		_	1	1		
	Subsurface		Stores and Fleet Mainenance	SUSDP17	6/11/2013					1		_
	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP18	5/23/2013			_	1	1	4	1
	Subsurface		Stores and Fleet Mainenance	SUSDP18	6/4/2013		0.4	0.040	4	1		
			Stores and Fleet Mainenance	SUSDP18	1/26/2017	1 - 2 ft	0.1	0.049	1 0.088	1	1	
	Subsurface Subsurface			SUSDP18	1/26/2017		0.0027	0.0071	0 0.0022	1	+	

									1				
Matri	horizon	Units	Area	Location	Collected	Depth	Benzo(b)fluoranthene	D_Benzo(b)fluoranthene	Benzo(k)fluoranthene	D_Benzo(k)fluoranth	ene Chrysene	D_Chrysene	Cobalt D_Cobalt
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP19-7NW	4/5/2018	1 - 2 ft	0.81	1	0.25	1	0.72	1	
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP19-7NW	4/5/2018	2 - 3 ft	0.23	1	0.12	1	0.23	1	
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP19-7NW	4/5/2018	3 - 4 ft	0.53	1	0.15	1	0.41	1	
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP19-7NW	4/5/2018	4 - 5 ft	6.2	1	2.2	1	5.3	1	
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/26/2017	1 - 2 ft	0.037	1	0.02	1	0.037	1	
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/26/2017	2 - 5 ft	0.75	1	0.33	1	0.62	1	
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/27/2017	5 - 10 ft	0.4	1	0.12	1	0.29	1	
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/27/2017	10 - 15 ft	0.47	1	0.2	1	0.43	1	
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48-1C	8/15/2017	1 - 2 ft							
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48-1E	8/16/2017	1 - 2 ft							
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48-1G	8/16/2017	1 - 2 ft							
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48-2E	1/30/2018	1 - 2 ft							
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49	8/11/2017	1 - 2 ft							
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49	8/11/2017	2 - 3 ft							
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1C	8/11/2017	1 - 2 ft							
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1C	8/11/2017	2 - 3 ft							
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1E	8/11/2017	1 - 2 ft							
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1E	8/11/2017	2 - 3 ft							
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1E	8/11/2017	3 - 4 ft	0.11	1	0.035	1	0.18	1	
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1E	8/11/2017	4 - 5 ft	0.026	1	0.0046	1	0.033	1	
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP51	1/26/2017	1 - 2 ft	0.21	1	0.083	1	0.17	1	
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP51	1/26/2017	2 - 5 ft	0.027	1	0.012	1	0.024	1	
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP51	1/27/2017	5 - 10 ft	0.0074	0	0.0074	0	0.0074	0	
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP51	1/27/2017	10 - 15 ft	0.0075	0	0.0075	0	0.0075	0	
SO	Subsurface			SUSDP64	8/10/2017	1 - 2 ft							
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP65	1/30/2018	1 - 2 ft							

		1							
Matrix	horizon	Units	Area	Location	Collected	Depth	Dibenzo(a,h)anthracene D_Dibenzo(a,h)anthracene	Diesel Range Organics (C10-C20)	D_Diesel Range Organics (C10-C20)
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181A	1/25/2017	0 - 1 ft			
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181B	1/25/2017	0 - 1 ft			
SO SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181C	1/25/2017	0 - 1 ft 0 - 1 ft			
SO	Surface Surface	mg/kg mg/kg	Stores and Fleet Mainenance Stores and Fleet Mainenance	SUS181D SUS181E	1/25/2017	0 - 1 ft			
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181F	1/25/2017	0 - 1 ft			
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181G	1/25/2017	0 - 1 ft			
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181H	1/25/2017	0 - 1 ft			
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP15	2/6/2013	0.17 - 1 ft	0.09 1	170	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP15	1/30/2017	0 - 1 ft	0.068 1		
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1C	8/14/2017	0 - 1 ft			
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1G	8/15/2017	0 - 1 ft			
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP16	2/6/2013	0.5 - 1 ft	0.0095 1	19	0
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP17	2/6/2013	0.5 - 1 ft	0.0029 1	19	0
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP18	2/6/2013	0 - 1 ft	0.025 1 0.0097 1	21	1
SO SO	Surface	mg/kg	Stores and Fleet Mainenance Stores and Fleet Mainenance	SUSDP18 SUSDP19-7NW	1/26/2017 4/5/2018	0 - 1 ft 0 - 1 ft	0.0097 1 0.29 1		
SO	Surface Surface	mg/kg mg/kg	Stores and Fleet Mainenance	SUSDP48	1/26/2017	0 - 1 ft	0.29	34	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/26/2017	0 - 1 ft	0.065	O7	'
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP48-1C	8/15/2017	0 - 1 ft	5.500		
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP48-2E	1/30/2018	0 - 1 ft			
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP49	1/26/2017	0 - 1 ft	0.045 1	99	0
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1C	8/11/2017	0 - 1 ft			
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1E	8/11/2017	0 - 1 ft			
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP51	1/26/2017	0 - 1 ft	0.013 1	19	0
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP51	1/26/2017	0 - 1 ft	0.05 1		
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP52	1/26/2017	0 - 1 ft	0.0071 0	18	0
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP65	1/30/2018	0 - 1 ft	t 0.008 0	20	0
	Subsurface Subsurface		Stores and Fleet Mainenance Stores and Fleet Mainenance	DP32 DP45	4/1/2013 5/23/2013	9.5 - 10.5 f 2.5 - 3.5 ft		20	0
	Subsurface		Stores and Fleet Mainenance	DP45	6/4/2013	9.5 - 10.5 f		18	0
	Subsurface		Stores and Fleet Mainenance	DP45		14.5 - 15.5		19	0
	Subsurface		Stores and Fleet Mainenance	SUSDP15	5/21/2013			210	1
	Subsurface		Stores and Fleet Mainenance	SUSDP15	6/6/2013	9.5 - 10.5 f		280	1
	Subsurface		Stores and Fleet Mainenance	SUSDP15	6/10/2013	14.5 - 15.5	ft	140	1
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15	1/30/2017	1 - 2 ft	0.032 1		
	Subsurface		Stores and Fleet Mainenance	SUSDP15	1/30/2017	2 - 5 ft	0.017 1		
	Subsurface		Stores and Fleet Mainenance	SUSDP15	2/2/2017	5 - 10 ft	2.9 1		
	Subsurface		Stores and Fleet Mainenance	SUSDP15	2/2/2017	10 - 15 ft	0.071 1		
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1C	8/14/2017	1 - 2 ft 2 - 3 ft			
	Subsurface Subsurface		Stores and Fleet Mainenance Stores and Fleet Mainenance	SUSDP15-1C SUSDP15-1C	8/14/2017 8/14/2017	2 - 3 IL 3 - 4 ft			
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	5 - 6 ft	0.035		
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	6 - 7 ft	0.03		
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	7 - 8 ft	0.16		
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	8 - 9 ft	0.018 1		
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	9 - 10 ft	0.0088 1		
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	10 - 11 ft			
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1G	8/15/2017	1 - 2 ft			
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	5 - 6 ft	0.0082 0		
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	6 - 7 ft	0.031 1		
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1G SUSDP15-1G	8/30/2017	7 - 8 ft 8 - 9 ft	0.04 1 0.013 1		
	Subsurface Subsurface		Stores and Fleet Mainenance Stores and Fleet Mainenance	SUSDP15-1G SUSDP15-1G	8/30/2017 8/30/2017	8 - 9 π 9 - 10 ft	0.013		
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1G SUSDP15-1G	8/30/2017	10 - 11 ft	0.000		
	Subsurface		Stores and Fleet Mainenance	SUSDP16	5/15/2013	4.5 - 5.5 ft		20	0
	Subsurface		Stores and Fleet Mainenance	SUSDP16		14.5 - 15.5		19	0
	Subsurface		Stores and Fleet Mainenance	SUSDP16	6/10/2013	9.5 - 10.5 f		19	0
	Subsurface		Stores and Fleet Mainenance	SUSDP17	5/23/2013	4.5 - 5.5 ft		19	0
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP17	6/11/2013	9.5 - 10.5 f	t	18	0
	Subsurface		Stores and Fleet Mainenance	SUSDP17	6/11/2013	14 - 15 ft		18	0
	Subsurface		Stores and Fleet Mainenance	SUSDP18	5/23/2013			18	0
	Subsurface		Stores and Fleet Mainenance	SUSDP18	6/4/2013	9.5 - 10.5 f		19	0
	Subsurface			SUSDP18	1/26/2017	1 - 2 ft	0.018 1		
50	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP18	1/26/2017	2 - 5 ft	0.0071 0		

							T T			
Matrix		Units	Area	Location	Collected		, , ,	D_Dibenzo(a,h)anthracene	Diesel Range Organics (C10-C20)	D_Diesel Range Organics (C10-C20)
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP19-7NW	4/5/2018	1 - 2 ft	0.15	1		
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP19-7NW	4/5/2018	2 - 3 ft	0.2	0		
SO	Subsurface		Stores and Fleet Mainenance	SUSDP19-7NW	4/5/2018	3 - 4 ft	0.078	0		
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP19-7NW	4/5/2018	4 - 5 ft	1	1		
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/26/2017	1 - 2 ft	0.0036	1		
SO	Subsurface			SUSDP48	1/26/2017	2 - 5 ft	0.11	1		
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/27/2017	5 - 10 ft	0.05	1		
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/27/2017	10 - 15 ft	0.073	1		
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48-1C	8/15/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48-1E	8/16/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48-1G	8/16/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48-2E	1/30/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49	8/11/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49	8/11/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1C	8/11/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1C	8/11/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1E	8/11/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1E	8/11/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1E	8/11/2017	3 - 4 ft	0.016	1		
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1E	8/11/2017	4 - 5 ft	0.0041	1		
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP51	1/26/2017	1 - 2 ft	0.023	1		
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP51	1/26/2017	2 - 5 ft	0.0043	1		
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP51	1/27/2017	5 - 10 ft	0.0074	0		
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP51	1/27/2017	10 - 15 ft	0.0075	0		
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP64	8/10/2017	1 - 2 ft			70	1
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP65	1/30/2018	1 - 2 ft				

FINAL

Matrix	horizon	Units	Area	Location	Collected	Depth	Indeno(1,2,3-cd)pyrene	Indeno(1,2,3-cd)pyrene	Manganese	D Manganese	Naphthalene	D Naphthalen	e Nickel	D Nickel
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181A	1/25/2017	0 - 1 ft			g					
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181B	1/25/2017	0 - 1 ft								
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181C	1/25/2017	0 - 1 ft								
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181D	1/25/2017	0 - 1 ft								
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181E	1/25/2017	0 - 1 ft								
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181F	1/25/2017	0 - 1 ft								
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181G	1/25/2017	0 - 1 ft								
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181H	1/25/2017	0 - 1 ft								
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP15	2/6/2013	0.17 - 1 ft	0.34	1	110	1	0.067	1	19	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP15	1/30/2017	0 - 1 ft	0.23	1			0.04	1		
SO SO	Surface Surface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1C SUSDP15-1G	8/14/2017 8/15/2017	0 - 1 ft 0 - 1 ft								
SO	Surface	mg/kg mg/kg	Stores and Fleet Mainenance Stores and Fleet Mainenance	SUSDP16	2/6/2013	0.5 - 1 ft	0.033	1	150	1	0.0043	1	2.2	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP10	2/6/2013	0.5 - 1 ft	0.0098	1	58	1	0.0043	1	3.4	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP18	2/6/2013	0.5 - 1 ft	0.074	1	220	1	0.0002	1	7.7	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP18	1/26/2017	0 - 1 ft	0.038	1	220		0.0035	1	7.7	
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP19-7NW	4/5/2018	0 - 1 ft	0.9	1			0.061	1		
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/26/2017	0 - 1 ft	0.24	1	110	1	0.041	1	31	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/26/2017	0 - 1 ft	0.19	1			0.023	1		
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP48-1C	8/15/2017	0 - 1 ft								
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP48-2E	1/30/2018	0 - 1 ft								
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP49	1/26/2017	0 - 1 ft	0.21	1	160	1	0.066	1	20	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1C	8/11/2017	0 - 1 ft								
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1E	8/11/2017	0 - 1 ft							1	
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP51	1/26/2017	0 - 1 ft	0.039	1	93	1	0.0052	1	4.7	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP51	1/26/2017	0 - 1 ft	0.18	1			0.024	1		
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP52	1/26/2017	0 - 1 ft	0.0071	0	42	1	0.0071	0	2.6	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP65	1/30/2018	0 - 1 ft	0.008	0	14	1	0.008	0	17	1
	Subsurface Subsurface		Stores and Fleet Mainenance Stores and Fleet Mainenance	DP32 DP45	5/23/2013	9.5 - 10.5 ft 2.5 - 3.5 ft	0.008	U	14		0.008	U	1.7	
	Subsurface		Stores and Fleet Mainenance	DP45		9.5 - 10.5 ft								
	Subsurface		Stores and Fleet Mainenance	DP45		14.5 - 15.5 f								
	Subsurface		Stores and Fleet Mainenance	SUSDP15		3.5 - 4.5 ft	t .							
	Subsurface		Stores and Fleet Mainenance	SUSDP15		9.5 - 10.5 ft								
	Subsurface		Stores and Fleet Mainenance	SUSDP15		14.5 - 15.5 f								
	Subsurface		Stores and Fleet Mainenance	SUSDP15	1/30/2017	1 - 2 ft	0.089	1			0.091	1		
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15	1/30/2017	2 - 5 ft	0.059	1			0.038	1		
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15	2/2/2017	5 - 10 ft	7.8	1			0.68	1		
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15	2/2/2017	10 - 15 ft	0.21	1			0.047	1		
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1C	8/14/2017	1 - 2 ft								
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1C	8/14/2017	2 - 3 ft								
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1C	8/14/2017	3 - 4 ft								
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	5 - 6 ft	0.094	1			0.037	1	\perp	
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	6 - 7 ft	0.079	1 1			0.06	1		
	Subsurface		Stores and Fleet Mainenance Stores and Fleet Mainenance	SUSDP15-1C SUSDP15-1C	8/22/2017 8/22/2017	7 - 8 ft 8 - 9 ft	0.43 0.056	1 1			0.058 0.017	1	+	
	Subsurface Subsurface		Stores and Fleet Mainenance Stores and Fleet Mainenance	SUSDP15-1C SUSDP15-1C	8/22/2017	8 - 9 π 9 - 10 ft	0.056	1 1			0.017	1	+	
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	10 - 11 ft	0.021	I			0.014	'	+	
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1G	8/15/2017	1 - 2 ft						1		
	Subsurface Subsurface		Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	5 - 6 ft	0.027	1			0.016	1		
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	6 - 7 ft	0.093	1			0.03	1		
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	7 - 8 ft	0.11	<u>·</u> 1			0.038	1		
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	8 - 9 ft	0.039	1			0.011	1		
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	9 - 10 ft	0.052	1			0.009	1		
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	10 - 11 ft						1		
	Subsurface		Stores and Fleet Mainenance	SUSDP16		4.5 - 5.5 ft		<u>-</u>	110	1			3.7	1
	Subsurface		Stores and Fleet Mainenance	SUSDP16		14.5 - 15.5 f								
	Subsurface		Stores and Fleet Mainenance	SUSDP16		9.5 - 10.5 ft								
	Subsurface		Stores and Fleet Mainenance	SUSDP17	5/23/2013								\perp	
	Subsurface		Stores and Fleet Mainenance	SUSDP17	6/11/2013						1	1		
	Subsurface		Stores and Fleet Mainenance	SUSDP17	6/11/2013				220	4		1	2.5	1
	Subsurface		Stores and Fleet Mainenance	SUSDP18	5/23/2013				230	1		-	3.5	1
	Subsurface Subsurface		Stores and Fleet Mainenance Stores and Fleet Mainenance	SUSDP18 SUSDP18	6/4/2013 1/26/2017	9.5 - 10.5 ft 1 - 2 ft	0.057	1			0.0044	1	+	
	Subsurface			SUSDP18	1/26/2017	2 - 5 ft	0.0071	0			0.0044	0	+	
30	Cubsuriace	my/kg	Otores and ricet mainerance	303DF 10	1/20/2017	4 - J Il	0.0071	0			0.0071		1	

Matrix	horizon	Units	Area	Location	Collected	Depth	Indeno(1,2,3-cd)pyrene	Indeno(1,2,3-cd)pyrene Mangane	e D Manganese Naphthalene	D Naphthalene I	Nickel D Nickel
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP19-7NW	4/5/2018	1 - 2 ft	0.39	1	0.15	1	_
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP19-7NW	4/5/2018	2 - 3 ft	0.21	1	0.2	0	
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP19-7NW	4/5/2018	3 - 4 ft	0.29	1	0.022	1	
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP19-7NW	4/5/2018	4 - 5 ft	3.4	1	0.5	1	
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/26/2017	1 - 2 ft	0.017	1	0.0081	0	
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/26/2017	2 - 5 ft	0.34	1	0.083	1	
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/27/2017	5 - 10 ft	0.2	1	0.093	1	
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/27/2017	10 - 15 ft	0.3	1	0.035	1	
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48-1C	8/15/2017	1 - 2 ft					
SO	Subsurface		Stores and Fleet Mainenance	SUSDP48-1E	8/16/2017	1 - 2 ft					
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48-1G	8/16/2017	1 - 2 ft					
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48-2E	1/30/2018	1 - 2 ft					
SO	Subsurface		Stores and Fleet Mainenance	SUSDP49	8/11/2017	1 - 2 ft					
SO	Subsurface		Stores and Fleet Mainenance	SUSDP49	8/11/2017	2 - 3 ft					
SO	Subsurface		Stores and Fleet Mainenance	SUSDP49-1C	8/11/2017	1 - 2 ft					
SO	Subsurface		Stores and Fleet Mainenance	SUSDP49-1C	8/11/2017	2 - 3 ft					
SO	Subsurface		Stores and Fleet Mainenance	SUSDP49-1E	8/11/2017	1 - 2 ft					
SO	Subsurface		Stores and Fleet Mainenance	SUSDP49-1E	8/11/2017	2 - 3 ft					
SO	Subsurface		Stores and Fleet Mainenance	SUSDP49-1E	8/11/2017	3 - 4 ft	0.038	1	0.056	1	
SO	Subsurface		Stores and Fleet Mainenance	SUSDP49-1E	8/11/2017	4 - 5 ft	0.0086	1	0.014	1	
SO	Subsurface		Stores and Fleet Mainenance	SUSDP51	1/26/2017	1 - 2 ft	0.081	1	0.015	1	
SO	Subsurface		Stores and Fleet Mainenance	SUSDP51	1/26/2017	2 - 5 ft	0.014	1	0.0035	1	
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP51	1/27/2017	5 - 10 ft	0.0074	0	0.0074	0	
SO	Subsurface			SUSDP51	1/27/2017	10 - 15 ft	0.0075	0	0.0075	0	
SO	Subsurface		Stores and Fleet Mainenance	SUSDP64	8/10/2017	1 - 2 ft					
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP65	1/30/2018	1 - 2 ft					

Matrix	horizon	Units	Area	Location	Collected	Depth	PCB Total Aroclors (AECOM Calc)	D PCB, Total Aroclors (AECOM Calc)	TCDD TEO HH	D TCDD	TEO HH Thalliur	n D Tha	llium Vanadiur	n D. Vanadium
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181A	1/25/2017	0 - 1 ft	0.17	1	0.000000152	1000	I TEQ IIII IIIaliidi	ID_IIIa	ilium vanadidi	D_variadiditi
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181B	1/25/2017	0 - 1 ft	0.038	1	0.000000132	1	1			+
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181C	1/25/2017	0 - 1 ft	0.00091	0	0.000000101	1				+
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181D	1/25/2017	0 - 1 ft	0.0082	1	0.0000197	1				+
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181E	1/25/2017	0 - 1 ft	0.0022	1	0.00000137	1				
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181F	1/25/2017	0 - 1 ft	0.0022	1	0.00000367	1				+
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181G	1/25/2017	0 - 1 ft	0.47	1	0.00000337	1				+
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUS181H	1/25/2017	0 - 1 ft	0.016	1	0.00000133	1				+
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP15	2/6/2013	0.17 - 1 ft	0.33	1	0.00000900		0.14	1	26	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP15	1/30/2017	0-17 - 11t	0.76	1			0.14	- '	20	
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1C	8/14/2017	0 - 1 ft	1.3	1						+
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1G	8/15/2017	0 - 1 ft	4.8	1						
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP16	2/6/2013	0.5 - 1 ft	0.00095	1			0.11	0	11	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP17	2/6/2013	0.5 - 1 ft	0.086	1	0.00000389	1		0	12	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP18	2/6/2013	0 - 1 ft	1.4	1	0.0000223	1		0	13	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP18	1/26/2017	0 - 1 ft	0.004	1	0.0000220					
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP19-7NW	4/5/2018	0 - 1 ft	0.004							
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/26/2017	0 - 1 ft	0.96	1	0.0000106	1	0.15	1	30	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/26/2017	0 - 1 ft	2	1						+
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP48-1C	8/15/2017	0 - 1 ft	1.6	1						+
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP48-2E	1/30/2018	0 - 1 ft	0.013	1				1		+
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP49	1/26/2017	0 - 1 ft	3.5	1	0.0000112	1	0.17	1	28	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1C	8/11/2017	0 - 1 ft	0.049	1						+
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1E	8/11/2017	0 - 1 ft	0.001	0						+
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP51	1/26/2017	0 - 1 ft	0.077	1	0.00000207	1	0.085	1	24	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP51	1/26/2017	0 - 1 ft	0.43	1						+
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP52	1/26/2017	0 - 1 ft	0.00091	0	0.000000937	1	0.06	1	22	1
SO	Surface	mg/kg	Stores and Fleet Mainenance	SUSDP65	1/30/2018	0 - 1 ft	0.34	1						
SO	Subsurface		Stores and Fleet Mainenance	DP32	4/1/2013	9.5 - 10.5 ft	0.00099	0			0.12	0	22	1
SO	Subsurface		Stores and Fleet Mainenance	DP45		2.5 - 3.5 ft	0.0025	1						
SO	Subsurface		Stores and Fleet Mainenance	DP45		9.5 - 10.5 ft	0.0044	0						
	Subsurface		Stores and Fleet Mainenance	DP45		14.5 - 15.5 ft	0.0047	0						
SO	Subsurface		Stores and Fleet Mainenance	SUSDP15		3.5 - 4.5 ft	0.57	1						
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15	6/6/2013	9.5 - 10.5 ft	1.1	1						
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15	6/10/2013	14.5 - 15.5 ft	0.38	1						
SO	Subsurface		Stores and Fleet Mainenance	SUSDP15	1/30/2017	1 - 2 ft	1.3	1						
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15	1/30/2017	2 - 5 ft	0.3	1						
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15	2/2/2017	5 - 10 ft	0.16	1						
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15	2/2/2017	10 - 15 ft	0.0011	0						
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1C	8/14/2017	1 - 2 ft	1	1						
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1C	8/14/2017	2 - 3 ft	1.2	1						
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP15-1C	8/14/2017	3 - 4 ft	0.51	1						
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	5 - 6 ft								
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	6 - 7 ft		<u> </u>	<u> </u>					
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	7 - 8 ft								
SO	Subsurface		Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	8 - 9 ft								
SO	Subsurface		Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	9 - 10 ft	0.18	1						
SO	Subsurface		Stores and Fleet Mainenance	SUSDP15-1C	8/22/2017	10 - 11 ft	0.0097	0						
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1G	8/15/2017	1 - 2 ft	0.36	1						
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	5 - 6 ft								
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	6 - 7 ft								
	Subsurface		Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	7 - 8 ft								
SO	Subsurface		Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	8 - 9 ft		-						
SO	Subsurface		Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	9 - 10 ft	0.0099	0						
SO	Subsurface		Stores and Fleet Mainenance	SUSDP15-1G	8/30/2017	10 - 11 ft	0.13	1						
	Subsurface		Stores and Fleet Mainenance	SUSDP16	5/15/2013	4.5 - 5.5 ft	0.00097	0			0.082	1	19	1
	Subsurface		Stores and Fleet Mainenance	SUSDP16		14.5 - 15.5 ft		0						
	Subsurface		Stores and Fleet Mainenance	SUSDP16		9.5 - 10.5 ft	0.0047	0						
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP17		4.5 - 5.5 ft	0.0046	0	0.00000137	1				
SO	Subsurface		Stores and Fleet Mainenance	SUSDP17		9.5 - 10.5 ft	0.0045	0						
	Subsurface		Stores and Fleet Mainenance	SUSDP17	6/11/2013	14 - 15 ft	0.0047	0						
	Subsurface		Stores and Fleet Mainenance	SUSDP18		2.5 - 3.5 ft	0.0046	1	3.67E-08	1	0.047	1	12	1
	Subsurface		Stores and Fleet Mainenance	SUSDP18		9.5 - 10.5 ft	0.0047	0						
	Subsurface		Stores and Fleet Mainenance	SUSDP18	1/26/2017	1 - 2 ft	0.15	1						
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP18	1/26/2017	2 - 5 ft	0.001	1						

				ı							
Matrix	horizon	Units	Area	Location	Collected	Depth	PCB, Total Aroclors (AECOM Calc)	D_PCB, Total Aroclors (AECOM Calc)	TCDD TEQ HH	D_TCDD TEQ HH Thallium	D_Thallium Vanadium D_Vanadium
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP19-7NW	4/5/2018	1 - 2 ft					
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP19-7NW	4/5/2018	2 - 3 ft					
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP19-7NW	4/5/2018	3 - 4 ft					
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP19-7NW	4/5/2018	4 - 5 ft					
	Subsurface		Stores and Fleet Mainenance	SUSDP48	1/26/2017	1 - 2 ft	0.013	1			
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/26/2017	2 - 5 ft	0.36	1			
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/27/2017	5 - 10 ft	0.23	1			
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48	1/27/2017	10 - 15 ft	0.03	1			
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48-1C	8/15/2017	1 - 2 ft	0.81	1			
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48-1E	8/16/2017	1 - 2 ft	0.42	1			
	Subsurface		Stores and Fleet Mainenance	SUSDP48-1G	8/16/2017	1 - 2 ft	0.0088	0			
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP48-2E	1/30/2018	1 - 2 ft	0.91	1			
	Subsurface		Stores and Fleet Mainenance	SUSDP49	8/11/2017	1 - 2 ft	2.1	1			
	Subsurface		Stores and Fleet Mainenance	SUSDP49	8/11/2017	2 - 3 ft	0.53	1			
	Subsurface		Stores and Fleet Mainenance	SUSDP49-1C	8/11/2017	1 - 2 ft	3.5	1			
	Subsurface		Stores and Fleet Mainenance	SUSDP49-1C	8/11/2017	2 - 3 ft	0.01	0			
	Subsurface		Stores and Fleet Mainenance	SUSDP49-1E	8/11/2017	1 - 2 ft	1.4	1			
	Subsurface		Stores and Fleet Mainenance	SUSDP49-1E	8/11/2017	2 - 3 ft	0.068	1			
	Subsurface		Stores and Fleet Mainenance	SUSDP49-1E	8/11/2017	3 - 4 ft					
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP49-1E	8/11/2017	4 - 5 ft					
	Subsurface		Stores and Fleet Mainenance	SUSDP51	1/26/2017	1 - 2 ft	0.17	1			
	Subsurface		Stores and Fleet Mainenance	SUSDP51	1/26/2017	2 - 5 ft	0.025	1			
	Subsurface		Stores and Fleet Mainenance	SUSDP51	1/27/2017	5 - 10 ft	0.00095	0			
	Subsurface		Stores and Fleet Mainenance	SUSDP51	1/27/2017	10 - 15 ft	0.00095	0			
	Subsurface		Stores and Fleet Mainenance	SUSDP64	8/10/2017	1 - 2 ft	0.82	1			
SO	Subsurface	mg/kg	Stores and Fleet Mainenance	SUSDP65	1/30/2018	1 - 2 ft	0.43	1			

Matrix	horizon	Units	Area	Location	Collected	Depth	Arsenic	D Arsenic	Benzo(a)anthracene	D Benzo(a)a	inthracene	Benzo(a)pyrene	D Benzo(a)pyrene	Benzo(b)fluoranthene	D Benzo(b)fluoranthene
SO	Surface	mg/kg	Offices and Parking Lot	SUS19-2E	3/22/2017	0 - 1 ft	7 0010	<u></u>	0.93	1		0.94	1	1.2	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP09	2/5/2013	0 - 1 ft	2.2	1	0.25	1		0.29	1	0.32	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP14	2/6/2013	0.17 - 1 ft	3.7	1	0.68	1		0.7	1	0.82	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19	2/6/2013	0.83 - 1 ft	3	1	2.9	1		2.8	1	3.3	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19	1/30/2017	0 - 1 ft			1	1		1	1	1.4	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1A	2/1/2017	0 - 1 ft			0.38	1		0.43	1	0.49	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1B	2/1/2017	0 - 1 ft			0.06	1		0.067	1	0.074	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1C	1/27/2017	0 - 1 ft			1.8	1		1.8	1	2.6	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1D	8/22/2017	0 - 1 ft			2.3	1		2.3	1	2.8	1
SO SO	Surface Surface	mg/kg	Offices and Parking Lot Offices and Parking Lot	SUSDP19-1G SUSDP19-1H	2/1/2017 2/1/2017	0 - 1 ft 0 - 1 ft			4.2 0.78	1		3.8 0.67	1	4.7 0.92	1
SO	Surface	mg/kg mg/kg	Offices and Parking Lot	SUSDP19-1H SUSDP19-2D	3/22/2017	0 - 1 ft			2.7	1		2.3	1	2.9	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-2M	3/23/2017	0 - 1 ft			0.64	1		0.61	1	0.73	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-2N	3/23/2017	0 - 1 ft			0.13	1		0.13	1	0.14	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-20	3/23/2017	0 - 1 ft			0.027	1		0.029	1	0.036	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-2P	3/23/2017	0 - 1 ft			1	1		1	1	1.3	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-3S	8/24/2017	0 - 1 ft			0.25	1		0.31	1	0.34	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-3V	8/24/2017	0 - 1 ft			0.07	0		0.07	0	0.07	0
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-4N	1/26/2018	0 - 1 ft			0.0059	1		0.0066	1	0.0096	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-4NW	2/1/2018	0 - 1 ft			0.046	1		0.14	1	0.28	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-4W	2/1/2018	0 - 1 ft			0.21	1		0.2	1	0.28 0.22	1
SO	Surface Surface	mg/kg mg/kg	Offices and Parking Lot Offices and Parking Lot	SUSDP19-5N SUSDP19-5NW	2/21/2018 2/21/2018	0 - 1 ft 0 - 1 ft			0.17 0.18	1		0.15 0.18	1	0.22	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-5NW SUSDP19-5W	2/21/2018	0 - 1 ft			0.18	1		0.18	1	0.26	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-6N	3/15/2018	0 - 1 ft			14	1		11	1	12	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-6NW	3/15/2018	0 - 1 ft			0.16	0		0.16	0	0.16	0
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-6W	3/16/2018	0 - 1 ft			0.0027	1		0.0022	1	0.0039	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-7N	4/5/2018	0 - 1 ft			1.9	1		1.6	1	2	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-7W	4/5/2018	0 - 1 ft			0.034	1		0.031	1	0.037	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP53	1/31/2017	0 - 1 ft			0.21	1		0.35	1	0.41	1
	Subsurface		Offices and Parking Lot	SUSDP09	5/17/2013	4.5 - 5.5 ft									
	Subsurface		Offices and Parking Lot	SUSDP09	6/11/2013	9.5 - 10.5 ft		11							
	Subsurface		Offices and Parking Lot	SUSDP09	6/11/2013 5/22/2013	14.5 - 15.5 f 2.5 - 3.5 ft	t								
	Subsurface		Offices and Parking Lot Offices and Parking Lot	SUSDP14 SUSDP14		9.5 - 10.5 ft									
	Subsurface Subsurface		Offices and Parking Lot	SUSDP14		14.5 - 15.5 f									
	Subsurface		Offices and Parking Lot	SUSDP19	5/23/2013	1.5 - 2.5 ft		1	1.9	1		2.3	1	2.2	1
	Subsurface		Offices and Parking Lot	SUSDP19		14.5 - 15.5 f			0.0011	1		0.0077	0	0.0077	0
	Subsurface		Offices and Parking Lot	SUSDP19	6/5/2013	9.5 - 10.5 ft		1	15	1		14	1	16	1
SO	Subsurface		Offices and Parking Lot	SUSDP19	1/30/2017	1 - 2 ft			3.2	1		2.8	1	3.4	1
	Subsurface	3 3	Offices and Parking Lot	SUSDP19	1/30/2017	2 - 5 ft			2.5	1		2.5	1	3.1	1
	Subsurface		Offices and Parking Lot	SUSDP19	2/8/2017	5 - 10 ft			12	1		12	1	15	1
	Subsurface		Offices and Parking Lot	SUSDP19	2/8/2017	10 - 15 ft			0.0058	1		0.0068	1	0.011	1
	Subsurface		Offices and Parking Lot	SUSDP19-1A	2/1/2017	2 - 3 ft			1.2 0.0017	1		1.3 0.008	0	1.7 0.008	0
	Subsurface Subsurface		Offices and Parking Lot Offices and Parking Lot	SUSDP19-1A SUSDP19-1A	2/8/2017 2/8/2017	10 - 11 ft 15 - 16 ft			0.0017	0		0.0085	0	0.008	0
	Subsurface		Offices and Parking Lot	SUSDP19-1A SUSDP19-1B	2/1/2017	2 - 3 ft			0.0085	1		0.86	1	1.1	1
	Subsurface		Offices and Parking Lot	SUSDP19-1B	2/8/2017	10 - 11 ft			0.039	1		0.033	1	0.037	1
	Subsurface		Offices and Parking Lot	SUSDP19-1B	2/8/2017	15 - 16 ft			0.0082	0		0.0082	0	0.0082	0
	Subsurface		Offices and Parking Lot	SUSDP19-1C	1/27/2017	2 - 3 ft			0.35	1		0.41	1	0.5	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-1C	2/8/2017	10 - 11 ft			0.012	1		0.0094	1	0.014	1
	Subsurface		Offices and Parking Lot	SUSDP19-1C	2/8/2017	15 - 16 ft			0.008	0		0.008	0	0.008	0
	Subsurface		Offices and Parking Lot	SUSDP19-1D	8/22/2017	1 - 2 ft			5.2	1		5.1	1	5.8	1
	Subsurface		Offices and Parking Lot	SUSDP19-1D	8/22/2017	2 - 3 ft			5.2	1		4.5	1	5.5	1
	Subsurface		Offices and Parking Lot	SUSDP19-1D	8/22/2017	3 - 4 ft			8.1	1		9	1	9.8	1
	Subsurface	0 0	Offices and Parking Lot	SUSDP19-1D	8/22/2017	4 - 5 ft			2.9 3.4	1		2.9	1	2.7 3.6	1
	Subsurface Subsurface		Offices and Parking Lot Offices and Parking Lot	SUSDP19-1D SUSDP19-1F	8/22/2017 8/22/2017	5 - 6 ft 1 - 2 ft			3.4 0.44	1		3.5 0.45	1	3.6 0.51	1
	Subsurface		Offices and Parking Lot	SUSDP19-1F SUSDP19-1F	8/22/2017	2 - 3 ft			1.3	1		1.3	1	1.8	1
	Subsurface		Offices and Parking Lot	SUSDP19-1F	8/22/2017	3 - 4 ft			1.3	1		0.94	1	1.0	1
	Subsurface		Offices and Parking Lot	SUSDP19-1F	8/22/2017	4 - 5 ft			7	1		7.5	1	9	1
	Subsurface	0 0	Offices and Parking Lot	SUSDP19-1G	2/1/2017	2 - 3 ft			29	1		21	1	25	1
	Subsurface		Offices and Parking Lot	SUSDP19-1G	2/8/2017	10 - 11 ft			0.064	1		0.054	1	0.064	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-1G	2/8/2017	15 - 16 ft			0.0084	0		0.0084	0	0.0084	0
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1H	2/1/2017	2 - 3 ft			6	1		5.5	1	7	1

Marketin Income on	1.124	A	1 #	0-1141	Double	A	D. A	D(-)#	D. B / -)	D(-)	D. D (-)	D (l-)fl H	D. D /b.\d
Matrix horizon	Units	Area	Location	Collected	Depth	Arsenic	D_Arsenic		D_Benzo(a)anthracen		D_Benzo(a)pyrene		D_Benzo(b)fluoranthene
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1H	2/8/2017	10 - 11 ft			0.27	1	0.2	1	0.29	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1H	2/8/2017	15 - 16 ft			0.0077	0	0.0077	0	0.0077	0
SO Subsurface		Offices and Parking Lot	SUSDP19-2D	8/17/2017	1 - 2 ft 2 - 3 ft			5.2 8.2	1	4.3 7.7	1	5.5 9.7	1
SO Subsurface	·	Offices and Parking Lot	SUSDP19-2D	8/17/2017				3	1	2.9	1		1
SO Subsurface SO Subsurface	mg/kg	Offices and Parking Lot Offices and Parking Lot	SUSDP19-2D SUSDP19-2D	8/17/2017 8/17/2017	3 - 4 ft 4 - 5 ft			3.1	1	2.8	1	4.1 3.5	1
SO Subsurface	mg/kg mg/kg	Offices and Parking Lot	SUSDP19-2D	8/17/2017	5 - 6 ft			1.1	1	1.1	1	1.4	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2M	3/23/2017	2 - 3 ft			3.4	1	3	1	4.1	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2M	8/16/2017	3 - 4 ft			7.8	1	6.6	1	8.1	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2M	8/16/2017	4 - 5 ft			36	1	28	1	33	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2M	8/16/2017	5 - 6 ft			7.6	1	6.6	1	7.9	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2N	3/23/2017	2 - 3 ft			0.091	1	0.08	1	0.097	1
SO Subsurface		Offices and Parking Lot	SUSDP19-20	3/23/2017	2 - 3 ft			19	1	16	1	20	1
SO Subsurface		Offices and Parking Lot	SUSDP19-20	8/23/2017	3 - 4 ft			3.8	1	3.8	1	4.2	1
SO Subsurface		Offices and Parking Lot	SUSDP19-20	8/23/2017	4 - 5 ft			17	1	13	1	17	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-20	8/23/2017	5 - 6 ft			9.1	1	7.9	1	9.3	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-20	3/28/2018	6 - 7 ft			8	1	8.9	1	11	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-20	3/28/2018	7 - 8 ft			14	1	14	1	16	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-20	3/28/2018	10 - 11 ft			6.8	1	5.5	1	6.4	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-20	3/28/2018	11 - 12 ft			0.0053	1	0.0037	1	0.0058	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2P	3/23/2017	2 - 3 ft			7	1	5.8	1	6.9	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2P	8/17/2017	3 - 4 ft			3.2	1	3.5	1	4.2	1
SO Subsurface	0	Offices and Parking Lot	SUSDP19-2P	8/17/2017	4 - 5 ft			3.5	1	3.2	1	3.8	1
SO Subsurface		Offices and Parking Lot	SUSDP19-2P	8/17/2017	5 - 6 ft			1.2	1	1.2	1	1.2	1
SO Subsurface		Offices and Parking Lot	SUSDP19-3F	8/18/2017	1 - 2 ft			1.6	1	1.4	1	1.9	1
SO Subsurface	0	Offices and Parking Lot	SUSDP19-3F	8/18/2017	2 - 3 ft			0.22	1	0.22	1	0.25	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3F	8/18/2017	3 - 4 ft			0.16	1	0.15	1	0.18	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3F	8/18/2017	4 - 5 ft			0.1	1	0.095	1	0.11	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3F	8/18/2017	5 - 6 ft			0.21	1	0.16	1	0.18	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3S	8/24/2017	1 - 2 ft			0.73	1	0.67	1	0.81	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3S	8/24/2017	2 - 3 ft			2.9	1	2.8	1	3.4	1
SO Subsurface SO Subsurface	mg/kg mg/kg	Offices and Parking Lot Offices and Parking Lot	SUSDP19-3S SUSDP19-3S	8/24/2017 8/24/2017	3 - 4 ft 4 - 5 ft			1.8 6.1	1	1.8 5.3	1	2.1 7	1
		Offices and Parking Lot	SUSDP19-3S	8/24/2017	5 - 6 ft			5.8	1	5.1	1	6.2	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3V	8/24/2017	1 - 2 ft			4.4	1	4	1	4.7	1
SO Subsurface		Offices and Parking Lot	SUSDP19-3V	8/24/2017	2 - 3 ft			8.1	1	7.8	1	9.1	1
SO Subsurface		Offices and Parking Lot	SUSDP19-3V	8/24/2017	3 - 4 ft			6.8	1	6.8	1	6.8	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3V	8/24/2017	4 - 5 ft			6.1	1	5.2	1	6.7	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3V	8/24/2017	5 - 6 ft			2.5	1	2.4	1	3	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3X	8/18/2017	1 - 2 ft			6.6	1	5.6	1	6.5	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3X	8/18/2017	2 - 3 ft			14	1	13	1	15	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3X	8/18/2017	3 - 4 ft			13	1	11	1	13	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3X	8/18/2017	4 - 5 ft			2.9	1	2.5	1	3.1	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3X	8/18/2017	5 - 6 ft			1.4	1	1.7	1	2	1
SO Subsurface		Offices and Parking Lot	SUSDP19-4N	1/26/2018	1 - 2 ft		-	0.35	1	0.28	1	0.41	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4N	1/26/2018	2 - 3 ft			12	1	9.8	1	12	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4N	1/26/2018	3 - 4 ft			39	1	37	1	57	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4N	1/26/2018	4 - 5 ft			15	1	14	1	16	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4N	1/26/2018	5 - 6 ft			14	1	14	1	19	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4N	3/28/2018	6 - 7 ft			3.9	1	3.7	1	5.2	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4N	3/28/2018	7 - 8 ft	1		26	1	23	1	31	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4N	3/28/2018	10 - 11 ft	1		0.41	0	0.41	0	0.51	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4N	3/28/2018	11 - 12 ft	+ -		0.0077	U	0.0077	-	0.0077	1
SO Subsurface SO Subsurface	mg/kg	Offices and Parking Lot Offices and Parking Lot	SUSDP19-4NW SUSDP19-4NW	2/1/2018 2/1/2018	1 - 2 ft 2 - 3 ft	1		3.5 2.3	1	2.6 2.1	1	4.2 3.4	1
SO Subsurface		Offices and Parking Lot	SUSDP19-4NW	2/1/2018	3 - 4 ft	1		0.72	1	0.66	1	0.88	1
SO Subsurface	mg/kg mg/kg	Offices and Parking Lot	SUSDP19-4NW		4 - 5 ft			15	1	14	1	22	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4NW		5 - 6 ft	+ -		15	1	16	1	21	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4NW	3/28/2018	6 - 7 ft	+ -		2.3	1	2.3	1	2.3	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4NW	3/28/2018	7 - 8 ft			27	1	30	1	32	1
	mg/kg	Offices and Parking Lot	SUSDP19-4NW	3/28/2018	10 - 11 ft			2.3	1	2.3	1	2.2	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4NW	3/28/2018	11 - 12 ft			0.0051	1	0.0045	1	0.0063	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4W	2/1/2018	1 - 2 ft			1.3	1	1.1	1	1.7	1
SO Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4W	2/1/2018	2 - 3 ft			6.7	1	6.6	1	8.1	1
SO Subsurface		Offices and Parking Lot	SUSDP19-4W	2/1/2018	3 - 4 ft			4.7	1	4.1	1	5.5	1
		3							t .				<u> </u>

Matrix	horizon	Units	Area	Location	Collected	Depth	Arsenic D_Arsenic Benzo(a)anthracene	D_Benzo(a)anthrac	ene Benzo(a)pyrene	D_Benzo(a)pyrene	Benzo(b)fluoranthene [_Benzo(b)fluoranthene
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4W	2/1/2018	4 - 5 ft	2.1	1	1.9	1	2.6	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4W	2/1/2018	5 - 6 ft	0.1	1	0.11	1	0.14	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-5N	2/21/2018	1 - 2 ft	2.5	1	2.2	1	3.1	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5N	2/21/2018	2 - 3 ft	0.13	1	0.12	1	0.17	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5N	2/21/2018	3 - 4 ft	7	1	5.7	1	7.5	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5N	2/21/2018	4 - 5 ft	11	1	9	1	12	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5N	2/21/2018	5 - 6 ft	2.8	1	2.4	1	3.2	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5NW	2/21/2018	1 - 2 ft	4.3	1	4.1	1	5.5	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5NW	2/21/2018	2 - 3 ft	4	1	3.3	1	4.3	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5NW	2/21/2018	3 - 4 ft	12	1	10	1	14	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5NW	2/21/2018	4 - 5 ft	3	1	3.2	1	4	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5NW	2/21/2018	5 - 6 ft	2.1	1	2.1	1	3	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5W	2/21/2018	1 - 2 ft	1.3	1	1.1	1	1.6	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5W	2/21/2018	2 - 3 ft	1.6	1	1.3	1	1.9	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5W	2/21/2018	3 - 4 ft	31	1	25	1	31	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5W	2/21/2018	4 - 5 ft	0.42	1	0.33	1	0.45	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6N	3/15/2018	1 - 2 ft	0.67	1	0.76	1	0.92	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6N	3/15/2018	2 - 3 ft	5.9	1	5.2	1	6.4	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6N	3/15/2018	3 - 4 ft	5.2	1	4.7	1	6	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6N	3/15/2018	4 - 5 ft	0.0093	1	0.0081	1	0.0095	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6NW	3/15/2018	1 - 2 ft	0.7	1	0.57	1	0.7	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6NW	3/15/2018	2 - 3 ft	16	1	14	1	19	1
SO	Subsurface	mg/kg	Offices and Parking Lot		3/16/2018	3 - 4 ft	0.39	1	0.31	1	0.32	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6NW	3/16/2018	4 - 5 ft	46	1	46	1	36	1
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6NW	3/16/2018	5 - 6 ft	16	1	14	1	17	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6W	3/16/2018	1 - 2 ft	5.9	1	5.5	1	5.4	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6W	3/16/2018	2 - 3 ft	720	1	640	1	420	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6W	3/16/2018	3 - 4 ft	240	1	200	1	200	1
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-7N	4/5/2018	1 - 2 ft	24	1	19	1	23	1
		mg/kg	Offices and Parking Lot	SUSDP19-7N	4/5/2018	2 - 3 ft	0.94	1	0.86	1	1.2	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-7N	4/5/2018	3 - 4 ft	2.4	1	2.2	1	2.8	1
			Offices and Parking Lot	SUSDP19-7N	4/5/2018	4 - 5 ft	0.34	1	0.32	1	0.36	1
	Subsurface		Offices and Parking Lot	SUSDP19-7W	4/5/2018	1 - 2 ft	0.007	0	0.007	0	0.007	0
		mg/kg	Offices and Parking Lot	SUSDP19-7W	4/5/2018	2 - 3 ft	0.007	0	0.007	0	0.007	0
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-7W	4/5/2018	3 - 4 ft	0.0075	0	0.0075	0	0.0075	0
			Offices and Parking Lot	SUSDP19-7W	4/5/2018	4 - 5 ft	0.0079	0	0.0079	0	0.0079	0
	Subsurface		Offices and Parking Lot	SUSDP19-7W	4/5/2018	5 - 6 ft	0.0076	0	0.0076	0	0.0076	0
			Offices and Parking Lot	SUSDP53	1/31/2017	1 - 2 ft	0.011	1	0.011	1	0.016	1
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP53	1/31/2017	2 - 5 ft	0.0011	1	0.0081	0	0.0081	0
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP53	2/2/2017	5 - 10 ft	0.0018	1	0.0081	0	0.0081	0
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP53	2/2/2017	10 - 15 ft	0.0017	1	0.0091	0	0.0019	1

Matrix	hari-an	Llaita	A	Lagation	Callastad	Donth	Dana (Is) fissa randhana	D. Donne (Is) fluorenthese	Chminana	D. Chrusan	a Cahall D	Cahal	Dibanza(a h)anthrasana	D. Dibanza(a b)anthrasana
Matrix SO	horizon Surface	Units	Area Offices and Parking Lot	Location SUS19-2E	3/22/2017	Depth 0 - 1 ft	0.43	D_Benzo(k)iluorantiiene	0.98	D_Chrysene	e Coball D	_Cobai	0.22	D_Dibenzo(a,h)anthracene
SO	Surface	mg/kg mg/kg	Offices and Parking Lot	SUSDP09	2/5/2013	0 - 1 ft	0.43	1	0.98	1	4.6	1	0.22	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP14	2/6/2013	0 - 1 ft	0.29	1	0.20	1	5	1	0.045	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19	2/6/2013	0.83 - 1 ft	1.1	1	2.8	1	11	1	0.69	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19	1/30/2017	0 - 1 ft	0.46	1	1.1	1			0.24	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1A	2/1/2017	0 - 1 ft	0.22	1	0.39	1			0.09	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1B	2/1/2017	0 - 1 ft	0.03	1	0.06	1			0.014	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1C	1/27/2017	0 - 1 ft	0.92	1	1.8	1			0.36	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1D	8/22/2017	0 - 1 ft	0.86	1	2.3	1			0.61	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1G	2/1/2017	0 - 1 ft	1.9	1	3.9	1			0.71	11
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1H	2/1/2017	0 - 1 ft	0.28	1	0.81	1			0.13	11
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-2D	3/22/2017	0 - 1 ft	1.2	1	2.6	1			0.56	1
SO	Surface Surface	mg/kg	Offices and Parking Lot Offices and Parking Lot	SUSDP19-2M SUSDP19-2N	3/23/2017	0 - 1 ft 0 - 1 ft	0.33 0.36	0	0.63 0.14	1			0.14 0.36	0
SO	Surface	mg/kg mg/kg	Offices and Parking Lot	SUSDP19-20	3/23/2017	0 - 1 ft	0.019	1	0.031	1			0.0069	1
so	Surface	mg/kg	Offices and Parking Lot	SUSDP19-2P	3/23/2017	0 - 1 ft	0.48	1	1.1	1			0.24	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-3S	8/24/2017	0 - 1 ft	0.14	1	0.28	1			0.091	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-3V	8/24/2017	0 - 1 ft	0.07	0	0.07	0			0.07	0
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-4N	1/26/2018	0 - 1 ft	0.003	1	0.0058	1			0.0072	0
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-4NW	2/1/2018	0 - 1 ft	0.044	1	0.13	1			0.023	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-4W	2/1/2018	0 - 1 ft	0.092	1	0.2	1			0.072	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-5N	2/21/2018	0 - 1 ft	0.063	1	0.15	1			0.034	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-5NW	2/21/2018	0 - 1 ft	0.089	1	0.16	1			0.059	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-5W	2/21/2018	0 - 1 ft	0.12	1	0.24	1			0.084	11
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-6N	3/15/2018	0 - 1 ft 0 - 1 ft	5.5 0.16	1 0	12 0.16	1 0			2.2 0.16	<u>1</u>
SO SO	Surface Surface	mg/kg	Offices and Parking Lot Offices and Parking Lot	SUSDP19-6NW SUSDP19-6W	3/15/2018 3/16/2018	0 - 1 ft	0.16	0	0.0031	1			0.16	0
SO	Surface	mg/kg mg/kg	Offices and Parking Lot	SUSDP19-6W SUSDP19-7N	4/5/2018	0 - 1 ft	0.0072	1	1.9	1			0.0072	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-7W	4/5/2018	0 - 1 ft	0.016	1	0.032	1			0.0076	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP53	1/31/2017	0 - 1 ft	0.13	1	0.22	1			0.07	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP09	5/17/2013	4.5 - 5.5 ft	0.10		U.LL				0.01	
SO	Subsurface		Offices and Parking Lot	SUSDP09		9.5 - 10.5 ft					8.6	1		
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP09		14.5 - 15.5 ft								
SO	Subsurface		Offices and Parking Lot	SUSDP14		2.5 - 3.5 ft								
SO	Subsurface		Offices and Parking Lot	SUSDP14		9.5 - 10.5 ft								
	Subsurface		Offices and Parking Lot	SUSDP14		14.5 - 15.5 ft								
	Subsurface		Offices and Parking Lot	SUSDP19	5/23/2013		0.95	1	1.9	1	13	1	0.5	1
	Subsurface		Offices and Parking Lot	SUSDP19		14.5 - 15.5 ft	0.0077	0	0.0013	1	7.0		0.0077	0
	Subsurface		Offices and Parking Lot Offices and Parking Lot	SUSDP19 SUSDP19	6/5/2013 1/30/2017	9.5 - 10.5 ft 1 - 2 ft	6.3 1.5	1	15 3	1	7.3	1	2.4 0.58	1
	Subsurface Subsurface		Offices and Parking Lot	SUSDP19	1/30/2017	2 - 5 ft	1.2	1	2.4	1			0.57	1
	Subsurface		Offices and Parking Lot	SUSDP19	2/8/2017	5 - 10 ft	3.6	1	12	1			2.5	1
SO	Subsurface		Offices and Parking Lot	SUSDP19	2/8/2017	10 - 15 ft	0.0029	1	0.0087	1			0.0074	0
	Subsurface		Offices and Parking Lot	SUSDP19-1A	2/1/2017	2 - 3 ft	0.5	1	1.2	1			0.27	1
	Subsurface		Offices and Parking Lot	SUSDP19-1A	2/8/2017	10 - 11 ft	0.008	0	0.0016	1			0.008	0
SO	Subsurface		Offices and Parking Lot	SUSDP19-1A	2/8/2017	15 - 16 ft	0.0085	0	0.0085	0			0.0085	0
	Subsurface		Offices and Parking Lot	SUSDP19-1B	2/1/2017	2 - 3 ft	0.35	1	0.87	1			0.21	1
	Subsurface		Offices and Parking Lot	SUSDP19-1B	2/8/2017	10 - 11 ft	0.019	1	0.039	1	\perp		0.0073	1
	Subsurface		Offices and Parking Lot	SUSDP19-1B	2/8/2017	15 - 16 ft	0.0082	0	0.0082	0			0.0082	0
	Subsurface		Offices and Parking Lot	SUSDP19-1C	1/27/2017	2 - 3 ft	0.2	1	0.41	1	+		0.081	1
SO	Subsurface Subsurface		Offices and Parking Lot Offices and Parking Lot	SUSDP19-1C SUSDP19-1C	2/8/2017 2/8/2017	10 - 11 ft 15 - 16 ft	0.0045 0.008	0	0.012	0	+		0.0031 0.008	0
	Subsurface		Offices and Parking Lot	SUSDP19-1C	8/22/2017	15 - 16 π 1 - 2 ft	2.3	1	5.3	1	+ +		1.4	1
	Subsurface		Offices and Parking Lot	SUSDP19-1D	8/22/2017	2 - 3 ft	1.8	1	5.5	1	+		1.4	1
	Subsurface		Offices and Parking Lot	SUSDP19-1D	8/22/2017	3 - 4 ft	2.9	1	8	1			2.1	1
	Subsurface		Offices and Parking Lot	SUSDP19-1D	8/22/2017	4 - 5 ft	1.5	1	2.7	1	+		0.69	1
	Subsurface		Offices and Parking Lot	SUSDP19-1D	8/22/2017	5 - 6 ft	1.6	1	3.4	1			1	1
	Subsurface		Offices and Parking Lot	SUSDP19-1F	8/22/2017	1 - 2 ft	0.23	1	0.48	1			0.13	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1F	8/22/2017	2 - 3 ft	0.56	1	1.4	1			0.36	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-1F	8/22/2017	3 - 4 ft	0.51	1	1.2	1			0.28	1
	Subsurface		Offices and Parking Lot	SUSDP19-1F	8/22/2017	4 - 5 ft	2.4	1	6.9	1			1.8	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-1G	2/1/2017	2 - 3 ft	12	1	25	1			4.3	11
	Subsurface		Offices and Parking Lot	SUSDP19-1G	2/8/2017	10 - 11 ft	0.026	1	0.058	1			0.013	1
	Subsurface		Offices and Parking Lot	SUSDP19-1G	2/8/2017	15 - 16 ft	0.0084	0	0.0084	0			0.0084	0
90	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1H	2/1/2017	2 - 3 ft	2.8	1	5.5	1			1.1	l l

Matrix	horizon	Units	Area	Location	Collected	Depth	Ponzo(k)fluoronthono	D. Bonzo(k)fluoranthono	Chrysons	D Chrysene Cobalt D Cobal	t Dihanza(a h)anthrasana	D. Dibonzo(o b)onthrocono
SO			Offices and Parking Lot	SUSDP19-1H	2/8/2017	10 - 11 ft	0.084	D_Berizo(k)iluorantrierie	0.26	D_Chrysene Cobait D_Cobai	0.042	D_Diberizo(a,ri)anthracene
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1H	2/8/2017	15 - 16 ft	0.084	0	0.26	0	0.042	0
SO	Subsurface		Offices and Parking Lot	SUSDP19-1H	8/17/2017	1 - 2 ft	2.5	1	4.9	1	0.59	0
SO	Subsurface		Offices and Parking Lot	SUSDP19-2D	8/17/2017	2 - 3 ft	4	1	8.3	1	1.7	0
SO	Subsurface		Offices and Parking Lot	SUSDP19-2D	8/17/2017	3 - 4 ft	1.3	1	2.9	1	1.1	0
SO	Subsurface		Offices and Parking Lot	SUSDP19-2D	8/17/2017	4 - 5 ft	1.5	1	3.2	1	0.91	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-2D	8/17/2017	5 - 6 ft	0.54	1	1.1	1	0.34	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2M	3/23/2017	2 - 3 ft	1.1	1	3.1	1	0.63	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2M	8/16/2017	3 - 4 ft	3.3	1	7.8	1	1.4	1
SO		mg/kg	Offices and Parking Lot	SUSDP19-2M	8/16/2017	4 - 5 ft	14	1	34	1	6.6	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-2M	8/16/2017	5 - 6 ft	2.9	1	7.7	1	1.9	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-2N	3/23/2017	2 - 3 ft	0.35	0	0.071	1	0.35	0
SO	Subsurface		Offices and Parking Lot	SUSDP19-20	3/23/2017	2 - 3 ft	7.1	1	18	1	3.4	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-20	8/23/2017	3 - 4 ft 4 - 5 ft	1.8	1	3.7	1 1	0.81	1
SO SO	Subsurface		Offices and Parking Lot Offices and Parking Lot	SUSDP19-20 SUSDP19-20	8/23/2017 8/23/2017	5 - 6 ft	5.6 3.6	1	16 8.5	1	3.6	1
SO	Subsurface Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-20	3/28/2018	6 - 7 ft	4.6	1	7.4	1	1.6	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-20	3/28/2018	7 - 8 ft	5.9	1	12	1	2.5	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-20	3/28/2018	10 - 11 ft	2.3	1	7.1	1	0.87	1
SO		mg/kg	Offices and Parking Lot	SUSDP19-20	3/28/2018	11 - 12 ft	0.0023	1	0.0049	1	0.0077	0
SO	Subsurface		Offices and Parking Lot	SUSDP19-2P	3/23/2017	2 - 3 ft	2.7	1	6.6	1	1.3	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-2P	8/17/2017	3 - 4 ft	1.4	1	3.3	1	0.73	0
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2P	8/17/2017	4 - 5 ft	1.6	1	3.7	1	0.88	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2P	8/17/2017	5 - 6 ft	1.5	0	1.2	1	1.5	0
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3F	8/18/2017	1 - 2 ft	0.59	1	1.7	1	0.4	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3F	8/18/2017	2 - 3 ft	0.097	1	0.22	1	0.055	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-3F	8/18/2017	3 - 4 ft	0.053	1	0.16	1	0.035	1
SO		mg/kg	Offices and Parking Lot	SUSDP19-3F	8/18/2017	4 - 5 ft	0.046	1	0.11	1	0.027	11
SO	Subsurface		Offices and Parking Lot	SUSDP19-3F	8/18/2017	5 - 6 ft	0.3	0	0.19	1	0.3	0
SO		mg/kg	Offices and Parking Lot	SUSDP19-3S	8/24/2017	1 - 2 ft	0.28	1	0.74	1 1	0.15	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-3S	8/24/2017	2 - 3 ft	1.1	1	2.9	1	0.74	0
SO SO	Subsurface Subsurface		Offices and Parking Lot Offices and Parking Lot	SUSDP19-3S SUSDP19-3S	8/24/2017 8/24/2017	3 - 4 ft 4 - 5 ft	0.71 2.4	1	5.6	1	1.2 0.59	0
SO	Subsurface		Offices and Parking Lot	SUSDP19-3S	8/24/2017	5 - 6 ft	2.3	1	5.2	1	1.3	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-3V	8/24/2017	1 - 2 ft	1.6	1	4.2	1	0.89	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-3V	8/24/2017	2 - 3 ft	3.5	1	8	1	1.8	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-3V	8/24/2017	3 - 4 ft	3.6	1	7	1	1.8	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-3V	8/24/2017	4 - 5 ft	2.4	1	5.8	1	0.58	0
SO	Subsurface		Offices and Parking Lot	SUSDP19-3V	8/24/2017	5 - 6 ft	0.92	1	2.4	1	0.73	0
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3X	8/18/2017	1 - 2 ft	2	1	6.5	1	1.3	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3X	8/18/2017	2 - 3 ft	6	1	14	1	2.8	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3X	8/18/2017	3 - 4 ft	5.6	1	12	1	2.6	1
SO		mg/kg	Offices and Parking Lot	SUSDP19-3X	8/18/2017	4 - 5 ft	0.97	1	2.9	1	0.86	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-3X	8/18/2017	5 - 6 ft	0.71	1	1.7	1	0.68	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-4N	1/26/2018	1 - 2 ft	0.11	1	0.31	1	0.07	11
SO	Subsurface		Offices and Parking Lot	SUSDP19-4N	1/26/2018	2 - 3 ft 3 - 4 ft	5.6	1	11	1	2.6	1
SO	Subsurface		Offices and Parking Lot Offices and Parking Lot	SUSDP19-4N SUSDP19-4N	1/26/2018	3 - 4 π 4 - 5 ft	15 6.9	1	33 13	1	12 3.8	1
SO	Subsurface Subsurface		Offices and Parking Lot	SUSDP19-4N	1/26/2018	5 - 6 ft	4.1	1	12	1	3.6	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-4N	3/28/2018	6 - 7 ft	2.3	1	4.7	1	1	1
SO		mg/kg	Offices and Parking Lot	SUSDP19-4N	3/28/2018	7 - 8 ft	11	1	29	1	4.7	1
SO		mg/kg	Offices and Parking Lot	SUSDP19-4N	3/28/2018	10 - 11 ft	0.14	1	0.43	1	0.058	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-4N	3/28/2018	11 - 12 ft	0.0077	0	0.0077	0	0.0077	0
SO	Subsurface		Offices and Parking Lot	SUSDP19-4NW	2/1/2018	1 - 2 ft	0.85	1	3	1	0.44	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4NW	2/1/2018	2 - 3 ft	0.7	1	2	1	0.53	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-4NW	2/1/2018	3 - 4 ft	0.28	1	0.56	1	0.32	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-4NW	2/1/2018	4 - 5 ft	2.8	1	13	1	4.4	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-4NW	2/1/2018	5 - 6 ft	4.3	1	13	1	3	1
SO		mg/kg	Offices and Parking Lot	SUSDP19-4NW	3/28/2018	6 - 7 ft	1.1	1	2.2	1	0.36	1
SO		mg/kg	Offices and Parking Lot	SUSDP19-4NW	3/28/2018	7 - 8 ft	15	1	28	1	6.7	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-4NW	3/28/2018	10 - 11 ft	1.5	1	2.6	1	0.45	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-4NW	3/28/2018	11 - 12 ft	0.0026	1	0.0055	1	0.0087	0
SO	Subsurface		Offices and Parking Lot	SUSDP19-4W	2/1/2018	1 - 2 ft	0.37	1	1.2	1	0.16	1
SO	Subsurface		Offices and Parking Lot	SUSDP19-4W	2/1/2018	2 - 3 ft	3.7	1	6	1	1.3 0.79	T 4
30	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4W	2/1/2018	3 - 4 ft	1.8		4.1		0.79	I

Matrix	horizon	Units	Area	Location	Collected	Depth	Benzo(k)fluoranthene	D_Benzo(k)fluoranthene	Chrysene	D_Chrysene Cobalt D_Cobalt	Dibenzo(a,h)anthracene	D_Dibenzo(a,h)anthracene
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4W	2/1/2018	4 - 5 ft	0.85	1	1.8	1	0.73	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4W	2/1/2018	5 - 6 ft	0.048	1	0.097	1	0.022	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5N	2/21/2018	1 - 2 ft	1.1	1	2.3	1	0.58	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5N	2/21/2018	2 - 3 ft	0.05	1	0.11	1	0.026	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5N	2/21/2018	3 - 4 ft	2.9	1	5.7	1	1.2	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5N	2/21/2018	4 - 5 ft	4.9	1	9.3	1	1.6	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5N	2/21/2018	5 - 6 ft	1.1	1	2.5	1	0.51	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5NW	2/21/2018	1 - 2 ft	1.9	1	4	1	0.94	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5NW	2/21/2018	2 - 3 ft	1.8	1	3.4	1	0.74	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5NW	2/21/2018	3 - 4 ft	2.9	1	10	1	2.3	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5NW	2/21/2018	4 - 5 ft	1.3	1	2.7	1	1.5	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5NW	2/21/2018	5 - 6 ft	0.59	1	2	1	0.67	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5W	2/21/2018	1 - 2 ft	0.46	1	1.2	1	0.21	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5W	2/21/2018	2 - 3 ft	0.53	1	1.4	1	0.3	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5W	2/21/2018	3 - 4 ft	14	1	26	1	5.3	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5W	2/21/2018	4 - 5 ft	0.13	1	0.38	1	0.073	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6N	3/15/2018	1 - 2 ft	0.32	1	0.68	1	0.2	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6N	3/15/2018	2 - 3 ft	2.8	1	5.5	1	1.2	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6N	3/15/2018	3 - 4 ft	2.3	1	5.2	1	1.2	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6N	3/15/2018	4 - 5 ft	0.0049	1	0.0085	1	0.0087	0
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6NW	3/15/2018	1 - 2 ft	0.33	1	0.7	1	0.11	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6NW	3/15/2018	2 - 3 ft	8.2	1	16	1	3.2	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6NW	3/16/2018	3 - 4 ft	0.21	1	0.32	1	0.061	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6NW	3/16/2018	4 - 5 ft	17	1	39	1	5.3	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6NW	3/16/2018	5 - 6 ft	6.4	1	14	1	2.8	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6W	3/16/2018	1 - 2 ft	3.2	1	5.4	1	1	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6W	3/16/2018	2 - 3 ft	570	1	620	1	100	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6W	3/16/2018	3 - 4 ft	120	1	210	1	39	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-7N	4/5/2018	1 - 2 ft	8.6	1	20	1	3.7	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-7N	4/5/2018	2 - 3 ft	0.44	1	1	1	0.25	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-7N	4/5/2018	3 - 4 ft	1.1	1	2.3	1	0.48	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-7N	4/5/2018	4 - 5 ft	0.17	1	0.34	1	0.064	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-7W	4/5/2018	1 - 2 ft	0.007	0	0.007	0	0.007	0
SO		mg/kg	Offices and Parking Lot	SUSDP19-7W	4/5/2018	2 - 3 ft	0.007	0	0.007	0	0.007	0
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-7W	4/5/2018	3 - 4 ft	0.0075	0	0.0075	0	0.0075	0
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-7W	4/5/2018	4 - 5 ft	0.0079	0	0.0079	0	0.0079	0
SO		mg/kg	Offices and Parking Lot	SUSDP19-7W	4/5/2018	5 - 6 ft	0.0076	0	0.0076	0	0.0076	0
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP53	1/31/2017	1 - 2 ft	0.0046	1	0.013	1	0.0021	1
SO		mg/kg	Offices and Parking Lot	SUSDP53	1/31/2017	2 - 5 ft	0.0081	0	0.0081	0	0.0081	0
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP53	2/2/2017	5 - 10 ft	0.0081	0	0.0028	1	0.0081	0
SO		mg/kg	Offices and Parking Lot	SUSDP53	2/2/2017	10 - 15 ft	0.0091	0	0.002	1	0.0091	0

Matrix	horizon	Units	Area	Location	Collected	Depth	Diesel Range Organics (C10-C20)	D Diesel Range Organics (C10-C20)	Indeno(1,2,3-cd)pyrene	D Indeno(1,2,3-cd)pyrene Manganese	D Manganese
SO	Surface	mg/kg	Offices and Parking Lot	SUS19-2E	3/22/2017	0 - 1 ft	3 3 ,		0.72	1	
SO	Surface	mg/kg	· ·	SUSDP09	2/5/2013	0 - 1 ft	18	0	0.17	1 130	1
SO	Surface	mg/kg		SUSDP14	2/6/2013	0.17 - 1 ft	99	0	0.49	1 260	1
SO	Surface	mg/kg		SUSDP19	2/6/2013	0.83 - 1 ft	94	0	1.9	1 170	1
SO	Surface	mg/kg		SUSDP19	1/30/2017	0 - 1 ft			0.77	1	
SO	Surface	mg/kg		SUSDP19-1A	2/1/2017	0 - 1 ft			0.33	1	
SO	Surface	mg/kg		SUSDP19-1B	2/1/2017	0 - 1 ft			0.04	1	
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1C	1/27/2017	0 - 1 ft			1.2	1	
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1D	8/22/2017	0 - 1 ft			2	1	
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1G	2/1/2017	0 - 1 ft			2.5	1	
SO	Surface	mg/kg		SUSDP19-1H	2/1/2017	0 - 1 ft			0.42	1	
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-2D	3/22/2017	0 - 1 ft			1.9	1	
SO	Surface	mg/kg		SUSDP19-2M	3/23/2017	0 - 1 ft			0.48	1	
SO	Surface	mg/kg		SUSDP19-2N	3/23/2017	0 - 1 ft			0.12	1	
SO	Surface	mg/kg		SUSDP19-20	3/23/2017	0 - 1 ft			0.023	1	
SO	Surface	mg/kg		SUSDP19-2P	3/23/2017	0 - 1 ft			0.79	1	
SO	Surface	mg/kg		SUSDP19-3S	8/24/2017	0 - 1 ft			0.3	1	
SO	Surface	mg/kg		SUSDP19-3V	8/24/2017	0 - 1 ft			0.07	0	
SO	Surface	mg/kg		SUSDP19-4N	1/26/2018	0 - 1 ft			0.0071	1	
SO	Surface	mg/kg		SUSDP19-4NW	2/1/2018	0 - 1 ft			0.066	1	
SO	Surface	mg/kg		SUSDP19-4W	2/1/2018	0 - 1 ft			0.17	1	
SO	Surface	mg/kg		SUSDP19-5N	2/21/2018	0 - 1 ft			0.11	1	
SO	Surface	mg/kg		SUSDP19-5NW	2/21/2018	0 - 1 ft			0.17	1	
SO SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-5W	2/21/2018 3/15/2018	0 - 1 ft 0 - 1 ft			0.17 7.1	1	
SO	Surface Surface	mg/kg		SUSDP19-6N SUSDP19-6NW	3/15/2018	0 - 1 π 0 - 1 ft			0.16	0	
SO	Surface	mg/kg	· ·	SUSDP19-6W	3/16/2018	0 - 1 ft			0.0021	1	
SO	Surface	mg/kg mg/kg		SUSDP19-6W SUSDP19-7N	4/5/2018	0 - 1 ft			1.1	1	
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-7W	4/5/2018	0 - 1 ft			0.023	1	
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP53	1/31/2017	0 - 1 ft			0.023	1	
	Subsurface		Offices and Parking Lot	SUSDP09	5/17/2013	4.5 - 5.5 ft	20	0	0.2	,	
	Subsurface			SUSDP09		9.5 - 10.5 ft	21	0		67	1
	Subsurface		Offices and Parking Lot	SUSDP09		14.5 - 15.5 ft	18	0		0,	
	Subsurface			SUSDP14		2.5 - 3.5 ft	23	1			
	Subsurface			SUSDP14		9.5 - 10.5 ft	21	0			
	Subsurface			SUSDP14		14.5 - 15.5 ft	21	0			
	Subsurface			SUSDP19		1.5 - 2.5 ft	96	0	1.5	1 200	1
	Subsurface			SUSDP19		14.5 - 15.5 ft	20	0	0.0077	0	
SO	Subsurface		Offices and Parking Lot	SUSDP19	6/5/2013	9.5 - 10.5 ft	380	0	8.9	1 400	1
SO	Subsurface			SUSDP19	1/30/2017	1 - 2 ft		_	2	1	
	Subsurface	mg/kg		SUSDP19	1/30/2017	2 - 5 ft			1.7	1	
	Subsurface	mg/kg		SUSDP19	2/8/2017	5 - 10 ft			8.2	1	
	Subsurface		Offices and Parking Lot	SUSDP19	2/8/2017	10 - 15 ft			0.006	1	
	Subsurface			SUSDP19-1A	2/1/2017	2 - 3 ft			0.9	1	
	Subsurface			SUSDP19-1A	2/8/2017	10 - 11 ft			0.008	0	
	Subsurface			SUSDP19-1A	2/8/2017	15 - 16 ft			0.0085	0	
	Subsurface			SUSDP19-1B	2/1/2017	2 - 3 ft			0.59	1	
	Subsurface			SUSDP19-1B	2/8/2017	10 - 11 ft			0.021	1	
	Subsurface		Offices and Parking Lot	SUSDP19-1B	2/8/2017	15 - 16 ft			0.0082	0	
	Subsurface		Offices and Parking Lot	SUSDP19-1C	1/27/2017	2 - 3 ft			0.26	1	
	Subsurface			SUSDP19-1C	2/8/2017	10 - 11 ft			0.0071	1	
	Subsurface			SUSDP19-1C	2/8/2017	15 - 16 ft			0.008	0	
	Subsurface			SUSDP19-1D	8/22/2017	1 - 2 ft			4.4	1	
	Subsurface		Offices and Parking Lot	SUSDP19-1D	8/22/2017 8/22/2017	2 - 3 ft 3 - 4 ft			3.8 7.8	1	
	Subsurface Subsurface			SUSDP19-1D SUSDP19-1D	8/22/2017	3 - 4 π 4 - 5 ft			2.4	1	
	Subsurface			SUSDP19-1D	8/22/2017	4 - 5 II 5 - 6 ft			2.4	1	
	Subsurface			SUSDP19-1D SUSDP19-1F	8/22/2017	1 - 2 ft			0.37	1	
	Subsurface			SUSDP19-1F	8/22/2017	2 - 3 ft			1.2	1	
	Subsurface		Offices and Parking Lot	SUSDP19-1F	8/22/2017	3 - 4 ft			0.75	1	
	Subsurface			SUSDP19-1F	8/22/2017	4 - 5 ft			7	1	
	Subsurface			SUSDP19-1G	2/1/2017	2 - 3 ft			12	1	
	Subsurface			SUSDP19-1G	2/8/2017	10 - 11 ft			0.036	1	
	Subsurface			SUSDP19-1G	2/8/2017	15 - 16 ft			0.0084	0	
			Offices and Parking Lot	SUSDP19-1H	2/1/2017	2 - 3 ft			3.5	1	
		99		2000. 10 /11	_, ., , , ,		1	1	0.0	· L	

Matrix	horizon	Units	Area	Location	Collected	Depth	Diesel Range Organics (C10-C20)	D Diesel Range Organics (C10-C20) Ir	ndeno(1,2,3-cd)pyrene	D Indeno(1,2,3-cd)pyrene Manganese	D Manganese
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1H	2/8/2017	10 - 11 ft	3 3 1		0.12	1	
	Subsurface		Offices and Parking Lot	SUSDP19-1H	2/8/2017	15 - 16 ft			0.0077	0	
			Offices and Parking Lot	SUSDP19-2D	8/17/2017	1 - 2 ft			3	1	
	Subsurface		Offices and Parking Lot	SUSDP19-2D	8/17/2017	2 - 3 ft			5.3	1	
	Subsurface		Offices and Parking Lot	SUSDP19-2D	8/17/2017	3 - 4 ft			2.3	1	
	Subsurface		Offices and Parking Lot	SUSDP19-2D	8/17/2017	4 - 5 ft			2.4	1	
			Offices and Parking Lot	SUSDP19-2D	8/17/2017	5 - 6 ft			0.99	1	
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2M	3/23/2017	2 - 3 ft			2.3	1	
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2M	8/16/2017	3 - 4 ft			4.3	1	
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2M	8/16/2017	4 - 5 ft			22	1	
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2M	8/16/2017	5 - 6 ft			5.3	1	
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2N	3/23/2017	2 - 3 ft			0.09	1	
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-20	3/23/2017	2 - 3 ft			11	1	
	Subsurface		Offices and Parking Lot	SUSDP19-20	8/23/2017	3 - 4 ft			3.5	1	
	Subsurface		Offices and Parking Lot	SUSDP19-20	8/23/2017	4 - 5 ft			11	1	
			Offices and Parking Lot	SUSDP19-20	8/23/2017	5 - 6 ft			6.8	1	
			Offices and Parking Lot	SUSDP19-20	3/28/2018	6 - 7 ft			6.7	1	
	Subsurface		Offices and Parking Lot	SUSDP19-20	3/28/2018	7 - 8 ft			9.7	1	
			Offices and Parking Lot	SUSDP19-20	3/28/2018	10 - 11 ft			2.8	1	
			Offices and Parking Lot	SUSDP19-20	3/28/2018	11 - 12 ft			0.0031	1	
	Subsurface		Offices and Parking Lot	SUSDP19-2P	3/23/2017	2 - 3 ft			3.9	1	
			Offices and Parking Lot	SUSDP19-2P	8/17/2017	3 - 4 ft			2.5	1	
			Offices and Parking Lot	SUSDP19-2P	8/17/2017	4 - 5 ft			2.8	1	
			Offices and Parking Lot	SUSDP19-2P	8/17/2017	5 - 6 ft			0.98	1	
	Subsurface		Offices and Parking Lot	SUSDP19-3F	8/18/2017	1 - 2 ft			1.2	1	
			Offices and Parking Lot	SUSDP19-3F	8/18/2017	2 - 3 ft			0.18	1	
			Offices and Parking Lot	SUSDP19-3F	8/18/2017	3 - 4 ft			0.12	1	
	Subsurface		Offices and Parking Lot	SUSDP19-3F	8/18/2017	4 - 5 ft			0.086	1	
		-	Offices and Parking Lot	SUSDP19-3F	8/18/2017	5 - 6 ft			0.15	1	
		0	Offices and Parking Lot	SUSDP19-3S	8/24/2017	1 - 2 ft			0.52	1	
			Offices and Parking Lot	SUSDP19-3S	8/24/2017	2 - 3 ft			2.4	1	
	Subsurface		Offices and Parking Lot	SUSDP19-3S	8/24/2017	3 - 4 ft			1.5	1	
			Offices and Parking Lot	SUSDP19-3S	8/24/2017	4 - 5 ft			4.2	1	
	Subsurface		Offices and Parking Lot	SUSDP19-3S	8/24/2017	5 - 6 ft			3.9	1	
	Subsurface		Offices and Parking Lot	SUSDP19-3V	8/24/2017	1 - 2 ft			3.2	1	
	Subsurface		Offices and Parking Lot	SUSDP19-3V	8/24/2017	2 - 3 ft			6.3	1	
			Offices and Parking Lot	SUSDP19-3V	8/24/2017	3 - 4 ft			5.9	1	
	Subsurface		Offices and Parking Lot	SUSDP19-3V	8/24/2017	4 - 5 ft			4.4	1	
			Offices and Parking Lot	SUSDP19-3V	8/24/2017	5 - 6 ft			2.5	1	
			Offices and Parking Lot	SUSDP19-3X	8/18/2017	1 - 2 ft			3.9	1	
			Offices and Parking Lot	SUSDP19-3X	8/18/2017	2 - 3 ft			9.9	1	
			Offices and Parking Lot	SUSDP19-3X	8/18/2017	3 - 4 ft			8.9	1	
			Offices and Parking Lot	SUSDP19-3X	8/18/2017	4 - 5 ft			2.3	1	
	Subsurface		Offices and Parking Lot	SUSDP19-3X SUSDP19-4N	8/18/2017 1/26/2018	5 - 6 ft 1 - 2 ft			2 0.21	1	
	Subsurface		Offices and Parking Lot						7.4	1	
			Offices and Parking Lot Offices and Parking Lot	SUSDP19-4N SUSDP19-4N	1/26/2018	2 - 3 ft 3 - 4 ft			43	1	
			Offices and Parking Lot	SUSDP19-4N	1/26/2018	4 - 5 ft			12	1	
	Subsurface Subsurface		Offices and Parking Lot Offices and Parking Lot	SUSDP19-4N	1/26/2018	5 - 6 ft			12	1	
			Offices and Parking Lot	SUSDP19-4N	3/28/2018	6 - 7 ft			2.9	1	
	Subsurface		Offices and Parking Lot Offices and Parking Lot	SUSDP19-4N	3/28/2018	7 - 8 ft			2.9	1	
	Subsurface		Offices and Parking Lot Offices and Parking Lot	SUSDP19-4N	3/28/2018	10 - 11 ft			0.26	1	
			Offices and Parking Lot	SUSDP19-4N	3/28/2018	11 - 12 ft			0.20	0	
	Subsurface		Offices and Parking Lot	SUSDP19-4NW	2/1/2018	1 - 12 It			1.7	1	
	Subsurface		Offices and Parking Lot	SUSDP19-4NW	2/1/2018	2 - 3 ft			1.7	1	
	Subsurface		Offices and Parking Lot	SUSDP19-4NW	2/1/2018	3 - 4 ft			0.69	1	
			Offices and Parking Lot	SUSDP19-4NW	2/1/2018	4 - 5 ft			11	1	
	Subsurface		Offices and Parking Lot	SUSDP19-4NW	2/1/2018	5 - 6 ft			12	1	
			Offices and Parking Lot	SUSDP19-4NW	3/28/2018	6 - 7 ft			1.5	1	
			Offices and Parking Lot	SUSDP19-4NW	3/28/2018	7 - 8 ft			19	1	
			Offices and Parking Lot	SUSDP19-4NW	3/28/2018	10 - 11 ft			1.6	1	
	Subsurface		Offices and Parking Lot	SUSDP19-4NW	3/28/2018	11 - 12 ft			0.0032	1	
	Subsurface		Offices and Parking Lot	SUSDP19-4W	2/1/2018	1 - 12 It			0.0032	1	
	Subsurface			SUSDP19-4W	2/1/2018	2 - 3 ft			4.9	1	
			Offices and Parking Lot	SUSDP19-4W	2/1/2018	3 - 4 ft			2.4	1	
50	Caboariace	mg/ng	S. 11000 and Farking LUL	300D1 10-4VV	2, 1,2010	U 7 II	I.		△. ·T		

	horizon	Units	Area	Location	Collected	Depth	Diesel Range Organics (C10-C20)	D. Diesel Range Organics (C10-C20)	Indeno(1.2.3-cd)pyrene	D_Indeno(1,2,3-cd)pyrene Manganese	D Manganese
		mg/kg	Offices and Parking Lot	SUSDP19-4W	2/1/2018	4 - 5 ft			1.8	1	
		mg/kg	Offices and Parking Lot	SUSDP19-4W	2/1/2018	5 - 6 ft			0.083	1	
	Subsurface		Offices and Parking Lot	SUSDP19-5N	2/21/2018	1 - 2 ft			1.8	1	
	Subsurface			SUSDP19-5N	2/21/2018	2 - 3 ft			0.082	1	
		mg/kg	Offices and Parking Lot	SUSDP19-5N	2/21/2018	3 - 4 ft			3.9	1	
	Subsurface			SUSDP19-5N	2/21/2018	4 - 5 ft			6	1	
	Subsurface		Offices and Parking Lot	SUSDP19-5N	2/21/2018	5 - 6 ft			1.8	1	
	Subsurface			SUSDP19-5NW	2/21/2018	1 - 2 ft			3.2	1	
	Subsurface		Offices and Parking Lot	SUSDP19-5NW	2/21/2018	2 - 3 ft			2.7	1	
	Subsurface		Offices and Parking Lot	SUSDP19-5NW	2/21/2018	3 - 4 ft			7.6	1	
	Subsurface			SUSDP19-5NW	2/21/2018	4 - 5 ft			3.7	1	
	Subsurface		Offices and Parking Lot	SUSDP19-5NW	2/21/2018	5 - 6 ft			2.1	1	
	Subsurface		Offices and Parking Lot	SUSDP19-5W	2/21/2018	1 - 2 ft			0.79	1	
	Subsurface			SUSDP19-5W	2/21/2018	2 - 3 ft			0.99	1	
SO S	Subsurface	ma/ka	Offices and Parking Lot	SUSDP19-5W	2/21/2018	3 - 4 ft			17	1	
	Subsurface		Offices and Parking Lot	SUSDP19-5W	2/21/2018	4 - 5 ft			0.24	1	
	Subsurface			SUSDP19-6N	3/15/2018	1 - 2 ft			0.58	1	
SO S	Subsurface	ma/ka	Offices and Parking Lot	SUSDP19-6N	3/15/2018	2 - 3 ft			3.9	1	
SO S	Subsurface	ma/ka	Offices and Parking Lot	SUSDP19-6N	3/15/2018	3 - 4 ft			3.6	1	
	Subsurface		Offices and Parking Lot	SUSDP19-6N	3/15/2018	4 - 5 ft			0.0066	1	
	Subsurface			SUSDP19-6NW	3/15/2018	1 - 2 ft			0.44	1	
	Subsurface		Offices and Parking Lot	SUSDP19-6NW	3/15/2018	2 - 3 ft			11	1	
			Offices and Parking Lot	SUSDP19-6NW	3/16/2018	3 - 4 ft			0.2	1	
	Subsurface			SUSDP19-6NW	3/16/2018	4 - 5 ft			20	1	
	Subsurface			SUSDP19-6NW	3/16/2018	5 - 6 ft			8	1	
	Subsurface		Offices and Parking Lot	SUSDP19-6W	3/16/2018	1 - 2 ft			3.2	1	
SO S	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6W	3/16/2018	2 - 3 ft			380	1	
	Subsurface		Offices and Parking Lot	SUSDP19-6W	3/16/2018	3 - 4 ft			120	1	
SO S	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-7N	4/5/2018	1 - 2 ft			12	1	
	Subsurface		Offices and Parking Lot	SUSDP19-7N	4/5/2018	2 - 3 ft			0.71	1	
	Subsurface		Offices and Parking Lot	SUSDP19-7N	4/5/2018	3 - 4 ft			1.4	1	
	Subsurface		Offices and Parking Lot	SUSDP19-7N	4/5/2018	4 - 5 ft			0.21	1	
SO S	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-7W	4/5/2018	1 - 2 ft			0.007	0	
SO S	Subsurface	mg/kg		SUSDP19-7W	4/5/2018	2 - 3 ft			0.007	0	
	Subsurface			SUSDP19-7W	4/5/2018	3 - 4 ft			0.0075	0	
	Subsurface		Offices and Parking Lot	SUSDP19-7W	4/5/2018	4 - 5 ft			0.0079	0	
	Subsurface		Offices and Parking Lot	SUSDP19-7W	4/5/2018	5 - 6 ft			0.0076	0	
	Subsurface		Offices and Parking Lot	SUSDP53	1/31/2017	1 - 2 ft			0.0074	1	
	Subsurface		Offices and Parking Lot	SUSDP53	1/31/2017	2 - 5 ft			0.0081	0	
	Subsurface		Offices and Parking Lot	SUSDP53	2/2/2017	5 - 10 ft			0.0081	0	
SO S	Subsurface	mg/kg	Offices and Parking Lot	SUSDP53	2/2/2017	10 - 15 ft			0.0091	0	

February 2020

11-1-1	h - d	I India	A	1 #	0-1144	Dth	NI I- 4I I	D. Nambahalana	NII - I I	D. Nileter	DOD Tatal Associate (AEOOM Oale)	D. DOD. Tetel Assessor (AEOOM Octo)	TODD TEO III	D. TODD TEO IIII
Matrix	horizon	Units	Area	Location	Collected	Depth	•	D_Naphthalene	Nickei	D_NICKE	PCB, Total Aroclors (AECOM Calc)	D_PCB, Total Aroclors (AECOM Calc)	TCDD TEQ HH	D_ICDD TEQ HH
SO	Surface	mg/kg	Offices and Parking Lot	SUS19-2E SUSDP09	3/22/2017 2/5/2013	0 - 1 ft 0 - 1 ft	0.023 0.027	1	19	1	0.23	1	0.00000555	1
SO	Surface Surface	mg/kg mg/kg	Offices and Parking Lot Offices and Parking Lot	SUSDP14	2/6/2013	0.17 - 1 ft	0.027	1	19	1	0.23	1	0.00000555	ı
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19	2/6/2013	0.17 - 1 ft	0.026	1	30	1	0.29	1	0.0000137	1
so	Surface	mg/kg	Offices and Parking Lot	SUSDP19	1/30/2017	0.05 - 1 ft	0.046	1	30	- '	0.33	1	0.0000137	'
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1A	2/1/2017	0 - 1 ft	0.021	1			0.00			
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1B	2/1/2017	0 - 1 ft	0.0066	1						
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1C	1/27/2017	0 - 1 ft	0.04	1						
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1D	8/22/2017	0 - 1 ft	0.23	0						
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1G	2/1/2017	0 - 1 ft	0.074	1						
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1H	2/1/2017	0 - 1 ft	0.041	1						
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-2D	3/22/2017	0 - 1 ft	0.068	1						
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-2M	3/23/2017	0 - 1 ft	0.031	1						
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-2N	3/23/2017	0 - 1 ft	0.36	0						
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-20	3/23/2017	0 - 1 ft	0.0039	1						
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-2P	3/23/2017	0 - 1 ft	0.03	1						
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-3S	8/24/2017	0 - 1 ft	0.02	1						
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-3V	8/24/2017	0 - 1 ft	0.07	0						
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-4N	1/26/2018	0 - 1 ft	0.0072	-						
SO	Surface Surface	mg/kg	Offices and Parking Lot Offices and Parking Lot	SUSDP19-4NW SUSDP19-4W	2/1/2018 2/1/2018	0 - 1 ft 0 - 1 ft	0.0071 0.075	0						
SO	Surface	mg/kg mg/kg	Offices and Parking Lot	SUSDP19-4W SUSDP19-5N	2/1/2018	0 - 1 ft	0.075	1						
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-5NW	2/21/2018	0 - 1 ft	0.011	0						
so	Surface	mg/kg	Offices and Parking Lot	SUSDP19-5W	2/21/2018	0 - 1 ft	0.020	0						
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-6N	3/15/2018	0 - 1 ft	0.41	1						
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-6NW	3/15/2018	0 - 1 ft	0.16	0						
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-6W	3/16/2018	0 - 1 ft	0.0072	0						
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-7N	4/5/2018	0 - 1 ft	0.047	1						
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-7W	4/5/2018	0 - 1 ft	0.0016	1						
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP53	1/31/2017	0 - 1 ft	0.013	1			0.14	1		
SO :	Subsurface	mg/kg	Offices and Parking Lot	SUSDP09	5/17/2013	4.5 - 5.5 ft					0.0051	0	0.00000047	1
	Subsurface		Offices and Parking Lot	SUSDP09	6/11/2013				11	1	0.0051	0		
	Subsurface		Offices and Parking Lot	SUSDP09	6/11/2013						0.0045	0		
	Subsurface		Offices and Parking Lot	SUSDP14	5/22/2013						0.71	1		
	Subsurface		Offices and Parking Lot	SUSDP14	6/6/2013						0.0052	0		
	Subsurface		Offices and Parking Lot	SUSDP14		14.5 - 15.5 ft	0.00		40	1	0.0051 0.11	0	0.00000050	1
	Subsurface		Offices and Parking Lot	SUSDP19	5/23/2013		0.09 0.0077	0	13	l l	0.11	1	0.00000656	I
	Subsurface Subsurface		Offices and Parking Lot Offices and Parking Lot	SUSDP19 SUSDP19		14.5 - 15.5 ft 9.5 - 10.5 ft	1.1	0 1	18	1	0.017	0		
	Subsurface		Offices and Parking Lot	SUSDP19	1/30/2017	1 - 2 ft	0.088	1	10		0.0093	1		
	Subsurface		Offices and Parking Lot	SUSDP19	1/30/2017	2 - 5 ft	0.08	1			0.20	1		
	Subsurface		Offices and Parking Lot	SUSDP19	2/8/2017	5 - 10 ft	0.37	1			0.01	0		
	Subsurface		Offices and Parking Lot	SUSDP19	2/8/2017	10 - 15 ft	0.0074	0			0.0046	0		
	Subsurface		Offices and Parking Lot	SUSDP19-1A	2/1/2017	2 - 3 ft	0.028	1						
	Subsurface		Offices and Parking Lot	SUSDP19-1A	2/8/2017	10 - 11 ft	0.008	0						
	Subsurface		Offices and Parking Lot	SUSDP19-1A	2/8/2017	15 - 16 ft	0.0085	0						
	Subsurface		Offices and Parking Lot	SUSDP19-1B	2/1/2017	2 - 3 ft	0.02	1						
	Subsurface		Offices and Parking Lot	SUSDP19-1B	2/8/2017	10 - 11 ft	0.0025	1						
	Subsurface		Offices and Parking Lot	SUSDP19-1B	2/8/2017	15 - 16 ft	0.0082	0						
	Subsurface		Offices and Parking Lot	SUSDP19-1C	1/27/2017	2 - 3 ft	0.017	1						
	Subsurface		Offices and Parking Lot	SUSDP19-1C	2/8/2017	10 - 11 ft	0.0079	0						
	Subsurface		Offices and Parking Lot	SUSDP19-1C	2/8/2017 8/22/2017	15 - 16 ft 1 - 2 ft	0.008 0.12	0 1						
	Subsurface Subsurface		Offices and Parking Lot Offices and Parking Lot	SUSDP19-1D SUSDP19-1D	8/22/2017	2 - 3 ft	0.12	1						
	Subsurface		Offices and Parking Lot	SUSDP19-1D	8/22/2017	3 - 4 ft	0.17	1						
	Subsurface		Offices and Parking Lot	SUSDP19-1D	8/22/2017	4 - 5 ft	0.44	1						
	Subsurface		Offices and Parking Lot	SUSDP19-1D	8/22/2017	5 - 6 ft	0.82	0						
	Subsurface		Offices and Parking Lot	SUSDP19-1F	8/22/2017	1 - 2 ft	0.043	1						
	Subsurface		Offices and Parking Lot	SUSDP19-1F	8/22/2017	2 - 3 ft	0.064	1						
	Subsurface		Offices and Parking Lot	SUSDP19-1F	8/22/2017	3 - 4 ft	0.19	0						
	Subsurface		Offices and Parking Lot	SUSDP19-1F	8/22/2017	4 - 5 ft	0.76	0						
	Subsurface		Offices and Parking Lot	SUSDP19-1G	2/1/2017	2 - 3 ft	1.2	1						
	Subsurface		Offices and Parking Lot	SUSDP19-1G	2/8/2017	10 - 11 ft	0.0061	1						
	Subsurface		Offices and Parking Lot	SUSDP19-1G	2/8/2017	15 - 16 ft	0.0084	0						
SO :	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1H	2/1/2017	2 - 3 ft	0.088	1						

Matrix	horizon	Units	Area	Location	Collected	Depth	Naphthalene	D_Naphthalene Nickel	D_Nickel	PCB, Total Aroclors (AECOM Calc)	D_PCB, Total Aroclors (AECOM Calc)	TCDD TEQ HH	D_TCDD TEQ HH
SO S	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1H	2/8/2017	10 - 11 ft	0.013	1					
SO S	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1H	2/8/2017	15 - 16 ft	0.0077	0					
SO :	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2D	8/17/2017	1 - 2 ft	0.59	0					
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2D	8/17/2017	2 - 3 ft	1.7	0					
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2D	8/17/2017	3 - 4 ft	1.1	0					
	Subsurface		Offices and Parking Lot	SUSDP19-2D	8/17/2017	4 - 5 ft	0.15	0					
			Offices and Parking Lot	SUSDP19-2D	8/17/2017	5 - 6 ft	0.073	0					
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2M	3/23/2017	2 - 3 ft	0.31	1					
	Subsurface Subsurface	mg/kg	Offices and Parking Lot Offices and Parking Lot	SUSDP19-2M SUSDP19-2M	8/16/2017 8/16/2017	3 - 4 ft 4 - 5 ft	0.61 1.7	0 1					
	Subsurface	mg/kg mg/kg	Offices and Parking Lot	SUSDP19-2M	8/16/2017	5 - 6 ft	0.26	1					
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2N	3/23/2017	2 - 3 ft	0.35	0					
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-20	3/23/2017	2 - 3 ft	1.2	1					
			Offices and Parking Lot	SUSDP19-20	8/23/2017	3 - 4 ft	0.18	1					
	Subsurface		Offices and Parking Lot	SUSDP19-20	8/23/2017	4 - 5 ft	0.7	0					
SO :	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-20	8/23/2017	5 - 6 ft	0.43	1					
SO :	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-20	3/28/2018	6 - 7 ft	0.3	1					
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-20	3/28/2018	7 - 8 ft	0.59	1					
		mg/kg	Offices and Parking Lot	SUSDP19-20	3/28/2018	10 - 11 ft	1	1					
		mg/kg	Offices and Parking Lot	SUSDP19-20	3/28/2018	11 - 12 ft	0.0077	0					
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2P	3/23/2017	2 - 3 ft	0.13	1					
	Subsurface Subsurface		Offices and Parking Lot Offices and Parking Lot	SUSDP19-2P SUSDP19-2P	8/17/2017 8/17/2017	3 - 4 ft 4 - 5 ft	0.73 0.76	0					
		mg/kg mg/kg	Offices and Parking Lot	SUSDP19-2P	8/17/2017	5 - 6 ft	1.5	0					
	Subsurface		Offices and Parking Lot	SUSDP19-2F	8/18/2017	1 - 2 ft	0.74	0					
		mg/kg	Offices and Parking Lot	SUSDP19-3F	8/18/2017	2 - 3 ft	0.0064	1					
	Subsurface		Offices and Parking Lot	SUSDP19-3F	8/18/2017	3 - 4 ft	0.0045	1					
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3F	8/18/2017	4 - 5 ft	0.0034	1					
SO :	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3F	8/18/2017	5 - 6 ft	0.3	0					
SO :	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3S	8/24/2017	1 - 2 ft	0.02	1					
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3S	8/24/2017	2 - 3 ft	0.37	0					
	Subsurface		Offices and Parking Lot	SUSDP19-3S	8/24/2017	3 - 4 ft	1.2	0					
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3S	8/24/2017	4 - 5 ft	0.59	0					
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3S	8/24/2017	5 - 6 ft	0.24	1					
		mg/kg	Offices and Parking Lot Offices and Parking Lot	SUSDP19-3V	8/24/2017	1 - 2 ft 2 - 3 ft	0.15 0.15	1					
	Subsurface Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3V SUSDP19-3V	8/24/2017 8/24/2017	3 - 4 ft	1.7	0					
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3V	8/24/2017	4 - 5 ft	0.58	0					
		mg/kg	Offices and Parking Lot	SUSDP19-3V	8/24/2017	5 - 6 ft	0.44	1					
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3X	8/18/2017	1 - 2 ft	0.15	1					
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3X	8/18/2017	2 - 3 ft	0.76	0					
SO :	Subsurface		Offices and Parking Lot	SUSDP19-3X	8/18/2017	3 - 4 ft	0.7	1					
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3X	8/18/2017	4 - 5 ft	1.7	0					
	Subsurface		Offices and Parking Lot	SUSDP19-3X	8/18/2017	5 - 6 ft	0.71	0					
	Subsurface		Offices and Parking Lot	SUSDP19-4N	1/26/2018	1 - 2 ft	0.011	1					
		mg/kg	Offices and Parking Lot	SUSDP19-4N	1/26/2018	2 - 3 ft	0.34	1					
	Subsurface Subsurface	mg/kg	Offices and Parking Lot Offices and Parking Lot	SUSDP19-4N SUSDP19-4N	1/26/2018 1/26/2018	3 - 4 ft 4 - 5 ft	16 7.9	1					
	Subsurface	mg/kg mg/kg	Offices and Parking Lot	SUSDP19-4N	1/26/2018	4 - 5 π 5 - 6 ft	2.5	1					
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4N	3/28/2018	6 - 7 ft	0.59	1					
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4N	3/28/2018	7 - 8 ft	1.8	1					
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4N	3/28/2018	10 - 11 ft	0.015	1					
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4N	3/28/2018	11 - 12 ft	0.0077	0					
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4NW	2/1/2018	1 - 2 ft	0.23	1					
SO S	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4NW	2/1/2018	2 - 3 ft	0.22	1					
			Offices and Parking Lot	SUSDP19-4NW	2/1/2018	3 - 4 ft	0.36	0					
	Subsurface		Offices and Parking Lot	SUSDP19-4NW	2/1/2018	4 - 5 ft	2.8	0					
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4NW	2/1/2018	5 - 6 ft	1.2	1					
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4NW	3/28/2018	6 - 7 ft	0.14	1					
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4NW	3/28/2018	7 - 8 ft	0.75	1					
	Subsurface	mg/kg	Offices and Parking Lot Offices and Parking Lot	SUSDP19-4NW SUSDP19-4NW	3/28/2018 3/28/2018	10 - 11 ft 11 - 12 ft	0.25 0.0087	1					
	Subsurface Subsurface	mg/kg mg/kg	Offices and Parking Lot Offices and Parking Lot	SUSDP19-4NW SUSDP19-4W	2/1/2018	11 - 12 π 1 - 2 ft	0.0087	0					
	Subsurface		Offices and Parking Lot	SUSDP19-4W SUSDP19-4W	2/1/2018	2 - 3 ft	0.067	1					
			Offices and Parking Lot		2/1/2018	3 - 4 ft	0.13	1					
		5/119	2ooo and I diking Lot	3005. 10 TT	010	5 TIL	U. 1-T				1	l .	L

Matrix	horizon	Units	Area	Location	Collected	Depth	Naphthalene	D Naphthalene Nickel	D Nickel	PCB. Total Aroclors (AECOM Calc)	D PCB, Total Aroclors (AECOM Calc)	TCDD TEQ HH	D TCDD TEQ HH
SO	Subsurface		Offices and Parking Lot	SUSDP19-4W	2/1/2018	4 - 5 ft	0.75	0	_		, , , , , , , , , , , , , , , , , ,	-	
	Subsurface		Offices and Parking Lot	SUSDP19-4W	2/1/2018	5 - 6 ft	0.0085	1					
	Subsurface		Offices and Parking Lot	SUSDP19-5N	2/21/2018	1 - 2 ft	0.19	0					
	Subsurface		Offices and Parking Lot	SUSDP19-5N	2/21/2018	2 - 3 ft	0.004	1					
	Subsurface		Offices and Parking Lot	SUSDP19-5N	2/21/2018	3 - 4 ft	0.2	1					
	Subsurface		Offices and Parking Lot	SUSDP19-5N	2/21/2018	4 - 5 ft	0.43	1					
	Subsurface		Offices and Parking Lot	SUSDP19-5N	2/21/2018	5 - 6 ft	0.063	1					
	Subsurface		Offices and Parking Lot	SUSDP19-5NW	2/21/2018	1 - 2 ft	0.11	1					
SO	Subsurface	ma/ka	Offices and Parking Lot	SUSDP19-5NW	2/21/2018	2 - 3 ft	0.16	1					
	Subsurface		Offices and Parking Lot	SUSDP19-5NW	2/21/2018	3 - 4 ft	0.19	1					
SO	Subsurface	ma/ka	Offices and Parking Lot	SUSDP19-5NW	2/21/2018	4 - 5 ft	1.3	0					
	Subsurface		Offices and Parking Lot	SUSDP19-5NW	2/21/2018	5 - 6 ft	0.18	1					
	Subsurface			SUSDP19-5W	2/21/2018	1 - 2 ft	0.087	1					
SO	Subsurface	ma/ka	Offices and Parking Lot	SUSDP19-5W	2/21/2018	2 - 3 ft	0.1	1					
	Subsurface		Offices and Parking Lot	SUSDP19-5W	2/21/2018	3 - 4 ft	0.97	1					
	Subsurface		Offices and Parking Lot	SUSDP19-5W	2/21/2018	4 - 5 ft	0.021	1					
	Subsurface		Offices and Parking Lot	SUSDP19-6N	3/15/2018	1 - 2 ft	0.31	0					
SO	Subsurface	ma/ka	Offices and Parking Lot	SUSDP19-6N	3/15/2018	2 - 3 ft	0.23	1					
	Subsurface		Offices and Parking Lot	SUSDP19-6N	3/15/2018	3 - 4 ft	0.071	1					
SO	Subsurface	ma/ka	Offices and Parking Lot	SUSDP19-6N	3/15/2018	4 - 5 ft	0.0087	0					
	Subsurface		Offices and Parking Lot	SUSDP19-6NW	3/15/2018	1 - 2 ft	0.39	0					
	Subsurface		Offices and Parking Lot	SUSDP19-6NW	3/15/2018	2 - 3 ft	0.15	1					
	Subsurface		Offices and Parking Lot	SUSDP19-6NW	3/16/2018	3 - 4 ft	0.019	1					
SO	Subsurface	ma/ka	Offices and Parking Lot	SUSDP19-6NW	3/16/2018	4 - 5 ft	2.8	1					
	Subsurface		Offices and Parking Lot	SUSDP19-6NW	3/16/2018	5 - 6 ft	2	1					
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6W	3/16/2018	1 - 2 ft	2.1	1					
	Subsurface		Offices and Parking Lot	SUSDP19-6W	3/16/2018	2 - 3 ft	100	1					
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6W	3/16/2018	3 - 4 ft	11	1					
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-7N	4/5/2018	1 - 2 ft	5.2	1					
	Subsurface		Offices and Parking Lot	SUSDP19-7N	4/5/2018	2 - 3 ft	0.057	1					
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-7N	4/5/2018	3 - 4 ft	0.087	1					
	Subsurface		Offices and Parking Lot	SUSDP19-7N	4/5/2018	4 - 5 ft	0.011	1					
SO	Subsurface	mg/ka	Offices and Parking Lot	SUSDP19-7W	4/5/2018	1 - 2 ft	0.007	0					
	Subsurface		Offices and Parking Lot	SUSDP19-7W	4/5/2018	2 - 3 ft	0.007	0					
	Subsurface		Offices and Parking Lot	SUSDP19-7W	4/5/2018	3 - 4 ft	0.0075	0					
SO	Subsurface	mg/ka	Offices and Parking Lot	SUSDP19-7W	4/5/2018	4 - 5 ft	0.0079	0					
	Subsurface		Offices and Parking Lot	SUSDP19-7W	4/5/2018	5 - 6 ft	0.0076	0					
	Subsurface		Offices and Parking Lot	SUSDP53	1/31/2017	1 - 2 ft	0.0013	1		0.05	1		
	Subsurface		Offices and Parking Lot	SUSDP53	1/31/2017	2 - 5 ft	0.0081	0		0.00098	0		
	Subsurface		Offices and Parking Lot	SUSDP53	2/2/2017	5 - 10 ft	0.0018	1		0.001	0		
	Subsurface		Offices and Parking Lot	SUSDP53		10 - 15 ft	0.0018	1		0.0011	0		
		9	g Lot	2222.00			2.30.0					1	I

Matrix	horizon	Units	Area	Location	Collected	Depth	Thallium	D_Thallium	Vanadium	D_Vanadium
SO	Surface	mg/kg	Offices and Parking Lot	SUS19-2E	3/22/2017	0 - 1 ft	0.4		40	
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP09	2/5/2013 2/6/2013	0 - 1 ft 0.17 - 1 ft	0.1 0.12	0	16	1
SO SO	Surface Surface	mg/kg mg/kg	Offices and Parking Lot Offices and Parking Lot	SUSDP14 SUSDP19	2/6/2013	0.17 - 1 It 0.83 - 1 ft	0.12	0	23 19	1
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19	1/30/2017	0.03 - 1 ft	0.11	U	19	'
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1A	2/1/2017	0 - 1 ft				
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1B	2/1/2017	0 - 1 ft				
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1C	1/27/2017	0 - 1 ft				
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1D	8/22/2017	0 - 1 ft				
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1G	2/1/2017	0 - 1 ft				
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-1H	2/1/2017	0 - 1 ft				
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-2D	3/22/2017	0 - 1 ft				
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-2M	3/23/2017	0 - 1 ft				
SO SO	Surface Surface	mg/kg	Offices and Parking Lot Offices and Parking Lot	SUSDP19-2N SUSDP19-2O	3/23/2017	0 - 1 ft 0 - 1 ft				
SO	Surface	mg/kg mg/kg	Offices and Parking Lot	SUSDP19-2P	3/23/2017	0 - 1 ft				
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-3S	8/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-3V	8/24/2017	0 - 1 ft				
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-4N	1/26/2018	0 - 1 ft				
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-4NW	2/1/2018	0 - 1 ft				
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-4W	2/1/2018	0 - 1 ft				
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-5N	2/21/2018	0 - 1 ft				
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-5NW	2/21/2018	0 - 1 ft				
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-5W	2/21/2018	0 - 1 ft				
SO SO	Surface	mg/kg	Offices and Parking Lot Offices and Parking Lot	SUSDP19-6NW	3/15/2018 3/15/2018	0 - 1 ft 0 - 1 ft				
SO	Surface Surface	mg/kg mg/kg	Offices and Parking Lot	SUSDP 19-6NW	3/15/2018	0 - 1 ft				
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-7N	4/5/2018	0 - 1 ft				
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP19-7W	4/5/2018	0 - 1 ft				
SO	Surface	mg/kg	Offices and Parking Lot	SUSDP53	1/31/2017	0 - 1 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP09	5/17/2013	4.5 - 5.5 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP09	6/11/2013	9.5 - 10.5 ft	0.13	1	31	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP09	6/11/2013	14.5 - 15.5 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP14	5/22/2013	2.5 - 3.5 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP14	6/6/2013	9.5 - 10.5 ft				
SO SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP14 SUSDP19	6/6/2013	14.5 - 15.5 ft	0.1	1	20	1
SO	Subsurface Subsurface	mg/kg mg/kg	Offices and Parking Lot Offices and Parking Lot	SUSDP19	5/23/2013 6/5/2013	1.5 - 2.5 ft 14.5 - 15.5 ft	0.1	ı	20	ı
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19	6/5/2013	9.5 - 10.5 ft	0.071	1	36	1
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19	1/30/2017	1 - 2 ft	0.07 1		- 00	·
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19	1/30/2017	2 - 5 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19	2/8/2017	5 - 10 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19	2/8/2017	10 - 15 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1A	2/1/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1A	2/8/2017	10 - 11 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1A	2/8/2017	15 - 16 ft				
SO SO	Subsurface Subsurface	mg/kg	Offices and Parking Lot Offices and Parking Lot	SUSDP19-1B SUSDP19-1B	2/1/2017 2/8/2017	2 - 3 ft 10 - 11 ft				
SO	Subsurface	mg/kg mg/kg	Offices and Parking Lot	SUSDP19-1B SUSDP19-1B	2/8/2017	10 - 11 π 15 - 16 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1B	1/27/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1C	2/8/2017	10 - 11 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1C	2/8/2017	15 - 16 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1D	8/22/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1D	8/22/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1D	8/22/2017	3 - 4 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1D	8/22/2017	4 - 5 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1D	8/22/2017	5 - 6 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1F	8/22/2017	1 - 2 ft 2 - 3 ft				
SO SO	Subsurface Subsurface	mg/kg mg/kg	Offices and Parking Lot Offices and Parking Lot	SUSDP19-1F SUSDP19-1F	8/22/2017 8/22/2017	2 - 3 π 3 - 4 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1F	8/22/2017	3 - 4 II 4 - 5 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-11	2/1/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1G	2/8/2017	10 - 11 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1G	2/8/2017	15 - 16 ft				
SO	Subsurface		Offices and Parking Lot	SUSDP19-1H	2/1/2017	2 - 3 ft				
	· ·		·							

Matrix	horizon	Units	Area	Location	Collected	Depth	Thallium	D Thallium	Vanadium	D Vanadium
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1H	2/8/2017	10 - 11 ft	mamam	D_IIIailiaili	variadium	D_variadiditi
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-1H	2/8/2017	15 - 16 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2D	8/17/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2D	8/17/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2D	8/17/2017	3 - 4 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2D	8/17/2017	4 - 5 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2D	8/17/2017	5 - 6 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2M	3/23/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2M	8/16/2017	3 - 4 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2M	8/16/2017	4 - 5 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2M	8/16/2017	5 - 6 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2N	3/23/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-20	3/23/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-20	8/23/2017	3 - 4 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-20	8/23/2017	4 - 5 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-20	8/23/2017	5 - 6 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-20	3/28/2018	6 - 7 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-20	3/28/2018	7 - 8 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-20	3/28/2018	10 - 11 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-20	3/28/2018	11 - 12 ft				
SO SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-2P SUSDP19-2P	3/23/2017	2 - 3 ft				
SO	Subsurface Subsurface	mg/kg	Offices and Parking Lot Offices and Parking Lot	SUSDP19-2P SUSDP19-2P	8/17/2017 8/17/2017	3 - 4 ft 4 - 5 ft				
SO	Subsurface	mg/kg mg/kg	Offices and Parking Lot	SUSDP19-2P	8/17/2017	4 - 5 II 5 - 6 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3F	8/18/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3F	8/18/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3F	8/18/2017	3 - 4 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3F	8/18/2017	4 - 5 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3F	8/18/2017	5 - 6 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3S	8/24/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3S	8/24/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3S	8/24/2017	3 - 4 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3S	8/24/2017	4 - 5 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3S	8/24/2017	5 - 6 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3V	8/24/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3V	8/24/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3V	8/24/2017	3 - 4 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3V	8/24/2017	4 - 5 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3V	8/24/2017	5 - 6 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3X	8/18/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3X	8/18/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3X	8/18/2017	3 - 4 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-3X	8/18/2017	4 - 5 ft				
SO SO	Subsurface Subsurface	mg/kg	Offices and Parking Lot Offices and Parking Lot	SUSDP19-3X SUSDP19-4N	8/18/2017 1/26/2018	5 - 6 ft 1 - 2 ft				
SO	Subsurface	mg/kg mg/kg	Offices and Parking Lot	SUSDP19-4N SUSDP19-4N	1/26/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4N	1/26/2018	2 - 3 II 3 - 4 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4N	1/26/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4N	1/26/2018	5 - 6 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4N	3/28/2018	6 - 7 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4N	3/28/2018	7 - 8 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4N	3/28/2018	10 - 11 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4N	3/28/2018	11 - 12 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4NW	2/1/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4NW	2/1/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4NW	2/1/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4NW	2/1/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4NW	2/1/2018	5 - 6 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4NW	3/28/2018	6 - 7 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4NW	3/28/2018	7 - 8 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4NW	3/28/2018	10 - 11 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4NW	3/28/2018	11 - 12 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4W	2/1/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4W	2/1/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4W	2/1/2018	3 - 4 ft	1	<u> </u>	l	

					0 "	5 "	···	D 71 III		D. V
Matrix		Units	Area	Location	Collected	Depth	I hallium	D_I nallium	vanadium	D_Vanadium
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4W	2/1/2018	4 - 5 ft				
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-4W	2/1/2018	5 - 6 ft				
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5N	2/21/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5N	2/21/2018	2 - 3 ft				
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5N	2/21/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5N	2/21/2018	4 - 5 ft				
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5N	2/21/2018	5 - 6 ft				
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5NW	2/21/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5NW	2/21/2018	2 - 3 ft				
	Subsurface		Offices and Parking Lot	SUSDP19-5NW	2/21/2018	3 - 4 ft				
	Subsurface		Offices and Parking Lot	SUSDP19-5NW	2/21/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5NW	2/21/2018	5 - 6 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5W	2/21/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5W	2/21/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5W	2/21/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-5W	2/21/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6N	3/15/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6N	3/15/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6N	3/15/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6N	3/15/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6NW	3/15/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6NW	3/15/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6NW	3/16/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6NW	3/16/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6NW	3/16/2018	5 - 6 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6W	3/16/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6W	3/16/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-6W	3/16/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-7N	4/5/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-7N	4/5/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-7N	4/5/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-7N	4/5/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-7W	4/5/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-7W	4/5/2018	2 - 3 ft				
SO	Subsurface		Offices and Parking Lot	SUSDP19-7W	4/5/2018	3 - 4 ft				
	Subsurface	mg/kg	Offices and Parking Lot	SUSDP19-7W	4/5/2018	4 - 5 ft				
	Subsurface		Offices and Parking Lot	SUSDP19-7W	4/5/2018	5 - 6 ft				
	Subsurface		Offices and Parking Lot	SUSDP53	1/31/2017	1 - 2 ft				
	Subsurface		Offices and Parking Lot	SUSDP53	1/31/2017	2 - 5 ft				
SO	Subsurface		Offices and Parking Lot	SUSDP53	2/2/2017	5 - 10 ft				
SO	Subsurface	mg/kg	Offices and Parking Lot	SUSDP53	2/2/2017	10 - 15 ft				
		5 5	J							

Soil ProUCL Input - Substation #7

Matrix	horizon	Units	Area	Location	Collected	Depth	Arsenic	D Arsenic	Benzo(a)anthracene	D Benzo(a)anthracene	Ponzo/o\nyrono	D. Bonzo(o)nyrono
							Aiseilic	D_AISEIIIC	Benzo(a)antinacene	D_Belizo(a)anunacene	Benzo(a)pyrene	D_Benzo(a)pyrene
SO	Surface	mg/kg	Substation #7	SUS201A	1/27/2017	0 - 1 ft						
SO	Surface	mg/kg	Substation #7	SUS201B	1/27/2017	0 - 1 ft						
SO	Surface	mg/kg	Substation #7	SUS201C	1/27/2017	0 - 1 ft						
SO	Surface	mg/kg	Substation #7	SUS201D	2/2/2017	0 - 1 ft						
SO	Surface	mg/kg	Substation #7	SUS201E	1/27/2017	0 - 1 ft						
SO	Surface	mg/kg	Substation #7	SUS201F	1/27/2017	0 - 1 ft						
SO	Surface	mg/kg	Substation #7	SUS201G	1/27/2017	0 - 1 ft						
SO	Surface	mg/kg	Substation #7	SUS201H	1/27/2017	0 - 1 ft						
SO	Surface	mg/kg	Substation #7	SUS25	2/7/2013	0.5 - 1 ft	2.6	1	0.057	1	0.058	1
SO	Surface	mg/kg	Substation #7	SUSDP20	2/7/2013	0.42 - 1 ft	33	1	0.11	1	0.08	1
SO	Surface	mg/kg	Substation #7	SUSDP20	1/27/2017	0 - 1 ft			0.019	1	0.023	1
SO	Surface	mg/kg	Substation #7	SUSDP23	2/7/2013	0.5 - 1 ft	0.65	1	0.036	0	0.036	0
SO	Surface	mg/kg	Substation #7	SUSDP24	2/7/2013	0 - 1 ft	3.8	1	1.8	1	1.4	1
SO	Subsurface	mg/kg	Substation #7	DP33	4/4/2013	14 - 16 ft	3.7	1	0.008	0	0.008	0
SO	Subsurface	mg/kg	Substation #7	DP34	3/13/2013	4.5 - 5.5 ft	1.5	1	0.0079	0	0.0079	0
SO	Subsurface	mg/kg	Substation #7	SUSDP20	5/30/2013	4.5 - 5.5 ft						
SO	Subsurface	mg/kg	Substation #7	SUSDP20	6/12/2013	9.5 - 10.5 ft						
SO	Subsurface	mg/kg	Substation #7	SUSDP20	1/27/2017	1 - 2 ft			0.014	1	0.015	1
SO	Subsurface	mg/kg	Substation #7	SUSDP20	1/27/2017	2 - 5 ft			0.009	1	0.0079	1
SO	Subsurface	mg/kg	Substation #7	SUSDP23	5/28/2013	4.5 - 5.5 ft						
SO	Subsurface	mg/kg	Substation #7	SUSDP23	6/12/2013	9.5 - 10.5 ft						
SO	Subsurface	mg/kg	Substation #7	SUSDP23	6/12/2013	14.5 - 15.5 ft						
SO	Subsurface	mg/kg	Substation #7	SUSDP24	5/20/2013	4.5 - 5.5 ft			0.0073	0	0.0073	0
SO	Subsurface	mg/kg	Substation #7	SUSDP24	6/4/2013	14.5 - 15.5 ft			0.0074	0	0.0074	0
SO	Subsurface	mg/kg	Substation #7	SUSDP24	6/4/2013	9.5 - 10.5 ft	1.2	1	0.0075	0	0.0075	0

Page 2 of 6

Matrix	horizon	Units	Area	Location	Collected	Depth	Benzo(b)fluoranthene	D Benzo(b)fluoranthene	Benzo(k)fluoranthene	D Benzo(k)fluoranthene	Chrysene	D Chrysene	Cohalt	D Cobalt
							Delizo(b)iidoraritrierie	D_Berizo(b)ildorantherie	Delizo(k)lidoraritrierie	D_Berizo(k)iidoraritrierie	Ciliysene	D_Ciliyselle	Cobait	D_Cobait
SO	Surface	mg/kg	Substation #7	SUS201A	1/27/2017	0 - 1 ft								
SO	Surface	mg/kg	Substation #7	SUS201B	1/27/2017	0 - 1 ft								
SO	Surface	mg/kg	Substation #7	SUS201C	1/27/2017	0 - 1 ft								
SO	Surface	mg/kg	Substation #7	SUS201D	2/2/2017	0 - 1 ft								
SO	Surface	mg/kg	Substation #7	SUS201E	1/27/2017	0 - 1 ft								
SO	Surface	mg/kg	Substation #7	SUS201F	1/27/2017	0 - 1 ft								
SO	Surface	mg/kg	Substation #7	SUS201G	1/27/2017	0 - 1 ft								
SO	Surface	mg/kg	Substation #7	SUS201H	1/27/2017	0 - 1 ft								
SO	Surface	mg/kg	Substation #7	SUS25	2/7/2013	0.5 - 1 ft	0.083	1	0.033	1	0.064	1	3.1	1
SO	Surface	mg/kg	Substation #7	SUSDP20	2/7/2013	0.42 - 1 ft	0.2	1	0.055	1	0.22	1	4.6	1
SO	Surface	mg/kg	Substation #7	SUSDP20	1/27/2017	0 - 1 ft	0.046	1	0.014	1	0.034	1		
SO	Surface	mg/kg	Substation #7	SUSDP23	2/7/2013	0.5 - 1 ft	0.036	0	0.036	0	0.036	0	3.7	1
SO	Surface	mg/kg	Substation #7	SUSDP24	2/7/2013	0 - 1 ft	3.2	1	1.7	1	3.2	1	4.7	1
SO	Subsurface	mg/kg	Substation #7	DP33	4/4/2013	14 - 16 ft	0.008	0	0.008	0	0.008	0	4.6	1
SO	Subsurface	mg/kg	Substation #7	DP34	3/13/2013	4.5 - 5.5 ft	0.0079	0	0.0079	0	0.0079	0	1.8	1
SO	Subsurface	mg/kg	Substation #7	SUSDP20	5/30/2013	4.5 - 5.5 ft								
SO	Subsurface	mg/kg	Substation #7	SUSDP20	6/12/2013	9.5 - 10.5 ft								
SO	Subsurface	mg/kg	Substation #7	SUSDP20	1/27/2017	1 - 2 ft	0.019	1	0.0074	1	0.016	1		
SO	Subsurface	mg/kg	Substation #7	SUSDP20	1/27/2017	2 - 5 ft	0.012	1	0.0047	1	0.0098	1		
SO	Subsurface	mg/kg	Substation #7	SUSDP23	5/28/2013	4.5 - 5.5 ft								
SO	Subsurface	mg/kg	Substation #7	SUSDP23	6/12/2013	9.5 - 10.5 ft								
SO	Subsurface	mg/kg	Substation #7	SUSDP23	6/12/2013	14.5 - 15.5 ft								
SO	Subsurface	mg/kg	Substation #7	SUSDP24	5/20/2013	4.5 - 5.5 ft	0.004	1	0.0073	0	0.0073	0		
SO	Subsurface	mg/kg	Substation #7	SUSDP24	6/4/2013	14.5 - 15.5 ft	0.0074	0	0.0074	0	0.0074	0		
SO	Subsurface	mg/kg		SUSDP24	6/4/2013	9.5 - 10.5 ft	0.0075	0	0.0075	0	0.0075	0	4	1

Soil ProUCL Input - Substation #7

Matrix	horizon	Units	Area	Location	Collected	Depth	Dibenzo(a,h)anthracene	D_Dibenzo(a,h)anthracene	Diesel Range Organics (C10-C20)	D_Diesel Range Organics (C10-C20)
SO	Surface	mg/kg	Substation #7	SUS201A	1/27/2017	0 - 1 ft				
SO	Surface	mg/kg	Substation #7	SUS201B	1/27/2017	0 - 1 ft				
SO	Surface	mg/kg	Substation #7	SUS201C	1/27/2017	0 - 1 ft				
SO	Surface	mg/kg	Substation #7	SUS201D	2/2/2017	0 - 1 ft				
SO	Surface	mg/kg	Substation #7	SUS201E	1/27/2017	0 - 1 ft				
SO	Surface	mg/kg	Substation #7	SUS201F	1/27/2017	0 - 1 ft				
SO	Surface	mg/kg	Substation #7	SUS201G	1/27/2017	0 - 1 ft				
SO	Surface	mg/kg	Substation #7	SUS201H	1/27/2017	0 - 1 ft				
SO	Surface	mg/kg	Substation #7	SUS25	2/7/2013	0.5 - 1 ft	0.012	1	20	1
SO	Surface	mg/kg	Substation #7	SUSDP20	2/7/2013	0.42 - 1 ft	0.035	1	94	0
SO	Surface	mg/kg	Substation #7	SUSDP20	1/27/2017	0 - 1 ft	0.007	1		
SO	Surface	mg/kg	Substation #7	SUSDP23	2/7/2013	0.5 - 1 ft	0.036	0	18	0
SO	Surface	mg/kg	Substation #7	SUSDP24	2/7/2013	0 - 1 ft	0.4	1	97	0
SO	Subsurface	mg/kg	Substation #7	DP33	4/4/2013	14 - 16 ft	0.008	0	20	0
SO	Subsurface	mg/kg	Substation #7	DP34	3/13/2013	4.5 - 5.5 ft	0.0079	0	20	0
SO	Subsurface	mg/kg	Substation #7	SUSDP20	5/30/2013	4.5 - 5.5 ft			21	0
SO	Subsurface	mg/kg	Substation #7	SUSDP20	6/12/2013	9.5 - 10.5 ft			19	0
SO	Subsurface	mg/kg	Substation #7	SUSDP20	1/27/2017	1 - 2 ft	0.0021	1		
SO	Subsurface	mg/kg	Substation #7	SUSDP20	1/27/2017	2 - 5 ft	0.002	1		
SO	Subsurface	mg/kg	Substation #7	SUSDP23	5/28/2013	4.5 - 5.5 ft			18	0
SO	Subsurface	mg/kg	Substation #7	SUSDP23	6/12/2013	9.5 - 10.5 ft			20	0
SO	Subsurface	mg/kg	Substation #7	SUSDP23	6/12/2013	14.5 - 15.5 ft	·		21	0
SO	Subsurface	mg/kg	Substation #7	SUSDP24	5/20/2013	4.5 - 5.5 ft	0.0073	0	18	0
SO	Subsurface	mg/kg	Substation #7	SUSDP24	6/4/2013	14.5 - 15.5 ft	0.0074	0	19	0
SO	Subsurface	mg/kg	Substation #7	SUSDP24	6/4/2013	9.5 - 10.5 ft	0.0075	0	19	0

Matrix	horizon	Units	Area	Location	Collected	Depth	Indeno(1,2,3-cd)pyrene	D_Indeno(1,2,3-cd)pyrene	Manganese	D_Manganese	Naphthalene	D_Naphthalene	Nickel	D_Nickel
SO	Surface	mg/kg	Substation #7	SUS201A	1/27/2017	0 - 1 ft								
SO	Surface	mg/kg	Substation #7	SUS201B	1/27/2017	0 - 1 ft								
SO	Surface	mg/kg	Substation #7	SUS201C	1/27/2017	0 - 1 ft								
SO	Surface	mg/kg	Substation #7	SUS201D	2/2/2017	0 - 1 ft								
SO	Surface	mg/kg	Substation #7	SUS201E	1/27/2017	0 - 1 ft								
SO	Surface	mg/kg	Substation #7	SUS201F	1/27/2017	0 - 1 ft								
SO	Surface	mg/kg	Substation #7	SUS201G	1/27/2017	0 - 1 ft								
SO	Surface	mg/kg	Substation #7	SUS201H	1/27/2017	0 - 1 ft								
SO	Surface	mg/kg	Substation #7	SUS25	2/7/2013	0.5 - 1 ft	0.048	1	140	1	0.0038	1	3.6	1
SO	Surface	mg/kg	Substation #7	SUSDP20	2/7/2013	0.42 - 1 ft	0.085	1	120	1	0.067	1	14	1
SO	Surface	mg/kg	Substation #7	SUSDP20	1/27/2017	0 - 1 ft	0.02	1			0.0061	1		
SO	Surface	mg/kg	Substation #7	SUSDP23	2/7/2013	0.5 - 1 ft	0.036	0	370	1	0.036	0	12	1
SO	Surface	mg/kg	Substation #7	SUSDP24	2/7/2013	0 - 1 ft	1.3	1	160	1	0.053	1	12	1
SO	Subsurface	mg/kg	Substation #7	DP33	4/4/2013	14 - 16 ft	0.008	0	35	1	0.008	0	7	1
SO	Subsurface	mg/kg	Substation #7	DP34	3/13/2013	4.5 - 5.5 ft	0.0079	0	32	1	0.0079	0	1.3	1
SO	Subsurface	mg/kg	Substation #7	SUSDP20	5/30/2013	4.5 - 5.5 ft								
SO	Subsurface	mg/kg	Substation #7	SUSDP20	6/12/2013	9.5 - 10.5 ft								
SO	Subsurface	mg/kg	Substation #7	SUSDP20	1/27/2017	1 - 2 ft	0.01	1			0.0081	0		
SO	Subsurface	mg/kg	Substation #7	SUSDP20	1/27/2017	2 - 5 ft	0.0061	1			0.0087	0		
SO	Subsurface	mg/kg	Substation #7	SUSDP23	5/28/2013	4.5 - 5.5 ft								
SO	Subsurface	mg/kg	Substation #7	SUSDP23	6/12/2013	9.5 - 10.5 ft								
SO	Subsurface	mg/kg	Substation #7	SUSDP23	6/12/2013	14.5 - 15.5 ft	·							
SO	Subsurface	mg/kg	Substation #7	SUSDP24	5/20/2013	4.5 - 5.5 ft	0.0073	0			0.0073	0		
SO	Subsurface	mg/kg	Substation #7	SUSDP24	6/4/2013	14.5 - 15.5 ft	0.0074	0			0.0074	0		
SO	Subsurface	mg/kg	Substation #7	SUSDP24	6/4/2013	9.5 - 10.5 ft	0.0075	0	79	1	0.0075	0	3	1

						1						
Matrix	horizon	Units	Area	Location	Collected	Depth	PCB, Total Aroclors (AECOM Calc)	D_PCB, Total Aroclors (AECOM Calc)	TCDD TEQ HH	D_TCDD TEQ HH	Thallium	D_Thallium
SO	Surface	mg/kg	Substation #7	SUS201A	1/27/2017	0 - 1 ft	0.00092	0				1
SO	Surface	mg/kg	Substation #7	SUS201B	1/27/2017	0 - 1 ft	0.0091	1				ı
SO	Surface	mg/kg	Substation #7	SUS201C	1/27/2017	0 - 1 ft	0.0011	1				
SO	Surface	mg/kg	Substation #7	SUS201D	2/2/2017	0 - 1 ft	0.0015	1				
SO	Surface	mg/kg	Substation #7	SUS201E	1/27/2017	0 - 1 ft	0.022	1				ı
SO	Surface	mg/kg	Substation #7	SUS201F	1/27/2017	0 - 1 ft	0.42	1				
SO	Surface	mg/kg	Substation #7	SUS201G	1/27/2017	0 - 1 ft	0.093	1				
SO	Surface	mg/kg	Substation #7	SUS201H	1/27/2017	0 - 1 ft	0.00095	0				ı
SO	Surface	mg/kg	Substation #7	SUS25	2/7/2013	0.5 - 1 ft	0.25	1	0.00000437	1	0.11	0
SO	Surface	mg/kg	Substation #7	SUSDP20	2/7/2013	0.42 - 1 ft	5.1	1			0.25	1
SO	Surface	mg/kg	Substation #7	SUSDP20	1/27/2017	0 - 1 ft	0.026	1				ı
SO	Surface	mg/kg	Substation #7	SUSDP23	2/7/2013	0.5 - 1 ft	0.0087	1			0.1	0
SO	Surface	mg/kg	Substation #7	SUSDP24	2/7/2013	0 - 1 ft	0.074	1			0.11	0
SO	Subsurface	mg/kg	Substation #7	DP33	4/4/2013	14 - 16 ft	0.00098	0			0.11	0
SO	Subsurface	mg/kg	Substation #7	DP34	3/13/2013	4.5 - 5.5 ft	0.00098	0			0.02	1
SO	Subsurface	mg/kg	Substation #7	SUSDP20	5/30/2013	4.5 - 5.5 ft	0.0052	0				
SO	Subsurface	mg/kg	Substation #7	SUSDP20	6/12/2013	9.5 - 10.5 ft	0.0074	1				
SO	Subsurface	mg/kg	Substation #7	SUSDP20	1/27/2017	1 - 2 ft	0.00098	0				
SO	Subsurface	mg/kg	Substation #7	SUSDP20	1/27/2017	2 - 5 ft	0.0011	0				
SO	Subsurface	mg/kg	Substation #7	SUSDP23	5/28/2013	4.5 - 5.5 ft	0.0046	0				
SO	Subsurface	mg/kg	Substation #7	SUSDP23	6/12/2013	9.5 - 10.5 ft	0.003	1				
SO	Subsurface	mg/kg	Substation #7	SUSDP23	6/12/2013	14.5 - 15.5 ft	0.0053	0				
SO	Subsurface	mg/kg	Substation #7	SUSDP24	5/20/2013	4.5 - 5.5 ft	0.0046	0	0.000000362	1		
SO	Subsurface	mg/kg	Substation #7	SUSDP24	6/4/2013	14.5 - 15.5 ft	0.0047	0				
SO	Subsurface	mg/kg	Substation #7	SUSDP24	6/4/2013	9.5 - 10.5 ft	0.0048	0			0.047	1

Page 5 of 6

Soil ProUCL Input - Substation #7

					ı		1	
Matrix	horizon	Units	Area	Location	Collected	Depth	Vanadium	D_Vanadium
SO	Surface	mg/kg	Substation #7	SUS201A	1/27/2017	0 - 1 ft		
SO	Surface	mg/kg	Substation #7	SUS201B	1/27/2017	0 - 1 ft		
SO	Surface	mg/kg	Substation #7	SUS201C	1/27/2017	0 - 1 ft		
SO	Surface	mg/kg	Substation #7	SUS201D	2/2/2017	0 - 1 ft		
SO	Surface	mg/kg	Substation #7	SUS201E	1/27/2017	0 - 1 ft		
SO	Surface	mg/kg	Substation #7	SUS201F	1/27/2017	0 - 1 ft		
SO	Surface	mg/kg	Substation #7	SUS201G	1/27/2017	0 - 1 ft		
SO	Surface	mg/kg	Substation #7	SUS201H	1/27/2017	0 - 1 ft		
SO	Surface	mg/kg	Substation #7	SUS25	2/7/2013	0.5 - 1 ft	11	1
SO	Surface	mg/kg	Substation #7	SUSDP20	2/7/2013	0.42 - 1 ft	21	1
SO	Surface	mg/kg	Substation #7	SUSDP20	1/27/2017	0 - 1 ft		
SO	Surface	mg/kg	Substation #7	SUSDP23	2/7/2013	0.5 - 1 ft	3.4	1
SO	Surface	mg/kg	Substation #7	SUSDP24	2/7/2013	0 - 1 ft	23	1
SO	Subsurface	mg/kg	Substation #7	DP33	4/4/2013	14 - 16 ft	32	1
SO	Subsurface	mg/kg	Substation #7	DP34	3/13/2013	4.5 - 5.5 ft	9.7	1
SO	Subsurface	mg/kg	Substation #7	SUSDP20	5/30/2013	4.5 - 5.5 ft		
SO	Subsurface	mg/kg	Substation #7	SUSDP20	6/12/2013	9.5 - 10.5 ft		
SO	Subsurface	mg/kg	Substation #7	SUSDP20	1/27/2017	1 - 2 ft		
SO	Subsurface	mg/kg	Substation #7	SUSDP20	1/27/2017	2 - 5 ft		
SO	Subsurface	mg/kg	Substation #7	SUSDP23	5/28/2013	4.5 - 5.5 ft		
SO	Subsurface	mg/kg	Substation #7	SUSDP23	6/12/2013	9.5 - 10.5 ft		
SO	Subsurface	mg/kg	Substation #7	SUSDP23	6/12/2013	14.5 - 15.5 ft		
SO	Subsurface	mg/kg	Substation #7	SUSDP24	5/20/2013	4.5 - 5.5 ft		
SO	Subsurface	mg/kg	Substation #7	SUSDP24	6/4/2013	14.5 - 15.5 ft		
SO	Subsurface	mg/kg	Substation #7	SUSDP24	6/4/2013	9.5 - 10.5 ft	12	1

Matrix	horizon	Units	Area	Location	Collected	Depth	Arsenic	D Arsenic	Benzo(a)anthracene	D Benzo(a)anthracene	Benzo(a)pyrene	D_Benzo(a)pyrene
SO	Subsurface	mg/kg	Transformer Shop	DP35	3/28/2013		0.81	1	0.0079	0	0.0079	0
SO	Subsurface	mg/kg	Transformer Shop	DP46	5/22/2013		0.01		0.0079	U	0.0079	U
SO	Subsurface	mg/kg	Transformer Shop	DP46	6/5/2013							
SO	Subsurface	mg/kg	Transformer Shop	DP46	6/5/2013	9.5 - 10.5 ft						
SO	Subsurface	mg/kg	Transformer Shop	DP47	5/28/2013	1.5 - 2.5 ft	7.7	1				
SO	Subsurface	mg/kg	Transformer Shop	DP47	6/5/2013	14 - 15 ft						
SO	Subsurface	mg/kg	Transformer Shop	DP47	6/5/2013	9.5 - 10.5 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21	1/27/2017	1 - 2 ft			2	1	1.9	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21	1/27/2017	2 - 5 ft			3.7	1	3.6	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21	2/2/2017	5 - 10 ft			0.56	1	0.49	1
SO SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-1C	8/24/2017	1 - 2 ft 2 - 3 ft			1.1	0	1.1	0
SO	Subsurface Subsurface	mg/kg mg/kg	Transformer Shop Transformer Shop	SUSDP21-1C SUSDP21-1C	8/24/2017 8/24/2017	2 - 3 II 3 - 4 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-1C	8/25/2017	1 - 2 ft			0.85	1	0.78	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3A	8/25/2017	2 - 3 ft			0.00	'	0.70	
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3G	8/28/2017	1 - 2 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3G	8/28/2017	2 - 3 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3M	8/28/2017	1 - 2 ft			6.6	1	5.6	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3M	8/28/2017	2 - 3 ft			12	1	11	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3M	8/28/2017	3 - 4 ft			8.2	1	8.1	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3M	8/28/2017	4 - 5 ft			3.4	1	2.7	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3T	8/25/2017	1 - 2 ft			4	1	3.5	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3T	8/25/2017	2 - 3 ft			1.6	1	1.5	1
SO	Subsurface Subsurface	mg/kg	Transformer Shop Transformer Shop	SUSDP21-3T SUSDP21-3V	8/25/2017 8/25/2017	3 - 4 ft 1 - 2 ft			0.098	1	0.098	1
SO	Subsurface	mg/kg mg/kg	Transformer Shop	SUSDP21-3V	1/26/2018	1 - 2 ft			3.7	1	3.3	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-5W	1/26/2018	2 - 3 ft			0.75	0	0.75	0
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-6W	2/21/2018	1 - 2 ft			1.8	1	1.4	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDP22	5/22/2013							
SO	Subsurface	mg/kg	Transformer Shop	SUSDP22	6/12/2013							
SO	Subsurface	mg/kg	Transformer Shop	SUSDP22	6/12/2013	14.5 - 15.5 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C3	7/2/2018	1 - 2 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C3	7/2/2018	2 - 3 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C3	7/2/2018	3 - 4 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C5	5/31/2018	1 - 2 ft						
SO	Subsurface Subsurface	mg/kg mg/kg	Transformer Shop Transformer Shop	SUSDPGD21-C5 SUSDPGD21-C5	5/31/2018 5/31/2018	2 - 3 ft 3 - 4 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C5	5/31/2018	4 - 5 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-D1	5/30/2018	1 - 2 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-D1	5/30/2018	2 - 3 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-D1	5/30/2018	3 - 4 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-D1	5/30/2018	4 - 5 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-E1	5/30/2018	1 - 2 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-E1	5/30/2018	2 - 3 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-E1	5/30/2018	3 - 4 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-E1	5/30/2018	4 - 5 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-F1	5/30/2018	1 - 2 ft						
SO	Subsurface Subsurface	mg/kg mg/kg	Transformer Shop Transformer Shop	SUSDPGD21-F1 SUSDPGD21-F1	5/30/2018 5/30/2018	2 - 3 ft 3 - 4 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-F1	5/30/2018	4 - 5 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-G1	4/4/2018	1 - 2 ft			1.8	1	1.5	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-G1	4/4/2018	2 - 3 ft			0.95	1	1.2	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-G1	4/4/2018	3 - 4 ft			0.072	1	0.088	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-G1	4/4/2018	4 - 5 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-G1	4/4/2018	5 - 6 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-G2	4/4/2018	1 - 2 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-G2	4/4/2018	2 - 3 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-H1	3/14/2018	1 - 2 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-H1	3/14/2018	2 - 3 ft						
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-H2	3/14/2018	1 - 2 ft						
SO	Subsurface Subsurface	mg/kg mg/kg	Transformer Shop Transformer Shop	SUSDPGD21-H2 SUSDPGD21-I1	3/14/2018 2/20/2018	2 - 3 ft 1 - 2 ft			1.1	1	1	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-I1	2/20/2018	2 - 3 ft			2.7	1	2.2	1
					2/20/2018	3 - 4 ft	1		0.33	1	0.28	·
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-I1								1

Matrix	horizon	Units	Area	Location	Collected	Depth	Arsenic	D_Arsenic	Benzo(a)anthracene	D_Benzo(a)anthracene	Benzo(a)pyrene	D_Benzo(a)pyrene
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-I2	2/20/2018	2 - 3 ft			0.18	1	0.2	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	1 - 2 ft			1.4	1	1.6	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	2 - 3 ft			12	1	9	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	3 - 4 ft			6.5	1	4.4	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	4 - 5 ft			0.008	1	0.0073	1
SO		mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	5 - 6 ft			0.0077	0	0.0077	0
SO		mg/kg	Transformer Shop	SUSDPGD21-J2	1/24/2018	1 - 2 ft			0.37	1	0.36	1
SO		mg/kg	Transformer Shop	SUSDPGD21-J2	1/24/2018	2 - 3 ft			0.13	1	0.11	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J2	1/24/2018	3 - 4 ft			0.7	1	0.68	1
SO	Subsurface Subsurface	mg/kg	Transformer Shop Transformer Shop	SUSDPGD21-K1 SUSDPGD21-K1	1/24/2018	1 - 2 ft 2 - 3 ft			2.9 0.54	1	3.1 0.52	1
SO		mg/kg mg/kg	Transformer Shop	SUSDPGD21-K1	1/24/2018	3 - 4 ft			3.9	1	3.4	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1	1/24/2018	4 - 5 ft			3.5	1	3.1	1
SO		mg/kg	Transformer Shop	SUSDPGD21-K1	1/24/2018	5 - 6 ft			0.0039	1	0.0035	1
SO		mg/kg	Transformer Shop	SUSDPGD21-K1.5	1/26/2018	1 - 2 ft			0.88	1	0.82	1
SO		mg/kg	Transformer Shop	SUSDPGD21-K1.5	1/26/2018	2 - 3 ft			2.5	1	2	1
SO		mg/kg	Transformer Shop	SUSDPGD21-K1.5	1/26/2018	3 - 4 ft			19	1	15	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1.5	1/26/2018	4 - 5 ft			1.9	1	1.1	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K2	1/24/2018	1 - 2 ft			1	1	0.91	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K2	1/24/2018	2 - 3 ft			0.58	1	0.56	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L1	2/20/2018	1 - 2 ft			5.3	1	4.6	1
SO		mg/kg	Transformer Shop	SUSDPGD21-L1	2/20/2018	2 - 3 ft			2.6	1	2.3	1
SO	Subsurface	mg/kg		SUSDPGD21-L1	2/20/2018	3 - 4 ft			3.8	0	3.8	0
SO		mg/kg	Transformer Shop	SUSDPGD21-L1	2/20/2018	4 - 5 ft			2.3	0	2.3	0
SO		mg/kg	Transformer Shop Transformer Shop	SUSDPGD21-L2 SUSDPGD21-L2	2/20/2018 2/20/2018	1 - 2 ft 2 - 3 ft			1.1 1.2	1	0.95 1.2	1
SO		mg/kg mg/kg	Transformer Shop	SUSDPGD21-L2	2/20/2018	3 - 4 ft			9.2	1	6.5	1
SO	Subsurface	mg/kg		SUSDPGD21-L2	2/20/2018	4 - 5 ft			3.8	0	3.8	0
SO		mg/kg	Transformer Shop	SUSDPGD21-M1	3/14/2018	1 - 2 ft			23	1	18	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M1	3/14/2018	2 - 3 ft			4.9	1	3.9	1
SO		mg/kg	Transformer Shop	SUSDPGD21-M1	3/14/2018	3 - 4 ft			2.6	1	2.1	1
SO		mg/kg	Transformer Shop	SUSDPGD21-M1	3/14/2018	4 - 5 ft			3	0	3	0
SO		mg/kg	Transformer Shop	SUSDPGD21-M2	3/14/2018	1 - 2 ft			2.8	1	2.5	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M2	3/14/2018	2 - 3 ft			3.4	1	2.7	1
SO		mg/kg	Transformer Shop	SUSDPGD21-M2	3/14/2018	3 - 4 ft			0.07	1	0.076	1
SO		mg/kg	Transformer Shop	SUSDPGD21-M2	3/14/2018	4 - 5 ft			0.91	1	1	1
SO		mg/kg	Transformer Shop	SUSDPGD21-N1	4/4/2018	1 - 2 ft			0.89	1	0.72	1
SO		mg/kg	Transformer Shop	SUSDPGD21-N1	4/4/2018	2 - 3 ft			12	1	9.7	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-N1	4/4/2018	3 - 4 ft			1.4	1	1.4	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-N2	4/4/2018	1 - 2 ft			0.3	1	0.31	1
SO	Subsurface Subsurface	mg/kg mg/kg	Transformer Shop Transformer Shop	SUSDPGD21-N2 SUSDPGD21-P1	4/4/2018 5/30/2018	2 - 3 ft 1 - 2 ft			10 0.97	1	8.1 0.79	1
SO		mg/kg	Transformer Shop	SUSDPGD21-P1	5/30/2018	2 - 3 ft			0.97	1	0.79	1
SO		mg/kg	Transformer Shop	SUSDPGD21-P1	1/23/2018	1 - 2 ft			4.7	1	3.5	1
SO		mg/kg	Transformer Shop	SUSDPGD21-R1	1/23/2018	2 - 3 ft			3.4	1	2.8	1
SO		mg/kg		SUSDPGD21-R1	1/23/2018	3 - 4 ft			0.37	1	0.42	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-R2	1/23/2018	1 - 2 ft			0.47	1	0.5	1
SO		mg/kg	Transformer Shop	SUSDPGD21-R2	1/23/2018	2 - 3 ft			0.53	1	0.53	1
SO		mg/kg	Transformer Shop	SUSDPGD21-R2	1/23/2018	3 - 4 ft			1.1	1	1.1	1
SO		mg/kg	Transformer Shop	SUSDPGD21-S1	1/23/2018	1 - 2 ft			0.61	1	0.52	1
SO		mg/kg		SUSDPGD21-S1	1/23/2018	2 - 3 ft			0.34	1	0.31	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-S2	1/24/2018	1 - 2 ft						
SO	Surface	mg/kg	Transformer Shop	SUS21-1A	1/27/2017	0 - 1 ft						
SO	Surface	mg/kg	Transformer Shop	SUS21-1B	1/27/2017	0 - 1 ft						
SO	Surface	mg/kg	Transformer Shop	SUS21-1E	1/27/2017	0 - 1 ft						
SO	Surface	mg/kg	Transformer Shop	SUS21-1F	1/27/2017	0 - 1 ft						
SO	Surface	mg/kg	Transformer Shop	SUS21-1G	1/27/2017	0 - 1 ft 0 - 1 ft						
SO	Surface Surface	mg/kg mg/kg	Transformer Shop Transformer Shop	SUS21-1H SUS21-2D	1/27/2017 3/23/2017	0 - 1 ft						
SO	Surface	mg/kg	Transformer Shop	SUS21-2E	3/23/2017	0 - 1 ft		1				
SO	Surface	mg/kg	Transformer Shop	SUS21-2E	3/23/2017	0 - 1 ft						
SO	Surface	mg/kg	Transformer Shop	SUS21-2J	3/22/2017	0 - 1 ft						
SO	Surface	mg/kg	Transformer Shop	SUS21-2L	3/22/2017	0 - 1 ft						
SO	Surface	mg/kg	Transformer Shop	SUS21-2M	3/22/2017	0 - 1 ft						
SO	Surface		Transformer Shop	SUS21-2N	3/22/2017	0 - 1 ft						
										•	•	

Matrix	horizon	Units	Area	Location	Collected	Depth	Arsenic	D Arsenic	Benzo(a)anthracene	D Benzo(a)anthracene	Benzo(a)pyrene	D Benzo(a)pyrene
SO	Surface	mg/kg	Transformer Shop	SUSDP21	1/27/2017	0 - 1 ft	711001110	D_/Woorlio	2	1	1.7	1
SO	Surface	mg/kg	Transformer Shop	SUSDP21	2/7/2013	1 - 1.75 ft	1.7	1	1.9	1	1.6	1
SO	Surface	mg/kg	Transformer Shop	SUSDP21-1C	1/27/2017	0 - 1 ft	1.7	· ·	1.0	· · · · · · · · · · · · · · · · · · ·	1.0	'
SO	Surface	mg/kg	Transformer Shop	SUSDP21-1C	8/24/2017	0 - 1 ft			0.068	0	0.068	0
SO	Surface	mg/kg	Transformer Shop	SUSDP21-3G	8/28/2017	0 - 1 ft			0.14	1	0.37	0
SO	Surface	mg/kg	Transformer Shop	SUSDP21-3M	8/28/2017	0 - 1 ft			1.8	1	1.6	1
SO	Surface	mg/kg	Transformer Shop	SUSDP21-3Q	8/24/2017	0 - 1 ft			0.0033	1	0.0077	0
SO	Surface	mg/kg	Transformer Shop	SUSDP21-5W	1/26/2018	0 - 1 ft			0.066	1	0.068	1
SO	Surface	mg/kg	Transformer Shop	SUSDP21-6W	2/21/2018	0 - 1 ft			0.035	1	0.037	1
SO	Surface	mg/kg	Transformer Shop	SUSDP22	6/13/2013	0.5 - 1 ft			0.77	1	0.69	1
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-C3	7/2/2018	0 - 1 ft						
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-C5	5/31/2018	0 - 1 ft						
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-D1	5/30/2018	0 - 1 ft						
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-E1	5/30/2018	0 - 1 ft						
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-F1	5/30/2018	0 - 1 ft						
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-G1	4/4/2018	0 - 1 ft						
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-G2	4/4/2018	0 - 1 ft						
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-H1	3/14/2018	0 - 1 ft						
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-H2	3/14/2018	0 - 1 ft						
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-I1	2/20/2018	0 - 1 ft			0.0069	0	0.0069	0
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-I2	2/20/2018	0 - 1 ft			0.0069	0	0.0069	0
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	0 - 1 ft			0.014	0	0.014	0
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-J2	1/24/2018	0 - 1 ft			0.0069	0	0.0069	0
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-K1	1/24/2018	0 - 1 ft			0.007	0	0.007	0
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-K1.5	1/26/2018	0 - 1 ft			0.0037	1	0.0029	1
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-K2	1/24/2018	0 - 1 ft			0.0069	0	0.0069	0
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-L1	2/20/2018	0 - 1 ft			0.038	1	0.049	1
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-L2	2/20/2018	0 - 1 ft			0.0069	0	0.0069	0
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-M1	3/14/2018	0 - 1 ft			0.55	1	0.6	1
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-M2	3/14/2018	0 - 1 ft			0.014	0	0.014	0
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-N1	4/4/2018	0 - 1 ft			0.069	0	0.069	0
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-N2	4/4/2018	0 - 1 ft			0.007	0	0.007	0
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-P1	5/30/2018	0 - 1 ft			0.021	0	0.021	0
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-R1	1/23/2018	0 - 1 ft			0.73	1	0.72	1
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-R2	1/23/2018	0 - 1 ft			0.0072	1	0.0069	1
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-S1	1/23/2018	0 - 1 ft						
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-S2	1/24/2018	0 - 1 ft						

Matrix	horizon	Units	Area	Location	Collected	Depth	Benzo(b)fluoranthene	D_Benzo(b)fluoranthene	Benzo(k)fluoranthene	D_Benzo(k)fluoranthene	Chrysene	D_Chrysene	Cobalt	D_Cobalt
SO	Subsurface	mg/kg	Transformer Shop	DP35	3/28/2013	14.5 - 15.5 ft	0.0079	0	0.0079	0	0.0079	0	1.2	1
SO	Subsurface	mg/kg	Transformer Shop	DP46	5/22/2013	4.5 - 5.5 ft								
SO	Subsurface	mg/kg	Transformer Shop	DP46	6/5/2013	14.5 - 15.5 ft								
SO	Subsurface	mg/kg	Transformer Shop	DP46	6/5/2013	9.5 - 10.5 ft								
SO	Subsurface		Transformer Shop	DP47	5/28/2013	1.5 - 2.5 ft							6.5	1
SO	Subsurface		Transformer Shop	DP47	6/5/2013	14 - 15 ft								
SO	Subsurface		Transformer Shop	DP47	6/5/2013	9.5 - 10.5 ft								
SO	Subsurface		Transformer Shop	SUSDP21	1/27/2017	1 - 2 ft	2.1	1	0.81	1	1.9	1		
SO	Subsurface		Transformer Shop	SUSDP21	1/27/2017	2 - 5 ft	4.2	1	1.7	1	3.4	1		
SO	Subsurface		Transformer Shop	SUSDP21	2/2/2017	5 - 10 ft	0.75	1	0.22	1	0.6	1		
SO	Subsurface		Transformer Shop	SUSDP21-1C	8/24/2017	1 - 2 ft	1.1	0	1.1	0	1.1	0		
SO	Subsurface		Transformer Shop	SUSDP21-1C	8/24/2017	2 - 3 ft								
SO	Subsurface		Transformer Shop	SUSDP21-1C	8/24/2017	3 - 4 ft			0.40					
SO	Subsurface		Transformer Shop	SUSDP21-3A	8/25/2017	1 - 2 ft	1	1	0.43	1	0.94	1		
SO	Subsurface		Transformer Shop	SUSDP21-3A	8/25/2017	2 - 3 ft								
SO	Subsurface		Transformer Shop	SUSDP21-3G	8/28/2017	1 - 2 ft								
SO	Subsurface		Transformer Shop	SUSDP21-3G	8/28/2017	2 - 3 ft	7.0	4	2.4	4	0.0	4		
SO	Subsurface		Transformer Shop	SUSDP21-3M SUSDP21-3M	8/28/2017 8/28/2017	1 - 2 ft	7.2	1	2.4	1	6.6	1		
SO	Subsurface		Transformer Shop	SUSDP21-3M SUSDP21-3M	8/28/2017	2 - 3 ft 3 - 4 ft	13 9.9	1	5.5 3.3	1	7.7	1		
SO	Subsurface Subsurface		Transformer Shop Transformer Shop	SUSDP21-3M	8/28/2017	3 - 4 II 4 - 5 ft	3.5	1	1.2	1	2.8	1		
SO	Subsurface		Transformer Shop	SUSDP21-3M SUSDP21-3T	8/25/2017	1 - 2 ft	4.4	1	1.5	1	3.9	1		
SO	Subsurface		Transformer Shop	SUSDP21-3T	8/25/2017	2 - 3 ft	1.9	1	0.65	1	1.6	1		
SO	Subsurface		Transformer Shop	SUSDP21-3T	8/25/2017	3 - 4 ft	1.0	'	0.00	'	1.0	'		
SO	Subsurface		Transformer Shop	SUSDP21-3V	8/25/2017	1 - 2 ft	0.12	1	0.052	1	0.11	1		
SO	Subsurface		Transformer Shop	SUSDP21-5W	1/26/2018	1 - 2 ft	4.9	1	1.5	1	3.3	1		
SO	Subsurface		Transformer Shop	SUSDP21-5W	1/26/2018	2 - 3 ft	0.75	0	0.75	0	0.75	0		
SO	Subsurface		Transformer Shop	SUSDP21-6W	2/21/2018	1 - 2 ft	1.9	1	0.72	1	1.6	1		
SO	Subsurface		Transformer Shop	SUSDP22	5/22/2013	2.5 - 3.5 ft		•	· · · · ·					
SO	Subsurface		Transformer Shop	SUSDP22	6/12/2013	9.5 - 10.5 ft								
SO	Subsurface		Transformer Shop	SUSDP22	6/12/2013	14.5 - 15.5 ft								
SO	Subsurface		Transformer Shop	SUSDPGD21-C3	7/2/2018	1 - 2 ft								
SO	Subsurface		Transformer Shop	SUSDPGD21-C3	7/2/2018	2 - 3 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C3	7/2/2018	3 - 4 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C5	5/31/2018	1 - 2 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C5	5/31/2018	2 - 3 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C5	5/31/2018	3 - 4 ft								
SO	Subsurface		Transformer Shop	SUSDPGD21-C5	5/31/2018	4 - 5 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-D1	5/30/2018	1 - 2 ft								
SO	Subsurface		Transformer Shop	SUSDPGD21-D1	5/30/2018	2 - 3 ft								
SO	Subsurface		Transformer Shop	SUSDPGD21-D1	5/30/2018	3 - 4 ft								
SO	Subsurface		Transformer Shop	SUSDPGD21-D1	5/30/2018	4 - 5 ft								
SO	Subsurface		Transformer Shop	SUSDPGD21-E1	5/30/2018	1 - 2 ft								
SO	Subsurface		Transformer Shop	SUSDPGD21-E1	5/30/2018	2 - 3 ft								
SO	Subsurface		Transformer Shop	SUSDPGD21-E1	5/30/2018	3 - 4 ft								
SO	Subsurface		Transformer Shop	SUSDPGD21-E1	5/30/2018	4 - 5 ft								
SO	Subsurface		Transformer Shop	SUSDPGD21-F1	5/30/2018	1 - 2 ft								
SO	Subsurface		Transformer Shop	SUSDPGD21-F1	5/30/2018	2 - 3 ft								
SO	Subsurface		Transformer Shop	SUSDPGD21-F1 SUSDPGD21-F1	5/30/2018 5/30/2018	3 - 4 ft 4 - 5 ft								
SO	Subsurface		Transformer Shop Transformer Shop	SUSDPGD21-F1	4/4/2018	4 - 5 π 1 - 2 ft	2	1	0.83	1	1.9	1		
SO	Subsurface		Transformer Shop	SUSDPGD21-G1	4/4/2018	2 - 3 ft	1.4	1	0.63	1	0.99	1		
SO	Subsurface Subsurface		Transformer Shop	SUSDPGD21-G1	4/4/2018	2 - 3 It 3 - 4 ft	0.13	1	0.63	1	0.99	1		
SO	Subsurface		Transformer Shop	SUSDPGD21-G1	4/4/2018	4 - 5 ft	0.13	ı	0.040	1	0.10	-		
SO	Subsurface		Transformer Shop	SUSDPGD21-G1	4/4/2018	5 - 6 ft								
SO	Subsurface		Transformer Shop	SUSDPGD21-G1	4/4/2018	1 - 2 ft								
SO	Subsurface		Transformer Shop	SUSDPGD21-G2	4/4/2018	2 - 3 ft								
SO	Subsurface		Transformer Shop	SUSDPGD21-H1	3/14/2018	1 - 2 ft								
SO	Subsurface		Transformer Shop	SUSDPGD21-H1	3/14/2018	2 - 3 ft								
SO	Subsurface		Transformer Shop	SUSDPGD21-H2	3/14/2018	1 - 2 ft								
SO	Subsurface		Transformer Shop	SUSDPGD21-H2	3/14/2018	2 - 3 ft								
SO	Subsurface		Transformer Shop	SUSDPGD21-I1	2/20/2018	1 - 2 ft	1.3	1	0.5	1	0.94	1		
SO	Subsurface		Transformer Shop	SUSDPGD21-I1	2/20/2018	2 - 3 ft	3	1	1.3	1	2.4	1		
SO	Subsurface		Transformer Shop	SUSDPGD21-I1	2/20/2018	3 - 4 ft	0.37	1	0.1	1	0.29	1		
			Transformer Shop	SUSDPGD21-I2	2/20/2018	1 - 2 ft	0.62	1	0.16	1	0.35	1		

Matrix	horizon	Units	Area	Location	Collected	Depth	Benzo(b)fluoranthene	D_Benzo(b)fluoranthene	Benzo(k)fluoranthene	D_Benzo(k)fluoranthene	Chrysene	D_Chrysene	Cobalt D_Cobalt
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-I2	2/20/2018	2 - 3 ft	0.24	1	0.1	1	0.18	1	CODUIT D_CODUIT
SO	Subsurface		Transformer Shop	SUSDPGD21-J1	1/24/2018	1 - 2 ft	2.2	1	0.8	1	1.4	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-J1	1/24/2018	2 - 3 ft	12	1	4.2	1	10	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-J1	1/24/2018	3 - 4 ft	7	1	2.3	1	6	1	
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	4 - 5 ft	0.0087	1	0.0056	1	0.0071	1	
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	5 - 6 ft	0.0077	0	0.0077	0	0.0077	0	
SO	Subsurface		Transformer Shop	SUSDPGD21-J2	1/24/2018	1 - 2 ft	0.44	1	0.18	1	0.34	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-J2	1/24/2018	2 - 3 ft	0.17	1	0.062	1	0.13	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-J2	1/24/2018	3 - 4 ft	0.95	1	0.45	1	0.65	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-K1	1/24/2018	1 - 2 ft	4.7	1	1.6	1	3.1	1	
SO	Subsurface Subsurface		Transformer Shop Transformer Shop	SUSDPGD21-K1 SUSDPGD21-K1	1/24/2018 1/24/2018	2 - 3 ft 3 - 4 ft	0.71	<u> </u>	0.21 1.7	1	0.52 3.6	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-K1	1/24/2018	4 - 5 ft	3.7	1	1.7	1	3.4	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-K1	1/24/2018	5 - 6 ft	0.0059	1	0.0073	0	0.0029	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-K1.5	1/26/2018	1 - 2 ft	1.2	1	0.35	1	0.83	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-K1.5	1/26/2018	2 - 3 ft	2.5	1	0.87	1	2	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-K1.5	1/26/2018	3 - 4 ft	18	1	6.6	1	17	1	
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1.5	1/26/2018	4 - 5 ft	1.7	1	0.48	1	1.6	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-K2	1/24/2018	1 - 2 ft	1.3	1	0.42	1	0.9	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-K2	1/24/2018	2 - 3 ft	0.88	1	0.17	1	0.58	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-L1	2/20/2018	1 - 2 ft	6.3	1	2.5	1	4.9	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-L1	2/20/2018	2 - 3 ft	3.4	1	0.85	1	2.3	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-L1	2/20/2018	3 - 4 ft	3.8	0	3.8	0	3.8	0	
SO	Subsurface Subsurface		Transformer Shop Transformer Shop	SUSDPGD21-L1 SUSDPGD21-L2	2/20/2018 2/20/2018	4 - 5 ft 1 - 2 ft	2.3 1.5	0	2.3 0.38	0	2.3 0.99	0	
SO	Subsurface		Transformer Shop	SUSDPGD21-L2	2/20/2018	2 - 3 ft	1.5	1	0.54	1	1.1	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-L2	2/20/2018	3 - 4 ft	1.0	1	2.4	1	8.1	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-L2	2/20/2018	4 - 5 ft	3.8	0	3.8	0	3.8	0	
SO	Subsurface		Transformer Shop	SUSDPGD21-M1	3/14/2018	1 - 2 ft	23	1	8.2	1	20	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-M1	3/14/2018	2 - 3 ft	5.9	1	2.1	1	4.8	1	
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M1	3/14/2018	3 - 4 ft	3.2	1	5.9	0	2.5	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-M1	3/14/2018	4 - 5 ft	3	0	3	0	3	0	
SO	Subsurface		Transformer Shop	SUSDPGD21-M2	3/14/2018	1 - 2 ft	3	1	1.3	1	2.8	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-M2	3/14/2018	2 - 3 ft	3.8	1	1.5	1	3	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-M2	3/14/2018	3 - 4 ft	0.099	1	0.033	1	0.077	1	
SO	Subsurface Subsurface		Transformer Shop Transformer Shop	SUSDPGD21-M2 SUSDPGD21-N1	3/14/2018 4/4/2018	4 - 5 ft 1 - 2 ft	1.2	1	0.48 0.38	1	0.9 0.81	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-N1	4/4/2018	2 - 3 ft	12	1	5.2	1	11	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-N1	4/4/2018	3 - 4 ft	1.9	1	0.66	1	1.4	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-N2	4/4/2018	1 - 2 ft	0.37	1	0.18	1	0.3	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-N2	4/4/2018	2 - 3 ft	11	1	5.1	1	9.5	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-P1	5/30/2018	1 - 2 ft	1	1	0.6	1	1	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-P1	5/30/2018	2 - 3 ft	0.44	1	1.1	0	0.5	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-R1	1/23/2018	1 - 2 ft	4.5	1	1.8	1	4.3	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-R1	1/23/2018	2 - 3 ft	3.3	1	1.7	1	3.2	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-R1	1/23/2018	3 - 4 ft	0.53	1	0.23	1	0.45	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-R2 SUSDPGD21-R2	1/23/2018	1 - 2 ft 2 - 3 ft	0.55 0.65	1	0.26 0.24	1	0.47 0.53	1	
SO	Subsurface Subsurface		Transformer Shop Transformer Shop	SUSDPGD21-R2	1/23/2018	2 - 3 It 3 - 4 ft	1.2	1	0.24	1	1.1	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-R2	1/23/2018	1 - 2 ft	0.64	1	0.32	1	0.55	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-S1	1/23/2018	2 - 3 ft	0.38	1	0.21	1	0.33	1	
SO	Subsurface		Transformer Shop	SUSDPGD21-S2	1/24/2018	1 - 2 ft	2.00	•	J.E.	·	2.00	·	
SO	Surface	mg/kg	Transformer Shop	SUS21-1A	1/27/2017	0 - 1 ft							
SO	Surface	mg/kg	Transformer Shop	SUS21-1B	1/27/2017	0 - 1 ft							
SO	Surface	mg/kg	Transformer Shop	SUS21-1E	1/27/2017	0 - 1 ft		-					
SO	Surface	mg/kg	Transformer Shop	SUS21-1F	1/27/2017	0 - 1 ft							
SO	Surface	mg/kg	Transformer Shop	SUS21-1G	1/27/2017	0 - 1 ft							
SO	Surface	mg/kg	Transformer Shop	SUS21-1H	1/27/2017	0 - 1 ft							
SO	Surface	mg/kg	Transformer Shop	SUS21-2D	3/23/2017	0 - 1 ft							
SO	Surface Surface	mg/kg	Transformer Shop Transformer Shop	SUS21-2E SUS21-2I	3/23/2017	0 - 1 ft 0 - 1 ft							
SO	Surface	mg/kg mg/kg	Transformer Shop	SUS21-2J	3/22/2017	0 - 1 ft							
SO	Surface	mg/kg	Transformer Shop	SUS21-2J SUS21-2L	3/22/2017	0 - 1 ft							
SO	Surface	mg/kg	Transformer Shop	SUS21-2M	3/22/2017	0 - 1 ft							
SO	Surface		Transformer Shop	SUS21-2N	3/22/2017	0 - 1 ft							
		J					•						

Matrix	horizon	Units	Area	Location	Collected	Depth	Benzo(b)fluoranthene	D_Benzo(b)fluoranthene	Benzo(k)fluoranthene	D_Benzo(k)fluoranthene	Chrysene	D_Chrysene	Cobalt	D_Cobalt
SO	Surface	mg/kg	Transformer Shop	SUSDP21	1/27/2017	0 - 1 ft	2.1	1	0.76	1	1.9	11		
SO	Surface	mg/kg	Transformer Shop	SUSDP21	2/7/2013	1 - 1.75 ft	1.9	1	0.77	1	1.8	1	2.7	1
SO	Surface	mg/kg	Transformer Shop	SUSDP21-1C	1/27/2017	0 - 1 ft								
SO	Surface	mg/kg	Transformer Shop	SUSDP21-1C	8/24/2017	0 - 1 ft	0.068	0	0.068	0	0.068	0		
SO	Surface	mg/kg	Transformer Shop	SUSDP21-3G	8/28/2017	0 - 1 ft	0.69	1	0.15	1	0.2	1		
SO	Surface	mg/kg	Transformer Shop	SUSDP21-3M	8/28/2017	0 - 1 ft	2.1	1	0.79	1	1.9	1		
SO	Surface	mg/kg	Transformer Shop	SUSDP21-3Q	8/24/2017	0 - 1 ft	0.0038	1	0.0077	0	0.0038	1		
SO	Surface	mg/kg	Transformer Shop	SUSDP21-5W	1/26/2018	0 - 1 ft	0.091	1	0.034	1	0.059	1		
SO	Surface	mg/kg	Transformer Shop	SUSDP21-6W	2/21/2018	0 - 1 ft	0.053	1	0.015	1	0.038	1		
SO	Surface	mg/kg	Transformer Shop	SUSDP22	6/13/2013	0.5 - 1 ft	0.77	1	0.32	1	0.79	1		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-C3	7/2/2018	0 - 1 ft								
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-C5	5/31/2018	0 - 1 ft								
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-D1	5/30/2018	0 - 1 ft								
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-E1	5/30/2018	0 - 1 ft								
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-F1	5/30/2018	0 - 1 ft								
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-G1	4/4/2018	0 - 1 ft								
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-G2	4/4/2018	0 - 1 ft								
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-H1	3/14/2018	0 - 1 ft								
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-H2	3/14/2018	0 - 1 ft								
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-I1	2/20/2018	0 - 1 ft	0.0069	0	0.0069	0	0.0069	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-I2	2/20/2018	0 - 1 ft	0.0069	0	0.0069	0	0.0069	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	0 - 1 ft	0.014	0	0.014	0	0.014	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-J2	1/24/2018	0 - 1 ft	0.0069	0	0.0069	0	0.0069	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-K1	1/24/2018	0 - 1 ft	0.007	0	0.007	0	0.007	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-K1.5	1/26/2018	0 - 1 ft	0.0044	1	0.0069	0	0.0039	1		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-K2	1/24/2018	0 - 1 ft	0.0069	0	0.0069	0	0.0069	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-L1	2/20/2018	0 - 1 ft	0.072	1	0.022	1	0.038	1		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-L2	2/20/2018	0 - 1 ft	0.0069	0	0.0069	0	0.0069	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-M1	3/14/2018	0 - 1 ft	0.82	1	0.27	1	0.54	1		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-M2	3/14/2018	0 - 1 ft	0.014	0	0.014	0	0.014	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-N1	4/4/2018	0 - 1 ft	0.069	0	0.069	0	0.069	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-N2	4/4/2018	0 - 1 ft	0.007	0	0.007	0	0.007	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-P1	5/30/2018	0 - 1 ft	0.021	0	0.021	0	0.021	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-R1	1/23/2018	0 - 1 ft	0.84	1	0.35	1	0.72	1		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-R2	1/23/2018	0 - 1 ft	0.0081	1	0.0041	1	0.007	1		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-S1	1/23/2018	0 - 1 ft								
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-S2	1/24/2018	0 - 1 ft								
- 00	34400	9,9		2202. 022. 02		<u> </u>			l .	l .	1		1	

Matrix	horizon	Units	Area	Location	Collected	Depth	Dibenzo(a,h)anthracene	D_Dibenzo(a,h)anthracene	Diesel Range Organics (C10-C20)	D_Diesel Range Organics (C10-C20)
SO	Subsurface	mg/kg	Transformer Shop	DP35	3/28/2013	14.5 - 15.5 ft	0.0079	0	20	0
SO	Subsurface	mg/kg	Transformer Shop	DP46	5/22/2013	4.5 - 5.5 ft	0.0070	Ŭ	87	0
SO	Subsurface	mg/kg	Transformer Shop	DP46	6/5/2013	14.5 - 15.5 ft			20	0
SO	Subsurface	mg/kg	Transformer Shop	DP46	6/5/2013	9.5 - 10.5 ft			19	0
SO	Subsurface	mg/kg	Transformer Shop	DP47	5/28/2013	1.5 - 2.5 ft			19	1
SO	Subsurface	mg/kg	Transformer Shop	DP47	6/5/2013	14 - 15 ft			19	0
SO	Subsurface	mg/kg	Transformer Shop	DP47	6/5/2013	9.5 - 10.5 ft			10	1
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21	1/27/2017	1 - 2 ft	0.35	1	•	·
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21	1/27/2017	2 - 5 ft	0.46	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21	2/2/2017	5 - 10 ft	0.15	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-1C	8/24/2017	1 - 2 ft	1.1	0		
SO	Subsurface	mg/kg		SUSDP21-1C	8/24/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-1C	8/24/2017	3 - 4 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3A	8/25/2017	1 - 2 ft	0.19	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3A	8/25/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3G	8/28/2017	1 - 2 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3G	8/28/2017	2 - 3 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3M	8/28/2017	1 - 2 ft	1.4	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3M	8/28/2017	2 - 3 ft	1.7	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3M	8/28/2017	3 - 4 ft	1.5	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3M	8/28/2017	4 - 5 ft	0.52	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3T	8/25/2017	1 - 2 ft	0.67	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3T	8/25/2017	2 - 3 ft	0.24	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3T	8/25/2017	3 - 4 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3V	8/25/2017	1 - 2 ft	0.022	1		
SO	Subsurface	mg/kg		SUSDP21-5W	1/26/2018	1 - 2 ft	0.75	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-5W	1/26/2018	2 - 3 ft	0.75	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-6W	2/21/2018	1 - 2 ft	0.35	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP22	5/22/2013	2.5 - 3.5 ft			190	0
SO	Subsurface	mg/kg	Transformer Shop	SUSDP22	6/12/2013	9.5 - 10.5 ft			20	0
SO	Subsurface	mg/kg	Transformer Shop	SUSDP22	6/12/2013	14.5 - 15.5 ft			21	0
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C3	7/2/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C3	7/2/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C3	7/2/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C5	5/31/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C5	5/31/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C5	5/31/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C5	5/31/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-D1	5/30/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-D1	5/30/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-D1	5/30/2018	3 - 4 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-D1	5/30/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-E1	5/30/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-E1	5/30/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-E1	5/30/2018	3 - 4 ft				
SO	Subsurface	mg/kg		SUSDPGD21-E1	5/30/2018	4 - 5 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-F1	5/30/2018	1 - 2 ft				
	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-F1	5/30/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Transformer Shop Transformer Shop	SUSDPGD21-F1 SUSDPGD21-F1	5/30/2018	3 - 4 ft 4 - 5 ft				
SO	Subsurface Subsurface	mg/kg	Transformer Shop	SUSDPGD21-F1	5/30/2018 4/4/2018	1 - 2 ft	0.19	0		
SO		mg/kg	Transformer Shop	SUSDPGD21-G1	4/4/2018	1 - 2 π 2 - 3 ft	0.19	1		
SO	Subsurface Subsurface	mg/kg	Transformer Shop	SUSDPGD21-G1	4/4/2018	2 - 3 π 3 - 4 ft	0.26	1		
SO	Subsurface	mg/kg mg/kg	Transformer Shop	SUSDPGD21-G1	4/4/2018	4 - 5 ft	0.020	'		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-G1	4/4/2018	4 - 5 It 5 - 6 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-G1	4/4/2018	1 - 2 ft				
SO	Subsurface	mg/kg		SUSDPGD21-G2	4/4/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-G2	3/14/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-H1	3/14/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-H1	3/14/2018	1 - 2 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-H2	3/14/2018	2 - 3 ft				
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-H2	2/20/2018	1 - 2 ft	0.47	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-I1	2/20/2018	2 - 3 ft	0.38	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-I1	2/20/2018	3 - 4 ft	0.062	1		
			Transformer Shop	SUSDPGD21-I2	2/20/2018	1 - 2 ft	0.13	1		
- 50	Japouriace	mg/ng	anoronner onop	000D1 0D21-12	2/20/2010	1 411	5.10		1	

Matrix	horizon	Units	Area	Location	Collected	Depth	Dibenzo(a,h)anthracene	D_Dibenzo(a,h)anthracene	Diesel Range Organics (C10-C20)	D_Diesel Range Organics (C10-C20)
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-I2	2/20/2018	2 - 3 ft	0.059	1	3 5 ,	,
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	1 - 2 ft	0.36	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	2 - 3 ft	1.7	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	3 - 4 ft	3.9	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	4 - 5 ft	0.0062	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	5 - 6 ft	0.0077	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J2	1/24/2018	1 - 2 ft	0.11	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J2	1/24/2018	2 - 3 ft	0.054	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J2	1/24/2018	3 - 4 ft	0.19	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1	1/24/2018	1 - 2 ft	0.79	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1	1/24/2018	2 - 3 ft	0.19	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1	1/24/2018	3 - 4 ft	0.88	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1	1/24/2018	4 - 5 ft	0.58	1		
SO		mg/kg	Transformer Shop	SUSDPGD21-K1 SUSDPGD21-K1.5	1/24/2018 1/26/2018	5 - 6 ft 1 - 2 ft	0.0073 0.2	0 1		
SO	Subsurface Subsurface		Transformer Shop Transformer Shop	SUSDPGD21-K1.5	1/26/2018	2 - 3 ft	0.25	1		
SO	Subsurface	mg/kg mg/kg	Transformer Shop	SUSDPGD21-K1.5	1/26/2018	3 - 4 ft	2.1	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1.5	1/26/2018	4 - 5 ft	0.29	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1.5	1/24/2018	1 - 2 ft	0.26	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K2	1/24/2018	2 - 3 ft	0.14	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L1	2/20/2018	1 - 2 ft	0.98	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L1	2/20/2018	2 - 3 ft	0.48	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L1	2/20/2018	3 - 4 ft	3.8	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L1	2/20/2018	4 - 5 ft	2.3	0		
SO		mg/kg	Transformer Shop	SUSDPGD21-L2	2/20/2018	1 - 2 ft	0.2	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L2	2/20/2018	2 - 3 ft	0.29	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L2	2/20/2018	3 - 4 ft	1.1	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L2	2/20/2018	4 - 5 ft	3.8	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M1	3/14/2018	1 - 2 ft	4.2	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M1	3/14/2018	2 - 3 ft	0.9	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M1	3/14/2018	3 - 4 ft	3.4	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M1	3/14/2018	4 - 5 ft	3	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M2	3/14/2018	1 - 2 ft	0.54	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M2	3/14/2018	2 - 3 ft	0.66	1		
SO		mg/kg	Transformer Shop	SUSDPGD21-M2	3/14/2018	3 - 4 ft	0.075	<u> </u>		
SO		mg/kg mg/kg	Transformer Shop Transformer Shop	SUSDPGD21-M2 SUSDPGD21-N1	3/14/2018 4/4/2018	4 - 5 ft 1 - 2 ft	0.27 0.14	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-N1	4/4/2018	2 - 3 ft	2	<u> </u> 1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-N1	4/4/2018	3 - 4 ft	0.33	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-N2	4/4/2018	1 - 2 ft	0.087	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-N2	4/4/2018	2 - 3 ft	1.8	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-P1	5/30/2018	1 - 2 ft	0.18	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-P1	5/30/2018	2 - 3 ft	1.1	0		
SO		mg/kg	Transformer Shop	SUSDPGD21-R1	1/23/2018	1 - 2 ft	0.74	1		
SO	Subsurface		Transformer Shop	SUSDPGD21-R1	1/23/2018	2 - 3 ft	0.58	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-R1	1/23/2018	3 - 4 ft	0.095	1	_	
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-R2	1/23/2018	1 - 2 ft	0.11	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-R2	1/23/2018	2 - 3 ft	0.13	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-R2	1/23/2018	3 - 4 ft	0.24	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-S1	1/23/2018	1 - 2 ft	0.3	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-S1	1/23/2018	2 - 3 ft	0.31	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-S2	1/24/2018	1 - 2 ft				
SO	Surface	mg/kg	Transformer Shop	SUS21-1A	1/27/2017	0 - 1 ft	+			
SO	Surface	mg/kg	Transformer Shop	SUS21-1B	1/27/2017	0 - 1 ft				
SO	Surface	mg/kg	Transformer Shop	SUS21-1E	1/27/2017	0 - 1 ft				
SO	Surface	mg/kg	Transformer Shop Transformer Shop	SUS21-1F SUS21-1G	1/27/2017	0 - 1 ft 0 - 1 ft				
SO	Surface Surface	mg/kg mg/kg	Transformer Shop	SUS21-1G SUS21-1H	1/27/2017	0 - 1 ft	+			
SO	Surface	mg/kg	Transformer Shop	SUS21-1H SUS21-2D	3/23/2017	0 - 1 ft	+			
SO	Surface	mg/kg	Transformer Shop	SUS21-2E	3/23/2017	0 - 1 ft	+			
SO	Surface	mg/kg	Transformer Shop	SUS21-2I	3/22/2017	0 - 1 ft	+			
SO	Surface	mg/kg	Transformer Shop	SUS21-2J	3/22/2017	0 - 1 ft				
SO	Surface	mg/kg	Transformer Shop	SUS21-2L	3/22/2017	0 - 1 ft				
SO	Surface	mg/kg	Transformer Shop	SUS21-2M	3/22/2017	0 - 1 ft				
SO	Surface		Transformer Shop	SUS21-2N	3/22/2017	0 - 1 ft				
										· · · · · · · · · · · · · · · · · · ·

Matrix	horizon	Units	Area	Lasation	Collected	Danth	Dibenzo(a.h)anthracene	D Dibenzo(a,h)anthracene	Diesel Range Organics (C10-C20)	D Diesel Range Organics (C10-C20)
				Location SUSDP21		Depth		D_Dibenzo(a,n)anthracene	Diesei Range Organics (C10-C20)	D_Diesei Range Organics (C10-C20)
SO	Surface	mg/kg	Transformer Shop		1/27/2017	0 - 1 ft	0.34	1		
SO	Surface		Transformer Shop	SUSDP21	2/7/2013	1 - 1.75 ft	0.35	1	80	1
SO	Surface		Transformer Shop	SUSDP21-1C	1/27/2017	0 - 1 ft	0.000			
SO	Surface		Transformer Shop	SUSDP21-1C	8/24/2017	0 - 1 ft	0.068	0		
SO	Surface		Transformer Shop	SUSDP21-3G	8/28/2017	0 - 1 ft	0.37	0		
SO	Surface	mg/kg	Transformer Shop	SUSDP21-3M	8/28/2017	0 - 1 ft	0.45	1		
SO	Surface	mg/kg	Transformer Shop	SUSDP21-3Q	8/24/2017	0 - 1 ft	0.0077	0		
SO	Surface	mg/kg	Transformer Shop	SUSDP21-5W	1/26/2018	0 - 1 ft	0.021	1		
SO	Surface	mg/kg	Transformer Shop	SUSDP21-6W	2/21/2018	0 - 1 ft	0.027	1		
SO	Surface	mg/kg	Transformer Shop	SUSDP22	6/13/2013	0.5 - 1 ft	0.15	1	18	0
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-C3	7/2/2018	0 - 1 ft				
SO	Surface		Transformer Shop	SUSDPGD21-C5	5/31/2018	0 - 1 ft				
SO	Surface		Transformer Shop	SUSDPGD21-D1	5/30/2018	0 - 1 ft				
SO	Surface		Transformer Shop	SUSDPGD21-E1	5/30/2018	0 - 1 ft				
SO	Surface		Transformer Shop	SUSDPGD21-F1	5/30/2018	0 - 1 ft				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-G1	4/4/2018	0 - 1 ft				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-G2	4/4/2018	0 - 1 ft				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-H1	3/14/2018	0 - 1 ft				
SO	Surface		Transformer Shop	SUSDPGD21-H2	3/14/2018	0 - 1 ft				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-I1	2/20/2018	0 - 1 ft	0.0069	0		
SO	Surface		Transformer Shop	SUSDPGD21-I2	2/20/2018	0 - 1 ft	0.0069	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	0 - 1 ft	0.014	0		
SO	Surface		Transformer Shop	SUSDPGD21-J2	1/24/2018	0 - 1 ft	0.0069	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-K1	1/24/2018	0 - 1 ft	0.007	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-K1.5	1/26/2018	0 - 1 ft	0.0069	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-K2	1/24/2018	0 - 1 ft	0.0069	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-L1	2/20/2018	0 - 1 ft	0.019	1		
SO	Surface		Transformer Shop	SUSDPGD21-L2	2/20/2018	0 - 1 ft	0.0069	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-M1	3/14/2018	0 - 1 ft	0.2	1		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-M2	3/14/2018	0 - 1 ft	0.014	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-N1	4/4/2018	0 - 1 ft	0.069	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-N2	4/4/2018	0 - 1 ft	0.007	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-P1	5/30/2018	0 - 1 ft	0.021	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-R1	1/23/2018	0 - 1 ft	0.15	1		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-R2	1/23/2018	0 - 1 ft	0.007	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-S1	1/23/2018	0 - 1 ft				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-S2	1/24/2018	0 - 1 ft				

Matrix	horizon	Units	Area	Location	Collected	Depth	Indeno(1,2,3-cd)pyrene	D_Indeno(1,2,3-cd)pyrene	Manganese	D_Manganese	Naphthalene	D Naphthalene	Nickel	D Nickel
SO	Subsurface	mg/kg	Transformer Shop	DP35	3/28/2013	14.5 - 15.5 ft	0.0079	D_indeno(1,2,3-cd)pyrene	9.9	D_ivialigatiese	0.0079	D_Napritrialerie	2.8	D_INICKEI
SO	Subsurface	mg/kg	Transformer Shop	DP46	5/22/2013	4.5 - 5.5 ft	0.0079	Ü	5.5	'	0.0079	U	2.0	1
SO	Subsurface	mg/kg	Transformer Shop	DP46	6/5/2013	14.5 - 15.5 ft								
SO	Subsurface	mg/kg	Transformer Shop	DP46	6/5/2013	9.5 - 10.5 ft								
SO	Subsurface	mg/kg	Transformer Shop	DP47	5/28/2013	1.5 - 2.5 ft			200	1			23	1
SO	Subsurface	mg/kg	Transformer Shop	DP47	6/5/2013	14 - 15 ft								
SO	Subsurface	mg/kg	Transformer Shop	DP47	6/5/2013	9.5 - 10.5 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21	1/27/2017	1 - 2 ft	1.2	1			0.23	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21	1/27/2017	2 - 5 ft	1.8	1			0.028	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21 SUSDP21-1C	2/2/2017 8/24/2017	5 - 10 ft 1 - 2 ft	0.45 1.1	<u>1</u> 0			0.099	0		
SO	Subsurface Subsurface	mg/kg mg/kg	Transformer Shop Transformer Shop	SUSDP21-1C	8/24/2017	2 - 3 ft	1.1	0			1.1	U		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-1C	8/24/2017	3 - 4 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3A	8/25/2017	1 - 2 ft	0.65	1			0.081	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3A	8/25/2017	2 - 3 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3G	8/28/2017	1 - 2 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3G	8/28/2017	2 - 3 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3M	8/28/2017	1 - 2 ft	4.3	1			0.16	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3M	8/28/2017	2 - 3 ft	7.2	1			0.24	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3M	8/28/2017	3 - 4 ft	5.9	1	-		0.11	1		
SO	Subsurface Subsurface	mg/kg	Transformer Shop Transformer Shop	SUSDP21-3M SUSDP21-3T	8/28/2017 8/25/2017	4 - 5 ft 1 - 2 ft	1.5 2.7	1 1	 		0.13 0.09	1		
SO	Subsurface	mg/kg mg/kg	Transformer Shop	SUSDP21-3T	8/25/2017	2 - 3 ft	0.95	1	 		0.09	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3T	8/25/2017	3 - 4 ft	0.00	1	1		0.000	'		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3V	8/25/2017	1 - 2 ft	0.076	1			0.0071	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-5W	1/26/2018	1 - 2 ft	2.8	1			0.078	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-5W	1/26/2018	2 - 3 ft	0.75	0			0.75	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-6W	2/21/2018	1 - 2 ft	1.2	1			0.093	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP22	5/22/2013	2.5 - 3.5 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDP22	6/12/2013	9.5 - 10.5 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDP22	6/12/2013	14.5 - 15.5 ft 1 - 2 ft								
SO	Subsurface Subsurface	mg/kg mg/kg	Transformer Shop Transformer Shop	SUSDPGD21-C3 SUSDPGD21-C3	7/2/2018 7/2/2018	2 - 3 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C3	7/2/2018	3 - 4 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C5	5/31/2018	1 - 2 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C5	5/31/2018	2 - 3 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C5	5/31/2018	3 - 4 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C5	5/31/2018	4 - 5 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-D1	5/30/2018	1 - 2 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-D1	5/30/2018	2 - 3 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-D1	5/30/2018	3 - 4 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-D1 SUSDPGD21-E1	5/30/2018 5/30/2018	4 - 5 ft 1 - 2 ft								
SO	Subsurface Subsurface	mg/kg mg/kg	Transformer Shop Transformer Shop	SUSDPGD21-E1	5/30/2018	2 - 3 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-E1	5/30/2018	3 - 4 ft			 					
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-E1	5/30/2018	4 - 5 ft			1					
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-F1	5/30/2018	1 - 2 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-F1	5/30/2018	2 - 3 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-F1	5/30/2018	3 - 4 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-F1	5/30/2018	4 - 5 ft					0.5-5			
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-G1	4/4/2018	1 - 2 ft	1	1			0.32	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-G1	4/4/2018 4/4/2018	2 - 3 ft 3 - 4 ft	0.8 0.088	1	 		0.13 0.02	1		
SO	Subsurface Subsurface	mg/kg	Transformer Shop Transformer Shop	SUSDPGD21-G1 SUSDPGD21-G1	4/4/2018	3 - 4 π 4 - 5 ft	0.088	1	 		0.02	I		
SO	Subsurface	mg/kg mg/kg	Transformer Shop	SUSDPGD21-G1	4/4/2018	4 - 5 II 5 - 6 ft			 					
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-G2	4/4/2018	1 - 2 ft			1					
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-G2	4/4/2018	2 - 3 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-H1	3/14/2018	1 - 2 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-H1	3/14/2018	2 - 3 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-H2	3/14/2018	1 - 2 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-H2	3/14/2018	2 - 3 ft								
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-I1	2/20/2018	1 - 2 ft	0.96	1			0.37	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-I1	2/20/2018	2 - 3 ft	1.4 0.21	1	-		0.11	1		
SO	Subsurface Subsurface	mg/kg	Transformer Shop Transformer Shop	SUSDPGD21-I1 SUSDPGD21-I2	2/20/2018 2/20/2018	3 - 4 ft 1 - 2 ft	0.21	<u> </u>	 		0.0094 0.021	1		
30	Gubsuriate	my/kg	mansionner onop	303DF GDZ 1-1Z	2/20/2010	1-211	0.00	ı	1		0.021	1	l	1

					0 "	5 "		D.I.I. (100.1)		.		5 11 11 1		5 10 1 1
Matrix	horizon	Units	Area	Location	Collected	Depth	Indeno(1,2,3-cd)pyrene	D_Indeno(1,2,3-cd)pyrene	Manganese	D_Manganese	Naphthalene		Nickel	D_Nickel
SO	Subsurface	mg/kg		SUSDPGD21-I2	2/20/2018	2 - 3 ft	0.19	1			0.036	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	1 - 2 ft	1.4	1			0.11	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	2 - 3 ft	6.1	1			0.6	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	3 - 4 ft	5.2	1			3.9	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	4 - 5 ft 5 - 6 ft	0.011	1			0.0078	0		
SO SO	Subsurface Subsurface	mg/kg	Transformer Shop Transformer Shop	SUSDPGD21-J1 SUSDPGD21-J2	1/24/2018 1/24/2018	1 - 2 ft	0.005	1			0.0077	0		
SO	Subsurface	mg/kg		SUSDPGD21-J2	1/24/2018	2 - 3 ft	0.3 0.12	1			0.072 0.055	0		
SO	Subsurface	mg/kg mg/kg	Transformer Shop Transformer Shop	SUSDPGD21-J2	1/24/2018	3 - 4 ft	0.12	1			0.033	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1	1/24/2018	1 - 2 ft	2.8	1			0.17	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1	1/24/2018	2 - 3 ft	0.48	1			0.16	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1	1/24/2018	3 - 4 ft	2.3	1			0.19	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1	1/24/2018	4 - 5 ft	2.1	1			0.23	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1	1/24/2018	5 - 6 ft	0.0056	1			0.0073	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1.5	1/26/2018	1 - 2 ft	0.7	1			0.032	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1.5	1/26/2018	2 - 3 ft	1.4	1			0.063	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1.5	1/26/2018	3 - 4 ft	9	1			0.43	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1.5	1/26/2018	4 - 5 ft	0.83	1			0.11	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K2	1/24/2018	1 - 2 ft	1	1	1		0.073	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K2	1/24/2018	2 - 3 ft	0.47	1	1		0.033	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L1	2/20/2018	1 - 2 ft	3.6	1			0.12	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L1	2/20/2018	2 - 3 ft	1.7	1			0.046	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L1	2/20/2018	3 - 4 ft	3.8	0			3.8	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L1	2/20/2018	4 - 5 ft	2.3	0			2.3	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L2	2/20/2018	1 - 2 ft	0.71	1			0.078	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L2	2/20/2018	2 - 3 ft	0.87	1			0.062	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L2	2/20/2018	3 - 4 ft	3.9	1			0.77	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L2	2/20/2018	4 - 5 ft	3.8	0			3.8	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M1	3/14/2018	1 - 2 ft	13	1			0.97	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M1	3/14/2018	2 - 3 ft	3.1	1			0.38	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M1	3/14/2018	3 - 4 ft	4.3	1			5.9	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M1	3/14/2018	4 - 5 ft	3	0			3	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M2	3/14/2018	1 - 2 ft	1.8	1			0.75	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M2	3/14/2018	2 - 3 ft	1.9	1			0.72	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M2	3/14/2018	3 - 4 ft	0.083	1			0.075	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M2 SUSDPGD21-N1	3/14/2018 4/4/2018	4 - 5 ft 1 - 2 ft	0.79	1			0.37	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-N1			0.51				0.88	1		
SO	Subsurface Subsurface	mg/kg	Transformer Shop Transformer Shop	SUSDPGD21-N1	4/4/2018 4/4/2018	2 - 3 ft 3 - 4 ft	6.3	1			0.17 0.066	1		
SO	Subsurface	mg/kg mg/kg	Transformer Shop	SUSDPGD21-N1	4/4/2018	1 - 2 ft	0.25	1			0.066	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-N2	4/4/2018	2 - 3 ft	5.6	1			0.3	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-N2	5/30/2018	1 - 2 ft	0.71	1			1.1	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-P1	5/30/2018	2 - 3 ft	0.32	1			1.1	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-R1	1/23/2018	1 - 2 ft	2.2	1			0.057	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-R1	1/23/2018	2 - 3 ft	1.9	1	 		0.037	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-R1	1/23/2018	3 - 4 ft	0.32	1	1		0.08	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-R2	1/23/2018	1 - 2 ft	0.36	1			0.075	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-R2	1/23/2018	2 - 3 ft	0.38	1			0.15	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-R2	1/23/2018	3 - 4 ft	0.74	1	1		0.034	1		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-S1	1/23/2018	1 - 2 ft	0.34	1			0.3	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-S1	1/23/2018	2 - 3 ft	0.2	1			0.31	0		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-S2	1/24/2018	1 - 2 ft								
SO	Surface	mg/kg	Transformer Shop	SUS21-1A	1/27/2017	0 - 1 ft								
SO	Surface	mg/kg	Transformer Shop	SUS21-1B	1/27/2017	0 - 1 ft								
SO	Surface	mg/kg	Transformer Shop	SUS21-1E	1/27/2017	0 - 1 ft								
SO	Surface	mg/kg	Transformer Shop	SUS21-1F	1/27/2017	0 - 1 ft	-							
SO	Surface	mg/kg	Transformer Shop	SUS21-1G	1/27/2017	0 - 1 ft								
SO	Surface	mg/kg	Transformer Shop	SUS21-1H	1/27/2017	0 - 1 ft		-						
SO	Surface	mg/kg	Transformer Shop	SUS21-2D	3/23/2017	0 - 1 ft	-							
SO	Surface	mg/kg	Transformer Shop	SUS21-2E	3/23/2017	0 - 1 ft								
SO	Surface	mg/kg	Transformer Shop	SUS21-2I	3/22/2017	0 - 1 ft		-						
SO	Surface	mg/kg	Transformer Shop	SUS21-2J	3/22/2017	0 - 1 ft								
SO	Surface	mg/kg	Transformer Shop	SUS21-2L	3/22/2017	0 - 1 ft		-						
SO	Surface	mg/kg	Transformer Shop	SUS21-2M	3/22/2017	0 - 1 ft								
SO	Surface	mg/kg	Transformer Shop	SUS21-2N	3/22/2017	0 - 1 ft			L					

Matrix	horizon	Units	Area	Location	Collected	Depth	Indeno(1,2,3-cd)pyrene	D_Indeno(1,2,3-cd)pyrene	Manganese	D Manganese	Naphthalene	D Naphthalene	Nickel	D Nickel
SO	Surface	mg/kg	Transformer Shop	SUSDP21	1/27/2017	0 - 1 ft	1.3	1	3		0.096	1		
SO	Surface		Transformer Shop	SUSDP21	2/7/2013	1 - 1.75 ft	1.1	<u>:</u> 1	260	1	0.073	1	16	1
SO	Surface		Transformer Shop	SUSDP21-1C	1/27/2017	0 - 1 ft		·	200		0.070			
SO	Surface	mg/kg	Transformer Shop	SUSDP21-1C	8/24/2017	0 - 1 ft	0.068	0			0.068	0		
SO	Surface	mg/kg	Transformer Shop	SUSDP21-3G	8/28/2017	0 - 1 ft	0.44	1			0.37	0		
SO	Surface	mg/kg	Transformer Shop	SUSDP21-3M	8/28/2017	0 - 1 ft	1.4	1			0.028	1		
SO	Surface	mg/kg	Transformer Shop	SUSDP21-3Q	8/24/2017	0 - 1 ft	0.0077	0			0.0077	0		
SO	Surface	mg/kg	Transformer Shop	SUSDP21-5W	1/26/2018	0 - 1 ft	0.058	1			0.0029	1		
SO	Surface	mg/kg	Transformer Shop	SUSDP21-6W	2/21/2018	0 - 1 ft	0.042	1			0.035	0		
SO	Surface	mg/kg	Transformer Shop	SUSDP22	6/13/2013	0.5 - 1 ft	0.5	1			0.066	1		1
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-C3	7/2/2018	0 - 1 ft								
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-C5	5/31/2018	0 - 1 ft								1
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-D1	5/30/2018	0 - 1 ft								
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-E1	5/30/2018	0 - 1 ft								1
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-F1	5/30/2018	0 - 1 ft								
SO	Surface		Transformer Shop	SUSDPGD21-G1	4/4/2018	0 - 1 ft								
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-G2	4/4/2018	0 - 1 ft								
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-H1	3/14/2018	0 - 1 ft]
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-H2	3/14/2018	0 - 1 ft								<u> </u>
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-I1	2/20/2018	0 - 1 ft	0.0069	0			0.0069	0]
SO	Surface		Transformer Shop	SUSDPGD21-I2	2/20/2018	0 - 1 ft	0.0069	0			0.0069	0		ļ
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	0 - 1 ft	0.014	0			0.014	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-J2	1/24/2018	0 - 1 ft	0.0069	0			0.0069	0		ļ
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-K1	1/24/2018	0 - 1 ft	0.007	0			0.007	0		ļ
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-K1.5	1/26/2018	0 - 1 ft	0.0059	1			0.0069	0		ļ
SO	Surface		Transformer Shop	SUSDPGD21-K2	1/24/2018	0 - 1 ft	0.0069	0			0.0069	0		
SO	Surface		Transformer Shop	SUSDPGD21-L1	2/20/2018	0 - 1 ft	0.055	1			0.0054	1		ļ
SO	Surface		Transformer Shop	SUSDPGD21-L2	2/20/2018	0 - 1 ft	0.0069	0			0.0069	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-M1	3/14/2018	0 - 1 ft	0.57	1			0.028	1		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-M2	3/14/2018	0 - 1 ft	0.014	0			0.014	0		ļ
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-N1	4/4/2018	0 - 1 ft	0.069	0			0.069	0		ļ
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-N2	4/4/2018	0 - 1 ft	0.007	0			0.007	0		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-P1	5/30/2018	0 - 1 ft	0.021	0			0.021	0		
SO	Surface		Transformer Shop	SUSDPGD21-R1	1/23/2018	0 - 1 ft	0.47	1			0.026	1		
SO	Surface		Transformer Shop	SUSDPGD21-R2	1/23/2018	0 - 1 ft	0.0053	1			0.007	0		
SO	Surface		Transformer Shop	SUSDPGD21-S1	1/23/2018	0 - 1 ft								
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-S2	1/24/2018	0 - 1 ft								

										I	
Matrix	horizon	Units	Area	Location	Collected	Depth	PCB, Total Aroclors (AECOM Calc)	D_PCB, Total Aroclors (AECOM Calc)	TCDD TEQ HH D_TCDD TEQ HH	Thallium	D_Thallium
SO	Subsurface	mg/kg	Transformer Shop	DP35	3/28/2013	14.5 - 15.5 ft	0.0049	0		0.085	1
SO	Subsurface	mg/kg	Transformer Shop	DP46	5/22/2013	4.5 - 5.5 ft	0.0015	1			
SO	Subsurface		Transformer Shop	DP46	6/5/2013	14.5 - 15.5 ft	0.0049	0			
SO	Subsurface		Transformer Shop	DP46 DP47	6/5/2013	9.5 - 10.5 ft 1.5 - 2.5 ft	0.0048	0		0.17	1
SO	Subsurface Subsurface	mg/kg mg/kg	Transformer Shop Transformer Shop	DP47 DP47	5/28/2013 6/5/2013	1.5 - 2.5 It 14 - 15 ft	0.0049	0		0.17	
SO	Subsurface	mg/kg	Transformer Shop	DP47	6/5/2013	9.5 - 10.5 ft	0.0049	0			
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21	1/27/2017	1 - 2 ft	1	1			
SO	Subsurface		Transformer Shop	SUSDP21	1/27/2017	2 - 5 ft	0.89	1			
SO	Subsurface		Transformer Shop	SUSDP21	2/2/2017	5 - 10 ft	0.0097	1			
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-1C	8/24/2017	1 - 2 ft	17	1			
SO	Subsurface		Transformer Shop	SUSDP21-1C	8/24/2017	2 - 3 ft	0.32	1			
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-1C	8/24/2017	3 - 4 ft	0.022	1			
SO	Subsurface		Transformer Shop	SUSDP21-3A	8/25/2017	1 - 2 ft	1.2	1			
SO	Subsurface		Transformer Shop	SUSDP21-3A	8/25/2017	2 - 3 ft	0.86	1			
SO	Subsurface		Transformer Shop	SUSDP21-3G	8/28/2017	1 - 2 ft	0.3	1			
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3G	8/28/2017	2 - 3 ft	0.56	1			
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3M	8/28/2017	1 - 2 ft	16	1			
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3M	8/28/2017	2 - 3 ft	0.27	1			
SO	Subsurface		Transformer Shop	SUSDP21-3M	8/28/2017	3 - 4 ft 4 - 5 ft					
SO	Subsurface Subsurface		Transformer Shop Transformer Shop	SUSDP21-3M SUSDP21-3T	8/28/2017 8/25/2017	4 - 5 π 1 - 2 ft	2.9	1			
SO	Subsurface		Transformer Shop	SUSDP21-3T	8/25/2017	2 - 3 ft	1.8	1			
SO	Subsurface		Transformer Shop	SUSDP21-3T	8/25/2017	3 - 4 ft	0.07	1			
SO	Subsurface		Transformer Shop	SUSDP21-3V	8/25/2017	1 - 2 ft	0.055	1			
SO	Subsurface		Transformer Shop	SUSDP21-5W	1/26/2018	1 - 2 ft	0.43	1			
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-5W	1/26/2018	2 - 3 ft	0.098	1			
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-6W	2/21/2018	1 - 2 ft					
SO	Subsurface	mg/kg	Transformer Shop	SUSDP22	5/22/2013	2.5 - 3.5 ft	0.03	1			
SO	Subsurface		Transformer Shop	SUSDP22	6/12/2013	9.5 - 10.5 ft	0.0021	1			
SO	Subsurface		Transformer Shop	SUSDP22	6/12/2013	14.5 - 15.5 ft	0.078	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-C3	7/2/2018	1 - 2 ft	0.16	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-C3	7/2/2018	2 - 3 ft	0.0039	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-C3	7/2/2018	3 - 4 ft	0.001	0			
SO	Subsurface Subsurface		Transformer Shop	SUSDPGD21-C5 SUSDPGD21-C5	5/31/2018	1 - 2 ft 2 - 3 ft	0.094	0			
SO	Subsurface		Transformer Shop Transformer Shop	SUSDPGD21-C5	5/31/2018 5/31/2018	2 - 3 II 3 - 4 ft	0.057 0.055	0			
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C5	5/31/2018	4 - 5 ft	0.057	0			
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-D1	5/30/2018	1 - 2 ft	11	1			
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-D1	5/30/2018	2 - 3 ft	7	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-D1	5/30/2018	3 - 4 ft	1.6	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-D1	5/30/2018	4 - 5 ft	0.059	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-E1	5/30/2018	1 - 2 ft	7.7	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-E1	5/30/2018	2 - 3 ft	0.028	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-E1	5/30/2018	3 - 4 ft	0.21	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-E1	5/30/2018	4 - 5 ft	0.087	1			
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-F1	5/30/2018	1 - 2 ft	52	1			
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-F1	5/30/2018	2 - 3 ft	0.021	1 .			
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-F1	5/30/2018	3 - 4 ft	0.19	1			
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-F1	5/30/2018	4 - 5 ft	0.25 450	1			
SO	Subsurface Subsurface		Transformer Shop Transformer Shop	SUSDPGD21-G1 SUSDPGD21-G1	4/4/2018 4/4/2018	1 - 2 ft 2 - 3 ft	77	1			
SO	Subsurface	mg/kg mg/kg	Transformer Shop	SUSDPGD21-G1	4/4/2018	2 - 3 II 3 - 4 ft	180	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-G1	4/4/2018	4 - 5 ft	23	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-G1	4/4/2018	5 - 6 ft	0.19	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-G2	4/4/2018	1 - 2 ft	5.3	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-G2	4/4/2018	2 - 3 ft	1.5	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-H1	3/14/2018	1 - 2 ft	1.9	1			
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-H1	3/14/2018	2 - 3 ft	0.23	1			
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-H2	3/14/2018	1 - 2 ft	2.4	1			
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-H2	3/14/2018	2 - 3 ft	0.9	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-I1	2/20/2018	1 - 2 ft	24	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-I1	2/20/2018	2 - 3 ft	0.13	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-I1	2/20/2018	3 - 4 ft					
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-I2	2/20/2018	1 - 2 ft	14	1			

Matrix	horizon	Units	Area	Location	Collected	Depth	PCB, Total Aroclors (AECOM Calc)	D_PCB, Total Aroclors (AECOM Calc)	TCDD TEQ HH D_TCDD TEQ HI	H Thallium	D_Thallium
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-I2	2/20/2018	2 - 3 ft	4.9	1	_		_
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	1 - 2 ft	9.5	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-J1	1/24/2018	2 - 3 ft	0.05	1			
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	3 - 4 ft					
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	4 - 5 ft					
SO	Subsurface		Transformer Shop	SUSDPGD21-J1	1/24/2018	5 - 6 ft					
SO	Subsurface		Transformer Shop	SUSDPGD21-J2	1/24/2018	1 - 2 ft	7.7	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-J2	1/24/2018	2 - 3 ft	0.69	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-J2	1/24/2018	3 - 4 ft					
SO	Subsurface		Transformer Shop	SUSDPGD21-K1	1/24/2018	1 - 2 ft	42	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-K1	1/24/2018	2 - 3 ft	0.034	1			
SO	Subsurface Subsurface	mg/kg	Transformer Shop Transformer Shop	SUSDPGD21-K1 SUSDPGD21-K1	1/24/2018	3 - 4 ft 4 - 5 ft					
SO	Subsurface	mg/kg mg/kg	Transformer Shop	SUSDPGD21-K1	1/24/2018	5 - 6 ft					
SO	Subsurface		Transformer Shop	SUSDPGD21-K1.5	1/26/2018	1 - 2 ft	8.8	1			
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1.5	1/26/2018	2 - 3 ft	0.064				
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1.5	1/26/2018	3 - 4 ft	0.001	·			
SO	Subsurface		Transformer Shop	SUSDPGD21-K1.5	1/26/2018	4 - 5 ft					
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K2	1/24/2018	1 - 2 ft	42	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-K2	1/24/2018	2 - 3 ft	0.81	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-L1	2/20/2018	1 - 2 ft	9.7	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-L1	2/20/2018	2 - 3 ft	0.096	1			
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L1	2/20/2018	3 - 4 ft					
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L1	2/20/2018	4 - 5 ft	0.77				
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L2	2/20/2018	1 - 2 ft	0.99	1			
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L2	2/20/2018	2 - 3 ft	1.1	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-L2 SUSDPGD21-L2	2/20/2018 2/20/2018	3 - 4 ft 4 - 5 ft					
SO	Subsurface Subsurface		Transformer Shop Transformer Shop	SUSDPGD21-M1	3/14/2018	1 - 2 ft	0.12	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-M1	3/14/2018	2 - 3 ft	0.056	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-M1	3/14/2018	3 - 4 ft	0.000	<u> </u>			
SO	Subsurface		Transformer Shop	SUSDPGD21-M1	3/14/2018	4 - 5 ft					
SO	Subsurface		Transformer Shop	SUSDPGD21-M2	3/14/2018	1 - 2 ft	5.9	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-M2	3/14/2018	2 - 3 ft	0.73	1			
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M2	3/14/2018	3 - 4 ft					
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M2	3/14/2018	4 - 5 ft					
SO	Subsurface	0	Transformer Shop	SUSDPGD21-N1	4/4/2018	1 - 2 ft	0.36	1			
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-N1	4/4/2018	2 - 3 ft					
SO	Subsurface		Transformer Shop	SUSDPGD21-N1	4/4/2018	3 - 4 ft	0.04				
SO	Subsurface		Transformer Shop	SUSDPGD21-N2	4/4/2018	1 - 2 ft	0.81	1			
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-N2 SUSDPGD21-P1	4/4/2018 5/30/2018	2 - 3 ft 1 - 2 ft	15	1			
SO	Subsurface Subsurface		Transformer Shop Transformer Shop	SUSDPGD21-P1	5/30/2018	2 - 3 ft	0.14	1			
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-R1	1/23/2018	1 - 2 ft	0.022	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-R1	1/23/2018	2 - 3 ft	0.022	'			
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-R1	1/23/2018	3 - 4 ft					
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-R2	1/23/2018	1 - 2 ft	0.22	1			
SO	Subsurface		Transformer Shop	SUSDPGD21-R2	1/23/2018	2 - 3 ft		_			
SO	Subsurface		Transformer Shop	SUSDPGD21-R2	1/23/2018	3 - 4 ft					
SO	Subsurface		Transformer Shop	SUSDPGD21-S1	1/23/2018	1 - 2 ft	0.27	1			
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-S1	1/23/2018	2 - 3 ft					
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-S2	1/24/2018	1 - 2 ft	0.0094	0			
SO	Surface	mg/kg	Transformer Shop	SUS21-1A	1/27/2017	0 - 1 ft	0.94	1			
SO	Surface	mg/kg	Transformer Shop	SUS21-1B	1/27/2017	0 - 1 ft	0.098	<u> </u>			
SO	Surface Surface	mg/kg	Transformer Shop Transformer Shop	SUS21-1E SUS21-1F	1/27/2017	0 - 1 ft 0 - 1 ft	1.5 0.49	1			
SO	Surface	mg/kg mg/kg	Transformer Shop	SUS21-1F	1/27/2017	0 - 1 ft	0.49	1			
SO	Surface	mg/kg	Transformer Shop	SUS21-1H	1/27/2017	0 - 1 ft	0.96	1			
SO	Surface	mg/kg	Transformer Shop	SUS21-2D	3/23/2017	0 - 1 ft	0.3	1			
SO	Surface	mg/kg	Transformer Shop	SUS21-2E	3/23/2017	0 - 1 ft	4	1			
SO	Surface	mg/kg	Transformer Shop	SUS21-2I	3/22/2017	0 - 1 ft	4.5	1			
SO	Surface	mg/kg	Transformer Shop	SUS21-2J	3/22/2017	0 - 1 ft	11	1			
SO	Surface	mg/kg	Transformer Shop	SUS21-2L	3/22/2017	0 - 1 ft	1.6	1			
SO	Surface	mg/kg	Transformer Shop	SUS21-2M	3/22/2017	0 - 1 ft	2.7	1			
SO	Surface	mg/kg	Transformer Shop	SUS21-2N	3/22/2017	0 - 1 ft	3	1			

		1										
Matrix	horizon	Units	Area	Location	Collected	Depth	PCB, Total Aroclors (AECOM Calc)	D_PCB, Total Aroclors (AECOM Calc)	TCDD TEQ HH	D_TCDD TEQ HH	Thallium	D_Thallium
SO	Surface	mg/kg	Transformer Shop	SUSDP21	1/27/2017	0 - 1 ft	0.52	1				
SO	Surface	mg/kg	Transformer Shop	SUSDP21	2/7/2013	1 - 1.75 ft	7.2	1			0.11	0
SO	Surface	mg/kg	Transformer Shop	SUSDP21-1C	1/27/2017	0 - 1 ft	43	1				
SO	Surface	mg/kg	Transformer Shop	SUSDP21-1C	8/24/2017	0 - 1 ft						
SO	Surface	mg/kg	Transformer Shop	SUSDP21-3G	8/28/2017	0 - 1 ft	8800	1				
SO	Surface	mg/kg	Transformer Shop	SUSDP21-3M	8/28/2017	0 - 1 ft	130	1				
SO	Surface	mg/kg	Transformer Shop	SUSDP21-3Q	8/24/2017	0 - 1 ft	0.066	1				
SO	Surface	mg/kg	Transformer Shop	SUSDP21-5W	1/26/2018	0 - 1 ft	0.025	1				
SO	Surface	mg/kg	Transformer Shop	SUSDP21-6W	2/21/2018	0 - 1 ft						
SO	Surface	mg/kg	Transformer Shop	SUSDP22	6/13/2013	0.5 - 1 ft	0.036	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-C3	7/2/2018	0 - 1 ft	0.08	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-C5	5/31/2018	0 - 1 ft	0.05	0				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-D1	5/30/2018	0 - 1 ft	9.6	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-E1	5/30/2018	0 - 1 ft	0.036	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-F1	5/30/2018	0 - 1 ft	0.099	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-G1	4/4/2018	0 - 1 ft	56	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-G2	4/4/2018	0 - 1 ft	0.068	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-H1	3/14/2018	0 - 1 ft	0.046	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-H2	3/14/2018	0 - 1 ft	0.016	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-I1	2/20/2018	0 - 1 ft	0.013	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-I2	2/20/2018	0 - 1 ft	0.0083	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	0 - 1 ft	0.0062	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-J2	1/24/2018	0 - 1 ft	0.0079	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-K1	1/24/2018	0 - 1 ft	0.0088	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-K1.5	1/26/2018	0 - 1 ft	0.013	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-K2	1/24/2018	0 - 1 ft	0.0068	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-L1	2/20/2018	0 - 1 ft	4.1	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-L2	2/20/2018	0 - 1 ft	0.014	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-M1	3/14/2018	0 - 1 ft	2.3	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-M2	3/14/2018	0 - 1 ft	0.03	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-N1	4/4/2018	0 - 1 ft	0.053	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-N2	4/4/2018	0 - 1 ft	0.061	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-P1	5/30/2018	0 - 1 ft	0.002	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-R1	1/23/2018	0 - 1 ft	0.07	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-R2	1/23/2018	0 - 1 ft	0.005	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-S1	1/23/2018	0 - 1 ft	0.091	1				
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-S2	1/24/2018	0 - 1 ft	0.048	1				
									1			

Matrix	horizon	Units	A ====	Landina	Callantad	Donah	Vanadium	D. Vanadium
SO			Area	Location	Collected	Depth	vanadium 17	D_Vanadium 1
SO	Subsurface	mg/kg	Transformer Shop Transformer Shop	DP35 DP46	3/28/2013 5/22/2013	14.5 - 15.5 ft 4.5 - 5.5 ft	17	1
SO	Subsurface Subsurface	mg/kg mg/kg	Transformer Shop	DP46 DP46	6/5/2013	14.5 - 15.5 ft		
SO	Subsurface	mg/kg	Transformer Shop	DP46	6/5/2013	9.5 - 10.5 ft		
SO	Subsurface	mg/kg	Transformer Shop	DP47	5/28/2013	1.5 - 2.5 ft	23	1
SO	Subsurface	mg/kg	Transformer Shop	DP47	6/5/2013	14 - 15 ft	20	
SO	Subsurface	mg/kg	Transformer Shop	DP47	6/5/2013	9.5 - 10.5 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21	1/27/2017	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21	1/27/2017	2 - 5 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21	2/2/2017	5 - 10 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-1C	8/24/2017	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-1C	8/24/2017	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-1C	8/24/2017	3 - 4 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3A	8/25/2017	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3A	8/25/2017	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3G	8/28/2017	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3G	8/28/2017	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3M	8/28/2017	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3M	8/28/2017	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3M	8/28/2017	3 - 4 ft		
SO	Subsurface Subsurface	mg/kg mg/kg	Transformer Shop Transformer Shop	SUSDP21-3M SUSDP21-3T	8/28/2017 8/25/2017	4 - 5 ft 1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3T	8/25/2017	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3T	8/25/2017	3 - 4 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-3V	8/25/2017	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-5W	1/26/2018	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-5W	1/26/2018	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP21-6W	2/21/2018	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP22	5/22/2013	2.5 - 3.5 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP22	6/12/2013	9.5 - 10.5 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDP22	6/12/2013	14.5 - 15.5 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C3	7/2/2018	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C3	7/2/2018	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C3	7/2/2018	3 - 4 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C5	5/31/2018	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C5	5/31/2018	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-C5	5/31/2018	3 - 4 ft 4 - 5 ft		
SO	Subsurface Subsurface	mg/kg mg/kg	Transformer Shop Transformer Shop	SUSDPGD21-C5 SUSDPGD21-D1	5/31/2018 5/30/2018	4 - 5 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-D1	5/30/2018	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-D1	5/30/2018	3 - 4 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-D1	5/30/2018	4 - 5 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-E1	5/30/2018	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-E1	5/30/2018	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-E1	5/30/2018	3 - 4 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-E1	5/30/2018	4 - 5 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-F1	5/30/2018	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-F1	5/30/2018	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-F1	5/30/2018	3 - 4 ft		-
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-F1	5/30/2018	4 - 5 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-G1	4/4/2018	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-G1	4/4/2018	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-G1	4/4/2018	3 - 4 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-G1	4/4/2018	4 - 5 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-G1	4/4/2018	5 - 6 ft		
SO	Subsurface Subsurface	mg/kg mg/kg	Transformer Shop Transformer Shop	SUSDPGD21-G2 SUSDPGD21-G2	4/4/2018 4/4/2018	1 - 2 ft 2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-G2 SUSDPGD21-H1	3/14/2018	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-H1	3/14/2018	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-H2	3/14/2018	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-H2	3/14/2018	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-I1	2/20/2018	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-I1	2/20/2018	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-I1	2/20/2018	3 - 4 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-I2	2/20/2018	1 - 2 ft		
			· · · · · · · · · · · · · · · · · · ·	·		·		

N.A. dada	b a de a a	11-21-	A	Leadles	0-1111	D th	M	D 1/
Matrix SO	horizon Subsurface	Units	Area Transformer Shop	Location SUSDPGD21-I2	2/20/2018	Depth 2 - 3 ft	Vanadium	D_Vanadium
SO	Subsurface	mg/kg mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	3 - 4 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	4 - 5 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	5 - 6 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J2	1/24/2018	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-J2	1/24/2018	2 - 3 ft		
SO	Subsurface Subsurface	mg/kg mg/kg	Transformer Shop Transformer Shop	SUSDPGD21-J2 SUSDPGD21-K1	1/24/2018	3 - 4 ft 1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1	1/24/2018	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1	1/24/2018	3 - 4 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1	1/24/2018	4 - 5 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1	1/24/2018	5 - 6 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1.5	1/26/2018	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K1.5	1/26/2018	2 - 3 ft		
SO	Subsurface Subsurface	mg/kg	Transformer Shop Transformer Shop	SUSDPGD21-K1.5 SUSDPGD21-K1.5	1/26/2018 1/26/2018	3 - 4 ft 4 - 5 ft		
SO	Subsurface	mg/kg mg/kg	Transformer Shop	SUSDPGD21-K1.5	1/24/2018	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-K2	1/24/2018	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L1	2/20/2018	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L1	2/20/2018	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L1	2/20/2018	3 - 4 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L1	2/20/2018	4 - 5 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L2	2/20/2018	1 - 2 ft		
SO	Subsurface Subsurface	mg/kg	Transformer Shop	SUSDPGD21-L2 SUSDPGD21-L2	2/20/2018 2/20/2018	2 - 3 ft 3 - 4 ft		
SO	Subsurface	mg/kg mg/kg	Transformer Shop Transformer Shop	SUSDPGD21-L2	2/20/2018	4 - 5 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M1	3/14/2018	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M1	3/14/2018	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M1	3/14/2018	3 - 4 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M1	3/14/2018	4 - 5 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M2	3/14/2018	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-M2 SUSDPGD21-M2	3/14/2018	2 - 3 ft 3 - 4 ft		
SO	Subsurface Subsurface	mg/kg mg/kg	Transformer Shop Transformer Shop	SUSDPGD21-M2 SUSDPGD21-M2	3/14/2018 3/14/2018	3 - 4 π 4 - 5 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-N1	4/4/2018	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-N1	4/4/2018	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-N1	4/4/2018	3 - 4 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-N2	4/4/2018	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-N2	4/4/2018	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-P1	5/30/2018	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-P1	5/30/2018	2 - 3 ft		
SO SO	Subsurface Subsurface	mg/kg mg/kg	Transformer Shop Transformer Shop	SUSDPGD21-R1 SUSDPGD21-R1	1/23/2018	1 - 2 ft 2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-R1	1/23/2018	3 - 4 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-R2	1/23/2018	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-R2	1/23/2018	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-R2	1/23/2018	3 - 4 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-S1	1/23/2018	1 - 2 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-S1	1/23/2018	2 - 3 ft		
SO	Subsurface	mg/kg	Transformer Shop	SUSDPGD21-S2	1/24/2018	1 - 2 ft		
SO	Surface Surface	mg/kg mg/kg	Transformer Shop Transformer Shop	SUS21-1A SUS21-1B	1/27/2017	0 - 1 ft 0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUS21-1E	1/27/2017	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUS21-1F	1/27/2017	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUS21-1G	1/27/2017	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUS21-1H	1/27/2017	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUS21-2D	3/23/2017	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUS21-2E	3/23/2017	0 - 1 ft	1	
SO	Surface	mg/kg	Transformer Shop	SUS21-2I	3/22/2017	0 - 1 ft		
SO	Surface Surface	mg/kg	Transformer Shop Transformer Shop	SUS21-2J SUS21-2L	3/22/2017 3/22/2017	0 - 1 ft 0 - 1 ft		
SO	Surface	mg/kg mg/kg	Transformer Shop	SUS21-2L SUS21-2M	3/22/2017	0 - 1 ft		
SO	Surface	mg/kg		SUS21-2N	3/22/2017	0 - 1 ft	1	
- 00	Juliado	g/ixg	andionnion onlop	00021211	J, ZZ, ZJ 11	0 111	1	L

Soil ProUCL Input - Transformer Shop

Matrix	horizon	Units	Area	Location	Collected	Depth	Vanadium	D_Vanadium
SO	Surface	mg/kg	Transformer Shop	SUSDP21	1/27/2017	0 - 1 ft		
SO	Surface	ma/ka	Transformer Shop	SUSDP21	2/7/2013	1 - 1.75 ft	9.7	1
SO	Surface	mg/kg	Transformer Shop	SUSDP21-1C	1/27/2017	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDP21-1C	8/24/2017	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDP21-3G	8/28/2017	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDP21-3M	8/28/2017	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDP21-3Q	8/24/2017	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDP21-5W	1/26/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDP21-6W	2/21/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDP22	6/13/2013	0.5 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-C3	7/2/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-C5	5/31/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-D1	5/30/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-E1	5/30/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-F1	5/30/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-G1	4/4/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-G2	4/4/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-H1	3/14/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-H2	3/14/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-I1	2/20/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-I2	2/20/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-J1	1/24/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-J2	1/24/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-K1	1/24/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-K1.5	1/26/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-K2	1/24/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-L1	2/20/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-L2	2/20/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-M1	3/14/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-M2	3/14/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-N1	4/4/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-N2	4/4/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-P1	5/30/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-R1	1/23/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-R2	1/23/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-S1	1/23/2018	0 - 1 ft		
SO	Surface	mg/kg	Transformer Shop	SUSDPGD21-S2	1/24/2018	0 - 1 ft		

Matrix	horizon	Units	Area	Location	Collected	Depth	Arsenic	D_Arsenic	Benzo(a)anthracene	D_Benzo(a)anthracene	Benzo(a)pyrene	D_Benzo(a)pyrene	Benzo(b)fluoranthene
SO	Surface	mg/kg	Vehicle Refueling	AST3A-1A	8/2/2017	0 - 1 ft							
SO	Surface	mg/kg	Vehicle Refueling	SUSDP37	1/25/2017	0 - 1 ft			2.6	1	1.3	1	2.2
SO	Surface	mg/kg	Vehicle Refueling	SUSDP39	1/25/2017	0 - 1 ft			0.87	1	0.47	1	0.75
SO	Subsurface	mg/kg	Vehicle Refueling	DP28	4/2/2013	7.5 - 8.5 ft	1.8	1	0.0073	0	0.0073	0	0.0073
SO	Subsurface	mg/kg	Vehicle Refueling	DP29	4/2/2013	9 - 11 ft	2.9	1	0.068	1	0.061	1	0.06
SO	Subsurface	mg/kg	Vehicle Refueling	DP38	5/16/2013	4.5 - 5.5 ft	1.6	1	0.21	1	0.2	1	0.21
SO	Subsurface	mg/kg	Vehicle Refueling	DP38	5/22/2013	9.5 - 10.5 ft			0.38	1	0.35	1	0.32
SO	Subsurface	mg/kg	Vehicle Refueling	DP38	5/22/2013	14 - 15 ft			0.71	1	0.61	1	0.61
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	5/16/2013	2.5 - 3.5 ft	3.7	1	0.17	1	0.18	1	0.13
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	5/23/2013	9.5 - 10.5 ft			0.0072	0	0.0072	0	0.0072
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	5/23/2013	14.5 - 15.5 ft			0.007	0	0.007	0	0.007
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	1/25/2017	1 - 2 ft			0.21	1	0.19	1	0.22
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	1/25/2017	2 - 5 ft			0.081	1	0.066	1	0.099
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	5/17/2013	2.5 - 3.5 ft			0.15	1	0.0076	0	0.046
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	5/22/2013	9.5 - 10.5 ft	2.4	1	1.3	1	1.4	1	1.3
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	5/22/2013	14.5 - 15.5 ft			0.0094	1	0.0099	1	0.011
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	1/25/2017	1 - 2 ft			0.26	1	1.3	1	2.3
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	1/25/2017	2 - 5 ft			0.0051	1	0.009	1	0.013
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	1/26/2017	5 - 10 ft			0.057	1	0.051	1	0.063
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	1/26/2017	10 - 15 ft			0.0015	1	0.0091	0	0.0091

Matrix	horizon	Units	Area	Location	Collected	Depth	D_Benzo(b)fluoranthene	Benzo(k)fluoranthene	D_Benzo(k)fluoranthene	Chrysene	D_Chrysene	Cobalt	D_Cobalt
SO	Surface	mg/kg	Vehicle Refueling	AST3A-1A	8/2/2017	0 - 1 ft							
SO	Surface	mg/kg	Vehicle Refueling	SUSDP37	1/25/2017	0 - 1 ft	1	0.61	1	2.5	1		
SO	Surface	mg/kg	Vehicle Refueling	SUSDP39	1/25/2017	0 - 1 ft	1	0.31	1	0.92	1		
SO	Subsurface	mg/kg	Vehicle Refueling	DP28	4/2/2013	7.5 - 8.5 ft	0	0.0073	0	0.0073	0	7.3	1
SO	Subsurface	mg/kg	Vehicle Refueling	DP29	4/2/2013	9 - 11 ft	1	0.033	1	0.063	1	6.8	1
SO	Subsurface	mg/kg	Vehicle Refueling	DP38	5/16/2013	4.5 - 5.5 ft	1	0.092	1	0.21	1	4	1
SO	Subsurface	mg/kg	Vehicle Refueling	DP38	5/22/2013	9.5 - 10.5 ft	1	0.16	1	0.36	1		
SO	Subsurface	mg/kg	Vehicle Refueling	DP38	5/22/2013	14 - 15 ft	1	0.27	1	0.68	1		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	5/16/2013	2.5 - 3.5 ft	1	0.13	1	0.19	1	6.9	1
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	5/23/2013	9.5 - 10.5 ft	0	0.0072	0	0.0072	0		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	5/23/2013	14.5 - 15.5 ft	0	0.007	0	0.007	0		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	1/25/2017	1 - 2 ft	1	0.086	1	0.26	1		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	1/25/2017	2 - 5 ft	1	0.027	1	0.091	1		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	5/17/2013	2.5 - 3.5 ft	1	0.071	1	0.14	1		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	5/22/2013	9.5 - 10.5 ft	1	0.56	1	1.3	1	2.6	1
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	5/22/2013	14.5 - 15.5 ft	1	0.0034	1	0.0098	1		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	1/25/2017	1 - 2 ft	1	0.014	0	0.64	1		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	1/25/2017	2 - 5 ft	1	0.0031	1	0.0072	1		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	1/26/2017	5 - 10 ft	1	0.023	1	0.055	1		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	1/26/2017	10 - 15 ft	0	0.0091	0	0.0011	1		

Matrix	horizon	Units	Area	Location	Collected	Depth	Dibenzo(a,h)anthracene	D_Dibenzo(a,h)anthracene	Diesel Range Organics (C10-C20)	D_Diesel Range Organics (C10-C20)
SO	Surface	mg/kg	Vehicle Refueling	AST3A-1A	8/2/2017	0 - 1 ft			380	1
SO	Surface	mg/kg	Vehicle Refueling	SUSDP37	1/25/2017	0 - 1 ft	0.31	1		
SO	Surface	mg/kg	Vehicle Refueling	SUSDP39	1/25/2017	0 - 1 ft	0.12	1		
SO	Subsurface	mg/kg	Vehicle Refueling	DP28	4/2/2013	7.5 - 8.5 ft	0.0073	0	18	0
SO	Subsurface	mg/kg	Vehicle Refueling	DP29	4/2/2013	9 - 11 ft	0.01	1	12	1
SO	Subsurface	mg/kg	Vehicle Refueling	DP38	5/16/2013	4.5 - 5.5 ft	0.027	1	18	0
SO	Subsurface	mg/kg	Vehicle Refueling	DP38	5/22/2013	9.5 - 10.5 ft	0.068	1	19	0
SO	Subsurface	mg/kg	Vehicle Refueling	DP38	5/22/2013	14 - 15 ft	0.1	1	18	0
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	5/16/2013	2.5 - 3.5 ft	0.049	1	15	1
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	5/23/2013	9.5 - 10.5 ft	0.0072	0	18	0
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	5/23/2013	14.5 - 15.5 ft	0.007	0	18	0
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	1/25/2017	1 - 2 ft	0.19	0		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	1/25/2017	2 - 5 ft	0.017	1		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	5/17/2013	2.5 - 3.5 ft	0.0076	0	320	1
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	5/22/2013	9.5 - 10.5 ft	0.29	1	27	1
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	5/22/2013	14.5 - 15.5 ft	0.0079	0	20	0
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	1/25/2017	1 - 2 ft	0.31	1	_	
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	1/25/2017	2 - 5 ft	0.0071	0	_	
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	1/26/2017	5 - 10 ft	0.0081	1	·	<u> </u>
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	1/26/2017	10 - 15 ft	0.0091	0		

Matrix	horizon	Units	Area	Location	Collected	Depth	Indeno(1,2,3-cd)pyrene	D_Indeno(1,2,3-cd)pyrene	Manganese	D_Manganese	Naphthalene	D_Naphthalene	Nickel	D_Nickel
SO	Surface	mg/kg	Vehicle Refueling	AST3A-1A	8/2/2017	0 - 1 ft								
SO	Surface	mg/kg	Vehicle Refueling	SUSDP37	1/25/2017	0 - 1 ft	0.78	1			0.63	1		
SO	Surface	mg/kg	Vehicle Refueling	SUSDP39	1/25/2017	0 - 1 ft	0.33	1			0.055	1		
SO	Subsurface	mg/kg	Vehicle Refueling	DP28	4/2/2013	7.5 - 8.5 ft	0.0073	0	140	1	0.0073	0	3.4	1
SO	Subsurface	mg/kg	Vehicle Refueling	DP29	4/2/2013	9 - 11 ft	0.03	1	160	1	0.0036	1	8.6	1
SO	Subsurface	mg/kg	Vehicle Refueling	DP38	5/16/2013	4.5 - 5.5 ft	0.11	1	65	1	0.0046	1	3.6	1
SO	Subsurface	mg/kg	Vehicle Refueling	DP38	5/22/2013	9.5 - 10.5 ft	0.2	1			0.037	0		
SO	Subsurface	mg/kg	Vehicle Refueling	DP38	5/22/2013	14 - 15 ft	0.34	1			0.035	0		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	5/16/2013	2.5 - 3.5 ft	0.11	1	200	1	0.012	1	12	1
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	5/23/2013	9.5 - 10.5 ft	0.0072	0			0.0072	0		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	5/23/2013	14.5 - 15.5 ft	0.007	0			0.007	0		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	1/25/2017	1 - 2 ft	0.12	1			0.1	1		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	1/25/2017	2 - 5 ft	0.054	1			0.026	1		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	5/17/2013	2.5 - 3.5 ft	0.0076	0			0.41	1		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	5/22/2013	9.5 - 10.5 ft	0.87	1	140	1	0.061	1	4.1	1
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	5/22/2013	14.5 - 15.5 ft	0.0066	1			0.0079	0		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	1/25/2017	1 - 2 ft	1	1			0.027	1		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	1/25/2017	2 - 5 ft	0.0065	1			0.0071	0		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	1/26/2017	5 - 10 ft	0.028	1		-	0.0032	1		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	1/26/2017	10 - 15 ft	0.0091	0			0.00091	1		

February 2020

Matrix	horizon	Units	Area	Location	Collected	Depth	PCB, Total Aroclors (AECOM Calc)	D PCB, Total Aroclors (AECOM Calc)	TCDD TEQ HH	D TCDD TEQ HH	Thallium	D Thallium
SO	Surface	mg/kg	Vehicle Refueling	AST3A-1A	8/2/2017	0 - 1 ft	,			_		_
SO	Surface	mg/kg		SUSDP37	1/25/2017	0 - 1 ft	0.0082	1				
SO	Surface	mg/kg	Vehicle Refueling	SUSDP39	1/25/2017	0 - 1 ft	0.14	1				
SO	Subsurface	mg/kg	Vehicle Refueling	DP28	4/2/2013	7.5 - 8.5 ft	0.0009	0			0.11	0
SO	Subsurface	mg/kg	Vehicle Refueling	DP29	4/2/2013	9 - 11 ft	0.001	0			0.14	1
SO	Subsurface	mg/kg	Vehicle Refueling	DP38	5/16/2013	4.5 - 5.5 ft	0.00092	0			0.042	1
SO	Subsurface	mg/kg	Vehicle Refueling	DP38	5/22/2013	9.5 - 10.5 ft	0.0052	1				
SO	Subsurface	mg/kg	Vehicle Refueling	DP38	5/22/2013	14 - 15 ft	0.0019	1				
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	5/16/2013	2.5 - 3.5 ft	0.0027	1			0.14	1
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	5/23/2013	9.5 - 10.5 ft	0.0045	0				
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	5/23/2013	14.5 - 15.5 ft	0.0045	0				
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	1/25/2017	1 - 2 ft	0.0093	0				
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	1/25/2017	2 - 5 ft	0.0046	0				
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	5/17/2013	2.5 - 3.5 ft	0.093	1				
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	5/22/2013	9.5 - 10.5 ft	0.057	1			0.15	1
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	5/22/2013	14.5 - 15.5 ft	0.0019	1				
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	1/25/2017	1 - 2 ft	0.11	1				
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	1/25/2017	2 - 5 ft	0.0093	1				
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	1/26/2017	5 - 10 ft	0.0011	0				
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	1/26/2017	10 - 15 ft	0.0011	0				

Matrix	horizon	Units	Area	Location	Collected	Depth	Vanadium	D_Vanadium
SO	Surface	mg/kg	Vehicle Refueling	AST3A-1A	8/2/2017	0 - 1 ft		
SO	Surface	mg/kg	Vehicle Refueling	SUSDP37	1/25/2017	0 - 1 ft		
SO	Surface	mg/kg	Vehicle Refueling	SUSDP39	1/25/2017	0 - 1 ft		
SO	Subsurface	mg/kg	Vehicle Refueling	DP28	4/2/2013	7.5 - 8.5 ft	15	1
SO	Subsurface	mg/kg	Vehicle Refueling	DP29	4/2/2013	9 - 11 ft	26	1
SO	Subsurface	mg/kg	Vehicle Refueling	DP38	5/16/2013	4.5 - 5.5 ft	13	1
SO	Subsurface	mg/kg	Vehicle Refueling	DP38	5/22/2013	9.5 - 10.5 ft		
SO	Subsurface	mg/kg	Vehicle Refueling	DP38	5/22/2013	14 - 15 ft		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	5/16/2013	2.5 - 3.5 ft	29	1
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	5/23/2013	9.5 - 10.5 ft		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	5/23/2013	14.5 - 15.5 ft		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	1/25/2017	1 - 2 ft		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP37	1/25/2017	2 - 5 ft		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	5/17/2013	2.5 - 3.5 ft		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	5/22/2013	9.5 - 10.5 ft	26	1
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	5/22/2013	14.5 - 15.5 ft		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	1/25/2017	1 - 2 ft		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	1/25/2017	2 - 5 ft		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	1/26/2017	5 - 10 ft		
SO	Subsurface	mg/kg	Vehicle Refueling	SUSDP39	1/26/2017	10 - 15 ft		

Matrix	Fraction	Units	EA	Location	Collected	RA17_GW_VOCs Chloroform	D_RA17_GW_VOCs Chloroform	RA17_GW_VOCs Methyl tert-Butyl Ether (MTBE)
WG	T	ug/l	Open Lot	DP36	5/20/2013	1	0	0.53
WG	T	ug/l	Open Lot	MW01A	11/5/2014	1	0	1.6
WG	T	ug/l	Open Lot	MW01A	12/22/2016	1	0	1.7
WG	T	ug/l	Open Lot	MW02A	11/5/2014	1	0	1
WG	T	ug/l	Open Lot	MW02A	12/22/2016	1	0	1
WG	T	ug/l	Open Lot	MW03A	11/4/2014	1.2	1	1
WG	T	ug/l	Open Lot	MW04A	11/4/2014	0.22	1	0.29
WG	T	ug/l	Open Lot	SUSDP01	5/20/2013	1	0	1
WG	T	ug/l	Open Lot	SUSDP02	5/20/2013	0.3	1	1
WG	T	ug/l	Open Lot	TA19A1	3/20/2017	1	0	0.29
WG	T	ug/l	Open Lot	TA19A2	3/20/2017	1	0	0.28
WG	T	ug/l	Open Lot	TA19A3	3/20/2017	1	0	0.71
WG	T	ug/l	Open Lot	TA19B3	2/7/2017	1	0	1
WG	T	ug/l	Open Lot	TA19C1	2/8/2017	1	0	3.9
WG	T	ug/l	Open Lot	TA19C2	2/7/2017	1	0	0.73
WG	T	ug/l	Open Lot	TA19C3	2/7/2017	1	0	1
WG	T	ug/l	Open Lot	TA19D1	3/3/2017	1	0	0.51
WG	T	ug/l	Open Lot	TA19D3	3/8/2017	1	0	1
WG	T	ug/l	Open Lot	TA19E1	2/7/2017	1	0	0.39
WG	T	ug/l	Open Lot	TA19E2	2/7/2017	1	0	1

Matrix	Fraction	Units	EA	Location	Collected	D_RA17_GW_VOCs Methyl tert-Butyl Ether (MTBE)	RA17_GW_VOCs Tetrachloroethylene	D_RA17_GW_VOCs Tetrachloroethylene
WG	Т	ug/l	Open Lot	DP36	5/20/2013	1	1	
WG	Т	ug/l	Open Lot	MW01A	11/5/2014	1	4.4	
WG	Т	ug/l	Open Lot	MW01A	12/22/2016	1	5.5	
WG	Т	ug/l	Open Lot	MW02A	11/5/2014	C	2.3	
WG	Т	ug/l	Open Lot	MW02A	12/22/2016	C	1.8	
WG	Т	ug/l	Open Lot	MW03A	11/4/2014	C	0.32	•
WG	Т	ug/l	Open Lot	MW04A	11/4/2014	1	0.25	
WG	Т	ug/l	Open Lot	SUSDP01	5/20/2013	C	0.25	
WG	Т	ug/l	Open Lot	SUSDP02	5/20/2013	C	1	
WG	Т	ug/l	Open Lot	TA19A1	3/20/2017	1	1	
WG	Т	ug/l	Open Lot	TA19A2	3/20/2017	1	1	
WG	Т	ug/l	Open Lot	TA19A3	3/20/2017	1	2.2	
WG	Т	ug/l	Open Lot	TA19B3	2/7/2017	C	0.24	
WG	Т	ug/l	Open Lot	TA19C1	2/8/2017	1	30	
WG	Т	ug/l	Open Lot	TA19C2	2/7/2017	1	18	
WG	Т	ug/l	Open Lot	TA19C3	2/7/2017	C	6.7	
WG	Т	ug/l	Open Lot	TA19D1	3/3/2017	1	1	
WG	Т	ug/l	Open Lot	TA19D3	3/8/2017	C	1	
WG	Т	ug/l	Open Lot	TA19E1	2/7/2017	1	1	
WG	T	ua/l	Open Lot	TA19E2	2/7/2017		0.8	

									1	
Matrix	Fraction	Units	EA	Location	Collected	RA17_GW	_VOCs Trichloroethene	D_RA17_GW_VOCs Trichloroethene	RA17_GW_VOCs Vinyl Chloride	D_RA17_GW_VOCs Vinyl Chloride
WG	T	ug/l	Open Lot	DP36	5/20/2013			0	1	0
WG	T	ug/l	Open Lot	MW01A	11/5/2014		0.43	1	1	0
WG	T	ug/l	Open Lot	MW01A	12/22/2016		1.2	! 1	1	0
WG	T	ug/l	Open Lot	MW02A	11/5/2014			0	1	0
WG	T	ug/l	Open Lot	MW02A	12/22/2016		0.22		1	0
WG	T	ug/l	Open Lot	MW03A	11/4/2014		•	0	1	0
WG	T	ug/l	Open Lot	MW04A	11/4/2014		•	0	1	0
WG	T	ug/l	Open Lot	SUSDP01	5/20/2013		•	0	1	0
WG	T	ug/l	Open Lot	SUSDP02	5/20/2013		•	0	1	0
WG	T	ug/l	Open Lot	TA19A1	3/20/2017		•	0	1	0
WG	T	ug/l	Open Lot	TA19A2	3/20/2017			0	1	0
WG	T	ug/l	Open Lot	TA19A3	3/20/2017			0	1	0
WG	T	ug/l	Open Lot	TA19B3	2/7/2017			0	1	0
WG	T	ug/l	Open Lot	TA19C1	2/8/2017		3.2		1	0
WG	T	ug/l	Open Lot	TA19C2	2/7/2017		5.9	1	1	0
WG	T	ug/l	Open Lot	TA19C3	2/7/2017		0.23	1	1	0
WG	T	ug/l	Open Lot	TA19D1	3/3/2017		•	0	1	0
WG	T	ug/l	Open Lot	TA19D3	3/8/2017		•	0	1	0
WG	T	ug/l	Open Lot	TA19E1	2/7/2017		•	0	1	0
WG	T	ug/l	Open Lot	TA19E2	2/7/2017		•	0	1	0

		l	l				
Matrix	Fraction	Units	EA	Location		RA17_GW_VOCs Butyl alcohol, tert-	D_RA17_GW_VOCs Butyl alcohol, tert-
WG	T	ug/l	Open Lot	DP36	5/20/2013		
WG	T	ug/l	Open Lot	MW01A	11/5/2014		
WG	Т	ug/l	Open Lot	MW01A	12/22/2016	40	0
WG	T	ug/l	Open Lot	MW02A	11/5/2014		
WG	T	ug/l	Open Lot	MW02A	12/22/2016	40	0
WG	T	ug/l	Open Lot	MW03A	11/4/2014		
WG	T	ug/l	Open Lot	MW04A	11/4/2014		
WG	T	ug/l	Open Lot	SUSDP01	5/20/2013		
WG	T	ug/l	Open Lot	SUSDP02	5/20/2013		
WG	T	ug/l	Open Lot	TA19A1	3/20/2017	40	0
WG	T	ug/l	Open Lot	TA19A2	3/20/2017	40	0
WG	T	ug/l	Open Lot	TA19A3	3/20/2017	40	0
WG	T	ug/l	Open Lot	TA19B3	2/7/2017	40	0
WG	T	ug/l	Open Lot	TA19C1	2/8/2017	40	0
WG	T	ug/l	Open Lot	TA19C2	2/7/2017	40	0
WG	T	ug/l	Open Lot	TA19C3	2/7/2017	40	0
WG	T	ug/l	Open Lot	TA19D1	3/3/2017	40	0
WG	T	ug/l	Open Lot	TA19D3	3/8/2017	40	0
WG	Т	ug/l	Open Lot	TA19E1	2/7/2017	40	0
WG	T	ug/l	Open Lot	TA19E2	2/7/2017	40	0

Matrix Fraction	Linite	EA	Location	Collected	DA17 CW	VOCslBromodichloromethans	D RA17 GW VOCs Bromodichloromethane	PA17 GW VOCelChloroform	D PA17 GW VOCelChloroform
WG T		Warehouse	DP30	4/3/2013	IXAII_GW	_vocs Bioinodicilioiomethane	1	TATT_GW_VOCS CIIIOIOIIIII	D_RATI_GW_VCCs Ciliolololili
		Warehouse	DP31	4/1/2013			1	1	0
		Warehouse	DP40	5/28/2013			1	1.5	1
		Warehouse		5/29/2013			1	1.1	1
WG T	ug/l	Warehouse	DPA1	4/17/2014					
WG T	ug/l	Warehouse	MW05A	11/4/2014			1 (0.77	1
WG T	ug/l	Warehouse	MW05A	12/21/2016			1	1	0
WG T	ug/l	Warehouse	MW07A	11/5/2014			1	1	0
		Warehouse		11/10/2014			1 0	1.2	1
		Warehouse		11/4/2014			1 0	1	0
		Warehouse		11/4/2014			1 0	1	0
		Warehouse		12/22/2016			1 0	1	0
		Warehouse				0.3	6 1	1.4	1
		Warehouse					1 C	1	0
		Warehouse					1 0	2.1	1
							1	1	0
							1 0	1	0
							1 0	1	0
							1 0	0.28	1
							1	1	0
WG T WG T WG T WG T WG T WG T	ug/l ug/l ug/l ug/l ug/l	Warehouse Warehouse Warehouse Warehouse Warehouse	SUSDP06 SUSDP07 SUSDP08 SUSDP11 SUSDP13	5/23/2013 5/22/2013 5/24/2013 5/28/2013 5/29/2013			1 C	1 1 1 0.28 1	

Matrix	Fraction	Units	EA	Location	Collected	RA17 GW	VOCslMethyl t	ert-Butyl Ether (I	MTBE)	D RA17	GW \	/OCslMet	hvl tert-Bi	ıtvl Ether (N	MTBE)
WG	Т	-	Warehouse	DP30	4/3/2013				0.47						1
WG	Т		Warehouse	DP31	4/1/2013				2						1
WG	Т	ug/l	Warehouse	DP40	5/28/2013				0.96						1
WG	Т	ug/l	Warehouse	DP42	5/29/2013				1						0
WG	Т	ug/l	Warehouse	DPA1	4/17/2014										
WG	T	ug/l	Warehouse	MW05A	11/4/2014				0.73						1
WG	T	ug/l	Warehouse	MW05A	12/21/2016				0.78						1
WG	T	ug/l	Warehouse	MW07A	11/5/2014				1						0
WG	T	ug/l	Warehouse	A80WM	11/10/2014				1						0
WG	T	ug/l	Warehouse	MW10A	11/4/2014				1						0
WG	T	ug/l	Warehouse	MW11A	11/4/2014				1						0
WG	Т	ug/l	Warehouse	MW11A	12/22/2016				1						0
WG	Т	ug/l	Warehouse	SUSDP03	5/21/2013				1						0
WG	Т	ug/l	Warehouse	SUSDP04	5/20/2013				0.71						1
WG	Т	ug/l	Warehouse	SUSDP05	5/21/2013				1						0
WG	Т	ug/l	Warehouse	SUSDP06	5/23/2013				1						0
WG	Т	ug/l	Warehouse	SUSDP07	5/22/2013				1						0
WG	Т	ug/l	Warehouse	SUSDP08	5/24/2013				3.1						1
WG	Т	,		SUSDP11					1						0
WG	Т			SUSDP13					1						0
WG	Т	ug/l	Warehouse	SUSDP41	5/24/2013		•	•	1.6						1

Madein	Facation	I Indian	Гл	Lasation	Callantad	DA47 OW VOCalTatasable as the last	D DA47 OW VOC-IT-tra-blass-thiles-	DA47 OW VOCALTAINIANA	D DA47 CW VOCalTriables athere
	Fraction	-		Location		RA17_GW_VOCs Tetrachioroethylene	D_RA17_GW_VOCs Tetrachloroethylene	RA17_GW_VOCS Trichioroethene	D_RA17_GW_VOCS Trichioroethene
WG	T			DP30	4/3/2013	1	0	1	0
WG	T	ug/l	Warehouse	DP31	4/1/2013	1	0	1	0
WG	Т	ug/l	Warehouse	DP40	5/28/2013	1	0	1	0
WG	Т	ug/l	Warehouse	DP42	5/29/2013	1	0	1	0
WG	Т	ug/l	Warehouse	DPA1	4/17/2014	1	0	1	0
WG	Т	ug/l	Warehouse	MW05A	11/4/2014	2.2	1	0.23	1
WG	Т	ug/l	Warehouse	MW05A	12/21/2016	15	1	2.3	1
WG	Т	ug/l	Warehouse	MW07A	11/5/2014	1	0	1	0
WG	Т	ug/l	Warehouse	A80WM	11/10/2014	1	0	1	0
WG	Т	ug/l	Warehouse	MW10A	11/4/2014	1	0	1	0
WG	Т	ug/l	Warehouse	MW11A	11/4/2014	0.18	1	1	0
WG	Т		Warehouse		12/22/2016		0	1	0
WG	Т	ug/l	Warehouse	SUSDP03	5/21/2013	2	1	0.93	1
WG	Т		Warehouse				0	1	0
WG	Т		Warehouse				0	1	0
WG	Т	ug/l	Warehouse	SUSDP06	5/23/2013	1	0	1	0
WG	Т	ug/l	Warehouse	SUSDP07	5/22/2013	1	0	1	0
WG	Т	ug/l	Warehouse	SUSDP08	5/24/2013	1	0	1	0
WG	Т		Warehouse				0	1	0
WG	Τ		Warehouse				1	1	0
WG	T	ug/l	Warehouse	SUSDP41	5/24/2013	1	0	1	0

Madain	Facation	I Indian	Ε.Δ	Lasation	Callage	DA47 OW	V00-ID	D DA47 CW VCC-IDdishlars	DA47 CW VOC-10H1f	D DA47 OW VOC-10Hf
Matrix	Fraction	Units	EA	Location	Collected	RATI_GW	_vocs Bromodicnioromethane	D_RA17_GW_VOCs Bromodichloromethane	RA17_GW_VOCS Chloroform	D_RAT/_GW_VOCS Chlorotorm
WG	T	ug/l	Salvage	DP26	3/29/2013		1	0	1	0
WG	T	ug/l	Salvage	DP61	2/6/2017		1	0	1	0
WG	Т	ug/l	Salvage	DP62	2/6/2017		1	0	1	0
WG	Т	ug/l	Salvage	DP63	2/6/2017		1	0	1	0
WG	Т	ug/l	Salvage	SUSDP10	6/10/2013		1	0	1	0
WG	Т	ug/l	Salvage	SUSDP12	6/13/2013		1	0	1	0
WG	T	ug/l	Salvage	SUSDP43	6/6/2013		1	0	1	0
WG	T	ug/l	Salvage	SUSDP44	6/10/2013		1	0	1	0

Matrix	Fraction	Units	EA	Location	Collected	RA17_GW_VOCs Methyl tert-Butyl Ether (MTBE	D_RA17_GW_VOCs Methyl tert-Butyl Ether (MTBE)	RA17_GW_VOCs Tetrachloroethylene
WG	T	ug/l	Salvage	DP26	3/29/2013	2.	2	0.27
WG	T	ug/l	Salvage	DP61	2/6/2017	0.3	1	1
WG	T	ug/l	Salvage	DP62	2/6/2017	0.2	1	1
WG	T	ug/l	Salvage	DP63	2/6/2017	0.2	1	1
WG	T	ug/l	Salvage	SUSDP10	6/10/2013	4.	1	0.21
WG	Т	ug/l	Salvage	SUSDP12	6/13/2013	0.3	1	1
WG	T	ug/l	Salvage	SUSDP43	6/6/2013	0.2	1	1
WG	T	ug/l	Salvage	SUSDP44	6/10/2013	3.	1	1

Matrix	Fraction	Units	EA	Location	Collected	D_RA17_GW_VOCs Tetrachloroethylene	RA17_GW_VOCs Trichloroethene	D_RA17_GW_VOCs Trichloroethene
WG	Т	ug/l	Salvage	DP26	3/29/2013	1	1	0
WG	Т	ug/l	Salvage	DP61	2/6/2017	0	1	0
WG	Т	ug/l	Salvage	DP62	2/6/2017	0	1	0
WG	Т	ug/l	Salvage	DP63	2/6/2017	0	1	0
WG	Т	ug/l	Salvage	SUSDP10	6/10/2013	1	1	0
WG	Т	ug/l	Salvage	SUSDP12	6/13/2013	0	1	0
WG	T	ug/l	Salvage	SUSDP43	6/6/2013	0	1	0
WG	T	ug/l	Salvage	SUSDP44	6/10/2013	0	1	0

Matrix	Fraction	Units	EA	Location	Collected	RA17 GW VOCslBromodichloromethane	D RA17 GW VOCs Bromodichloromethane	RA17 GW VOCslChloroform	D RA17 GW VOCslChloroform
WG		ug/l	Maintenance	DP45	6/4/2013	1	0	1	0
WG	T	ug/l	Maintenance	DP56	2/3/2017	1	0	1	0
WG	Т	ug/l	Maintenance	DP57	2/3/2017	1	0	1	0
WG	T	ug/l	Maintenance	DP58	2/6/2017	1	0	1	0
WG	Т	ug/l	Maintenance	DP59	2/3/2017	1	0	1	0
WG	Т	ug/l	Maintenance	DP60	2/6/2017	2.6	1	15	1
WG	Т	ug/l	Maintenance	DPD5	4/18/2014				
WG	Т	ug/l	Maintenance	DPD6	4/17/2014				
WG	Т	ug/l	Maintenance	MW13A	11/3/2014	1	0	0.67	1
WG	T	ug/l	Maintenance	MW13A	12/20/2016	1	0	1	0
WG	T	ug/l	Maintenance	SUSDP15	6/6/2013	1	0	1	0
WG	Т	ug/l	Maintenance	SUSDP16	6/10/2013	1	0	1	0
WG	Т	ug/l	Maintenance	SUSDP17	6/11/2013	1	0	0.26	1
WG	T	ug/l				1	0	1	0
WG	Т	ug/l	Maintenance	SUSDP52	2/3/2017	1	0	0.43	1

Matrix	Fraction	Units	EA	Location	Collected	RA17 GW VOCsIMethyl tert-Butyl Ether (MTBE)	D RA17 GW VOCs Methyl tert-Butyl Ether (MTBE)
WG	Т	ug/l	Maintenance	DP45	6/4/2013	48	1
WG	Т	ug/l	Maintenance	DP56	2/3/2017	0.55	1
WG	T	ug/l	Maintenance	DP57	2/3/2017	37	1
WG	T	ug/l	Maintenance	DP58	2/6/2017	6.8	1
WG	T	ug/l	Maintenance	DP59	2/3/2017	1	0
WG	T	ug/l	Maintenance	DP60	2/6/2017	0.21	1
WG	T	ug/l	Maintenance	DPD5	4/18/2014		
WG	T	ug/l	Maintenance	DPD6	4/17/2014		
WG	T	ug/l	Maintenance	MW13A	11/3/2014	0.26	1
WG	T	ug/l	Maintenance	MW13A	12/20/2016	1	0
WG	T	ug/l	Maintenance	SUSDP15	6/6/2013	3.1	1
WG	T	ug/l	Maintenance	SUSDP16	6/10/2013	14	1
WG	T	ug/l	Maintenance	SUSDP17	6/11/2013	1	0
WG	T	ug/l	Maintenance	SUSDP18	6/4/2013	0.42	1
WG	T	ug/l	Maintenance	SUSDP52	2/3/2017	1.9	1

Matrix	Fraction	Units	EA	Location	Collected	RA17 GW VOCs Tetrachloroethylene	D RA17 GW VOCs Tetrachloroethylene	RA17 GW VOCs Trichloroethene	D RA17 GW VOCs Trichloroethene
WG	Т	ug/l	Maintenance	DP45	6/4/2013	0.7	1	0.19	1
WG	Т	ug/l	Maintenance	DP56	2/3/2017	1	0	1	0
WG	T	ug/l	Maintenance	DP57	2/3/2017	1	0	1	0
WG	Т	ug/l	Maintenance	DP58	2/6/2017	1	0	1	0
WG	Т	ug/l	Maintenance	DP59	2/3/2017	0.3	1	1	0
WG	Т	ug/l	Maintenance	DP60	2/6/2017	0.44	1	1	0
WG	Т	ug/l	Maintenance	DPD5	4/18/2014	24	1	1	0
WG	Т	ug/l	Maintenance	DPD6	4/17/2014	4.9	1	1	0
WG	Т	ug/l	Maintenance	MW13A	11/3/2014	1	0	1	0
WG	Т	ug/l	Maintenance	MW13A	12/20/2016	1	0	1	0
WG	Т	ug/l	Maintenance	SUSDP15	6/6/2013	1	0	1	0
WG	Т	ug/l	Maintenance	SUSDP16	6/10/2013	0.56	1	1	0
WG	Т	ug/l	Maintenance	SUSDP17	6/11/2013	0.3	1	1	0
WG	Т	ug/l	Maintenance	SUSDP18	6/4/2013	0.35	1	0.58	1
WG	Т	ug/l	Maintenance	SUSDP52	2/3/2017	1	0	1	0

February 2020

Matrix	Fraction	Units	EA	Location	Collected	RA17 GW VOCs Butyl alcohol, tert-	D RA17 GW VOCs Butyl alcohol, tert-
WG	Т	ug/l	Maintenance	DP45	6/4/2013		
WG	T	ug/l	Maintenance	DP56	2/3/2017	40	0
WG	T	ug/l	Maintenance	DP57	2/3/2017	40	0
WG	T	ug/l	Maintenance	DP58	2/6/2017	110	1
WG	T	ug/l	Maintenance	DP59	2/3/2017	40	0
WG	T	ug/l	Maintenance	DP60	2/6/2017	40	0
WG	T	ug/l	Maintenance	DPD5	4/18/2014		
WG	T	ug/l	Maintenance	DPD6	4/17/2014		
WG	T	ug/l	Maintenance	MW13A	11/3/2014		
WG	T	ug/l	Maintenance	MW13A	12/20/2016	40	0
WG	T	ug/l	Maintenance	SUSDP15	6/6/2013		
WG	T	ug/l	Maintenance	SUSDP16	6/10/2013		
WG	T	ug/l	Maintenance	SUSDP17	6/11/2013		
WG	T	ug/l	Maintenance	SUSDP18	6/4/2013	_	-
WG	T	ug/l	Maintenance	SUSDP52	2/3/2017	40	0

Matrix	Fraction	Units	ГА	Location	Collected	DA17 CW VOCalBramadiahlaramathana	D RA17 GW VOCs Bromodichloromethane	DA47 CW VOCalChlaraform	D DA17 CW VOCalChlaraform
Matrix WG	Fraction	ua/l	EA Offices/Parking	Location DP55	2/2/2017	RATI_GW_VOCS Biomodichiolomethane	D_RATI_GW_VOCS Bioinodicilioioinethalie	RATI_GW_VOCS CIIIOIOIOIIII	D_RAT7_GW_VOCS Chiorolomi
WG	T	- 3			4/17/2014	I	0	1	0
WG	 -	ug/l	Offices/Parking	DPA2 DPA3	4/17/2014				
	 -	ug/l	Offices/Parking						
WG	 -	ug/l	Offices/Parking	DPA4	4/16/2014				
WG	I	ug/l	Offices/Parking	DPA5	4/16/2014				
WG	I	ug/l	Offices/Parking	DPB10	4/17/2014				
WG	 -	ug/l	Offices/Parking	DPB11	4/17/2014				
WG	 -	ug/l	Offices/Parking	DPB12	4/17/2014				
WG	I	ug/l	Offices/Parking	DPB2	4/17/2014				
WG	Т	ug/l	Offices/Parking	DPB3	4/16/2014				
WG	Т	ug/l	Offices/Parking	DPB5	4/16/2014				
WG	Т	ug/l	Offices/Parking	DPB6	4/16/2014				
WG	Т	ug/l	Offices/Parking	DPB7	4/16/2014				
WG	Т	ug/l	Offices/Parking	DPB9	4/17/2014				
WG	T	ug/l	Offices/Parking	DPC3	4/16/2014				
WG	T	ug/l	Offices/Parking	DPC4	4/16/2014				
WG	T	ug/l	Offices/Parking	DPC5	4/16/2014				
WG	T	ug/l	Offices/Parking	DPC7	4/17/2014				
WG	T	ug/l	Offices/Parking	DPC8	4/17/2014				
WG	T	ug/l	Offices/Parking	DPC9	4/18/2014				
WG	T	ug/l	Offices/Parking	DPD7	4/17/2014				
WG	T	ug/l	Offices/Parking	MW09A	11/3/2014	1	0	1	0
WG	T	ug/l	Offices/Parking	MW09A	12/21/2016	1	0	1.3	1
WG	Т	ug/l	Offices/Parking	MW12A	11/3/2014	1	0	1	0
WG	Т	ug/l	Offices/Parking	SUSDP09	6/11/2013	1	0	0.32	1
WG	T	ug/l	Offices/Parking	SUSDP14	6/6/2013	1	0	1	0
WG	T	ug/l	Offices/Parking	SUSDP19	6/5/2013	1	0	1	0

	T	T	T	I	la		
Matrix	Fraction	Units	EA	Location	Collected		D_RA17_GW_VOCs Methyl tert-Butyl Ether (MTBE)
WG	<u> </u>	ug/l	Offices/Parking	DP55	2/2/2017		0
WG	Т	ug/l	Offices/Parking	DPA2	4/17/2014		
WG	Т	ug/l	Offices/Parking	DPA3	4/16/2014		
WG	Т	ug/l	Offices/Parking	DPA4	4/16/2014		
WG	Т	ug/l	Offices/Parking	DPA5	4/16/2014		
WG	T	ug/l	Offices/Parking	DPB10	4/17/2014		
WG	T	ug/l	Offices/Parking	DPB11	4/17/2014		
WG	Т	ug/l	Offices/Parking	DPB12	4/17/2014		
WG	Т	ug/l	Offices/Parking	DPB2	4/17/2014		
WG	Т	ug/l	Offices/Parking	DPB3	4/16/2014		
WG	Т	ug/l	Offices/Parking	DPB5	4/16/2014		
WG	Т	ug/l	Offices/Parking	DPB6	4/16/2014		
WG	Т	ug/l	Offices/Parking	DPB7	4/16/2014		
WG	Т	ug/l	Offices/Parking	DPB9	4/17/2014		
WG	T	ug/l	Offices/Parking	DPC3	4/16/2014		
WG	T	ug/l	Offices/Parking	DPC4	4/16/2014		
WG	T	ug/l	Offices/Parking	DPC5	4/16/2014		
WG	T	ug/l	Offices/Parking	DPC7	4/17/2014		
WG	T	ug/l	Offices/Parking	DPC8	4/17/2014		
WG	T	ug/l	Offices/Parking	DPC9	4/18/2014		
WG	T	ug/l	Offices/Parking	DPD7	4/17/2014		
WG	T	ug/l	Offices/Parking	MW09A	11/3/2014	0.58	1
WG	T	ug/l	Offices/Parking	MW09A	12/21/2016	0.65	1
WG	T	ug/l	Offices/Parking	MW12A	11/3/2014		0
WG	Т	ug/l	Offices/Parking	SUSDP09	6/11/2013	5	1
WG	Т	ug/l	Offices/Parking	SUSDP14	6/6/2013	0.71	1
WG	Т	ug/l	Offices/Parking	SUSDP19	6/5/2013		1

Matrix	Fraction	Units	EA	Location	Callastad	DA47 CW VOCalTatrachlaraethylana	D RA17 GW VOCs Tetrachloroethylene	DA17 CW VOCalTriablereathers	D DA47 CW VOCalTriableraethana
Matrix WG	Taction	ug/l	Offices/Parking	DP55	Collected 2/2/2017	RATI_GW_VOCS Tetrachioroethylene	D_RAT7_GW_VOCS Tetrachioroethylene	RATI_GW_VOCS Trichloroetherie	D_RAT7_GW_VOCS Trichloroetherie
WG	+		Offices/Parking	DP35 DPA2	4/17/2014	2.3		!	0
WG	+	ug/l	Offices/Parking	DPA2 DPA3	4/17/2014	2.3	<u> </u>	19	0
WG	+	ug/l ug/l	Offices/Parking	DPA3	4/16/2014	300	<u> </u>	26	
WG	+		Offices/Parking	DPA4 DPA5	4/16/2014	260	<u> </u>	23	
WG	+	ug/l ug/l	Offices/Parking	DPB10	4/17/2014	250	<u> </u>	0.94	
WG	+	ug/l	Offices/Parking	DPB10 DPB11	4/17/2014		1	0.94	1
WG	+	ug/l	Offices/Parking	DPB12	4/17/2014	1	0	1	0
WG	+	ug/l	Offices/Parking	DPB12	4/17/2014	3	1	1	0
WG	+	ug/l	Offices/Parking	DPB3	4/16/2014	140	1	10	0
WG	+	ug/l	Offices/Parking	DPB5	4/16/2014	190	1	14	
WG	+	ug/l	Offices/Parking	DPB6	4/16/2014	330	1	22	
WG	+	ug/l	Offices/Parking	DPB7	4/16/2014	470	1	26	
WG	+	ug/l	Offices/Parking	DPB9	4/17/2014	190	1	14	
WG	+	ug/l	Offices/Parking	DPC3	4/16/2014	0.99	1	14	1
WG	+	ug/l	Offices/Parking	DPC3	4/16/2014	53	1	4.1	1
WG	- -	ug/l	Offices/Parking	DPC5	4/16/2014	69	1	4.2	
WG	- -	ug/l	Offices/Parking	DPC7	4/17/2014	88	1	6.9	
WG	- -	ug/l	Offices/Parking	DPC8	4/17/2014	1	1	0.9	1
WG	 	ug/l	Offices/Parking	DPC9	4/18/2014	0.96	1	1	0
WG	 	ug/l	Offices/Parking	DPD7	4/17/2014			1	0
WG	 	ug/l	Offices/Parking	MW09A	11/3/2014	130	1	15	1
WG	 	ug/l	Offices/Parking	MW09A	12/21/2016		1	41	1
WG	T T	ug/l	Offices/Parking	MW12A	11/3/2014	1	0	1	0
WG	T _T	ug/l	Offices/Parking	SUSDP09	6/11/2013	160	1	12	1
WG	T _T	ug/l	Offices/Parking	SUSDP14	6/6/2013	100		1	
WG	Ť	ug/l		SUSDP19	6/5/2013	1	0	1	0

Matrix	Fraction	Units	EA	Location	Collected	RA17 GW VOCs Vinyl Chloride	D RA17 GW VOCs Vinyl Chloride
WG	T	ug/l	Offices/Parking	DP55	2/2/2017	1	0
WG	T	ug/l	Offices/Parking	DPA2	4/17/2014	1	0
WG	T	ug/l	Offices/Parking	DPA3	4/16/2014	1	0
WG	Т	ug/l	Offices/Parking	DPA4	4/16/2014	1	0
WG	Т	ug/l	Offices/Parking	DPA5	4/16/2014	1	0
WG	Т	ug/l	Offices/Parking	DPB10	4/17/2014	1	0
WG	Т	ug/l	Offices/Parking	DPB11	4/17/2014	1	0
WG	Т	ug/l	Offices/Parking	DPB12	4/17/2014	1	0
WG	Т	ug/l	Offices/Parking	DPB2	4/17/2014	1	0
WG	Т	ug/l	Offices/Parking	DPB3	4/16/2014	1	0
WG	Т	ug/l	Offices/Parking	DPB5	4/16/2014	1	0
WG	T	ug/l	Offices/Parking	DPB6	4/16/2014	1	0
WG	T	ug/l	Offices/Parking	DPB7	4/16/2014	1	0
WG	T	ug/l	Offices/Parking	DPB9	4/17/2014	1	0
WG	T	ug/l	Offices/Parking	DPC3	4/16/2014	1	0
WG	T	ug/l	Offices/Parking	DPC4	4/16/2014	1	0
WG	T	ug/l	Offices/Parking	DPC5	4/16/2014	1	0
WG	T	ug/l	Offices/Parking	DPC7	4/17/2014	1	0
WG	T	ug/l	Offices/Parking	DPC8	4/17/2014	1	0
WG	T	ug/l	Offices/Parking	DPC9	4/18/2014	1	0
WG	T	ug/l	Offices/Parking	DPD7	4/17/2014	1	0
WG	T	ug/l	Offices/Parking	MW09A	11/3/2014	1	0
WG	T	ug/l	Offices/Parking	MW09A	12/21/2016	5.3	1
WG	Т	ug/l	Offices/Parking	MW12A	11/3/2014	1	0
WG	Т	ug/l	Offices/Parking	SUSDP09	6/11/2013	1	0
WG	Т	ug/l	Offices/Parking	SUSDP14	6/6/2013	1	0
WG	Т	ug/l	Offices/Parking	SUSDP19	6/5/2013	1	0

Matrix	Fraction	Units	EA	Location	Collected	RA17_GW_VOCs Bromodichloromethane	D_RA17_GW_VOCs Bromodichloromethane	RA17_GW_VOCs Chloroform	D_RA17_GW_VOCs Chloroform
WG	Т	ug/l	Substation #7	DP33	4/4/2013	1	0	1	0
WG	Т	ug/l	Substation #7	MW14A	11/3/2014	1	0	1	0
WG	Т	ug/l	Substation #7	MW14A	12/20/2016	1	0	1	0
WG	Т	ug/l	Substation #7	MW15A	11/3/2014	1	0	1	0
WG	Т	ug/l	Substation #7	MW15A	12/21/2016	1	0	1	0
WG	Т	ug/l	Substation #7	SUSDP20	6/12/2013	1	0	1	0
WG	Т	ug/l	Substation #7	SUSDP23	6/12/2013	1	0	1	0
WG	T	ug/l	Substation #7	SUSDP24	6/4/2013	1	0	1	0

Matrix	Fraction	Units	EA	Location	Collected	RA17_GW_VOCs Methyl tert-Butyl Ether (MTBE)	D_RA17_GW_VOCs Methyl tert-Butyl Ether (MTBE)	RA17_GW_VOCs Tetrachloroethylene
WG	Т	ug/l	Substation #7	DP33	4/4/2013	21	1	0.81
WG	T	ug/l	Substation #7	MW14A	11/3/2014	1	0	0.96
WG	T	ug/l	Substation #7	MW14A	12/20/2016	1	0	0.73
WG	T	ug/l	Substation #7	MW15A	11/3/2014	4.3	1	1
WG	T	ug/l	Substation #7	MW15A	12/21/2016	8.3	1	1
WG	T	ug/l	Substation #7	SUSDP20	6/12/2013	14	1	0.24
WG	T	ug/l	Substation #7	SUSDP23	6/12/2013	0.33	1	1
WG	T	ug/l	Substation #7	SUSDP24	6/4/2013	1	0	1

Matrix	Fraction	Units	EA	Location	Collected	D_RA17_GW_VOCs Tetrachloroethylene	RA17_GW_VOCs Trichloroethene	D_RA17_GW_VOCs Trichloroethene
WG	Т	ug/l	Substation #7	DP33	4/4/2013	•	0.17	1
WG	Т	ug/l	Substation #7	MW14A	11/3/2014		1	0
WG	Т	ug/l	Substation #7	MW14A	12/20/2016		1	0
WG	Т	ug/l	Substation #7	MW15A	11/3/2014		1	0
WG	Т	ug/l	Substation #7	MW15A	12/21/2016		1	0
WG	Т	ug/l	Substation #7	SUSDP20	6/12/2013		1	0
WG	T	ug/l	Substation #7	SUSDP23	6/12/2013		1	0
WG	Т	ug/l	Substation #7	SUSDP24	6/4/2013		1	0

Matri	Fraction	Units	EA	Location	Collected	RA17_GW_VOCs	Bromodichloromethane	D_RA17_GW	_VOCs Bromodichloromethane	RA17_GW_VOCs Chloro	form	D_RA17_GW_VOCs Chloroform
WG	T	ug/l	Transformer Shop	DP35	3/28/2013		1		0		1	0
WG	Т	ug/l	Transformer Shop	DP46	6/5/2013		1		0		0.44	1
WG	Т	ug/l	Transformer Shop	DP47	6/5/2013		1		0		1	0
WG	T	ug/l	Transformer Shop	DP54	2/2/2017		1		0		1	0
WG	Т	ug/l	Transformer Shop	SUSDP22	6/12/2013		1		0		1	0

Matrix	Fraction	Units	EA	Location	Collected	RA17_GW_VOCs Methyl tert-Butyl Ether (MTBE)	D_RA17_GW_VOCs Methyl tert-Butyl Ether (MTBE)
WG	T	ug/l	Transformer Shop	DP35	3/28/2013	1	0
WG	Т	ug/l	Transformer Shop	DP46	6/5/2013	1	0
WG	T	ug/l	Transformer Shop	DP47	6/5/2013	1	0
WG	T	ug/l	Transformer Shop	DP54	2/2/2017	1	0
WG	T	ug/l	Transformer Shop	SUSDP22	6/12/2013	1	0

Matrix	Fraction	Units	EA	Location	Collected	RA17_GW_VOCs Tetrachloroethylene	D_RA17_GW_VOCs Tetrachloroethylene	RA17_GW_VOCs Trichloroethene	D_RA17_GW_VOCs Trichloroethene
WG	Т	ug/l	Transformer Shop	DP35	3/28/2013	0.2	1	1	0
WG	T	ug/l	Transformer Shop	DP46	6/5/2013	1	0	1	0
WG	Т	ug/l	Transformer Shop	DP47	6/5/2013	1	0	1	0
WG	T	ug/l	Transformer Shop	DP54	2/2/2017	1	0	1	0
WG	Т	ug/l	Transformer Shop	SUSDP22	6/12/2013	1	0	1	0

		_							
Matrix	Fraction	Units	EA	Location	Collected	RA17_GW_VOCs Bromodichloromethane	D_RA17_GW_VOCs Bromodichloromethane	RA17_GW_VOCs Chloroform	D_RA17_GW_VOCs Chloroform
WG	Т	ug/l	Vehicle Refueling	DP28	4/2/2013	1	0	1	0
WG	Т	ug/l	Vehicle Refueling	DP38	5/23/2013	1	0	1	0
WG	Т	ug/l	Vehicle Refueling	MW06A	11/4/2014	1	0	1	0
WG	Т	ug/l	Vehicle Refueling	SUSDP37	5/23/2013	1	0	3.3	1
WG	Т	ug/l	Vehicle Refueling	SUSDP37	5/23/2013	1	0	1	0
WG	T	ug/l	Vehicle Refueling	SUSDP39	5/22/2013	1	0	1	0

Matrix	Fraction	Units	EA	Location	Collected	RA17_GW_VOCs Methyl tert-Butyl Ether (MTBE)	D_RA17_GW_VOCs Methyl tert-Butyl Ether (MTBE)
WG	Т	ug/l	Vehicle Refueling	DP28	4/2/2013	1.2	1
WG	Т	ug/l	Vehicle Refueling	DP38	5/23/2013	1	0
WG	Т	ug/l	Vehicle Refueling	MW06A	11/4/2014	1	0
WG	Т	ug/l	Vehicle Refueling	SUSDP37	5/23/2013	1.6	1
WG	Т	ug/l	Vehicle Refueling	SUSDP37	5/23/2013	1	0
WG	Т	ug/l	Vehicle Refueling	SUSDP39	5/22/2013	1	0

Matrix	Fraction	Units	EA	Location	Collected	RA17_GW_VOCs Tetrachloroethylene	D_RA17_GW_VOCs Tetrachloroethylene	RA17_GW_VOCs Trichloroethene	D_RA17_GW_VOCs Trichloroethene
WG	Т	ug/l	Vehicle Refueling	DP28	4/2/2013	1	0	1	0
WG	Т	ug/l	Vehicle Refueling	DP38	5/23/2013	1	0	1	0
WG	Т	ug/l	Vehicle Refueling	MW06A	11/4/2014	0.26	1	1	0
WG	Т	ug/l	Vehicle Refueling	SUSDP37	5/23/2013	1	0	1	0
WG	Т	ug/l	Vehicle Refueling	SUSDP37	5/23/2013	1	0	1	0
WG	Т	ug/l	Vehicle Refueling	SUSDP39	5/22/2013	1	0	1	0

Matrix 5	antion	Unito	Leastier	Callagia	Donath	DA40 CE DisvinEuropolTCDD TECHIL D. DA40 CE	Disvise respectively	DA40 CE MatalalAlum'	D. DA40, CF. Metelel Alus-1	DA10 CE MatalalAntin	DA40 CE MatalalAnti
Matrix Fra	action	Units	Location	Collected	Depth	RA18_SE_DioxinFurans TCDD TEQ HH	=_DioxinFurans TCDD TEQ HH		D_RA18_SE_Metals Aluminum		D_RA18_SE_Metals Antimony
SE	<u> </u>	mg/kg	R5-03	7/25/2014	0 - 0.5 ft			7500		0.62	
SE	1	mg/kg	R5-05	7/30/2014	0 - 0.5 ft	0.00000000		8000	1	0.39	
SE		mg/kg	R5-09	6/28/2016	0 - 0.5 ft	0.00000702	1				
SE	I	mg/kg	R6-04	7/28/2014	0 - 0.5 ft			15500		0.64	
SE	T	mg/kg	R6-05	8/4/2014	0 - 0.5 ft			4400	1	1.7	
	T	mg/kg	R6-06	8/4/2014	0 - 0.5 ft			7100	1	0.46	
OL.		mg/kg	R6-18	4/30/2015	0 - 0.5 ft	0.00000914	1	12000	1	0.58	1
SE		mg/kg	R6-21	4/29/2015	0 - 0.5 ft	0.0000789	1	6000	1	0.67	
~_	T	mg/kg	R6-22	4/30/2015	0 - 0.5 ft	0.0000119	1	12000	1	0.48	1
SE	T	mg/kg	R6-23	4/30/2015	0 - 0.5 ft	0.000084	1	12000	1	0.47	1
SE		mg/kg	R6-30	6/9/2016	0 - 0.5 ft	0.000011	1	7500	1	0.785	
SE	T	mg/kg	R6-31	6/28/2016	0 - 0.5 ft	0.00000775	1	8200	1	0.82	1
SE	T	mg/kg	R6-32	6/28/2016	0 - 0.5 ft	0.000369	1	4300	1	1.2	
SE	T	mg/kg	R6-33	6/28/2016	0 - 0.5 ft	0.00000712	1	6300	1	0.68	1
SE	T	mg/kg	SED1.5C	6/21/2017	0 - 0.33 ft			5600	1	0.6	1
SE		mg/kg	SED10C	11/11/2013	0 - 0.5 ft			5300	1	0.31	1
SE		mg/kg	SED1C	11/7/2013	0 - 0.5 ft			5200	1	0.39	1
SE		ma/ka	SED2.5B	11/7/2013	0 - 0.5 ft			6500	1	0.39	1
SE		mg/kg	SED2C	11/6/2013	0 - 0.5 ft	0.0000525	1	6200	1	0.5	1
SE	Т	mg/kg	SED4C	11/12/2013	0 - 0.5 ft			10000	1	0.64	,
SE	Т	mg/kg	SED6.5D	11/25/2013	0 - 0.5 ft			13000	1	0.77	,
SE	T	mg/kg	SED6.5D	6/9/2017	0 - 0.33 ft	0.0000131	1	8200	1	1.3	,
	Т	mg/kg	SED6.5E	11/25/2013	0 - 0.5 ft	0.000205	1	6000	1	1.4	
SE		ma/ka	SED6.5E	6/8/2017	0 - 0.33 ft	0.000421	1	7000	1	2.8	,
		mg/kg	SED6C	11/14/2013	0 - 0.5 ft		·	9800	1	0.49	
SE		mg/kg	SED6C	6/7/2017	0 - 0.33 ft	0.0000129	1	13000	1	1	
SE			SED7.5D	11/25/2013	0 - 0.5 ft	0.0000120		13000	1	0.43	
SE	÷ †	ma/ka	SED7.5D	6/9/2017	0 - 0.33 ft	0.0000537	1	12000	1	1.7	
SE	÷ +	ma/ka	SED7.5E	11/25/2013	0 - 0.5 ft	0.000001		15000	1	1	
SE	÷	ma/ka	SED7.5E	6/8/2017	0 - 0.33 ft	0.0000375	1	8900	1	2.3	
		mg/kg	SED7D	11/25/2013	0 - 0.55 ft	0.0000373	'	7300	1	0.69	
SE		mg/kg	SED7D	6/9/2017	0 - 0.33 ft	0.0000275	1	10000	1	1.1	
SE		mg/kg	SED7E	11/25/2013	0 - 0.55 ft	0.0000213	'	4500	<u>'</u>	1.2	
			SED7E	6/8/2017	0 - 0.33 ft	0.000032	4	4000	1	1.1	
SE SE		mg/kg	SED7E	6/22/2017	0 - 0.33 ft	0.000032	1	3700	1	1.1	
		mg/kg	SED7E SED7F	11/25/2013		0.000707		7300	1	2.8	
SE	1	mg/kg			0 - 0.5 ft	0.000707	1		1		
SE	<u> </u>	mg/kg	SED7F	6/8/2017	0 - 0.33 ft	0.0000269	1	7500 2400	1	43 0.38	
SE		mg/kg	SED7G	1/30/2014	0 - 0.5 ft	0.0000106	1		1		
SE	1	mg/kg	SED8C	11/14/2013	0 - 0.5 ft	0.0000596	1	7700	1	0.35	
SE	ſ	mg/kg	SED8C	6/7/2017	0 - 0.33 ft	0.0000892	1	10000		0.89	
SE	1		SED9.5B	11/11/2013	0 - 0.5 ft	0.0000105		4500	1	0.27	
SE		mg/kg	SED9C	11/11/2013	0 - 0.5 ft	0.00000122	1	6300	1	0.48	
SE	ſ	ug/kg	R5-03	7/25/2014	0 - 0.5 ft						
SE	ſ	ug/kg	R5-05	7/30/2014	0 - 0.5 ft						
SE	T	ug/kg	R6-04	7/28/2014	0 - 0.5 ft						
SE	T	ug/kg	R6-05	8/4/2014	0 - 0.5 ft						
SE	T	ug/kg	R6-06	8/4/2014	0 - 0.5 ft						
SE	T	ug/kg	R6-18	4/30/2015	0 - 0.5 ft						
SE	T	ug/kg	R6-21	4/29/2015	0 - 0.5 ft		<u> </u>				
	T	ug/kg	R6-22	4/30/2015	0 - 0.5 ft						
SE	T	ug/kg	R6-23	4/30/2015	0 - 0.5 ft						
SE	T	ug/kg	R6-30	6/9/2016	0 - 0.5 ft						
SE	T	ug/kg	R6-31	6/28/2016	0 - 0.5 ft						
SE	Т	ug/kg	R6-32	6/28/2016	0 - 0.5 ft						
SE	т	ug/kg	R6-33	6/28/2016	0 - 0.5 ft						
SE											

Matrix	Fraction	Units	Location	Collected	Depth	RA18 SE Metals Arsenic	D RA18 SE Metals Arsenic	RA18 SE MetalsiCobalt	D RA18 SE Metals Cobalt	RA18 SE MetalsiManganese	D_RA18_SE_Metals Manganese
SE	T	mg/kg	R5-03	7/25/2014	0 - 0.5 ft	3.2	1	11		170	1
SE	Ť	mg/kg	R5-05	7/30/2014	0 - 0.5 ft	2.3	1	10		180	<u>.</u> 1
SE	Ť	mg/kg	R5-09	6/28/2016	0 - 0.5 ft						·
SE	Ť	mg/kg	R6-04	7/28/2014	0 - 0.5 ft	9.05	1	19.5		305	1
SE	Ť	mg/kg	R6-05	8/4/2014	0 - 0.5 ft	7.1	1	6.9			<u>.</u> 1
SE	Ť	mg/kg	R6-06	8/4/2014	0 - 0.5 ft	2.9	1	11		210	1
SE	Ť	mg/kg	R6-18	4/30/2015	0 - 0.5 ft	5.1	1	25			1
SE	Ť	mg/kg	R6-21	4/29/2015	0 - 0.5 ft	5.1	1	9.8			1
SE	Ť	mg/kg	R6-22	4/30/2015	0 - 0.5 ft	4.3	1	18			1
SE	Ť	mg/kg	R6-23	4/30/2015	0 - 0.5 ft	3.8	1	18			1
SE	Ť	mg/kg	R6-30	6/9/2016	0 - 0.5 ft	4.55	1	14.5		220	1
SE	Ť	mg/kg	R6-31	6/28/2016	0 - 0.5 ft	4.1	1	14.5			1
SE	÷	mg/kg	R6-32	6/28/2016	0 - 0.5 ft	4.1	1	9.6		97	1
SE	Ť	mg/kg	R6-33	6/28/2016	0 - 0.5 ft	3.3	1	14			1
SE	Ť	mg/kg	SED1.5C	6/21/2017	0 - 0.33 ft	3.3	- '	13			1
SE	Ť	mg/kg	SED1.3C	11/11/2013	0 - 0.55 ft	2.1	1	16			1
SE	Ť	mg/kg	SED10C	11/7/2013	0 - 0.5 ft	2.1	1	11	,		1
SE	÷	mg/kg	SED2.5B	11/7/2013	0 - 0.5 ft	1.9		12		210	1
SE	Ť	mg/kg	SED2.3B	11/6/2013	0 - 0.5 ft	2.6	1	18		200	1
SE	Ť	mg/kg	SED4C	11/12/2013	0 - 0.5 ft	3.4	1	19			1
SE	Ť	mg/kg	SED4C SED6.5D	11/25/2013	0 - 0.5 ft	3.4	1	19			1
SE	÷	mg/kg	SED6.5D	6/9/2017	0 - 0.5 it	7	I	16			1
SE	Ť	mg/kg	SED6.5E	11/25/2013	0 - 0.55 ft	5.9	1	16			1
SE	Ť	mg/kg	SED6.5E	6/8/2017	0 - 0.33 ft	6.1	1	16			1
SE	Ť		SED6.5E	11/14/2013	0 - 0.55 ft	3.6	1	19			1
	Ť	mg/kg		6/7/2017			I	22			1
SE SE	-	mg/kg	SED6C SED7.5D	11/25/2013	0 - 0.33 ft 0 - 0.5 ft	6.4		15		180	1
	Ť	mg/kg				6.8	I	20			1
SE SE	Ť	mg/kg	SED7.5D SED7.5E	6/9/2017 11/25/2013	0 - 0.33 ft	17	I	32			1
SE	- T	mg/kg	SED7.5E	6/8/2017	0 - 0.5 ft 0 - 0.33 ft	17		23		190	1
SE	Ť	mg/kg	SED7D	11/25/2013	0 - 0.55 ft	4.3	<u> </u>	16			<u>'</u>
SE	+	mg/kg	SED7D SED7D	6/9/2017	0 - 0.5 it		I				1
SE	-	mg/kg	SED7E	11/25/2013	0 - 0.55 ft	5.7 4.6		19 13		120	1
SE	Ť	mg/kg	SED7E SED7E			5.1	I	9.3			1
SE	T	mg/kg	SED7E SED7E	6/8/2017 6/22/2017	0 - 0.33 ft 0 - 0.33 ft	5.6		9.3			1
SE		mg/kg	SED7E SED7F	11/25/2013		5.6		13			1
	T	mg/kg		6/8/2017	0 - 0.5 ft	7.2				200	1
SE	T	mg/kg	SED7F SED7G	1/30/2014	0 - 0.33 ft	7.2	1	14 7.1			1
SE SE	T	mg/kg	SED/G SED8C	11/14/2013	0 - 0.5 ft	3.6					1
		mg/kg		6/7/2017	0 - 0.5 ft			16			1
SE SE	T	mg/kg	SED8C SED9.5B	11/11/2013	0 - 0.33 ft	5.1	1	18 9.1		000	1
SE	T	mg/kg	SED9.5B SED9C	11/11/2013	0 - 0.5 ft 0 - 0.5 ft	2.1	1	9.1			1
SE	T	mg/kg	R5-03	7/25/2014	0 - 0.5 ft	2.5		12		230	1
SE	T	ug/kg	R5-03	7/30/2014	0 - 0.5 π 0 - 0.5 ft						
	T	ug/kg									
SE	T	ug/kg	R6-04	7/28/2014	0 - 0.5 ft						
SE	I T	ug/kg	R6-05	8/4/2014	0 - 0.5 ft						
SE	T	ug/kg	R6-06	8/4/2014	0 - 0.5 ft						
SE	T	ug/kg	R6-18	4/30/2015	0 - 0.5 ft						
SE	<u> </u>	ug/kg	R6-21	4/29/2015	0 - 0.5 ft						
SE	T	ug/kg	R6-22	4/30/2015	0 - 0.5 ft						
SE	T	ug/kg	R6-23	4/30/2015	0 - 0.5 ft						
SE	T	ug/kg	R6-30	6/9/2016	0 - 0.5 ft						
SE	T	ug/kg	R6-31	6/28/2016	0 - 0.5 ft						
SE	T	ug/kg	R6-32	6/28/2016	0 - 0.5 ft						
SE	T	ug/kg	R6-33	6/28/2016	0 - 0.5 ft						

Matrix	Fraction	Units	Location	Collected	Depth	RA18 SE Metals Nickel D RA18 SE Metals Nickel	RA18 SE Metals Thallium	D RA18 SE Metals Thallium	RA18 SE MetalsIVanadium	D RA18 SE Metals Vanadium
SE	T	mg/kg	R5-03	7/25/2014	0 - 0.5 ft	22 1	0.16	1	33	1
SE	Ť	mg/kg	R5-05	7/30/2014	0 - 0.5 ft	20 1	0.15	1	27	1
SE	Ť	mg/kg	R5-09	6/28/2016	0 - 0.5 ft		99		:	·
SE	Ť	mg/kg	R6-04	7/28/2014	0 - 0.5 ft	59 1	0.33	1	140	1
SE	Ť	mg/kg	R6-05	8/4/2014	0 - 0.5 ft	110 1	0.13	1	180	<u>i</u>
SE	Ť	mg/kg	R6-06	8/4/2014	0 - 0.5 ft	24 1	0.175	1	22	1
SE	Ť	mg/kg	R6-18	4/30/2015	0 - 0.5 ft	42 1	0.28	1	42	<u>i</u>
SE	÷	mg/kg	R6-21	4/29/2015	0 - 0.5 ft	28 1	0.15	1	59	<u>i</u>
SE	Ť	mg/kg	R6-22	4/30/2015	0 - 0.5 ft	36 1	0.25	1	40	<u>i</u>
SE	Ť	mg/kg	R6-23	4/30/2015	0 - 0.5 ft	33 1	0.22	1		1
SE	÷	mg/kg	R6-30	6/9/2016	0 - 0.5 ft	27.5	0.18	1	34	1
SE	Ť	mg/kg	R6-31	6/28/2016	0 - 0.5 ft	29 1	0.19	1	35	1
SE	÷	mg/kg	R6-32	6/28/2016	0 - 0.5 ft	50 1	0.13	1	75	<u>i</u>
SE	÷	mg/kg	R6-33	6/28/2016	0 - 0.5 ft	25 1	0.16	1	28	1
SE	Ť	mg/kg	SED1.5C	6/21/2017	0 - 0.33 ft	23 1	0.15	1	27	1
SE	÷	mg/kg	SED10C	11/11/2013	0 - 0.5 ft	26 1	0.17	1	23	1
SE	Ť	mg/kg	SED1C	11/7/2013	0 - 0.5 ft	19 1	0.17	1	21	1
SE	÷	mg/kg	SED2.5B	11/7/2013	0 - 0.5 ft	22 1	0.15	1	22	1
SE	Ť	mg/kg	SED2.3B	11/6/2013	0 - 0.5 ft	22 1	0.10	1	27	1
SE	Ť	mg/kg	SED4C	11/12/2013	0 - 0.5 ft	37 1	0.19	1	41	1
SE	Ť	mg/kg	SED6.5D		0 - 0.5 ft	91 1	0.53	1	250	1
SE	÷	mg/kg	SED6.5D	6/9/2017	0 - 0.33 ft	47 1	0.33	- 1	63	1
SE	Ť	mg/kg	SED6.5E	11/25/2013	0 - 0.5 ft	65 1	0.16		120	1
SE	÷	mg/kg	SED6.5E	6/8/2017	0 - 0.33 ft	47 1	0.10	- 1	77	1
SE	Ť	mg/kg	SED6C	11/14/2013	0 - 0.55 ft	36 1	0.10	- 1	37	1
SE	÷	mg/kg	SED6C	6/7/2017	0 - 0.33 ft	42 1	0.23	- 1	48	1
SE	<u> </u>	mg/kg	SED7.5D	11/25/2013	0 - 0.55 ft	59 1	0.24	1	180	1
SE	Ť	mg/kg	SED7.5D	6/9/2017	0 - 0.33 ft	57 1	0.35	- 1	88	1
SE	÷	mg/kg	SED7.5E	11/25/2013	0 - 0.55 ft	150 1	0.63	1	360	1
SE	÷	mg/kg	SED7.5E	6/8/2017	0 - 0.33 ft	97 1	0.03	1	160	1
SE	÷	mg/kg	SED7D	11/25/2013	0 - 0.55 ft	50 1	0.27	1	110	1
SE	<u> </u>	mg/kg	SED7D	6/9/2017	0 - 0.33 ft	46 1	0.23	1	56	1
SE	÷	mg/kg	SED7E	11/25/2013	0 - 0.5 ft	120 1	0.24	1	150	1
SE	÷	mg/kg	SED7E	6/8/2017	0 - 0.33 ft	56 1	0.13	1	110	1
SE	÷	mg/kg	SED7E	6/22/2017	0 - 0.33 ft	38 1	0.13	1	94	1
SE	<u> </u>		SED7F	11/25/2013	0 - 0.55 ft	160 1	0.14	1	440	1
	÷	mg/kg		6/8/2017	0 - 0.33 ft	75 1	0.13	1	140	- 1
SE SE	<u> </u>	mg/kg mg/kg	SED7F SED7G	1/30/2014	0 - 0.33 π 0 - 0.5 ft	75 84	0.037	1	140	1
SE	÷	mg/kg	SED/G SED8C	11/14/2013	0 - 0.5 ft	28 1	0.037	I	36	1
SE	÷	mg/kg	SED8C	6/7/2017	0 - 0.33 ft	35 1	0.10	I	39	1
SE	÷	mg/kg	SED9.5B		0 - 0.33 ft	15 1	0.22		25	1
SE	÷		SED9.5B SED9C	11/11/2013	0 - 0.5 ft	20 1	0.12	1	29	1
SE	<u> </u>	mg/kg ug/kg	R5-03	7/25/2014	0 - 0.5 ft	20 1	0.16		29	
SE	÷	ug/kg ug/kg	R5-05	7/30/2014	0 - 0.5 ft					
SE	÷		R6-04	7/28/2014	0 - 0.5 ft					
SE	÷	ug/kg ug/kg	R6-04 R6-05	8/4/2014	0 - 0.5 ft					
SE	<u> </u>	ug/kg ug/kg	R6-05	8/4/2014	0 - 0.5 ft		1		1	
SE	÷		R6-18	4/30/2015	0 - 0.5 ft					
SE	<u> </u>	ug/kg	R6-18	4/29/2015	0 - 0.5 ft		1		1	
SE	+	ug/kg	R6-21	4/29/2015	0 - 0.5 ft		1		1	
	- I	ug/kg					1			
SE	I T	ug/kg	R6-23	4/30/2015	0 - 0.5 ft		-			
SE	- I	ug/kg	R6-30	6/9/2016	0 - 0.5 ft					
SE	<u> </u>	ug/kg	R6-31	6/28/2016	0 - 0.5 ft		-			
SE	_	ug/kg	R6-32	6/28/2016	0 - 0.5 ft		1		1	
SE	ı	ug/kg	R6-33	6/28/2016	0 - 0.5 ft		1		1	

Matrix	Fraction	Units	Location	Collected	Depth	RA18 SE PestPCBs PCB, Total Aroclors (AECOM Calc)	D RA18 SE PestPCBs PCB, Total Aroclors (AECOM Calc)
SE	T	mg/kg	R5-03	7/25/2014	0 - 0.5 ft	0.097	
SE	÷	mg/kg	R5-05	7/30/2014	0 - 0.5 ft	0.037	
SE	Ť	mg/kg	R5-09	6/28/2016	0 - 0.5 ft	0.11	
SE	T		R6-04	7/28/2014	0 - 0.5 ft	0.98	
SE	T	mg/kg	R6-04 R6-05	8/4/2014	0 - 0.5 ft	1.4	
		mg/kg		8/4/2014			
SE	T	mg/kg	R6-06		0 - 0.5 ft	0.0845	
SE	T	mg/kg	R6-18	4/30/2015	0 - 0.5 ft	0.088	
SE	T	mg/kg	R6-21	4/29/2015	0 - 0.5 ft	0.42	
SE	T	mg/kg	R6-22	4/30/2015	0 - 0.5 ft	0.089	
SE	T	mg/kg	R6-23	4/30/2015	0 - 0.5 ft	0.066	
SE	T	mg/kg	R6-30	6/9/2016	0 - 0.5 ft	0.24	
SE	T	mg/kg	R6-31	6/28/2016	0 - 0.5 ft	0.043	
SE	T	mg/kg	R6-32	6/28/2016	0 - 0.5 ft	0.73	
SE	T	mg/kg	R6-33	6/28/2016	0 - 0.5 ft	0.022	
SE	Т	mg/kg	SED1.5C	6/21/2017	0 - 0.33 ft	0.087	
SE	Т	mg/kg	SED10C	11/11/2013	0 - 0.5 ft	0.077	
SE	Т	mg/kg	SED1C	11/7/2013	0 - 0.5 ft	0.11	
SE	T	mg/kg	SED2.5B	11/7/2013	0 - 0.5 ft	0.076	
SE	Ť	mg/kg	SED2C	11/6/2013	0 - 0.5 ft	0.23	
SE	Ť	mg/kg	SED4C	11/12/2013	0 - 0.5 ft	0.39	
SE	Ť	mg/kg	SED6.5D	11/25/2013	0 - 0.5 ft	1.8	
SE	Ť	mg/kg	SED6.5D	6/9/2017	0 - 0.33 ft	0.16	
SE	T	mg/kg	SED6.5E	11/25/2013	0 - 0.55 ft	0.10	
SE	T	mg/kg	SED6.5E	6/8/2017	0 - 0.5 it	0.4	
SE	T		SED6.5E SED6C	11/14/2013	0 - 0.5 ft	0.25	
		mg/kg					
SE	T	mg/kg	SED6C	6/7/2017	0 - 0.33 ft	0.29	
SE	T	mg/kg	SED7.5D	11/25/2013	0 - 0.5 ft	0.87	
SE	T	mg/kg	SED7.5D	6/9/2017	0 - 0.33 ft	0.54	
SE	T	mg/kg	SED7.5E	11/25/2013	0 - 0.5 ft	1.9	
SE	T	mg/kg	SED7.5E	6/8/2017	0 - 0.33 ft	0.78	
SE	T	mg/kg	SED7D	11/25/2013	0 - 0.5 ft	0.62	
SE	T	mg/kg	SED7D	6/9/2017	0 - 0.33 ft	0.053	
SE	T	mg/kg	SED7E	11/25/2013	0 - 0.5 ft	0.96	
SE	T	mg/kg	SED7E	6/8/2017	0 - 0.33 ft	0.63	
SE	T	mg/kg	SED7E	6/22/2017	0 - 0.33 ft	0.79	
SE	T	mg/kg	SED7F	11/25/2013	0 - 0.5 ft	0.77	
SE	T	mg/kg	SED7F	6/8/2017	0 - 0.33 ft	0.3	
SE	Т	mg/kg	SED7G	1/30/2014	0 - 0.5 ft	0.23	
SE	Т	mg/kg	SED8C	11/14/2013	0 - 0.5 ft	0.59	
SE	Т	mg/kg	SED8C	6/7/2017	0 - 0.33 ft	0.26	
SE	Т	mg/kg	SED9.5B	11/11/2013	0 - 0.5 ft	0.38	
SE	Т	mg/kg	SED9C	11/11/2013	0 - 0.5 ft	0.17	
SE	Т	ug/kg	R5-03	7/25/2014	0 - 0.5 ft		
SE	Ť	ug/kg	R5-05	7/30/2014	0 - 0.5 ft		
SE	Ť	ug/kg	R6-04	7/28/2014	0 - 0.5 ft		
SE	Ť	ug/kg	R6-05	8/4/2014	0 - 0.5 ft		
SE	i i	ug/kg	R6-06	8/4/2014	0 - 0.5 ft		
SE	Ť	ug/kg	R6-18	4/30/2015	0 - 0.5 ft		
SE	Ť	ug/kg	R6-21	4/29/2015	0 - 0.5 ft		
SE	T		R6-22	4/30/2015	0 - 0.5 ft		
SE	T	ug/kg	R6-22	4/30/2015	0 - 0.5 ft		
		ug/kg					
SE	T	ug/kg	R6-30	6/9/2016	0 - 0.5 ft		
SE	T	ug/kg	R6-31	6/28/2016	0 - 0.5 ft		
SE	T	ug/kg	R6-32	6/28/2016	0 - 0.5 ft		
SE		ug/kg	R6-33	6/28/2016	0 - 0.5 ft	1	1

Matrix Frantisa	Llaita	Leastian	Callested	Depth	DA10, CE. Datroloum/Discol Dance Occasion (C10, C20)	D. DA10, CE. Datrala imiDianal Dance Organics (C10, C20)	RA18 SE SVOCs Benzo(a)anthracene	D RA18 SE SVOCs Benzo(a)anthracene
Matrix Fraction SE T		Location	Collected	0 - 0.5 ft	RA18_SE_Petroleum Diesel Range Organics (C10-C20)	D_RA18_SE_Petroleum Diesel Range Organics (C10-C20)	0.0	
SE T	mg/kg mg/kg	R5-03 R5-05	7/25/2014 7/30/2014	0 - 0.5 ft			0.8	5 1
SE T	mg/kg	R5-05	6/28/2016	0 - 0.5 ft			0.0	0
SE I	mg/kg	R5-09	7/28/2014					
SE T	mg/kg	R6-04	7/28/2014	0 - 0.5 ft			0.3	
SE T	mg/kg	R6-05	8/4/2014	0 - 0.5 ft			2.:	
SE T	mg/kg	R6-06	8/4/2014	0 - 0.5 ft			0.3	7 1
SE T	mg/kg	R6-18	4/30/2015	0 - 0.5 ft				1 1
SE T	mg/kg	R6-21	4/29/2015	0 - 0.5 ft			0.2	
SE T	mg/kg	R6-22	4/30/2015	0 - 0.5 ft			0.0	
SE T	mg/kg	R6-23	4/30/2015	0 - 0.5 ft			0.72	
SE T	mg/kg	R6-30	6/9/2016	0 - 0.5 ft			0.5	
SE T	mg/kg	R6-31	6/28/2016	0 - 0.5 ft			0.58	B 1
SE T	mg/kg	R6-32	6/28/2016	0 - 0.5 ft				1
SE T	mg/kg	R6-33	6/28/2016	0 - 0.5 ft			0.5	2 1
SE T	mg/kg	SED1.5C	6/21/2017	0 - 0.33 ft	48	1	0.4	4 1
SE T	mg/kg	SED10C	11/11/2013	0 - 0.5 ft			0.4	1
SE T	mg/kg	SED1C	11/7/2013	0 - 0.5 ft			0.4	9 1
SE T	mg/kg	SED2.5B	11/7/2013	0 - 0.5 ft			0.6	
SE T	mg/kg		11/6/2013	0 - 0.5 ft			0.5	
SE T	mg/kg		11/12/2013	0 - 0.5 ft			0.4	
SE T	mg/kg	SED6.5D	11/12/2013 11/25/2013	0 - 0.5 ft			0.1	
SE T	mg/kg	SED6.5D	6/9/2017	0 - 0.33 ft	87	1	0.11	1
SE T		SED6.5E	11/25/2013	0 - 0.55 ft	01	<u>'</u>	0.4	1
SE T	mg/kg	SED6.5E	6/8/2017	0 - 0.33 ft	100	1	0.4	†
SE T	mg/kg	SED6.5E	11/14/2013	0 - 0.5 ft	100	<u>'</u>	0.4	1
	mg/kg	SED6C SED6C	6/7/2017	0 - 0.5 10	00		0.4	2 1
SE T	mg/kg	SED6C	6///201/	0 - 0.33 ft	88	1		
SE T	mg/kg	SED7.5D	11/25/2013	0 - 0.5 ft			0.10	5 1
SE T	mg/kg	SED7.5D	6/9/2017	0 - 0.33 ft	79	1		
SE T	mg/kg	SED7.5E	11/25/2013	0 - 0.5 ft			0.30	6 1
SE T	mg/kg	SED7.5E	6/8/2017	0 - 0.33 ft	100	1		
SE T		SED7D	11/25/2013	0 - 0.5 ft			0.4	B 1
SE T	mg/kg	SED7D	6/9/2017	0 - 0.33 ft	51	1		
SE T	mg/kg	SED7E	11/25/2013	0 - 0.5 ft			0.49	9 1
SE T	mg/kg	SED7E SED7E	6/8/2017	0 - 0.33 ft 0 - 0.33 ft	110	1		
SE T	mg/kg	SED7E	6/22/2017	0 - 0.33 ft	220	1		
SE T	mg/kg	SED7F	11/25/2013	0 - 0.5 ft			0.59	9 1
SE T	mg/kg	SED7F	6/8/2017	0 - 0.33 ft	69	1		
SE T	mg/kg	SED7G	1/30/2014	0 - 0.5 ft			0.99	5 1
SE T	mg/kg	SED8C	11/14/2013	0 - 0.5 ft			0.4	5 1
SE T	mg/kg		6/7/2017	0 - 0.33 ft	50	1	***	
SE T	mg/kg	SED9.5B	11/11/2013	0 - 0.5 ft			0.4	5 1
SE T	mg/kg	SED9C	11/11/2013	0 - 0.5 ft			0.4	
SE T	ug/kg	R5-03	7/25/2014	0 - 0.5 ft			0.4	'
SE T	ug/kg	R5-05	7/30/2014	0 - 0.5 ft				
SE T	ug/kg	R6-04	7/28/2014	0 - 0.5 ft				
SE T	ug/kg	R6-05	8/4/2014	0 - 0.5 ft				
SE T	ug/kg ug/kg	R6-06	8/4/2014	0 - 0.5 ft				
	ug/kg		4/30/2015	0 - 0.5 ft				
SE T	ug/kg	R6-18	4/30/2015	0 - 0.5 π				<u> </u>
SE T	ug/kg	R6-21	4/29/2015	0 - 0.5 ft				
SE T	ug/kg	R6-22	4/30/2015	0 - 0.5 ft				
SE T	ug/kg	R6-23	4/30/2015	0 - 0.5 ft				
SE T	ug/kg	R6-30	6/9/2016	0 - 0.5 ft				
SE T	ug/kg	R6-31	6/28/2016	0 - 0.5 ft				
SE T	ug/kg	R6-32	6/28/2016	0 - 0.5 ft				
SE T	ug/kg	R6-33	6/28/2016	0 - 0.5 ft				
					•			*

Matrix	Fraction	Units	Location	Collected	Depth	RA18 SE SVOCs Benzo(a)pyrene	D RA18 SE SVOCs Benzo(a)pyrene	RA18_SE_SVOCs Benzo(b)fluoranthene	D_RA18_SE_SVOCs Benzo(b)fluoranthene
SE	T	mg/kg	R5-03	7/25/2014	0 - 0.5 ft	0.94		1.4	
SE	Т	mg/kg	R5-05	7/30/2014	0 - 0.5 ft	0.99		1.4	
SE	Т	mg/kg	R5-09	6/28/2016	0 - 0.5 ft				
SE	Ť	mg/kg	R6-04	7/28/2014	0 - 0.5 ft	0.43	1	0.65	1
SE	÷	mg/kg	R6-05	8/4/2014	0 - 0.5 ft	2	1	2.6	
SE	Ť	mg/kg	R6-06	8/4/2014	0 - 0.5 ft	0.43	1		
SE	Ť	mg/kg	R6-18	4/30/2015	0 - 0.5 ft	1.1			
SE		mg/kg	R6-21	4/29/2015	0 - 0.5 ft	0.24			1
SE	Ť	mg/kg	R6-22	4/30/2015	0 - 0.5 ft	0.73			1
SE	÷	mg/kg	R6-23	4/30/2015	0 - 0.5 ft	0.79			1
SE	÷	mg/kg	R6-30	6/9/2016	0 - 0.5 ft	0.76			1
SE	÷	mg/kg	R6-31	6/28/2016	0 - 0.5 ft	0.67			
SE		mg/kg	R6-32	6/28/2016	0 - 0.5 ft	1.1			1
SE	Ť	mg/kg	R6-33	6/28/2016	0 - 0.5 ft	0.58			1
	Ť			6/21/2017	0 - 0.33 ft	0.56			1
SE SE	<u> </u>	mg/kg mg/kg	SED1.5C SED10C	11/11/2013	0 - 0.33 ft	0.58			
	-					0.55			
SE	<u>T</u>	mg/kg	SED1C	11/7/2013 11/7/2013	0 - 0.5 ft				1
SE	Ţ	mg/kg			0 - 0.5 ft	0.71			1
SE	<u>T</u>	mg/kg	SED2C	11/6/2013 11/12/2013	0 - 0.5 ft	0.67 0.55			
SE	<u> </u>	mg/kg	SED4C		0 - 0.5 ft				
SE	Ţ		SED6.5D	11/25/2013	0 - 0.5 ft	0.19	1	0.32	1
SE	<u> </u>		SED6.5D	6/9/2017	0 - 0.33 ft	2.12		2 = 2	
SE	Ţ	mg/kg	SED6.5E	11/25/2013	0 - 0.5 ft	0.46	1	0.73	1
SE			SED6.5E	6/8/2017	0 - 0.33 ft				
SE	T	mg/kg	SED6C	11/14/2013	0 - 0.5 ft	0.53	1	0.85	1
SE	T	mg/kg	SED6C	6/7/2017	0 - 0.33 ft				
SE	T		SED7.5D	11/25/2013	0 - 0.5 ft	0.16	1	0.29	1
SE	Т	mg/kg		6/9/2017	0 - 0.33 ft				
SE	T	mg/kg	SED7.5E	11/25/2013	0 - 0.5 ft	0.31	1	0.5	1
SE	T	mg/kg		6/8/2017	0 - 0.33 ft				
SE	T	mg/kg	SED7D	11/25/2013	0 - 0.5 ft	0.54	1	0.86	1
SE	Т	mg/kg	SED7D	6/9/2017	0 - 0.33 ft				
SE	T	mg/kg	SED7E	11/25/2013	0 - 0.5 ft	0.52	1	0.85	1
SE	T	mg/kg	SED7E	6/8/2017	0 - 0.33 ft				
SE	Т	mg/kg	SED7E	6/22/2017	0 - 0.33 ft	0.44			1
SE	Т	mg/kg	SED7F	11/25/2013	0 - 0.5 ft	0.6	1	0.86	1
SE	Т	mg/kg	SED7F	6/8/2017	0 - 0.33 ft				
SE	Т	mg/kg	SED7G	1/30/2014	0 - 0.5 ft	0.89		1.2	
SE	Т	mg/kg	SED8C	11/14/2013	0 - 0.5 ft	0.63	1	0.92	1
SE	Т	mg/kg	SED8C	6/7/2017	0 - 0.33 ft				
SE	T	mg/kg		11/11/2013	0 - 0.5 ft	0.54			
SE	Т	mg/kg	SED9C	11/11/2013	0 - 0.5 ft	0.62	1	0.99	1
SE	T	ug/kg	R5-03	7/25/2014	0 - 0.5 ft				
SE	T	ug/kg	R5-05	7/30/2014	0 - 0.5 ft				
SE	T	ug/kg	R6-04	7/28/2014	0 - 0.5 ft				
SE	Т	ug/kg	R6-05	8/4/2014	0 - 0.5 ft				
SE	Т	ug/kg	R6-06	8/4/2014	0 - 0.5 ft				
SE	Т	ug/kg	R6-18	4/30/2015	0 - 0.5 ft				
SE	Т	ug/kg	R6-21	4/29/2015	0 - 0.5 ft				
SE	Т	ug/kg	R6-22	4/30/2015	0 - 0.5 ft				
SE	Т	ug/kg	R6-23	4/30/2015	0 - 0.5 ft				
SE	Т	ug/kg	R6-30	6/9/2016	0 - 0.5 ft				
SE	Т	ug/kg	R6-31	6/28/2016	0 - 0.5 ft				
SE	Т	ug/kg	R6-32	6/28/2016	0 - 0.5 ft				
SE	Т	ug/kg	R6-33	6/28/2016	0 - 0.5 ft				
								1	

Matrix	Fraction	Units	Location	Collected	Depth	RA18_SE_SVOCs Benzo(k)fluoranthene	D_RA18_SE_SVOCs Benzo(k)fluoranthene	RA18 SE SVOCs Chrysene	D_RA18_SE_SVOCs Chrysene
SE	T	mg/kg	R5-03	7/25/2014	0 - 0.5 ft	0.43		1 1.3	
SE	Т	mg/kg	R5-05	7/30/2014	0 - 0.5 ft	0.59	,	1 1.3	
SE	Т	mg/kg	R5-09	6/28/2016	0 - 0.5 ft				
SE	Ť	mg/kg	R6-04	7/28/2014	0 - 0.5 ft	0.295		1 0.575	1
SE	Ť	mg/kg	R6-05	8/4/2014	0 - 0.5 ft	0.96		1 2.4	
SE	Ť	mg/kg	R6-06	8/4/2014	0 - 0.5 ft	0.245		1 0.575	
SE	Ť	mg/kg	R6-18	4/30/2015	0 - 0.5 ft	0.42		1 1.3	
SE	Ť	mg/kg	R6-21	4/29/2015	0 - 0.5 ft	0.13		1 0.34	1
SE	Ť	mg/kg	R6-22	4/30/2015	0 - 0.5 ft	0.13		1 0.94	1
SE	Ť		R6-23	4/30/2015	0 - 0.5 ft	0.32		1 1.1	
	T	mg/kg		6/9/2016		0.42		1 1.1	1
SE SE		mg/kg	R6-30 R6-31	6/28/2016	0 - 0.5 ft 0 - 0.5 ft	0.43		1 0.98	1
	T	mg/kg							
SE	Ι.	mg/kg	R6-32	6/28/2016	0 - 0.5 ft	0.58			1
SE	T	mg/kg	R6-33	6/28/2016	0 - 0.5 ft	0.3			1
SE	T	mg/kg	SED1.5C	6/21/2017	0 - 0.33 ft	0.31		0.65	1
SE	T	mg/kg	SED10C	11/11/2013	0 - 0.5 ft	0.35		1 0.7	1
SE	T	mg/kg	SED1C	11/7/2013	0 - 0.5 ft	0.4			1
SE	T	mg/kg	SED2.5B	11/7/2013	0 - 0.5 ft	0.47		0.94	
SE	T	mg/kg	SED2C	11/6/2013	0 - 0.5 ft	0.56		1 0.9	
SE	T	mg/kg	SED4C	11/12/2013	0 - 0.5 ft	0.32		0.83	
SE	T	mg/kg	SED6.5D	11/25/2013	0 - 0.5 ft	0.096		1 0.32	1
SE	Т	mg/kg	SED6.5D	6/9/2017	0 - 0.33 ft				
SE	Τ	mg/kg	SED6.5E	11/25/2013	0 - 0.5 ft	0.25		1 0.74	1
SE	Т	mg/kg	SED6.5E	6/8/2017	0 - 0.33 ft				
SE	T	mg/kg	SED6C	11/14/2013	0 - 0.5 ft	0.33		1 0.85	1
SE	Т	mg/kg	SED6C	6/7/2017	0 - 0.33 ft				
SE	Т	mg/kg	SED7.5D	11/25/2013	0 - 0.5 ft	0.1		1 0.27	1
SE	Т	mg/kg	SED7.5D	6/9/2017	0 - 0.33 ft				
SE	Т	mg/kg	SED7.5E	11/25/2013	0 - 0.5 ft	0.14		1 0.49	1
SE	Ť	mg/kg	SED7.5E	6/8/2017	0 - 0.33 ft			*****	
SE	Ť	mg/kg	SED7D	11/25/2013	0 - 0.5 ft	0.19		1 0.63	1
SE	Ť	mg/kg	SED7D	6/9/2017	0 - 0.33 ft	0.10		0.00	
SE	Ť	mg/kg	SED7E	11/25/2013	0 - 0.5 ft	0.27		1 0.76	1
SE	Ť	mg/kg	SED7E	6/8/2017	0 - 0.33 ft	0.21		0.70	
SE	Ť	mg/kg	SED7E	6/22/2017	0 - 0.33 ft	0.22		1 0.62	1
SE	Ť	mg/kg	SED7F	11/25/2013	0 - 0.5 ft	0.22		1 0.02	
SE	Ť	mg/kg	SED7F	6/8/2017	0 - 0.33 ft	0.0		0.08	'
SE	Ť	mg/kg	SED7G	1/30/2014	0 - 0.5 ft	0.43		1 1.2	1
SE	T	mg/kg	SED7G SED8C	11/14/2013	0 - 0.5 ft	0.43		1 0.75	
SE	Ť	mg/kg	SED8C	6/7/2017	0 - 0.33 ft	0.57		0.75	
SE	T	mg/kg	SED9.5B	11/11/2013	0 - 0.33 ft	0.2		1 0.79	1
SE	T		SED9.5B SED9C	11/11/2013	0 - 0.5 ft	0.29		1 0.88	
SE	- I	mg/kg	R5-03	7/25/2014	0 - 0.5 ft 0 - 0.5 ft	0.29		0.88	1
SE	I T	ug/kg							
	<u> </u>	ug/kg	R5-05	7/30/2014	0 - 0.5 ft				
SE	T	ug/kg	R6-04	7/28/2014	0 - 0.5 ft				
SE	T	ug/kg	R6-05	8/4/2014	0 - 0.5 ft				
SE	T	ug/kg	R6-06	8/4/2014	0 - 0.5 ft				
SE	T	ug/kg	R6-18	4/30/2015	0 - 0.5 ft				
SE	T	ug/kg	R6-21	4/29/2015	0 - 0.5 ft				
SE	T	ug/kg	R6-22	4/30/2015	0 - 0.5 ft				
SE	Т	ug/kg	R6-23	4/30/2015	0 - 0.5 ft				
SE	T	ug/kg	R6-30	6/9/2016	0 - 0.5 ft				
SE	Т	ug/kg	R6-31	6/28/2016	0 - 0.5 ft				
SE	Т	ug/kg	R6-32	6/28/2016	0 - 0.5 ft				
SE	Т	ug/kg	R6-33	6/28/2016	0 - 0.5 ft				
	-	-53				L	L	II.	1

NA-A-A-A	F	I I - it -	1 #	0-1141	D 41-	DA40 OF 01/00-IDib/	D DA40 OF 01/00-IBib(- b)	DA40 OF 01/00-11-des-(4.0.0 st)) D DA40 OF 01/00-11-des-(4.0.0 st)
	Fraction		Location	Collected			D_RA18_SE_SVOCs Dibenzo(a,h)anthracene	RA18_SE_SVOCs Indeno(1,2,3-cd)pyrene D_RA18_SE_SVOCs Indeno(1,2,3-cd)pyrene
SE SE	÷	mg/kg mg/kg	R5-03 R5-05	7/25/2014 7/30/2014	0 - 0.5 ft 0 - 0.5 ft	0.22 0.25		1 0.95 1 1 0.94 1
SE	Ť	mg/kg	R5-09	6/28/2016	0 - 0.5 ft	0.25		0.94
SE	Ť	mg/kg	R6-04	7/28/2014	0 - 0.5 ft	0.13	,	0 0.38 1
SE	÷	mg/kg	R6-05	8/4/2014	0 - 0.5 ft	0.13		1 1.4 1
SE	÷	mg/kg	R6-06	8/4/2014	0 - 0.5 ft	0.11		1 0.41 1
SE	Ť	mg/kg	R6-18	4/30/2015	0 - 0.5 ft	0.27		1 1.1 1
SE	Ť	mg/kg	R6-21	4/29/2015	0 - 0.5 ft	0.058		0.18
SE	Ť	mg/kg	R6-22	4/30/2015	0 - 0.5 ft	0.2		1 0.8 1
SE	Т	mg/kg	R6-23	4/30/2015	0 - 0.5 ft	0.19		1 0.86 1
SE	Т	mg/kg	R6-30	6/9/2016	0 - 0.5 ft	0.037		0 0.92 1
SE	T	mg/kg	R6-31	6/28/2016	0 - 0.5 ft	0.16	,	1 0.65 1
SE	T	mg/kg	R6-32	6/28/2016	0 - 0.5 ft	0.25	,	0.91
SE	Т	mg/kg	R6-33	6/28/2016	0 - 0.5 ft	0.15		1 0.55 1
SE	Т	mg/kg	SED1.5C	6/21/2017	0 - 0.33 ft	0.13		1 0.44 1
SE	Т	mg/kg	SED10C	11/11/2013	0 - 0.5 ft	0.14		1 0.42 1
SE	T	mg/kg	SED1C	11/7/2013	0 - 0.5 ft	0.11		1 0.4 1
SE	T	mg/kg	SED2.5B	11/7/2013	0 - 0.5 ft	0.17		1 0.61 1
SE	ſ	mg/kg	SED2C	11/6/2013	0 - 0.5 ft	0.2		1 0.58 1
SE	<u>T</u>	mg/kg	SED4C	11/12/2013	0 - 0.5 ft	0.16		1 0.59 1
SE	T	mg/kg	SED6.5D	11/25/2013	0 - 0.5 ft	0.052		1 0.14 1
SE	<u> </u>	mg/kg	SED6.5D	6/9/2017	0 - 0.33 ft	0.44		0.40
SE	T T	mg/kg	SED6.5E SED6.5E	11/25/2013 6/8/2017	0 - 0.5 ft 0 - 0.33 ft	0.14	,	1 0.42 1
SE SE	Ť	mg/kg	SED6.5E SED6C	11/14/2013	0 - 0.5 ft	0.089		1 0.35 1
SE	-	mg/kg mg/kg	SED6C SED6C	6/7/2017	0 - 0.5 It	0.069		0.35
SE	- I	mg/kg	SED7.5D	11/25/2013	0 - 0.55 ft	0.04		0.12
SE	Ť	mg/kg	SED7.5D	6/9/2017	0 - 0.33 ft	0.04		0.12
SE	÷	mg/kg	SED7.5E	11/25/2013	0 - 0.55 ft	0.055		1 0.23 1
SE	Ť	mg/kg	SED7.5E	6/8/2017	0 - 0.33 ft	0.000		0.20
SE	Ť	mg/kg	SED7D	11/25/2013	0 - 0.5 ft	0.086		1 0.37 1
SE	Ť	mg/kg	SED7D	6/9/2017	0 - 0.33 ft			
SE	Т	mg/kg	SED7E	11/25/2013	0 - 0.5 ft	0.094		0.38
SE	T	mg/kg	SED7E	6/8/2017	0 - 0.33 ft			
SE	T	mg/kg	SED7E	6/22/2017	0 - 0.33 ft	0.084		1 0.26 1
SE	T	mg/kg	SED7F	11/25/2013	0 - 0.5 ft	0.16	,	0.51
SE	T	mg/kg	SED7F	6/8/2017	0 - 0.33 ft			
SE	T	mg/kg	SED7G	1/30/2014	0 - 0.5 ft	0.15		1 0.64 1
SE	<u>T</u>	mg/kg	SED8C	11/14/2013	0 - 0.5 ft	0.16	,	1 0.62 1
SE	T	mg/kg	SED8C	6/7/2017	0 - 0.33 ft			
SE	I	mg/kg	SED9.5B	11/11/2013	0 - 0.5 ft	0.12		1 0.43 1
SE	<u> </u>	mg/kg	SED9C	11/11/2013 7/25/2014	0 - 0.5 ft	0.14	,	1 0.57 1
SE SE	T	ug/kg	R5-03 R5-05	7/25/2014 7/30/2014	0 - 0.5 ft 0 - 0.5 ft			
SE	+	ug/kg	R6-04	7/28/2014	0 - 0.5 ft			
SE	<u> </u>	ug/kg ug/kg	R6-04	8/4/2014	0 - 0.5 ft			
SE	T	ug/kg ug/kg	R6-05	8/4/2014	0 - 0.5 ft			
SE	Ť	ug/kg	R6-18	4/30/2015	0 - 0.5 ft	1		
SE	Ť	ug/kg	R6-21	4/29/2015	0 - 0.5 ft			
SE	Ť	ug/kg	R6-22	4/30/2015	0 - 0.5 ft			
SE	Ť	ug/kg	R6-23	4/30/2015	0 - 0.5 ft			
SE	Ť	ug/kg	R6-30	6/9/2016	0 - 0.5 ft			
SE	Т	ug/kg	R6-31	6/28/2016	0 - 0.5 ft			
SE	Т	ug/kg	R6-32	6/28/2016	0 - 0.5 ft			
SE	Т	ug/kg	R6-33	6/28/2016	0 - 0.5 ft			
						1	l.	- '

SE	Matrix	Fraction	Units	Location	Collected	Depth	RA18 SE OtherlCvanide	D RA18 SE Other Cyanide
SE								
SE								
SE								
SE								
SE								
SE								
SE								
SE								
SE								
SE								
SE								
SE								
SE								
SE						0 - 0.5 ft		
SE								
SE								
SE								<u> </u>
SE								
SE								
SE								
SE								
SE								
SE								
SE								
SE								
SE								
SE								
SE								
SE								
SE T mg/kg SED7D 11/25/2013 0 - 0.5 ft SE T mg/kg SED7D 6/9/2017 0 - 0.5 ft SE T mg/kg SED7E 6/8/2017 0 - 0.5 ft SE T mg/kg SED7E 6/8/2017 0 - 0.33 ft SE T mg/kg SED7F 6/2/2017 0 - 0.33 ft SE T mg/kg SED7F 6/8/2017 0 - 0.33 ft SE T mg/kg SED7F 6/8/2017 0 - 0.33 ft SE T mg/kg SED7F 6/8/2017 0 - 0.33 ft SE T mg/kg SED8C 1/30/2014 0 - 0.5 ft SE T mg/kg SED8C 6/7/2017 0 - 0.33 ft SE T mg/kg SED8C 6/7/2017 0 - 0.33 ft SE T mg/kg SED8C 6/7/2017 0 - 0.3 ft SE T mg/kg SED9C 11/11/2013 0 -								
SE T mg/kg SED7D 6/9/2017 0 - 0.33 ft SE T mg/kg SED7E 1/125/2013 0 - 0.5 ft SE T mg/kg SED7E 6/8/2017 0 - 0.33 ft SE T mg/kg SED7E 6/8/2017 0 - 0.33 ft SE T mg/kg SED7F 6/8/2017 0 - 0.33 ft SE T mg/kg SED7G 1/30/2014 0 - 0.5 ft SE T mg/kg SED8C 11/14/2013 0 - 0.5 ft SE T mg/kg SED8C 11/14/2013 0 - 0.5 ft SE T mg/kg SED8C 6/7/2017 0 - 0.33 ft SE T mg/kg SED8C 6/7/2017 0 - 0.31 ft SE T mg/kg SED8C 6/7/2017 0 - 0.31 ft SE T mg/kg SED9C 11/11/2013 0 - 0.5 ft SE T mg/kg RED9C 11/11/2013 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
SE T mg/kg SED7E 11/25/2013 0 - 0.5 ft SE T mg/kg SED7E 6/8/2017 0 - 0.33 ft SE T mg/kg SED7F 6/8/2017 0 - 0.33 ft SE T mg/kg SED7F 11/25/2013 0 - 0.5 ft SE T mg/kg SED7F 6/8/2017 0 - 0.33 ft SE T mg/kg SED8C 1/30/2014 0 - 0.5 ft SE T mg/kg SED8C 6/7/2017 0 - 0.33 ft SE T mg/kg SED8C 6/7/2017 0 - 0.33 ft SE T mg/kg SED8C 6/7/2017 0 - 0.33 ft SE T mg/kg SED9C 11/11/2013 0 - 0.5 ft SE T mg/kg SED9C 11/11/2013 0 - 0.5 ft SE T mg/kg R5-03 7/25/2014 0 - 0.5 ft SE T ug/kg R5-05 7/30/2014 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
SE T mg/kg SED7E 6/8/2017 0 - 0.33 ft SE T mg/kg SED7F 6/22/2017 0 - 0.33 ft SE T mg/kg SED7F 11/25/2013 0 - 0.5 ft SE T mg/kg SED7F 6/8/2017 0 - 0.33 ft SE T mg/kg SED7F 6/8/2017 0 - 0.33 ft SE T mg/kg SED8C 1/30/2014 0 - 0.5 ft SE T mg/kg SED8C 6/7/2017 0 - 0.3 ft SE T mg/kg SED8C 6/7/2017 0 - 0.5 ft SE T mg/kg SED8C 6/7/2017 0 - 0.5 ft SE T mg/kg SED9C 11/11/2013 0 - 0.5 ft SE T mg/kg SED9C 11/11/2013 0 - 0.5 ft SE T ug/kg R5-05 7/30/2014 0 - 0.5 ft 140 SE T ug/kg R5-05 7/30/201								
SE T mg/kg SED7E 6/22/2017 0 - 0.33 ft SE T mg/kg SED7F 11/25/2013 0 - 0.5 ft SE T mg/kg SED7F 6/8/2017 0 - 0.33 ft SE T mg/kg SED7G 6/8/2017 0 - 0.33 ft SE T mg/kg SED7G 1/30/2014 0 - 0.5 ft SE T mg/kg SED8C 11/14/2013 0 - 0.5 ft SE T mg/kg SED8C 6/7/2017 0 - 0.33 ft SE T mg/kg SED8C 6/7/2017 0 - 0.33 ft SE T mg/kg SED9.5B 11/11/2013 0 - 0.5 ft SE T mg/kg SED9.5B 11/11/2013 0 - 0.5 ft SE T mg/kg SED9.5B 11/11/2013 0 - 0.5 ft SE T mg/kg R5-03 7/25/2014 0 - 0.5 ft 140 0 0 0 0 0 0 0 0 0								
SE T mg/kg SED7F 11/26/2013 0 - 0.5 ft SE T mg/kg SED7F 6/8/2017 0 - 0.5 ft SE T mg/kg SED8C 1/30/2014 0 - 0.5 ft SE T mg/kg SED8C 11/14/2013 0 - 0.5 ft SE T mg/kg SED9C 6/7/2017 0 - 0.33 ft SE T mg/kg SED9C 6/7/2017 0 - 0.5 ft SE T mg/kg SED9C 11/11/2013 0 - 0.5 ft SE T mg/kg R5-09 7/25/2014 0 - 0.5 ft SE T ug/kg R5-05 7/30/2014 0 - 0.5 ft 140 SE T ug/kg R6-05 7/30/2014 0 - 0.5 ft 180 1 SE T ug/kg R6-04 7/28/2014 0 - 0.5 ft 295 1 SE T ug/kg R6-06 8/4/2014 0 - 0.5 ft 620 1 <								
SE T mg/kg SED7F 6/8/2017 0 - 0.33 ft SE T mg/kg SED7G 1/30/2014 0 - 0.5 ft SE T mg/kg SED8C 11/14/2013 0 - 0.5 ft SE T mg/kg SED8C 67/2017 0 - 0.33 ft SE T mg/kg SED9C 11/11/2013 0 - 0.5 ft SE T mg/kg SED9C 11/11/2013 0 - 0.5 ft SE T mg/kg R5-03 7/25/2014 0 - 0.5 ft SE T ug/kg R5-03 7/25/2014 0 - 0.5 ft 140 SE T ug/kg R6-04 7/25/2014 0 - 0.5 ft 180 1 SE T ug/kg R6-04 7/28/2014 0 - 0.5 ft 295 1 SE T ug/kg R6-06 8/4/2014 0 - 0.5 ft 270 1 SE T ug/kg R6-18 4/30/2015 0 - 0.5 ft								
SE T mg/kg SED7G 1/30/2014 0 - 0.5 ft SE T mg/kg SED8C 11/14/2013 0 - 0.5 ft SE T mg/kg SED8C 67/2017 0 - 0.33 ft SE T mg/kg SED9.5B 11/11/2013 0 - 0.5 ft SE T mg/kg SED9C 11/11/2013 0 - 0.5 ft SE T ug/kg R5-03 7/25/2014 0 - 0.5 ft 140 SE T ug/kg R5-05 7/30/2014 0 - 0.5 ft 180 1 SE T ug/kg R6-04 7/28/2014 0 - 0.5 ft 2295 1 SE T ug/kg R6-04 7/28/2014 0 - 0.5 ft 270 1 SE T ug/kg R6-06 8/4/2014 0 - 0.5 ft 620 1 SE T ug/kg R6-12 4/30/2015 0 - 0.5 ft 4900 1 SE T ug/kg <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SE T mg/kg SED8C 11/14/2013 0 - 0.5 ft SE T mg/kg SED8C 6/7/2017 0 - 0.3 ft SE T mg/kg SED9C 11/11/2013 0 - 0.5 ft SE T mg/kg SED9C 11/11/2013 0 - 0.5 ft SE T ug/kg R5-03 7/25/2014 0 - 0.5 ft 140 SE T ug/kg R5-05 7/30/2014 0 - 0.5 ft 180 1 SE T ug/kg R6-04 7/28/2014 0 - 0.5 ft 295 1 SE T ug/kg R6-04 7/28/2014 0 - 0.5 ft 270 1 SE T ug/kg R6-06 8/4/2014 0 - 0.5 ft 270 1 SE T ug/kg R6-18 4/30/2015 0 - 0.5 ft 4900 1 SE T ug/kg R6-21 4/30/2015 0 - 0.5 ft 4900 1 SE								
SE T mg/kg SED8C 67/2017 0 - 0.33 ft SE T mg/kg SED9.5B 11/11/2013 0 - 0.5 ft SE T mg/kg SED9C 11/11/2013 0 - 0.5 ft SE T ug/kg R5-03 17/25/2014 0 - 0.5 ft 140 SE T ug/kg R5-05 7/30/2014 0 - 0.5 ft 180 1 SE T ug/kg R6-05 7/28/2014 0 - 0.5 ft 295 1 SE T ug/kg R6-05 8/4/2014 0 - 0.5 ft 270 1 SE T ug/kg R6-06 8/4/2014 0 - 0.5 ft 270 1 SE T ug/kg R6-18 4/30/2015 0 - 0.5 ft 4900 1 SE T ug/kg R6-21 4/30/2015 0 - 0.5 ft 170 0 SE T ug/kg R6-21 4/30/2015 0 - 0.5 ft 170 1								
SE T mg/kg SED9.5B 11/11/2013 0 - 0.5 ft SE T mg/kg SED9C 11/11/2013 0 - 0.5 ft SE T ug/kg R5-03 7/25/2014 0 - 0.5 ft 140 SE T ug/kg R5-05 7/30/2014 0 - 0.5 ft 180 1 SE T ug/kg R6-04 7/28/2014 0 - 0.5 ft 295 1 SE T ug/kg R6-05 8/4/2014 0 - 0.5 ft 270 1 SE T ug/kg R6-06 8/4/2014 0 - 0.5 ft 620 1 SE T ug/kg R6-18 4/30/2015 0 - 0.5 ft 4900 1 SE T ug/kg R6-21 4/29/2015 0 - 0.5 ft 170 0 SE T ug/kg R6-22 4/30/2015 0 - 0.5 ft 170 0 SE T ug/kg R6-22 4/30/2015 0 - 0.5 ft								
SE T mg/kg SED9C 11/11/2013 0 - 0.5 ft SE T ug/kg R5-03 7/25/2014 0 - 0.5 ft 140 0 SE T ug/kg R5-03 7/25/2014 0 - 0.5 ft 180 1 SE T ug/kg R6-04 7/28/2014 0 - 0.5 ft 295 1 SE T ug/kg R6-06 8/4/2014 0 - 0.5 ft 270 1 SE T ug/kg R6-06 8/4/2014 0 - 0.5 ft 620 1 SE T ug/kg R6-18 4/30/2015 0 - 0.5 ft 4900 1 SE T ug/kg R6-21 4/29/2015 0 - 0.5 ft 170 0 SE T ug/kg R6-22 4/30/2015 0 - 0.5 ft 740 1 SE T ug/kg R6-23 4/30/2015 0 - 0.5 ft 1800 1 SE T ug/kg R6-30								
SE T ug/kg R5-03 7/25/2014 0 - 0.5 ft 140 0 SE T ug/kg R5-05 7/30/2014 0 - 0.5 ft 180 1 SE T ug/kg R6-05 7/28/2014 0 - 0.5 ft 295 1 SE T ug/kg R6-05 8/4/2014 0 - 0.5 ft 270 1 SE T ug/kg R6-18 4/2014 0 - 0.5 ft 620 1 SE T ug/kg R6-12 4/30/2015 0 - 0.5 ft 4900 1 SE T ug/kg R6-21 4/29/2015 0 - 0.5 ft 170 0 SE T ug/kg R6-22 4/30/2015 0 - 0.5 ft 170 1 SE T ug/kg R6-23 4/30/2015 0 - 0.5 ft 1800 1 SE T ug/kg R6-30 6/9/2016 0 - 0.5 ft 1800 1 SE T								
SE T ug/kg R5-05 7/30/2014 0 - 0.5 ft 180 1 SE T ug/kg R6-04 7/28/2014 0 - 0.5 ft 295 1 SE T ug/kg R6-05 8/4/2014 0 - 0.5 ft 270 1 SE T ug/kg R6-06 8/4/2014 0 - 0.5 ft 620 1 SE T ug/kg R6-18 4/30/2015 0 - 0.5 ft 4900 1 SE T ug/kg R6-21 4/29/2015 0 - 0.5 ft 170 0 SE T ug/kg R6-22 4/30/2015 0 - 0.5 ft 740 1 SE T ug/kg R6-30 4/30/2015 0 - 0.5 ft 1800 1 SE T ug/kg R6-30 6/9/2016 0 - 0.5 ft 895 1 SE T ug/kg R6-31 6/28/2016 0 - 0.5 ft 380 1 SE T							140	0
SE T ug/kg R6-04 7/28/2014 0 - 0.5 ft 295 1 SE T ug/kg R6-05 8/4/2014 0 - 0.5 ft 270 1 SE T ug/kg R6-06 8/4/2014 0 - 0.5 ft 620 1 SE T ug/kg R6-18 4/30/2015 0 - 0.5 ft 4900 1 SE T ug/kg R6-21 4/29/2015 0 - 0.5 ft 170 0 SE T ug/kg R6-22 4/30/2015 0 - 0.5 ft 740 1 SE T ug/kg R6-33 4/30/2015 0 - 0.5 ft 1800 1 SE T ug/kg R6-30 6/9/2016 0 - 0.5 ft 895 1 SE T ug/kg R6-31 6/2/8/2016 0 - 0.5 ft 380 1 SE T ug/kg R6-32 6/2/8/2016 0 - 0.5 ft 550 1		Т						
SE T ug/kg R6-05 8/4/2014 0 - 0.5 ft 270 1 SE T ug/kg R6-06 8/4/2014 0 - 0.5 ft 620 1 SE T ug/kg R6-18 4/30/2015 0 - 0.5 ft 4900 1 SE T ug/kg R6-21 4/29/2015 0 - 0.5 ft 170 0 SE T ug/kg R6-22 4/30/2015 0 - 0.5 ft 170 1 SE T ug/kg R6-32 4/30/2015 0 - 0.5 ft 1800 1 SE T ug/kg R6-30 6/9/2016 0 - 0.5 ft 895 1 SE T ug/kg R6-31 6/28/2016 0 - 0.5 ft 380 1 SE T ug/kg R6-32 6/28/2016 0 - 0.5 ft 550 1								
SE T ug/kg R6-06 8/4/2014 0 - 0.5 ft 620 1 SE T ug/kg R6-18 4/30/2015 0 - 0.5 ft 4900 1 SE T ug/kg R6-21 4/29/2015 0 - 0.5 ft 170 0 SE T ug/kg R6-22 4/30/2015 0 - 0.5 ft 740 1 SE T ug/kg R6-23 4/30/2015 0 - 0.5 ft 1800 1 SE T ug/kg R6-30 6/9/2016 0 - 0.5 ft 895 1 SE T ug/kg R6-31 6/28/2016 0 - 0.5 ft 380 1 SE T ug/kg R6-32 6/28/2016 0 - 0.5 ft 550 1								
SE T ug/kg R6-18 4/30/2015 0 - 0.5 ft 4900 1 SE T ug/kg R6-21 4/29/2015 0 - 0.5 ft 170 0 SE T ug/kg R6-22 4/30/2015 0 - 0.5 ft 740 1 SE T ug/kg R6-23 4/30/2015 0 - 0.5 ft 1800 1 SE T ug/kg R6-30 6/9/2016 0 - 0.5 ft 895 1 SE T ug/kg R6-31 6/28/2016 0 - 0.5 ft 380 1 SE T ug/kg R6-32 6/28/2016 0 - 0.5 ft 550 1	SE	Т						
SE T ug/kg R6-21 4/29/2015 0 - 0.5 ft 170 0 SE T ug/kg R6-22 4/30/2015 0 - 0.5 ft 740 1 SE T ug/kg R6-23 4/30/2015 0 - 0.5 ft 1800 1 SE T ug/kg R6-30 6/9/2016 0 - 0.5 ft 895 1 SE T ug/kg R6-31 6/28/2016 0 - 0.5 ft 380 1 SE T ug/kg R6-32 6/28/2016 0 - 0.5 ft 550 1								
SE T ug/kg R6-22 4/30/2015 0 - 0.5 ft 740 1 SE T ug/kg R6-23 4/30/2015 0 - 0.5 ft 1800 1 SE T ug/kg R6-30 6/9/2016 0 - 0.5 ft 895 1 SE T ug/kg R6-31 6/28/2016 0 - 0.5 ft 380 1 SE T ug/kg R6-32 6/28/2016 0 - 0.5 ft 550 1								
SE T ug/kg R6-23 4/30/2015 0 - 0.5 ft 1800 1 SE T ug/kg R6-30 6/9/2016 0 - 0.5 ft 895 1 SE T ug/kg R6-31 6/28/2016 0 - 0.5 ft 380 1 SE T ug/kg R6-32 6/28/2016 0 - 0.5 ft 550 1		Т						
SE T ug/kg R6-30 6/9/2016 0 - 0.5 ft 895 1 SE T ug/kg R6-31 6/28/2016 0 - 0.5 ft 380 1 SE T ug/kg R6-32 6/28/2016 0 - 0.5 ft 550 1								
SE T ug/kg R6-31 6/28/2016 0 - 0.5 ft 380 1 SE T ug/kg R6-32 6/28/2016 0 - 0.5 ft 550 1						0 - 0.5 ft		
SE T ug/kg R6-32 6/28/2016 0 - 0.5 ft 550 1								
, , , , , , , , , , , , , , , , , , , ,								
					-			

Surface Water ProUCL Input Page 1 of 2

Matrix	Fraction	Units	Task	Group-ID	Location	Collected	RA_SW_Metals Arsenic	D_RA_SW_Metals Arsenic	RA_SW_Metals Cobalt	D_RA_SW_Metals Cobalt
WS	Т	ug/l	Phase2-2013	RA_Waterside_Area	SUW10B	9/26/2013	0.62	1	1.1	1
WS	Т	ug/l	Phase2-2013	RA_Waterside_Area	SUW1B	9/23/2013	0.73	1	0.96	1
WS	Т	ug/l	Phase2-2013	RA_Waterside_Area	SUW2B	9/23/2013	0.59	1	0.93	1
WS	Т	ug/l	Phase2-2013	RA_Waterside_Area	SUW3C	9/23/2013	0.7	1	1.1	1
WS	Т	ug/l	Phase2-2013	RA_Waterside_Area	SUW4B	9/24/2013	1.2	1	1	1
WS	Т	ug/l	Phase2-2013	RA_Waterside_Area	SUW5C	9/24/2013	0.83	1	0.97	1
WS	Т	ug/l	Phase2-2013	RA_Waterside_Area	SUW6B	9/24/2013	1.2	1	1.1	1
WS	Т	ug/l	Phase2-2013	RA_Waterside_Area	SUW7B	9/24/2013	0.48	1	0.8	1
WS	Т	ug/l	Phase2-2013	RA_Waterside_Area	SUW8B	9/24/2013	0.82	1	0.98	1
WS	Т	ug/l	Phase2-2013	RA_Waterside_Area	SUW9C	9/25/2013	0.62	1	0.89	1

Surface Water ProUCL Input Page 2 of 2

Matrix	Fraction	Units	Task	Group-ID	Location	Collected	RA_SW_Metals Manganese	D_RA_SW_Metals Manganese
WS	Т	ug/l	Phase2-2013	RA_Waterside_Area	SUW10B	9/26/2013	170	1
WS	Т	ug/l	Phase2-2013	RA_Waterside_Area	SUW1B	9/23/2013	140	1
WS	Т	ug/l	Phase2-2013	RA_Waterside_Area	SUW2B	9/23/2013	130	1
WS	Т	ug/l	Phase2-2013	RA_Waterside_Area	SUW3C	9/23/2013	120	1
WS	Т	ug/l	Phase2-2013	RA_Waterside_Area	SUW4B	9/24/2013	140	1
WS	Т	ug/l	Phase2-2013	RA_Waterside_Area	SUW5C	9/24/2013	140	1
WS	Т	ug/l	Phase2-2013	RA_Waterside_Area	SUW6B	9/24/2013	140	1
WS	Т	ug/l	Phase2-2013	RA_Waterside_Area	SUW7B	9/24/2013	140	1
WS	Т	ug/l	Phase2-2013	RA_Waterside_Area	SUW8B	9/24/2013	130	1
WS	Т	ug/l	Phase2-2013	RA_Waterside_Area	SUW9C	9/25/2013	150	1

Matrix	Units	Location	Collected	4,4'-DDD	D_4,4'-DDD 4	,4'-DDE	D_4,4'-DDE	ALDRIN	D_ALDRIN	alpha-Chlordane	D_alpha-Chlordane	Arsenic D_Arsenic	Chlordane, gamma	D_Chlordane, gamma
TA_BCAT_F	mg/kg	Lower Anacostia	9/26/2013									0.091 0		
TA_BCAT_F	ug/kg	Lower Anacostia	9/26/2013	1.97	1	53.1	1	0.089	1	8.16	1		0.05	0
TA_CARP_F	mg/kg	Lower Anacostia	9/26/2013									0.245 1		
TA_CARP_F	ug/kg	Lower Anacostia	9/26/2013	21.3	1	34.3	1	0.617	1	36.8	1		26.1	1
TA_CCAT_F	mg/kg	Lower Anacostia	9/26/2013									0.093		
TA_CCAT_F	ug/kg	Lower Anacostia	9/26/2013	4.09	1	13.5	1	0.328	1	8.84	1		0.856	1
TA_EEL_F	mg/kg	Lower Anacostia	9/26/2013									0.146		
TA_EEL_F	ug/kg	Lower Anacostia	9/26/2013	33.2	1	100.7	1	0.1	0	52.7	1		25.1	1
TA_LMB_F	mg/kg	Lower Anacostia	9/26/2013									0.1		
TA_LMB_F	ug/kg	Lower Anacostia	9/26/2013	3.46	1	13.4	1	0.0472	0	6.02	1		2.18	1
TA_SUN_F	mg/kg	Lower Anacostia	9/26/2013									0.091		
TA_SUN_F	ug/kg	Lower Anacostia	9/26/2013	0.95	1	2.96	1	0.073	1	0.957	1		0.146	1

Matrix	Units	Location	Collected	cis-NONACHLOR	D_cis-NONACHLOR	DIELDRIN	D_DIELDRIN	HEPTACHLOR EPOXIDE	D_HEPTACHLOR EPOXIDE	Mercury	D_Mercury MIF	REX	D_MIREX OXYCHLORDA	NE D_	OXYCHLORDANE
TA_BCAT_F	mg/kg	Lower Anacostia	9/26/2013							0.068	1				
TA_BCAT_F	ug/kg	Lower Anacostia	9/26/2013	0.05	0	2.76	1	3.36	1		0.	.496	1 0	.05	0
TA_CARP_F	mg/kg	Lower Anacostia	9/26/2013							0.025	1				
TA_CARP_F	ug/kg	Lower Anacostia	9/26/2013	10.3	1	13.4	1	4.46	1		0.	.077	1 4	.29	1
TA_CCAT_F	mg/kg	Lower Anacostia	9/26/2013							0.085	1				
TA_CCAT_F	ug/kg	Lower Anacostia	9/26/2013	2.38	1	1.32	1	0.539	1		(0.15	1 0.	777	1
TA_EEL_F	mg/kg	Lower Anacostia	9/26/2013							0.095	1				
TA_EEL_F	ug/kg	Lower Anacostia	9/26/2013	26	1	17.8	1	5.36	1		0.	.454	1 1	4.3	1
TA_LMB_F	mg/kg	Lower Anacostia	9/26/2013							0.11	1				
TA_LMB_F	ug/kg	Lower Anacostia	9/26/2013	2.94	1	1.24	1	0.192	1		0.0)472	0 1	.28	1
TA_SUN_F	mg/kg	Lower Anacostia	9/26/2013							0.049	1				
TA SUN F	ug/kg	Lower Anacostia	9/26/2013	1.09	1	0.753	1	0.193	1		0.0)478	0 0.3	374	1

Matrix	Units	Location	Collected	PCB-TEQ (Mammal)	D_PCB-TEQ (Mammal)	Thallium	D_Thallium	Total PCBs (Congeners)	D_Total PCBs (Congeners)	trans-NONACHLOR	D_trans-NONACHLOR
TA_BCAT_F	mg/kg	Lower Anacostia	9/26/2013			0.004	0				
TA_BCAT_F	ug/kg	Lower Anacostia	9/26/2013	0.01797245	1			437.156	1	0.165	1
TA_CARP_F	mg/kg	Lower Anacostia	9/26/2013			0.006	0				
TA_CARP_F	ug/kg	Lower Anacostia	9/26/2013	0.00736028	1			543.039	1	1 21.1	1
TA_CCAT_F	mg/kg	Lower Anacostia	9/26/2013			0.004	0				
TA_CCAT_F	ug/kg	Lower Anacostia	9/26/2013	0.00031611	1			119.541	1	1 6.96	1
TA_EEL_F	mg/kg	Lower Anacostia	9/26/2013			0.006	0				
TA_EEL_F	ug/kg	Lower Anacostia	9/26/2013	0.0137754	1			645.165	1	1 80.2	1
TA_LMB_F	mg/kg	Lower Anacostia	9/26/2013			0.004	0				
TA_LMB_F	ug/kg	Lower Anacostia	9/26/2013	0.00934443	1			114.156	1	7.72	1
TA_SUN_F	mg/kg	Lower Anacostia	9/26/2013			0.004	0				
TA_SUN_F	ug/kg	Lower Anacostia	9/26/2013	0.00011781	1			41.114	1	1.95	1

Matrix	Units	Location	Collected	4,4'-DDD	D_4,4'-DDD	4,4'-DDE	D_4,4'-DDE	ALDRIN	D_ALDRIN	alpha-Chlordane	D_alpha-Chlordane	beta-BHC	D_beta-BHC	Chlordane, gamma	D_Chlordane, gamma
TA_BB_F	mg/kg	Upper Anacostia	9/26/2013												
TA_BB_F	ug/kg	Upper Anacostia	9/26/2013	1.87	1	4.29	1	0.056	1	5.41	1	0.599	1	3.98	1
TA_BCAT_F	mg/kg	Upper Anacostia	9/26/2013												
TA_BCAT_F	ug/kg	Upper Anacostia	9/26/2013	2.76	1	13.5	1	0.0494	0	7.03	1	0.894	1	4.34	1
TA_CARP_F	mg/kg	Upper Anacostia	9/26/2013												
TA_CARP_F	ug/kg	Upper Anacostia	9/26/2013	21.89	1	44.3	1	0.062	1	31	1	0.535	1	4.37	1
TA_CCAT_F	mg/kg	Upper Anacostia	9/26/2013												
TA_CCAT_F	ug/kg	Upper Anacostia	9/26/2013	7.2	1	29.04	1	0.351	1	15.1	1	0.518	1	9.19	1
TA_LMB_F	mg/kg	Upper Anacostia	9/26/2013												
TA_LMB_F	ug/kg	Upper Anacostia	9/26/2013	2.29	1	9.37	1	0.069	1	4.65	1	0.652	1	1.76	1
TA_NS_F	mg/kg	Upper Anacostia	9/26/2013												
TA_NS_F	ug/kg	Upper Anacostia	9/26/2013	1.38	1	4.94	1	0.382	1	2.65	1	0.777	1	0.459	1
TA_SUN_F	mg/kg	Upper Anacostia	9/23/2013												
TA_SUN_F	ug/kg	Upper Anacostia	9/23/2013	0.92	1	3.46	1	0.0502	0	1.23	1	0.68	1	0.217	1

Matrix	Units	Location	Collected	cis-NONACHLOR	D_cis-NONACHLOR	DIELDRIN	D_DIELDRIN	HEPTACHLOR EPOXIDE	D_HEPTACHLOR EPOXIDE Mercury	D_Mercury	MIREX	D_MIREX	OXYCHLORDANE
TA_BB_F	mg/kg	Upper Anacostia	9/26/2013						0.033	1			
TA_BB_F	ug/kg	Upper Anacostia	9/26/2013	1.44	1	1.19	1	0.593	1		0.051	1	0.635
TA_BCAT_F	mg/kg	Upper Anacostia	9/26/2013						0.121	1			
TA_BCAT_F	ug/kg	Upper Anacostia	9/26/2013	2.48	1	1.69	1	0.737	1		0.135	1	1.01
TA_CARP_F	mg/kg	Upper Anacostia	9/26/2013						0.063	1			
TA_CARP_F	ug/kg	Upper Anacostia	9/26/2013	12.9	1	8.49	1	3.69	1		0.541	1	4.82
TA_CCAT_F	mg/kg	Upper Anacostia	9/26/2013						0.125	1			
TA_CCAT_F	ug/kg	Upper Anacostia	9/26/2013	6.08	1	2.49	1	1.12	1		0.268	1	1.71
TA_LMB_F	mg/kg	Upper Anacostia	9/26/2013						0.236	1			
TA_LMB_F	ug/kg	Upper Anacostia	9/26/2013	3.11	1	2.53	1	1.07	1		0.138	1	2.1
TA_NS_F	mg/kg	Upper Anacostia	9/26/2013						0.124	1			
TA_NS_F	ug/kg	Upper Anacostia	9/26/2013	1.64	1	2.8	1	1.63	1		0.0494	0	1.72
TA_SUN_F	mg/kg	Upper Anacostia	9/23/2013						0.055	1			
TA_SUN_F	ug/kg	Upper Anacostia	9/23/2013	1.29	1	1.03	1	0.357	1		0.0502	0	0.723

Matrix	Units	Location	Collected	D_OXYCHLORDANE	PCB-TEQ (Mammal)	D_PCB-TEQ (Mammal)	Total PCBs (Congeners)	D_Total PCBs (Congeners)	trans-NONACHLOR	D_trans-NONACHLOR
TA_BB_F	mg/kg	Upper Anacostia	9/26/2013							
TA_BB_F	ug/kg	Upper Anacostia	9/26/2013	1	0.00015093	1	56.239	1	4.08	1
TA_BCAT_F	mg/kg	Upper Anacostia	9/26/2013							
TA_BCAT_F	ug/kg	Upper Anacostia	9/26/2013	1	0.00051159	1	141.143	1	7.01	1
TA_CARP_F	mg/kg	Upper Anacostia	9/26/2013							
TA_CARP_F	ug/kg	Upper Anacostia	9/26/2013	1	0.0019266	1	680.568	1	. 30	1
TA_CCAT_F	mg/kg	Upper Anacostia	9/26/2013							
TA_CCAT_F	ug/kg	Upper Anacostia	9/26/2013	1	0.00093222	1	253.414	1	16.6	1
TA_LMB_F	mg/kg	Upper Anacostia	9/26/2013							
TA_LMB_F	ug/kg	Upper Anacostia	9/26/2013	1	0.00532586	1	119.685	1	9.22	1
TA_NS_F	mg/kg	Upper Anacostia	9/26/2013							
TA_NS_F	ug/kg	Upper Anacostia	9/26/2013	1	0.00011661	1	49.55	1	4.75	1
TA_SUN_F	mg/kg	Upper Anacostia	9/23/2013							
TA_SUN_F	ug/kg	Upper Anacostia	9/23/2013	1	0.00013002	1	41.648	1	2.94	1

Matrix	Units	Location	4,4'-DDD	D_4,4'-DDD	4,4'-DDE	D_4,4'-DDE	alpha-Chlordane	D_alpha-Chlordane	Arsenic	D_Arsenic	Chlordane, gamma	D_Chlordane, gamma
TA_BB_F	mg/kg	Lower Potomac	0.00171	1	0.00754	1	0.0025	1	0.089	0	0.00138	1
TA_BCAT_F	mg/kg	Lower Potomac	0.00293	1	0.0132	1	0.00591	1	0.092	0	0.00355	1
TA_CARP_F	mg/kg	Lower Potomac	0.0042	1	0.011	1	0.0101	1	0.192	1	0.00665	1
TA_CCAT_F	mg/kg	Lower Potomac	0.00161	1	0.00886	1	0.00254	1	0.09	0	0.00176	1
TA_EEL_F	mg/kg	Lower Potomac	0.014	1	0.0601	1	0.0241	1	0.167	0	0.00943	1
TA_EEL_F	mg/kg	Lower Potomac	0.00326	1	0.0396	1	0.00224	1	0.121	0	0.000786	1
TA_LMB_F	mg/kg	Lower Potomac	0.00054	1	0.00414	1	0.00111	1	0.096	0	0.000384	1
TA_SHAD_F	mg/kg	Lower Potomac	0.0024	1	0.00728	1	0.00249	1	3.71	1	0.00108	1
TA_SUN_F	mg/kg	Lower Potomac	0.000452	1	0.00243	1	0.000417	1	0.09	0	0.0000496	0

Matrix	Units	Location	DIELDRIN	D_DIELDRIN	HEPTACHLOR EPOXIDE	D_HEPTACHLOR EPOXIDE	Mercury	D_Mercury	OXYCHLORDANE	D_OXYCHLORDANE
TA_BB_F	mg/kg	Lower Potomac	0.00147	1	0.000539	1	0.058	1	0.000576	1
TA_BCAT_F	mg/kg	Lower Potomac	0.00202	1	0.0011	1	0.064	1	0.000968	1
TA_CARP_F	mg/kg	Lower Potomac	0.00587	1	0.00223	1	0.048	1	0.00149	1
TA_CCAT_F	mg/kg	Lower Potomac	0.000928	1	0.00045	1	0.091	1	0.000773	1
TA_EEL_F	mg/kg	Lower Potomac	0.0148	1	0.0056	1	0.141	1	0.00725	1
TA_EEL_F	mg/kg	Lower Potomac	0.00511	1	0.000752	1	0.127	1	0.00231	1
TA_LMB_F	mg/kg	Lower Potomac	0.000817	1	0.000414	1	0.143	1	0.000523	1
TA_SHAD_F	mg/kg	Lower Potomac	0.00267	1	0.000798	1	0.039	1	0.000673	1
TA_SUN_F	mg/kg	Lower Potomac	0.00068	1	0.000468	1	0.037	1	0.000546	1

Matrix	Units	Location	PCB-TEQ_MAMMAL	D_PCB-TEQ_MAMMAL	Total PCBs (Congeners)	D_Total PCBs (Congeners)	trans-NONACHLOR	D_trans-NONACHLOR
TA_BB_F	mg/kg	Lower Potomac	7.4737E-06	1	0.181767	1	0.00339	1
TA_BCAT_F	mg/kg	Lower Potomac	5.32328E-06	1	0.093894	1	0.00527	1
TA_CARP_F	mg/kg	Lower Potomac	3.0219E-07	1	0.101165	1	0.00696	1
TA_CCAT_F	mg/kg	Lower Potomac	7.4577E-06	1	0.173604	1	0.00316	1
TA_EEL_F	mg/kg	Lower Potomac	6.87183E-06	1	0.309094	1	0.0358	1
TA_EEL_F	mg/kg	Lower Potomac	6.3633E-07	1	0.469314	1	0.00948	1
TA_LMB_F	mg/kg	Lower Potomac	1.4958E-07	1	0.059013	1	0.00218	1
TA_SHAD_F	mg/kg	Lower Potomac	4.026E-07	1	0.052248	1	0.00281	1
TA_SUN_F	mg/kg	Lower Potomac	2.06234E-06	1	0.033297	1	0.00123	1

Matrix	Units	Location	4,4'-DDD	D_4,4'-DDD	4,4'-DDE	D_4,4'-DDE	alpha-Chlordane	D_alpha-Chlordane	Arsenic	D_Arsenic	beta-BHC	D_beta-BHC
TA_BB_F	mg/kg	Upper Potomac	0.00108	1	0.00515	1	0.00284	1	0.095	0	0.000496	1
TA_CARP_F	mg/kg	Upper Potomac	0.00623	1	0.0228	1	0.012	1	0.247	1	0.00006	1
TA_CCAT_F	mg/kg	Upper Potomac	0.00457	1	0.0273	1	0.0101	1	0.1	0	0.000089	1
TA_EEL_F	mg/kg	Upper Potomac	0.0251	1	0.243	1	0.0294	1	0.235	1	0.000798	1
TA_LMB_F	mg/kg	Upper Potomac	0.000291	1	0.0047	1	0.000796	1	0.101	0	0.000611	1
TA_NS_F	mg/kg	Upper Potomac	0.00188	1	0.00967	1	0.000205	1	0.108	0	0.00044	1
TA_SB_F	mg/kg	Upper Potomac	0.0516	1	0.237	1	0.0537	1	0.846	1	0.00274	1
TA_SUN_F	mg/kg	Upper Potomac	0.000406	1	0.00416	1	0.00053	1	0.112	1	0.000266	1
TA_WP_F	mg/kg	Upper Potomac	0.00127	1	0.00781	1	0.00101	1	0.328	1	0.000722	1

Matrix	Units	Location	Chlordane, gamma	D_Chlordane, gamma	cis-NONACHLOR	D_cis-NONACHLOR	DIELDRIN	D_DIELDRIN	HEPTACHLOR EPOXIDE	D_HEPTACHLOR EPOXIDE
TA_BB_F	mg/kg	Upper Potomac	0.00174	1	0.00125	1	0.001	1	0.000725	1
TA_CARP_F	mg/kg	Upper Potomac	0.00597	1	0.00498	1	0.00469	1	0.00158	1
TA_CCAT_F	mg/kg	Upper Potomac	0.00572	1	0.00378	1	0.00404	1	0.00213	1
TA_EEL_F	mg/kg	Upper Potomac	0.00876	1	0.0222	1	0.0156	1	0.00453	1
TA_LMB_F	mg/kg	Upper Potomac	0.000221	1	0.000102	1	0.000345	1	0.000213	1
TA_NS_F	mg/kg	Upper Potomac	0.0001	1	0.000912	1	0.000589	1	0.000592	1
TA_SB_F	mg/kg	Upper Potomac	0.0000497	0	0.0000497	0	0.0378	1	0.0069	1
TA_SUN_F	mg/kg	Upper Potomac	0.000057	1	0.000572	1	0.000465	1	0.000369	1
TA_WP_F	mg/kg	Upper Potomac	0.000205	1	0.00101	1	0.00101	1	0.000679	1

Matrix	Units	Location	Mercury	D_Mercury	MIREX	D_MIREX	OXYCHLORDANE	D_OXYCHLORDANE	PCB-TEQ_MAMMAL	D_PCB-TEQ_MAMMAL	Total PCBs (Congeners)	D_Total PCBs (Congeners)
TA_BB_F	mg/kg	Upper Potomac	0.05	1	0.00005	0	0.000657	1	4.67659E-06	1	0.031463	1
TA_CARP_F	mg/kg	Upper Potomac	0.099	1	4.99E-05	0	0.00174	1	1.9674E-06	1	0.525487	1
TA_CCAT_F	mg/kg	Upper Potomac	0.076	1	0.000106	1	0.00185	1	0.000014645	1	0.231523	1
TA_EEL_F	mg/kg	Upper Potomac	0.209	1	0.000785	1	0.00985	1	3.84169E-05	1	1.515214	1
TA_LMB_F	mg/kg	Upper Potomac	0.241	1	4.94E-05	0	0.00045	1	3.4104E-06	1	0.043569	1
TA_NS_F	mg/kg	Upper Potomac	0.11	1	0.000064	1	0.000796	1	8.1374E-06	1	0.061373	1
TA_SB_F	mg/kg	Upper Potomac	0.117	1	0.000371	1	0.000118	1	5.64692E-05	1	1.608326	1
TA_SUN_F	mg/kg	Upper Potomac	0.097	1	4.92E-05	0	0.000899	1	3.08529E-06	1	0.044284	1
TA WP F	mg/kg	Upper Potomac	0.104	1	4.98E-05	0	0.000454	1	2.1803E-06	1	0.067273	1

Matrix	Units	Location	trans-NONACHLOR	D_trans-NONACHLOR	HEXACHLOROBENZENE	D_HEXACHLOROBENZENE
TA_BB_F	mg/kg	Upper Potomac	0.00333	1	0.00005	0
TA_CARP_F	mg/kg	Upper Potomac	0.0104	1	0.000651	1
TA_CCAT_F	mg/kg	Upper Potomac	0.0116	1	0.000471	1
TA_EEL_F	mg/kg	Upper Potomac	0.0626	1	0.00185	1
TA_LMB_F	mg/kg	Upper Potomac	0.00195	1	0.0000494	0
TA_NS_F	mg/kg	Upper Potomac	0.00145	1	0.0000496	0
TA_SB_F	mg/kg	Upper Potomac	0.0000497	0	0.0035	1
TA_SUN_F	mg/kg	Upper Potomac	0.00137	1	0.0000492	0
TA_WP_F	mg/kg	Upper Potomac	0.00147	1	0.0000498	0

Matrix	Units	Area	Location	Collected	Arsenic	D Arsenic	CHLORDANE (ALL)	D CHLORDANE (ALL)	Cobalt	D Cobalt	DIELDRIN	D DIELDRIN	HEPTACHLOR EPOXIDE
TA LMB F	mg/kg	NonTidalAnacostia	IC2	8/3/2016	0.029)	1		0.014	_	0		
TA LMB F	mg/kg	NonTidalAnacostia	IC2	8/3/2016	0.036	5	1		0.023		0		
TA LMB F	mg/kg	NonTidalAnacostia	IC3	8/3/2016	0.028	3	1		0.018		0		
TA LMB F	mg/kg	NonTidalAnacostia	NEB1	8/3/2016	0.045	5	1		0.046		0		
TA LMB F	mg/kg	NonTidalAnacostia	NEB2	8/3/2016	0.066		1		0.015		0		
TA LMB F	mg/kg	NonTidalAnacostia	NEB2	8/3/2016	0.045		1		0.047		1		
TA LMB F	mg/kg	NonTidalAnacostia	NWB1	8/12/2016	0.074		1		0.015		1		
TA LMB F	mg/kg	NonTidalAnacostia	NWB1	8/12/2016	0.059		1		0.0066		1		
TA LMB F	mg/kg	NonTidalAnacostia	NWB2	8/8/2016	0.091		1		0.02		0		
TA LMB F	mg/kg	NonTidalAnacostia	NWB2	8/8/2016	0.073		1		0.017		0		
TA LMB F	mg/kg	NonTidalAnacostia	NWB2	8/9/2016	0.074		1		0.008		0		
TA LMB F	mg/kg	NonTidalAnacostia	NWB2	8/9/2016	0.058	3	1		0.011		0		
TA_LMB_F	mg/kg	NonTidalAnacostia	NWB2	8/9/2016	0.068		1		0.011		0		
TA LMB F	mg/kg	NonTidalAnacostia	NWB3	8/10/2016	0.073		1		0.013		1		
TA LMB F	mg/kg	NonTidalAnacostia	NWB3	8/10/2016	0.041		1		0.0062		1		
TA_LMB_F	mg/kg	NonTidalAnacostia	PB1	8/3/2016	0.034		1		0.029		0		
TA LMB F	mg/kg	NonTidalAnacostia	PB1	8/15/2016	0.028		1		0.02		1		
TA LMB F	mg/kg	NonTidalAnacostia	PB1	8/15/2016	0.027		1		0.011		1		
TA LMB F	ug/kg	NonTidalAnacostia	IC2	8/3/2016			19		1		1.3	3	1 0.34
TA LMB F	ug/kg	NonTidalAnacostia	IC2	8/3/2016			12		1		0.43		1 0.05
TA LMB F	ug/kg	NonTidalAnacostia	IC3	8/3/2016			10		1		0.37	7	1 0.12
TA LMB F	ug/kg	NonTidalAnacostia	NEB1	8/3/2016			8		1		0.33		1 0.05
TA LMB F	ug/kg	NonTidalAnacostia	NEB2	8/3/2016			18	3	1		1.4		1 0.41
TA LMB F	ug/kg	NonTidalAnacostia	NEB2	8/3/2016			9.5		1		0.36		1 0.05
TA LMB F	ug/kg	NonTidalAnacostia	NWB1	8/12/2016									
TA LMB F	ug/kg	NonTidalAnacostia	NWB1	8/12/2016			27	7	1		1.6	5	1 0.86
TA LMB F	ug/kg	NonTidalAnacostia	NWB2	8/8/2016			2:		1		1.8		1 1
TA LMB F	ug/kg	NonTidalAnacostia	NWB2	8/8/2016			62		1		4.7		1 4.8
TA LMB F	ug/kg	NonTidalAnacostia	NWB2	8/9/2016			29		1		2.3		1 2.4
TA LMB F	ug/kg	NonTidalAnacostia	NWB2	8/9/2016			7.3		1		0.079		0 0.1
TA LMB F	ug/kg	NonTidalAnacostia	NWB2	8/9/2016			6.3		1		0.078	3	0 0.099
TA LMB F	ug/kg	NonTidalAnacostia	NWB3	8/10/2016			39		1		3.4		1 3.5
TA LMB F	ug/kg	NonTidalAnacostia	NWB3	8/10/2016			26		1		2		1 2.3
TA LMB F	ug/kg	NonTidalAnacostia	NWB3	8/10/2016			31		1		1.4	1	1 1.3
TA LMB F	ug/kg	NonTidalAnacostia	PB1	8/3/2016			0.47		0		2.4		1 1.3
TA LMB F	ug/kg	NonTidalAnacostia	PB1	8/15/2016			17	7	1		0.8	3	1 0.15
TA LMB F	ug/kg	NonTidalAnacostia	PB1	8/15/2016			35	5	1		3	3	1 2.5
TA_NS_F	mg/kg	NonTidalAnacostia	NWB1	8/16/2016	0.027	7	1		0.012		1		
TA_NS_F	ug/kg	NonTidalAnacostia	NWB1	8/16/2016			22	2	1		2.9)	1 1.3
TA_SB_F	ug/kg	NonTidalAnacostia	IC2	8/12/2016									
TA SB F	ug/kg	NonTidalAnacostia	IC2	8/12/2016			25	5	1		0.69	9	1 0.15
TA SB F	ug/kg	NonTidalAnacostia	IC2	8/12/2016			13		1		0.14		0 0.18
TA_SMB_F	mg/kg	NonTidalAnacostia	NWB3	8/4/2016	0.14	ı	1		0.012		1		
TA_SMB_F	mg/kg	NonTidalAnacostia	NWB3	8/4/2016	0.1		1		0.024		1		
TA_SMB_F	mg/kg	NonTidalAnacostia	NWB3	8/4/2016	0.088		1		0.0082		1		
TA_SMB_F	mg/kg	NonTidalAnacostia	NWB3	8/4/2016	0.13		1		0.01		1		
TA SMB F	mg/kg	NonTidalAnacostia	NWB4	8/5/2016	0.11		1		0.011		0		
TA_SMB_F	ug/kg	NonTidalAnacostia	NWB3	8/4/2016			37	7	1		2.7	7	1 3.4
TA SMB F	ug/kg	NonTidalAnacostia	NWB3	8/4/2016			8.9		1		0.44		1 0.32
TA_SMB_F	ug/kg	NonTidalAnacostia	NWB3	8/4/2016			22		1		1.6		1 1.8
TA SMB F	ug/kg	NonTidalAnacostia	NWB3	8/4/2016			37		1		3.7		1 3.9
TA SMB F	ug/kg	NonTidalAnacostia	NWB3	8/4/2016					1				
TA_SMB_F	ug/kg	NonTidalAnacostia	NWB4	8/5/2016			19		1		0.2	2	1 0.2

Matrix L	Jnits	Area	Location	Collected	D HEPTACHLOR EPOXIDE Mercury D Mercury	PCB-TEQ (Mammal)	D PCB-TEQ (Mammal)	TCDD-TEQ (Mammal)	D TCDD-TEQ (Mammal)
TA_LMB_F	mg/kg	NonTidalAnacostia	IC2	8/3/2016	0.2	1			
TA_LMB_F	mg/kg	NonTidalAnacostia	IC2	8/3/2016	0.21	1			
TA_LMB_F	mg/kg	NonTidalAnacostia	IC3	8/3/2016	0.24	1			
TA_LMB_F	mg/kg	NonTidalAnacostia	NEB1	8/3/2016	0.19	1			
TA_LMB_F	mg/kg	NonTidalAnacostia	NEB2	8/3/2016	0.26	1			
TA_LMB_F	mg/kg	NonTidalAnacostia	NEB2	8/3/2016	0.28	1			
TA_LMB_F	mg/kg	NonTidalAnacostia	NWB1	8/12/2016	0.2	1			
TA LMB F	mg/kg	NonTidalAnacostia	NWB1	8/12/2016	0.18	1			
TA_LMB_F	mg/kg	NonTidalAnacostia	NWB2	8/8/2016	0.31	1			
TA_LMB_F	mg/kg	NonTidalAnacostia	NWB2	8/8/2016	0.19	1			
TA_LMB_F	mg/kg	NonTidalAnacostia	NWB2	8/9/2016	0.36	1			
TA_LMB_F	mg/kg	NonTidalAnacostia	NWB2	8/9/2016	0.27	1			
TA_LMB_F	mg/kg	NonTidalAnacostia	NWB2	8/9/2016	0.32	1			
TA_LMB_F	mg/kg	NonTidalAnacostia	NWB3	8/10/2016	0.076	0			
TA_LMB_F	mg/kg	NonTidalAnacostia	NWB3	8/10/2016	0.16	1			
TA_LMB_F	mg/kg	NonTidalAnacostia	PB1	8/3/2016	0.39	1			
TA_LMB_F	mg/kg	NonTidalAnacostia	PB1	8/15/2016	0.42	1			
TA_LMB_F	mg/kg	NonTidalAnacostia	PB1	8/15/2016	0.33	1			
TA_LMB_F	ug/kg	NonTidalAnacostia	IC2	8/3/2016	1	0.00019124	ı	1 0.0000684	1
TA_LMB_F	ug/kg	NonTidalAnacostia	IC2	8/3/2016	0	0.00021444	l .	1 0.000135	1
TA_LMB_F	ug/kg	NonTidalAnacostia	IC3	8/3/2016	1	0.00108426	j	1 0.000023	1
TA_LMB_F	ug/kg	NonTidalAnacostia	NEB1	8/3/2016	0	0.00253768	3	1 0.000061	1
TA_LMB_F	ug/kg	NonTidalAnacostia	NEB2	8/3/2016	1	0.00037224		1 0.0000212	1
TA_LMB_F	ug/kg	NonTidalAnacostia	NEB2	8/3/2016	0	0.00041434		1 0.000016	1
TA LMB F	ug/kg	NonTidalAnacostia	NWB1	8/12/2016		0.00037806	j	1 0.0000493	1
TA_LMB_F	ug/kg	NonTidalAnacostia	NWB1	8/12/2016	1	0.00076685	i e	1 0.0000739	1
TA_LMB_F	ug/kg	NonTidalAnacostia	NWB2	8/8/2016	1	0.00063029)	1 0.000011	1
TA_LMB_F	ug/kg	NonTidalAnacostia	NWB2	8/8/2016	1	0.00079689)	1 0.000083	1
TA_LMB_F	ug/kg	NonTidalAnacostia	NWB2	8/9/2016	1	0.000557015		1 0.00018805	1
TA_LMB_F	ug/kg	NonTidalAnacostia	NWB2	8/9/2016	0	0.00053845		1 0.0000721	1
TA_LMB_F	ug/kg	NonTidalAnacostia	NWB2	8/9/2016	0	0.00032864		1 0.00009292	1
TA_LMB_F	ug/kg	NonTidalAnacostia	NWB3	8/10/2016	1	0.00061996	5	1 0.00011687	1
TA_LMB_F	ug/kg	NonTidalAnacostia	NWB3	8/10/2016	1	0.00075982	!	1 0.0001164	1
TA_LMB_F	ug/kg	NonTidalAnacostia	NWB3	8/10/2016	1	0.00048728	3	1 0.0000513	1
TA_LMB_F	ug/kg	NonTidalAnacostia	PB1	8/3/2016	1	0.00125889)	1 0.000178	1
TA_LMB_F	ug/kg	NonTidalAnacostia	PB1	8/15/2016	1	0.00057487	,	1 0.0001586	1
TA_LMB_F	ug/kg	NonTidalAnacostia	PB1	8/15/2016	1	0.00071794	l .	1 0.000136	1
TA_NS_F	mg/kg	NonTidalAnacostia	NWB1	8/16/2016	0.34	1			
TA_NS_F	ug/kg	NonTidalAnacostia	NWB1	8/16/2016	1	0.00081726	5	1 0.0001236	1
TA_SB_F	ug/kg	NonTidalAnacostia	IC2	8/12/2016		0.00104565	i	1	
TA_SB_F	ug/kg	NonTidalAnacostia	IC2	8/12/2016	0	0.0010929		1 0.00023	1
TA_SB_F	ug/kg	NonTidalAnacostia	IC2	8/12/2016	0	0.00045107	'	1 0.000086	1
TA_SMB_F	mg/kg	NonTidalAnacostia	NWB3	8/4/2016	0.16	1			
TA_SMB_F	mg/kg	NonTidalAnacostia	NWB3	8/4/2016	0.5	1			
TA_SMB_F	mg/kg	NonTidalAnacostia	NWB3	8/4/2016	0.21	1			
TA_SMB_F	mg/kg	NonTidalAnacostia	NWB3	8/4/2016	0.2	1			
TA_SMB_F	mg/kg	NonTidalAnacostia	NWB4	8/5/2016	0.17	1			
TA_SMB_F	ug/kg	NonTidalAnacostia	NWB3	8/4/2016	1	0.00149844	Į.	1 0.000289	1
TA_SMB_F	ug/kg	NonTidalAnacostia	NWB3	8/4/2016	1	0.00002365	i	1 0.000022	1
TA_SMB_F	ug/kg	NonTidalAnacostia	NWB3	8/4/2016	1	0.0003215		1 0.0001234	1
TA_SMB_F	ug/kg	NonTidalAnacostia	NWB3	8/4/2016	1	0.00029299)	1 0.000146	1
TA_SMB_F	ug/kg	NonTidalAnacostia	NWB3	8/4/2016		0.00004401		1 0.0000429	1
	ug/kg	NonTidalAnacostia	NWB4	8/5/2016	0	0.000461608		1 0.0000123	1

Matrix	Units	Area	Location	Collected	Thallium	D_Thallium	Total PCBs (Congeners)	D_Total PCBs (Congeners)
TA_LMB_F	mg/kg	NonTidalAnacostia	IC2	8/3/2016	0.0022	0		
TA_LMB_F	mg/kg	NonTidalAnacostia	IC2	8/3/2016	0.0025	0		
TA_LMB_F	mg/kg	NonTidalAnacostia	IC3	8/3/2016	0.0028	1		
TA_LMB_F	mg/kg	NonTidalAnacostia	NEB1	8/3/2016	0.0024	0		
TA_LMB_F	mg/kg	NonTidalAnacostia	NEB2	8/3/2016	0.0041	1		
TA_LMB_F	mg/kg	NonTidalAnacostia	NEB2	8/3/2016	0.0029	1		
TA LMB F	mg/kg	NonTidalAnacostia	NWB1	8/12/2016	0.0029	1		
TA LMB F	mg/kg	NonTidalAnacostia	NWB1	8/12/2016	0.0033	1		
TA LMB F	mg/kg	NonTidalAnacostia	NWB2	8/8/2016	0.0036	1		
TA LMB F	mg/kg	NonTidalAnacostia	NWB2	8/8/2016	0.0026	1		
TA LMB F	mg/kg	NonTidalAnacostia	NWB2	8/9/2016	0.00355	1		
TA LMB F	mg/kg	NonTidalAnacostia	NWB2	8/9/2016	0.0027	1		
TA LMB F	mg/kg	NonTidalAnacostia	NWB2	8/9/2016	0.0026	0		
TA LMB F	mg/kg	NonTidalAnacostia	NWB3	8/10/2016	0.0043	1		
TA LMB F	mg/kg	NonTidalAnacostia	NWB3	8/10/2016	0.0024	1		
TA LMB F	mg/kg	NonTidalAnacostia	PB1	8/3/2016	0.0047	1		
TA LMB F	mg/kg	NonTidalAnacostia	PB1	8/15/2016	0.0062	1		
TA LMB F	mg/kg	NonTidalAnacostia	PB1	8/15/2016	0.0053	1		
TA LMB F	ug/kg	NonTidalAnacostia	IC2	8/3/2016	0.0033	_	23.1291	1
TA LMB F	ug/kg	NonTidalAnacostia	IC2	8/3/2016			17.79497	
TA LMB F	ug/kg	NonTidalAnacostia	IC3	8/3/2016			33.8748	
TA LMB F	ug/kg	NonTidalAnacostia	NEB1	8/3/2016			41.1407	
TA LMB F	ug/kg	NonTidalAnacostia	NEB2	8/3/2016			43.3265	
TA LMB F	ug/kg	NonTidalAnacostia	NEB2	8/3/2016			45.9758	
TA LMB F	ug/kg	NonTidalAnacostia	NWB1	8/12/2016			14.591	
TA LMB F	ug/kg	NonTidalAnacostia	NWB1	8/12/2016			17.9688	
TA LMB F	ug/kg	NonTidalAnacostia	NWB2	8/8/2016			22.28657	
TA LMB F	ug/kg	NonTidalAnacostia	NWB2	8/8/2016			34.60831	
TA_LMB_F	ug/kg	NonTidalAnacostia	NWB2	8/9/2016			23.35653	
TA LMB F	ug/kg	NonTidalAnacostia	NWB2	8/9/2016			17.0777	
TA LMB F	ug/kg	NonTidalAnacostia	NWB2	8/9/2016			16.464	
TA LMB F	ug/kg	NonTidalAnacostia	NWB3	8/10/2016			24.9069	
TA_LIMB_F	ug/kg	NonTidalAnacostia	NWB3	8/10/2016			27.30435	
TA LMB F		NonTidalAnacostia	NWB3	8/10/2016			18.1185	
TA_LIVIB_F	ug/kg ug/kg	NonTidalAnacostia	PB1	8/3/2016			53.48618	
TA LMB F	ug/kg	NonTidalAnacostia	PB1	8/15/2016			30.98556	
TA_LIVIB_F	ug/kg	NonTidalAnacostia	PB1	8/15/2016			27.6725	
TA_LIVIB_F	mg/kg	NonTidalAnacostia	NWB1	8/15/2016	0.0041	1	27.0725	, 1
TA_NS_F	ug/kg	NonTidalAnacostia	NWB1	8/16/2016	0.0041	1	41.2486	5 1
TA_NS_F TA_SB_F	ug/kg ug/kg	NonTidalAnacostia	IC2	8/12/2016			45.93929	
TA_SB_F		NonTidalAnacostia	IC2	8/12/2016			59.6597	
	ug/kg	NonTidalAnacostia NonTidalAnacostia	IC2				33.3589	
TA_SB_F	ug/kg	NonTidalAnacostia NonTidalAnacostia	NWB3	8/12/2016	0.0041	1	33.3589	1
TA_SMB_F	mg/kg			8/4/2016		1		
TA_SMB_F	mg/kg	NonTidalAnacostia	NWB3	8/4/2016	0.006	1		
TA_SMB_F	mg/kg	NonTidalAnacostia	NWB3	8/4/2016	0.003	1		
TA_SMB_F	mg/kg	NonTidalAnacostia	NWB3	8/4/2016	0.003			
TA_SMB_F	mg/kg	NonTidalAnacostia	NWB4	8/5/2016	0.0021	0	20 2020	
TA_SMB_F	ug/kg	NonTidalAnacostia	NWB3	8/4/2016			30.2029	
TA_SMB_F	ug/kg	NonTidalAnacostia	NWB3	8/4/2016			9.494	
TA_SMB_F	ug/kg	NonTidalAnacostia	NWB3	8/4/2016			18.3847	
TA_SMB_F	ug/kg	NonTidalAnacostia	NWB3	8/4/2016			17.72092	
TA_SMB_F	ug/kg	NonTidalAnacostia	NWB3	8/4/2016			16.5971	
TA_SMB_F	ug/kg	NonTidalAnacostia	NWB4	8/5/2016			16.93565	1

ProUCL Output Files

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.18/23/2018 4:52:25 PM From File HH_Pepco_OpenLot_Input.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Arsenic

General Statistics

Total Number of Observations	2	Number of Distinct Observations	2
		Number of Missing Observations	1
Minimum	1.8	Mean	2.2
Maximum	2.6	Median	2.2

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

The data set for variable Arsenic was not processed!

Benzo(a)anthracene

General Statistics

	aciiciai cialicaco		
Total Number of Observations	4	Number of Distinct Observations	4
		Number of Missing Observations	0
Minimum	0.077	Mean	0.137
Maximum	0.19	Median	0.14
SD	0.0491	Std. Error of Mean	0.0245
Coefficient of Variation	0.359	Skewness	-0.307

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.985	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.182	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)				
95% Student's-t UCL	0.195	95% Adjusted-CLT UCL (Chen-1995)	0.173			
		95% Modified-t UCL (Johnson-1978)	0.194			

Gamma GOF Test

A-D Test Statistic	0.242	Anderson-Darling Gamma GOF Test				
5% A-D Critical Value	0.657	Detected data appear Gamma Distributed at 5% Significance Level				
K-S Test Statistic	0.226	Kolmogorov-Smirnov Gamma GOF Test				
5% K-S Critical Value	0.395	Detected data appear Gamma Distributed at 5% Significance Level				
Detected data appear Gamma Distributed at 5% Significance Level						

Gamma Statistics

2.489	k star (bias corrected MLE)	9.291	k hat (MLE)
0.0549	Theta star (bias corrected MLE)	0.0147	Theta hat (MLE)
19.92	nu star (bias corrected)	74.33	nu hat (MLE)
0.0867	MLE Sd (bias corrected)	0.137	MLE Mean (bias corrected)
10.79	Approximate Chi Square Value (0.05)		
N/A	Adjusted Chi Square Value	N/A	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.252 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.957	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.204	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.375	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-2.564	Mean of logged Data	-2.044
Maximum of Logged Data	-1.661	SD of logged Data	0.395

Assuming Lognormal Distribution

95% H-UCL	0.287	90% Chebyshev (MVUE) UCL	0.217
95% Chebyshev (MVUE) UCL	0.254	97.5% Chebyshev (MVUE) UCL	0.304
99% Chebyshev (MVUE) UCL	0.403		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.177	95% Jackknife UCL	0.195
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	0.21	95% Chebyshev(Mean, Sd) UCL	0.244
97.5% Chebyshev(Mean, Sd) UCL	0.29	99% Chebyshev(Mean, Sd) UCL	0.381

Suggested UCL to Use

95% Student's-t UCL 0.195

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Benzo(a)pyrene

General Statistics

Total Number of Observations	4	Number of Distinct Observations	3
		Number of Missing Observations	0
Minimum	0.099	Mean	0.155
Maximum	0.18	Median	0.17
SD	0.0383	Std. Error of Mean	0.0192
Coefficient of Variation	0.248	Skewness	-1.667

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.79	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.304	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	· ·	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.2	95% Adjusted-CLT UCL (Chen-1995)	0.169
		95% Modified-t UCL (Johnson-1978)	0.197

Gamma GOF Test

A-D Test Statistic	0.614	Anderson-Darling Gamma GOF Test		
5% A-D Critical Value	0.657	Detected data appear Gamma Distributed at 5% Significance Level		
K-S Test Statistic	0.337	Kolmogorov-Smirnov Gamma GOF Test		
5% K-S Critical Value	0.394	Detected data appear Gamma Distributed at 5% Significance Level		
Detected data appear Gamma Distributed at 5% Significance Level				

Gamma Statistics

4.711	k star (bias corrected MLE)	18.18	k hat (MLE)
0.0328	Theta star (bias corrected MLE)	0.00851	Theta hat (MLE)
37.69	nu star (bias corrected)	145.4	nu hat (MLE)
0.0713	MLE Sd (bias corrected)	0.155	MLE Mean (bias corrected)
24.63	Approximate Chi Square Value (0.05)		
N/A	Adjusted Chi Square Value	N/A	Adjusted Level of Significance

Assuming Gamma Distribution

Lognormal GOF Test

Shapiro Wilk Lognormal GOF Test	0.762	Shapiro Wilk Test Statistic
Data appear Lognormal at 5% Significance Levi	0.748	5% Shapiro Wilk Critical Value
Lilliefors Lognormal GOF Test	0.335	Lilliefors Test Statistic
Data appear Lognormal at 5% Significance Levi	0.375	5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-2.313	Mean of logged Data	-1.894
Maximum of Logged Data	-1.715	SD of logged Data	0.285

Assuming Lognormal Distribution

95% H-UCL	0.245	90% Chebyshev (MVUE) UCL	0.221
95% Chebyshev (MVUE) UCL	0.251	97.5% Chebyshev (MVUE) UCL	0.292
99% Chehyshey (MVLIE) LICI	0.374		

February 2020

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.186	95% Jackknife UCL	0.2
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	0.212	95% Chebyshev(Mean, Sd) UCL	0.238
97.5% Chebyshev(Mean, Sd) UCL	0.274	99% Chebyshev(Mean, Sd) UCL	0.346

Suggested UCL to Use

95% Student's-t UCL 0.2

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Benzo(b)fluoranthene

General Statistics

Total Number of Observations	4	Number of Distinct Observations	4
		Number of Missing Observations	0
Minimum	0.098	Mean	0.165
Maximum	0.26	Median	0.15
SD	0.0701	Std. Error of Mean	0.0351
Coefficient of Variation	0.426	Skewness	1.035

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.944	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.219	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.247	95% Adjusted-CLT UCL (Chen-1995)	0.242
		95% Modified-t UCL (Johnson-1978)	0.25
	Gamma GOF Test		
A.D. Toot Statistic	0.227	Andomon Dorling Commo COE Toot	

A-D Test Statistic	0.227	Anderson-Daning Gamma GOF Test
5% A-D Critical Value	0.658	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.195	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.395	Detected data appear Gamma Distributed at 5% Significance Level
Detected data annear G	amma Die	tributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	7.777	k star (bias corrected MLE)	2.111
Theta hat (MLE)	0.0212	Theta star (bias corrected MLE)	0.0779
nu hat (MLE)	62.22	nu star (bias corrected)	16.89
MLE Mean (bias corrected)	0.165	MLE Sd (bias corrected)	0.113
		Approximate Chi Square Value (0.05)	8.592
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<=50)) 0.323 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.99	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.159	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.375	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-2.323	Mean of logged Data	-1.871
Maximum of Logged Data	-1.347	SD of logged Data	0.415

Assuming Lognormal Distribution

95% H-UCL	0.365	90% Chebyshev (MVUE) UCL	0.265
95% Chebyshev (MVUE) UCL	0.311	97.5% Chebyshev (MVUE) UCL	0.374
99% Chebyshev (MVUE) UCL	0.499		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.222	95% Jackknife UCL	0.247
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	0.27	95% Chebyshev(Mean, Sd) UCL	0.317
97.5% Chebyshev(Mean, Sd) UCL	0.384	99% Chebyshev(Mean, Sd) UCL	0.513

Suggested UCL to Use

95% Student's-t UCL 0.247

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(k)fluoranthene

	General Statistics		
Total Number of Observations	4	Number of Distinct Observations	4
		Number of Missing Observations	0
Minimum	0.04	Mean	0.068
Maximum	0.091	Median	0.0705
SD	0.021	Std. Error of Mean	0.0105
Coefficient of Variation	0.309	Skewness	-0.699

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk GOF Test	0.935	Shapiro Wilk Test Statistic
Data appear Normal at 5% Significance Leve	0.748	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.288	Lilliefors Test Statistic
Data appear Normal at 5% Significance Leve	0.375	5% Lilliefors Critical Value

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.0927	95% Adjusted-CLT UCL (Chen-1995)	0.0814
		95% Modified-t UCL (Johnson-1978)	0.0921

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.394	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.657	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.328	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.395	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	12.13	k star (bias corrected MLE)	3.2
Theta hat (MLE)	0.00561	Theta star (bias corrected MLE)	0.0213
nu hat (MLE)	97.06	nu star (bias corrected)	25.6
MLE Mean (bias corrected)	0.068	MLE Sd (bias corrected)	0.038
		Approximate Chi Square Value (0.05)	15.07
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<=50)) 0.116 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.888	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.331	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.375	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-3.219	Mean of logged Data	-2.73
Maximum of Logged Data	-2.397	SD of logged Data	0.347

Assuming Lognormal Distribution

95% H-UCL	0.125	90% Chebyshev (MVUE) UCL	0.103
95% Chebyshev (MVUE) UCL	0.119	97.5% Chebyshev (MVUE) UCL	0.142
99% Chebyshev (MVUE) UCL	0.185		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

0.0927	95% Jackknife UCL	0.0853	95% CLT UCL
N/A	95% Bootstrap-t UCL	N/A	95% Standard Bootstrap UCL
N/A	95% Percentile Bootstrap UCL	N/A	95% Hall's Bootstrap UCL
		N/A	95% BCA Bootstrap UCL
0.114	95% Chebyshev(Mean, Sd) UCL	0.0995	90% Chebyshev(Mean, Sd) UCL
0.173	99% Chebyshev(Mean, Sd) UCL	0.134	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 0.0927

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

Chrysene

General Statistics

Total Number of Observations	4	Number of Distinct Observations	4
		Number of Missing Observations	0
Minimum	0.092	Mean	0.153
Maximum	0.2	Median	0.16
SD	0.0511	Std. Error of Mean	0.0255
Coefficient of Variation	0.334	Skewness	-0.424

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.907	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.266	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

Assuming Normal Distribution	!	
95% Normal UCL	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL 0.213	95% Adjusted-CLT UCL (Chen-1995)	0.189
	95% Modified-t UCL (Johnson-1978)	0.212

Gamma GOF Test

A-D Test Statistic	0.358	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.657	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.299	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.395	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	10.85	k star (bias corrected MLE)	2.88
Theta hat (MLE)	0.0141	Theta star (bias corrected MLE)	0.0531
nu hat (MLE)	86.83	nu star (bias corrected)	23.04
MLE Mean (bias corrected)	0.153	MLE Sd (bias corrected)	0.0902
		Approximate Chi Square Value (0.05)	13.12
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

Lognormal GOF Test

Shapiro Wilk Lognormal GOF Test	0.903	Shapiro Wilk Test Statistic
Data appear Lognormal at 5% Significance Leve	0.748	5% Shapiro Wilk Critical Value
Lilliefors Lognormal GOF Test	0.266	Lilliefors Test Statistic
Data appear Lognormal at 5% Significance Leve	0.375	5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-2.386	Mean of logged Data	-1.924
Maximum of Logged Data	-1.609	SD of logged Data	0.363

Assuming Lognormal Distribution

95% H-UCL	0.293	90% Chebyshev (MVUE) UCL	0.236
95% Chebyshev (MVUE) UCL	0.273	97.5% Chebyshev (MVUE) UCL	0.325
99% Chehyshey (MVIJE) LICI	0.427		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.195	95% Jackknife UCL	0.213
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	0.23	95% Chebyshev(Mean, Sd) UCL	0.264
97.5% Chebyshev(Mean, Sd) UCL	0.313	99% Chebyshev(Mean, Sd) UCL	0.407

Suggested UCL to Use

95% Student's-t UCL 0.213

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Cobalt

General Statistics

Total Number of Observations	2	Number of Distinct Observations	2
		Number of Missing Observations	1
Minimum	92	Mean	111
Maximum	130	Median	111

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable Cobalt was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Dibenzo(a,h)anthracene

General Statistics

Total Number of Observations	4	Number of Distinct Observations	3
		Number of Missing Observations	0
Minimum	0.023	Mean	0.0323
Maximum	0.046	Median	0.03
SD	0.00974	Std. Error of Mean	0.00487
Coefficient of Variation	0.302	Skewness	1.287

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

ance Level
ance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.0437	95% Adjusted-CLT UCL (Chen-1995)	0.0436
		95% Modified-t UCL (Johnson-1978)	0.0442

Gamma GOF Test

Anderson-Darling Gamma GOF Test	Gamma GOF Test
Detected data appear Gamma Distributed at 5% Significa	stributed at 5% Significance Level
Kolmogorov-Smirnov Gamma GOF Test	v Gamma GOF Test
Detected data appear Gamma Distributed at 5% Significa	stributed at 5% Significance Level
a Distributed at 5% Significance Level	

Gamma Statistics

k hat (MLE)	15.85	k star (bias corrected MLE)	4.128
Theta hat (MLE)	0.00204	Theta star (bias corrected MLE)	0.00781
nu hat (MLE)	126.8	nu star (bias corrected)	33.03
MLE Mean (bias corrected)	0.0323	MLE Sd (bias corrected)	0.0159
		Approximate Chi Square Value (0.05)	20.89
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<=50)) 0.051 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.919	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.306	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.375	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-3.772	Mean of logged Data	-3.466
Maximum of Logged Data	-3.079	SD of logged Data	0.287

Assuming Lognormal Distribution

95% H-UCL	0.0512	90% Chebyshev (MVUE) UCL	0.046
95% Chebyshev (MVUE) UCL	0.0522	97.5% Chebyshev (MVUE) UCL	0.0609
99% Chebyshev (MVUE) UCL	0.0779		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

0.0437	95% Jackknife UCL	0.0403	95% CLT UCL
N/A	95% Bootstrap-t UCL	N/A	95% Standard Bootstrap UCL
N/A	95% Percentile Bootstrap UCL	N/A	95% Hall's Bootstrap UCL
		N/A	95% BCA Bootstrap UCL
0.0535	95% Chebyshev(Mean, Sd) UCL	0.0469	90% Chebyshev(Mean, Sd) UCL
0.0807	99% Chebyshev(Mean, Sd) UCL	0.0627	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 0.0437

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Diesel Range Organics (C10-C20)

General Statistics

Total Number of Observations	2	Number of Distinct Observations	2
		Number of Missing Observations	1
Number of Detects	1	Number of Non-Detects	1
Number of Distinct Detects	1	Number of Distinct Non-Detects	1

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable Diesel Range Organics (C10-C20) was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Indeno(1,2,3-cd)pyrene

General Statistics

Total Number of Observations	4	Number of Distinct Observations	4
		Number of Missing Observations	0
Minimum	0.082	Mean	0.104
Maximum	0.15	Median	0.091
SD	0.0317	Std. Error of Mean	0.0158
Coefficient of Variation	0.306	Skewness	1.763

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.79	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.331	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	0.141	95% Adjusted-CLT UCL (Chen-1995)	0.144	
		95% Modified t LICL (Johnson-1978)	0 143	

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.53	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.657	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.32	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.394	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

4.254	k star (bias corrected MLE)	16.35	k hat (MLE)
0.0243	Theta star (bias corrected MLE)	0.00633	Theta hat (MLE)
34.03	nu star (bias corrected)	130.8	nu hat (MLE)
0.0502	MLE Sd (bias corrected)	0.104	MLE Mean (bias corrected)
21.69	Approximate Chi Square Value (0.05)		
N/A	Adjusted Chi Square Value	N/A	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.162 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.827	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.299	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.375	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-2.501	Mean of logged Data	-2.299
Maximum of Logged Data	-1.897	SD of logged Data	0.278

Assuming Lognormal Distribution

95% H-UCL	0.161	90% Chebyshev (MVUE) UCL	0.146
95% Chebyshev (MVUE) UCL	0.165	97.5% Chebyshev (MVUE) UCL	0.192
99% Chebyshev (MVUE) UCL	0.245		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.13	95% Jackknife UCL	0.141
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	0.151	95% Chebyshev(Mean, Sd) UCL	0.173
97.5% Chebyshev(Mean, Sd) UCL	0.202	99% Chebyshev(Mean, Sd) UCL	0.261

Suggested UCL to Use

95% Student's-t UCL 0.141

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Manganese

General Statistics

Total Number of Observations	2	Number of Distinct Observations	2
		Number of Missing Observations	1
Minimum	36	Mean	118
Maximum	200	Median	118

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable Manganese was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Naphthalene

General Statistics

Total Number of Observations	4	Number of Distinct Observations	4
Number of Detects	2	Number of Non-Detects	2
Number of Distinct Detects	2	Number of Distinct Non-Detects	2
Minimum Detect	0.0064	Minimum Non-Detect	0.039
Maximum Detect	0.018	Maximum Non-Detect	0.11
Variance Detects	6.7280E-5	Percent Non-Detects	50%
Mean Detects	0.0122	SD Detects	0.0082
Median Detects	0.0122	CV Detects	0.672
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	-4.534	SD of Logged Detects	0.731

Warning: Data set has only 2 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Not Enough Data to Perform GOF Test

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.0058	KM Standard Error of Mean	KM Mean
N/A	95% KM (BCA) UCL	KM SD
N/A	95% KM (Percentile Bootstrap) UCL	95% KM (t) UCL
N/A	95% KM Bootstrap t UCL	95% KM (z) UCL
0.0375	95% KM Chebyshev UCL	90% KM Chebyshev UCL
0.0699	99% KM Chebyshev UCL	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

k hat (MLE)	4.062	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.003	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	16.25	nu star (bias corrected)	N/A
Mean (detects)	0.0122		

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.0122	SD (KM)	0.0058
Variance (KM) 3	3.3640E-5	SE of Mean (KM)	0.0058
k hat (KM)	4.424	k star (KM)	1.273
nu hat (KM)	35.4	nu star (KM)	10.18
theta hat (KM)	0.00276	theta star (KM)	0.00959
80% gamma percentile (KM)	0.0192	90% gamma percentile (KM)	0.0265
95% gamma percentile (KM)	0.0336	99% gamma percentile (KM)	0.0499

Gamma Kaplan-Meier (KM) Statistics

		Adjusted Level of Significance (β) 0	.00498
Approximate Chi Square Value (10.18, α)	4.056	Adjusted Chi Square Value (10.18, β)	2.238
95% Gamma Approximate KM-UCL (use when n>=50)	0.0306	95% Gamma Adjusted KM-UCL (use when n<50)	0.0555

Lognormal GOF Test on Detected Observations Only

Not Enough Data to Perform GOF Test

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0115	Mean in Log Scale	-4.534
SD in Original Scale	0.00481	SD in Log Scale	0.422
95% t UCL (assumes normality of ROS data)	0.0171	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A	95% Bootstrap t UCL	N/A
95% H-UCL (Log ROS)	0.0261		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-4.534	KM Geo Mean	0.0107
KM SD (logged)	0.517	95% Critical H Value (KM-Log)	3.747
KM Standard Error of Mean (logged)	0.517	95% H-UCL (KM -Log)	0.0375
KM SD (logged)	0.517	95% Critical H Value (KM-Log)	3.747
KM Standard Error of Mean (logged)	0.517		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed			
Mean in Original Scale	0.0247	Mean in Log Scale	-3.977	
SD in Original Scale	0.021	SD in Log Scale	0.879	
95% t UCL (Assumes normality)	0.0495	95% H-Stat UCL	0.552	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 0.0375

Warning: Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Nickel

	General Statistics		
Total Number of Observations	2	Number of Distinct Observations	2
		Number of Missing Observations	1
Minimum	8.7	Mean	10.35
Maximum	12	Median	10.35

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable Nickel was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

PCB, Total Aroclors (AECOM Calc)

	General Statistics		
Total Number of Observations	4	Number of Distinct Observations	4
Number of Detects	3	Number of Non-Detects	1
Number of Distinct Detects	3	Number of Distinct Non-Detects	1
Minimum Detect	0.021	Minimum Non-Detect	0.0096
Maximum Detect	0.092	Maximum Non-Detect	0.0096
Variance Detects	0.00126	Percent Non-Detects	25%
Mean Detects	0.0557	SD Detects	0.0355
Median Detects	0.054	CV Detects	0.638
Skewness Detects	0.211	Kurtosis Detects	N/A
Mean of Logged Detects	-3.056	SD of Logged Detects	0.748

Warning: Data set has only 3 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.998	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.185	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.425	Detected Data appear Normal at 5% Significance Level	
Detected Data appear Normal at 5% Significance Level			

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.0442	KM Standard Error of Mean	0.0196
KM SD	0.0321	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.0904	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.0765	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.103	95% KM Chebyshev UCL	0.13
97.5% KM Chebyshev UCL	0.167	99% KM Chebyshev UCL	0.24

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

k hat (MLE) 3.14 k star (bias corrected MLE) N/A Theta hat (MLE) 0.0177 Theta star (bias corrected MLE) N/A nu hat (MLE) 18.84 nu star (bias corrected) N/A Mean (detects) 0.0557

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.0443	Mean	0.01	Minimum
0.0375	Median	0.092	Maximum
0.834	CV	0.0369	SD
0.588	k star (bias corrected MLE)	1.684	k hat (MLE)
0.0753	Theta star (bias corrected MLE)	0.0263	Theta hat (MLE)
4.701	nu star (bias corrected)	13.47	nu hat (MLE)
		0.00498	Adjusted Level of Significance (β)
N/A	Adjusted Chi Square Value (4.70, β)	1.017	Approximate Chi Square Value (4.70, α)
N/A	95% Gamma Adjusted UCL (use when n<50)	0.205	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (K	M) 0.0442	SD (KM)	0.0321
Variance (K	M) 0.00103	SE of Mean (KM)	0.0196
k hat (K	M) 1.894	k star (KM)	0.64
nu hat (K	M) 15.15	nu star (KM)	5.122
theta hat (K	M) 0.0233	theta star (KM)	0.069
80% gamma percentile (K	M) 0.0727	90% gamma percentile (KM)	0.113
95% gamma percentile (K	M) 0.155	99% gamma percentile (KM)	0.256

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (5.12, α)	1.209	Adjusted Chi Square Value (5.12, β)	0.456
95% Gamma Approximate KM-LICL (use when n>=50)	0 187	95% Gamma Adjusted KM-LICL (use when n<50)	0.496

Lognormal GOF Test on Detected Observations Only

Lognonna ao	10000	bolog obool vacolio olily	
Shapiro Wilk Test Statistic	0.975	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.239	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.425	Detected Data appear Lognormal at 5% Significance Level	
But and But and		and an EQUIPMENT of the Company of t	

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0432	Mean in Log Scale	-3.581
SD in Original Scale	0.0383	SD in Log Scale	1.214
95% t UCL (assumes normality of ROS data)	0.0882	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A	95% Bootstrap t UCL	N/A
95% H-UCL (Log ROS)	16.24		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.453	KM Geo Mean	0.0316
KM SD (logged)	0.868	95% Critical H Value (KM-Log)	5.839
KM Standard Error of Mean (logged)	0.532	95% H-UCL (KM -Log)	0.861
KM SD (logged)	0.868	95% Critical H Value (KM-Log)	5.839
KM Standard Error of Mean (logged)	0.532		

February 2020

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	0.043	Mean in Log Scale	-3.627	
SD in Original Scale	0.0386	SD in Log Scale	1.295	
95% t UCL (Assumes normality)	0.0883	95% H-Stat UCL	36.75	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.0904

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

TCDD TEQ HH

General Statistics

2	Number of Distinct Observations	2	Total Number of Observations
1	Number of Missing Observations		
1.8900E-6	Mean	.2700E-6	Minimum 1
1.8900E-6	Median	2.5100E-6	Maximum 2

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable TCDD TEQ HH was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Thallium

	General Statistics		
Total Number of Observations	2	Number of Distinct Observations	1
		Number of Missing Observations	1
Number of Detects	0	Number of Non-Detects	2
Number of Distinct Detects	0	Number of Distinct Non-Detects	1

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable Thallium was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Vanadium

	General Statistics		
Total Number of Observations	2	Number of Distinct Observations	2
		Number of Missing Observations	1
Minimum	16	Mean	37
Maximum	58	Median	37

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable Vanadium was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.18/29/2018 3:24:02 PM

From File Soil-WH_Laydown-SS.xls

Full Precision OFF
Confidence Coefficient 95%
Imber of Bootstrap Operations 2000

Arsenic

Genera	Statistics

Total Number of Observations	44	Number of Distinct Observations	36
		Number of Missing Observations	59
Minimum	2	Mean	18.31
Maximum	190	Median	8.75
SD	30.77	Std. Error of Mean	4.638
Coefficient of Variation	1.68	Skewness	4.412

Normal GOF Test

Shapiro Wilk Test Statistic	0.509	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.944	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.298	Lilliefors GOF Test
5% Lilliefors Critical Value	0.132	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

Abouting Northal Distribution		
	95% UCLs (Adjusted for Skewness)	
26.11	95% Adjusted-CLT UCL (Chen-1995)	29.24
	95% Modified-t UCL (Johnson-1978)	26.62
	·	95% UCLs (Adjusted for Skewness) 26.11 95% Adjusted-CLT UCL (Chen-1995)

Gamma GOF Test

Anderson-Darling Gamma GOF Test	1.975	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Lev	0.781	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.213	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Lev	0.138	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

0.883	k star (bias corrected MLE)	0.932	k hat (MLE)
20.73	Theta star (bias corrected MLE)	19.66	Theta hat (MLE)
77.73	nu star (bias corrected)	81.99	nu hat (MLE)
19.49	MLE Sd (bias corrected)	18.31	MLE Mean (bias corrected)
58.42	Approximate Chi Square Value (0.05)		
57.85	Adjusted Chi Square Value	0.0445	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50))	24.37	95% Adjusted Gamma UCL (use when n<50)	24.61
30 % Approximate dumina GGE (dae when it GG))	24.07	30 % / Kajastea Garrinia GGE (ase Wrierin 400)	24.01

Lognormal GOF Test

Shapiro Wilk Lognormal GOF Test	0.954	Shapiro Wilk Test Statistic
Data appear Lognormal at 5% Significance Le	0.944	5% Shapiro Wilk Critical Value
Lilliefors Lognormal GOF Test	0.127	Lilliefors Test Statistic
Data appear Lognormal at 5% Significance Le	0.132	5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.693	Mean of logged Data	2.283
Maximum of Logged Data	5.247	SD of logged Data	1.028

Assuming Lognormal Distribution

95% H-UCL	24.23	90% Chebyshev (MVUE) UCL	25.29
95% Chebyshev (MVUE) UCL	29.35	97.5% Chebyshev (MVUE) UCL	34.98
99% Chebyshev (MVUE) UCL	46.03		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	25.94	95% Jackknife UCL	26.11
95% Standard Bootstrap UCL	25.79	95% Bootstrap-t UCL	34.18
95% Hall's Bootstrap UCL	55.65	95% Percentile Bootstrap UCL	26.12
95% BCA Bootstrap UCL	30.41		
90% Chebyshev(Mean, Sd) UCL	32.23	95% Chebyshev(Mean, Sd) UCL	38.53
97.5% Chebyshev(Mean, Sd) UCL	47.28	99% Chebyshev(Mean, Sd) UCL	64.46

Suggested UCL to Use

95% H-UCL 24.23

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

se of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

Benzo(a)anthracene

	General Statistics		
Total Number of Observations	18	Number of Distinct Observations	18
		Number of Missing Observations	41
Minimum	0.02	Mean	0.436
Maximum	1.2	Median	0.36
SD	0.357	Std. Error of Mean	0.0842
Coefficient of Variation	0.819	Skewness	0.979

Normal GOF Test

Shapiro Wilk Test Statistic	0.889	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.897	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.142	Lilliefors GOF Test
5% Lilliefors Critical Value	0.202	Data appear Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normai UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.583	95% Adjusted-CLT UCL (Chen-1995)	0.595
		95% Modified-t UCL (Johnson-1978)	0.586

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.199	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.759	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.103	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.208	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.37	k star (bias corrected MLE)	1.179
Theta hat (MLE)	0.318	Theta star (bias corrected MLE)	0.37
nu hat (MLE)	49.32	nu star (bias corrected)	42.44
MLE Mean (bias corrected)	0.436	MLE Sd (bias corrected)	0.402
		Approximate Chi Square Value (0.05)	28.5
Adjusted Level of Significance	0.0357	Adjusted Chi Square Value	27.41

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.649 95% Adjusted Gamma UCL (use when n<50) 0.675

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.939	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.897	Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.128 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.202 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-3.912	Mean of logged Data	-1.237
Maximum of Logged Data	0.182	SD of logged Data	1.057

Assuming Lognormal Distribution

95% H-UCL	1.019	90% Chebyshev (MVUE) UCL	0.891
95% Chebyshev (MVUE) UCL	1.074	97.5% Chebyshev (MVUE) UCL	1.329
99% Chehyshey (MVUF) UCI	1.83		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 0.575	95% Jackknife UCL	0.583
95% Standard Bootstrap UCL 0.569	95% Bootstrap-t UCL	0.613
95% Hall's Bootstrap UCL 0.609	95% Percentile Bootstrap UCL	0.575
95% BCA Bootstrap UCL 0.591		
90% Chebyshev(Mean, Sd) UCL 0.689	95% Chebyshev(Mean, Sd) UCL	0.803
97.5% Chebyshev(Mean, Sd) UCL 0.962	99% Chebyshev(Mean, Sd) UCL	1.273

Suggested UCL to Use

95% Student's-t UCL 0.583

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)pyrene

General Statistics

Total Number of Observations	18	Number of Distinct Observations	15
		Number of Missing Observations	41
Minimum	0.015	Mean	0.431
Maximum	1.2	Median	0.38
SD	0.356	Std. Error of Mean	0.0838
Coefficient of Variation	0.825	Skewness	1.101

Normal GOF Test

Shapiro Wilk GOF Test	0.878	Shapiro Wilk Test Statistic
Data Not Normal at 5% Significance Level	0.897	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.147	Lilliefors Test Statistic
Data appear Normal at 5% Significance Level	0.202	5% Lilliefors Critical Value

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

	•		
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.577	95% Adjusted-CLT UCL (Chen-1995)	0.592
		95% Modified-t UCL (Johnson-1978)	0.58

Gamma GOF Test

.22 Anderson-Darling Gamma GOF Test	0.22	A-D Test Statistic
.76 Detected data appear Gamma Distributed at 5% Significance	0.76	5% A-D Critical Value
133 Kolmogorov-Smirnov Gamma GOF Test	0.133	K-S Test Statistic
.208)etected data appear Gamma Distributed at 5% Significance	0.208	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 1.338 k star (bias corrected MLE) 1.152

Surface Soil ProUCL Output - Warehouse and Laydown Area

Theta hat (MLE)	0.322	Theta star (bias corrected MLE)	0.374
nu hat (MLE)	48.18	nu star (bias corrected)	41.48
MLE Mean (bias corrected)	0.431	MLE Sd (bias corrected)	0.401
		Approximate Chi Square Value (0.05)	27.72
Adjusted Level of Significance	0.0357	Adjusted Chi Square Value	26.64

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<=50)) 0.645 95% Adjusted Gamma UCL (use when n<50) 0.671

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.922	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.897	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.163	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.202	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-4.2	Mean of logged Data	-1.26
Maximum of Logged Data	0.182	SD of logged Data	1.093

Assuming Lognormal Distribution

95% H-UCL	1.077	90% Chebyshev (MVUE) UCL	0.918
95% Chebyshev (MVUE) UCL	1.112	97.5% Chebyshev (MVUE) UCL	1.38
99% Chebyshev (MVUE) UCL	1.907		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.569	95% Jackknife UCL	0.577
95% Standard Bootstrap UCL	0.565	95% Bootstrap-t UCL	0.618
95% Hall's Bootstrap UCL	0.615	95% Percentile Bootstrap UCL	0.568
95% BCA Bootstrap UCL	0.587		
90% Chebyshev(Mean, Sd) UCL	0.682	95% Chebyshev(Mean, Sd) UCL	0.796
97.5% Chebyshev(Mean, Sd) UCL	0.954	99% Chebyshev(Mean, Sd) UCL	1.265

Suggested UCL to Use

95% Student's-t UCL 0.577

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(b)fluoranthene

General Statistics

Total Number of Observations	18	Number of Distinct Observations	17
		Number of Missing Observations	41
Minimum	0.024	Mean	0.516
Maximum	1.4	Median	0.43
SD	0.404	Std. Error of Mean	0.0952
Coefficient of Variation	0.783	Skewness	1.104

Normal GOF Test

Shapiro Wilk Test Statistic	0.885	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.897	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.149	Lilliefors GOF Test
5% Lilliefors Critical Value	0.202	Data appear Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

Surface Soil ProUCL Output - Warehouse and Laydown Area

Gamma GOF Test

A-D Test Statistic 0.196 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.756 Detected data appear Gamma Distributed at 5% Significance Leve K-S Test Statistic 0.107 Kolmogorov-Smirnov Gamma GOF Test

5% K-S Critical Value 0.207 Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.504	k star (bias corrected MLE)	1.29
Theta hat (MLE)	0.343	Theta star (bias corrected MLE)	0.4
nu hat (MLE)	54.14	nu star (bias corrected)	46.45
MLE Mean (bias corrected)	0.516	MLE Sd (bias corrected)	0.454
		Approximate Chi Square Value (0.05)	31.81
Adjusted Level of Significance	0.0357	Adjusted Chi Square Value	30.65

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<=50)) 0.753 95% Adjusted Gamma UCL (use when n<50) 0.782

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.929	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.897	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.128	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.202	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-3.73	Mean of logged Data	-1.03
Maximum of Logged Data	0.336	SD of logged Data	1.014

Assuming Lognormal Distribution

95% H-UCL	1.148	90% Chebyshev (MVUE) UCL	1.03
95% Chebyshev (MVUE) UCL	1.238	97.5% Chebyshev (MVUE) UCL	1.525
99% Chebyshev (MVUE) UCL	2.089		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.672	95% Jackknife UCL	0.681
95% Standard Bootstrap UCL	0.671	95% Bootstrap-t UCL	0.732
95% Hall's Bootstrap UCL	0.764	95% Percentile Bootstrap UCL	0.674
95% BCA Bootstrap UCL	0.701		
90% Chebyshev(Mean, Sd) UCL	0.801	95% Chebyshev(Mean, Sd) UCL	0.931
97.5% Chebyshev(Mean, Sd) UCL	1.11	99% Chebyshev(Mean, Sd) UCL	1.463

Suggested UCL to Use

95% Student's-t UCL 0.681

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(k)fluoranthene

General Statistics

Total Number of Observations	18	Number of Distinct Observations	15
		Number of Missing Observations	41
Minimum	0.0091	Mean	0.195
Maximum	0.54	Median	0.17
SD	0.155	Std. Error of Mean	0.0365
Coefficient of Variation	0.796	Skewness	0.748

Normal GOF Test

Shapiro Wilk Test Statistic	0.914	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.897	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.157	Lilliefors GOF Test
5% Lilliefors Critical Value	0.202	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	0.258	95% Adjusted-CLT UCL (Chen-1995)	0.262	
		95% Modified-t UCL (Johnson-1978)	0.259	

Gamma GOF Test

A-D Test Statistic	0.311	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.76	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.127	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.208	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.324	k star (bias corrected MLE)	1.14
Theta hat (MLE)	0.147	Theta star (bias corrected MLE)	0.171
nu hat (MLE)	47.65	nu star (bias corrected)	41.04
MLE Mean (bias corrected)	0.195	MLE Sd (bias corrected)	0.182
		Approximate Chi Square Value (0.05)	27.36
Adjusted Level of Significance	0.0357	Adjusted Chi Square Value	26.29

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.292 95% Adjusted Gamma UCL (use when n<50) 0.304

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.929	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.897	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.16	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.202	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-4.699	Mean of logged Data	-2.06
Maximum of Logged Data	-0.616	SD of logged Data	1.088

Assuming Lognormal Distribution

95% H-UCL	0.479	90% Chebyshev (MVUE) UCL	0.41
95% Chebyshev (MVUE) UCL	0.496	97.5% Chebyshev (MVUE) UCL	0.615
99% Chebyshev (MVUE) UCL	0.85		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.255	95% Jackknife UCL	0.258
95% Standard Bootstrap UCL	0.254	95% Bootstrap-t UCL	0.268
95% Hall's Bootstrap UCL	0.262	95% Percentile Bootstrap UCL	0.254
95% BCA Bootstrap UCL	0.26		
90% Chebyshev(Mean, Sd) UCL	0.304	95% Chebyshev(Mean, Sd) UCL	0.354
97.5% Chebyshev(Mean, Sd) UCL	0.423	99% Chebyshev(Mean, Sd) UCL	0.558

Suggested UCL to Use

95% Student's-t UCL 0.258

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chrysene

	General	Obsatistica	
Total Number of Observations	18		17
Total Number of Observations	18	Number of Distinct Observations	41
Minimum	0.010	Number of Missing Observations	
Minimum	0.018	Mean	0.49
Maximum	1.3	Median	0.37
SD	0.364	Std. Error of Mean	0.0858
Coefficient of Variation	0.743	Skewness	1.017
	Normal C	GOF Test	
Shapiro Wilk Test Statistic	0.905	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.897	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.178	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.202	Data appear Normal at 5% Significance Level	
Data appear	Normal at	5% Significance Level	
		and Planth at an	
95% Normal UCL	ming Norn	nal Distribution 95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.639	95% Adjusted-CLT UCL (Chen-1995)	0.653
00% 01445/110 (002	0.000	95% Modified-t UCL (Johnson-1978)	0.643
	Gamma (
A-D Test Statistic	0.196	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Signification	ince Leve
K-S Test Statistic	0.113	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Signification of the state of the stat	ince Leve
Detected data appear Ga	amma Dist	ributed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	1.611	k star (bias corrected MLE)	1.379
Theta hat (MLE)	0.304	Theta star (bias corrected MLE)	0.355
nu hat (MLE)	57.99	nu star (bias corrected)	49.66
MLE Mean (bias corrected)	0.49	MLE Sd (bias corrected)	0.417
		Approximate Chi Square Value (0.05)	34.48
Adjusted Level of Significance	0.0357	Adjusted Chi Square Value	33.27
.	! 0	one Distribution	
95% Approximate Gamma UCL (use when n>=50))	0.706	ma Distribution 95% Adjusted Gamma UCL (use when n<50)	0.731
95% Approximate Gamma OCL (use when 17–50))	0.700	95% Adjusted Gamma OCE (use when in 50)	0.731
ı	Lognormal	GOF Test	
Shapiro Wilk Test Statistic	0.894	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.897	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.163	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.202	Data appear Lognormal at 5% Significance Leve	el
Data appear Approxim	nate Logno	rmal at 5% Significance Level	
	Lognorma	Statistice	
Minimum of Logged Data	-4.017	Mean of logged Data	-1.055
Maximum of Logged Data	0.262	SD of logged Data	1.006
waximum oi Logged Data	0.202	ט ו logged Data	1.000
Assum	ing Logno	rmal Distribution	
95% H-UCL	1.103	90% Chebyshev (MVUE) UCL	0.995

Nonparametric Distribution Free UCL Statistics

97.5% Chebyshev (MVUE) UCL 1.469

Data appear to follow a Discernible Distribution at 5% Significance Level

95% Chebyshev (MVUE) UCL 1.193

99% Chebyshev (MVUE) UCL 2.012

Nonparametric Distribution Free UCLs

95% CLT UCL	0.631	95% Jackknife UCL	0.639
95% Standard Bootstrap UCL	0.622	95% Bootstrap-t UCL	0.681
95% Hall's Bootstrap UCL	0.673	95% Percentile Bootstrap UCL	0.635
95% BCA Bootstrap UCL	0.652		
90% Chebyshev(Mean, Sd) UCL	0.747	95% Chebyshev(Mean, Sd) UCL	0.864
97.5% Chebyshev(Mean, Sd) UCL	1.026	99% Chebyshev(Mean, Sd) UCL	1.344

Suggested UCL to Use

95% Student's-t UCL 0.639

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Cobalt

General Statistics

Total Number of Observations	44	Number of Distinct Observations	35
		Number of Missing Observations	59
Minimum	3.1	Mean	19.49
Maximum	240	Median	7.6
SD	39.6	Std. Error of Mean	5.97
Coefficient of Variation	2 032	Skewness	4 622

	Normal GOF Test	
Shapiro Wilk Test Statistic	0.425	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.944	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.34	Lilliefors GOF Test
5% Lilliefors Critical Value	0.132	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)			ormal UCL 95% UCLs (Ad		
95% Student's-t UCL	29.52	95% Adjusted-CLT UCL (Chen-1995)	33.75			
		95% Modified t LICL (Johnson-1978)	30.22			

Gamma GOF Test

A-D Test Statistic	3.809	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.785	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.217	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.138	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

0.807	k star (bias corrected MLE)	0.85	k hat (MLE)
24.15	Theta star (bias corrected MLE)	22.94	Theta hat (MLE)
71	nu star (bias corrected)	74.76	nu hat (MLE)
21.69	MLE Sd (bias corrected)	19.49	MLE Mean (bias corrected)
52.6	Approximate Chi Square Value (0.05)		
52.06	Adjusted Chi Square Value	0.0445	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 26.3 95% Adjusted Gamma UCL (use when n<50) 26.57

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.882	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.944	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.138	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.132	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Mean of logged Data 2.277 Minimum of Logged Data 1.131

Maximum of Logged Data	5.481	SD of logged Data	0.977

Assuming Lognormal Distribution

95% H-UCL	22.26	90% Chebyshev (MVUE) UCL	23.42
95% Chebyshev (MVUE) UCL	27.02	97.5% Chebyshev (MVUE) UCL	32.02
99% Chebyshev (MVUE) UCL	41.84		

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

Jackknife UCL 29.52	95% Jackknife UC	29.31	95% CLT UCL
Bootstrap-t UCL 50.23	95% Bootstrap-t UC	29.06	95% Standard Bootstrap UCL
Bootstrap UCL 30.27	95% Percentile Bootstrap UC	66.54	95% Hall's Bootstrap UCL
		34.99	95% BCA Bootstrap UCL
Mean, Sd) UCL 45.51	95% Chebyshev(Mean, Sd) UC	37.4	90% Chebyshev(Mean, Sd) UCL
Mean, Sd) UCL 78.89	99% Chebyshev(Mean, Sd) UC	56.77	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 45.51

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Dibenzo(a,h)anthracene

General Statistics

Total Number of Observations	18	Number of Distinct Observations	15
		Number of Missing Observations	41
Number of Detects	15	Number of Non-Detects	3
Number of Distinct Detects	13	Number of Distinct Non-Detects	3
Minimum Detect	0.023	Minimum Non-Detect	0.0075
Maximum Detect	0.31	Maximum Non-Detect	0.16
Variance Detects	0.00698	Percent Non-Detects	16.67%
Mean Detects	0.112	SD Detects	0.0836
Median Detects	0.095	CV Detects	0.748
Skewness Detects	1.521	Kurtosis Detects	1.859
Mean of Logged Detects	-2.429	SD of Logged Detects	0.717

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.822	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.881	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.241	Lilliefors GOF Test
5% Lilliefors Critical Value	0.22	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.0993	KM Standard Error of Mean	0.0197
KM SD	0.08	95% KM (BCA) UCL	0.132
95% KM (t) UCL	0.133	95% KM (Percentile Bootstrap) UCL	0.134
95% KM (z) UCL	0.132	95% KM Bootstrap t UCL	0.152
90% KM Chebyshev UCL	0.158	95% KM Chebyshev UCL	0.185
97.5% KM Chebyshev UCL	0.222	99% KM Chebyshev UCL	0.295

Gamma GOF Tests on Detected Observations Only

6 Anderson-Darling GOF Test	0.356	A-D Test Statistic
6 Detected data appear Gamma Distributed at 5% Significance	0.746	5% A-D Critical Value
4 Kolmogorov-Smirnov GOF	0.154	K-S Test Statistic
4 Detected data appear Gamma Distributed at 5% Significance	0.224	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	2.267	k star (bias corrected MLE)	1.858
Theta hat (MLE)	0.0493	Theta star (bias corrected MLE)	0.0601
nu hat (MLE)	68.01	nu star (bias corrected)	55.74

Mean (detects) 0.112

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.0987
Maximum	0.31	Median	0.082
SD	0.082	CV	0.831
k hat (MLE)	1.727	k star (bias corrected MLE)	1.476
Theta hat (MLE)	0.0572	Theta star (bias corrected MLE)	0.0669
nu hat (MLE)	62.16	nu star (bias corrected)	53.14
Adjusted Level of Significance (β)	0.0357		
Approximate Chi Square Value (53.14, α)	37.39	Adjusted Chi Square Value (53.14, β)	36.12
95% Gamma Approximate UCL (use when n>=50)	0.14	95% Gamma Adjusted UCL (use when n<50)	0.145

Estimates of Gamma Parameters using KM Estimates

0.08	SD (KM)	0.0993	Mean (KM)
0.0197	SE of Mean (KM)	0.00639	Variance (KM)
1.322	k star (KM)	1.542	k hat (KM)
47.6	nu star (KM)	55.52	nu hat (KM)
0.0751	theta star (KM)	0.0644	theta hat (KM)
0.213	90% gamma percentile (KM)	0.156	80% gamma percentile (KM)
0.399	99% gamma percentile (KM)	0.27	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (47.60, α)	32.76	Adjusted Chi Square Value (47.60, β)	31.58
15% Gamma Approximate KM-LICL (use when n>=50)	0.144	95% Gamma Adjusted KM-LICL (use when n<50)	0.15

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.97	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.881	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.112	Lilliefors GOF Test
5% Lilliefors Critical Value	0.22	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-2.588	Mean in Log Scale	0.0995	Mean in Original Scale
0.783	SD in Log Scale	0.0812	SD in Original Scale
0.132	95% Percentile Bootstrap UCL	0.133	95% t UCL (assumes normality of ROS data)
0.158	95% Bootstrap t UCL	0.14	95% BCA Bootstrap UCL
		0.159	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.651	KM Geo Mean	0.0706
KM SD (logged)	0.907	95% Critical H Value (KM-Log)	2.506
KM Standard Error of Mean (logged)	0.231	95% H-UCL (KM -Log)	0.185
KM SD (logged)	0.907	95% Critical H Value (KM-Log)	2.506
KM Standard Error of Mean (logged)	0.231		

DI /2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.0997	Mean in Log Scale	-2.661
SD in Original Scale	0.0818	SD in Log Scale	1.002
95% t UCL (Assumes normality)	0.133	95% H-Stat UCL	0.219

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Adjusted Gamma UCL 0.15 95% GROS Adjusted Gamma UCL 0.145

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Diesel Range Organics (C10-C20)

General	Statistics

Total Number of Observations	12	Number of Distinct Observations	11	
		Number of Missing Observations	58	
Number of Detects	7	Number of Non-Detects	5	
Number of Distinct Detects	6	Number of Distinct Non-Detects	5	
Minimum Detect	15	Minimum Non-Detect	88	
Maximum Detect	280	Maximum Non-Detect	110	
Variance Detects	12933	Percent Non-Detects	41.67%	
Mean Detects	132	SD Detects	113.7	
Median Detects	67	CV Detects	0.862	
Skewness Detects	0.563	Kurtosis Detects	-1.845	
Mean of Logged Detects	4.45	SD of Logged Detects	1.101	

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.839	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.288	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	96.17	KM Standard Error of Mean	29.43
KM SD	91.99	95% KM (BCA) UCL	147.1
95% KM (t) UCL	149	95% KM (Percentile Bootstrap) UCL	142.8
95% KM (z) UCL	144.6	95% KM Bootstrap t UCL	173.9
90% KM Chebyshev UCL	184.5	95% KM Chebyshev UCL	224.4
97.5% KM Chebyshev UCL	280	99% KM Chebyshev UCL	389

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic 0.36	9 Anderson-Darling GOF Test
5% A-D Critical Value 0.72	4 Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic 0.22	1 Kolmogorov-Smirnov GOF
5% K-S Critical Value 0.31	8 Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.836	k star (bias corrected MLE)	1.296	k hat (MLE)
157.9	Theta star (bias corrected MLE)	101.9	Theta hat (MLE)
11.7	nu star (bias corrected)	18.14	nu hat (MLE)
		132	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

96.81	Mean	15	Minimum
47.56	Median	280	Maximum
0.977	CV	94.58	SD
1.183	k star (bias corrected MLE)	1.504	k hat (MLE)
81.81	Theta star (bias corrected MLE)	64.38	Theta hat (MLE)
28.4	nu star (bias corrected)	36.09	nu hat (MLE)
		0.029	Adjusted Level of Significance (β)
15.93	Adjusted Chi Square Value (28.40, β)	17.24	Approximate Chi Square Value (28.40, α)
172.7	95% Gamma Adjusted UCL (use when n<50)	159.5	5% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	96.17	SD (KM)	91.99
Variance (KM)	8462	SE of Mean (KM)	29.43
k hat (KM)	1.093	k star (KM)	0.875
nu hat (KM)	26.23	nu star (KM)	21

Surface Soil ProUCL Output - Warehouse and Laydown Area

theta hat (KM)	88	theta star (KM)	109.9
80% gamma percentile (KM)	156.3	90% gamma percentile (KM)	228.8
95% gamma percentile (KM)	302.1	99% gamma percentile (KM)	473.9

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (21.00, α) 11.6 Adjusted Chi Square Value (21.00, β) 10.54 I5% Gamma Approximate KM-UCL (use when n>=50) 174.2 95% Gamma Adjusted KM-UCL (use when n<50) 191.6

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.92	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.179	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

4.148	Mean in Log Scale	94.31	Mean in Original Scale
0.894	SD in Log Scale	96.04	SD in Original Scale
140.4	95% Percentile Bootstrap UCL	144.1	95% t UCL (assumes normality of ROS data)
186.8	95% Bootstrap t UCL	149.9	95% BCA Bootstrap UCL
		197.2	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	4.125	KM Geo Mean	61.9
KM SD (logged)	0.953	95% Critical H Value (KM-Log)	2.831
KM Standard Error of Mean (logged)	0.35	95% H-UCL (KM -Log)	219.9
KM SD (logged)	0.953	95% Critical H Value (KM-Log)	2.831
KM Standard Error of Mean (logged)	0.35		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	97	Mean in Log Scale	4.207
SD in Original Scale	94.51	SD in Log Scale	0.868
95% t UCL (Assumes normality)	146	95% H-Stat UCL	197.7

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 149

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Indeno(1,2,3-cd)pyrene

General Statistics

Total Number of Observations	18	Number of Distinct Observations	18
		Number of Missing Observations	41
Minimum	0.012	Mean	0.319
Maximum	1.1	Median	0.27
SD	0.299	Std. Error of Mean	0.0706
Coefficient of Variation	0.938	Skewness	1.613

Normal GOF Test

Shapiro Wilk Test Statistic	0.817	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.897	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.197	Lilliefors GOF Test
5% Lilliefors Critical Value	0.202	Data appear Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.442	95% Adjusted-CLT UCL (Chen-1995)	0.464

95% Modified-t UCL (Johnson-1978) 0.446

Gamma GOF Test

A-D Test Statistic	0.253	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.761)etecte	ed data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.0924	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.208)etecte	ed data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.254	k star (bias corrected MLE)	1.082
Theta hat (MLE)	0.254	Theta star (bias corrected MLE)	0.295
nu hat (MLE)	45.15	nu star (bias corrected)	38.96
MLE Mean (bias corrected)	0.319	MLE Sd (bias corrected)	0.307
		Approximate Chi Square Value (0.05)	25.66
Adjusted Level of Significance	0.0357	Adjusted Chi Square Value	24.63

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.485 95% Adjusted Gamma UCL (use when n<50) 0.505

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.946	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.897	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.13	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.202	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-4.423	Mean of logged Data	-1.591
Maximum of Logged Data	0.0953	SD of logged Data	1.09

Assuming Lognormal Distribution

95% H-UCL	0.767	90% Chebyshev (MVUE) UCL	0.656
95% Chebyshev (MVUE) UCL	0.793	97.5% Chebyshev (MVUE) UCL	0.985
99% Chebyshey (MVUE) UCL	1.36		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.435	95% Jackknife UCL	0.442
95% Standard Bootstrap UCL	0.432	95% Bootstrap-t UCL	0.512
95% Hall's Bootstrap UCL	0.578	95% Percentile Bootstrap UCL	0.44
95% BCA Bootstrap UCL	0.453		
90% Chebyshev(Mean, Sd) UCL	0.531	95% Chebyshev(Mean, Sd) UCL	0.627
97.5% Chebyshev(Mean, Sd) UCL	0.76	99% Chebyshev(Mean, Sd) UCL	1.021

Suggested UCL to Use

95% Student's-t UCL 0.442

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Manganese

General Statistics

Total Number of Observations	44	Number of Distinct Observations	29
		Number of Missing Observations	59
Minimum	10	Mean	398.8
Maximum	6600	Median	200
SD	990.7	Std. Error of Mean	149.4
Coefficient of Variation	2.484	Skewness	5.991

Normal GOF Test

Shapiro Wilk Test Statistic	0.32	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.944	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.37	Lilliefors GOF Test
5% Lilliefors Critical Value	0.132	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

Assui	ning Normai Di	stribution	
% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	649.8	95% Adjusted-CLT UCL (Chen-1995)	788.6
		95% Modified-t UCL (Johnson-1978)	672.3

Gamma GOF Test

A-D Test Statistic	3.162	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.787	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.254	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.138	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.797	k star (bias corrected MLE)	0.758
Theta hat (MLE)	500.2	Theta star (bias corrected MLE)	526
nu hat (MLE)	70.16	nu star (bias corrected)	66.71
MLE Mean (bias corrected)	398.8	MLE Sd (bias corrected)	458
		Approximate Chi Square Value (0.05)	48.91
Adjusted Level of Significance	0.0445	Adjusted Chi Square Value	48.4

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 543.9 95% Adjusted Gamma UCL (use when n<50) 549.7

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.953	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.944	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.141	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.132	Data Not Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2.303	Mean of logged Data	5.244
Maximum of Logged Data	8.795	SD of logged Data	1.06

Assuming Lognormal Distribution

95% H-UCL	492.2	90% Chebyshev (MVUE) UCL	511.1
95% Chebyshev (MVUE) UCL	595.1	97.5% Chebyshev (MVUE) UCL	711.7
99% Chebyshev (MVUE) UCL	940.6		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	644.4	95% Jackknife UCL	649.8
95% Standard Bootstrap UCL	647.5	95% Bootstrap-t UCL	1440
95% Hall's Bootstrap UCL	1506	95% Percentile Bootstrap UCL	688.6
95% BCA Bootstrap UCL	808.1		
90% Chebyshev(Mean, Sd) UCL	846.8	95% Chebyshev(Mean, Sd) UCL	1050
97.5% Chebyshev(Mean, Sd) UCL	1331	99% Chebyshev(Mean, Sd) UCL	1885

Suggested UCL to Use

95% H-UCL 492.2

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

se of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

Naphthalene

General Statistics		
18	Number of Distinct Observations	16
	Number of Missing Observations	41
16	Number of Non-Detects	2
14	Number of Distinct Non-Detects	2
0.0069	Minimum Non-Detect	0.0075
0.44	Maximum Non-Detect	0.16
0.01	Percent Non-Detects	11.11%
0.0728	SD Detects	0.1
0.0485	CV Detects	1.374
3.71	Kurtosis Detects	14.4
-3.026	SD of Logged Detects	0.855
	18 16 14 0.0069 0.44 0.01 0.0728 0.0485 3.71	18 Number of Distinct Observations Number of Missing Observations 16 Number of Non-Detects 14 Number of Distinct Non-Detects 0.0069 Minimum Non-Detect 0.44 Maximum Non-Detect 0.01 Percent Non-Detects 0.0728 SD Detects 0.0485 CV Detects 3.71 Kurtosis Detects

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.469	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.887	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.393	Lilliefors GOF Test
5% Lilliefors Critical Value	0.213	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.0676	KM Standard Error of Mean	0.0226
KM SD	0.0929	95% KM (BCA) UCL	0.116
95% KM (t) UCL	0.107	95% KM (Percentile Bootstrap) UCL	0.111
95% KM (z) UCL	0.105	95% KM Bootstrap t UCL	0.188
90% KM Chebyshev UCL	0.136	95% KM Chebyshev UCL	0.166
97.5% KM Chebyshev UCL	0.209	99% KM Chebyshev UCL	0.293

Gamma GOF Tests on Detected Observations Only

46 Anderson-Darling GOF Test	1.346	1.3	A-D Test Statistic	
757 Detected Data Not Gamma Distributed at 5% Significan).757 De	0.7	5% A-D Critical Value	
62 Kolmogorov-Smirnov GOF	0.262	0.2	K-S Test Statistic	
19 Detected Data Not Gamma Distributed at 5% Significant).219 De	0.2	5% K-S Critical Value	

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.159	k star (bias corrected MLE)	1.375	k hat (MLE)
	,		` ,
0.0628	Theta star (bias corrected MLE)	0.0529	Theta hat (MLE)
37.09	nu star (bias corrected)	44.01	nu hat (MLE)
		0.0728	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0069	Mean	0.0675
Maximum	0.44	Median	0.0435
SD	0.0954	CV	1.414
k hat (MLE)	1.308	k star (bias corrected MLE)	1.127
Theta hat (MLE)	0.0516	Theta star (bias corrected MLE)	0.0599

Surface Soil ProUCL Output - Warehouse and Laydown Area

nu hat (MLE)	47.1	nu star (bias corrected)	40.59
Adjusted Level of Significance (β)	0.0357		
Approximate Chi Square Value (40.59, α)	26.99	Adjusted Chi Square Value (40.59, β)	25.92
95% Gamma Approximate UCL (use when n>=50)	0.101	95% Gamma Adjusted UCL (use when n<50)	0.106

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.0676	SD (KM)	0.0929
Variance (KM)	0.00863	SE of Mean (KM)	0.0226
k hat (KM)	0.53	k star (KM)	0.479
nu hat (KM)	19.09	nu star (KM)	17.24
theta hat (KM)	0.128	theta star (KM)	0.141
80% gamma percentile (KM)	0.111	90% gamma percentile (KM)	0.185
95% gamma percentile (KM)	0.264	99% gamma percentile (KM)	0.459

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (17.24, α)	8.847	Adjusted Chi Square Value (17.24, β)	8.274
15% Gamma Approximate KM-UCL (use when n>=50)	0.132	95% Gamma Adjusted KM-UCL (use when n<50)	0.141

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.886	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.887	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.198	Lilliefors GOF Test
Lilleiois rest Statistic	0.196	Lillielois GOF Test

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0676	Mean in Log Scale	-3.119
SD in Original Scale	0.0954	SD in Log Scale	0.88
95% t UCL (assumes normality of ROS data)	0.107	95% Percentile Bootstrap UCL	0.11
95% BCA Bootstrap UCL	0.135	95% Bootstrap t UCL	0.199
95% H-UCL (Log ROS)	0.11		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

0.0429	KM Geo Mean	-3.148	KM Mean (logged)
2.519	95% Critical H Value (KM-Log)	0.917	KM SD (logged)
0.114	95% H-UCL (KM -Log)	0.227	KM Standard Error of Mean (logged)
2.519	95% Critical H Value (KM-Log)	0.917	KM SD (logged)
		0.227	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.0694	Mean in Log Scale	-3.14
SD in Original Scale	0.0954	SD in Log Scale	1.016
95% t UCL (Assumes normality)	0.108	95% H-Stat UCL	0.14

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 0.114

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Nickel

General Statistics

	Goriorai Giadodo			
Total Number of Observations	44	Number of Distinct Observations	39	
		Number of Missing Observations	59	
Minimum	7.2	Mean	512.8	
Maximum	8000	Median	51	
SD	1553	Std. Error of Mean	234.1	
Coefficient of Variation	3.028	Skewness	4.33	

Normal GOF Test

0.349 Shapiro Wilk GOF Test	0.349	Shapiro Wilk Test Statistic	
0.944 Data Not Normal at 5% Significa	0.944	5% Shapiro Wilk Critical Value	5
0.372 Lilliefors GOF Test	0.372	Lilliefors Test Statistic	
0.132 Data Not Normal at 5% Significa	0.132	5% Lilliefors Critical Value	

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

	-		
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	906.4	95% Adjusted-CLT UCL (Chen-1995)	1061
		95% Modified-t UCL (Johnson-1978)	931.8

Gamma GOF Test

A-D Test Statistic	3.918	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.848	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.215	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.144	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.355	k star (bias corrected MLE)	0.346
Theta hat (MLE)	1446	Theta star (bias corrected MLE)	1483
nu hat (MLE)	31.22	nu star (bias corrected)	30.42
MLE Mean (bias corrected)	512.8	MLE Sd (bias corrected)	872.2
		Approximate Chi Square Value (0.05)	18.82
Adjusted Level of Significance	0.0445	Adjusted Chi Square Value	18.51

Assuming Gamma Distribution

95% Approximate Gamma OCL (use when n>=50)) 626.7 95% Adjusted Gamma OCL (use when n>50) 64.	95% Approximate Gamma UCL ((use when n>=50))	828.7	95% Adjusted Gamma UCL (use whe	en n<50) 842.6
--	-----------------------------	-------------------	-------	---------------------------------	----------------

Lognormal GOF Test

Shapiro Wilk Lognormal GOF Test	0.918	Shapiro Wilk Test Statistic
Data Not Lognormal at 5% Significance Level	0.944	5% Shapiro Wilk Critical Value
Lilliefors Lognormal GOF Test	0.139	Lilliefors Test Statistic
Data Not Lognormal at 5% Significance Level	0.132	5% Lilliefors Critical Value

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.974	Mean of logged Data	4.348
Maximum of Logged Data	8.987	SD of logged Data	1.77

Assuming Lognormal Distribution

95% H-UCL	916	90% Chebyshev (MVUE) UCL	718.4
95% Chebyshev (MVUE) UCL	889.4	97.5% Chebyshev (MVUE) UCL	1127
99% Chebyshev (MVUE) UCL	1593		

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	897.9	95% Jackknife UCL	906.4
95% Standard Bootstrap UCL	895.5	95% Bootstrap-t UCL	2526
95% Hall's Bootstrap UCL	2706	95% Percentile Bootstrap UCL	916.4
95% BCA Bootstrap UCL	1112		
90% Chebyshev(Mean, Sd) UCL	1215	95% Chebyshev(Mean, Sd) UCL	1533
97.5% Chebyshev(Mean, Sd) UCL	1975	99% Chebyshev(Mean, Sd) UCL	2842

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 1533

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

PCB, Total Aroclors (AECOM Calc)

General Statistics

Total Number of Observations	57	Number of Distinct Observations	54
		Number of Missing Observations	13
Number of Detects	55	Number of Non-Detects	2
Number of Distinct Detects	52	Number of Distinct Non-Detects	2
Minimum Detect	0.0061	Minimum Non-Detect	0.0051
Maximum Detect	8.6	Maximum Non-Detect	0.0099
Variance Detects	4.284	Percent Non-Detects	3.509%
Mean Detects	1.321	SD Detects	2.07
Median Detects	0.32	CV Detects	1.567
Skewness Detects	2.08	Kurtosis Detects	3.606
Mean of Logged Detects	-0.97	SD of Logged Detects	1.802

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic 0.657	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value 7.772E-16	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.301	Lilliefors GOF Test
5% Lilliefors Critical Value 0.119	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.275	KM Standard Error of Mean	0.271
KM SD	2.029	95% KM (BCA) UCL	1.769
95% KM (t) UCL	1.729	95% KM (Percentile Bootstrap) UCL	1.777
95% KM (z) UCL	1.721	95% KM Bootstrap t UCL	1.834
90% KM Chebyshev UCL	2.089	95% KM Chebyshev UCL	2.457
97.5% KM Chebyshev UCL	2.969	99% KM Chebyshev UCL	3.974

Gamma GOF Tests on Detected Observations Only

	A-D Test Statistic	1.196	Anderson-Darling GOF Test		
	5% A-D Critical Value	0.814	Detected Data Not Gamma Distributed at 5% Significance Level		
	K-S Test Statistic	0.143	Kolmogorov-Smirnov GOF		
	5% K-S Critical Value	0.127	Detected Data Not Gamma Distributed at 5% Significance Level		
Detected Data Not Gamma Distributed at 5% Significance Level					

Gamma Statistics on Detected Data Only

0.492	k star (bias corrected MLE)	0.508	k hat (MLE)
2.686	Theta star (bias corrected MLE)	2.603	Theta hat (MLE)
54.11	nu star (bias corrected)	55.83	nu hat (MLE)
		1.321	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

1.275	Mean	0.0061	Minimum
0.32	Median	8.6	Maximum
1.605	CV	2.047	SD
0.464	k star (bias corrected MLE)	0.477	k hat (MLE)
2.75	Theta star (bias corrected MLE)	2.672	Theta hat (MLE)
52.87	nu star (bias corrected)	54.4	nu hat (MLE)
		0.0458	Adjusted Level of Significance (β)
36.83	Adjusted Chi Square Value (52.87, β)	37.17	Approximate Chi Square Value (52.87, α)
1.831	95% Gamma Adjusted UCL (use when n<50)	1.814	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.275	SD (KM)	2.029
Variance (KM)	4.117	SE of Mean (KM)	0.271
k hat (KM)	0.395	k star (KM)	0.386
nu hat (KM)	45.02	nu star (KM)	43.98
theta hat (KM)	3.229	theta star (KM)	3.305
80% gamma percentile (KM)	2.049	90% gamma percentile (KM)	3.624
95% gamma percentile (KM)	5.364	99% gamma percentile (KM)	9.756

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (43.98, α)	29.77	Adjusted Chi Square Value (43.98, β)	29.47
15% Gamma Approximate KM-UCL (use when n>=50)	1.884	95% Gamma Adjusted KM-UCL (use when n<50)	1.903

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.964	Shapiro Wilk GOF Test		
5% Shapiro Wilk P Value	0.192	Detected Data appear Lognormal at 5% Significance Level		
Lilliefors Test Statistic	0.0554	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.119	Detected Data appear Lognormal at 5% Significance Level		
Detected Data appear Lognormal at 5% Significance Level				

Dottotton Data appoor Logitation at City Organical Co.

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	1.275	Mean in Log Scale	-1.114
SD in Original Scale	2.047	SD in Log Scale	1.93
95% t UCL (assumes normality of ROS data)	1.729	95% Percentile Bootstrap UCL	1.725
95% BCA Bootstrap UCL	1.786	95% Bootstrap t UCL	1.899
95% H-UCL (Log ROS)	5.446		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.116	KM Geo Mean	0.328
KM SD (logged)	1.913	95% Critical H Value (KM-Log)	3.649
KM Standard Error of Mean (logged)	0.256	95% H-UCL (KM -Log)	5.19
KM SD (logged)	1.913	95% Critical H Value (KM-Log)	3.649
KM Standard Error of Mean (logged)	0.256		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.275	Mean in Log Scale	-1.134
SD in Original Scale	2.047	SD in Log Scale	1.971
95% t UCL (Assumes normality)	1.729	95% H-Stat UCL	5.997

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 5.19

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

TCDD TEQ HH

General Statistics

Total Number of Observations	22	Number of Distinct Observations	21
		Number of Missing Observations	28
Minimum 2.	1900E-6	Mean	1.5120E-5
Maximum 5.8	3700E-5	Median	5.3600E-6
SD 1.7	7789E-5	Std. Error of Mean	3.7926E-6
Coefficient of Variation	N/A	Skewness	1.354

Normal GOF Test

Shapiro Wilk Test Statistic	0.732	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.911	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.306	Lilliefors GOF Test
5% Lilliefors Critical Value	0.184	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)
95% Student's-t UCL 2.1646E-5	95% Adjusted-CLT UCL (Chen-1995) 2.2527E-5
	95% Modified-t UCL (Johnson-1978) 2.1828E-5

Gamma GOF Test

Surface Soil ProUCL Output - Warehouse and Laydown Area

A-D Test Statistic	1.573	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.774	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.215	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.191	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.925	k star (bias corrected MLE)	0.829
Theta hat (MLE)	1.6348E-5	Theta star (bias corrected MLE)	1.8237E-5
nu hat (MLE)	40.69	nu star (bias corrected)	36.48
MLE Mean (bias corrected)	1.5120E-5	MLE Sd (bias corrected)	1.6605E-5
		Approximate Chi Square Value (0.05)	23.65
Adjusted Level of Significance	0.0386	Adjusted Chi Square Value	22.88

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.3317E-5 95% Adjusted Gamma UCL (use when n<50) 2.4102E-5

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.874	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.911	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.184	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.184	Data appear Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-13.03	Mean of logged Data	-11.73
Maximum of Logged Data	-9.743	SD of logged Data	1.122

Assuming Lognormal Distribution

95% H-UCL 2.9675E-5	90% Chebyshev (MVUE) UCL 2.6409E-5
95% Chebyshev (MVUE) UCL 3.1816E-5	97.5% Chebyshev (MVUE) UCL 3.9322E-5
99% Chebyshev (MVUE) UCL 5.4065E-5	

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% Jackknife UCL 2.1646E-5	95% CLT UCL 2.1358E-5
95% Bootstrap-t UCL 2.3866E-5	95% Standard Bootstrap UCL 2.1331E-5
95% Percentile Bootstrap UCL 2.1525E-5	95% Hall's Bootstrap UCL 2.1389E-5
	95% BCA Bootstrap UCL 2.2172E-5
95% Chebyshev(Mean, Sd) UCL 3.1651E-5	90% Chebyshev(Mean, Sd) UCL 2.6497E-5
99% Chebyshev(Mean, Sd) UCL 5.2855E-5	97.5% Chebyshev(Mean, Sd) UCL 3.8804E-5

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 3.1651E-5

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Thallium

General Statistics		
44	Number of Distinct Observations	19
	Number of Missing Observations	59
29	Number of Non-Detects	15
17	Number of Distinct Non-Detects	4
0.033	Minimum Non-Detect	0.1
0.46	Maximum Non-Detect	0.13
0.00788	Percent Non-Detects	34.09%
0.163	SD Detects	0.0887
0.14	CV Detects	0.545
1.565	Kurtosis Detects	3.514
-1.951	SD of Logged Detects	0.542
	29 17 0.033 0.46 0.00788 0.163 0.14 1.565	44 Number of Distinct Observations Number of Missing Observations 29 Number of Non-Detects 17 Number of Distinct Non-Detects 0.033 Minimum Non-Detect 0.46 Maximum Non-Detect 0.00788 Percent Non-Detects 0.163 SD Detects 0.14 CV Detects 1.565 Kurtosis Detects

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.879	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.926	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.191	Lilliefors GOF Test
5% Lilliefors Critical Value	0.161	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.0134	KM Standard Error of Mean	0.131	KM Mean
0.153	95% KM (BCA) UCL	0.0845	KM SD
0.154	95% KM (Percentile Bootstrap) UCL	0.153	95% KM (t) UCL
0.158	95% KM Bootstrap t UCL	0.153	95% KM (z) UCL
0.189	95% KM Chebyshev UCL	0.171	90% KM Chebyshev UCL
0.264	99% KM Chebyshey UCL	0.214	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.481 Ande	rson-Darling GOF Test
6 A-D Critical Value	0.751 Detected data appear Ga	amma Distributed at 5% Significance Leve
K-S Test Statistic	0.139 Koln	nogorov-Smirnov GOF
% K-S Critical Value	0.163 Detected data appear Ga	amma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	3.873	k star (bias corrected MLE)	3.495
Theta hat (MLE)	0.042	Theta star (bias corrected MLE)	0.0466
nu hat (MLE)	224.6	nu star (bias corrected)	202.7
Mean (detects)	0.163		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.125	Mean	0.01	Minimum
0.12	Median	0.46	Maximum
0.724	CV	0.0904	SD
1.845	k star (bias corrected MLE)	1.964	k hat (MLE)
0.0677	Theta star (bias corrected MLE)	0.0636	Theta hat (MLE)
162.4	nu star (bias corrected)	172.8	nu hat (MLE)
		0.0445	Adjusted Level of Significance (β)
133	Adjusted Chi Square Value (162.38, β)	133.9	Approximate Chi Square Value (162.38, α)
0.152	95% Gamma Adjusted UCL (use when n<50)	0.151	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.131	SD (KM)	0.0845
Variance (KM)	0.00714	SE of Mean (KM)	0.0134
k hat (KM)	2.384	k star (KM)	2.237
nu hat (KM)	209.8	nu star (KM)	196.8
theta hat (KM)	0.0547	theta star (KM)	0.0584
80% gamma percentile (KM)	0.193	90% gamma percentile (KM)	0.247
95% gamma percentile (KM)	0.299	99% gamma percentile (KM)	0.413

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (196.84, α)	165.4	Adjusted Chi Square Value (196.84, β)	164.4
15% Gamma Approximate KM-UCL (use when n>=50)	0.155	95% Gamma Adjusted KM-UCL (use when n<50)	0.156

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.967	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.926	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.17	Lilliefors GOF Test
5% Lilliefors Critical Value	0.161	Detected Data Not Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.13	Mean in Log Scale	-2.216
SD in Original Scale	0.0855	SD in Log Scale	0.596

Surface Soil ProUCL Output - Warehouse and Laydown Area

95% t UCL (assumes normality of ROS data)	0.152	95% Percentile Bootstrap UCL	0.153
95% BCA Bootstrap UCL	0.156	95% Bootstrap t UCL	0.157
95% H-UCL (Log ROS)	0.156		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.218	KM Geo Mean	0.109
KM SD (logged)	0.604	95% Critical H Value (KM-Log)	1.983
KM Standard Error of Mean (logged)	0.109	95% H-UCL (KM -Log)	0.157
KM SD (logged)	0.604	95% Critical H Value (KM-Log)	1.983
KM Standard Error of Mean (logged)	0.109		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.127	Mean in Log Scale	-2.257
SD in Original Scale	0.0875	SD in Log Scale	0.615
95% t UCL (Assumes normality)	0.149	95% H-Stat UCL	0.152

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Adjusted Gamma UCL 0.156 95% GROS Adjusted Gamma UCL 0.152

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Vanadium

0	
General	Statistics

Total Number of Observations	50	Number of Distinct Observations	42
		Number of Missing Observations	53
Minimum	9.9	Mean	2240
Maximum	42000	Median	160
SD	7812	Std. Error of Mean	1105
Coefficient of Variation	3.487	Skewness	4.665

Normal GOF Test

Shapiro Wilk Test Statistic	0.308	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.947	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.397	Lilliefors GOF Test
5% Lilliefors Critical Value	0.125	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	4093	95% Adjusted-CLT UCL (Chen-1995)	4836
		95% Modified-t UCL (Johnson-1978)	4214

Gamma GOF Test

A-D Test Statistic	5.114	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.867	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.239	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.136	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.291	k star (bias corrected MLE)	0.287
Theta hat (MLE)	7709	Theta star (bias corrected MLE)	7819
nu hat (MLE)	29.06	nu star (bias corrected)	28.65
MLE Mean (bias corrected)	2240	MLE Sd (bias corrected)	4186
		Approximate Chi Square Value (0.05)	17.44
Adjusted Level of Significance	0.0452	Adjusted Chi Square Value	17.18

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 3682 95% Adjusted Gamma UCL (use when n<50) 3737

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.924	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.947	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.128	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.125	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2.293	Mean of logged Data	5.329
Maximum of Logged Data	10.65	SD of logged Data	1.98

Assuming Lognormal Distribution

95% H-UCL	4048	90% Chebyshev (MVUE) UCL	2931
95% Chebyshev (MVUE) UCL	3661	97.5% Chebyshev (MVUE) UCL	4675
99% Chebyshev (MVUE) UCL	6667		

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL 405	58 95% Jackknife UCL	4093
95% Standard Bootstrap UCL 405	95% Bootstrap-t UCL	13090
95% Hall's Bootstrap UCL 1228	81 95% Percentile Bootstrap UCL	4150
95% BCA Bootstrap UCL 502	28	
90% Chebyshev(Mean, Sd) UCL 555	55 95% Chebyshev(Mean, Sd) UCL	7056
97.5% Chebyshev(Mean, Sd) UCL 914	99% Chebyshev(Mean, Sd) UCL	13232

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 7056

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/5/2018 10:57:12 AM

95% Normal UCL

From File Soil-SalvYard-SS-v2.xls

Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Arsenic

	General Statistics		
Total Number of Observations	3	Number of Distinct Observations	3
		Number of Missing Observations	55
Minimum	7.1	Mean	11.37
Maximum	14	Median	13
SD	3.729	Std. Error of Mean	2.153
Coefficient of Variation	0.328	Skewness	-1.593

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.856	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.336	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

5% Normal UCL 95% UCLs (Adjuste		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	17.65	95% Adjusted-CLT UCL (Chen-1995)	12.79
		95% Modified-t UCL (Johnson-1978)	17.32

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

N/A	k star (bias corrected MLE)	11.89	k hat (MLE)
N/A	Theta star (bias corrected MLE)	0.956	Theta hat (MLE)
N/A	nu star (bias corrected)	71.32	nu hat (MLE)
N/A	MLE Sd (bias corrected)	N/A	MLE Mean (bias corrected)
N/A	Approximate Chi Square Value (0.05)		
N/A	Adjusted Chi Square Value	N/A	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.831	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.349	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.425	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.96	Mean of logged Data	2.388
Maximum of Logged Data	2.639	SD of logged Data	0.372

Assuming Lognormal Distribution

95% H-UCL	42.26	90% Chebyshev (MVUE) UCL	18.63
95% Chebyshev (MVUE) UCL	21.91	97.5% Chebyshev (MVUE) UCL	26.45
99% Chebyshev (MVUE) UCL	35.38		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	14.91	95% Jackknife UCL	17.65
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	17.82	95% Chebyshev(Mean, Sd) UCL	20.75
97.5% Chebyshev(Mean, Sd) UCL	24.81	99% Chebyshev(Mean, Sd) UCL	32.79

Suggested UCL to Use

95% Student's-t UCL 17.65

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Benzo(a)anthracene

	General Statistics		
Total Number of Observations	19	Number of Distinct Observations	17
		Number of Missing Observations	39
Number of Detects	18	Number of Non-Detects	1
Number of Distinct Detects	17	Number of Distinct Non-Detects	1
Minimum Detect	0.062	Minimum Non-Detect	0.14
Maximum Detect	2.5	Maximum Non-Detect	0.14
Variance Detects	0.705	Percent Non-Detects	5.263%
Mean Detects	0.861	SD Detects	0.839
Median Detects	0.4	CV Detects	0.975
Skewness Detects	0.845	Kurtosis Detects	-0.87
Mean of Logged Detects	-0.719	SD of Logged Detects	1.179

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.825	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.897	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.239	Lilliefors GOF Test
5% Lilliefors Critical Value	0.202	Detected Data Not Normal at 5% Significance Level
Detected Data	Not Norma	al at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.821	KM Standard Error of Mean	0.192
KM SD	0.812	95% KM (BCA) UCL	1.171
95% KM (t) UCL	1.153	95% KM (Percentile Bootstrap) UCL	1.121
95% KM (z) UCL	1.136	95% KM Bootstrap t UCL	1.22
90% KM Chebyshev UCL	1.396	95% KM Chebyshev UCL	1.656
97.5% KM Chebyshev UCL	2.018	99% KM Chebyshev UCL	2.728

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.624	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.766	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.176	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.209	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.881	k star (bias corrected MLE)	1.012	k hat (MLE)
0.977	Theta star (bias corrected MLE)	0.85	Theta hat (MLE)
31.7	nu star (bias corrected)	36.44	nu hat (MLE)
		0.861	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.816
Maximum	2.5	Median	0.34
SD	0.839	CV	1.028
k hat (MLE)	0.821	k star (bias corrected MLE)	0.726
Theta hat (MLE)	0.994	Theta star (bias corrected MLE)	1.123
nu hat (MLE)	31.2	nu star (bias corrected)	27.6
Adjusted Level of Significance (β)	0.0369		
Approximate Chi Square Value (27.60, α)	16.62	Adjusted Chi Square Value (27.60, β)	15.88
95% Gamma Approximate UCL (use when n>=50)	1.355	95% Gamma Adjusted UCL (use when n<50)	1.419

Estimates of Gamma Parameters using KM Estimates

0.812	SD (KM)	0.821	Mean (KM)
0.192	SE of Mean (KM)	0.659	Variance (KM)
0.895	k star (KM)	1.022	k hat (KM)
34.03	nu star (KM)	38.82	nu hat (KM)
0.917	theta star (KM)	0.803	theta hat (KM)
1.942	90% gamma percentile (KM)	1.332	80% gamma percentile (KM)
3.997	99% gamma percentile (KM)	2.557	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (34.03, α)	21.68	Adjusted Chi Square Value (34.03, β)	20.82
95% Gamma Approximate KM-UCL (use when n>=50)	1.288	95% Gamma Adjusted KM-UCL (use when n<50)	1.341

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.933	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.897	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.133	Lilliefors GOF Test
5% Lilliefors Critical Value	0.202	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-0.81	Mean in Log Scale	0.82	Mean in Original Scale
1.212	SD in Log Scale	0.83	SD in Original Scale
1.126	95% Percentile Bootstrap UCL	1.152	95% t UCL (assumes normality of ROS data)
1.242	95% Bootstrap t UCL	1.154	95% BCA Bootstrap UCL
		2.138	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.805	KM Geo Mean	0.447
KM SD (logged)	1.175	95% Critical H Value (KM-Log)	2.868
KM Standard Error of Mean (logged)	0.278	95% H-UCL (KM -Log)	1.974
KM SD (logged)	1.175	95% Critical H Value (KM-Log)	2.868
KM Standard Error of Mean (logged)	0.278		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.819	Mean in Log Scale	-0.822
SD in Original Scale	0.836	SD in Log Scale	1.229
95% t UCL (Assumes normality)	1.151	95% H-Stat UCL	2.202

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

iamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 1.341

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)pyrene

General Statistics

Total Number of Observations	19	Number of Distinct Observations	17
		Number of Missing Observations	39
Number of Detects	18	Number of Non-Detects	1
Number of Distinct Detects	16	Number of Distinct Non-Detects	1
Minimum Detect	0.03	Minimum Non-Detect	0.14
Maximum Detect	2.5	Maximum Non-Detect	0.14
Variance Detects	0.665	Percent Non-Detects	5.263%
Mean Detects	0.818	SD Detects	0.816
Median Detects	0.385	CV Detects	0.998
Skewness Detects	0.908	Kurtosis Detects	-0.722
Mean of Logged Detects	-0.816	SD of Logged Detects	1.265

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.818	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.897	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.256	Lilliefors GOF Test
5% Lilliefors Critical Value	0.202	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.78	KM Standard Error of Mean	0.186
KM SD	0.788	95% KM (BCA) UCL	1.093
95% KM (t) UCL	1.102	95% KM (Percentile Bootstrap) UCL	1.089
95% KM (z) UCL	1.086	95% KM Bootstrap t UCL	1.175
90% KM Chebyshev UCL	1.338	95% KM Chebyshev UCL	1.591
97.5% KM Chebyshev UCL	1.942	99% KM Chebyshev UCL	2.632

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.526	Anderson-Darling GOF Test
5% A-D Critical Value	0.769	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.165	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.21	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.945	k star (bias corrected MLE)	0.825
Theta hat (MLE)	0.865	Theta star (bias corrected MLE)	0.991
nu hat (MLE)	34.04	nu star (bias corrected)	29.7
Mean (detects)	0.818		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.776	Mean	0.0279	Minimum
0.38	Median	2.5	Maximum
1.048	CV	0.813	SD
0.737	k star (bias corrected MLE)	0.834	k hat (MLE)
1.053	Theta star (bias corrected MLE)	0.931	Theta hat (MLE)
28.02	nu star (bias corrected)	31.68	nu hat (MLE)
		0.0369	Adjusted Level of Significance (β)
16.19	Adjusted Chi Square Value (28.02, β)	16.94	Approximate Chi Square Value (28.02, α)
1.343	95% Gamma Adjusted UCL (use when n<50)	1.284	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.78	SD (KM)	0.788
Variance (KM)	0.622	SE of Mean (KM)	0.186
k hat (KM)	0.978	k star (KM)	0.859
nu hat (KM)	37.17	nu star (KM)	32.63
theta hat (KM)	0.797	theta star (KM)	0.908
80% gamma percentile (KM)	1.269	90% gamma percentile (KM)	1.864
95% gamma percentile (KM)	2.466	99% gamma percentile (KM)	3.88

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (32.63, α)	20.57	Adjusted Chi Square Value (32.63, β)	19.74
95% Gamma Approximate KM-UCL (use when n>=50)	1.237	95% Gamma Adjusted KM-UCL (use when n<50)	1.289

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.946	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.897	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.144	Lilliefors GOF Test
5% Lilliefors Critical Value	0.202	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.779	Mean in Log Scale	-0.902
SD in Original Scale	0.81	SD in Log Scale	1.285
95% t UCL (assumes normality of ROS data)	1.102	95% Percentile Bootstrap UCL	1.077
95% BCA Bootstrap UCL	1.129	95% Bootstrap t UCL	1.164
95% H-UCL (Log ROS)	2.328		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.905	KM Geo Mean	0.405
KM SD (logged)	1.262	95% Critical H Value (KM-Log)	3.002
KM Standard Error of Mean (logged)	0.3	95% H-UCL (KM -Log)	2.191
KM SD (logged)	1.262	95% Critical H Value (KM-Log)	3.002
KM Standard Error of Mean (logged)	0.3		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed			
Mean in Original Scale	0.778	Mean in Log Scale	-0.913	
SD in Original Scale	0.811	SD in Log Scale	1.3	
95% t UCL (Assumes normality)	1.101	95% H-Stat UCL	2.388	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

iamma Adjusted KM-UCL (use when $k \le 1$ and $15 \le n \le 50$ but $k \le 1$) 1.289

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(b)fluoranthene

General Statistics Total Number of Observations Number of Distinct Observations Number of Missing Observations 39 Number of Detects 18 Number of Non-Detects 1 Number of Distinct Detects 17 Number of Distinct Non-Detects 1 Minimum Detect 0.072 Minimum Non-Detect 0.14 Maximum Non-Detect 0.14 Maximum Detect 5 Variance Detects 1.795 Percent Non-Detects 5.263% Mean Detects 1.228 SD Detects 1.34 Median Detects 0.595 CV Detects 1.091 Skewness Detects 1.568 Kurtosis Detects 2.305 Mean of Logged Detects -0.394 SD of Logged Detects 1.191

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.799	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.897	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.234	Lilliefors GOF Test
5% Lilliefors Critical Value	0.202	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.167	KM Standard Error of Mean	0.305
KM SD	1.293	95% KM (BCA) UCL	1.665
95% KM (t) UCL	1.697	95% KM (Percentile Bootstrap) UCL	1.689
95% KM (z) UCL	1.669	95% KM Bootstrap t UCL	1.913
90% KM Chebyshev UCL	2.083	95% KM Chebyshev UCL	2.498
97.5% KM Chebyshev UCL	3.074	99% KM Chebyshev UCL	4.205

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.424	Anderson-Darling GOF Test
5% A-D Critical Value	0.768	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.143	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.21	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.843	k star (bias corrected MLE)	0.968	k hat (MLE)
1.456	Theta star (bias corrected MLE)	1.269	Theta hat (MLE)
30.36	nu star (bias corrected)	34.84	nu hat (MLE)
		1.228	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

1.104	Mean	0.01	Minimum
0.53	Median	5	Maximum
1.144	CV	1.332	SD
0.689	k star (bias corrected MLE)	0.777	k hat (MLE)
1.688	Theta star (bias corrected MLE)	1.498	Theta hat (MLE)
26.2	nu star (bias corrected)	29.52	nu hat (MLE)
		0.0369	Adjusted Level of Significance (β)
14.81	Adjusted Chi Square Value (26.20, β)	15.53	Approximate Chi Square Value (26.20, α)
2.058	95% Gamma Adjusted UCL (use when n<50)	1.963	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.167	SD (KM)	1.293
Variance (KM)	1.673	SE of Mean (KM)	0.305
k hat (KM)	0.814	k star (KM)	0.721
nu hat (KM)	30.94	nu star (KM)	27.39
theta hat (KM)	1.433	theta star (KM)	1.619
80% gamma percentile (KM)	1.916	90% gamma percentile (KM)	2.909
95% gamma percentile (KM)	3.931	99% gamma percentile (KM)	6.363

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (27.39, α)	16.45	Adjusted Chi Square Value (27.39, β)	15.71
95% Gamma Approximate KM-LICL (use when n>=50)	1 943	95% Gamma Adjusted KM-LICL (use when n<50)	2 034

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.97	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.897	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.126	Lilliefors GOF Test
5% Lilliefors Critical Value	0.202	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	1.167	Mean in Log Scale	-0.518
SD in Original Scale	1.329	SD in Log Scale	1.278
95% t UCL (assumes normality of ROS data)	1.695	95% Percentile Bootstrap UCL	1.68
95% BCA Bootstrap UCL	1.762	95% Bootstrap t UCL	1.874
95% H-UCL (Log ROS)	3.353		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.511	KM Geo Mean	0.6
KM SD (logged)	1.232	95% Critical H Value (KM-Log)	2.956
KM Standard Error of Mean (logged)	0.291	95% H-UCL (KM -Log)	3.023
KM SD (logged)	1.232	95% Critical H Value (KM-Log)	2.956
KM Standard Error of Mean (logged)	0.291		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed			
Mean in Original Scale	1.167	Mean in Log Scale	-0.513		
SD in Original Scale	1.329	SD in Log Scale	1.269		
95% t UCL (Assumes normality)	1.696	95% H-Stat UCL	3.296		

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

iamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 2.034

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

General Statistics

Benzo(k)fluoranthene

Total Number of Observations	19	Number of Distinct Observations	18
		Number of Missing Observations	39
Number of Detects	18	Number of Non-Detects	1
Number of Distinct Detects	17	Number of Distinct Non-Detects	1
Minimum Detect	0.027	Minimum Non-Detect	0.14
Maximum Detect	1.3	Maximum Non-Detect	0.14
Variance Detects	0.116	Percent Non-Detects	5.263%
Mean Detects	0.373	SD Detects	0.341

Median Detects 0.265 CV Detects 0.912 Kurtosis Detects 1.805 Skewness Detects 1.391 Mean of Logged Detects -1.425 SD of Logged Detects 1.047

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.859	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.897	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.182	Lilliefors GOF Test
5% Lilliefors Critical Value	0.202	Detected Data appear Normal at 5% Significance Level

Detected Data appear Approximate Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.357	KM Standard Error of Mean	0.0777
KM SD	0.329	95% KM (BCA) UCL	0.49
95% KM (t) UCL	0.492	95% KM (Percentile Bootstrap) UCL	0.49
95% KM (z) UCL	0.485	95% KM Bootstrap t UCL	0.545
90% KM Chebyshev UCL	0.591	95% KM Chebyshev UCL	0.696
97.5% KM Chebyshev UCL	0.843	99% KM Chebyshev UCL	1.131

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.162	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.761	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.109	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.208	5% K-S Critical Value
Detected data appear Gamma Distributed at 5% Significance Level	0.208	al Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.102	k star (bias corrected MLE)	1.278	k hat (MLE)
0.339	Theta star (bias corrected MLE)	0.292	Theta hat (MLE)
39.68	nu star (bias corrected)	46.02	nu hat (MLE)
		0.373	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.355	Mean	0.027	Minimum
0.23	Median	1.3	Maximum
0.957	CV	0.34	SD
1.001	k star (bias corrected MLE)	1.147	k hat (MLE)
0.355	Theta star (bias corrected MLE)	0.31	Theta hat (MLE)
38.04	nu star (bias corrected)	43.59	nu hat (MLE)
		0.0369	Adjusted Level of Significance (β)
23.99	Adjusted Chi Square Value (38.04, β)	24.92	Approximate Chi Square Value (38.04, α)
0.563	95% Gamma Adjusted UCL (use when n<50)	0.543	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

	Mean (KM)	0.357	SD (KM)	0.329
	Variance (KM)	0.108	SE of Mean (KM)	0.0777
	k hat (KM)	1.179	k star (KM)	1.028
	nu hat (KM)	44.8	nu star (KM)	39.06
	theta hat (KM)	0.303	theta star (KM)	0.348
809	6 gamma percentile (KM)	0.574	90% gamma percentile (KM)	0.817
959	6 gamma percentile (KM)	1.06	99% gamma percentile (KM)	1.623

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (39.06, α)	25.74	Adjusted Chi Square Value (39.06, β)	24.8
95% Gamma Approximate KM-LICL (use when n>=50)	0.542	95% Gamma Adjusted KM-UCL (use when n<50)	0.563

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.977	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.897	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0924	Lilliefors GOF Test
5% Lilliefors Critical Value	0.202	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-1.49	Mean in Log Scale	0.357	Mean in Original Scale
1.055	SD in Log Scale	0.338	SD in Original Scale
0.484	95% Percentile Bootstrap UCL	0.492	95% t UCL (assumes normality of ROS data)
0.528	95% Bootstrap t UCL	0.514	95% BCA Bootstrap UCL
		0.768	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.495	KM Geo Mean	0.224
KM SD (logged)	1.04	95% Critical H Value (KM-Log)	2.668
KM Standard Error of Mean (logged)	0.247	95% H-UCL (KM -Log)	0.741
KM SD (logged)	1.04	95% Critical H Value (KM-Log)	2.668
KM Standard Error of Mean (logged)	0.247		

-1.00

DL/2 Normal

DL/2 Statistics DL/2 Log-Transformed

0.357	Mean in Log Scale	-1.49
0.338	SD in Log Scale	1.056
0.492	95% H-Stat UCL	0.769
	0.338	0.338 SD in Log Scale

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.492

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chrysene

	General Statistics		
Total Number of Observations	19	Number of Distinct Observations	16
		Number of Missing Observations	39
Number of Detects	18	Number of Non-Detects	1
Number of Distinct Detects	16	Number of Distinct Non-Detects	1
Minimum Detect	0.086	Minimum Non-Detect	0.14
Maximum Detect	2.5	Maximum Non-Detect	0.14
Variance Detects	0.662	Percent Non-Detects	5.263%
Mean Detects	0.9	SD Detects	0.814
Median Detects	0.495	CV Detects	0.905
Skewness Detects	0.787	Kurtosis Detects	-0.927
Mean of Logged Detects	-0.596	SD of Logged Detects	1.102

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.843	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.897	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.218	Lilliefors GOF Test
5% Lilliefors Critical Value	0.202	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.858	KM Standard Error of Mean	0.186
KM SD	0.79	95% KM (BCA) UCL	1.176
95% KM (t) UCL	1.182	95% KM (Percentile Bootstrap) UCL	1.169
95% KM (z) UCL	1.165	95% KM Bootstrap t UCL	1.225
90% KM Chebyshev UCL	1.418	95% KM Chebyshev UCL	1.671
97.5% KM Chebyshev UCL	2.023	99% KM Chebyshev UCL	2.713

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.543	Anderson-Darling GOF Test
5% A-D Critical Value	0.763	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.165	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.209	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.001	k star (bias corrected MLE)	1.157	k hat (MLE)
0.899	Theta star (bias corrected MLE)	0.778	Theta hat (MLE)
36.04	nu star (bias corrected)	41.65	nu hat (MLE)
		0.9	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.854	Mean	0.0364	Minimum
0.43	Median	2.5	Maximum
0.954	CV	0.815	SD
0.871	k star (bias corrected MLE)	0.993	k hat (MLE)
0.981	Theta star (bias corrected MLE)	0.861	Theta hat (MLE)
33.1	nu star (bias corrected)	37.72	nu hat (MLE)
		0.0369	Adjusted Level of Significance (β)
20.1	Adjusted Chi Square Value (33.10, β)	20.95	Approximate Chi Square Value (33.10, α)
1.407	95% Gamma Adjusted UCL (use when n<50)	1.35	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.858	SD (KM)	0.79
Variance (KM)	0.623	SE of Mean (KM)	0.186
k hat (KM)	1.182	k star (KM)	1.031
nu hat (KM)	44.92	nu star (KM)	39.16
theta hat (KM)	0.726	theta star (KM)	0.833
80% gamma percentile (KM)	1.378	90% gamma percentile (KM)	1.962
95% gamma percentile (KM)	2.545	99% gamma percentile (KM)	3.894

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (39.16, α)	25.83	Adjusted Chi Square Value (39.16, β)	24.88
95% Gamma Approximate KM-UCL (use when n>=50)	1.302	95% Gamma Adjusted KM-UCL (use when n<50)	1.351

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.926	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.897 Detected Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.147	Lilliefors GOF Test
5% Lilliefors Critical Value	0.202	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.858	Mean in Log Scale	-0.681
SD in Original Scale	0.811	SD in Log Scale	1.132
95% t UCL (assumes normality of ROS data)	1.181	95% Percentile Bootstrap UCL	1.162
95% BCA Bootstrap UCL	1.191	95% Bootstrap t UCL	1.253
95% H-UCL (Log ROS)	2.03		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.68	KM Geo Mean	0.507
KM SD (logged)	1.101	95% Critical H Value (KM-Log)	2.758
KM Standard Error of Mean (logged)	0.26	95% H-UCL (KM -Log)	1.902
KM SD (logged)	1.101	95% Critical H Value (KM-Log)	2.758
KM Standard Error of Mean (logged)	0.26		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.856	Mean in Log Scale	-0.705
SD in Original Scale	0.814	SD in Log Scale	1.171
95% t UCL (Assumes normality)	1.18	95% H-Stat UCL	2.16

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Adjusted Gamma UCL 1.351 95% GROS Adjusted Gamma UCL 1.407

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Cobalt

General Statistics

	iai Stausucs	Genera		
3	Number of Distinct Observations	3	Total Number of Observations	
55	Number of Missing Observations			
10.33	Mean	4.4	Minimum	
9.6	Median	17	Maximum	
3.656	Std. Error of Mean	6.332	SD	
0.514	Skewness	0.613	Coefficient of Variation	
10. 9.6 3.6	Mean Median Std. Error of Mean	17 6.332	Maximum SD	

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal	I GOF	Test
--------	-------	------

Shapiro Wilk Test Statistic	0.99	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.213	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

7100	aning Normal Distribution	
95% Normal UCL	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCI	21.01 95% Adjusted-CLT LICL (Chen-1995)	17 51

95% Students-t OCL 21.01 95% Adjusted-CL1 OCL (Chen-1995) 17.51 95% Modified-t UCL (Johnson-1978) 21.19

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

N/A	k star (bias corrected MLE)	3.65	k hat (MLE)
N/A	Theta star (bias corrected MLE)	2.831	Theta hat (MLE)
N/A	nu star (bias corrected)	21.9	nu hat (MLE)
N/A	MLE Sd (bias corrected)	N/A	MLE Mean (bias corrected)
N/A	Approximate Chi Square Value (0.05)		
N/A	Adjusted Chi Square Value	N/A	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.992	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.208	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.425	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.482	Mean of logged Data	2.192
Maximum of Logged Data	2.833	SD of logged Data	0.678

Assuming Lognormal Distribution

95% H-UCL	782.3	90% Chebyshev (MVUE) UCL	21.93
95% Chebyshev (MVUE) UCL	27.16	97.5% Chebyshev (MVUE) UCL	34.43
99% Chebyshev (MVUE) UCL	48.69		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	16.35	95% Jackknife UCL	21.01
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	21.3	95% Chebyshev(Mean, Sd) UCL	26.27
97.5% Chebyshev(Mean, Sd) UCL	33.16	99% Chebyshev(Mean, Sd) UCL	46.71

Suggested UCL to Use

95% Student's-t UCL 21.01

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Dibenzo(a,h)anthracene

General Statistics

Total Number of Observations	19	Number of Distinct Observations	18
		Number of Missing Observations	39
Number of Detects	15	Number of Non-Detects	4
Number of Distinct Detects	15	Number of Distinct Non-Detects	3
Minimum Detect	0.011	Minimum Non-Detect	0.07
Maximum Detect	0.51	Maximum Non-Detect	0.72
Variance Detects	0.026	Percent Non-Detects	21.05%
Mean Detects	0.162	SD Detects	0.161
Median Detects	0.077	CV Detects	0.994
Skewness Detects	1.054	Kurtosis Detects	-0.0952
Mean of Logged Detects	-2.382	SD of Logged Detects	1.184

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.843	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.881	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.234	Lilliefors GOF Test
5% Lilliefors Critical Value	0.22	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.142	KM Standard Error of Mean	0.0365
KM SD	0.149	95% KM (BCA) UCL	0.203
95% KM (t) UCL	0.205	95% KM (Percentile Bootstrap) UCL	0.206
95% KM (z) UCL	0.202	95% KM Bootstrap t UCL	0.226
90% KM Chebyshev UCL	0.252	95% KM Chebyshev UCL	0.301
97.5% KM Chebyshev UCL	0.37	99% KM Chebyshev UCL	0.505

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.343	Anderson-Darling GOF Test
5% A-D Critical Value	0.763	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.16	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.228	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	1.025	k star (bias corrected MLE)	0.865
Theta hat (MLE)	0.158	Theta star (bias corrected MLE)	0.187
nu hat (MLE)	30.75	nu star (bias corrected)	25.94
Mean (detects)	0.162		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.139
Maximum	0.51	Median	0.065
SD	0.15	CV	1.084
k hat (MLE)	0.982	k star (bias corrected MLE)	0.862
Theta hat (MLE)	0.141	Theta star (bias corrected MLE)	0.161
nu hat (MLE)	37.33	nu star (bias corrected)	32.77
Adjusted Level of Significance (β)	0.0369		
Approximate Chi Square Value (32.77, α)	20.68	Adjusted Chi Square Value (32.77, β)	19.84
95% Gamma Approximate UCL (use when n>=50)	0.22	95% Gamma Adjusted UCL (use when n<50)	0.229

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.142	SD (KM)	0.149
Variance (KM)	0.0223	SE of Mean (KM)	0.0365
k hat (KM)	0.906	k star (KM)	0.798
nu hat (KM)	34.43	nu star (KM)	30.33
theta hat (KM)	0.157	theta star (KM)	0.178
80% gamma percentile (KM)	0.232	90% gamma percentile (KM)	0.346
95% gamma percentile (KM)	0.461	99% gamma percentile (KM)	0.734

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (30.33, α)	18.75	Adjusted Chi Square Value (30.33, β)	17.96
95% Gamma Approximate KM-UCL (use when n>=50)	0.23	95% Gamma Adjusted KM-UCL (use when n<50)	0.24

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.96	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.881	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.133	Lilliefors GOF Test
5% Lilliefors Critical Value	0.22	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.138	Mean in Log Scale	-2.532
SD in Original Scale	0.15	SD in Log Scale	1.103
95% t UCL (assumes normality of ROS data)	0.198	95% Percentile Bootstrap UCL	0.196
95% BCA Bootstrap UCL	0.208	95% Bootstrap t UCL	0.222
95% H-UCL (Log ROS)	0.3		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.543	KM Geo Mean	0.0787
KM SD (logged)	1.135	95% Critical H Value (KM-Log)	2.808
KM Standard Error of Mean (logged)	0.287	95% H-UCL (KM -Log)	0.318
KM SD (logged)	1.135	95% Critical H Value (KM-Log)	2.808
KM Standard Error of Mean (logged)	0.287		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed		
Mean in Original Scale	0.154	Mean in Log Scale	-2.427
SD in Original Scale	0.157	SD in Log Scale	1.14
95% t UCL (Assumes normality)	0.217	95% H-Stat UCL	0.36

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

iamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 0.24

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Diesel Range Organics (C10-C20)

General Statistics

Total Number of Observations	5	Number of Distinct Observations	5
		Number of Missing Observations	55
Minimum	20	Mean	1299
Maximum	3400	Median	98
SD	1699	Std. Error of Mean	759.7
Coefficient of Variation	1.307	Skewness	0.656

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.742	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.36	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95%	UCLs (Adjusted for Skewness)
--------------------	------------------------------

95% Student's-t UCL 2919 95% Adjusted-CLT UCL (Chen-1995) 2787 95% Modified-t UCL (Johnson-1978) 2956

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.59	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.722	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.337	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.375	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

0.301	k star (bias corrected MLE)	0.419	k hat (MLE)
4318	Theta star (bias corrected MLE)	3101	Theta hat (MLE)
3.009	nu star (bias corrected)	4.19	nu hat (MLE)
2369	MLE Sd (bias corrected)	1299	MLE Mean (bias corrected)
0.375	Approximate Chi Square Value (0.05)		
0.14	Adjusted Chi Square Value	0.0086	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<50) 10422 95% Adjusted Gamma UCL (use when n<50) 27895

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.859	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.762	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.271	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.343	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2.996	Mean of logged Data	5.611
Maximum of Logged Data	8.132	SD of logged Data	2.311

Assuming Lognormal Distribution

95% H-UCL 1.045E+9	90% Chebyshev (MVUE) UCL	4962
95% Chebyshev (MVUE) UCL 6549	97.5% Chebyshev (MVUE) UCL	8752
99% Chebyshev (MVUE) UCL 13080		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	2549	95% Jackknife UCL	2919
95% Standard Bootstrap UCL	2433	95% Bootstrap-t UCL	58840
95% Hall's Bootstrap UCL	63522	95% Percentile Bootstrap UCL	2536
95% BCA Bootstrap UCL	2536		
90% Chebyshev(Mean, Sd) UCL	3579	95% Chebyshev(Mean, Sd) UCL	4611
97.5% Chebyshev(Mean, Sd) UCL	6044	99% Chebyshev(Mean, Sd) UCL	8859

Suggested UCL to Use

95% Adjusted Gamma UCL 27895

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

General Statistics

Total Number of Observations	19	Number of Distinct Observations	18
		Number of Missing Observations	39
Number of Detects	18	Number of Non-Detects	1
Number of Distinct Detects	17	Number of Distinct Non-Detects	1
Minimum Detect	0.028	Minimum Non-Detect	0.14
Maximum Detect	2	Maximum Non-Detect	0.14
Variance Detects	0.372	Percent Non-Detects	5.263%
Mean Detects	0.619	SD Detects	0.61
Median Detects	0.325	CV Detects	0.986
Skewness Detects	1.004	Kurtosis Detects	-0.26
Mean of Logged Detects	-1.048	SD of Logged Detects	1.197

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.833	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.897	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.226	Lilliefors GOF Test
5% Lilliefors Critical Value	0.202	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.59	KM Standard Error of Mean	0.139
KM SD	0.589	95% KM (BCA) UCL	0.82
95% KM (t) UCL	0.832	95% KM (Percentile Bootstrap) UCL	0.816
95% KM (z) UCL	0.819	95% KM Bootstrap t UCL	0.877
90% KM Chebyshev UCL	1.008	95% KM Chebyshev UCL	1.197
97.5% KM Chebyshev UCL	1.459	99% KM Chebyshev UCL	1.975

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.47	Anderson-Darling GOF Test
5% A-D Critical Value	0.766	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.156	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.209	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	1.015	k star (bias corrected MLE)	0.883
Theta hat (MLE)	0.609	Theta star (bias corrected MLE)	0.701
nu hat (MLE)	36.53	nu star (bias corrected)	31.78
Mean (detects)	0.619		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.586	Mean	0.01	Minimum
0.28	Median	2	Maximum
1.039	CV	0.609	SD
0.743	k star (bias corrected MLE)	0.84	k hat (MLE)
0.79	Theta star (bias corrected MLE)	0.698	Theta hat (MLE)
28.22	nu star (bias corrected)	31.93	nu hat (MLE)
		0.0369	Adjusted Level of Significance (β)
16.34	Adjusted Chi Square Value (28.22, β)	17.1	Approximate Chi Square Value (28.22, α)
1.013	95% Gamma Adjusted UCL (use when n<50)	0.968	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.59	SD (KM)	0.589
Variance (KM)	0.347	SE of Mean (KM)	0.139
k hat (KM)	1.003	k star (KM)	0.879
nu hat (KM)	38.1	nu star (KM)	33.42
theta hat (KM)	0.589	theta star (KM)	0.671
80% gamma percentile (KM)	0.959	90% gamma percentile (KM)	1.403
95% gamma percentile (KM)	1.851	99% gamma percentile (KM)	2.901

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (33.42, α)	21.2	Adjusted Chi Square Value (33.42, β)	20.35
95% Gamma Approximate KM-UCL (use when n>=50)	0.93	95% Gamma Adjusted KM-UCL (use when n<50)	0.969

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.955	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.897	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.141	Lilliefors GOF Test
5% Lilliefors Critical Value	0.202	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.59	Mean in Log Scale	-1.13
SD in Original Scale	0.606	SD in Log Scale	1.216
95% t UCL (assumes normality of ROS data)	0.831	95% Percentile Bootstrap UCL	0.83
95% BCA Bootstrap UCL	0.855	95% Bootstrap t UCL	0.886
95% H-UCL (Log ROS)	1.569		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.132	KM Geo Mean	0.322
KM SD (logged)	1.193	95% Critical H Value (KM-Log)	2.896
KM Standard Error of Mean (logged)	0.284	95% H-UCL (KM -Log)	1.482
KM SD (logged)	1.193	95% Critical H Value (KM-Log)	2.896
KM Standard Error of Mean (logged)	0.284		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.59	Mean in Log Scale	-1.133
SD in Original Scale	0.606	SD in Log Scale	1.22
95% t UCL (Assumes normality)	0.831	95% H-Stat UCL	1.578

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

iamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 0.969

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Manganese

General Statistics

	aonoral ottationes		
Total Number of Observations	3	Number of Distinct Observations	3
		Number of Missing Observations	55
Minimum	120	Mean	276.7
Maximum	500	Median	210
SD	198.6	Std. Error of Mean	114.6
Coefficient of Variation	0.718	Skewness	1.34

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.915	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.298	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 611.4 95% Adjusted-CLT UCL (Chen-1995) 560.1 95% Modified-t UCL (Johnson-1978) 626.2

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

 k hat (MLE)
 3.045
 k star (bias corrected MLE)
 N/A

 Theta hat (MLE)
 90.85
 Theta star (bias corrected MLE)
 N/A

 nu hat (MLE)
 18.27
 nu star (bias corrected)
 N/A

 MLE Mean (bias corrected)
 N/A
 MLE Sd (bias corrected)
 N/A

 Approximate Chi Square Value (0.05)
 N/A

 Adjusted Level of Significance
 N/A
 Adjusted Chi Square Value
 N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.985 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.223 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.425 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 4.787
 Mean of logged Data
 5.45

 Maximum of Logged Data
 6.215
 SD of logged Data
 0.719

Assuming Lognormal Distribution

 95% H-UCL
 35333
 90% Chebyshev (MVUE) UCL
 596.2

 95% Chebyshev (MVUE) UCL
 741.9
 97.5% Chebyshev (MVUE) UCL
 944.1

 99% Chebyshev (MVUE) UCL
 1341

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

 95% CLT UCL
 465.2
 95% Jackknife UCL
 611.4

 95% Standard Bootstrap UCL
 N/A
 95% Bootstrap-t UCL
 N/A

 95% Hall's Bootstrap UCL
 N/A
 95% Percentile Bootstrap UCL
 N/A

 95% BCA Bootstrap UCL
 N/A
 95% Chebyshev(Mean, Sd) UCL
 776.4

 90% Chebyshev(Mean, Sd) UCL
 992.7
 99% Chebyshev(Mean, Sd) UCL
 1417

Suggested UCL to Use

95% Student's-t UCL 611.4

Recommended UCL exceeds the maximum observation

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Naphthalene

General Statistics

Total Number of Observations	19	Number of Distinct Observations	17
		Number of Missing Observations	39
Number of Detects	17	Number of Non-Detects	2
Number of Distinct Detects	16	Number of Distinct Non-Detects	2
Minimum Detect	0.0084	Minimum Non-Detect	0.14
Maximum Detect	0.32	Maximum Non-Detect	0.72
Variance Detects	0.00907	Percent Non-Detects	10.53%
Mean Detects	0.115	SD Detects	0.0952
Median Detects	0.07	CV Detects	0.826
Skewness Detects	0.873	Kurtosis Detects	-0.326
Mean of Logged Detects	-2.559	SD of Logged Detects	1.011

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.887	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.892	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.212	Lilliefors GOF Test
5% Lilliefors Critical Value	0.207	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.112	KM Standard Error of Mean	0.0223
KM SD	0.0913	95% KM (BCA) UCL	0.15
95% KM (t) UCL	0.15	95% KM (Percentile Bootstrap) UCL	0.148
95% KM (z) UCL	0.148	95% KM Bootstrap t UCL	0.16
90% KM Chebyshev UCL	0.178	95% KM Chebyshev UCL	0.209
97.5% KM Chebyshev UCL	0.251	99% KM Chebyshev UCL	0.333

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.298	Anderson-Darling GOF Test
5% A-D Critical Value	0.758	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.149	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.213	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.19	k star (bias corrected MLE)	1.397	k hat (MLE)
0.0969	Theta star (bias corrected MLE)	0.0825	Theta hat (MLE)
40.45	nu star (bias corrected)	47.49	nu hat (MLE)
		0.115	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.11	Mean	0.0084	Minimum
0.07	Median	0.32	Maximum
0.827	CV	0.0912	SD
1.287	k star (bias corrected MLE)	1.486	k hat (MLE)
0.0857	Theta star (bias corrected MLE)	0.0742	Theta hat (MLE)
48.89	nu star (bias corrected)	56.47	nu hat (MLE)
		0.0369	Adjusted Level of Significance (β)
32.75	Adjusted Chi Square Value (48.89, β)	33.84	Approximate Chi Square Value (48.89, α)
0.165	95% Gamma Adjusted UCL (use when n<50)	0.159	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.112	SD (KM)	0.0913
Variance (KM)	0.00834	SE of Mean (KM)	0.0223
k hat (KM)	1.493	k star (KM)	1.292
nu hat (KM)	56.73	nu star (KM)	49.1
theta hat (KM)	0.0747	theta star (KM)	0.0863
80% gamma percentile (KM)	0.175	90% gamma percentile (KM)	0.241
95% gamma percentile (KM)	0.306	99% gamma percentile (KM)	0.453

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (49.10, α)	34.02	Adjusted Chi Square Value (49.10, β)	32.92
95% Gamma Approximate KM-UCL (use when n>=50)	0.161	95% Gamma Adjusted KM-UCL (use when n<50)	0.166

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.955	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.892	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.139	Lilliefors GOF Test
5% Lilliefors Critical Value	0.207	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-2.593	Mean in Log Scale	0.109	Mean in Original Scale
0.963	SD in Log Scale	0.0917	SD in Original Scale
0.145	95% Percentile Bootstrap UCL	0.146	95% t UCL (assumes normality of ROS data)
0.154	95% Bootstrap t UCL	0.148	95% BCA Bootstrap UCL
		0.213	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.596	KM Geo Mean	0.0745
KM SD (logged)	0.98	95% Critical H Value (KM-Log)	2.582
KM Standard Error of Mean (logged)	0.242	95% H-UCL (KM -Log)	0.219
KM SD (logged)	0.98	95% Critical H Value (KM-Log)	2.582
KM Standard Error of Mean (logged)	0.242		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	0.126	Mean in Log Scale	-2.484	
SD in Original Scale	0.107	SD in Log Scale	1.017	
95% t UCL (Assumes normality)	0.168	95% H-Stat UCL	0.263	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Adjusted Gamma UCL 0.166 95% GROS Adjusted Gamma UCL 0.165

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Nickel

		General Statistics	
3	Number of Distinct Observations	3	Total Number of Observations
55	Number of Missing Observations		
16.93	Mean	9.8	Minimum
14	Median	27	Maximum
5.177	Std. Error of Mean	8.967	SD
1.314	Skewness	0.53	Coefficient of Variation

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.92	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.295	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL

		,	
95% Student's-t UCL	32.05	95% Adjusted-CLT UCL (Chen-1995)	29.65

95% Modified-t UCL (Johnson-1978) 32.71

95% UCLs (Adjusted for Skewness)

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

k hat (MLE)	5.705	k star (bias corrected MLE)	N/A
Theta hat (MLE)	2.968	2.968 Theta star (bias corrected MLE)	
nu hat (MLE)	34.23	nu star (bias corrected)	N/A
MLE Mean (bias corrected)	N/A	N/A MLE Sd (bias corrected	
		Approximate Chi Square Value (0.05)	N/A
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.972	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.244	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.425	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2.282	Mean of logged Data	2.739
Maximum of Logged Data	3.296	SD of logged Data	0.514

Assuming Lognormal Distribution

95% H-UCL	200	90% Chebyshev (MVUE) UCL	31.41
95% Chebyshev (MVUE) UCL	38	97.5% Chebyshev (MVUE) UCL	47.14
99% Chebyshev (MVUE) UCL	65.1		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

32.05	95% Jackknife UCL	25.45	95% CLT UCL
N/A	95% Bootstrap-t UCL	N/A	95% Standard Bootstrap UCL
N/A	95% Percentile Bootstrap UCL	N/A	95% Hall's Bootstrap UCL
		N/A	95% BCA Bootstrap UCL
39.5	95% Chebyshev(Mean, Sd) UCL	32.47	90% Chebyshev(Mean, Sd) UCL
68.45	99% Chebyshev(Mean, Sd) UCL	49.27	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 32.05

Recommended UCL exceeds the maximum observation

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

PCB, Total Aroclors (AECOM Calc)

General Statistics

Total Number of Observations	41	Number of Distinct Observations	38
		Number of Missing Observations	17
Number of Detects	40	Number of Non-Detects	1
Number of Distinct Detects	37	Number of Distinct Non-Detects	1
Minimum Detect	0.0021	Minimum Non-Detect	9.2000E-4
Maximum Detect	14	Maximum Non-Detect	9.2000E-4
Variance Detects	5.507	Percent Non-Detects	2.439%
Mean Detects	1.172	SD Detects	2.347
Median Detects	0.37	CV Detects	2.002
Skewness Detects	4.458	Kurtosis Detects	23.59
Mean of Logged Detects	-1.483	SD of Logged Detects	2.282

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.507	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.94	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.309	Lilliefors GOF Test
5% Lilliefors Critical Value	0.139	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.144	KM Standard Error of Mean	0.363
KM SD	2.296	95% KM (BCA) UCL	1.844
		` '	
**		, , , , , , , , , , , , , , , , , , , ,	
()			
•		,	
95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL	1.755 1.741 2.233 3.412	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	1.798 2.479 2.727 4.757

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.469	Anderson-Darling GOF Test
5% A-D Critical Value	0.835	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.112	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.149	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.387	k star (bias corrected MLE)	0.401	k hat (MLE)
3.027	Theta star (bias corrected MLE)	2.926	Theta hat (MLE)
30.98	nu star (bias corrected)	32.05	nu hat (MLE)
		1.172	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

1.144	Mean	0.0021	Minimum
0.3	Median	14	Maximum
2.032	CV	2.324	SD
0.378	k star (bias corrected MLE)	0.39	k hat (MLE)
3.028	Theta star (bias corrected MLE)	2.933	Theta hat (MLE)
30.98	nu star (bias corrected)	31.99	nu hat (MLE)
		0.0441	Adjusted Level of Significance (β)
18.93	Adjusted Chi Square Value (30.98, β)	19.27	Approximate Chi Square Value (30.98, α)
1.873	95% Gamma Adjusted UCL (use when n<50)	1.84	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.144	SD (KM)	2.296
Variance (KM)	5.271	SE of Mean (KM)	0.363
k hat (KM)	0.248	k star (KM)	0.246
nu hat (KM)	20.36	nu star (KM)	20.2
theta hat (KM)	4.608	theta star (KM)	4.644
80% gamma percentile (KM)	1.653	90% gamma percentile (KM)	3.437
95% gamma percentile (KM)	5.561	99% gamma percentile (KM)	11.23

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (20.20, α)	11	Adjusted Chi Square Value (20.20, β)	10.75
95% Gamma Approximate KM-UCL (use when n>=50)	2.101	95% Gamma Adjusted KM-UCL (use when n<50)	2.149

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.941	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.94	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.139	Lilliefors GOF Test
5% Lilliefors Critical Value	0.139	Detected Data Not Lognormal at 5% Significance Level
Detected Data appear App	proximate L	ognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-1.623	Mean in Log Scale	1.144	Mean in Original Scale
2.427	SD in Log Scale	2.324	SD in Original Scale
1.785	95% Percentile Bootstrap UCL	1.755	95% t UCL (assumes normality of ROS data)
2.429	95% Bootstrap t UCL	2.158	95% BCA Bootstrap UCL
		19.19	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.617	KM Geo Mean	0.198
KM SD (logged)	2.382	95% Critical H Value (KM-Log)	4.192
KM Standard Error of Mean (logged)	0.377	95% H-UCL (KM -Log)	16.44
KM SD (logged)	2.382	95% Critical H Value (KM-Log)	4.192
KM Standard Error of Mean (logged)	0.377		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed		
Mean in Original Scale	1.144	Mean in Log Scale	-1.634
SD in Original Scale	2.324	SD in Log Scale	2.453
95% t UCL (Assumes normality)	1.755	95% H-Stat UCL	20.9

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

iamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 2.149

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

TCDD TEQ HH

General Statistics

Total Number of Observations 23	Number of Distinct Observations 22
	Number of Missing Observations 35
Minimum 2.3700E-6	Mean 6.1001E-5
Maximum 4.8400E-4	Median 2.7000E-5
SD 1.0266E-4	Std. Error of Mean 2.1406E-5
Coefficient of Variation N/A	Skewness 3.46

Normal GOF Test

Shapiro Wilk Test Statistic	0.575	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.914	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.284	Lilliefors GOF Test
5% Lilliefors Critical Value	0.18	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 9.7758E-5 95% Adjusted-CLT UCL (Chen-1995) 1.1271E-4 95% Modified-t UCL (Johnson-1978) 1.0033E-4

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.596	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.795	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.16	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.19	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 0.608	k star (bias corrected MLE) 0.557
Theta hat (MLE) 1.0040E-4	Theta star (bias corrected MLE) 1.0945E-4
nu hat (MLE) 27.95	nu star (bias corrected) 25.64
MLE Mean (bias corrected) 6.1001E-5	MLE Sd (bias corrected) 8.1712E-5
	Approximate Chi Square Value (0.05) 15.1
Adjusted Level of Significance 0.0389	Adjusted Chi Square Value 14.51

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 1.0357E-4

95% Adjusted Gamma UCL (use when n<50) 1.0775E-4

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.947	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.914	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.141	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.18	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-12.95	Mean of logged Data	-10.72
Maximum of Logged Data	-7.633	SD of logged Data	1.536

Assuming Lognormal Distribution

95% H-UCL 2.1231E-4	90% Chebyshev (MVUE) UCL 1.4188E-4
95% Chebyshev (MVUE) UCL 1.7663E-4	97.5% Chebyshev (MVUE) UCL 2.2486E-4
99% Chebyshey (MVUE) UCL 3.1961E-4	

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

CLT UCL 9.6210E-5 95% Jacks	knife UCL 9.7758E-5
trap UCL 9.5469E-5 95% Bootsti	rap-t UCL 1.3437E-4
trap UCL 2.3119E-4 95% Percentile Boots	strap UCL 1.0009E-4
trap UCL 1.1613E-4	
Sd) UCL 1.2522E-4 95% Chebyshev(Mean,	Sd) UCL 1.5431E-4
Sd) UCL 1.9468E-4 99% Chebyshev(Mean,	Sd) UCL 2.7399E-4

Suggested UCL to Use

95% Adjusted Gamma UCL 1.0775E-4

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Thallium

General Statistics

3	Number of Distinct Observations	3	Total Number of Observations
55	Number of Missing Observations		
0.18	Mean	0.16	Minimum
0.18	Median	0.2	Maximum
0.0115	Std. Error of Mean	0.02	SD
6.35E-15	Skewness	0.111	Coefficient of Variation

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	1	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.175	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)
007011011101002	conceed to against its entermisse,

 95% Student's-t UCL
 0.214
 95% Adjusted-CLT UCL (Chen-1995)
 0.199

 95% Modified-t UCL (Johnson-1978)
 0.214

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

k hat (MLE)	120.9	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.00149	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	725.5	nu star (bias corrected)	N/A
MLE Mean (bias corrected)	N/A	MLE Sd (bias corrected)	N/A
		Approximate Chi Square Value (0.05)	N/A
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.999	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.181	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.425	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-1.833	Mean of logged Data	-1.719
Maximum of Logged Data	-1.609	SD of logged Data	0.112

Assuming Lognormal Distribution

95% H-UCL	0.225	90% Chebyshev (MVUE) UCL	0.215
95% Chebyshev (MVUE) UCL	0.23	97.5% Chebyshev (MVUE) UCL	0.252
99% Chebyshev (MVUE) UCL	0.295		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.199	95% Jackknife UCL	0.214
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	0.215	95% Chebyshev(Mean, Sd) UCL	0.23
97.5% Chebyshev(Mean, Sd) UCL	0.252	99% Chebyshev(Mean, Sd) UCL	0.295

Suggested UCL to Use

95% Student's-t UCL 0.21

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Vanadium

	General Statistics		
Total Number of Observations	3	Number of Distinct Observations	3
		Number of Missing Observations	55
Minimum	16	Mean	24.67
Maximum	36	Median	22
SD	10.26	Std. Error of Mean	5.925
Coefficient of Variation	0.416	Skewness	1.09

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.949	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.269	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	41.97	95% Adjusted-CLT UCL (Chen-1995)	38.4
		95% Modified-t UCL (Johnson-1978)	42.59

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma	Statistics

k hat (MLE)	9.028	k star (bias corrected MLE)	N/A
Theta hat (MLE)	2.732	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	54.17	nu star (bias corrected)	N/A
MLE Mean (bias corrected)	N/A	MLE Sd (bias corrected)	N/A
		Approximate Chi Square Value (0.05)	N/A
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50))	N/A	95% Adjusted Gamma UCL (use when n<50)	N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.985	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.223	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.425	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

	-		
Minimum of Logged Data	2.773	Mean of logged Data	3.149
Maximum of Logged Data	3.584	SD of logged Data	0.409

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.18/29/2018 2:07:36 PM

From File Soil_StoresFleet-SS.xls

Full Precision OFF
Confidence Coefficient 95%
Imber of Bootstrap Operations 2000

Arsenic

General Statistics

Total Number of Observations	8	Number of Distinct Observations	8
		Number of Missing Observations	19
Minimum	3	Mean	5.25
Maximum	7.5	Median	5.4
SD	1.701	Std. Error of Mean	0.601
Coefficient of Variation	0.324	Skewness	-0.123

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.938	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.136	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

5376 NOTHIAI OCL		55% OCLS (Aujusteu für Skewiless)	
95% Student's-t UCL	6.39	95% Adjusted-CLT UCL (Chen-1995)	6.212
		95% Modified-t UCL (Johnson-1978)	6.385

Gamma GOF Test

A-D Test Statistic	0.31	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.715	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.159	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.294	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	10.01	k star (bias corrected MLE)	6.339
Theta hat (MLE)	0.524	Theta star (bias corrected MLE)	0.828
nu hat (MLE)	160.2	nu star (bias corrected)	101.4
MLE Mean (bias corrected)	5.25	MLE Sd (bias corrected)	2.085
		Approximate Chi Square Value (0.05)	79.19
Adjusted Level of Significance	0.0195	Adjusted Chi Square Value	74.24

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 6.724 95% Adjusted Gamma UCL (use when n<50) 7.173

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.918	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.818	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.15	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.283	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.099	Mean of logged Data	1.607
Maximum of Logged Data	2.015	SD of logged Data	0.35

Assuming Lognormal Distribution

Surface Soil ProUCL Output - Stores and Fleet Maintenance Area

95% H-UCL	7.023	90% Chebyshev (MVUE) UCL	7.224
95% Chebyshev (MVUE) UCL	8.113	97.5% Chebyshev (MVUE) UCL	9.347
99% Chebyshev (MVUE) UCL	11.77		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

6.39	95% Jackknife UCL	6.239	95% CLT UCL
6.355	95% Bootstrap-t UCL	6.171	95% Standard Bootstrap UCL
6.213	95% Percentile Bootstrap UCL	6.103	95% Hall's Bootstrap UCL
		6.138	95% BCA Bootstrap UCL
7.872	95% Chebyshev(Mean, Sd) UCL	7.054	90% Chebyshev(Mean, Sd) UCL
11.23	99% Chebyshev(Mean, Sd) UCL	9.006	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 6.39

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Benzo(a)anthracene

General Statistics

Total Number of Observations	13	Number of Distinct Observations	13
		Number of Missing Observations	14
Number of Detects	12	Number of Non-Detects	1
Number of Distinct Detects	12	Number of Distinct Non-Detects	1
Minimum Detect	0.012	Minimum Non-Detect	0.0071
Maximum Detect	0.9	Maximum Non-Detect	0.0071
Variance Detects	0.0672	Percent Non-Detects	7.692%
Mean Detects	0.262	SD Detects	0.259
Median Detects	0.23	CV Detects	0.99
Skewness Detects	1.471	Kurtosis Detects	2.398
Mean of Logged Detects	-1.918	SD of Logged Detects	1.276

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.85	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.186	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Detected Data appear Normal at 5% Significance Level

Detected Data appear Approximate Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.242	KM Standard Error of Mean	0.0718
KM SD	0.248	95% KM (BCA) UCL	0.371
95% KM (t) UCL	0.37	95% KM (Percentile Bootstrap) UCL	0.36
95% KM (z) UCL	0.36	95% KM Bootstrap t UCL	0.444
90% KM Chebyshev UCL	0.458	95% KM Chebyshev UCL	0.555
97.5% KM Chebyshev UCL	0.691	99% KM Chebyshev UCL	0.957

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.266	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.757	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.153	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.252	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.805	k star (bias corrected MLE)	1	k hat (MLE)
0.325	Theta star (bias corrected MLE)	0.262	Theta hat (MLE)
19.33	nu star (bias corrected)	23.99	nu hat (MLE)

Mean (detects) 0.262

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.242
Maximum	0.9	Median	0.22
SD	0.258	CV	1.063
k hat (MLE)	0.835	k star (bias corrected MLE)	0.693
Theta hat (MLE)	0.29	Theta star (bias corrected MLE)	0.35
nu hat (MLE)	21.7	nu star (bias corrected)	18.02
Adjusted Level of Significance (β)	0.0301		
Approximate Chi Square Value (18.02, α)	9.408	Adjusted Chi Square Value (18.02, β)	8.534
95% Gamma Approximate UCL (use when n>=50)	0.464	95% Gamma Adjusted UCL (use when n<50)	0.512

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.242	SD (KM)	0.248
Variance (KM)	0.0614	SE of Mean (KM)	0.0718
k hat (KM)	0.955	k star (KM)	0.786
nu hat (KM)	24.82	nu star (KM)	20.42
theta hat (KM)	0.254	theta star (KM)	0.308
80% gamma percentile (KM)	0.396	90% gamma percentile (KM)	0.591
95% gamma percentile (KM)	0.791	99% gamma percentile (KM)	1.262

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (20.42, α)	11.16	Adjusted Chi Square Value (20.42, β)	10.2
15% Gamma Approximate KM-UCL (use when n>=50)	0.443	95% Gamma Adjusted KM-UCL (use when n<50)	0.485

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.948	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.207	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-2.154	Mean in Log Scale	0.242	Mean in Original Scale
1.489	SD in Log Scale	0.258	SD in Original Scale
0.362	95% Percentile Bootstrap UCL	0.37	95% t UCL (assumes normality of ROS data)
0.425	95% Bootstrap t UCL	0.391	95% BCA Bootstrap UCL
		1.771	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

<u> </u>			
KM Mean (logged)	-2.151	KM Geo Mean	0.116
KM SD (logged)	1.425	95% Critical H Value (KM-Log)	3.635
KM Standard Error of Mean (logged)	0.413	95% H-UCL (KM -Log)	1.431
KM SD (logged)	1.425	95% Critical H Value (KM-Log)	3.635
KM Standard Error of Mean (logged)	0.413		

DI /2 Statistics

DL/2 Normal	DL/2 Log-Transformed			
Mean in Original Scale	0.242	Mean in Log Scale	-2.204	
SD in Original Scale	0.258	SD in Log Scale	1.6	
95% t UCL (Assumes normality)	0.37	95% H-Stat UCL	2.475	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.37

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)pyrene

	General Statistics		
Total Number of Observations	13	Number of Distinct Observations	11
		Number of Missing Observations	14
Number of Detects	12	Number of Non-Detects	1
Number of Distinct Detects	10	Number of Distinct Non-Detects	1
Minimum Detect	0.011	Minimum Non-Detect	0.0071
Maximum Detect	1.1	Maximum Non-Detect	0.0071
Variance Detects	0.0882	Percent Non-Detects	7.692%
Mean Detects	0.269	SD Detects	0.297
Median Detects	0.26	CV Detects	1.106
Skewness Detects	2.184	Kurtosis Detects	5.903
Mean of Logged Detects	-1.918	SD of Logged Detects	1.289

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.748	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.265	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.249	KM Standard Error of Mean	0.0817
KM SD	0.282	95% KM (BCA) UCL	0.392
95% KM (t) UCL	0.394	95% KM (Percentile Bootstrap) UCL	0.389
95% KM (z) UCL	0.383	95% KM Bootstrap t UCL	0.498
90% KM Chebyshev UCL	0.494	95% KM Chebyshev UCL	0.605
97.5% KM Chebyshev UCL	0.759	99% KM Chebyshev UCL	1.061

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.418	Anderson-Darling GOF Test
5% A-D Critical Value	0.758	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.206	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.253	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.776	k star (bias corrected MLE)	0.961	k hat (MLE)
0.346	Theta star (bias corrected MLE)	0.28	Theta hat (MLE)
18.63	nu star (bias corrected)	23.07	nu hat (MLE)
		0.269	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.249
Maximum	1.1	Median	0.26
SD	0.293	CV	1.179
k hat (MLE)	0.808	k star (bias corrected MLE)	0.673
Theta hat (MLE)	0.308	Theta star (bias corrected MLE)	0.37
nu hat (MLE)	21.02	nu star (bias corrected)	17.5
Adjusted Level of Significance (β)	0.0301		
Approximate Chi Square Value (17.50, α)	9.031	Adjusted Chi Square Value (17.50, β)	8.177
95% Gamma Approximate UCL (use when n>=50)	0.482	95% Gamma Adjusted UCL (use when n<50)	0.532

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	SD (KM)	0.282
Mean (KM)	SD (KM)

Surface Soil ProUCL Output - Stores and Fleet Maintenance Area

Variance (KM)	0.0795	SE of Mean (KM)	0.0817
k hat (KM)	0.777	k star (KM)	0.649
nu hat (KM)	20.2	nu star (KM)	16.87
theta hat (KM)	0.32	theta star (KM)	0.383
80% gamma percentile (KM)	0.409	90% gamma percentile (KM)	0.635
95% gamma percentile (KM)	0.869	99% gamma percentile (KM)	1.433

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (16.87, α)	8.579	Adjusted Chi Square Value (16.87, β)	7.749
15% Gamma Approximate KM-UCL (use when n>=50)	0.489	95% Gamma Adjusted KM-UCL (use when n<50)	0.541

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.934	Shapiro Wilk GOF Test			
5% Shapiro Wilk Critical Value	0.859	Detected Data appear Lognormal at 5% Significance Level			
Lilliefors Test Statistic	0.254	Lilliefors GOF Test			
5% Lilliefors Critical Value	0.243	Detected Data Not Lognormal at 5% Significance Level			
Detected Data appear Approximate Lognormal at 5% Significance Level					

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.249	Mean in Log Scale	-2.153
SD in Original Scale	0.294	SD in Log Scale	1.497
95% t UCL (assumes normality of ROS data)	0.394	95% Percentile Bootstrap UCL	0.39
95% BCA Bootstrap UCL	0.439	95% Bootstrap t UCL	0.497
95% H-UCL (Log ROS)	1.824		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.151	KM Geo Mean	0.116
KM SD (logged)	1.435	95% Critical H Value (KM-Log)	3.654
KM Standard Error of Mean (logged)	0.416	95% H-UCL (KM -Log)	1.479
KM SD (logged)	1.435	95% Critical H Value (KM-Log)	3.654
KM Standard Error of Mean (logged)	0.416		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.248	Mean in Log Scale	-2.204
SD in Original Scale	0.294	SD in Log Scale	1.609
95% t UCL (Assumes normality)	0.393	95% H-Stat UCL	2.562

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL 0.498 d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 0.541

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(b)fluoranthene

General St	atistics
------------	----------

Total Number of Observations	13	Number of Distinct Observations	13
		Number of Missing Observations	14
Number of Detects	12	Number of Non-Detects	1
Number of Distinct Detects	12	Number of Distinct Non-Detects	1
Minimum Detect	0.015	Minimum Non-Detect	0.0071
Maximum Detect	1.4	Maximum Non-Detect	0.0071
Variance Detects	0.14	Percent Non-Detects	7.692%
Mean Detects	0.351	SD Detects	0.374
Median Detects	0.34	CV Detects	1.067
Skewness Detects	2.18	Kurtosis Detects	5.967
Mean of Logged Detects	-1.612	SD of Logged Detects	1.256

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.756	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.25	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.324	KM Standard Error of Mean	0.103
KM SD	0.356	95% KM (BCA) UCL	0.527
95% KM (t) UCL	0.508	95% KM (Percentile Bootstrap) UCL	0.495
95% KM (z) UCL	0.494	95% KM Bootstrap t UCL	0.646
90% KM Chebyshev UCL	0.634	95% KM Chebyshev UCL	0.774
97.5% KM Chebyshev UCL	0.969	99% KM Chebyshev UCL	1.352

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.358	Anderson-Darling GOF Test
5% A-D Critical Value	0.756)etecte	ed data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.18	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.252)etecte	ed data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k star (bias corrected MLE)	1.02	k hat (MLE)
Theta star (bias corrected MLE)	0.344	Theta hat (MLE)
nu star (bias corrected)	24.48	nu hat (MLE)
	0.351	Mean (detects)
	Theta star (bias corrected MLE)	0.344 Theta star (bias corrected MLE) 24.48 nu star (bias corrected)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

9	,		
Minimum	0.01	Mean	0.325
Maximum	1.4	Median	0.32
SD	0.371	CV	1.142
k hat (MLE)	0.824	k star (bias corrected MLE)	0.685
Theta hat (MLE)	0.394	Theta star (bias corrected MLE)	0.474
nu hat (MLE)	21.43	nu star (bias corrected)	17.82
Adjusted Level of Significance (β)	0.0301		
Approximate Chi Square Value (17.82, α)	9.26	Adjusted Chi Square Value (17.82, β)	8.394
95% Gamma Approximate UCL (use when n>=50)	0.625	95% Gamma Adjusted UCL (use when n<50)	0.689

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.324	SD (KM)	0.356
Variance (KM)	0.127	SE of Mean (KM)	0.103
k hat (KM)	0.829	k star (KM)	0.689
nu hat (KM)	21.56	nu star (KM)	17.92
theta hat (KM)	0.391	theta star (KM)	0.471
80% gamma percentile (KM)	0.534	90% gamma percentile (KM)	0.817
95% gamma percentile (KM)	1.111	99% gamma percentile (KM)	1.811

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (17.92, α)	9.331	Adjusted Chi Square Value (17.92, β)	8.461
15% Gamma Approximate KM-UCL (use when n>=50)	0.623	95% Gamma Adjusted KM-UCL (use when n<50)	0.687

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.937	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data appear Lognormal at 5% Significance Level
1.00 f T 1.00 f 1		
Lilliefors Test Statistic	0.23	Lilliefors GOF Test

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-1.84	Mean in Log Scale	0.325	Mean in Original Scale
1.458	SD in Log Scale	0.371	SD in Original Scale
0.498	95% Percentile Bootstrap UCL	0.508	95% t UCL (assumes normality of ROS data)
0.649	95% Bootstrap t UCL	0.574	95% BCA Bootstrap UCL
		2.179	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

0.154	KM Geo Mean	-1.868	KM Mean (logged)
3.699	95% Critical H Value (KM-Log)	1.458	KM SD (logged)
2.118	95% H-UCL (KM -Log)	0.422	KM Standard Error of Mean (logged)
3.699	95% Critical H Value (KM-Log)	1.458	KM SD (logged)
		0.422	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.324	Mean in Log Scale	-1.922
SD in Original Scale	0.371	SD in Log Scale	1.641
95% t UCL (Assumes normality)	0.508	95% H-Stat UCL	3.817

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL 0.646 d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 0.687

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(k)fluoranthene

General Statistics

Total Number of Observations	13	Number of Distinct Observations	10
		Number of Missing Observations	14
Number of Detects	12	Number of Non-Detects	1
Number of Distinct Detects	9	Number of Distinct Non-Detects	1
Minimum Detect	0.0078	Minimum Non-Detect	0.0071
Maximum Detect	0.52	Maximum Non-Detect	0.0071
Variance Detects	0.0218	Percent Non-Detects	7.692%
Mean Detects	0.143	SD Detects	0.148
Median Detects	0.14	CV Detects	1.034
Skewness Detects	1.71	Kurtosis Detects	3.284
Mean of Logged Detects	-2.511	SD of Logged Detects	1.23

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.802	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.26	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.0407	KM Standard Error of Mean	0.132	KM Mean
0.197	95% KM (BCA) UCL	0.14	KM SD
0.201	95% KM (Percentile Bootstrap) UCL	0.205	95% KM (t) UCL
0.251	95% KM Bootstrap t UCL	0.199	95% KM (z) UCL
0.31	95% KM Chebyshev UCL	0.254	90% KM Chebyshev UCL
0.537	99% KM Chebyshev UCL	0.386	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.428	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Lev	0.756	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.207	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Lev	0.252	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.821	k star (bias corrected MLE)	1.02	k hat (MLE)
0.174	Theta star (bias corrected MLE)	0.14	Theta hat (MLE)
19.7	nu star (bias corrected)	24.48	nu hat (MLE)
		0.143	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.133	Mean	0.0078	Minimum
0.14	Median	0.52	Maximum
1.102	CV	0.146	SD
0.742	k star (bias corrected MLE)	0.898	k hat (MLE)
0.179	Theta star (bias corrected MLE)	0.148	Theta hat (MLE)
19.29	nu star (bias corrected)	23.34	nu hat (MLE)
		0.0301	Adjusted Level of Significance (β)
9.407	Adjusted Chi Square Value (19.29, β)	10.33	Approximate Chi Square Value (19.29, α)
0.272	95% Gamma Adjusted UCL (use when n<50)	0.247	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.132	SD (KM)	0.14
Variance (KM)	0.0197	SE of Mean (KM)	0.0407
k hat (KM)	0.887	k star (KM)	0.734
nu hat (KM)	23.07	nu star (KM)	19.08
theta hat (KM)	0.149	theta star (KM)	0.18
80% gamma percentile (KM)	0.217	90% gamma percentile (KM)	0.328
95% gamma percentile (KM)	0.443	99% gamma percentile (KM)	0.714

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (19.08, α)	10.18	Adjusted Chi Square Value (19.08, β)	9.262
15% Gamma Approximate KM-UCL (use when n>=50)	0.248	95% Gamma Adjusted KM-UCL (use when n<50)	0.273

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.936	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.255	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Detected Data Not Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-2.737	Mean in Log Scale	0.132	Mean in Original Scale
1.433	SD in Log Scale	0.146	SD in Original Scale
0.2	95% Percentile Bootstrap UCL	0.204	95% t UCL (assumes normality of ROS data)
0.252	95% Bootstrap t UCL	0.217	95% BCA Bootstrap UCL
		0.817	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.699	KM Geo Mean	0.0673
KM SD (logged)	1.305	95% Critical H Value (KM-Log)	3.403
KM Standard Error of Mean (logged)	0.378	95% H-UCL (KM -Log)	0.568

Surface Soil ProUCL Output - Stores and Fleet Maintenance Area

95% Critical H Value (KM-Log) 3.403 KM SD (logged) 1.305

KM Standard Error of Mean (logged) 0.378

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	0.132	Mean in Log Scale	-2.752	
SD in Original Scale	0.146	SD in Log Scale	1.463	
95% t UCL (Assumes normality)	0.204	95% H-Stat UCL	0.892	
DL/2 is not a recommended method, provided for comparisons and historical reasons				

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL 0.251 d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 0.273

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chrysene

General Statistics

Total Number of Observations	13	Number of Distinct Observations	12
		Number of Missing Observations	14
Number of Detects	12	Number of Non-Detects	1
Number of Distinct Detects	11	Number of Distinct Non-Detects	1
Minimum Detect	0.025	Minimum Non-Detect	0.0071
Maximum Detect	1.4	Maximum Non-Detect	0.0071
Variance Detects	0.142	Percent Non-Detects	7.692%
Mean Detects	0.327	SD Detects	0.377
Median Detects	0.255	CV Detects	1.155
Skewness Detects	2.366	Kurtosis Detects	6.532
Mean of Logged Detects	-1.684	SD of Logged Detects	1.184

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.723	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.298	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.103	KM Standard Error of Mean	0.302	KM Mean
0.484	95% KM (BCA) UCL	0.357	KM SD
0.495	95% KM (Percentile Bootstrap) UCL	0.486	95% KM (t) UCL
0.669	95% KM Bootstrap t UCL	0.472	95% KM (z) UCL
0.753	95% KM Chebyshev UCL	0.612	90% KM Chebyshev UCL
1.332	99% KM Chebyshev UCL	0.948	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.376	Anderson-Darling GOF Test
5% A-D Critical Value	0.756	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.166	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.252	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.821	k star (bias corrected MLE)	1.02	k hat (MLE)
0.398	Theta star (bias corrected MLE)	0.32	Theta hat (MLE)
19.69	nu star (bias corrected)	24.48	nu hat (MLE)
		0.327	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.302	Mean	0.01	Minimum
0.25	Median	1.4	Maximum
1.23	CV	0.372	SD
0.69	k star (bias corrected MLE)	0.83	k hat (MLE)
0.438	Theta star (bias corrected MLE)	0.364	Theta hat (MLE)
17.93	nu star (bias corrected)	21.57	nu hat (MLE)
		0.0301	Adjusted Level of Significance (β)
8.469	Adjusted Chi Square Value (17.93, β)	9.339	Approximate Chi Square Value (17.93, α)
0.64	95% Gamma Adjusted UCL (use when n<50)	0.58	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

0.357	SD (KM)	0.302	Mean (KM)
0.103	SE of Mean (KM)	0.128	Variance (KM)
0.601	k star (KM)	0.715	k hat (KM)
15.62	nu star (KM)	18.58	nu hat (KM)
0.503	theta star (KM)	0.423	theta hat (KM)
0.785	90% gamma percentile (KM)	0.498	80% gamma percentile (KM)
1.814	99% gamma percentile (KM)	1.086	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (15.62, α)	7.698	Adjusted Chi Square Value (15.62, β)	6.918
15% Gamma Approximate KM-UCL (use when n>=50)	0.613	95% Gamma Adjusted KM-UCL (use when n<50)	0.682

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.944	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.182	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.302	Mean in Log Scale	-1.903
SD in Original Scale	0.372	SD in Log Scale	1.383
95% t UCL (assumes normality of ROS data)	0.486	95% Percentile Bootstrap UCL	0.494
95% BCA Bootstrap UCL	0.533	95% Bootstrap t UCL	0.677
95% H-UCL (Log ROS)	1.604		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.935	KM Geo Mean	0.144
KM SD (logged)	1.394	95% Critical H Value (KM-Log)	3.575
KM Standard Error of Mean (logged)	0.404	95% H-UCL (KM -Log)	1.609
KM SD (logged)	1.394	95% Critical H Value (KM-Log)	3.575
KM Standard Error of Mean (logged)	0.404		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed		
Mean in Original Scale	0.302	Mean in Log Scale	-1.988
SD in Original Scale	0.372	SD in Log Scale	1.578
95% t UCL (Assumes normality)	0.486	95% H-Stat UCL	2.847

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

General Statistics

Total Number of Observations	8	Number of Distinct Observations	8
		Number of Missing Observations	19
Minimum	2	Mean	4.475
Maximum	7.9	Median	3.85
SD	2.041	Std. Error of Mean	0.722
Coefficient of Variation	0.456	Skewness	0.851

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.899	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.236	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	5.842	95% Adjusted-CLT UCL (Chen-1995)	5.894	
		95% Modified-t UCL (Johnson-1978)	5.878	

Gamma GOF Test

1 Anderson-Darling Gamma GOF Test	0.311	A-D Test Statistic
8 Detected data appear Gamma Distributed at 5% Significance Lev	0.718	5% A-D Critical Value
8 Kolmogorov-Smirnov Gamma GOF Test	0.198	K-S Test Statistic
95)etected data appear Gamma Distributed at 5% Significance Lev	0.295	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	5.805	k star (bias corrected MLE)	3.711
Theta hat (MLE)	0.771	Theta star (bias corrected MLE)	1.206
nu hat (MLE)	92.88	nu star (bias corrected)	59.38
MLE Mean (bias corrected)	4.475	MLE Sd (bias corrected)	2.323
		Approximate Chi Square Value (0.05)	42.66
Adjusted Level of Significance	0.0195	Adjusted Chi Square Value	39.11

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 6.229 95% Adjusted Gamma UCL (use when n<50) 6.795

Lognormal GOF Test

Shapiro Wilk Lognormal GOF Test	0.957	Shapiro Wilk Test Statistic
Data appear Lognormal at 5% Significance Leve	0.818	5% Shapiro Wilk Critical Value
Lilliefors Lognormal GOF Test	0.168	Lilliefors Test Statistic
Data appear Lognormal at 5% Significance Leve	0.283	5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.693	Mean of logged Data	1.41
Maximum of Logged Data	2.067	SD of logged Data	0.45

Assuming Lognormal Distribution

95% H-UCL	6.673	90% Chebyshev (MVUE) UCL	6.626
95% Chebyshev (MVUE) UCL	7.601	97.5% Chebyshev (MVUE) UCL	8.956
99% Chebyshev (MVUE) UCL	11.62		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	5.662	95% Jackknife UCL	5.842
95% Standard Bootstrap UCL	5.603	95% Bootstrap-t UCL	6.974

Surface Soil ProUCL Output - Stores and Fleet Maintenance Area

95% Hall's Bootstrap UCL	14.8	95% Percentile Bootstrap UCL	5.613
95% BCA Bootstrap UCL	5.825		
90% Chebyshev(Mean, Sd) UCL	6.64	95% Chebyshev(Mean, Sd) UCL	7.62
97.5% Chebyshev(Mean, Sd) UCL	8.981	99% Chebyshev(Mean, Sd) UCL	11.65

Suggested UCL to Use

95% Student's-t UCL 5.842

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Dibenzo(a,h)anthracene

General	Statistics

Total Number of Observations	13	Number of Distinct Observations	13
		Number of Missing Observations	14
Number of Detects	12	Number of Non-Detects	1
Number of Distinct Detects	12	Number of Distinct Non-Detects	1
Minimum Detect	0.0029	Minimum Non-Detect	0.0071
Maximum Detect	0.29	Maximum Non-Detect	0.0071
Variance Detects	0.006	Percent Non-Detects	7.692%
Mean Detects	0.0613	SD Detects	0.0775
Median Detects	0.0475	CV Detects	1.265
Skewness Detects	2.664	Kurtosis Detects	8.091
Mean of Logged Detects	-3.42	SD of Logged Detects	1.257

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.668	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.299	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

` '			
KM Mean	0.0568	KM Standard Error of Mean	0.0211
KM SD	0.0729	95% KM (BCA) UCL	0.0963
95% KM (t) UCL	0.0944	95% KM (Percentile Bootstrap) UCL	0.0928
95% KM (z) UCL	0.0915	95% KM Bootstrap t UCL	0.133
90% KM Chebyshev UCL	0.12	95% KM Chebyshev UCL	0.149
97.5% KM Chebyshev UCL	0.189	99% KM Chebyshev UCL	0.267

Gamma GOF Tests on Detected Observations Only

Anderson-Daning GOF Test	0.366	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Lev	0.759	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.16	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Lev	0.253	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.929	k star (bias corrected MLE)	0.752
Theta hat (MLE)	0.0659	Theta star (bias corrected MLE)	0.0814
nu hat (MLE)	22.3	nu star (bias corrected)	18.05
Mean (detects)	0.0613		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.0573	Mean	0.0029	Minimum
0.045	Median	0.29	Maximum
1.318	CV	0.0755	SD
0.742	k star (bias corrected MLE)	0.898	k hat (MLE)
0.0773	Theta star (bias corrected MLE)	0.0639	Theta hat (MLE)

19.29	nu star (bias corrected)	23.34	nu hat (MLE)
		0.0301	Adjusted Level of Significance (β)
9.404	Adjusted Chi Square Value (19.29, β)	10.33	Approximate Chi Square Value (19.29, α)
0.118	95% Gamma Adjusted UCL (use when n<50)	0.107	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.0568	SD (KM)	0.0729
Variance (KM)	0.00532	SE of Mean (KM)	0.0211
k hat (KM)	0.606	k star (KM)	0.517
nu hat (KM)	15.75	nu star (KM)	13.45
theta hat (KM)	0.0937	theta star (KM)	0.11
80% gamma percentile (KM)	0.0934	90% gamma percentile (KM)	0.153
95% gamma percentile (KM)	0.215	99% gamma percentile (KM)	0.37

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (13.45, α)	6.196	Adjusted Chi Square Value (13.45, β)	5.509
15% Gamma Approximate KM-UCL (use when n>=50)	0.123	95% Gamma Adjusted KM-UCL (use when n<50)	0.139

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.956	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.183	Lilliefors GOF Test

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0568	Mean in Log Scale	-3.596
SD in Original Scale	0.0759	SD in Log Scale	1.362
95% t UCL (assumes normality of ROS data)	0.0943	95% Percentile Bootstrap UCL	0.0937
95% BCA Bootstrap UCL	0.115	95% Bootstrap t UCL	0.131
95% H-UCL (Log ROS)	0.276		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.606	KM Geo Mean	0.0272
KM SD (logged)	1.325	95% Critical H Value (KM-Log)	3.441
KM Standard Error of Mean (logged)	0.384	95% H-UCL (KM -Log)	0.244
KM SD (logged)	1.325	95% Critical H Value (KM-Log)	3.441
KM Standard Error of Mean (logged)	0.384		

DL/2 Statistics

DL/2 Log-Transformed			
0.0568	Mean in Log Scale	-3.59	
0.0759	SD in Log Scale	1.352	
0.0943	95% H-Stat UCL	0.269	
	0.0759	0.0759 SD in Log Scale	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL 0.133 d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 0.139

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Diesel Range Organics (C10-C20)

General Statistics

Total Number of Observations	8	Number of Distinct Observations	6
		Number of Missing Observations	19
Number of Detects	3	Number of Non-Detects	5
Number of Distinct Detects	3	Number of Distinct Non-Detects	3
Minimum Detect	21	Minimum Non-Detect	18
Maximum Detect	170	Maximum Non-Detect	99
Variance Detects	6811	Percent Non-Detects	62.5%

Surface Soil ProUCL Output - Stores and Fleet Maintenance Area

 Mean Detects
 75
 SD Detects
 82.53

 Median Detects
 34
 CV Detects
 1.1

 Skewness Detects
 1.684
 Kurtosis Detects
 N/A

 Mean of Logged Detects
 3.902
 SD of Logged Detects
 1.095

Warning: Data set has only 3 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.815	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.357	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

21.47	KM Standard Error of Mean	39.77	KM Mean
N/A	95% KM (BCA) UCL	49.52	KM SD
N/A	95% KM (Percentile Bootstrap) UCL	80.44	95% KM (t) UCL
N/A	95% KM Bootstrap t UCL	75.08	95% KM (z) UCL
133.3	95% KM Chebyshev UCL	104.2	90% KM Chebyshev UCL
253.4	99% KM Chebyshev UCL	173.8	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

k hat (MLE)	1.346	k star (bias corrected MLE)	N/A
Theta hat (MLE)	55.71	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	8.078	nu star (bias corrected)	N/A
Mean (detects)	75		

Mean 28.13

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,<15-20)$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

Minimum 0.01

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.01	Median	170	Maximum
2.089	CV	58.76	SD
0.183	k star (bias corrected MLE)	0.16	k hat (MLE)
153.3	Theta star (bias corrected MLE)	175.6	Theta hat (MLE)
2.935	nu star (bias corrected)	2.563	nu hat (MLE)
		0.0195	Adjusted Level of Significance (β)
0.203	Adjusted Chi Square Value (2.94, β)	0.354	Approximate Chi Square Value (2.94, α)
N/A	95% Gamma Adjusted UCL (use when n<50)	233.6	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	39.77	SD (KM)	49.52
Variance (KM)	2453	SE of Mean (KM)	21.47
k hat (KM)	0.645	k star (KM)	0.486
nu hat (KM)	10.32	nu star (KM)	7.782
theta hat (KM)	61.67	theta star (KM)	81.77
80% gamma percentile (KM)	65.23	90% gamma percentile (KM)	108.2
95% gamma percentile (KM)	154.3	99% gamma percentile (KM)	267.9

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (7.78, α)	2.61	Adjusted Chi Square Value (7.78, β)	1.916
95% Gamma Approximate KM-UCL (use when n>=50)	118.6	95% Gamma Adjusted KM-UCL (use when n<50)	161.5

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.912	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.301	Lilliefors GOF Test

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	30.35	Mean in Log Scale	2.142
SD in Original Scale	57.58	SD in Log Scale	1.667
95% t UCL (assumes normality of ROS data)	68.92	95% Percentile Bootstrap UCL	68.48
95% BCA Bootstrap UCL	88.41	95% Bootstrap t UCL	250.1
95% H-UCL (Log ROS)	903		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	3.286	KM Geo Mean	26.74
KM SD (logged)	0.732	95% Critical H Value (KM-Log)	2.803
KM Standard Error of Mean (logged)	0.319	95% H-UCL (KM -Log)	75.93
KM SD (logged)	0.732	95% Critical H Value (KM-Log)	2.803
KM Standard Error of Mean (logged)	0.319		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	39	Mean in Log Scale	3.07
SD in Original Scale	54.94	SD in Log Scale	1.065
95% t UCL (Assumes normality)	75.8	95% H-Stat UCL	161

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 80.44

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Indeno(1,2,3-cd)pyrene

General Statistics

	donordi oddaodo		
Total Number of Observations	13	Number of Distinct Observations	13
		Number of Missing Observations	14
Number of Detects	12	Number of Non-Detects	1
Number of Distinct Detects	12	Number of Distinct Non-Detects	1
Minimum Detect	0.0098	Minimum Non-Detect	0.0071
Maximum Detect	0.9	Maximum Non-Detect	0.0071
Variance Detects	0.0586	Percent Non-Detects	7.692%
Mean Detects	0.207	SD Detects	0.242
Median Detects	0.185	CV Detects	1.169
Skewness Detects	2.389	Kurtosis Detects	6.778
Mean of Logged Detects	-2.181	SD of Logged Detects	1.26

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.718	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.279	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.192	KM Standard Error of Mean	0.0663
KM SD	0.229	95% KM (BCA) UCL	0.307
95% KM (t) UCL	0.31	95% KM (Percentile Bootstrap) UCL	0.298
95% KM (z) UCL	0.301	95% KM Bootstrap t UCL	0.408
90% KM Chebyshev UCL	0.391	95% KM Chebyshev UCL	0.481

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.387	Anderson-Darling GOF Test
5% A-D Critical Value	0.758)etecte	ed data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.168	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.253)etecte	ed data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.774	k star (bias corrected MLE)	0.958	k hat (MLE)
0.267	Theta star (bias corrected MLE)	0.216	Theta hat (MLE)
18.57	nu star (bias corrected)	22.98	nu hat (MLE)
		0.207	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.192	Mean	0.0098	Minimum
0.18	Median	0.9	Maximum
1.241	CV	0.238	SD
0.686	k star (bias corrected MLE)	0.825	k hat (MLE)
0.28	Theta star (bias corrected MLE)	0.232	Theta hat (MLE)
17.84	nu star (bias corrected)	21.45	nu hat (MLE)
		0.0301	Adjusted Level of Significance (β)
8.406	Adjusted Chi Square Value (17.84, β)	9.273	Approximate Chi Square Value (17.84, α)
0.407	95% Gamma Adjusted UCL (use when n<50)	0.369	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.192	SD (KM)	0.229
Variance (KM)	0.0524	SE of Mean (KM)	0.0663
k hat (KM)	0.701	k star (KM)	0.59
nu hat (KM)	18.22	nu star (KM)	15.35
theta hat (KM)	0.273	theta star (KM)	0.325
80% gamma percentile (KM)	0.316	90% gamma percentile (KM)	0.5
95% gamma percentile (KM)	0.694	99% gamma percentile (KM)	1.162

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (15.35, α)	7.504	Adjusted Chi Square Value (15.35, β)	6.737
15% Gamma Approximate KM-UCL (use when n>=50)	0.392	95% Gamma Adjusted KM-UCL (use when n<50)	0.437

Lognormal GOF Test on Detected Observations Only

Snapiro Wilk Test Statistic	0.945	Snapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.228	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-2.413	Mean in Log Scale	0.191	Mean in Original Scale
1.467	SD in Log Scale	0.238	SD in Original Scale
0.303	95% Percentile Bootstrap UCL	0.309	95% t UCL (assumes normality of ROS data)
0.408	95% Bootstrap t UCL	0.358	95% BCA Bootstrap UCL
		1.269	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.394	KM Geo Mean	0.0913
KM SD (logged)	1.373	95% Critical H Value (KM-Log)	3.535
KM Standard Error of Mean (logged)	0.398	95% H-UCL (KM -Log)	0.952
KM SD (logged)	1.373	95% Critical H Value (KM-Log)	3.535
KM Standard Error of Mean (logged)	0.398		

DL/2 Statistics

DL/2 Normal DL/2 Log-Transformed

Surface Soil ProUCL Output - Stores and Fleet Maintenance Area

Mean in Original Scale	0.191	Mean in Log Scale	-2.447
SD in Original Scale	0.238	SD in Log Scale	1.541
95% t UCL (Assumes normality)	0.309	95% H-Stat UCL	1.581

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL 0.408 d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 0.437

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Manganese

General Statistics

Total Number of C	bservations	8	Number of Distinct Observations	7
			Number of Missing Observations	19
	Minimum	42	Mean	117.9
	Maximum	220	Median	110
	SD	57.72	Std. Error of Mean	20.41
Coefficient	of Variation	0.49	Skewness	0.5

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.964	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.179	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)
----------------	----------------------------------

95% Student's-t UCL	156.5	95% Adjusted-CLT UCL (Chen-1995)	155.3
		95% Modified-t UCL (Johnson-1978)	157.1

Gamma GOF Test

A-D Test Statistic	0.204	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.719	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.132	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.295	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	4.389	k star (bias corrected MLE)	2.826
Theta hat (MLE)	26.86	Theta star (bias corrected MLE)	41.71
nu hat (MLE)	70.22	nu star (bias corrected)	45.22
MLE Mean (bias corrected)	117.9	MLE Sd (bias corrected)	70.12
		Approximate Chi Square Value (0.05)	30.79
Adjusted Level of Significance	0.0195	Adjusted Chi Square Value	27.82

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 173.1 95% Adjusted Gamma UCL (use when n<50) 191.6

Lognormal GOF Test

Shapiro Wilk Lognormal GOF Test	0.959	Shapiro Wilk Test Statistic
Data appear Lognormal at 5% Significance Lev	0.818	5% Shapiro Wilk Critical Value
Lilliefors Lognormal GOF Test	0.163	Lilliefors Test Statistic
Data appear Lognormal at 5% Significance Lev	0.283	5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	3.738	Mean of logged Data	4.651
Maximum of Logged Data	5.394	SD of logged Data	0.543

Assuming Lognormal Distribution

95% H-UCL	199.7	90% Chebyshev (MVUE) UCL	188.2
95% Chebyshev (MVUE) UCL	219.5	97.5% Chebyshev (MVUE) UCL	263.1
99% Chebyshev (MVUE) UCL	348.6		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	151.4	95% Jackknife UCL	156.5
95% Standard Bootstrap UCL	149.1	95% Bootstrap-t UCL	161.8
95% Hall's Bootstrap UCL	164.5	95% Percentile Bootstrap UCL	149.8
95% BCA Bootstrap UCL	151.6		
90% Chebyshev(Mean, Sd) UCL	179.1	95% Chebyshev(Mean, Sd) UCL	206.8
97.5% Chebyshev(Mean, Sd) UCL	245.3	99% Chebyshev(Mean, Sd) UCL	320.9

Suggested UCL to Use

95% Student's-t UCL 156.5

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Naphthalene

General	Statistics

Total Number of Observations	13	Number of Distinct Observations	13
		Number of Missing Observations	14
Number of Detects	12	Number of Non-Detects	1
Number of Distinct Detects	12	Number of Distinct Non-Detects	1
Minimum Detect	0.0035	Minimum Non-Detect	0.0071
Maximum Detect	0.067	Maximum Non-Detect	0.0071
Variance Detects	6.0651E-4	Percent Non-Detects	7.692%
Mean Detects	0.0298	SD Detects	0.0246
Median Detects	0.0235	CV Detects	0.827
Skewness Detects	0.486	Kurtosis Detects	-1.364
Mean of Logged Detects	-3.976	SD of Logged Detects	1.119

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.869	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.176	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.0278	KM Standard Error of Mean	0.00684
KM SD	0.0236	95% KM (BCA) UCL	0.0388
95% KM (t) UCL	0.04	95% KM (Percentile Bootstrap) UCL	0.0387
95% KM (z) UCL	0.0391	95% KM Bootstrap t UCL	0.0418
90% KM Chebyshev UCL	0.0484	95% KM Chebyshev UCL	0.0577
97.5% KM Chebyshev UCL	0.0706	99% KM Chebyshev UCL	0.0959

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.492	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Lev	0.752	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.187	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Lev	0.251	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	1.222	k star (bias corrected MLE)	0.972
Theta hat (MLE)	0.0244	Theta star (bias corrected MLE)	0.0306
nu hat (MLE)	29.34	nu star (bias corrected)	23.34
Mean (detects)	0.0298		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0035	Mean	0.0282
Maximum	0.067	Median	0.023
SD	0.0242	CV	0.857
k hat (MLE)	1.232	k star (bias corrected MLE)	0.999
Theta hat (MLE)	0.0229	Theta star (bias corrected MLE)	0.0283
nu hat (MLE)	32.04	nu star (bias corrected)	25.98
Adjusted Level of Significance (β)	0.0301		
Approximate Chi Square Value (25.98, α)	15.36	Adjusted Chi Square Value (25.98, β)	14.21
95% Gamma Approximate UCL (use when n>=50)	0.0478	95% Gamma Adjusted UCL (use when n<50)	0.0516

Estimates of Gamma Parameters using KM Estimates

0.0236	SD (KM)	0.0278	Mean (KM)
0.00684	SE of Mean (KM)	5.5754E-4	Variance (KM)
1.121	k star (KM)	1.391	k hat (KM)
29.15	nu star (KM)	36.16	nu hat (KM)
0.0248	theta star (KM)	0.02	theta hat (KM)
0.0623	90% gamma percentile (KM)	0.0444	80% gamma percentile (KM)
0.121	99% gamma percentile (KM)	0.0801	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (29.15, α)	17.83	Adjusted Chi Square Value (29.15, β)	16.57
15% Gamma Approximate KM-UCL (use when n>=50)	0.0455	95% Gamma Adjusted KM-UCL (use when n<50)	0.049

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.884	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.172	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

		• •	
ale -4.066	Mean in Log Scale	0.0279	Mean in Original Scale
ale 1.119	SD in Log Scale	0.0245	SD in Original Scale
CL 0.039	95% Percentile Bootstrap UCL	0.04	95% t UCL (assumes normality of ROS data)
CL 0.043	95% Bootstrap t UCL	0.0405	95% BCA Bootstrap UCL
		0.0861	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-4.083	KM Geo Mean	0.0169
KM SD (logged)	1.095	95% Critical H Value (KM-Log)	3.015
KM Standard Error of Mean (logged)	0.318	95% H-UCL (KM -Log)	0.0796
KM SD (logged)	1.095	95% Critical H Value (KM-Log)	3.015
KM Standard Error of Mean (logged)	0.318		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed			
Mean in Original Scale	0.0278	Mean in Log Scale	-4.104		
SD in Original Scale	0.0247	SD in Log Scale	1.166		
95% t UCL (Assumes normality)	0.0399	95% H-Stat UCL	0.0939		

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.04

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Nickel

	General Statistics		
Total Number of Observations	8	Number of Distinct Observations	8
		Number of Missing Observations	19
Minimum	2.2	Mean	11.33
Maximum	31	Median	6.2
SD	10.69	Std. Error of Mean	3.781
Coefficient of Variation	0.944	Skewness	1.006

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.833	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.258	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	18.49	95% Adjusted-CLT UCL (Chen-1995)	18.98
		95% Modified-t UCL (Johnson-1978)	18.71

Gamma GOF Test

A-D Test Statistic	0.469	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.731	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.212	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.3	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

0.889	k star (bias corrected MLE)	1.289	k hat (MLE)
12.74	Theta star (bias corrected MLE)	8.787	Theta hat (MLE)
14.22	nu star (bias corrected)	20.62	nu hat (MLE)
12.01	MLE Sd (bias corrected)	11.33	MLE Mean (bias corrected)
6.723	Approximate Chi Square Value (0.05)		
5.474	Adjusted Chi Square Value	0.0195	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 23.96 95% Adjusted Gamma UCL (use when n<50) 29.42

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.907	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.818	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.2	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.283	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.788	Mean of logged Data	1.991
Maximum of Logged Data	3.434	SD of logged Data	1.022

Assuming Lognormal Distribution

95% H-UCL	47.32	90% Chebyshev (MVUE) UCL	23.86
95% Chebyshev (MVUE) UCL	29.54	97.5% Chebyshev (MVUE) UCL	37.42

99% Chebyshev (MVUE) UCL 52.89

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

ife UCL 18.49	95% Jackknife UCL	17.5	95% CLT UCL
p-t UCL 21.76	95% Bootstrap-t UCL	17.2	95% Standard Bootstrap UCL
ap UCL 17.38	95% Percentile Bootstrap UCL	16.6	95% Hall's Bootstrap UCL
		17.9	95% BCA Bootstrap UCL
3d) UCL 27.81	95% Chebyshev(Mean, Sd) UCL	22.6	90% Chebyshev(Mean, Sd) UCL
3d) UCL 48.94	99% Chebyshev(Mean, Sd) UCL	34.9	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 18.49

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

PCB, Total Aroclors (AECOM Calc)

General Statistics

Total Number of Observations	27	Number of Distinct Observations	26
		Number of Missing Observations	1
Number of Detects	24	Number of Non-Detects	3
Number of Distinct Detects	24	Number of Distinct Non-Detects	2
Minimum Detect 9	9.5000E-4	Minimum Non-Detect 9	9.1000E-4
Maximum Detect	4.8	Maximum Non-Detect	0.001
Variance Detects	1.462	Percent Non-Detects	11.11%
Mean Detects	0.765	SD Detects	1.209
Median Detects	0.25	CV Detects	1.58
Skewness Detects	2.258	Kurtosis Detects	5.217
Mean of Logged Detects	-2.055	SD of Logged Detects	2.482

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.682	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.916	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.264	Lilliefors GOF Test
5% Lilliefors Critical Value	0.177	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.68	KM Standard Error of Mean	0.224
KM SD	1.142	95% KM (BCA) UCL	1.099
95% KM (t) UCL	1.063	95% KM (Percentile Bootstrap) UCL	1.044
95% KM (z) UCL	1.049	95% KM Bootstrap t UCL	1.308
90% KM Chebyshev UCL	1.353	95% KM Chebyshev UCL	1.658
97.5% KM Chebyshev UCL	2.082	99% KM Chebyshev UCL	2.913

Gamma GOF Tests on Detected Observations Only

0.319	A-D Test Statistic
0.835	5% A-D Critical Value
0.117	K-S Test Statistic
0.191	5% K-S Critical Value
	0.835 0.117

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.354	k star (bias corrected MLE)	0.372	k hat (MLE)
2.163	Theta star (bias corrected MLE)	2.054	Theta hat (MLE)
16.98	nu star (bias corrected)	17.88	nu hat (MLE)
		0.765	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 9	Mean	0.681	
Maximum	4.8	Median	0.086
SD	1.163	CV	1.707
k hat (MLE)	0.345	k star (bias corrected MLE)	0.331
Theta hat (MLE)	1.975	Theta star (bias corrected MLE)	2.056
nu hat (MLE)	18.62	nu star (bias corrected)	17.89
Adjusted Level of Significance (β)	0.0401		
Approximate Chi Square Value (17.89, α)	9.311	Adjusted Chi Square Value (17.89, β)	8.915
95% Gamma Approximate UCL (use when n>=50)	1.309	95% Gamma Adjusted UCL (use when n<50)	1.367

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.68	SD (KM)	1.142
Variance (KM)	1.303	SE of Mean (KM)	0.224
k hat (KM)	0.355	k star (KM)	0.34
nu hat (KM)	19.17	nu star (KM)	18.37
theta hat (KM)	1.916	theta star (KM)	1.999
80% gamma percentile (KM)	1.072	90% gamma percentile (KM)	1.973
95% gamma percentile (KM)	2.986	99% gamma percentile (KM)	5.58

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (18.37, α)	9.662	Adjusted Chi Square Value (18.37, β)	9.259
5% Gamma Approximate KM-UCL (use when n>=50)	1.294	95% Gamma Adjusted KM-UCL (use when n<50)	1.35

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.948	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.916	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.148	Lilliefors GOF Test
5% Lilliefors Critical Value	0.177	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.68	Mean in Log Scale	-2.672
SD in Original Scale	1.163	SD in Log Scale	2.94
95% t UCL (assumes normality of ROS data)	1.062	95% Percentile Bootstrap UCL	1.073
95% BCA Bootstrap UCL	1.213	95% Bootstrap t UCL	1.318
95% H-UCL (Log ROS)	134.6		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

<u>-</u>		• •	
KM Mean (logged)	-2.604	KM Geo Mean	0.074
KM SD (logged)	2.768	95% Critical H Value (KM-Log)	5.342
KM Standard Error of Mean (logged)	0.544	95% H-UCL (KM -Log)	61.89
KM SD (logged)	2.768	95% Critical H Value (KM-Log)	5.342
KM Standard Error of Mean (logged)	0.544		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.68	Mean in Log Scale	-2.678
SD in Original Scale	1.163	SD in Log Scale	2.946
95% t UCL (Assumes normality)	1.062	95% H-Stat UCL	137.6

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 1.35

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

TCDD TEQ HH

General Statistics

 Total Number of Observations
 14
 Number of Distinct Observations Number of Missing Observations
 13

 Minimum
 1.0100E-7
 Mean
 6.1926E-6

 Maximum
 2.2300E-5
 Median
 2.8700E-6

 SD
 7.4414E-6
 Std. Error of Mean
 1.9888E-6

 Coefficient of Variation
 N/A
 Skewness
 1.245

Normal GOF Test

Shapiro Wilk Test Statistic 0.797 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.874 Data Not Normal at 5% Significance Level

Lilliefors Test Statistic 0.264 Lilliefors GOF Test

5% Lilliefors Critical Value 0.226 Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 9.7146E-6 95% Adjusted-CLT UCL (Chen-1995) 1.0171E-5 95% Modified-t UCL (Johnson-1978) 9.8249E-6

Gamma GOF Test

A-D Test Statistic 0.319 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.785 Detected data appear Gamma Distributed at 5% Significance Leve K-S Test Statistic 0.149 Kolmogorov-Smimov Gamma GOF Test

5% K-S Critical Value 0.24 Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

 k hat (MLE)
 0.592
 k star (bias corrected MLE)
 0.513

 Theta hat (MLE)
 1.0452E-5
 Theta star (bias corrected MLE)
 1.2068E-5

 nu hat (MLE)
 16.59
 nu star (bias corrected)
 14.37

 MLE Mean (bias corrected)
 6.1926E-6
 MLE Sd (bias corrected)
 8.6448E-6

 Approximate Chi Square Value (0.05)
 6.824

 Adjusted Level of Significance
 0.0312
 Adjusted Chi Square Value
 6.146

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 1.3038E-5 95% Adjusted Gamma UCL (use when n<50) 1.4477E-5

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.941 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.874 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.16 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.226 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 -16.11
 Mean of logged Data
 -13.04

 Maximum of Logged Data
 -10.71
 SD of logged Data
 1.778

Assuming Lognormal Distribution

95% H-UCL 8.5154E-5 90% Chebyshev (MVUE) UCL 2.1965E-5
95% Chebyshev (MVUE) UCL 2.8110E-5 97.5% Chebyshev (MVUE) UCL 3.6640E-5
99% Chebyshev (MVUE) UCL 5.3396E-5

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 9.4639E-6 95% Jackknife UCL 9.7146E-6
95% Standard Bootstrap UCL 9.4013E-6 95% Bootstrap+t UCL 1.0136E-5
95% Hall's Bootstrap UCL 1.0777E-5 95% Percentile Bootstrap UCL 9.5871E-6
95% BCA Bootstrap UCL 1.0204E-5
90% Chebyshev(Mean, Sd) UCL 1.2159E-5 95% Chebyshev(Mean, Sd) UCL 1.8613E-5
97.5% Chebyshev(Mean, Sd) UCL 2.5981E-5

Suggested UCL to Use

95% Adjusted Gamma UCL 1.4477E-5

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Thallium

	General Statistics		
Total Number of Observations	8	Number of Distinct Observations	6
		Number of Missing Observations	19
Number of Detects	5	Number of Non-Detects	3
Number of Distinct Detects	5	Number of Distinct Non-Detects	1
Minimum Detect	0.06	Minimum Non-Detect	0.11
Maximum Detect	0.17	Maximum Non-Detect	0.11
Variance Detects	0.00216	Percent Non-Detects	37.5%
Mean Detects	0.121	SD Detects	0.0464
Median Detects	0.14	CV Detects	0.384
Skewness Detects	-0.52	Kurtosis Detects	-2.044
Mean of Logged Detects	-2.183	SD of Logged Detects	0.44

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.915	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.259	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.103	KM Standard Error of Mean	0.0169
KM SD	0.0411	95% KM (BCA) UCL	0.136
95% KM (t) UCL	0.135	95% KM (Percentile Bootstrap) UCL	0.134
95% KM (z) UCL	0.131	95% KM Bootstrap t UCL	0.13
90% KM Chebyshev UCL	0.154	95% KM Chebyshev UCL	0.177
97.5% KM Chebyshev UCL	0.209	99% KM Chebyshev UCL	0.271

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.398	Anderson-Darling GOF Test
5% A-D Critical Value	0.68	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.3	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.358	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	7.227	k star (bias corrected MLE)	3.024
Theta hat (MLE)	0.0167	Theta star (bias corrected MLE)	0.04
nu hat (MLE)	72.27	nu star (bias corrected)	30.24
Mean (detects)	0.121		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0542	Mean	0.104
Maximum	0.17	Median	0.0899
SD	0.0438	CV	0.423
k hat (MLE)	6.436	k star (bias corrected MLE)	4.106
Theta hat (MLE)	0.0161	Theta star (bias corrected MLE)	0.0253
nu hat (MLE)	103	nu star (bias corrected)	65.69

		0.0195	Adjusted Level of Significance (β)
44.25	Adjusted Chi Square Value (65.69, β)	48.04	Approximate Chi Square Value (65.69, α)
0.154	95% Gamma Adjusted UCL (use when n<50)	0.142	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.103	SD (KM)	0.0411
Variance (KM)	0.00169	SE of Mean (KM)	0.0169
k hat (KM)	6.264	k star (KM)	3.999
nu hat (KM)	100.2	nu star (KM)	63.98
theta hat (KM)	0.0164	theta star (KM)	0.0257
80% gamma percentile (KM)	0.142	90% gamma percentile (KM)	0.172
95% gamma percentile (KM)	0.199	99% gamma percentile (KM)	0.258

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (63.98, α)	46.57	Adjusted Chi Square Value (63.98, β)	42.84
15% Gamma Approximate KM-UCL (use when n>=50)	0.141	95% Gamma Adjusted KM-UCL (use when n<50)	0.154

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.888	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.289	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-2.35	Mean in Log Scale	0.103	Mean in Original Scale
0.424	SD in Log Scale	0.0438	SD in Original Scale
0.127	95% Percentile Bootstrap UCL	0.133	95% t UCL (assumes normality of ROS data)
0.136	95% Bootstrap t UCL	0.129	95% BCA Bootstrap UCL
		0.149	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.354	KM Geo Mean	0.095
KM SD (logged)	0.396	95% Critical H Value (KM-Log)	2.19
KM Standard Error of Mean (logged)	0.17	95% H-UCL (KM -Log)	0.143
KM SD (logged)	0.396	95% Critical H Value (KM-Log)	2.19
KM Standard Error of Mean (logged)	0.17		

DL/2 Statistics

	DL/2 Log-Transformed			
0.0963	Mean in Log Scale	-2.452		
0.049	SD in Log Scale	0.499		
0.129	95% H-Stat UCL	0.152		
	0.049	0.049 SD in Log Scale		

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.135

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Vanadium

General Statistics

Total Number of Observations	8	Number of Distinct Observations	8
		Number of Missing Observations	19
Minimum	11	Mean	20.75
Maximum	30	Median	23
SD	7.649	Std. Error of Mean	2.704
Coefficient of Variation	0.369	Skewness	-0.302

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.876	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.22	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

	, tourising . tourising production		
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	25.87	95% Adjusted-CLT UCL (Chen-1995)	24.89
		95% Modified-t UCL (Johnson-1978)	25.83

Gamma GOF Test

A-D Test Statistic	0.615	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.717)ete	ected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.236	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.295)ete	ected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	7.409	k star (bias corrected MLE)	4.714
Theta hat (MLE)	2.801	Theta star (bias corrected MLE)	4.402
nu hat (MLE)	118.5	nu star (bias corrected)	75.42
MLE Mean (bias corrected)	20.75	MLE Sd (bias corrected)	9.557
		Approximate Chi Square Value (0.05)	56.42
Adjusted Level of Significance	0.0195	Adjusted Chi Square Value	52.28

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 27.74 95% Adjusted Gamma UCL (use when n<50) 29.93

Lognormal GOF Test

Shapiro Wilk Lognormal GOF Test	0.846	Shapiro Wilk Test Statistic
Data appear Lognormal at 5% Significance Level	0.818	5% Shapiro Wilk Critical Value
Lilliefors Lognormal GOF Test	0.247	Lilliefors Test Statistic
Data appear Lognormal at 5% Significance Level	0.283	5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2.398	Mean of logged Data	2.964
Maximum of Logged Data	3.401	SD of logged Data	0.411

Assuming Lognormal Distribution

95% H-UCL	29.73	90% Chebyshev (MVUE) UCL	30
95% Chebyshev (MVUE) UCL	34.15	97.5% Chebyshev (MVUE) UCL	39.91
99% Chebyshey (MVUE) UCL	51.22		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	25.2	95% Jackknife UCL	25.87
95% Standard Bootstrap UCL	24.91	95% Bootstrap-t UCL	25.37

Surface Soil ProUCL Output - Stores and Fleet Maintenance Area

95% Hall's Bootstrap UCL	24.22	95% Percentile Bootstrap UCL	24.63
95% BCA Bootstrap UCL	24.5		
90% Chebyshev(Mean, Sd) UCL	28.86	95% Chebyshev(Mean, Sd) UCL	32.54
97.5% Chebyshev(Mean, Sd) UCL	37.64	99% Chebyshev(Mean, Sd) UCL	47.66

Suggested UCL to Use

95% Student's-t UCL 25.87

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.18/29/2018 8:54:22 AM

From File Soil-Offices&ParkingLot - SS.xls

Full Precision OFF
Confidence Coefficient 95%
Imber of Bootstrap Operations 2000

Arsenic

General Statistics

Total Number of Observations	3	Number of Distinct Observations	3
		Number of Missing Observations	1
Minimum	2.2	Mean	2.967
Maximum	3.7	Median	3
SD	0.751	Std. Error of Mean	0.433
Coefficient of Variation	0.253	Skewness	-0.199

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.999	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.184	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	4.232	95% Adjusted-CLT UCL (Chen-1995)	3.626
		95% Modified-t UCL (Johnson-1978)	4.224

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

N/A	k star (bias corrected MLE)	22.58	k hat (MLE)
N/A	Theta star (bias corrected MLE)	0.131	Theta hat (MLE)
N/A	nu star (bias corrected)	135.5	nu hat (MLE)
N/A	MLE Sd (bias corrected)	N/A	MLE Mean (bias corrected)
N/A	Approximate Chi Square Value (0.05)		
N/A	Adjusted Chi Square Value	N/A	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.988	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.218	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.425	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.788	Mean of logged Data	1.065
Maximum of Logged Data	1.308	SD of logged Data	0.262

Assuming Lognormal Distribution

95% H-UCL	6.022	90% Chebyshev (MVUE) UCL	4.301
95% Chebyshev (MVUE) UCL	4.905	97.5% Chebyshev (MVUE) UCL	5.743
99% Chebyshev (MVUE) UCL	7.389		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

4.232	95% Jackknife UCL	3.679	95% CLT UCL
N/A	95% Bootstrap-t UCL	N/A	95% Standard Bootstrap UCL
N/A	95% Percentile Bootstrap UCL	N/A	95% Hall's Bootstrap UCL
		N/A	95% BCA Bootstrap UCL
4.856	95% Chebyshev(Mean, Sd) UCL	4.267	90% Chebyshev(Mean, Sd) UCL
7.278	99% Chebyshev(Mean, Sd) UCL	5.673	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 4.232

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Benzo(a)anthracene

General Statistics

Total Number of Observations	30	Number of Distinct Observations	27
Number of Detects	28	Number of Non-Detects	2
Number of Distinct Detects	25	Number of Distinct Non-Detects	2
Minimum Detect	0.0027	Minimum Non-Detect	0.07
Maximum Detect	14	Maximum Non-Detect	0.16
Variance Detects	7.311	Percent Non-Detects	6.667%
Mean Detects	1.322	SD Detects	2.704
Median Detects	0.315	CV Detects	2.045
Skewness Detects	4.123	Kurtosis Detects	19.1
Mean of Logged Detects	-1.098	SD of Logged Detects	1.967

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.491	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.924	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.313	Lilliefors GOF Test
5% Lilliefors Critical Value	0.164	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.236	KM Standard Error of Mean	0.481
KM SD	2.585	95% KM (BCA) UCL	2.164
95% KM (t) UCL	2.053	95% KM (Percentile Bootstrap) UCL	2.09
95% KM (z) UCL	2.027	95% KM Bootstrap t UCL	3.304
90% KM Chebyshev UCL	2.678	95% KM Chebyshev UCL	3.331
97.5% KM Chebyshev UCL	4.238	99% KM Chebyshey UCL	6.018

Gamma GOF Tests on Detected Observations Only

	A-D Test Statistic	0.477	Anderson-Darling GOF Test	
	5% A-D Critical Value	0.818	Detected data appear Gamma Distributed at 5% Significance Leve	
	K-S Test Statistic	0.146	Kolmogorov-Smirnov GOF	
	5% K-S Critical Value	0.176	Detected data appear Gamma Distributed at 5% Significance Leve	
Detected data appear Gamma Distributed at 5% Significance Level				

Gamma Statistics on Detected Data Only

0.44	k star (bias corrected MLE)	0.466	k hat (MLE)
3.004	Theta star (bias corrected MLE)	2.835	Theta hat (MLE)
24.65	nu star (bias corrected)	26.11	nu hat (MLE)
		1.322	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0027	Mean	1.235
Maximum	14	Median	0.25
SD	2.63	CV	2.13
k hat (MLE)	0.423	k star (bias corrected MLE)	0.403
Theta hat (MLE)	2.92	Theta star (bias corrected MLE)	3.065
nu hat (MLE)	25.37	nu star (bias corrected)	24.16
Adjusted Level of Significance (β)	0.041		
Approximate Chi Square Value (24.16, α)	13.97	Adjusted Chi Square Value (24.16, β)	13.53
95% Gamma Approximate UCL (use when n>=50)	2.135	95% Gamma Adjusted UCL (use when n<50)	2.205

Estimates of Gamma Parameters using KM Estimates

M) 2.585	SD (KM)	1.236	Mean (KM)
И) 0.481	SE of Mean (KM)	6.683	Variance (KM)
M) 0.228	k star (KM)	0.229	k hat (KM)
M) 13.68	nu star (KM)	13.72	nu hat (KM)
И) 5.421	theta star (KM)	5.406	theta hat (KM)
И) 3.73	90% gamma percentile (KM)	1.733	80% gamma percentile (KM)
И) 12.66	99% gamma percentile (KM)	6.146	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (13.68, α)	6.355	Adjusted Chi Square Value (13.68, β)	6.067
15% Gamma Approximate KM-UCL (use when n>=50)	2.662	95% Gamma Adjusted KM-UCL (use when n<50)	2.788

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.969	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.924	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.116	Lilliefors GOF Test
5% Lilliefors Critical Value	0.164	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-1.263	Mean in Log Scale	1.236	Mean in Original Scale
2	SD in Log Scale	2.629	SD in Original Scale
2.126	95% Percentile Bootstrap UCL	2.051	95% t UCL (assumes normality of ROS data)
3.366	95% Bootstrap t UCL	2.47	95% BCA Bootstrap UCL
		9.004	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.283	KM Geo Mean	0.277
KM SD (logged)	2.014	95% Critical H Value (KM-Log)	3.957
KM Standard Error of Mean (logged)	0.38	95% H-UCL (KM -Log)	9.254
KM SD (logged)	2.014	95% Critical H Value (KM-Log)	3.957
KM Standard Error of Mean (logged)	0.38		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.238	Mean in Log Scale	-1.221
SD in Original Scale	2.629	SD in Log Scale	1.958
95% t UCL (Assumes normality)	2.053	95% H-Stat UCL	8.184

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 2.788

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)pyrene

General Statistics

Total Number of Observations	30	Number of Distinct Observations	28
Number of Detects	28	Number of Non-Detects	2
Number of Distinct Detects	26	Number of Distinct Non-Detects	2
Minimum Detect	0.0022	Minimum Non-Detect	0.07
Maximum Detect	11	Maximum Non-Detect	0.16
Variance Detects	4.648	Percent Non-Detects	6.667%
Mean Detects	1.181	SD Detects	2.156
Median Detects	0.39	CV Detects	1.826
Skewness Detects	3.803	Kurtosis Detects	16.7
Mean of Logged Detects	-1.062	SD of Logged Detects	1.908

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.542	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.924	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.292	Lilliefors GOF Test
5% Lilliefors Critical Value	0.164	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.105	KM Standard Error of Mean	0.384
KM SD	2.065	95% KM (BCA) UCL	1.821
95% KM (t) UCL	1.757	95% KM (Percentile Bootstrap) UCL	1.755
95% KM (z) UCL	1.736	95% KM Bootstrap t UCL	2.492
90% KM Chebyshev UCL	2.257	95% KM Chebyshev UCL	2.778
97.5% KM Chebyshev UCL	3.502	99% KM Chebyshev UCL	4.925

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.323	Anderson-Darling GOF Test
5% A-D Critical Value	0.809)etec	cted data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.111	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.175)etec	cted data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k star (bias corrected MLE)	0.515	k hat (MLE)
Theta star (bias corrected MLE)	2.292	Theta hat (MLE)
nu star (bias corrected)	28.84	nu hat (MLE)
	1.181	Mean (detects)
	Theta star (bias corrected MLE)	2.292 Theta star (bias corrected MLE) 28.84 nu star (bias corrected)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ \verb|<|1.0|, especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ \verb|<|15-20|)$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0022	Mean	1.103
Maximum	11	Median	0.33
SD	2.101	CV	1.906
k hat (MLE)	0.461	k star (bias corrected MLE)	0.437
Theta hat (MLE)	2.392	Theta star (bias corrected MLE)	2.522
nu hat (MLE)	27.66	nu star (bias corrected)	26.23
Adjusted Level of Significance (β)	0.041		
Approximate Chi Square Value (26.23, α)	15.55	Adjusted Chi Square Value (26.23, β)	15.08
95% Gamma Approximate UCL (use when n>=50)	1.859	95% Gamma Adjusted UCL (use when n<50)	1.918

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.105	SD (KM)	2.065
Variance (KM)	4.264	SE of Mean (KM)	0.384
k hat (KM)	0.286	k star (KM)	0.28
nu hat (KM)	17.18	nu star (KM)	16.8
theta hat (KM)	3.859	theta star (KM)	3.947
80% gamma percentile (KM)	1.664	90% gamma percentile (KM)	3.284
95% gamma percentile (KM)	5.167	99% gamma percentile (KM)	10.1

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (16.80, α)	8.526	Adjusted Chi Square Value (16.80, β)	8.187
15% Gamma Approximate KM-UCL (use when n>=50)	2.177	95% Gamma Adjusted KM-UCL (use when n<50)	2.267

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.958	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.924	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.125	Lilliefors GOF Test

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	1.104	Mean in Log Scale	-1.223
SD in Original Scale	2.101	SD in Log Scale	1.941
95% t UCL (assumes normality of ROS data)	1.756	95% Percentile Bootstrap UCL	1.775
95% BCA Bootstrap UCL	2.19	95% Bootstrap t UCL	2.609
95% H-UCL (Log ROS)	7.739		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.245	KM Geo Mean	0.288
KM SD (logged)	1.968	95% Critical H Value (KM-Log)	3.884
KM Standard Error of Mean (logged)	0.373	95% H-UCL (KM -Log)	8.252
KM SD (logged)	1.968	95% Critical H Value (KM-Log)	3.884
KM Standard Error of Mean (logged)	0.373		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.106	Mean in Log Scale	-1.187
SD in Original Scale	2.1	SD in Log Scale	1.904
95% t UCL (Assumes normality)	1.757	95% H-Stat UCL	7.131

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 2.267

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(b)fluoranthene

General Statistics

Total Number of Observations	30	Number of Distinct Observations	29
Number of Detects	28	Number of Non-Detects	2
Number of Distinct Detects	27	Number of Distinct Non-Detects	2
Minimum Detect	0.0039	Minimum Non-Detect	0.07
Maximum Detect	12	Maximum Non-Detect	0.16
Variance Detects	5.755	Percent Non-Detects	6.667%
Mean Detects	1.424	SD Detects	2.399
Median Detects	0.45	CV Detects	1.685
Skewness Detects	3.478	Kurtosis Detects	14.36
Mean of Logged Detects	-0.809	SD of Logged Detects	1.857

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.586	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.924	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.277	Lilliefors GOF Test
5% Lilliefors Critical Value	0.164	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.331	KM Standard Error of Mean	0.428
KM SD	2.302	95% KM (BCA) UCL	2.144
95% KM (t) UCL	2.059	95% KM (Percentile Bootstrap) UCL	2.098
95% KM (z) UCL	2.035	95% KM Bootstrap t UCL	2.717
90% KM Chebyshev UCL	2.615	95% KM Chebyshev UCL	3.197
97.5% KM Chebyshev UCL	4.004	99% KM Chebyshev UCL	5.59

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic 0.	328	Anderson-Darling GOF Test
6 A-D Critical Value 0.	306 Detected data ap	opear Gamma Distributed at 5% Significance Leve
K-S Test Statistic 0.	11	Kolmogorov-Smirnov GOF
% K-S Critical Value 0.	174 Detected data ap	opear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.506	k star (bias corrected MLE)	0.54	k hat (MLE)
2.815	Theta star (bias corrected MLE)	2.638	Theta hat (MLE)
28.32	nu star (bias corrected)	30.23	nu hat (MLE)
		1.424	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

1.33	Mean	0.0039	Minimum
0.375	Median	12	Maximum
1.762	CV	2.342	SD
0.45	k star (bias corrected MLE)	0.475	k hat (MLE)
2.956	Theta star (bias corrected MLE)	2.798	Theta hat (MLE)
26.99	nu star (bias corrected)	28.51	nu hat (MLE)
		0.041	Adjusted Level of Significance (β)
15.66	Adjusted Chi Square Value (26.99, β)	16.15	Approximate Chi Square Value (26.99, α)
2.292	95% Gamma Adjusted UCL (use when n<50)	2.223	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.331	SD (KM)	2.302
Variance (KM)	5.299	SE of Mean (KM)	0.428
k hat (KM)	0.334	k star (KM)	0.323
nu hat (KM)	20.07	nu star (KM)	19.39
theta hat (KM)	3.981	theta star (KM)	4.119
80% gamma percentile (KM)	2.076	90% gamma percentile (KM)	3.889
95% gamma percentile (KM)	5.944	99% gamma percentile (KM)	11.24

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (19.39, α)	10.4	Adjusted Chi Square Value (19.39, β)	10.02
15% Gamma Approximate KM-LICL (use when n>=50)	2 481	95% Gamma Adjusted KM-LICL (use when n<50)	2 575

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk GOF Test	0.956	Shapiro Wilk Test Statistic
Detected Data appear Lognormal at 5% Significance Level	0.924	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.138	Lilliefors Test Statistic
Detected Data appear Lognormal at 5% Significance Level	0 164	5% Lilliefors Critical Value

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-0.985	Mean in Log Scale	1.331	Mean in Original Scale
1.913	SD in Log Scale	2.341	SD in Original Scale
2.049	95% Percentile Bootstrap UCL	2.058	95% t UCL (assumes normality of ROS data)
2.844	95% Bootstrap t UCL	2.31	95% BCA Bootstrap UCL
		8.964	95% H-UCL (Log ROS)

RI Report - BHHRA

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.017	KM Geo Mean	0.362
KM SD (logged)	1.947	95% Critical H Value (KM-Log)	3.851
KM Standard Error of Mean (logged)	0.367	95% H-UCL (KM -Log)	9.682
KM SD (logged)	1.947	95% Critical H Value (KM-Log)	3.851
KM Standard Error of Mean (logged)	0.367		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.333	Mean in Log Scale	-0.951
SD in Original Scale	2.341	SD in Log Scale	1.874
95% t UCL (Assumes normality)	2.059	95% H-Stat UCL	8.215

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 2.575

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(k)fluoranthene

General Statistics

Total Number of Observations	30	Number of Distinct Observations	30
Number of Detects	26	Number of Non-Detects	4
Number of Distinct Detects	26	Number of Distinct Non-Detects	4
Minimum Detect	0.003	Minimum Non-Detect	0.0072
Maximum Detect	5.5	Maximum Non-Detect	0.36
Variance Detects	1.215	Percent Non-Detects	13.33%
Mean Detects	0.599	SD Detects	1.102
Median Detects	0.25	CV Detects	1.842
Skewness Detects	3.829	Kurtosis Detects	16.62
Mean of Logged Detects	-1.617	SD of Logged Detects	1.677

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.529	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.92	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.295	Lilliefors GOF Test
5% Lilliefors Critical Value	0.17	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.191	KM Standard Error of Mean	0.525	KM Mean
0.891	95% KM (BCA) UCL	1.024	KM SD
0.862	95% KM (Percentile Bootstrap) UCL	0.849	95% KM (t) UCL
1.345	95% KM Bootstrap t UCL	0.839	95% KM (z) UCL
1.357	95% KM Chebyshev UCL	1.097	90% KM Chebyshev UCL
2.423	99% KM Chebyshev UCL	1.716	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Suc 0.42	Anderson-Danling GOF 165t	
alue 0.80	2)etected data appear Gamma Distributed at 5% Significance Leve	
stic 0.12	Kolmogorov-Smirnov GOF	
alue 0.18	Detected data appear Gamma Distributed at 5% Significance Leve	

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.565	k star (bias corrected MLE)	0.525
Theta hat (MLE)	1.06	Theta star (bias corrected MLE)	1.14
nu hat (MLE)	29.37	nu star (bias corrected)	27.31
Mean (detects)	0.599		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.003	Mean	0.52
Maximum	5.5	Median	0.135
SD	1.044	CV	2.007
k hat (MLE)	0.471	k star (bias corrected MLE)	0.446
Theta hat (MLE)	1.105	Theta star (bias corrected MLE)	1.166
nu hat (MLE)	28.25	nu star (bias corrected)	26.76
Adjusted Level of Significance (β)	0.041		
Approximate Chi Square Value (26.76, α)	15.96	Adjusted Chi Square Value (26.76, β)	15.48
95% Gamma Approximate UCL (use when n>=50)	0.872	95% Gamma Adjusted UCL (use when n<50)	0.899

Estimates of Gamma Parameters using KM Estimates

SD (KM) 1.02-	0.525	Mean (KM)
SE of Mean (KM) 0.19	1.048	Variance (KM)
k star (KM) 0.25	0.263	k hat (KM)
nu star (KM) 15.55	15.8	nu hat (KM)
theta star (KM) 2.02	1.996	theta hat (KM)
90% gamma percentile (KM) 1.57	0.772	80% gamma percentile (KM)
99% gamma percentile (KM) 5.01-	2.516	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (15.55, α)	7.645	Adjusted Chi Square Value (15.55, β)	7.326
15% Gamma Approximate KM-UCL (use when n>=50)	1.068	95% Gamma Adjusted KM-UCL (use when n<50)	1.115

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.985	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.92	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0814	Lilliefors GOF Test
5% Lilliefors Critical Value	0.17	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-1.893	Mean in Log Scale	0.523	Mean in Original Scale
1.747	SD in Log Scale	1.042	SD in Original Scale
0.855	95% Percentile Bootstrap UCL	0.847	95% t UCL (assumes normality of ROS data)
1.357	95% Bootstrap t UCL	1.037	95% BCA Bootstrap UCL
		2.183	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Geo Mean (-1.942	KM Mean (logged)
95% Critical H Value (KM-Log)	1.832	KM SD (logged)
95% H-UCL (KM -Log) 2	0.351	KM Standard Error of Mean (logged)
95% Critical H Value (KM-Log)	1.832	KM SD (logged)
	0.351	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.529	Mean in Log Scale	-1.842
SD in Original Scale	1.04	SD in Log Scale	1.749
95% t UCL (Assumes normality)	0.851	95% H-Stat UCL	2.309

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) $\,$ 1.115

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chrysene

General Statistics

Total Number of Observations	30	Number of Distinct Observations	28
Number of Detects	28	Number of Non-Detects	2
Number of Distinct Detects	27	Number of Distinct Non-Detects	2
Minimum Detect	0.0031	Minimum Non-Detect	0.07
Maximum Detect	12	Maximum Non-Detect	0.16
Variance Detects	5.477	Percent Non-Detects	6.667%
Mean Detects	1.246	SD Detects	2.34
Median Detects	0.335	CV Detects	1.878
Skewness Detects	3.888	Kurtosis Detects	17.39
Mean of Logged Detects	-1.054	SD of Logged Detects	1.912

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.531	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.924	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.298	Lilliefors GOF Test
5% Lilliefors Critical Value	0.164	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.166	KM Standard Error of Mean	0.417
KM SD	2.24	95% KM (BCA) UCL	1.946
95% KM (t) UCL	1.874	95% KM (Percentile Bootstrap) UCL	1.88
95% KM (z) UCL	1.851	95% KM Bootstrap t UCL	2.706
90% KM Chebyshev UCL	2.416	95% KM Chebyshev UCL	2.982
97.5% KM Chebyshev UCL	3.767	99% KM Chebyshev UCL	5.311

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.406	Anderson-Darling GOF Test
5% A-D Critical Value	0.811	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.135	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.175	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.469	k star (bias corrected MLE)	0.499	k hat (MLE)
2.656	Theta star (bias corrected MLE)	2.499	Theta hat (MLE)
26.27	nu star (bias corrected)	27.93	nu hat (MLE)
		1.246	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0031	Mean	1.164
Maximum	12	Median	0.27
SD	2.28	CV	1.959
k hat (MLE)	0.448	k star (bias corrected MLE)	0.425
Theta hat (MLE)	2.598	Theta star (bias corrected MLE)	2.735
nu hat (MLE)	26.88	nu star (bias corrected)	25.53
Adjusted Level of Significance (β)	0.041		
Approximate Chi Square Value (25.53, α)	15.01	Adjusted Chi Square Value (25.53, β)	14.55
95% Gamma Approximate UCL (use when n>=50)	1.978	95% Gamma Adjusted UCL (use when n<50)	2.042

Estimates of Gamma Parameters using KM Estimates

2.24	SD (KM)	1.166	Mean (KM)
0.417	SE of Mean (KM)	5.019	Variance (KM)
0.266	k star (KM)	0.271	k hat (KM)
15.96	nu star (KM)	16.25	nu hat (KM)
4.383	theta star (KM)	4.305	theta hat (KM)
3.483	90% gamma percentile (KM)	1.729	80% gamma percentile (KM)
10.97	99% gamma percentile (KM)	5.539	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (15.96, α) 7.935 Adjusted Chi Square Value (15.96, β) 7.609 15% Gamma Approximate KM-UCL (use when n>=50) 2.346 95% Gamma Adjusted KM-UCL (use when n<50) 2.446

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.962	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.924	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.124	Lilliefors GOF Test
5% Lilliefors Critical Value	0.164	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-1.216	Mean in Log Scale	1.165	Mean in Original Scale
1.947	SD in Log Scale	2.279	SD in Original Scale
1.911	95% Percentile Bootstrap UCL	1.872	95% t UCL (assumes normality of ROS data)
2.713	95% Bootstrap t UCL	2.32	95% BCA Bootstrap UCL
		7.927	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.235	KM Geo Mean	0.291
KM SD (logged)	1.966	95% Critical H Value (KM-Log)	3.881
KM Standard Error of Mean (logged)	0.372	95% H-UCL (KM -Log)	8.279
KM SD (logged)	1.966	95% Critical H Value (KM-Log)	3.881
KM Standard Error of Mean (logged)	0.372		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.167	Mean in Log Scale	-1.18
SD in Original Scale	2.278	SD in Log Scale	1.909
95% t UCL (Assumes normality)	1.874	95% H-Stat UCL	7.292

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 2.446

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Cobalt

General Statistics

Total Number of Observations	3	Number of Distinct Observations	3
		Number of Missing Observations	1
Minimum	4.6	Mean	6.867
Maximum	11	Median	5
SD	3.585	Std. Error of Mean	2.07
Coefficient of Variation	0.522	Skewness	1.708

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.797	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.365	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 9		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	12.91	95% Adjusted-CLT UCL (Chen-1995)	12.45
		95% Modified-t UCL (Johnson-1978)	13.25

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

k hat (MLE)	6.244	k star (bias corrected MLE)	N/A
Theta hat (MLE)	1.1	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	37.46	nu star (bias corrected)	N/A
MLE Mean (bias corrected)	N/A	MLE Sd (bias corrected)	N/A
		Approximate Chi Square Value (0.05)	N/A
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.821	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.354	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.425	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.526	Mean of logged Data	1.844
Maximum of Logged Data	2.398	SD of logged Data	0.481

Assuming Lognormal Distribution

95% H-UCL	59.35	90% Chebyshev (MVUE) UCL	12.35
95% Chebyshev (MVUE) UCL	14.85	97.5% Chebyshev (MVUE) UCL	18.33
99% Chebyshev (MVUE) UCL	25.15		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	10.27	95% Jackknife UCL	12.91
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	13.08	95% Chebyshev(Mean, Sd) UCL	15.89
97.5% Chebyshev(Mean, Sd) UCL	19.79	99% Chebyshev(Mean, Sd) UCL	27.46

Suggested UCL to Use

95% Student's-t UCL 12.91

Recommended UCL exceeds the maximum observation

 $Note: Suggestions \ regarding \ the \ selection \ of a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Dibenzo(a,h)anthracene

General Statistics

Total Number of Observations	30	Number of Distinct Observations	26
Number of Detects	25	Number of Non-Detects	5
Number of Distinct Detects	24	Number of Distinct Non-Detects	4
Minimum Detect	0.0069	Minimum Non-Detect	0.0072
Maximum Detect	2.2	Maximum Non-Detect	0.36
Variance Detects	0.206	Percent Non-Detects	16.67%
Mean Detects	0.289	SD Detects	0.454
Median Detects	0.13	CV Detects	1.572
Skewness Detects	3.374	Kurtosis Detects	13.48
Mean of Logged Detects	-2.122	SD of Logged Detects	1.453

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.596	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.918	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.267	Lilliefors GOF Test
5% Lilliefors Critical Value	0.173	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.247	KM Standard Error of Mean	0.0779
KM SD	0.418	95% KM (BCA) UCL	0.393
95% KM (t) UCL	0.379	95% KM (Percentile Bootstrap) UCL	0.391
95% KM (z) UCL	0.375	95% KM Bootstrap t UCL	0.511
90% KM Chebyshev UCL	0.481	95% KM Chebyshev UCL	0.586
97.5% KM Chebyshev UCL	0.733	99% KM Chebyshey UCL	1.022

Gamma GOF Tests on Detected Observations Only

414 Anderson-Darling GOF Test	Anderson-Darling GOF Test	Anderson-Da	0.414	A-D Test Statistic	
789 Detected data appear Gamma Distributed at 5% Sign	ear Gamma Distributed at 5% Significance	cted data appear Gamma I	0.789	5% A-D Critical Value	
128 Kolmogorov-Smirnov GOF	Kolmogorov-Smirnov GOF	Kolmogorov	0.128	K-S Test Statistic	
182 Detected data appear Gamma Distributed at 5% Sign	ear Gamma Distributed at 5% Significance	cted data appear Gamma I	0.182	5% K-S Critical Value	

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.688	k star (bias corrected MLE)	0.632
Theta hat (MLE)	0.42	Theta star (bias corrected MLE)	0.457
nu hat (MLE)	34.4	nu star (bias corrected)	31.6
Mean (detects)	0.289		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 ${\sf GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ {\it <1.0},\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ {\it <15-20}) }$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0069	Mean	0.243
Maximum	2.2	Median	0.087
SD	0.427	CV	1.759
k hat (MLE)	0.558	k star (bias corrected MLE)	0.525
Theta hat (MLE)	0.435	Theta star (bias corrected MLE)	0.462
nu hat (MLE)	33.49	nu star (bias corrected)	31.47
Adjusted Level of Significance (β)	0.041		
Approximate Chi Square Value (31.47, α)	19.65	Adjusted Chi Square Value (31.47, β)	19.12
95% Gamma Approximate UCL (use when n>=50)	0.388	95% Gamma Adjusted UCL (use when n<50)	0.399

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.247	SD (KM)	0.418
Variance (KM)	0.175	SE of Mean (KM)	0.0779
k hat (KM)	0.349	k star (KM)	0.336
nu hat (KM)	20.94	nu star (KM)	20.18
theta hat (KM)	0.707	theta star (KM)	0.734
80% gamma percentile (KM)	0.388	90% gamma percentile (KM)	0.717
95% gamma percentile (KM)	1.088	99% gamma percentile (KM)	2.038

Page 13 of 22

Surface Soil ProUCL Output - Offices and Parking Lot

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (20.18, α)	10.98	Adjusted Chi Square Value (20.18, β)	10.59
15% Gamma Approximate KM-UCL (use when n>=50)	0.453	95% Gamma Adjusted KM-UCL (use when n<50)	0.47

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.978	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.918	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0757	Lilliefors GOF Test
5% Lilliefors Critical Value	0.173	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.245	Mean in Log Scale	-2.443
SD in Original Scale	0.425	SD in Log Scale	1.557
95% t UCL (assumes normality of ROS data)	0.377	95% Percentile Bootstrap UCL	0.384
95% BCA Bootstrap UCL	0.437	95% Bootstrap t UCL	0.514
95% H-UCL (Log ROS)	0.747		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.45	KM Geo Mean	0.0863
KM SD (logged)	1.565	95% Critical H Value (KM-Log)	3.262
KM Standard Error of Mean (logged)	0.299	95% H-UCL (KM -Log)	0.757
KM SD (logged)	1.565	95% Critical H Value (KM-Log)	3.262
KM Standard Error of Mean (logged)	0.299		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.251	Mean in Log Scale	-2.396
SD in Original Scale	0.423	SD in Log Scale	1.606
95% t UCL (Assumes normality)	0.382	95% H-Stat UCL	0.891

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 0.47

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Diesel Range Organics (C10-C20)

	General Statistics		
Total Number of Observations	3	Number of Distinct Observations	3
		Number of Missing Observations	1
Number of Detects	0	Number of Non-Detects	3
Number of Distinct Detects	0	Number of Distinct Non-Detects	3

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs!

Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit!

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Diesel Range Organics (C10-C20) was not processed!

Indeno(1,2,3-cd)pyrene

General Statistics

Total Number of Observations	30	Number of Distinct Observations	25
Number of Detects	28	Number of Non-Detects	2
Number of Distinct Detects	23	Number of Distinct Non-Detects	2
Minimum Detect	0.0021	Minimum Non-Detect	0.07
Maximum Detect	7.1	Maximum Non-Detect	0.16
Variance Detects	1.998	Percent Non-Detects	6.667%
Mean Detects	0.831	SD Detects	1.414
Median Detects	0.315	CV Detects	1.701
Skewness Detects	3.521	Kurtosis Detects	14.72
Mean of Logged Detects	-1.355	SD of Logged Detects	1.851

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.581	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.924	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.279	Lilliefors GOF Test
5% Lilliefors Critical Value	0.164	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.778	KM Standard Error of Mean	0.252
KM SD	1.356	95% KM (BCA) UCL	1.211
95% KM (t) UCL	1.206	95% KM (Percentile Bootstrap) UCL	1.246
95% KM (z) UCL	1.193	95% KM Bootstrap t UCL	1.662
90% KM Chebyshev UCL	1.534	95% KM Chebyshev UCL	1.877
97.5% KM Chebyshev UCL	2.352	99% KM Chebyshev UCL	3.286

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.3	Anderson-Darling GOF Test
5% A-D Critical Value	0.806	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.105	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.174	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.537	k star (bias corrected MLE)	0.503
Theta hat (MLE)	1.548	Theta star (bias corrected MLE)	1.652
nu hat (MLE)	30.07	nu star (bias corrected)	28.18
Mean (detects)	0.831		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 ${\sf GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ {\it <1.0},\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ {\it <15-20}) }$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.776	Mean	0.0021	Minimum
0.25	Median	7.1	Maximum
1.777	CV	1.38	SD
0.458	k star (bias corrected MLE)	0.484	k hat (MLE)
1.695	Theta star (bias corrected MLE)	1.604	Theta hat (MLE)
27.48	nu star (bias corrected)	29.05	nu hat (MLE)
		0.041	Adjusted Level of Significance (β)
16.03	Adjusted Chi Square Value (27.48, β)	16.52	Approximate Chi Square Value (27.48, α)
1.331	95% Gamma Adjusted UCL (use when n<50)	1.291	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.778	SD (KM)	1.356
Variance (KM)	1.838	SE of Mean (KM)	0.252
k hat (KM)	0.329	k star (KM)	0.319
nu hat (KM)	19.77	nu star (KM)	19.12
theta hat (KM)	2.362	theta star (KM)	2.441
80% gamma percentile (KM)	1.21	90% gamma percentile (KM)	2.277
95% gamma percentile (KM)	3.49	99% gamma percentile (KM)	6.62

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (19.12, α)	10.21	Adjusted Chi Square Value (19.12, β)	9.832
15% Gamma Approximate KM-UCL (use when n>=50)	1.458	95% Gamma Adjusted KM-UCL (use when n<50)	1.514

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.963	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.924	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.125	Lilliefors GOF Test
5% Lilliefors Critical Value	0.164	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-1.505	Mean in Log Scale	0.778	Mean in Original Scale
1.876	SD in Log Scale	1.379	SD in Original Scale
1.215	95% Percentile Bootstrap UCL	1.205	95% t UCL (assumes normality of ROS data)
1.711	95% Bootstrap t UCL	1.436	95% BCA Bootstrap UCL
		4.745	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.524	KM Geo Mean	0.218
KM SD (logged)	1.894	95% Critical H Value (KM-Log)	3.767
KM Standard Error of Mean (logged)	0.358	95% H-UCL (KM -Log)	4.921
KM SD (logged)	1.894	95% Critical H Value (KM-Log)	3.767
KM Standard Error of Mean (logged)	0.358		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.78	Mean in Log Scale	-1.461
SD in Original Scale	1.378	SD in Log Scale	1.834
95% t UCL (Assumes normality)	1.207	95% H-Stat UCL	4.363

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 1.514

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Manganese

General Statistics

Total Number of Obse	vations	3	Number of Distinct Observations	3
			Number of Missing Observations	1
N	linimum	130	Mean	186.7
М	aximum	260	Median	170
	SD	66.58	Std. Error of Mean	38.44
Coefficient of V	ariation	0.357	Skewness	1 056

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.953	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.265	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

Assuming Normal Distribution			
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	298.9	95% Adjusted-CLT UCL (Chen-1995)	274

95% Student's-t UCL 298.9 95% Adjusted-CLT UCL (Chen-1995) 274.9 95% Modified-t UCL (Johnson-1978) 302.8

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

k hat (MLE)	12.27	k star (bias corrected MLE)	N/A
Theta hat (MLE)	15.22	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	73.59	nu star (bias corrected)	N/A
MLE Mean (bias corrected)	N/A	MLE Sd (bias corrected)	N/A
		Approximate Chi Square Value (0.05)	N/A
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.983	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.226	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.425	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	4.868	Mean of logged Data	5.188
Maximum of Logged Data	5.561	SD of logged Data	0.35

Assuming Lognormal Distribution

95% H-UCL	596.7	90% Chebyshev (MVUE) UCL	297.7
95% Chebyshev (MVUE) UCL	348	97.5% Chebyshev (MVUE) UCL	418
99% Chebyshev (MVUE) UCL	555.3		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

298.9	95% Jackknife UCL	249.9	95% CLT UCL
N/A	95% Bootstrap-t UCL	N/A	95% Standard Bootstrap UCL
N/A	95% Percentile Bootstrap UCL	N/A	95% Hall's Bootstrap UCL
		N/A	95% BCA Bootstrap UCL
354.2	95% Chebyshev(Mean, Sd) UCL	302	90% Chebyshev(Mean, Sd) UCL
569.2	99% Chebyshev(Mean, Sd) UCL	426.7	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 298.9

Recommended UCL exceeds the maximum observation

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Naphthalene

General Statistics

Total Number of Observations	30	Number of Distinct Observations	28
Number of Detects	20	Number of Non-Detects	10
Number of Distinct Detects	20	Number of Distinct Non-Detects	9
Minimum Detect	0.0016	Minimum Non-Detect	0.0071
Maximum Detect	0.41	Maximum Non-Detect	0.36
Variance Detects	0.00759	Percent Non-Detects	33.33%
Mean Detects	0.0499	SD Detects	0.0871
Median Detects	0.029	CV Detects	1.746
Skewness Detects	4.085	Kurtosis Detects	17.57
Mean of Logged Detects	-3.659	SD of Logged Detects	1.168

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.446	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.905	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.341	Lilliefors GOF Test
5% Lilliefors Critical Value	0.192	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.0393	KM Standard Error of Mean	0.0136
KM SD	0.0718	95% KM (BCA) UCL	0.0679
95% KM (t) UCL	0.0624	95% KM (Percentile Bootstrap) UCL	0.0644
95% KM (z) UCL	0.0616	95% KM Bootstrap t UCL	0.103
90% KM Chebyshev UCL	0.0801	95% KM Chebyshev UCL	0.0985
97.5% KM Chebyshev UCL	0.124	99% KM Chebyshev UCL	0.174

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.925	A-D Test Statistic
B Detected Data Not Gamma Distributed at 5% Significance Leve	0.773	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.18	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Le	0.2	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

LE) 0.7	k star (bias corrected MLE)	0.885	k hat (MLE)
_E) 0.06	Theta star (bias corrected MLE)	0.0564	Theta hat (MLE)
ed) 31.4	nu star (bias corrected)	35.41	nu hat (MLE)
		0.0499	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0016	Mean	0.037
Maximum	0.41	Median	0.0165
SD	0.0729	CV	1.969
k hat (MLE)	0.911	k star (bias corrected MLE)	0.842
Theta hat (MLE)	0.0407	Theta star (bias corrected MLE)	0.044
nu hat (MLE)	54.65	nu star (bias corrected)	50.52
Adjusted Level of Significance (β)	0.041		
Approximate Chi Square Value (50.52, α)	35.2	Adjusted Chi Square Value (50.52, β)	34.46
95% Gamma Approximate UCL (use when n>=50)	0.0531	95% Gamma Adjusted UCL (use when n<50)	0.0543

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.0393	SD (KM)	0.0718	
Variance (KM)	0.00515	SE of Mean (KM)	0.0136	
k hat (KM)	0.3	k star (KM)	0.292	
nu hat (KM)	17.98	nu star (KM)	17.51	
theta hat (KM)	0.131	theta star (KM)	0.135	
80% gamma percentile (KM)	0.0598	90% gamma percentile (KM)	0.116	
95% gamma percentile (KM)	0.181	99% gamma percentile (KM)	0.351	

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (17.51, α)	9.04	Adjusted Chi Square Value (17.51, β)	8.689
15% Gamma Approximate KM-UCL (use when n>=50)	0.0761	95% Gamma Adjusted KM-UCL (use when n<50)	0.0792

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.944	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.905	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.164	Lilliefors GOF Test
5% Lilliefors Critical Value	0.192	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-3.941	Mean in Log Scale	0.0376	Mean in Original Scale
1.09	SD in Log Scale	0.0728	SD in Original Scale
0.0623	95% Percentile Bootstrap UCL	0.0602	95% t UCL (assumes normality of ROS data)
0.115	95% Bootstrap t UCL	0.0741	95% BCA Bootstrap UCL
		0.0595	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.989	KM Geo Mean	0.0185
KM SD (logged)	1.251	95% Critical H Value (KM-Log)	2.808
KM Standard Error of Mean (logged)	0.269	95% H-UCL (KM -Log)	0.0777
KM SD (logged)	1.251	95% Critical H Value (KM-Log)	2.808
KM Standard Error of Mean (logged)	0.269		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.0503	Mean in Log Scale	-3.688
SD in Original Scale	0.0776	SD in Log Scale	1.255
95% t UCL (Assumes normality)	0.0744	95% H-Stat UCL	0.106

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) $\,$ 0.0792

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Nickel

	General Statistics		
Total Number of Observations	3	Number of Distinct Observations	2
		Number of Missing Observations	1
Minimum	19	Mean	22.67
Maximum	30	Median	19
SD	6.351	Std. Error of Mean	3.667
Coefficient of Variation	0.28	Skewness	1.732

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.75	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.385	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Data appear Normal at 5% Significance Leve

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 33.37 95% Adjusted-CLT UCL (Chen-1995) 32.62 95% Modified-t UCL (Johnson-1978) 33.98

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

N/A	k star (bias corrected MLE)	20.82	k hat (MLE)
N/A	Theta star (bias corrected MLE)	1.089	Theta hat (MLE)
N/A	nu star (bias corrected)	124.9	nu hat (MLE)
N/A	MLE Sd (bias corrected)	N/A	MLE Mean (bias corrected)
N/A	Approximate Chi Square Value (0.05)		
N/A	Adjusted Chi Square Value	N/A	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.75	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.767	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.385	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.425	Data appear Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2.944	Mean of logged Data	3.097
Maximum of Logged Data	3.401	SD of logged Data	0.264

Assuming Lognormal Distribution

95% H-UCL	46.38	90% Chebyshev (MVUE) UCL	32.89
95% Chebyshev (MVUE) UCL	37.54	97.5% Chebyshev (MVUE) UCL	43.98
99% Chebyshev (MVUE) UCL	56.64		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

N/A	95% Jackknife UCL	28.7	95% CLT UCL
N/A	95% Bootstrap-t UCL	N/A	95% Standard Bootstrap UCL
N/A	95% Percentile Bootstrap UCL	N/A	95% Hall's Bootstrap UCL
		N/A	95% BCA Bootstrap UCL
38.65	95% Chebyshev(Mean, Sd) UCL	33.67	90% Chebyshev(Mean, Sd) UCL
59.15	99% Chebyshev(Mean, Sd) UCL	45.56	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 33.37

Recommended UCL exceeds the maximum observation

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

PCB, Total Aroclors (AECOM Calc)

General Statistics

Total Number of Observations	5	Number of Distinct Observations	5
		Number of Missing Observations	25
Minimum	0.14	Mean	0.234
Maximum	0.33	Median	0.23
SD	0.0777	Std. Error of Mean	0.0347
Coefficient of Variation	0.332	Skewness	0.0643

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.968	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.165	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.308	95% Adjusted-CLT UCL (Chen-1995)	0.292
		95% Modified-t UCL (Johnson-1978)	0.308

Gamma GOF Test

A-D Test Statistic	0.216	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.679)et	ected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.197	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.358)et	ected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	10.8	k star (bias corrected MLE)	4.455
Theta hat (MLE)	0.0217	Theta star (bias corrected MLE)	0.0525
nu hat (MLE)	108	nu star (bias corrected)	44.55
MLE Mean (bias corrected)	0.234	MLE Sd (bias corrected)	0.111
		Approximate Chi Square Value (0.05)	30.24
Adjusted Level of Significance	0.0086	Adjusted Chi Square Value	25.2

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.345 95% Adjusted Gamma UCL (use when n<50) 0.414

Lognormal GOF Test

Shapiro Wilk Lognormal GOF Test	0.965	Shapiro Wilk Test Statistic
Data appear Lognormal at 5% Significance Lev	0.762	5% Shapiro Wilk Critical Value
Lilliefors Lognormal GOF Test	0.173	Lilliefors Test Statistic
Data appear Lognormal at 5% Significance Lev	0.343	5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-1.966	Mean of logged Data	-1.499
Maximum of Logged Data	-1.109	SD of logged Data	0.349

Assuming Lognormal Distribution

95% H-UCL	0.368	90% Chebyshev (MVUE) UCL	0.343
95% Chebyshev (MVUE) UCL	0.393	97.5% Chebyshev (MVUE) UCL	0.461
99% Chebyshev (MVUE) UCL	0.596		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 0.291	95% Jackknife UCL	0.308
Standard Bootstrap UCL 0.284	95% Bootstrap-t UCL	0.319
5% Hall's Bootstrap UCL 0.317	95% Percentile Bootstrap UCL	0.284
5% BCA Bootstrap UCL 0.284		
ebyshev(Mean, Sd) UCL 0.338	95% Chebyshev(Mean, Sd) UCL	0.385
byshev(Mean, Sd) UCL 0.451	99% Chebyshev(Mean, Sd) UCL	0.58

Suggested UCL to Use

95% Student's-t UCL 0.30

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

TCDD TEQ HH

General Statistics

Total Number of Observations 2	Number of Distinct Observations 2	
	Number of Missing Observations 2	
Minimum 5.5500E-6	Mean 9.6250E-6	
Maximum 1.3700E-5	Median 9.6250E-6	

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable TCDD TEQ HH was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Thallium

General Statistics

er	r of	f Dis	tinct	Obs	serv	ation	s	3	
er	r of I	f Mis	sing	Obs	serv	ation	s	1	
	Nι	lumb	oer o	f No	n-D	etect	s	3	
bе	er of	of Dis	stinc	t No	n-D	etect	s	3	

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs!

Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit!

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Thallium was not processed!

Vanadium

Total Number of Observations	3	Number of Distinct Observations	3
		Number of Missing Observations	1
Minimum	16	Mean	19.33
Maximum	23	Median	19
SD	3.512	Std. Error of Mean	2.028
Coefficient of Variation	0.182	Skewness	0.423

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk GOF Test	0.993	Shapiro Wilk Test Statistic
Data appear Normal at 5% Significance Leve	0.767	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.204	Lilliefors Test Statistic
Data appear Normal at 5% Significance Leve	0.425	5% Lilliefors Critical Value

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
0E% Student's t LICI	25.25	05% Adjusted CLT LICL (Chan 1005)	22 '

 95% Student's-t UCL
 25.25
 95% Adjusted-CLT UCL (Chen-1995)
 23.2

 95% Modified-t UCL (Johnson-1978)
 25.34

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

N/A	k star (bias corrected MLE)	45.66	k hat (MLE)
N/A	Theta star (bias corrected MLE)	0.423	Theta hat (MLE)
N/A	nu star (bias corrected)	274	nu hat (MLE)
N/A	MLE Sd (bias corrected)	N/A	MLE Mean (bias corrected)
N/A	Approximate Chi Square Value (0.05)		
N/A	Adjusted Chi Square Value	N/A	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.999	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.181	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.425	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2.773	Mean of logged Data	2.951
Maximum of Logged Data	3.135	SD of logged Data	0.182

Assuming Lognormal Distribution

95% H-UCL	29.22	90% Chebyshev (MVUE) UCL	25.39
95% Chebyshev (MVUE) UCL	28.13	97.5% Chebyshev (MVUE) UCL	31.93
99% Chebyshev (MVUE) UCL	39.41		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	22.67	95% Jackknife UCL	25.25
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	25.42	95% Chebyshev(Mean, Sd) UCL	28.17
97.5% Chebyshev(Mean, Sd) UCL	32	99% Chebyshev(Mean, Sd) UCL	39.51

Suggested UCL to Use

95% Student's-t UCL 25.25

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.18/29/2018 2:22:36 PM

From File Soil_Substat7-SS.xls

Full Precision OFF
Confidence Coefficient 95%
Imber of Bootstrap Operations 2000

Arsenic

General Statistics

Total Number of Observations	4	Number of Distinct Observations	4
		Number of Missing Observations	9
Minimum	0.65	Mean	10.01
Maximum	33	Median	3.2
SD	15.38	Std. Error of Mean	7.69
Coefficient of Variation	1.536	Skewness	1.957

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.709	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.407	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% NOTHALOCE		55% UCLS (Adjusted for Skewfiess)	
95% Student's-t UCL	28.11	95% Adjusted-CLT UCL (Chen-1995)	30.7
		95% Modified-t UCL (Johnson-1978)	29.36

Gamma GOF Test

A-D Test Statistic 0.4	09 Anderson-Darling Gamma GOF Test
5% A-D Critical Value 0.6	75 Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic 0.3	38 Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value 0.4	07 Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.635	k star (bias corrected MLE)	0.325
Theta hat (MLE)	15.76	Theta star (bias corrected MLE)	30.77
nu hat (MLE)	5.081	nu star (bias corrected)	2.604
MLE Mean (bias corrected)	10.01	MLE Sd (bias corrected)	17.55
		Approximate Chi Square Value (0.05)	0.265
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 98.24 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.962	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.251	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.375	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.431	Mean of logged Data	1.339
Maximum of Logged Data	3.497	SD of logged Data	1.626

Assuming Lognormal Distribution

Surface Soil ProUCL Output - Substation #7

95% H-UCL 326977	90% Chebyshev (MVUE) UCL		
95% Chebyshev (MVUE) UCL 35.1	97.5% Chebyshev (MVUE) UCL	46.44	
99% Chebyshev (MVUE) UCL 68.7			

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

28.11	95% Jackknife UCL	22.66	95% CLT UCL
N/A	95% Bootstrap-t UCL	N/A	95% Standard Bootstrap UCL
N/A	95% Percentile Bootstrap UCL	N/A	95% Hall's Bootstrap UCL
		N/A	95% BCA Bootstrap UCL
43.53	95% Chebyshev(Mean, Sd) UCL	33.08	90% Chebyshev(Mean, Sd) UCL
86.53	99% Chebyshev(Mean, Sd) UCL	58.04	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Adjusted Gamma UCL N/A

Warning: One or more Recommended UCL(s) not available!

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)anthracene

General Statistics Total Number of Observations Number of Distinct Observations 5 Number of Missing Observations 8 Number of Detects 4 Number of Non-Detects 1 Number of Distinct Non-Detects 1 Number of Distinct Detects 4 Minimum Non-Detect 0.036 Minimum Detect 0.019 Maximum Non-Detect 0.036 Maximum Detect 1.8 Variance Detects 0.757 Percent Non-Detects 20% Mean Detects 0.497 SD Detects 0.87 Median Detects 0.0835 CV Detects 1.752 Skewness Detects 1.989 Kurtosis Detects 3.963 Mean of Logged Detects -2.112 SD of Logged Detects 1.94

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.67	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.422	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.401	KM Standard Error of Mean	0.362
KM SD	0.7	95% KM (BCA) UCL	N/A
95% KM (t) UCL	1.172	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.996	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	1.486	95% KM Chebyshev UCL	1.977
97.5% KM Chebyshev UCL	2.659	99% KM Chebyshev UCL	3.999

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.5	A-D Test Statistic
6)etected data appear Gamma Distributed at 5% Significance Le	0.686	5% A-D Critical Value
5 Kolmogorov-Smirnov GOF	0.365	K-S Test Statistic
2 Detected data appear Gamma Distributed at 5% Significance Le	0.412	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.281	k star (bias corrected MLE)	0.456	k hat (MLE)
1.768	Theta star (bias corrected MLE)	1.088	Theta hat (MLE)
2.246	nu star (bias corrected)	3.651	nu hat (MLE)
		0.497	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.399
Maximum	1.8	Median	0.057
SD	0.784	CV	1.964
k hat (MLE)	0.39	k star (bias corrected MLE)	0.289
Theta hat (MLE)	1.023	Theta star (bias corrected MLE)	1.379
nu hat (MLE)	3.904	nu star (bias corrected)	2.895
Adjusted Level of Significance (β)	0.0086		
Approximate Chi Square Value (2.89, α)	0.342	Adjusted Chi Square Value (2.89, β)	0.128
95% Gamma Approximate UCL (use when n>=50)	3.379	95% Gamma Adjusted UCL (use when n<50)	N/A

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.401	SD (KM)	0.7
Variance (KM)	0.49	SE of Mean (KM)	0.362
k hat (KM)	0.328	k star (KM)	0.264
nu hat (KM)	3.279	nu star (KM)	2.645
theta hat (KM)	1.223	theta star (KM)	1.516
80% gamma percentile (KM)	0.594	90% gamma percentile (KM)	1.198
95% gamma percentile (KM)	1.908	99% gamma percentile (KM)	3.784

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (2.64, α)	0.275	Adjusted Chi Square Value (2.64, β)	0.105
15% Gamma Approximate KM-UCL (use when n>=50)	3.85	95% Gamma Adjusted KM-UCL (use when n<50)	10.12

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.928	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.27	Lilliefors GOF Test
Elliciois rest otatistic	0.27	Lilletota GOF 16st

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.4	Mean in Log Scale	-2.58
SD in Original Scale	0.784	SD in Log Scale	1.979
95% t UCL (assumes normality of ROS data)	1.147	95% Percentile Bootstrap UCL	1.094
95% BCA Bootstrap UCL	1.113	95% Bootstrap t UCL	13.26
95% H-UCL (Log ROS)	5307		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.482	KM Geo Mean	0.0836
KM SD (logged)	1.675	95% Critical H Value (KM-Log)	7.911
KM Standard Error of Mean (logged)	0.865	95% H-UCL (KM -Log)	256.9
KM SD (logged)	1.675	95% Critical H Value (KM-Log)	7.911
KM Standard Error of Mean (logged)	0.865		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.401	Mean in Log Scale	-2.493
SD in Original Scale	0.783	SD in Log Scale	1.884
95% t UCL (Assumes normality)	1.147	95% H-Stat UCL	2050

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL $\,$ N/A $\,$ d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) $\,$ 10.12

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)pyrene

	General Statistics		
Total Number of Observations	5	Number of Distinct Observations	5
		Number of Missing Observations	8
Number of Detects	4	Number of Non-Detects	1
Number of Distinct Detects	4	Number of Distinct Non-Detects	1
Minimum Detect	0.023	Minimum Non-Detect	0.036
Maximum Detect	1.4	Maximum Non-Detect	0.036
Variance Detects	0.454	Percent Non-Detects	20%
Mean Detects	0.39	SD Detects	0.674
Median Detects	0.069	CV Detects	1.726
Skewness Detects	1.993	Kurtosis Detects	3.976
Mean of Logged Detects	-2.202	SD of Logged Detects	1.773

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk GOF Test	0.663	Shapiro Wilk Test Statistic
Detected Data Not Normal at 5% Significance Level	0.748	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.427	Lilliefors Test Statistic
Detected Data Not Normal at 5% Significance Level	0.375	5% Lilliefors Critical Value

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.317	KM Standard Error of Mean	0.28
KM SD	0.542	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.914	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.777	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	1.157	95% KM Chebyshev UCL	1.537
97.5% KM Chebyshev UCL	2.065	99% KM Chebyshev UCL	3.102

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.591	Anderson-Darling GOF Test
5% A-D Critical Value	0.681	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.402	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.41	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.503	k star (bias corrected MLE)	0.292
Theta hat (MLE)	0.776	Theta star (bias corrected MLE)	1.334
nu hat (MLE)	4.025	nu star (bias corrected)	2.34
Mean (detects)	0.39		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.314
Maximum	1.4	Median	0.058
SD	0.608	CV	1.934
k hat (MLE)	0.427	k star (bias corrected MLE)	0.304
Theta hat (MLE)	0.736	Theta star (bias corrected MLE)	1.033
nu hat (MLE)	4.27	nu star (bias corrected)	3.041

		0.0086	Adjusted Level of Significance (β)
0.144	Adjusted Chi Square Value (3.04, β)	0.385	Approximate Chi Square Value (3.04, α)
N/A	95% Gamma Adjusted UCL (use when n<50)	2.484	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.317	SD (KM)	0.542
Variance (KM)	0.294	SE of Mean (KM)	0.28
k hat (KM)	0.342	k star (KM)	0.27
nu hat (KM)	3.416	nu star (KM)	2.7
theta hat (KM)	0.927	theta star (KM)	1.173
80% gamma percentile (KM)	0.472	90% gamma percentile (KM)	0.945
95% gamma percentile (KM)	1.498	99% gamma percentile (KM)	2.955

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (2.70, α) 0.289 Adjusted Chi Square Value (2.70, β) 0.109 15% Gamma Approximate KM-UCL (use when n>=50) 2.956 95% Gamma Adjusted KM-UCL (use when n<50) 7.823

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.878	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.322	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data appear Lognormal at 5% Significance Level
Detected Data appear	Lognorm	al at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.315	Mean in Log Scale	-2.614
SD in Original Scale	0.607	SD in Log Scale	1.79
95% t UCL (assumes normality of ROS data)	0.894	95% Percentile Bootstrap UCL	0.847
95% BCA Bootstrap UCL	0.861	95% Bootstrap t UCL	9.584
95% H-UCL (Log ROS)	688.1		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.516	KM Geo Mean	0.0808
KM SD (logged)	1.51	95% Critical H Value (KM-Log)	7.166
KM Standard Error of Mean (logged)	0.78	95% H-UCL (KM -Log)	56.53
KM SD (logged)	1.51	95% Critical H Value (KM-Log)	7.166
KM Standard Error of Mean (logged)	0.78		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	0.316	Mean in Log Scale	-2.565	
SD in Original Scale	0.607	SD in Log Scale	1.737	
95% t UCL (Assumes normality)	0.894	95% H-Stat UCL	426.6	
DL/2 is not a recommended method, provided for comparisons and historical reasons				

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL N/A d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 7.823

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(b)fluoranthene

General Statistics

T . IN	-	N 1 (D) (1 (O) (1)	-
Total Number of Observations	5	Number of Distinct Observations	5
		Number of Missing Observations	8
Number of Detects	4	Number of Non-Detects	1
Number of Distinct Detects	4	Number of Distinct Non-Detects	1
Minimum Detect	0.046	Minimum Non-Detect	0.036
Maximum Detect	3.2	Maximum Non-Detect	0.036
Variance Detects	2.392	Percent Non-Detects	20%
Mean Detects	0.882	SD Detects	1.547
Median Detects	0.142	CV Detects	1.753
Skewness Detects	1.989	Kurtosis Detects	3.963
Mean of Logged Detects	-1.504	SD of Logged Detects	1.878

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.667	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.748	Detected Data Not Normal at 5% Significance Level		
Lilliefors Test Statistic	0.42	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.375	Detected Data Not Normal at 5% Significance Level		
Detected Data Not Normal at 5% Significance Level				

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.713	KM Standard Error of Mean	0.643
KM SD	1.245	95% KM (BCA) UCL	N/A
95% KM (t) UCL	2.083	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	1.77	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	2.642	95% KM Chebyshev UCL	3.515
97.5% KM Chebyshev UCL	4.728	99% KM Chebyshey UCL	7.109

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.552	Anderson-Darling GOF Test		
5% A-D Critical Value	0.685	Detected data appear Gamma Distributed at 5% Significance Leve		
K-S Test Statistic	0.367	Kolmogorov-Smirnov GOF		
5% K-S Critical Value	0.412	Detected data appear Gamma Distributed at 5% Significance Leve		
Detected data appear Gamma Distributed at 5% Significance Level				

Gamma Statistics on Detected Data Only

0.283	k star (bias corrected MLE)	0.466	k hat (MLE)
3.116	Theta star (bias corrected MLE)	1.893	Theta hat (MLE)
2.265	nu star (bias corrected)	3.728	nu hat (MLE)
		0.882	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs
GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)
For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.708	Mean	0.01	Minimum
0.083	Median	3.2	Maximum
1.971	CV	1.395	SD
0.283	k star (bias corrected MLE)	0.374	k hat (MLE)
2.501	Theta star (bias corrected MLE)	1.892	Theta hat (MLE)
2.83	nu star (bias corrected)	3.741	nu hat (MLE)
		0.0086	Adjusted Level of Significance (β)
0.121	Adjusted Chi Square Value (2.83, β)	0.324	Approximate Chi Square Value (2.83, α)
N/A	95% Gamma Adjusted UCL (use when n<50)	6.186	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.713	SD (KM)	1.245
Variance (KM)	1.55	SE of Mean (KM)	0.643

Surface Soil ProUCL Output - Substation #7

k hat (KM)	0.328	k star (KM)	0.265
nu hat (KM)	3.28	nu star (KM)	2.646
theta hat (KM)	2.173	theta star (KM)	2.695
80% gamma percentile (KM)	1.055	90% gamma percentile (KM)	2.131
95% gamma percentile (KM)	3.393	99% gamma percentile (KM)	6.727

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (2.65, α) 0.276 Adjusted Chi Square Value (2.65, β) 0.105 I5% Gamma Approximate KM-UCL (use when n>=50) 6.843 95% Gamma Adjusted KM-UCL (use when n<50) 17.99

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.887	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.272	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.706	Mean in Log Scale	-2.477
SD in Original Scale	1.396	SD in Log Scale	2.717
95% t UCL (assumes normality of ROS data)	2.037	95% Percentile Bootstrap UCL	1.937
95% BCA Bootstrap UCL	2	95% Bootstrap t UCL	26.48
95% H-UCL (Log ROS) 99	9592630		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.868	KM Geo Mean	0.154
KM SD (logged)	1.627	95% Critical H Value (KM-Log)	7.69
KM Standard Error of Mean (logged)	0.84	95% H-UCL (KM -Log)	301.7
KM SD (logged)	1.627	95% Critical H Value (KM-Log)	7.69
KM Standard Error of Mean (logged)	0.84		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.709	Mean in Log Scale	-2.006
SD in Original Scale	1.394	SD in Log Scale	1.977
95% t UCL (Assumes normality)	2.038	95% H-Stat UCL	9148

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL N/A d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 17.99

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(k)fluoranthene

General Statistics

Total Number of Observations	5	Number of Distinct Observations	5
		Number of Missing Observations	8
Number of Detects	4	Number of Non-Detects	1
Number of Distinct Detects	4	Number of Distinct Non-Detects	1
Minimum Detect	0.014	Minimum Non-Detect	0.036
Maximum Detect	1.7	Maximum Non-Detect	0.036
Variance Detects	0.694	Percent Non-Detects	20%
Mean Detects	0.451	SD Detects	0.833
Median Detects	0.044	CV Detects	1.849
Skewness Detects	1.998	Kurtosis Detects	3.992
Mean of Logged Detects	-2.512	SD of Logged Detects	2.106

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.649	Shapiro Wilk GOF Test			
5% Shapiro Wilk Critical Value	0.748	Detected Data Not Normal at 5% Significance Level			
Lilliefors Test Statistic	0.432	Lilliefors GOF Test			
5% Lilliefors Critical Value	0.375	Detected Data Not Normal at 5% Significance Level			
Detected Data Not Normal at 5% Significance Level					

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.345	KM Standard Error of Mean	0.365	KM Mean
N/A	95% KM (BCA) UCL	0.668	KM SD
N/A	95% KM (Percentile Bootstrap) UCL	1.1	95% KM (t) UCL
N/A	95% KM Bootstrap t UCL	0.932	95% KM (z) UCL
1.868	95% KM Chebyshev UCL	1.399	90% KM Chebyshev UCL
3.795	99% KM Chebyshev UCL	2.518	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic 0.6	22 Anderso	n-Darling GOF Test
5% A-D Critical Value 0.6	94 Detected data appear Gam	ma Distributed at 5% Significance Leve
K-S Test Statistic 0.4	08 Kolmog	orov-Smirnov GOF
5% K-S Critical Value 0.4	15)etected data appear Gam	ma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.263	k star (bias corrected MLE)	0.386	k hat (MLE)
1.712	Theta star (bias corrected MLE)	1.167	Theta hat (MLE)
2.105	nu star (bias corrected)	3.087	nu hat (MLE)
		0.451	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.362
Maximum	1.7	Median	0.033
SD	0.748	CV	2.064
k hat (MLE)	0.351	k star (bias corrected MLE)	0.274
Theta hat (MLE)	1.033	Theta star (bias corrected MLE)	1.324
nu hat (MLE)	3.508	nu star (bias corrected)	2.737
Adjusted Level of Significance (β)	0.0086		
Approximate Chi Square Value (2.74, α)	0.299	Adjusted Chi Square Value (2.74, β)	0.113
95% Gamma Approximate UCL (use when n>=50)	3.318	95% Gamma Adjusted UCL (use when n<50)	N/A

Estimates of Gamma Parameters using KM Estimates

0.668	SD (KM)	0.365	Mean (KM)
0.345	SE of Mean (KM)	0.446	Variance (KM)
0.253	k star (KM)	0.299	k hat (KM)
2.53	nu star (KM)	2.991	nu hat (KM)
1.443	theta star (KM)	1.221	theta hat (KM)
1.095	90% gamma percentile (KM)	0.532	80% gamma percentile (KM)
3.531	99% gamma percentile (KM)	1.761	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (2.53, α)	0.248	Adjusted Chi Square Value (2.53, β)	0.0962
15% Gamma Approximate KM-UCL (use when n>=50)	3.726	95% Gamma Adjusted KM-UCL (use when n<50)	9.605

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.861	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.323	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Surface Soil ProUCL Output - Substation #7

-2.802	Mean in Log Scale	0.364	Mean in Original Scale
1.935	SD in Log Scale	0.747	SD in Original Scale
1.027	95% Percentile Bootstrap UCL	1.076	95% t UCL (assumes normality of ROS data)
29.29	95% Bootstrap t UCL	1.035	95% BCA Bootstrap UCL
		2603	95% H-LICL (Log POS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.778	KM Geo Mean	0.0622
KM SD (logged)	1.726	95% Critical H Value (KM-Log)	8.141
KM Standard Error of Mean (logged)	0.9	95% H-UCL (KM -Log)	310.5
KM SD (logged)	1.726	95% Critical H Value (KM-Log)	8.141
KM Standard Error of Mean (logged)	0.9		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.364	Mean in Log Scale	-2.813
SD in Original Scale	0.747	SD in Log Scale	1.944
95% t UCL (Assumes normality)	1.076	95% H-Stat UCL	2839

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL N/A d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 9.605

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chrysene

	General Statistics		
Total Number of Observations	5	Number of Distinct Observations	5
		Number of Missing Observations	8
Number of Detects	4	Number of Non-Detects	1
Number of Distinct Detects	4	Number of Distinct Non-Detects	1
Minimum Detect	0.034	Minimum Non-Detect	0.036
Maximum Detect	3.2	Maximum Non-Detect	0.036
Variance Detects	2.4	Percent Non-Detects	20%
Mean Detects	0.88	SD Detects	1.549
Median Detects	0.142	CV Detects	1.761
Skewness Detects	1.984	Kurtosis Detects	3.943
Mean of Logged Detects	-1.62	SD of Logged Detects	2.011

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.673	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.415	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.71	KM Standard Error of Mean	0.644
KM SD	1.247	95% KM (BCA) UCL	N/A
95% KM (t) UCL	2.083	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	1.769	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	2.642	95% KM Chebyshev UCL	3.517
97.5% KM Chebyshev UCL	4.731	99% KM Chebyshev UCL	7.116

Gamma GOF Tests on Detected Observations Only

1 Anderson-Darling GOF Test	0.491	A-D Test Statistic
8)etected data appear Gamma Distributed at 5% Significance L	0.688	5% A-D Critical Value
4 Kolmogorov-Smirnov GOF	0.334	K-S Test Statistic
3 Petected data appear Gamma Distributed at 5% Significance L	0.413	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.275	k star (bias corrected MLE)	0.435	k hat (MLE)
3.193	Theta star (bias corrected MLE)	2.021	Theta hat (MLE)
2.204	nu star (bias corrected)	3.481	nu hat (MLE)
		0.88	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.706	Mean	0.01	Minimum
0.064	Median	3.2	Maximum
1.98	CV	1.397	SD
0.277	k star (bias corrected MLE)	0.358	k hat (MLE)
2.55	Theta star (bias corrected MLE)	1.968	Theta hat (MLE)
2.767	nu star (bias corrected)	3.585	nu hat (MLE)
		0.0086	Adjusted Level of Significance (β)
0.115	Adjusted Chi Square Value (2.77, β)	0.307	Approximate Chi Square Value (2.77, α)
N/A	95% Gamma Adjusted UCL (use when n<50)	6.362	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.71	SD (KM)	1.247
Variance (KM)	1.554	SE of Mean (KM)	0.644
k hat (KM)	0.325	k star (KM)	0.263
nu hat (KM)	3.247	nu star (KM)	2.632
theta hat (KM)	2.188	theta star (KM)	2.699
80% gamma percentile (KM)	1.05	90% gamma percentile (KM)	2.124
95% gamma percentile (KM)	3.386	99% gamma percentile (KM)	6.721

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (2.63, α)	0.272	Adjusted Chi Square Value (2.63, β)	0.104
15% Gamma Approximate KM-UCL (use when n>=50)	6.866	95% Gamma Adjusted KM-UCL (use when n<50)	18.02

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.914	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.229	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.707	Mean in Log Scale	-2.096
SD in Original Scale	1.396	SD in Log Scale	2.041
95% t UCL (assumes normality of ROS data)	2.038	95% Percentile Bootstrap UCL	1.93
95% BCA Bootstrap UCL	1.977	95% Bootstrap t UCL	46.34
95% H-UCL (Log ROS)	17241		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

0.139	KM Geo Mean	-1.973	KM Mean (logged)
8.067	95% Critical H Value (KM-Log)	1.71	KM SD (logged)
592.9	95% H-UCL (KM -Log)	0.883	KM Standard Error of Mean (logged)
8.067	95% Critical H Value (KM-Log)	1.71	KM SD (logged)
		0.883	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.707	Mean in Log Scale	-2.1
SD in Original Scale	1.396	SD in Log Scale	2.045

95% t UCL (Assumes normality) 2.038

95% H-Stat UCL 18051

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL $\,$ N/A $\,$ d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) $\,$ 18.02

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Cobalt

General Statistics

Total Number of Observations	4	Number of Distinct Observations	4
		Number of Missing Observations	9
Minimum	3.1	Mean	4.025
Maximum	4.7	Median	4.15
SD	0.763	Std. Error of Mean	0.382
Coefficient of Variation	0.19	Skewness	-0.492

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.895	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.274	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	4.923	95% Adjusted-CLT UCL (Chen-1995)	4.552
		95% Modified-t UCL (Johnson-1978)	4.907

Gamma GOF Test

A-D Test Statistic	0.379	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.656	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.307	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.394	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	35.41	k star (bias corrected MLE)	9.019
Theta hat (MLE)	0.114	Theta star (bias corrected MLE)	0.446
nu hat (MLE)	283.3	nu star (bias corrected)	72.15
MLE Mean (bias corrected)	4.025	MLE Sd (bias corrected)	1.34
		Approximate Chi Square Value (0.05)	53.6
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 5.419 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.894	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.273	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.375	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.131	Mean of logged Data	1.378
Maximum of Logged Data	1.548	SD of logged Data	0.197
Accumir	a Lognormal Dietribution		

Assuming Lognormai Distribution

95% H-UCL	5.348	90% Chebyshev (MVUE) UCL	5.212
95% Chebyshev (MVUE) UCL	5.749	97.5% Chebyshev (MVUE) UCL	6.495
99% Chebyshev (MVUE) UCL	7.959		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

4.923	95% Jackknife UCL	4.653	95% CLT UCL
N/A	95% Bootstrap-t UCL	N/A	95% Standard Bootstrap UCL
N/A	95% Percentile Bootstrap UCL	N/A	95% Hall's Bootstrap UCL
		N/A	95% BCA Bootstrap UCL
5.688	95% Chebyshev(Mean, Sd) UCL	5.17	90% Chebyshev(Mean, Sd) UCL
7.822	99% Chebyshev(Mean, Sd) UCL	6.408	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 4.923

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Dibenzo(a,h)anthracene

General S	tatistics
-----------	-----------

Total Number of Observations	5	Number of Distinct Observations	5
		Number of Missing Observations	8
Number of Detects	4	Number of Non-Detects	1
Number of Distinct Detects	4	Number of Distinct Non-Detects	1
Minimum Detect	0.007	Minimum Non-Detect	0.036
Maximum Detect	0.4	Maximum Non-Detect	0.036
Variance Detects	0.0366	Percent Non-Detects	20%
Mean Detects	0.114	SD Detects	0.191
Median Detects	0.0235	CV Detects	1.686
Skewness Detects	1.976	Kurtosis Detects	3.916
Mean of Logged Detects	-3.413	SD of Logged Detects	1.794

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.683	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.409	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.0792	KM Standard Error of Mean	0.0944	KM Mean
N/A	95% KM (BCA) UCL	0.153	KM SD
N/A	95% KM (Percentile Bootstrap) UCL	0.263	95% KM (t) UCL
N/A	95% KM Bootstrap t UCL	0.225	95% KM (z) UCL
0.44	95% KM Chebyshev UCL	0.332	90% KM Chebyshev UCL
0.882	99% KM Chebyshev UCL	0.589	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic 0.497 **Anderson-Darling GOF Test**5% A-D Critical Value 0.68 Detected data appear Gamma Distributed at 5% Significance Leve K-S Test Statistic 0.334 **Kolmogorov-Smlrnov GOF**

5% K-S Critical Value 0.41 Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.295	k star (bias corrected MLE)	0.512	k hat (MLE)
0.385	Theta star (bias corrected MLE)	0.222	Theta hat (MLE)
2.356	nu star (bias corrected)	4.092	nu hat (MLE)
		0.114	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.007	Mean	0.0928
Maximum	0.4	Median	0.012
SD	0.172	CV	1.854
k hat (MLE)	0.499	k star (bias corrected MLE)	0.333
Theta hat (MLE)	0.186	Theta star (bias corrected MLE)	0.279
nu hat (MLE)	4.987	nu star (bias corrected)	3.328
Adjusted Level of Significance (β)	0.0086		
Approximate Chi Square Value (3.33, α)	0.476	Adjusted Chi Square Value (3.33, β)	0.181
95% Gamma Approximate UCL (use when n>=50)	0.649	95% Gamma Adjusted UCL (use when n<50)	N/A

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.0944	SD (KM)	0.153
Variance (KM)	0.0235	SE of Mean (KM)	0.0792
k hat (KM)	0.38	k star (KM)	0.285
nu hat (KM)	3.797	nu star (KM)	2.852
theta hat (KM)	0.249	theta star (KM)	0.331
80% gamma percentile (KM)	0.143	90% gamma percentile (KM)	0.28
95% gamma percentile (KM)	0.439	99% gamma percentile (KM)	0.854

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (2.85, α)	0.33	Adjusted Chi Square Value (2.85, β)	0.123
15% Gamma Approximate KM-UCL (use when n>=50)	0.816	95% Gamma Adjusted KM-UCL (use when n<50)	2.182

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.907	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.236	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-3.556	Mean in Log Scale	0.094	Mean in Original Scale
1.586	SD in Log Scale	0.171	SD in Original Scale
0.245	95% Percentile Bootstrap UCL	0.257	95% t UCL (assumes normality of ROS data)
3.77	95% Bootstrap t UCL	0.249	95% BCA Bootstrap UCL
		38.72	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.58	KM Geo Mean	0.0279
KM SD (logged)	1.46	95% Critical H Value (KM-Log)	6.939
KM Standard Error of Mean (logged)	0.775	95% H-UCL (KM -Log)	12.83
KM SD (logged)	1.46	95% Critical H Value (KM-Log)	6.939
KM Standard Error of Mean (logged)	0.775		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.0944	Mean in Log Scale	-3.534

Surface Soil ProUCL Output - Substation #7

 SD in Original Scale
 0.171
 SD in Log Scale
 1.577

 95% t UCL (Assumes normality)
 0.258
 95% H-Stat UCL
 36.49

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL N/A d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 2.182

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Diesel Range Organics (C10-C20)

General Statistics

Total Number of Observations	4	Number of Distinct Observations	4
		Number of Missing Observations	9
Number of Detects	1	Number of Non-Detects	3
Number of Distinct Detects	1	Number of Distinct Non-Detects	3

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! ested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV

The data set for variable Diesel Range Organics (C10-C20) was not processed!

Indeno(1,2,3-cd)pyrene

	General Statistics		
Total Number of Observations	5	Number of Distinct Observations	5
		Number of Missing Observations	8
Number of Detects	4	Number of Non-Detects	1
Number of Distinct Detects	4	Number of Distinct Non-Detects	1
Minimum Detect	0.02	Minimum Non-Detect	0.036
Maximum Detect	1.3	Maximum Non-Detect	0.036
Variance Detects	0.391	Percent Non-Detects	20%
Mean Detects	0.363	SD Detects	0.625
Median Detects	0.0665	CV Detects	1.721
Skewness Detects	1.989	Kurtosis Detects	3.964
Mean of Logged Detects	-2.288	SD of Logged Detects	1.801

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.669	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.422	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.26	KM Standard Error of Mean	0.295	KM Mean
N/A	95% KM (BCA) UCL	0.503	KM SD
N/A	95% KM (Percentile Bootstrap) UCL	0.849	95% KM (t) UCL
N/A	95% KM Bootstrap t UCL	0.722	95% KM (z) UCL
1.427	95% KM Chebyshev UCL	1.074	90% KM Chebyshev UCL
2.88	99% KM Chebyshey UCL	1.918	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.541	Anderson-Darling GOF Test
5% A-D Critical Value	0.681	Detected data appear Gamma Distributed at 5% Significance Leve

K-S Test Statistic 0.378 Kolmogorov-Smirnov GOF

5% K-S Critical Value 0.41 Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.498	k star (bias corrected MLE)	0.291
Theta hat (MLE)	0.729	Theta star (bias corrected MLE)	1.247
nu hat (MLE)	3.987	nu star (bias corrected)	2.33
Mean (detects)	0.363		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.293	Mean	0.01	Minimum
0.048	Median	1.3	Maximum
1.927	CV	0.564	SD
0.304	k star (bias corrected MLE)	0.428	k hat (MLE)
0.961	Theta star (bias corrected MLE)	0.684	Theta hat (MLE)
3.044	nu star (bias corrected)	4.276	nu hat (MLE)
		0.0086	Adjusted Level of Significance (β)
0.144	Adjusted Chi Square Value (3.04, β)	0.386	Approximate Chi Square Value (3.04, α)
N/A	95% Gamma Adjusted UCL (use when n<50)	2.31	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.295	SD (KM)	0.503
Variance (KM)	0.253	SE of Mean (KM)	0.26
k hat (KM)	0.343	k star (KM)	0.27
nu hat (KM)	3.427	nu star (KM)	2.704
theta hat (KM)	0.86	theta star (KM)	1.089
80% gamma percentile (KM)	0.439	90% gamma percentile (KM)	0.879
95% gamma percentile (KM)	1.392	99% gamma percentile (KM)	2.746

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (2.70, α)	0.29	Adjusted Chi Square Value (2.70, β)	0.11
15% Gamma Approximate KM-UCL (use when n>=50)	2.743	95% Gamma Adjusted KM-UCL (use when n<50)	7.262

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.903	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.289	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.293	Mean in Log Scale	-2.713
SD in Original Scale	0.564	SD in Log Scale	1.826
95% t UCL (assumes normality of ROS data)	0.83	95% Percentile Bootstrap UCL	0.792
95% BCA Bootstrap UCL	0.807	95% Bootstrap t UCL	8.986
95% H-UCL (Log ROS)	903.2		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.613	KM Geo Mean	0.0733
KM SD (logged)	1.539	95% Critical H Value (KM-Log)	7.296
KM Standard Error of Mean (logged)	0.795	95% H-UCL (KM -Log)	65.78
KM SD (logged)	1.539	95% Critical H Value (KM-Log)	7.296
KM Standard Error of Mean (logged)	0.795		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.294	Mean in Log Scale	-2.634
SD in Original Scale	0.563	SD in Log Scale	1.741
95% t UCL (Assumes normality)	0.831	95% H-Stat UCL	415.5

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL $\,$ N/A $\,$ d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) $\,$ 7.262

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Manganese

		General Statistics	
4	Number of Distinct Observations	4	Total Number of Observations
9	Number of Missing Observations		
197.5	Mean	120	Minimum
150	Median	370	Maximum
58.08	Std. Error of Mean	116.2	SD
1 882	Skewness	0.588	Coefficient of Variation

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.758	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.377	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Data Not Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

71000	ining i torrida biol	ibaaoii	
% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	334.2	95% Adjusted-CLT UCL (Chen-1995)	351.4
		95% Modified-t UCL (Johnson-1978)	343.3

Gamma GOF Test

A-D Test Statistic	0.561	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.659 Detected of	data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.366	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.396 Detected of	data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	4.865	k star (bias corrected MLE)	
Theta hat (MLE)	40.6	Theta star (bias corrected MLE)	
nu hat (MLE)	38.92	nu star (bias corrected)	11.06
MLE Mean (bias corrected)	197.5	97.5 MLE Sd (bias corrected)	
		Approximate Chi Square Value (0.05)	4.616
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 473.3 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.834	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.332	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.375	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	4.787	Mean of logged Data	5.179
Maximum of Logged Data	5.914	SD of logged Data	0.503

Assuming Lognormal Distribution

95% H-UCL	586.4	90% Chebyshev (MVUE) UCL	339.3
95% Chebyshev (MVUE) UCL	404.7	97.5% Chebyshev (MVUE) UCL	495.5
99% Chebyshey (MV/HE) LICI	673.0		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	293	95% Jackknife UCL	334.2
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	371.7	95% Chebyshev(Mean, Sd) UCL	450.7
97.5% Chebyshev(Mean, Sd) UCL	560.2	99% Chebyshev(Mean, Sd) UCL	775.4

Suggested UCL to Use

95% Student's-t UCL 334.2

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Naphthalene

	General Statistics		
Total Number of Observations	5	Number of Distinct Observations	5
		Number of Missing Observations	8
Number of Detects	4	Number of Non-Detects	1
Number of Distinct Detects	4	Number of Distinct Non-Detects	1
Minimum Detect	0.0038	Minimum Non-Detect	0.036
Maximum Detect	0.067	Maximum Non-Detect	0.036
Variance Detects	0.00104	Percent Non-Detects	20%
Mean Detects	0.0325	SD Detects	0.0323
Median Detects	0.0296	CV Detects	0.995
Skewness Detects	0.156	Kurtosis Detects	-5.06
Mean of Logged Detects	-4.078	SD of Logged Detects	1.468

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk GOF Test	0.84	Shapiro Wilk Test Statistic
Detected Data appear Normal at 5% Significance Leve	0.748	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.293	Lilliefors Test Statistic
Detected Data appear Normal at 5% Significance Leve	0.375	5% Lilliefors Critical Value

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.0141	KM Standard Error of Mean	0.027	KM Mean
N/A	95% KM (BCA) UCL	0.0273	KM SD
N/A	95% KM (Percentile Bootstrap) UCL	0.0571	95% KM (t) UCL
N/A	95% KM Bootstrap t UCL	0.0502	95% KM (z) UCL
0.0885	95% KM Chebyshev UCL	0.0693	90% KM Chebyshev UCL
0.168	99% KM Chebyshev UCL	0.115	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.496	Anderson-Darling GOF Test
5% A-D Critical Value	0.668	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.306	Kolmogorov-Smirnov GOF

5% K-S Critical Value 0.403)etected data appear Gamma Distributed at 5% Significance Leve Detected data appear Gamma Distributed at 5% Significance Level

_			
Gamma	Statistics	on Detected	Data Only

k hat (MLE)	0.898	k star (bias corrected MLE)	0.391
Theta hat (MLE)	0.0361	Theta star (bias corrected MLE)	0.083
nu hat (MLE)	7.187	nu star (bias corrected)	3.13
Mean (detects)	0.0325		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0038	Mean	0.028
Maximum	0.067	Median	0.01
SD	0.0297	CV	1.063
k hat (MLE)	0.956	k star (bias corrected MLE)	0.516
Theta hat (MLE)	0.0293	Theta star (bias corrected MLE)	0.0543
nu hat (MLE)	9.556	nu star (bias corrected)	5.156
Adjusted Level of Significance (β)	0.0086		
Approximate Chi Square Value (5.16, α)	1.225	Adjusted Chi Square Value (5.16, β)	0.578
95% Gamma Approximate UCL (use when n>=50)	0.118	95% Gamma Adjusted UCL (use when n<50)	N/A

Estimates of Gamma Parameters using KM Estimates

0.0273	SD (KM)	0.027	Mean (KM)
0.0141	SE of Mean (KM)	7.4771E-4	Variance (KM)
0.522	k star (KM)	0.973	k hat (KM)
5.225	nu star (KM)	9.728	nu hat (KM)
0.0516	theta star (KM)	0.0277	theta hat (KM)
0.0723	90% gamma percentile (KM)	0.0444	80% gamma percentile (KM)
0.175	99% gamma percentile (KM)	0.102	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (5.22, α)	1.257	Adjusted Chi Square Value (5.22, β)	0.597
15% Gamma Approximate KM-LICL (use when n>=50)	0 112	95% Gamma Adjusted KM-LICL (use when n<50)	0.236

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.843	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.281	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.375	Detected Data appear Lognormal at 5% Significance Level	
Detected Data appear Lognormal at 5% Significance Level			

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0271	Mean in Log Scale	-4.302
SD in Original Scale	0.0305	SD in Log Scale	1.367
95% t UCL (assumes normality of ROS data)	0.0561	95% Percentile Bootstrap UCL	0.0488
95% BCA Bootstrap UCL	0.0492	95% Bootstrap t UCL	0.654
95% H-UCL (Log ROS)	2.97		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

<u> </u>			
KM Mean (logged)	-4.33	KM Geo Mean	0.0132
KM SD (logged)	1.248	95% Critical H Value (KM-Log)	5.993
KM Standard Error of Mean (logged)	0.648	95% H-UCL (KM -Log)	1.209
KM SD (logged)	1.248	95% Critical H Value (KM-Log)	5.993
KM Standard Error of Mean (logged)	0.648		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed			
Mean in Original Scale	0.0296	Mean in Log Scale	-4.066	
SD in Original Scale	0.0287	SD in Log Scale	1.272	
95% t UCL (Assumes normality)	0.057	95% H-Stat UCL	1.862	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.0571

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Nickel

	istics	General Statis	
3	Number of Distinct Observations	4	Total Number of Observations
9	Number of Missing Observations		
10.4	Mean	3.6	Minimum
12	Median	14	Maximum
2.315	Std. Error of Mean	4.63	SD
-1.743	Skewness	0.445	Coefficient of Variation

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk GOF Test	0.794	Shapiro Wilk Test Statistic
Data appear Normal at 5% Significance Lev	0.748	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.385	Lilliefors Test Statistic
Data Not Normal at 5% Significance Leve	0.375	5% Lilliefors Critical Value

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

Assuming Normal Distribution			
95% Normal UCL	95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL 15.85	95% Adjusted-CLT UCL (Chen-1995)	12.05	
	95% Modified-t UCL (Johnson-1978)	15.51	

Gamma GOF Test

A-D Test Statistic	0.709	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.659	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.429	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.396	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	4.349	k star (bias corrected MLE)	1.254
Theta hat (MLE)	2.391	Theta star (bias corrected MLE)	8.294
nu hat (MLE)	34.79	nu star (bias corrected)	10.03
MLE Mean (bias corrected)	10.4	MLE Sd (bias corrected)	9.288
		Approximate Chi Square Value (0.05)	3.961
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 26.34 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.727	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.748	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.411	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.375	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.281	Mean of logged Data	2.222
Maximum of Logged Data	2.639	SD of logged Data	0.632

Assuming Lognormal Distribution

95% H-UCL	55.97	90% Chebyshev (MVUE) UCL	20.5
95% Chebyshev (MVUE) UCL	24.94	97.5% Chebyshev (MVUE) UCL	31.12
99% Chebyshev (MVUE) UCL	43.25		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	14.21	95% Jackknife UCL	15.85
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	17.35	95% Chebyshev(Mean, Sd) UCL	20.49
97.5% Chebyshev(Mean, Sd) UCL	24.86	99% Chebyshev(Mean, Sd) UCL	33.44

Suggested UCL to Use

95% Student's-t UCL 15.85

Recommended UCL exceeds the maximum observation

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

PCB, Total Aroclors (AECOM Calc)

General Statistics

Total Number of Observations	13	Number of Distinct Observations	13
Number of Detects	11	Number of Non-Detects	2
Number of Distinct Detects	11	Number of Distinct Non-Detects	2
Minimum Detect	0.0011	Minimum Non-Detect	9.2000E-4
Maximum Detect	5.1	Maximum Non-Detect	9.5000E-4
Variance Detects	2.299	Percent Non-Detects	15.38%
Mean Detects	0.546	SD Detects	1.516
Median Detects	0.026	CV Detects	2.777
Skewness Detects	3.272	Kurtosis Detects	10.78
Mean of Logged Detects	-3.257	SD of Logged Detects	2.494

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.409	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.442	Lilliefors GOF Test
5% Lilliefors Critical Value	0.251	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

1 Mean 0.462	KM Mean 0.462 KM Standard Error of Mean	0.391
KM SD 1.344	KM SD 1.344 95% KM (BCA) UCL	1.245
(t) UCL 1.159	6 KM (t) UCL 1.159 95% KM (Percentile Bootstrap) UCL	1.218
z) UCL 1.105	5 KM (z) UCL 1.105 95% KM Bootstrap t UCL	8.852
ev UCL 1.635	ebyshev UCL 1.635 95% KM Chebyshev UCL	2.166
v UCL 2.904	ebyshev UCL 2.904 99% KM Chebyshev UCL	4.353

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.902	Anderson-Darling GOF Test
5% A-D Critical Value	0.834	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.245	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.278	Detected data appear Gamma Distributed at 5% Significance Leve

February 2020

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

0.254	k star (bias corrected MLE)	0.265	k hat (MLE)
2.153	Theta star (bias corrected MLE)	2.058	Theta hat (MLE)
5.578	nu star (bias corrected)	5.836	nu hat (MLE)
		0.546	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0011	Mean	0.463
Maximum	5.1	Median	0.022
SD	1.399	CV	3.017
k hat (MLE)	0.262	k star (bias corrected MLE)	0.252
Theta hat (MLE)	1.772	Theta star (bias corrected MLE)	1.836
nu hat (MLE)	6.801	nu star (bias corrected)	6.565
Adjusted Level of Significance (β)	0.0301		
Approximate Chi Square Value (6.56, α)	1.935	Adjusted Chi Square Value (6.56, β)	1.599
95% Gamma Approximate UCL (use when n>=50)	1.572	95% Gamma Adjusted UCL (use when n<50)	1.903

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.462	SD (KM)	1.344
Variance (KM)	1.807	SE of Mean (KM)	0.391
k hat (KM)	0.118	k star (KM)	0.142
nu hat (KM)	3.073	nu star (KM)	3.697
theta hat (KM)	3.91	theta star (KM)	3.25
80% gamma percentile (KM)	0.481	90% gamma percentile (KM)	1.359
95% gamma percentile (KM)	2.569	99% gamma percentile (KM)	6.119

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (3.70, α)	0.606	Adjusted Chi Square Value (3.70, β)	0.457
15% Gamma Approximate KM-UCL (use when n>=50)	2.82	95% Gamma Adjusted KM-UCL (use when n<50)	3.74

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.971	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.108	Lilliefors GOF Test
5% Lilliefors Critical Value	0.251	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-4.171	Mean in Log Scale	0.462	Mean in Original Scale
3.188	SD in Log Scale	1.399	SD in Original Scale
1.23	95% Percentile Bootstrap UCL	1.154	95% t UCL (assumes normality of ROS data)
9.072	95% Bootstrap t UCL	1.631	95% BCA Bootstrap UCL
		2165	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.832	KM Geo Mean	0.0217
KM SD (logged)	2.569	95% Critical H Value (KM-Log)	6.015
KM Standard Error of Mean (logged)	0.747	95% H-UCL (KM -Log)	50.92
KM SD (logged)	2.569	95% Critical H Value (KM-Log)	6.015
KM Standard Error of Mean (logged)	0.747		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.462	Mean in Log Scale	-3.936
SD in Original Scale	1.399	SD in Log Scale	2.816
95% t UCL (Assumes normality)	1.154	95% H-Stat UCL	210.7

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL 8.852 d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 3.74

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

TCDD TEQ HH

General Statistics

Total Number of Observations 1	Number of Distinct Observations 1
	Number of Missing Observations 8
Minimum 4.3700E-6	Mean 4.3700E-6
Maximum 4.3700E-6	Median 4.3700E-6

Warning: This data set only has 1 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable TCDD TEQ HH was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Thallium

General Statistics		
4	Number of Distinct Observations	3
	Number of Missing Observations	9
1	Number of Non-Detects	3
1	Number of Distinct Non-Detects	2
		4 Number of Distinct Observations Number of Missing Observations 1 Number of Non-Detects

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! ested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV

The data set for variable Thallium was not processed!

Vanadium

	General Statistics		
Total Number of Observations	4	Number of Distinct Observations	4
		Number of Missing Observations	9
Minimum	3.4	Mean	14.6
Maximum	23	Median	16
SD	9.127	Std. Error of Mean	4.564
Coefficient of Variation	0.625	Skewness	-0.523

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.918	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.258	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

Surface Soil ProUCL Output - Substation #7

95% Normal UCL 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 25.34
 95% Adjusted-CLT UCL (Chen-1995)
 20.83

 95% Modified-t UCL (Johnson-1978)
 25.14

Gamma GOF Test

A-D Test Statistic 0.376 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.66 Detected data appear Gamma Distributed at 5% Significance Leve

K-S Test Statistic 0.289 Kolmogorov-Smirnov Gamma GOF Test

5% K-S Critical Value 0.397 Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

 k hat (MLE)
 2.321
 k star (bias corrected MLE)
 0.747

 Theta hat (MLE)
 6.29
 Theta star (bias corrected MLE)
 19.55

 nu hat (MLE)
 18.57
 nu star (bias corrected)
 5.976

 MLE Mean (bias corrected)
 14.6
 MLE Sd (bias corrected)
 16.89

 Approximate Chi Square Value (0.05)
 1.628

 Adjusted Level of Significance
 N/A
 Adjusted Chi Square Value
 N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 53.61 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.868 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.25 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.375 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 1.224
 Mean of logged Data
 2.45

 Maximum of Logged Data
 3.135
 SD of logged Data
 0.881

Assuming Lognormal Distribution

 95% H-UCL
 347.5
 90% Chebyshev (MVUE) UCL
 34.34

 95% Chebyshev (MVUE) UCL
 42.97
 97.5% Chebyshev (MVUE) UCL
 54.95

 99% Chebyshev (MVUE) UCL
 78.49

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

 95% CLT UCL
 22.11
 95% Jackknife UCL
 25.34

 95% Standard Bootstrap UCL
 N/A
 95% Bootstrap-t UCL
 N/A

 95% Hall's Bootstrap UCL
 N/A
 95% Percentile Bootstrap UCL
 N/A

 95% BCA Bootstrap UCL
 N/A
 95% Chebyshev(Mean, Sd) UCL
 34.49

 97.5% Chebyshev(Mean, Sd) UCL
 43.1
 99% Chebyshev(Mean, Sd) UCL
 60.01

Suggested UCL to Use

95% Student's-t UCL 25.34

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.110/5/2018 12:24:55 PM

From File Soil-TransformShop-SS-v2.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Arsenic

General Statistics

Total Number of Observations	1	Number of Distinct Observations	1
		Number of Missing Observations	14
Minimum	1.7	Mean	1.7
Maximum	1.7	Median	1.7

Warning: This data set only has 1 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable Arsenic was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Benzo(a)anthracene

RI Report - BHHRA

General Statistics

Total Number of Observations	25	Number of Distinct Observations	19
		Number of Missing Observations	23
Number of Detects	13	Number of Non-Detects	12
Number of Distinct Detects	13	Number of Distinct Non-Detects	6
Minimum Detect	0.0033	Minimum Non-Detect	0.0069
Maximum Detect	2	Maximum Non-Detect	0.069
Variance Detects	0.611	Percent Non-Detects	48%
Mean Detects	0.619	SD Detects	0.781
Median Detects	0.14	CV Detects	1.263
Skewness Detects	1.037	Kurtosis Detects	-0.569
Mean of Logged Detects	-2.062	SD of Logged Detects	2.381

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.76	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.866	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.268	Lilliefors GOF Test
5% Lilliefors Critical Value	0.234	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.324	KM Standard Error of Mean	0.13
KM SD	0.622	95% KM (BCA) UCL	0.529
95% KM (t) UCL	0.546	95% KM (Percentile Bootstrap) UCL	0.539
95% KM (z) UCL	0.537	95% KM Bootstrap t UCL	0.671
90% KM Chebyshev UCL	0.713	95% KM Chebyshev UCL	0.889
97.5% KM Chebyshev UCL	1.133	99% KM Chebyshev UCL	1.613

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.493	Anderson-Darling GOF Test	
5% A-D Critical Value	0.807	Detected data appear Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.155	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.253	Detected data appear Gamma Distributed at 5% Significance Level	
Detected data appear Gamma Distributed at 5% Significance Level			

Gamma Statistics on Detected Data Only

0.37	k star (bias corrected MLE)	0.414	k hat (MLE)
1.674	Theta star (bias corrected MLE)	1.495	Theta hat (MLE)
9.608	nu star (bias corrected)	10.76	nu hat (MLE)
		0.619	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.327	Mean	0.0033	Minimum
0.01	Median	2	Maximum
1.941	CV	0.634	SD
0.305	k star (bias corrected MLE)	0.316	k hat (MLE)
1.071	Theta star (bias corrected MLE)	1.033	Theta hat (MLE)
15.24	nu star (bias corrected)	15.8	nu hat (MLE)
		0.0395	Adjusted Level of Significance (β)
7.057	Adjusted Chi Square Value (15.24, β)	7.428	Approximate Chi Square Value (15.24, α)
0.705	95% Gamma Adjusted UCL (use when n<50)	0.67	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.324	SD (KM)	0.622
Variance (KM)	0.387	SE of Mean (KM)	0.13
k hat (KM)	0.271	k star (KM)	0.265
nu hat (KM)	13.57	nu star (KM)	13.27
theta hat (KM)	1.195	theta star (KM)	1.221
80% gamma percentile (KM)	0.48	90% gamma percentile (KM)	0.968
95% gamma percentile (KM)	1.541	99% gamma percentile (KM)	3.052

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (13.27, α)	6.076	Adjusted Chi Square Value (13.27, β)	5.745
95% Gamma Approximate KM-UCL (use when n>=50)	0.708	95% Gamma Adjusted KM-UCL (use when n<50)	0.749

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.896	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.866	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.192	Lilliefors GOF Test
5% Lilliefors Critical Value	0.234	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-3.827	Mean in Log Scale	0.324	Mean in Original Scale
2.622	SD in Log Scale	0.635	SD in Original Scale
0.559	95% Percentile Bootstrap UCL	0.541	95% t UCL (assumes normality of ROS data)
0.639	95% Bootstrap t UCL	0.591	95% BCA Bootstrap UCL
		9.863	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.736	KM Geo Mean	0.0239
KM SD (logged)	2.421	95% Critical H Value (KM-Log)	4.669
KM Standard Error of Mean (logged)	0.509	95% H-UCL (KM -Log)	4.488
KM SD (logged)	2.421	95% Critical H Value (KM-Log)	4.669
KM Standard Error of Mean (logged)	0.509		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.326	Mean in Log Scale	-3.508
SD in Original Scale	0.634	SD in Log Scale	2.355
95% t UCL (Assumes normality)	0.543	95% H-Stat UCL	4.299

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

ımma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 0.749

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)pyrene

	General Statistics		
Total Number of Observations	25	Number of Distinct Observations	16
		Number of Missing Observations	23
Number of Detects	11	Number of Non-Detects	14
Number of Distinct Detects	10	Number of Distinct Non-Detects	8
Minimum Detect	0.0029	Minimum Non-Detect	0.0069
Maximum Detect	1.7	Maximum Non-Detect	0.37
Variance Detects	0.482	Percent Non-Detects	56%
Mean Detects	0.643	SD Detects	0.695
Median Detects	0.6	CV Detects	1.08
Skewness Detects	0.653	Kurtosis Detects	-1.31
Mean of Logged Detects	-1.778	SD of Logged Detects	2.292

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.805	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.251	Lilliefors GOF Test
5% Lilliefors Critical Value	0.251	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.286	KM Standard Error of Mean	0.114
KM SD	0.542	95% KM (BCA) UCL	0.482
95% KM (t) UCL	0.48	95% KM (Percentile Bootstrap) UCL	0.478
95% KM (z) UCL	0.473	95% KM Bootstrap t UCL	0.533
90% KM Chebyshev UCL	0.627	95% KM Chebyshev UCL	0.781
97.5% KM Chebyshev UCL	0.995	99% KM Chebyshev UCL	1.416

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.572	Anderson-Darling GOF Test		
5% A-D Critical Value	0.785	Detected data appear Gamma Distributed at 5% Significance Level		
K-S Test Statistic	0.215	Kolmogorov-Smirnov GOF		
5% K-S Critical Value	0.27	Detected data appear Gamma Distributed at 5% Significance Level		
Detected data appear Gamma Distributed at 5% Significance Level				

Gamma Statistics on Detected Data Only

k hat (MLE)	0.478	k star (bias corrected MLE)	0.409
Theta hat (MLE)	1.344	Theta star (bias corrected MLE)	1.574
nu hat (MLE)	10.53	nu star (bias corrected)	8.989
Mean (detects)	0.643		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0029	Mean	0.289
Maximum	1.7	Median	0.01
SD	0.551	CV	1.91
k hat (MLE)	0.322	k star (bias corrected MLE)	0.31
Theta hat (MLE)	0.897	Theta star (bias corrected MLE)	0.931
nu hat (MLE)	16.09	nu star (bias corrected)	15.49
Adjusted Level of Significance (β)	0.0395		
Approximate Chi Square Value (15.49, α)	7.605	Adjusted Chi Square Value (15.49, β)	7.23
95% Gamma Approximate UCL (use when n>=50)	0.588	95% Gamma Adjusted UCL (use when n<50)	0.618

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.286	SD (KM)	0.542
Variance (KM)	0.293	SE of Mean (KM)	0.114
k hat (KM)	0.278	k star (KM)	0.272
nu hat (KM)	13.91	nu star (KM)	13.58
theta hat (KM)	1.027	theta star (KM)	1.052
80% gamma percentile (KM)	0.426	90% gamma percentile (KM)	0.852
95% gamma percentile (KM)	1.349	99% gamma percentile (KM)	2.657

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (13.58, α)	6.282	Adjusted Chi Square Value (13.58, β)	5.945
95% Gamma Approximate KM-UCL (use when n>=50)	0.617	95% Gamma Adjusted KM-UCL (use when n<50)	0.652

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.873	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.255	Lilliefors GOF Test
5% Lilliefors Critical Value	0.251	Detected Data Not Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.285	Mean in Log Scale	-4.121
SD in Original Scale	0.553	SD in Log Scale	2.706
95% t UCL (assumes normality of ROS data)	0.474	95% Percentile Bootstrap UCL	0.461
95% BCA Bootstrap UCL	0.519	95% Bootstrap t UCL	0.572
95% H-UCL (Log ROS)	10.85		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.956	KM Geo Mean	0.0191
KM SD (logged)	2.451	95% Critical H Value (KM-Log)	4.719
KM Standard Error of Mean (logged)	0.523	95% H-UCL (KM -Log)	4.087
KM SD (logged)	2.451	95% Critical H Value (KM-Log)	4.719
KM Standard Error of Mean (logged)	0.523		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.295	Mean in Log Scale	-3.508
SD in Original Scale	0.549	SD in Log Scale	2.336
95% t UCL (Assumes normality)	0.483	95% H-Stat UCL	3.967

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

ımma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 0.652

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(b)fluoranthene

General Statistics Total Number of Observations 25 Number of Distinct Observations Number of Missing Observations 23 Number of Detects 13 Number of Non-Detects 12 Number of Distinct Detects 12 Number of Distinct Non-Detects 6 Minimum Detect 0.0038 Minimum Non-Detect 0.0069 Maximum Detect 2.1 Maximum Non-Detect 0.069 Variance Detects 0.668 Percent Non-Detects 48% Mean Detects 0.727 SD Detects 0.818 Median Detects 0.69 CV Detects 1.124 Skewness Detects 0.869 Kurtosis Detects -0.728

Mean of Logged Detects -1.743

SD of Logged Detects 2.368

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.798	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.866	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.243	Lilliefors GOF Test
5% Lilliefors Critical Value	0.234	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.38	KM Standard Error of Mean	0.14
KM SD	0.672	95% KM (BCA) UCL	0.616
95% KM (t) UCL	0.62	95% KM (Percentile Bootstrap) UCL	0.602
95% KM (z) UCL	0.61	95% KM Bootstrap t UCL	0.714
90% KM Chebyshev UCL	0.8	95% KM Chebyshev UCL	0.99
7.5% KM Chebyshev UCL	1.254	99% KM Chebyshev UCL	1.771

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.606	Anderson-Darling GOF Test
5% A-D Critical Value	0.799	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.217	Kolmogorov-Smirnov GOF

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.4	k star (bias corrected MLE)	0.453	k hat (MLE)
1.819	Theta star (bias corrected MLE)	1.605	Theta hat (MLE)
10.39	nu star (bias corrected)	11.78	nu hat (MLE)
		0.727	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.383	Mean	0.0038	Minimum
0.01	Median	2.1	Maximum
1.786	CV	0.684	SD
0.306	k star (bias corrected MLE)	0.317	k hat (MLE)
1.253	Theta star (bias corrected MLE)	1.208	Theta hat (MLE)
15.28	nu star (bias corrected)	15.84	nu hat (MLE)
		0.0395	Adjusted Level of Significance (β)
7.082	Adjusted Chi Square Value (15.28, β)	7.454	Approximate Chi Square Value (15.28, α)
0.826	95% Gamma Adjusted UCL (use when n<50)	0.785	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

0.672	SD (KM)	0.38	Mean (KM)
0.14	SE of Mean (KM)	0.451	Variance (KM)
0.309	k star (KM)	0.321	k hat (KM)
15.45	nu star (KM)	16.04	nu hat (KM)
1.231	theta star (KM)	1.186	theta hat (KM)
1.118	90% gamma percentile (KM)	0.588	nma percentile (KM)
3.292	99% gamma percentile (KM)	1.724	nma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

80% gam

Approximate Chi Square Value (15.45, α)	7.576	Adjusted Chi Square Value (15.45, β)	7.201
95% Gamma Approximate KM-UCL (use when n>=50)	0.776	95% Gamma Adjusted KM-UCL (use when n<50)	0.816

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.86	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.866	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.257	Lilliefors GOF Test
5% Lilliefors Critical Value	0.234	Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.381	Mean in Log Scale	-3.514
SD in Original Scale	0.685	SD in Log Scale	2.614
95% t UCL (assumes normality of ROS data)	0.616	95% Percentile Bootstrap UCL	0.625
95% BCA Bootstrap UCL	0.677	95% Bootstrap t UCL	0.746
95% H-LICL (Log ROS)	13.01		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.518	KM Geo Mean	0.0297
KM SD (logged)	2.48	95% Critical H Value (KM-Log)	4.769
KM Standard Error of Mean (logged)	0.519	95% H-UCL (KM -Log)	7.189
KM SD (logged)	2.48	95% Critical H Value (KM-Log)	4.769
KM Standard Error of Mean (logged)	0.519		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.383	Mean in Log Scale	-3.342
SD in Original Scale	0.684	SD in Log Scale	2.458
95% t UCL (Assumes normality)	0.617	95% H-Stat UCL	7.797

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

ımma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 0.816

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(k)fluoranthene

	General Statistics		
Total Number of Observations	25	Number of Distinct Observations	18
		Number of Missing Observations	23
Number of Detects	11	Number of Non-Detects	14
Number of Distinct Detects	11	Number of Distinct Non-Detects	7
Minimum Detect	0.0041	Minimum Non-Detect	0.0069
Maximum Detect	0.79	Maximum Non-Detect	0.069
Variance Detects	0.101	Percent Non-Detects	56%
Mean Detects	0.317	SD Detects	0.318
Median Detects	0.27	CV Detects	1.004
Skewness Detects	0.664	Kurtosis Detects	-1.244
Mean of Logged Detects	-2.097	SD of Logged Detects	1.828

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.825	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.191	Lilliefors GOF Test
5% Lilliefors Critical Value	0.251	Detected Data appear Normal at 5% Significance Level

Detected Data appear Approximate Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

K	M Mean	0.142	KM Standard Error of Mean	0.0533
	KM SD	0.254	95% KM (BCA) UCL	0.23
95% KM	(t) UCL	0.233	95% KM (Percentile Bootstrap) UCL	0.228
95% KM	(z) UCL	0.23	95% KM Bootstrap t UCL	0.272
90% KM Chebysh	ev UCL	0.302	95% KM Chebyshev UCL	0.374
7.5% KM Chebysh	ev UCL	0.475	99% KM Chebyshev UCL	0.672

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.459	Anderson-Darling GOF Test
5% A-D Critical Value	0.77	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.17	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.267	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.53	k star (bias corrected MLE)	0.645	k hat (MLE)
0.598	Theta star (bias corrected MLE)	0.491	Theta hat (MLE)
11.66	nu star (bias corrected)	14.2	nu hat (MLE)
		0.317	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.145	Mean	0.0041	Minimum
0.01	Median	0.79	Maximum
1.776	CV	0.258	SD
0.393	k star (bias corrected MLE)	0.416	k hat (MLE)
0.369	Theta star (bias corrected MLE)	0.348	Theta hat (MLE)
19.65	nu star (bias corrected)	20.82	nu hat (MLE)
		0.0395	Adjusted Level of Significance (β)
10.14	Adjusted Chi Square Value (19.65, β)	10.6	Approximate Chi Square Value (19.65, α)
0.281	95% Gamma Adjusted UCL (use when n<50)	0.269	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.142	SD (KM)	0.254
Variance (KM)	0.0645	SE of Mean (KM)	0.0533
k hat (KM)	0.313	k star (KM)	0.302
nu hat (KM)	15.63	nu star (KM)	15.09
theta hat (KM)	0.454	theta star (KM)	0.471
80% gamma percentile (KM)	0.218	90% gamma percentile (KM)	0.419
95% gamma percentile (KM)	0.648	99% gamma percentile (KM)	1.245

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (15.09, α)	7.325	Adjusted Chi Square Value (15.09, β)	6.957
95% Gamma Approximate KM-UCL (use when n>=50)	0.293	95% Gamma Adjusted KM-UCL (use when n<50)	0.308

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.885	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.212	Lilliefors GOF Test
5% Lilliefors Critical Value	0.251	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.142	Mean in Log Scale	-4.112
SD in Original Scale	0.259	SD in Log Scale	2.288
95% t UCL (assumes normality of ROS data)	0.231	95% Percentile Bootstrap UCL	0.228
95% BCA Bootstrap UCL	0.254	95% Bootstrap t UCL	0.273
95% H-UCL (Log ROS)	1.793		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.971	KM Geo Mean	0.0189
KM SD (logged)	2.036	95% Critical H Value (KM-Log)	4.035
KM Standard Error of Mean (logged)	0.43	95% H-UCL (KM -Log)	0.802
KM SD (logged)	2.036	95% Critical H Value (KM-Log)	4.035
KM Standard Error of Mean (logged)	0.43		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.144	Mean in Log Scale	-3.807
SD in Original Scale	0.258	SD in Log Scale	2.04
95% t UCL (Assumes normality)	0.233	95% H-Stat UCL	0.959

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.233

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chrysene

Statistics	

Total Number of Observations	25	Number of Distinct Observations	16
		Number of Missing Observations	23
Number of Detects	13	Number of Non-Detects	12
Number of Distinct Detects	11	Number of Distinct Non-Detects	6
Minimum Detect	0.0038	Minimum Non-Detect	0.0069
Maximum Detect	1.9	Maximum Non-Detect	0.069
Variance Detects	0.585	Percent Non-Detects	48%
Mean Detects	0.615	SD Detects	0.765
Median Detects	0.2	CV Detects	1.243
Skewness Detects	1.012	Kurtosis Detects	-0.629
Mean of Logged Detects	-2.028	SD of Logged Detects	2.357

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.759	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.866	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.245	Lilliefors GOF Test
5% Lilliefors Critical Value	0.234	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.323	KM Standard Error of Mean	0.127
KM SD	0.611	95% KM (BCA) UCL	0.537
95% KM (t) UCL	0.54	95% KM (Percentile Bootstrap) UCL	0.533
95% KM (z) UCL	0.532	95% KM Bootstrap t UCL	0.632
90% KM Chebyshev UCL	0.704	95% KM Chebyshev UCL	0.877
7.5% KM Chebyshev UCL	1.117	99% KM Chebyshev UCL	1.589

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.509	Anderson-Darling GOF Test
5% A-D Critical Value	0.805	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.174	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.252	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.423	k star (bias corrected MLE)	0.376
Theta hat (MLE)	1.456	Theta star (bias corrected MLE)	1.635
nu hat (MLE)	10.99	nu star (bias corrected)	9.788
Mean (detects)	0.615		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.325	Mean	0.0038	Minimum
0.01	Median	1.9	Maximum
1.917	CV	0.623	SD
0.307	k star (bias corrected MLE)	0.319	k hat (MLE)
1.057	Theta star (bias corrected MLE)	1.018	Theta hat (MLE)
15.37	nu star (bias corrected)	15.95	nu hat (MLE)
		0.0395	Adjusted Level of Significance (β)
7.144	Adjusted Chi Square Value (15.37, β)	7.517	Approximate Chi Square Value (15.37, α)
0.699	95% Gamma Adjusted UCL (use when n<50)	0.664	5% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.323	SD (KM)	0.611
Variance (KM)	0.374	SE of Mean (KM)	0.127
k hat (KM)	0.278	k star (KM)	0.272
nu hat (KM)	13.92	nu star (KM)	13.58
theta hat (KM)	1.159	theta star (KM)	1.187
80% gamma percentile (KM)	0.481	90% gamma percentile (KM)	0.961
95% gamma percentile (KM)	1.522	99% gamma percentile (KM)	2.998

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (13.58, α)	6.286	Adjusted Chi Square Value (13.58, β)	5.949
95% Gamma Approximate KM-LICL (use when n>=50)	0.697	95% Gamma Adjusted KM-LICL (use when n<50)	0.736

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.887	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.866	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.187	Lilliefors GOF Test
5% Lilliefors Critical Value	0.234	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-3.768	Mean in Log Scale	0.322	Mean in Original Scale
2.588	SD in Log Scale	0.624	SD in Original Scale
0.538	95% Percentile Bootstrap UCL	0.536	95% t UCL (assumes normality of ROS data)
0.658	95% Bootstrap t UCL	0.584	95% BCA Bootstrap UCL
		8.987	95% H-UCL (Loa ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

0.0253	KM Geo Mean	-3.676	KM Mean (logged)
4.612	95% Critical H Value (KM-Log)	2.387	KM SD (logged)
4.138	95% H-UCL (KM -Log)	0.501	KM Standard Error of Mean (logged)
4.612	95% Critical H Value (KM-Log)	2.387	KM SD (logged)
		0.501	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.325	Mean in Log Scale	-3.49
SD in Original Scale	0.623	SD in Log Scale	2.354
95% t UCL (Assumes normality)	0.538	95% H-Stat UCL	4.358

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

ımma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 0.736

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Cobalt

General Statistics

Total Number of Observations	1	Number of Distinct Observations	1
		Number of Missing Observations	14
Minimum	2.7	Mean	2.7
Maximum	2.7	Median	2.7

Warning: This data set only has 1 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable Cobalt was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Dibenzo(a,h)anthracene

General Statistics

Total Number of Observations	25	Number of Distinct Observations	15
		Number of Missing Observations	23
Number of Detects	9	Number of Non-Detects	16
Number of Distinct Detects	8	Number of Distinct Non-Detects	8
Minimum Detect	0.019	Minimum Non-Detect	0.0069
Maximum Detect	0.45	Maximum Non-Detect	0.37
Variance Detects	0.0254	Percent Non-Detects	64%
Mean Detects	0.19	SD Detects	0.159
Median Detects	0.15	CV Detects	0.841
Skewness Detects	0.435	Kurtosis Detects	-1.203
Mean of Logged Detects	-2.197	SD of Logged Detects	1.272

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.897	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.18	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.0751	KM Standard Error of Mean	0.0272
KM SD	0.127	95% KM (BCA) UCL	0.126
95% KM (t) UCL	0.122	95% KM (Percentile Bootstrap) UCL	0.121
95% KM (z) UCL	0.12	95% KM Bootstrap t UCL	0.139
90% KM Chebyshev UCL	0.157	95% KM Chebyshev UCL	0.194
97.5% KM Chebyshev UCL	0.245	99% KM Chebyshev UCL	0.346

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.533	Anderson-Darling GOF Test
5% A-D Critical Value	0.742	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.214	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.286	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.789	k star (bias corrected MLE)	1.072	k hat (MLE)
0.24	Theta star (bias corrected MLE)	0.177	Theta hat (MLE)
14.2	nu star (bias corrected)	19.3	nu hat (MLE)
		0.19	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.0747
Maximum	0.45	Median	0.01
SD	0.127	CV	1.705
k hat (MLE)	0.548	k star (bias corrected MLE)	0.509
Theta hat (MLE)	0.136	Theta star (bias corrected MLE)	0.147
nu hat (MLE)	27.39	nu star (bias corrected)	25.43
Adjusted Level of Significance (β)	0.0395		
Approximate Chi Square Value (25.43, α)	14.94	Adjusted Chi Square Value (25.43, β)	14.4
95% Gamma Approximate UCL (use when n>=50)	0.127	95% Gamma Adjusted UCL (use when n<50)	0.132

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.0751	SD (KM)	0.127
wearr (KW)	0.0751	SD (KWI)	0.127
Variance (KM)	0.0161	SE of Mean (KM)	0.0272
k hat (KM)	0.351	k star (KM)	0.336
nu hat (KM)	17.55	nu star (KM)	16.78
theta hat (KM)	0.214	theta star (KM)	0.224
80% gamma percentile (KM)	0.118	90% gamma percentile (KM)	0.218
95% gamma percentile (KM)	0.331	99% gamma percentile (KM)	0.621

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (16.78, α)	8.516	Adjusted Chi Square Value (16.78, β)	8.115
95% Gamma Approximate KM-LICL (use when n>=50)	0 148	95% Gamma Adjusted KM-LICL (use when n<50)	0 155

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.843	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.26	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-4.186	Mean in Log Scale	0.0724	Mean in Original Scale
1.809	SD in Log Scale	0.129	SD in Original Scale
0.118	95% Percentile Bootstrap UCL	0.116	95% t UCL (assumes normality of ROS data)
0.139	95% Bootstrap t UCL	0.125	95% BCA Bootstrap UCL
		0.303	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.917	KM Geo Mean	0.0199
KM SD (logged)	1.522	95% Critical H Value (KM-Log)	3.228
KM Standard Error of Mean (logged)	0.33	95% H-UCL (KM -Log)	0.173
KM SD (logged)	1.522	95% Critical H Value (KM-Log)	3.228
KM Standard Error of Mean (logged)	0.33		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	0.0808	Mean in Log Scale	-3.969	
SD in Original Scale	0.129	SD in Log Scale	1.801	
95% t UCL (Assumes normality)	0.125	95% H-Stat UCL	0.367	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.122

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Diesel Range Organics (C10-C20)

General Statistics

Total Number of Observations	2	Number of Distinct Observations	2
		Number of Missing Observations	21
Number of Detects	1	Number of Non-Detects	1
Number of Distinct Detects	1	Number of Distinct Non-Detects	1

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable Diesel Range Organics (C10-C20) was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Indeno(1,2,3-cd)pyrene

General Statistics

	Goriorai Cidasacs		
Total Number of Observations	25	Number of Distinct Observations	19
		Number of Missing Observations	23
Number of Detects	12	Number of Non-Detects	13
Number of Distinct Detects	12	Number of Distinct Non-Detects	7
Minimum Detect	0.0053	Minimum Non-Detect	0.0069
Maximum Detect	1.4	Maximum Non-Detect	0.069
Variance Detects	0.265	Percent Non-Detects	52%
Mean Detects	0.496	SD Detects	0.514
Median Detects	0.455	CV Detects	1.038
Skewness Detects	0.788	Kurtosis Detects	-0.763
Mean of Logged Detects	-1.786	SD of Logged Detects	2.008

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.842	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.219	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Detected Data appear Normal at 5% Significance Level

Detected Data appear Approximate Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

n 0.0877	KM Standard Error of Mean	0.241	KM Mean
L 0.398	95% KM (BCA) UCL	0.42	KM SD
L 0.391	95% KM (Percentile Bootstrap) UCL	0.391	95% KM (t) UCL
L 0.45	95% KM Bootstrap t UCL	0.386	95% KM (z) UCL
L 0.624	95% KM Chebyshev UCL	0.504	90% KM Chebyshev UCL
L 1.114	99% KM Chebyshev UCL	0.789	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.536	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.779	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.224	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.258	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.486	k star (bias corrected MLE)	0.574	k hat (MLE)
1.019	Theta star (bias corrected MLE)	0.863	Theta hat (MLE)
11.67	nu star (bias corrected)	13.78	nu hat (MLE)
		0.496	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0053	Mean	0.243
Maximum	1.4	Median	0.01
SD	0.427	CV	1.758
k hat (MLE)	0.364	k star (bias corrected MLE)	0.347
Theta hat (MLE)	0.668	Theta star (bias corrected MLE)	0.701
nu hat (MLE)	18.19	nu star (bias corrected)	17.34
Adjusted Level of Significance (β)	0.0395		
Approximate Chi Square Value (17.34, α)	8.913	Adjusted Chi Square Value (17.34, β)	8.502
95% Gamma Approximate UCL (use when n>=50)	0.473	95% Gamma Adjusted UCL (use when n<50)	0.496

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.241	SD (KM)	0.42
Variance (KM)	0.176	SE of Mean (KM)	0.0877
k hat (KM)	0.331	k star (KM)	0.318
nu hat (KM)	16.56	nu star (KM)	15.9
theta hat (KM)	0.729	theta star (KM)	0.759
80% gamma percentile (KM)	0.375	90% gamma percentile (KM)	0.707
95% gamma percentile (KM)	1.084	99% gamma percentile (KM)	2.056

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (15.90, α)	7.894	Adjusted Chi Square Value (15.90, β)	7.51
95% Gamma Approximate KM-LICL (use when n>=50)	0.486	95% Gamma Adjusted KM-LICL (use when n<50)	0.511

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.863	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.268	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Detected Data Not Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-3.425	Mean in Log Scale	0.243	Mean in Original Scale
2.196	SD in Log Scale	0.427	SD in Original Scale
0.385	95% Percentile Bootstrap UCL	0.389	95% t UCL (assumes normality of ROS data)
0.452	95% Bootstrap t UCL	0.417	95% BCA Bootstrap UCL
		2.49	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.521	KM Geo Mean	0.0296
KM SD (logged)	2.151	95% Critical H Value (KM-Log)	4.222
KM Standard Error of Mean (logged)	0.453	95% H-UCL (KM -Log)	1.907
KM SD (logged)	2.151	95% Critical H Value (KM-Log)	4.222
KM Standard Error of Mean (logged)	0.453		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.243	Mean in Log Scale	-3.515
SD in Original Scale	0.428	SD in Log Scale	2.255
95% t UCL (Assumes normality)	0.389	95% H-Stat UCL	2.862
	Mean in Original Scale SD in Original Scale	Mean in Original Scale 0.243 SD in Original Scale 0.428	Mean in Original Scale 0.243 Mean in Log Scale SD in Original Scale 0.428 SD in Log Scale

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.391

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Manganese

General Statistics

Total Number of Observations	1	Number of Distinct Observations	1
		Number of Missing Observations	14
Minimum	260	Mean	260
Maximum	260	Median	260

Warning: This data set only has 1 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable Manganese was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Naphthalene

General Statistics

25	Number of Distinct Observations	16
	Number of Missing Observations	23
8	Number of Non-Detects	17
7	Number of Distinct Non-Detects	9
0.0029	Minimum Non-Detect	0.0069
0.096	Maximum Non-Detect	0.37
0.00114	Percent Non-Detects	68%
0.0407	SD Detects	0.0337
0.028	CV Detects	0.829
0.57	Kurtosis Detects	-1.035
-3.693	SD of Logged Detects	1.249
	8 7 0.0029 0.096 0.00114 0.0407 0.028 0.57	Number of Missing Observations 8 Number of Non-Detects 7 Number of Distinct Non-Detects 0.0029 Minimum Non-Detect 0.096 Maximum Non-Detect 0.00114 Percent Non-Detects 0.0407 SD Detects 0.028 CV Detects 0.57 Kurtosis Detects

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.902	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.271	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.017	KM Standard Error of Mean	0.00565
KM SD	0.0252	95% KM (BCA) UCL	0.0264
95% KM (t) UCL	0.0267	95% KM (Percentile Bootstrap) UCL	0.027
95% KM (z) UCL	0.0263	95% KM Bootstrap t UCL	0.0298
90% KM Chebyshev UCL	0.034	95% KM Chebyshev UCL	0.0417
97.5% KM Chebyshev UCL	0.0524	99% KM Chebyshev UCL	0.0733

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.377	A-D Test Statistic
733 Detected data appear Gamma Distributed at 5% Significance	0.733	5% A-D Critical Value
2 Kolmogorov-Smirnov GOF	0.2	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance	0.301	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.807	k star (bias corrected MLE)	1.157	k hat (MLE)
0.0504	Theta star (bias corrected MLE)	0.0351	Theta hat (MLE)
12.91	nu star (bias corrected)	18.52	nu hat (MLE)
		0.0407	Mean (detects)

February 2020

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.0029	Mean	0.0201
0.096	Median	0.01
0.0233	CV	1.16
1.443	k star (bias corrected MLE)	1.296
0.0139	Theta star (bias corrected MLE)	0.0155
72.15	nu star (bias corrected)	64.82
0.0395		
47.3	Adjusted Chi Square Value (64.82, β)	46.28
0.0275	95% Gamma Adjusted UCL (use when n<50)	0.0281
	0.096 0.0233 1.443 0.0139 72.15 0.0395 47.3	0.096 Median 0.0233 CV 1.443 k star (bias corrected MLE) 0.0139 Theta star (bias corrected MLE) 72.15 nu star (bias corrected) 0.0395 Adjusted Chi Square Value (64.82, β)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.017	SD (KM)	0.0252
Variance (KM)	6.3734E-4	SE of Mean (KM)	0.00565
k hat (KM)	0.456	k star (KM)	0.428
nu hat (KM)	22.79	nu star (KM)	21.39
theta hat (KM)	0.0374	theta star (KM)	0.0398
80% gamma percentile (KM)	0.0277	90% gamma percentile (KM)	0.0476
95% gamma percentile (KM)	0.0692	99% gamma percentile (KM)	0.123

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (21.39, α)	11.88	Adjusted Chi Square Value (21.39, β)	11.4
95% Gamma Approximate KM-LICL (use when n>=50)	0.0307	95% Gamma Adjusted KM-UCL (use when n<50)	0.032

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.883	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.264	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0168	Mean in Log Scale	-4.808
SD in Original Scale	0.0248	SD in Log Scale	1.139
95% t UCL (assumes normality of ROS data)	0.0253	95% Percentile Bootstrap UCL	0.0255
95% BCA Bootstrap UCL	0.0276	95% Bootstrap t UCL	0.0308
95% H-UCL (Log ROS)	0.0291		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-4.868	KM Geo Mean	0.00768
KM SD (logged)	1.146	95% Critical H Value (KM-Log)	2.686
KM Standard Error of Mean (logged)	0.305	95% H-UCL (KM -Log)	0.0278
KM SD (logged)	1.146	95% Critical H Value (KM-Log)	2.686
KM Standard Error of Mean (logged)	0.305		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.0262	Mean in Log Scale	-4.522
SD in Original Scale	0.0414	SD in Log Scale	1.299
95% t UCL (Assumes normality)	0.0404	95% H-Stat UCL	0.0546

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.0267

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Nickel

General Statistics

Total Number of Observations	1	Number of Distinct Observations	1
		Number of Missing Observations	14
Minimum	16	Mean	16
Maximum	16	Median	16

Warning: This data set only has 1 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable Nickel was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

PCB, Total Aroclors (AECOM Calc)

General Statistics

Total Number of Observations	48	Number of Distinct Observations	46
		Number of Missing Observations	2
Number of Detects	47	Number of Non-Detects	1
Number of Distinct Detects	45	Number of Distinct Non-Detects	1
Minimum Detect	0.002	Minimum Non-Detect	0.05
Maximum Detect	8800	Maximum Non-Detect	0.05
Variance Detects	1645771	Percent Non-Detects	2.083%
Mean Detects	193.3	SD Detects	1283
Median Detects	0.091	CV Detects	6.636
Skewness Detects	6.853	Kurtosis Detects	46.97
Mean of Logged Detects	-1.316	SD of Logged Detects	3.194

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.154	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.946	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.5	Lilliefors GOF Test
5% Lilliefors Critical Value	0.128	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Standard I	189.3	KM Mean
95% KI	1256	KM SD
95% KM (Percentile Bo	496.8	95% KM (t) UCL
95% KM Bo	490.8	95% KM (z) UCL
95% KM Ch	739.1	90% KM Chebyshev UCL
99% KM Ch	1334	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	8.469	Anderson-Darling GOF Test
5% A-D Critical Value	0.988	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.334	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.147	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.127	k star (bias corrected MLE)	0.12	k hat (MLE)
1523	Theta star (bias corrected MLE)	1605	Theta hat (MLE)
11.93	nu star (bias corrected)	11.32	nu hat (MLE)
		193.3	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.002	Mean	189.3
Maximum	8800	Median	0.0855
SD	1269	CV	6.706
k hat (MLE)	0.12	k star (bias corrected MLE)	0.126
Theta hat (MLE)	1582	Theta star (bias corrected MLE)	1501
nu hat (MLE)	11.49	nu star (bias corrected)	12.11
Adjusted Level of Significance (β)	0.045		
Approximate Chi Square Value (12.11, α)	5.296	Adjusted Chi Square Value (12.11, β)	5.157
95% Gamma Approximate UCL (use when n>=50)	432.7	95% Gamma Adjusted UCL (use when n<50)	444.4

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	189.3	SD (KM)	1256
Variance (KM)	1577959	SE of Mean (KM)	183.3
k hat (KM)	0.0227	k star (KM)	0.0352
nu hat (KM)	2.18	nu star (KM)	3.377
theta hat (KM)	8335	theta star (KM)	5381
percentile (KM)	5.474	90% gamma percentile (KM)	160.1
percentile (KM)	836	99% gamma percentile (KM)	4667

Gamma Kaplan-Meier (KM) Statistics

80% gamma 95% gamma

Approximate Chi Square Value (3.38, α)	0.492	Adjusted Chi Square Value (3.38, β)	0.462	
95% Gamma Approximate KM-UCL (use when n>=50)	1298	95% Gamma Adjusted KM-UCL (use when n<50)	1383	
95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)				

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.932	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.946	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.176	Lilliefors GOF Test
5% Lilliefors Critical Value	0.128	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	189.3	Mean in Log Scale	-1.378
SD in Original Scale	1269	SD in Log Scale	3.188
95% t UCL (assumes normality of ROS data)	496.8	95% Percentile Bootstrap UCL	556
95% BCA Bootstrap UCL	744.2	95% Bootstrap t UCL	23773
95% H-UCL (Log ROS)	485		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.378	KM Geo Mean	0.252
KM SD (logged)	3.158	95% Critical H Value (KM-Log)	5.289
KM Standard Error of Mean (logged)	0.461	95% H-UCL (KM -Log)	421.2
KM SD (logged)	3.158	95% Critical H Value (KM-Log)	5.289
KM Standard Error of Mean (logged)	0.461		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	189.3	Mean in Log Scale	-1.366
SD in Original Scale	1269	SD in Log Scale	3.178
95% t UCL (Assumes normality)	496.8	95% H-Stat UCL	468.7

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

99% KM (Chebyshev) UCL 2013

UCL Statistics for Uncensored Full Data Sets

User Selected Options

Date/Time of Computation ProUCL 5.18/31/2018 9:48:37 AM

From File Soil-VehicleRefuel-SS.xls

Full Precision OFF
Confidence Coefficient 95%
Imber of Bootstrap Operations 2000

Benzo(a)anthracene

General Statistics

Total Number of Observations	2	Number of Distinct Observations	2
		Number of Missing Observations	1
Minimum	0.87	Mean	1.735
Maximum	2.6	Median	1.735

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable Benzo(a)anthracene was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Benzo(a)pyrene

General Statistics

Total Number of Observations	2	Number of Distinct Observations	2
		Number of Missing Observations	1
Minimum	0.47	Mean	0.885
Maximum	1.3	Median	0.885

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable Benzo(a)pyrene was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Benzo(b)fluoranthene

General Statistics

Total Number of Observations	2	Number of Distinct Observations	2
		Number of Missing Observations	1
Minimum	0.75	Mean	1.475
Maximum	2.2	Median	1.475

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable Benzo(b)fluoranthene was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Benzo(k)fluoranthene

General Statistics

Total Number of Observations	2	Number of Distinct Observations	2
		Number of Missing Observations	1
Minimum	0.31	Mean	0.46
Maximum	0.61	Median	0.46

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable Benzo(k)fluoranthene was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Chrysene

General Statistics

Total Number of Observations	2	Number of Distinct Observations	2
		Number of Missing Observations	1
Minimum	0.92	Mean	1.71
Maximum	2.5	Median	1.71

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable Chrysene was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Dibenzo(a,h)anthracene

General Statistics

Total Number of Observations	2	Number of Distinct Observations	2
		Number of Missing Observations	1
Minimum	0.12	Mean	0.215
Maximum	0.31	Median	0.215

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable Dibenzo(a,h)anthracene was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Diesel Range Organics (C10-C20)

General Statistics

1	Number of Distinct Observations	1	Total Number of Observations
0	Number of Missing Observations		
380	Mean	380	Minimum
380	Median	380	Maximum

Warning: This data set only has 1 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable Diesel Range Organics (C10-C20) was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Indeno(1,2,3-cd)pyrene

General Statistics

Total Number of Observations	2	Number of Distinct Observations	2
		Number of Missing Observations	1
Minimum	0.33	Mean	0.555
Maximum	0.78	Median	0.555

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable Indeno(1,2,3-cd)pyrene was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Naphthalene

General Statistics

Total Number of Observations	2	Number of Distinct Observations	2
		Number of Missing Observations	1
Minimum	0.055	Mean	0.343
Maximum	0.63	Median	0.343

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable Naphthalene was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

PCB, Total Aroclors (AECOM Calc)

General Statistics

Total Number of Observations	2	Number of Distinct Observations	2
		Number of Missing Observations	1
Minimum	0.0082	Mean	0.0741
Maximum	0.14	Median	0.0741

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable PCB, Total Aroclors (AECOM Calc) was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.18/23/2018 4:11:37 PM
From File HH. Penco Open of Input xls

From File HH_Pepco_OpenLot_Input.xls
Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Arsenic

	General Statistics		
Total Number of Observations	4	Number of Distinct Observations	4
		Number of Missing Observations	12
Minimum	0.93	Mean	1.808
Maximum	2.6	Median	1.85
SD	0.685	Std. Error of Mean	0.342
Coefficient of Variation	0.379	Skewness	-0.368

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk GOF Test	0.964	Shapiro Wilk Test Statistic
Data appear Normal at 5% Significance Leve	0.748	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.246	Lilliefors Test Statistic
Data appear Normal at 5% Significance Leve	0.375	5% Lilliefors Critical Value

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2.613	95% Adjusted-CLT UCL (Chen-1995)	2.303
		95% Modified-t UCL (Johnson-1978)	2.603

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.332	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.658	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.292	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.395	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	8	k star (bias corrected MLE)	2.167
Theta hat (MLE)	0.226	Theta star (bias corrected MLE)	0.834
nu hat (MLE)	64	nu star (bias corrected)	17.33
MLE Mean (bias corrected)	1.808	MLE Sd (bias corrected)	1.228
		Approximate Chi Square Value (0.05)	8.911
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 3.516 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.914	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.305	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.375	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.0726	Mean of logged Data	0.528
Maximum of Logged Data	0.956	SD of logged Data	0.432

Assuming Lognormal Distribution

95% H-UCL	4.262	90% Chebyshev (MVUE) UCL	2.978
95% Chebyshev (MVUE) UCL	3.504	97.5% Chebyshev (MVUE) UCL	4.234
99% Chebyshev (MVUE) UCL	5.668		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% Ja	2.371	95% CLT UCL 2.
95% Boo	N/A	95% Standard Bootstrap UCL N/A
95% Percentile Bo	V/A	95% Hall's Bootstrap UCL N//
	N/A	95% BCA Bootstrap UCL N//
95% Chebyshev(Me	2.835	90% Chebyshev(Mean, Sd) UCL 2.
99% Chebyshev(Me	3.946	97.5% Chebyshev(Mean, Sd) UCL 3.

Suggested UCL to Use

95% Student's-t UCL 2.613

Recommended UCL exceeds the maximum observation

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Benzo(a)anthracene

General	Statistics
Goriorai	Ciduouco

Total Number of Observations	13	Number of Distinct Observations	12
		Number of Missing Observations	9
Number of Detects	10	Number of Non-Detects	3
Number of Distinct Detects	10	Number of Distinct Non-Detects	2
Minimum Detect	0.016	Minimum Non-Detect	0.0075
Maximum Detect	0.29	Maximum Non-Detect	0.0081
Variance Detects	0.00952	Percent Non-Detects	23.08%
Mean Detects	0.135	SD Detects	0.0976
Median Detects	0.13	CV Detects	0.724
Skewness Detects	0.481	Kurtosis Detects	-0.884
Mean of Logged Detects	-2.342	SD of Logged Detects	0.976

Chamina Wills COF Tank

Normal GOF Test on Detects Only

Snapiro Wilk Test Statistic	0.927	Snapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.132	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.105	KM Standard Error of Mean	0.0284
KM SD	0.0973	95% KM (BCA) UCL	0.148
95% KM (t) UCL	0.156	95% KM (Percentile Bootstrap) UCL	0.15
95% KM (z) UCL	0.152	95% KM Bootstrap t UCL	0.166
90% KM Chebyshev UCL	0.191	95% KM Chebyshev UCL	0.229
97.5% KM Chebyshev UCL	0.283	99% KM Chebyshev UCL	0.388

Gamma GOF Tests on Detected Observations Only

	A-D Test Statistic	0.243	Anderson-Darling GOF Test		
	5% A-D Critical Value	0.738	Detected data appear Gamma Distributed at 5% Significance Level		
	K-S Test Statistic	0.148	Kolmogorov-Smirnov GOF		
	5% K-S Critical Value	0.271	Detected data appear Gamma Distributed at 5% Significance Level		
Detected data appear Gamma Distributed at 5% Significance Level					

FINAL

Gamma Statistics on De	etected Data Only
------------------------	-------------------

1.625	k star (bias corrected MLE)	1.204
0.083	Theta star (bias corrected MLE)	0.112
32.49	nu star (bias corrected)	24.08
0.135		
	0.083 32.49	0.083 Theta star (bias corrected MLE) 32.49 nu star (bias corrected)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.106
Maximum	0.29	Median	0.077
SD	0.101	CV	0.95
k hat (MLE)	0.938	k star (bias corrected MLE)	0.773
Theta hat (MLE)	0.113	Theta star (bias corrected MLE)	0.137
nu hat (MLE)	24.39	nu star (bias corrected)	20.09
Adjusted Level of Significance (β)	0.0301		
Approximate Chi Square Value (20.09, α)	10.92	Adjusted Chi Square Value (20.09, β)	9.967
95% Gamma Approximate UCL (use when n>=50)	0.195	95% Gamma Adjusted UCL (use when n<50)	0.214

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.105	SD (KM)	0.0973
Variance (KM)	0.00947	SE of Mean (KM)	0.0284
k hat (KM)	1.174	k star (KM)	0.954
nu hat (KM)	30.52	nu star (KM)	24.81
theta hat (KM)	0.0898	theta star (KM)	0.11
80% gamma percentile (KM)	0.17	90% gamma percentile (KM)	0.246
95% gamma percentile (KM)	0.321	99% gamma percentile (KM)	0.497

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (24.81, α)	14.47	Adjusted Chi Square Value (24.81, β)	13.35
95% Gamma Approximate KM-UCL (use when n>=50)	0.181	95% Gamma Adjusted KM-UCL (use when n<50)	0.196

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.924	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.19	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.106	Mean in Log Scale	-2.863
SD in Original Scale	0.101	SD in Log Scale	1.307
95% t UCL (assumes normality of ROS data)	0.156	95% Percentile Bootstrap UCL	0.154
95% BCA Bootstrap UCL	0.156	95% Bootstrap t UCL	0.166
95% H-UCL (Log ROS)	0.485		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.931	KM Geo Mean	0.0534
KM SD (logged)	1.347	95% Critical H Value (KM-Log)	3.484
KM Standard Error of Mean (logged)	0.394	95% H-UCL (KM -Log)	0.512
KM SD (logged)	1.347	95% Critical H Value (KM-Log)	3.484
KM Standard Error of Moon (logged)	0.304		

KM Standard Error of Mean (logged) 0.394

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.105	Mean in Log Scale	-3.085
SD in Original Scale	0.102	SD in Log Scale	1.645
95% t UCL (Assumes normality)	0.155	95% H-Stat UCL	1.209

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.156

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)pyrene

	General Statistics		
Total Number of Observations	13	Number of Distinct Observations	11
		Number of Missing Observations	9
Number of Detects	10	Number of Non-Detects	3
Number of Distinct Detects	9	Number of Distinct Non-Detects	2
Minimum Detect	0.013	Minimum Non-Detect	0.0075
Maximum Detect	0.29	Maximum Non-Detect	0.0081
Variance Detects	0.0076	Percent Non-Detects	23.08%
Mean Detects	0.133	SD Detects	0.0872
Median Detects	0.145	CV Detects	0.657
Skewness Detects	0.192	Kurtosis Detects	-0.47
Mean of Logged Detects	-2.344	SD of Logged Detects	0.992

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.952	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.145	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.104	KM Standard Error of Mean	0.0262
KM SD	0.0897	95% KM (BCA) UCL	0.144
95% KM (t) UCL	0.15	95% KM (Percentile Bootstrap) UCL	0.143
95% KM (z) UCL	0.147	95% KM Bootstrap t UCL	0.152
90% KM Chebyshev UCL	0.182	95% KM Chebyshev UCL	0.218
97.5% KM Chebyshev UCL	0.267	99% KM Chebyshev UCL	0.365

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.456	Anderson-Darling GOF Test
5% A-D Critical Value	0.738	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.194	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.271	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.253	k star (bias corrected MLE)	1.695	k hat (MLE)
0.106	Theta star (bias corrected MLE)	0.0782	Theta hat (MLE)
25.06	nu star (bias corrected)	33.9	nu hat (MLE)
		0.133	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.104	Mean	0.01	Minimum
0.099	Median	0.29	Maximum
0.888	CV	0.0927	SD
0.789	k star (bias corrected MLE)	0.959	k hat (MLE)
0.132	Theta star (bias corrected MLE)	0.109	Theta hat (MLE)
20.51	nu star (bias corrected)	24.93	nu hat (MLE)
		0.0301	Adjusted Level of Significance (β)
10.26	Adjusted Chi Square Value (20.51, β)	11.23	Approximate Chi Square Value (20.51, α)
0.208	95% Gamma Adjusted UCL (use when n<50)	0.191	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.104	SD (KM)	0.0897
Variance (KM)	0.00804	SE of Mean (KM)	0.0262
k hat (KM)	1.339	k star (KM)	1.081
nu hat (KM)	34.8	nu star (KM)	28.11
theta hat (KM)	0.0775	theta star (KM)	0.096
80% gamma percentile (KM)	0.166	90% gamma percentile (KM)	0.234
95% gamma percentile (KM)	0.302	99% gamma percentile (KM)	0.459

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (28.11, α)	17.01	Adjusted Chi Square Value (28.11, β)	15.79
95% Gamma Approximate KM-UCL (use when n>=50)	0.171	95% Gamma Adjusted KM-UCL (use when n<50)	0.185

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.878	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.22	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-2.848	Mean in Log Scale	0.105	Mean in Original Scale
1.293	SD in Log Scale	0.0924	SD in Original Scale
0.145	95% Percentile Bootstrap UCL	0.15	95% t UCL (assumes normality of ROS data)
0.156	95% Bootstrap t UCL	0.148	95% BCA Bootstrap UCL
		0.472	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.932	KM Geo Mean	0.0533
KM SD (logged)	1.355	95% Critical H Value (KM-Log)	3.499
KM Standard Error of Mean (logged)	0.396	95% H-UCL (KM -Log)	0.524
KM SD (logged)	1.355	95% Critical H Value (KM-Log)	3.499
KM Standard Error of Mean (logged)	0.396		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.103	Mean in Log Scale	-3.086
SD in Original Scale	0.0943	SD in Log Scale	1.652
95% t UCL (Assumes normality)	0.149	95% H-Stat UCL	1.239

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.15

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(b)fluoranthene

General Statistics

Total Number of Observations	13	Number of Distinct Observations	10
		Number of Missing Observations	9
Number of Detects	10	Number of Non-Detects	3
Number of Distinct Detects	8	Number of Distinct Non-Detects	2
Minimum Detect	0.02	Minimum Non-Detect	0.0075
Maximum Detect	0.39	Maximum Non-Detect	0.0081
Variance Detects	0.0138	Percent Non-Detects	23.08%
Mean Detects	0.159	SD Detects	0.117
Median Detects	0.15	CV Detects	0.739
Skewness Detects	0.727	Kurtosis Detects	0.0356

Mean of Logged Detects -2.171 SD of Logged Detects 0.958

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.936	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.162	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.124	KM Standard Error of Mean	0.0341
KM SD	0.117	95% KM (BCA) UCL	0.178
95% KM (t) UCL	0.185	95% KM (Percentile Bootstrap) UCL	0.179
95% KM (z) UCL	0.18	95% KM Bootstrap t UCL	0.197
90% KM Chebyshev UCL	0.226	95% KM Chebyshev UCL	0.273
97.5% KM Chebyshev UCL	0.337	99% KM Chebyshev UCL	0.463

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.214	Anderson-Darling GOF Test
5% A-D Critical Value	0.738	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.136	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.271	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.224	k star (bias corrected MLE)	1.654	k hat (MLE)
0.13	Theta star (bias corrected MLE)	0.0961	Theta hat (MLE)
24.49	nu star (bias corrected)	33.07	nu hat (MLE)
		0.159	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data,	BTVs and UCLs may be computed using gamma distribution on KM estimates

0.125	Mean	0.01	Minimum
0.098	Median	0.39	Maximum
0.97	CV	0.121	SD
0.743	k star (bias corrected MLE)	0.9	k hat (MLE)
0.168	Theta star (bias corrected MLE)	0.138	Theta hat (MLE)
19.33	nu star (bias corrected)	23.39	nu hat (MLE)
		0.0301	Adjusted Level of Significance (β)
9.433	Adjusted Chi Square Value (19.33, β)	10.36	Approximate Chi Square Value (19.33, α)
0.255	95% Gamma Adjusted UCL (use when n<50)	0.232	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.124	SD (KM)	0.117
Variance (KM)	0.0136	SE of Mean (KM)	0.0341
k hat (KM)	1.129	k star (KM)	0.92
nu hat (KM)	29.37	nu star (KM)	23.92
theta hat (KM)	0.11	theta star (KM)	0.135
80% gamma percentile (KM)	0.201	90% gamma percentile (KM)	0.291
95% gamma percentile (KM)	0.382	99% gamma percentile (KM)	0.595

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (23.92, α)	13.79	Adjusted Chi Square Value (23.92, β)	12.7
95% Gamma Approximate KM-LICL (use when n>=50)	0.215	95% Gamma Adjusted KM-LICL (use when n<50)	0.233

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.939	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.162	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.125	Mean in Log Scale	-2.686
SD in Original Scale	0.12	SD in Log Scale	1.287
95% t UCL (assumes normality of ROS data)	0.185	95% Percentile Bootstrap UCL	0.179
95% BCA Bootstrap UCL	0.195	95% Bootstrap t UCL	0.197
95% H-UCL (Log ROS)	0.546		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.799	KM Geo Mean	0.0608
KM SD (logged)	1.396	95% Critical H Value (KM-Log)	3.579
KM Standard Error of Mean (logged)	0.408	95% H-UCL (KM -Log)	0.683
KM SD (logged)	1.396	95% Critical H Value (KM-Log)	3.579
KM Standard Error of Mean (logged)	0.408		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.123	Mean in Log Scale	-2.953
SD in Original Scale	0.122	SD in Log Scale	1.702
95% t UCL (Assumes normality)	0.184	95% H-Stat UCL	1.703

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.185

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(k)fluoranthene

RI Report - BHHRA

	General Statistics		
Total Number of Observations	13	Number of Distinct Observations	12
		Number of Missing Observations	9
Number of Detects	10	Number of Non-Detects	3
Number of Distinct Detects	10	Number of Distinct Non-Detects	2
Minimum Detect	0.0085	Minimum Non-Detect	0.0075
Maximum Detect	0.13	Maximum Non-Detect	0.0081
Variance Detects	0.00181	Percent Non-Detects	23.08%
Mean Detects	0.0632	SD Detects	0.0426
Median Detects	0.068	CV Detects	0.674
Skewness Detects	0.248	Kurtosis Detects	-1.072
Mean of Logged Detects	-3.068	SD of Logged Detects	0.93

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.935	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.145	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

Mean 0.0124	KM Standard Error of Mean	0.0503	KM Mean
UCL 0.0711	95% KM (BCA) UCL	0.0425	KM SD
UCL 0.0698	95% KM (Percentile Bootstrap) UCL	0.0724	95% KM (t) UCL
t UCL 0.075	95% KM Bootstrap t UCL	0.0707	95% KM (z) UCL
UCL 0.104	95% KM Chebyshev UCL	0.0876	90% KM Chebyshev UCL
UCL 0.174	99% KM Chebyshev UCL	0.128	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.374	Anderson-Darling GOF Test
5% A-D Critical Value	0.737	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.222	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.27	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.316	k star (bias corrected MLE)	1.785	k hat (MLE)
0.048	Theta star (bias corrected MLE)	0.0354	Theta hat (MLE)
26.32	nu star (bias corrected)	35.7	nu hat (MLE)
		0.0632	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.0509	Mean	0.0085	Minimum
0.04	Median	0.13	Maximum
0.857	CV	0.0436	SD
1.025	k star (bias corrected MLE)	1.266	k hat (MLE)
0.0496	Theta star (bias corrected MLE)	0.0402	Theta hat (MLE)
26.65	nu star (bias corrected)	32.91	nu hat (MLE)
		0.0301	Adjusted Level of Significance (β)
14.71	Adjusted Chi Square Value (26.65, β)	15.88	Approximate Chi Square Value (26.65, α)
0.0922	95% Gamma Adjusted UCL (use when n<50)	0.0854	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.0503	SD (KM)	0.0425
Variance (KM)	0.0018	SE of Mean (KM)	0.0124
k hat (KM)	1.403	k star (KM)	1.131
nu hat (KM)	36.49	nu star (KM)	29.4
theta hat (KM)	0.0358	theta star (KM)	0.0445
80% gamma percentile (KM)	0.0801	90% gamma percentile (KM)	0.112
95% gamma percentile (KM)	0.144	99% gamma percentile (KM)	0.218

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (29.40, α)	18.02	Adjusted Chi Square Value (29.40, β)	16.76
95% Gamma Approximate KM-UCL (use when n>=50)	0.0821	95% Gamma Adjusted KM-UCL (use when n<50)	0.0882

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.901	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.247	Lilliefors GOF Test
5% Lilliefors Critical Value		

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0499	Mean in Log Scale	-3.556
SD in Original Scale	0.0446	SD in Log Scale	1.234
95% t UCL (assumes normality of ROS data)	0.072	95% Percentile Bootstrap UCL	0.0694
95% BCA Bootstrap UCL	0.0709	95% Bootstrap t UCL	0.0747
95% H-UCL (Log ROS)	0.196		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.489	KM Geo Mean	0.0305
KM SD (logged)	1.091	95% Critical H Value (KM-Log)	3.007
KM Standard Error of Mean (logged)	0.319	95% H-UCL (KM -Log)	0.143
KM SD (logged)	1.091	95% Critical H Value (KM-Log)	3.007
KM Standard Error of Mean (logged)	0.319		

DL/2 Statistics

DL/2 Normal	DL/2	DL/2 Log-Transformed		2 Log-Transformed	
Mean in Original Scale	0.0495	Mean in Log Scale	-3.643		

SD in Original Scale	0.0451	SD in Log Scale	1.358
95% t UCL (Assumes normality)	0.0718	95% H-Stat UCL	0.26

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.0724

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chrysene

	General Statistics		
Total Number of Observations	13	Number of Distinct Observations	12
		Number of Missing Observations	9
Number of Detects	10	Number of Non-Detects	3
Number of Distinct Detects	10	Number of Distinct Non-Detects	2
Minimum Detect	0.026	Minimum Non-Detect	0.0075
Maximum Detect	0.31	Maximum Non-Detect	0.0081
Variance Detects	0.00896	Percent Non-Detects	23.089
Mean Detects	0.144	SD Detects	0.0946
Median Detects	0.14	CV Detects	0.657
Skewness Detects	0.364	Kurtosis Detects	-0.762
Mean of Logged Detects	-2.209	SD of Logged Detects	0.86

Normal GOF Test on Detects Only

Snapiro Wilk Test Statistic	0.957	Snapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.109	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Detected Data appear Normal at 5% Significance Level

Ob ----- 14681- OOF T--4

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.113	KM Standard Error of Mean	0.0285
KM SD	0.0975	95% KM (BCA) UCL	0.159
95% KM (t) UCL	0.163	95% KM (Percentile Bootstrap) UCL	0.16
95% KM (z) UCL	0.159	95% KM Bootstrap t UCL	0.171
90% KM Chebyshev UCL	0.198	95% KM Chebyshev UCL	0.237
97.5% KM Chebyshev UCL	0.291	99% KM Chebyshev UCL	0.396

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.27	Anderson-Darling GOF Test
5% A-D Critical Value	0.736	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.14	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.27	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.464	k star (bias corrected MLE)	1.997	k hat (MLE)
0.0983	Theta star (bias corrected MLE)	0.0721	Theta hat (MLE)
29.29	nu star (bias corrected)	39.93	nu hat (MLE)
		0.144	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

 $For gamma\ distributed\ detected\ data,\ BTVs\ and\ UCLs\ may\ be\ computed\ using\ gamma\ distribution\ on\ KM\ estimates$

Minimum 0.01 Mean 0.113

0.092	Median	0.31	Maximum
0.892	CV	0.101	SD
0.815	k star (bias corrected MLE)	0.992	k hat (MLE)
0.139	Theta star (bias corrected MLE)	0.114	Theta hat (MLE)
21.18	nu star (bias corrected)	25.8	nu hat (MLE)
		0.0301	Adjusted Level of Significance (β)
10.74	Adjusted Chi Square Value (21.18, β)	11.73	Approximate Chi Square Value (21.18, α)
0.223	95% Gamma Adjusted UCL (use when n<50)	0.204	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.113	SD (KM)	0.0975
Variance (KM)	0.00951	SE of Mean (KM)	0.0285
k hat (KM)	1.331	k star (KM)	1.075
nu hat (KM)	34.6	nu star (KM)	27.95
theta hat (KM)	0.0845	theta star (KM)	0.105
80% gamma percentile (KM)	0.18	90% gamma percentile (KM)	0.254
95% gamma percentile (KM)	0.329	99% gamma percentile (KM)	0.5

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (27.95, α)	16.89	Adjusted Chi Square Value (27.95, β)	15.68
95% Gamma Approximate KM-UCL (use when n>=50)	0.186	95% Gamma Adjusted KM-UCL (use when n<50)	0.201

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.913	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.178	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.114	Mean in Log Scale	-2.668
SD in Original Scale	0.0995	SD in Log Scale	1.152
95% t UCL (assumes normality of ROS data)	0.164	95% Percentile Bootstrap UCL	0.16
95% BCA Bootstrap UCL	0.16	95% Bootstrap t UCL	0.173
95% H-UCL (Log ROS)	0.38		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.828	KM Geo Mean	0.0591
KM SD (logged)	1.338	95% Critical H Value (KM-Log)	3.467
KM Standard Error of Mean (logged)	0.391	95% H-UCL (KM -Log)	0.553
KM SD (logged)	1.338	95% Critical H Value (KM-Log)	3.467
KM Standard Error of Mean (logged)	0.391		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed		
Mean in Original Scale	0.112	Mean in Log Scale	-2.982
SD in Original Scale	0.102	SD in Log Scale	1.648
95% t UCL (Assumes normality)	0.162	95% H-Stat UCL	1.353
DL/2 is not a recommended met	nod, provided for comparisons and historical reasor	1S	

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.163

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Cobalt

General	Statistics
---------	------------

4	Number of Distinct Observations	4	Total Number of Observations
12	Number of Missing Observations		
58.48	Mean	4	Minimum
49.95	Median	130	Maximum
31.31	Std. Error of Mean	62.62	SD
0.306	Skewness	1.071	Coefficient of Variation

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.862	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.29	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	132.2	95% Adjusted-CLT UCL (Chen-1995)	115.1
		95% Modified-t UCL (Johnson-1978)	133

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.45	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.672	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.298	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.406	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

0.343	k star (bias corrected MLE)	0.704	k hat (MLE)
170.7	Theta star (bias corrected MLE)	83.08	Theta hat (MLE)
2.741	nu star (bias corrected)	5.631	nu hat (MLE)
99.9	MLE Sd (bias corrected)	58.48	MLE Mean (bias corrected)
0.3	Approximate Chi Square Value (0.05)		
N/A	Adjusted Chi Square Value	N/A	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 534.2 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.864	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.274	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.375	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.386	Mean of logged Data	3.211
Maximum of Logged Data	4 868	SD of loaged Data	1 742

Assuming Lognormal Distribution

95% H-UCL 1	1159222	90% Chebyshev (MVUE) UCL	200.7
95% Chebyshev (MVUE) UCL	262.4	97.5% Chebyshev (MVUE) UCL	348.1
99% Chebyshey (MVUE) UCL	516.5		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	110	95% Jackknife UCL	132.2
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	152.4	95% Chebyshev(Mean, Sd) UCL	195
97.5% Chebyshev(Mean, Sd) UCL	254	99% Chebyshev(Mean, Sd) UCL	370

Suggested UCL to Use

95% Student's-t UCL 132.2

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Dibenzo(a,h)anthracene

General Statistics

Total Number of Observations	13	Number of Distinct Observations	11
		Number of Missing Observations	9
Number of Detects	10	Number of Non-Detects	3
Number of Distinct Detects	9	Number of Distinct Non-Detects	2
Minimum Detect	0.0058	Minimum Non-Detect	0.0075
Maximum Detect	0.076	Maximum Non-Detect	0.0081
Variance Detects 4	4.3788E-4	Percent Non-Detects	23.08%
Mean Detects	0.0282	SD Detects	0.0209
Median Detects	0.027	CV Detects	0.743
Skewness Detects	1.328	Kurtosis Detects	2.398
Mean of Logged Detects	-3.846	SD of Logged Detects	0.84

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.87	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.265	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Detected Data Not Normal at 5% Significance Level

Detected Data appear Approximate Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.023	KM Standard Error of Mean	0.00579
KM SD	0.0198	95% KM (BCA) UCL	0.0327
95% KM (t) UCL	0.0333	95% KM (Percentile Bootstrap) UCL	0.0323
95% KM (z) UCL	0.0325	95% KM Bootstrap t UCL	0.0374
90% KM Chebyshev UCL	0.0404	95% KM Chebyshev UCL	0.0482
97.5% KM Chebyshev UCL	0.0591	99% KM Chebyshev UCL	0.0806

Gamma GOF Tests on Detected Observations Only

3 Anderson-Darling GOF Test	0.383	A-D Test Statistic
6 Detected data appear Gamma Distributed at 5% Significance I	0.736	5% A-D Critical Value
8 Kolmogorov-Smirnov GOF	0.188	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance I	0.27	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.436	k star (bias corrected MLE)	1.956	k hat (MLE)
0.0196	Theta star (bias corrected MLE)	0.0144	Theta hat (MLE)
28.72	nu star (bias corrected)	39.13	nu hat (MLE)
		0.0282	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0058	Mean	0.024
Maximum	0.076	Median	0.023
SD	0.0198	CV	0.826
k hat (MLE)	1.869	k star (bias corrected MLE)	1.489
Theta hat (MLE)	0.0128	Theta star (bias corrected MLE)	0.0161
nu hat (MLE)	48.59	nu star (bias corrected)	38.71
Adjusted Level of Significance (β)	0.0301		
Approximate Chi Square Value (38.71, α)	25.46	Adjusted Chi Square Value (38.71, β)	23.94
95% Gamma Approximate UCL (use when n>=50)	0.0365	95% Gamma Adjusted UCL (use when n<50)	0.0388

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.023	SD (KM)	0.0198
Variance (KM) 3	3.9159E-4	SE of Mean (KM)	0.00579
k hat (KM)	1.353	k star (KM)	1.092
nu hat (KM)	35.18	nu star (KM)	28.4
theta hat (KM)	0.017	theta star (KM)	0.0211
80% gamma percentile (KM)	0.0368	90% gamma percentile (KM)	0.0519
95% gamma percentile (KM)	0.0669	99% gamma percentile (KM)	0.101

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (28.40, α)	17.24	Adjusted Chi Square Value (28.40, β)	16.01
95% Gamma Approximate KM-UCL (use when n>=50)	0.0379	95% Gamma Adjusted KM-UCL (use when n<50)	0.0408

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.912	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.235	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0232	Mean in Log Scale	-4.122
SD in Original Scale	0.0205	SD in Log Scale	0.903
95% t UCL (assumes normality of ROS data)	0.0333	95% Percentile Bootstrap UCL	0.0331
95% BCA Bootstrap UCL	0.0347	95% Bootstrap t UCL	0.0379
95% H-UCL (Log ROS)	0.049		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

		• • • • • • • • • • • • • • • • • • • •	
KM Mean (logged)	-4.145	KM Geo Mean	0.0158
KM SD (logged)	0.887	95% Critical H Value (KM-Log)	2.657
KM Standard Error of Mean (logged)	0.259	95% H-UCL (KM -Log)	0.0463
KM SD (logged)	0.887	95% Critical H Value (KM-Log)	2.657
KM Standard Error of Mean (logged)	0.259		

RI Report - BHHRA

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.0226	Mean in Log Scale	-4.242
SD in Original Scale	0.021	SD in Log Scale	1.046
95% t UCL (Assumes normality)	0.033	95% H-Stat UCL	0.0602

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.0333

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Diesel Range Organics (C10-C20)

General Statistics

Total Number of Observations	11	Number of Distinct Observations	5
		Number of Missing Observations	7
Number of Detects	1	Number of Non-Detects	10
Number of Distinct Detects	1	Number of Distinct Non-Detects	4

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set!

It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Diesel Range Organics (C10-C20) was not processed!

Indeno(1,2,3-cd)pyrene

	General Statistics		
Total Number of Observations	13	Number of Distinct Observations	12
		Number of Missing Observations	9
Number of Detects	10	Number of Non-Detects	3
Number of Distinct Detects	10	Number of Distinct Non-Detects	2
Minimum Detect	0.011	Minimum Non-Detect	0.0075
Maximum Detect	0.25	Maximum Non-Detect	0.0081
Variance Detects	0.00495	Percent Non-Detects	23.08%
Mean Detects	0.0899	SD Detects	0.0703
Median Detects	0.0835	CV Detects	0.782
Skewness Detects	1.3	Kurtosis Detects	2.331
Mean of Logged Detects	-2.748	SD of Logged Detects	0.967

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.883	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.243	Lilliefors GOF Test
	0.2.0	

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.0709	KM Standard Error of Mean	0.0199
KMSD	0.068	95% KM (BCA) UCL	0.106
95% KM (t) UCL	0.106	95% KM (Percentile Bootstrap) UCL	0.102
95% KM (z) UCL	0.104	95% KM Bootstrap t UCL	0.118
90% KM Chebyshev UCL	0.131	95% KM Chebyshev UCL	0.158
97.5% KM Chebyshev UCL	0.195	99% KM Chebyshev UCL	0.269

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.341	A-D Test Statistic		
B Detected data appear Gamma Distributed at 5% Significance Le	0.738	5% A-D Critical Value		
Kolmogorov-Smirnov GOF	0.211	K-S Test Statistic		
Detected data appear Gamma Distributed at 5% Significance Le	0.271	5% K-S Critical Value		
Detected data appear Gamma Distributed at 5% Significance Level				

Gamma Statistics on Detected Data Only

1.201	k star (bias corrected MLE)	1.62	k hat (MLE)
0.0749	Theta star (bias corrected MLE)	0.0555	Theta hat (MLE)
24.01	nu star (bias corrected)	32.4	nu hat (MLE)
		0.0899	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.0715	Mean	0.01	Minimum
0.074	Median	0.25	Maximum
0.983	CV	0.0703	SD
0.87	k star (bias corrected MLE)	1.065	k hat (MLE)
0.0821	Theta star (bias corrected MLE)	0.0671	Theta hat (MLE)
22.62	nu star (bias corrected)	27.68	nu hat (MLE)
		0.0301	Adjusted Level of Significance (β)
11.77	Adjusted Chi Square Value (22.62, β)	12.81	Approximate Chi Square Value (22.62, α)
0.137	95% Gamma Adjusted UCL (use when n<50)	0.126	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.0709	SD (KM)	0.068
Variance (KM)	0.00463	SE of Mean (KM)	0.0199
k hat (KM)	1.085	k star (KM)	0.886
nu hat (KM)	28.22	nu star (KM)	23.04
theta hat (KM)	0.0653	theta star (KM)	0.08
80% gamma percentile (KM)	0.115	90% gamma percentile (KM)	0.168
95% gamma percentile (KM)	0.222	99% gamma percentile (KM)	0.347

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (23.04, α)	13.12	Adjusted Chi Square Value (23.04, β)	12.07
95% Gamma Approximate KM-UCL (use when n>=50)	0.124	95% Gamma Adjusted KM-UCL (use when n<50)	0.135

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.919	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.26	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Detected Data appear Lognormal at 5% Significance Level
Detected Data appear Lognormal at 5% Significance Level		

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0708	Mean in Log Scale	-3.258
SD in Original Scale	0.0709	SD in Log Scale	1.285
95% t UCL (assumes normality of ROS data)	0.106	95% Percentile Bootstrap UCL	0.105
95% BCA Bootstrap UCL	0.113	95% Bootstrap t UCL	0.12
95% H-UCL (Log ROS)	0.307		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.243	KM Geo Mean	0.039
KM SD (logged)	1.21	95% Critical H Value (KM-Log)	3.224
KM Standard Error of Mean (logged)	0.354	95% H-UCL (KM -Log)	0.25
KM SD (logged)	1.21	95% Critical H Value (KM-Log)	3.224
KM Standard Error of Mean (logged)	0.354		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	0.07	Mean in Log Scale	-3.397	
SD in Original Scale	0.0716	SD in Log Scale	1.491	
95% t UCL (Assumes normality)	0.105	95% H-Stat UCL	0.514	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.106

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Manganese

	General Statistics		
Total Number of Observations	4	Number of Distinct Observations	4
		Number of Missing Observations	12
Minimum	36	Mean	209
Maximum	370	Median	215
SD	137.1	Std. Error of Mean	68.54
Coefficient of Variation	0.656	Skewness	-0.258

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.976	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.224	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)			
95% Student's-t UCL	370.3	95% Adjusted-CLT UCL (Chen-1995)	312.3
		95% Modified-t UCL (Johnson-1978)	368.8

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.392	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.661	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.323	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.398	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.911	k star (bias corrected MLE)	0.644
Theta hat (MLE)	109.4	Theta star (bias corrected MLE)	324.4
nu hat (MLE)	15.28	nu star (bias corrected)	5.154
MLE Mean (bias corrected)	209	MLE Sd (bias corrected)	260.4
		Approximate Chi Square Value (0.05)	1.224
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<=50)) 880 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.849	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.343	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.375	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	3.584	Mean of logged Data	5.058
Maximum of Logged Data	5.914	SD of logged Data	1.018

Assuming Lognormal Distribution

95% H-UCL	14215	90% Chebyshev (MVUE) UCL	545.6
95% Chebyshev (MVUE) UCL	690.4	97.5% Chebyshev (MVUE) UCL	891.3
99% Chebyshev (MVUE) UCL	1286		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	321.7	95% Jackknife UCL	370.3
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	414.6	95% Chebyshev(Mean, Sd) UCL	507.8
97.5% Chebyshev(Mean, Sd) UCL	637	99% Chebyshev(Mean, Sd) UCL	891

Suggested UCL to Use

95% Student's-t UCL 370.3

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

Naphthalene

General Statistics

Total Number of Observations	13	Number of Distinct Observations	10
		Number of Missing Observations	9
Number of Detects	8	Number of Non-Detects	5
Number of Distinct Detects	7	Number of Distinct Non-Detects	4
Minimum Detect	0.0016	Minimum Non-Detect	0.0075
Maximum Detect	0.018	Maximum Non-Detect	0.11
Variance Detects	4.0673E-5	Percent Non-Detects	38.46%
Mean Detects	0.00959	SD Detects	0.00638
Median Detects	0.0087	CV Detects	0.665
Skewness Detects	0.215	Kurtosis Detects	-1.342
Mean of Logged Detects	-4.931	SD of Logged Detects	0.903

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.919	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.156	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.00195	KM Standard Error of Mean	KM Mean 0.0	
0.0113	95% KM (BCA) UCL	KM SD 0.0	
0.0112	95% KM (Percentile Bootstrap) UCL	95% KM (t) UCL 0.	9
0.012	95% KM Bootstrap t UCL	95% KM (z) UCL 0.	9
0.0165	95% KM Chebyshev UCL	Chebyshev UCL 0.	90% KM C
0.0274	99% KM Chebyshev UCL	Chebyshev UCL 0.	97.5% KM C

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.323	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance	0.725	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.159	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance	0.298	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	1.911	k star (bias corrected MLE)	1.278
Theta hat (MLE)	0.00502	Theta star (bias corrected MLE)	0.0075
nu hat (MLE)	30.57	nu star (bias corrected)	20.44
Mean (detects)	0.00959		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.00975	Mean	0.0016	Minimum
0.01	Median	0.018	Maximum
0.5	CV	0.00488	SD
2.37	k star (bias corrected MLE)	3.015	k hat (MLE)
0.00411	Theta star (bias corrected MLE)	0.00323	Theta hat (MLE)
61.63	nu star (bias corrected)	78.38	nu hat (MLE)
		0.0301	Adjusted Level of Significance (β)
42.51	Adjusted Chi Square Value (61.63, β)	44.57	Approximate Chi Square Value (61.63, α)
0.0141	95% Gamma Adjusted UCL (use when n<50)	0.0135	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

0.00585	SD (KM)	0.00797	Mean (KM)
0.00195	SE of Mean (KM)	3.4244E-5	Variance (KM)
1.478	k star (KM)	1.855	k hat (KM)
38.44	nu star (KM)	48.24	nu hat (KM)
0.00539	theta star (KM)	0.0043	theta hat (KM)
0.0167	90% gamma percentile (KM)	0.0124	80% gamma percentile (KM)
0.0303	99% gamma percentile (KM)	0.0209	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (38.44, α)	25.24	Adjusted Chi Square Value (38.44, β)	23.72
95% Gamma Approximate KM-UCL (use when n>=50)	0.0121	95% Gamma Adjusted KM-UCL (use when n<50)	0.0129

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.89	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.197	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-5.166	Mean in Log Scale	0.00749	Mean in Original Scale
0.788	SD in Log Scale	0.00566	SD in Original Scale
0.0101	95% Percentile Bootstrap UCL	0.0103	95% t UCL (assumes normality of ROS data)
0.0113	95% Bootstrap t UCL	0.0105	95% BCA Bootstrap UCL
		0.0138	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-5.168	KM Geo Mean	0.00569
KM SD (logged)	0.878	95% Critical H Value (KM-Log)	2.643
KM Standard Error of Mean (logged)	0.315	95% H-UCL (KM -Log)	0.0164
KM SD (logged)	0.878	95% Critical H Value (KM-Log)	2.643
KM Standard Error of Mean (logged)	0.315		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.0125	Mean in Log Scale	-4.844
SD in Original Scale	0.0142	SD in Log Scale	0.996
95% t UCL (Assumes normality)	0.0196	95% H-Stat UCL	0.0293

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.0115

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Nickel

	General Statistics		
Total Number of Observations	4	Number of Distinct Observations	4
		Number of Missing Observations	12
Minimum	3.4	Mean	7.075
Maximum	12	Median	6.45
SD	4.028	Std. Error of Mean	2.014
Coefficient of Variation	0.569	Skewness	0.514

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.913	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.262	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

733	aning Normal Distribution		
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	11.81	95% Adjusted-CLT UCL (Chen-1995)	10.94
		95% Modified-t UCL (Johnson-1978)	11.9

Gamma GOF Test

A-D Test Statistic	0.341	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.659	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.284	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.396	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	4.011	k star (bias corrected MLE)	1.169
Theta hat (MLE)	1.764	Theta star (bias corrected MLE)	6.05
nu hat (MLE)	32.09	nu star (bias corrected)	9.356
MLE Mean (bias corrected)	7.075	MLE Sd (bias corrected)	6.542
		Approximate Chi Square Value (0.05)	3.543
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.919	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.245	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.375	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.224	Mean of logged Data	1.827
Maximum of Logged Data	2.485	SD of logged Data	0.595

Assuming Lognormal Distribution

95% H-UCL	31.24	90% Chebyshev (MVUE) UCL	13.22
95% Chebyshev (MVUE) UCL	16.01	97.5% Chebyshev (MVUE) UCL	19.88
99% Chehyshey (MVLIE) LICI	27 48		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	10.39	95% Jackknife UCL	11.81
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	13.12	95% Chebyshev(Mean, Sd) UCL	15.85
97.5% Chebyshev(Mean, Sd) UCL	19.65	99% Chebyshev(Mean, Sd) UCL	27.11

Suggested UCL to Use

95% Student's-t UCL 11.81

Mean of Logged Detects -4.105

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

PCB, Total Aroclors (AECOM Calc)

	General Statistics		
Total Number of Observations	19	Number of Distinct Observations	15
		Number of Missing Observations	3
Number of Detects	6	Number of Non-Detects	13
Number of Distinct Detects	6	Number of Distinct Non-Detects	9
Minimum Detect 8.3000E-4		Minimum Non-Detect 8	3.9000E-4
Maximum Detect	0.092	Maximum Non-Detect	0.0096
Variance Detects	0.00165	Percent Non-Detects	68.42%
Mean Detects	0.0428	SD Detects	0.0406
Median Detects	0.0375	CV Detects	0.95
Skewness Detects	0.239	Kurtosis Detects	-2.327

SD of Logged Detects 1.968

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.873	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.204	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.00716	KM Standard Error of Mean	KM Mean
0.0255	95% KM (BCA) UCL	KM SD
0.0262	95% KM (Percentile Bootstrap) UCL	95% KM (t) UCL
0.0311	95% KM Bootstrap t UCL	95% KM (z) UCL
0.0454	95% KM Chebyshev UCL	90% KM Chebyshev UCL
0.0854	99% KM Chebyshev UCL	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.405	Anderson-Darling GOF Test
5% A-D Critical Value	0.727	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.229	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.346	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.432	k star (bias corrected MLE)	0.642	k hat (MLE)
0.0989	Theta star (bias corrected MLE)	0.0666	Theta hat (MLE)
5.186	nu star (bias corrected)	7.706	nu hat (MLE)
		0.0428	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 8	8.3000E-4	Mean	0.0203
Maximum	0.092	Median	0.01
SD	0.0265	CV	1.304
k hat (MLE)	1.04	k star (bias corrected MLE)	0.911
Theta hat (MLE)	0.0196	Theta star (bias corrected MLE)	0.0223
nu hat (MLE)	39.54	nu star (bias corrected)	34.63
Adjusted Level of Significance (β)	0.0369		
Approximate Chi Square Value (34.63, α)	22.17	Adjusted Chi Square Value (34.63, β)	21.3
95% Gamma Approximate UCL (use when n>=50)	0.0318	95% Gamma Adjusted UCL (use when n<50)	0.0331

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.0142	SD (KM)	0.0285
Variance (KM) 8	.1158E-4	SE of Mean (KM)	0.00716
k hat (KM)	0.248	k star (KM)	0.244
nu hat (KM)	9.417	nu star (KM)	9.264
theta hat (KM)	0.0572	theta star (KM)	0.0582
80% gamma percentile (KM)	0.0204	90% gamma percentile (KM)	0.0426
95% gamma percentile (KM)	0.0692	99% gamma percentile (KM)	0.14

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (9.26, α)	3.487	Adjusted Chi Square Value (9.26, β)	3.183
95% Gamma Approximate KM-UCL (use when n>=50)	0.0377	95% Gamma Adjusted KM-UCL (use when n<50)	0.0413

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.861	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.227	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

•		• .		
Mean in Original Scale	0.0142		Mean in Log Scale	-6.221
SD in Original Scale	0.0293		SD in Log Scale	1.907
95% t UCL (assumes normality of ROS data)	0.0258		95% Percentile Bootstrap UCL	0.0265
95% BCA Bootstrap UCL	0.0285		95% Bootstrap t UCL	0.0386
95% H-UCL (Log ROS)	0.0768			

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-6.079	KM Geo Mean	0.00229
KM SD (logged)	1.701	95% Critical H Value (KM-Log)	3.728
KM Standard Error of Mean (logged)	0.439	95% H-UCL (KM -Log)	0.0434
KM SD (logged)	1.701	95% Critical H Value (KM-Log)	3.728
KM Standard Error of Mean (logged)	0.439		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed			
Mean in Original Scale	0.0147	Mean in Log Scale	-5.826	
SD in Original Scale	0.029	SD in Log Scale	1.74	
95% t UCL (Assumes normality)	0.0263	95% H-Stat UCL	0.0636	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.0266

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

TCDD TEQ HH

General Statistics

4	Number of Distinct Observations	Total Number of Observations 4
12	Number of Missing Observations	
1.1378E-6	Mean	Minimum 2.1300E-7
9.1400E-7	Median	Maximum 2.5100E-6
5.0760E-7	Std. Error of Mean	SD 1.0152E-6
1.02	Skewness	Coefficient of Variation N/A

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic 0.932	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value 0.748	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.216	Lilliefors GOF Test
5% Lilliefors Critical Value 0.375	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 2.3323E-6 95% Adjusted-CLT UCL (Chen-1995) 2.2493E-6 95% Modified-t UCL (Johnson-1978) 2.3754E-6

Gamma GOF Test

A-D Test Statistic	0.203	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.662	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.188	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.4	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 1.49	k star (bias corrected MLE) 0.539
Theta hat (MLE) 7.6362E-7	Theta star (bias corrected MLE) 2.1103E-6
nu hat (MLE) 11.92	nu star (bias corrected) 4.313
MLE Mean (bias corrected) 1.1378E-6	MLE Sd (bias corrected) 1.5495E-6
	Approximate Chi Square Value (0.05) 0.849
Adjusted Level of Significance N/A	Adjusted Chi Square Value N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 5.7788E-6 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.988	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.175	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.375	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-15.36	Mean of logged Data	-14.06
Maximum of Logged Data	-12.9	SD of logged Data	1.065

Assuming Lognormal Distribution

95% H-UCL 1.0729E-4	90% Chebyshev (MVUE) UCL 2.8719E-6
95% Chebyshev (MVUE) UCL 3.6459E-6	97.5% Chebyshev (MVUE) UCL 4.7201E-6
99% Chebyshev (MVUE) UCL 6.8303E-6	

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 1.9727E-6	95% Jackknife UCL 2.3323E-6
95% Standard Bootstrap UCL N/A	95% Bootstrap-t UCL N/A
95% Hall's Bootstrap UCL N/A	95% Percentile Bootstrap UCL N/A
95% BCA Bootstrap UCL N/A	
90% Chebyshev(Mean, Sd) UCL 2.6605E-6	95% Chebyshev(Mean, Sd) UCL 3.3503E-6
97.5% Chebyshev(Mean, Sd) UCL 4.3077E-6	99% Chebyshev(Mean, Sd) UCL 6.1883E-6

Suggested UCL to Use

95% Student's-t UCL 2.3323E-6

Total Number of Observations

Number of Detects
Number of Distinct Detects
Minimum Detect
Maximum Detect

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

General Statistics

Thallium

4	Number of Distinct Observations	3
	Number of Missing Observations	12
2	Number of Non-Detects	2
2	Number of Distinct Non-Detects	1
0.037	Minimum Non-Detect	0.11
0.053	Maximum Non-Detect	0.11
1 2800F-4	Percent Non-Detects	50%

 Variance Detects
 1.2800E-4
 Percent Non-Detects
 50%

 Mean Detects
 0.045
 SD Detects
 0.0113

 Median Detects
 0.045
 CV Detects
 0.251

 Skewness Detects
 N/A
 Kurtosis Detects
 N/A

 Mean of Logged Detects
 -3.117
 SD of Logged Detects
 0.254

Warning: Data set has only 2 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Not Enough Data to Perform GOF Test

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.008	KM Standard Error of Mean	0.045	KM Mean
N/A	95% KM (BCA) UCL	0.008	KM SD
N/A	95% KM (Percentile Bootstrap) UCL	0.0638	95% KM (t) UCL
N/A	95% KM Bootstrap t UCL	0.0582	95% KM (z) UCL
0.0799	95% KM Chebyshev UCL	0.069	90% KM Chebyshev UCL
0.125	99% KM Chebyshev UCL	0.095	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

N/A	k star (bias corrected MLE)	31.3	k hat (MLE)
N/A	Theta star (bias corrected MLE)	0.00144	Theta hat (MLE)
N/A	nu star (bias corrected)	125.2	nu hat (MLE)
		0.045	Mean (detects)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.045	SD (KM)	0.008
Variance (KM)	6.4000E-5	SE of Mean (KM)	0.008
k hat (KM)	31.64	k star (KM)	8.077
nu hat (KM)	253.1	nu star (KM)	64.61
theta hat (KM)	0.00142	theta star (KM)	0.00557
80% gamma percentile (KM)	0.0575	90% gamma percentile (KM)	0.0661
95% gamma percentile (KM)	0.0738	99% gamma percentile (KM)	0.0897

Gamma Kaplan-Meier (KM) Statistics

			Adjusted Level of Significance (β)	0.00498
	Approximate Chi Square Value (64.61, α)	47.12	Adjusted Chi Square Value (64.61, β)	39.07
95% (Gamma Approximate KM-UCL (use when n>=50)	0.0617	95% Gamma Adjusted KM-UCL (use when n<50)	0.0744

Lognormal GOF Test on Detected Observations Only

Not Enough Data to Perform GOF Test

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.045	Mean in Log Scale	-3.117
SD in Original Scale	0.00924	SD in Log Scale	0.207
95% t UCL (assumes normality of ROS data)	0.0559	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A	95% Bootstrap t UCL	N/A
95% H-UCL (Log ROS)	0.0609		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.117	KM Geo Mean	0.0443
KM SD (logged)	0.18	95% Critical H Value (KM-Log)	2.408
KM Standard Error of Mean (logged)	0.18	95% H-UCL (KM -Log)	0.0578
KM SD (logged)	0.18	95% Critical H Value (KM-Log)	2.408
KM Standard Error of Mean (logged)	0.18		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed			
Mean in Original Scale	0.05	Mean in Log Scale	-3.009	
SD in Original Scale	0.00872	SD in Log Scale	0.193	
95% t UCL (Assumes normality)	0.0603	95% H-Stat UCL	0.066	
DL/2 is not a recommended method, provided for comparisons and historical reasons				

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL	0.0638	KM H-UCL	0.0578
95% KM (BCA) UCL	N/A		

Warning: One or more Recommended UCL(s) not available!
Warning: Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Vanadium

General Statistics

Total Number of Observations		4	Number of Distinct Observations	4
			Number of Missing Observations	12
	Minimum	8.6	Mean	23.65
	Maximum	58	Median	14
	SD	23.1	Std. Error of Mean	11.55
	Coefficient of Variation	0.977	Skewness	1.898

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.749	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.38	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Data Not Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	50.83	95% Adjusted-CLT UCL (Chen-1995)	54.36
		95% Modified-t UCL (Johnson-1978)	52.66

Gamma GOF Test

A-D Test Statistic	0.501	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.661	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.346	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.398	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

0.626	k star (bias corrected MLE)	1.839	k hat (MLE)
37.76	Theta star (bias corrected MLE)	12.86	Theta hat (MLE)
5.011	nu star (bias corrected)	14.71	nu hat (MLE)
29.88	MLE Sd (bias corrected)	23.65	MLE Mean (bias corrected)
1.157	Approximate Chi Square Value (0.05)		
N/A	Adjusted Chi Square Value	N/A	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50))	102.4	95% Adjusted Gamma UCL (use when n<50)	N/A
50% Approximate damina GGE (doc when it GG))	102.7	50 % / tajastea damina 60E (ase when in 400)	14//

Lognormal GOF Test

Shapiro Wilk Lognormal GOF Test	0.885	Shapiro Wilk Test Statistic
Data appear Lognormal at 5% Significance Lev	0.748	5% Shapiro Wilk Critical Value
Lilliefors Lognormal GOF Test	0.295	Lilliefors Test Statistic
Data appear Lognormal at 5% Significance Lev	0.375	5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2.152	Mean of logged Data	2.867
Maximum of Logged Data	4.06	SD of logged Data	0.835

Assuming Lognormal Distribution

95% H-UCL	376	90% Chebyshev (MVUE) UCL	49.39
95% Chebyshev (MVUE) UCL	61.54	97.5% Chebyshev (MVUE) UCL	78.4
99% Chehyshey (MVUE) UCI	111.5		

February 2020

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	42.65	95% Jackknife UCL	50.83
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	58.3	95% Chebyshev(Mean, Sd) UCL	73.99
97.5% Chebyshev(Mean, Sd) UCL	95.78	99% Chebyshev(Mean, Sd) UCL	138.6

Suggested UCL to Use

95% Student's-t UCL 50.83

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.18/29/2018 3:04:26 PM

From File Soil-WH_Laydown.xls

Full Precision OFF
Confidence Coefficient 95%
Imber of Bootstrap Operations 2000

Arsenic

Conorol	Statistics

Total Number of Observations	74	Number of Distinct Observations	51
		Number of Missing Observations	170
Minimum	0.48	Mean	14.01
Maximum	190	Median	6.3
SD	25.7	Std. Error of Mean	2.988
Coefficient of Variation	1.835	Skewness	4.946

Normal GOF Test

Shapiro Wilk Test Statistic	0.493	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.311	Lilliefors GOF Test
5% Lilliefors Critical Value	0.103	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

Assui	iiily Noilliai Dis	uibuuoii	
5% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	18.99	95% Adjusted-CLT UCL (Chen-1995)	20.76
		95% Modified-t UCL (Johnson-1978)	19.28

Gamma GOF Test

Anderson-Darling Gamma GOF Test	3.406	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Le	0.79	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.175	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Le	0.108	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.818	k star (bias corrected MLE)	0.794
Theta hat (MLE)	17.12	Theta star (bias corrected MLE)	17.64
nu hat (MLE)	121.1	nu star (bias corrected)	117.5
MLE Mean (bias corrected)	14.01	MLE Sd (bias corrected)	15.72
		Approximate Chi Square Value (0.05)	93.5
Adjusted Level of Significance	0.0468	Adjusted Chi Square Value	93.07

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50))	17.61	95% Adjusted Gamma UCL (use when n<50)	17.69

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.968	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.191	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0943	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.103	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.734	Mean of logged Data	1.917
Maximum of Logged Data	5.247	SD of logged Data	1.114

Assuming Lognormal Distribution

95% H-UCL	17.22	90% Chebyshev (MVUE) UCL	18.43
95% Chebyshev (MVUE) UCL	21.13	97.5% Chebyshev (MVUE) UCL	24.88
99% Chebyshev (MVUE) UCL	32.23		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	18.93	95% Jackknife UCL	18.99
95% Standard Bootstrap UCL	18.94	95% Bootstrap-t UCL	23.27
95% Hall's Bootstrap UCL	38.29	95% Percentile Bootstrap UCL	19.18
95% BCA Bootstrap UCL	21.8		
90% Chebyshev(Mean, Sd) UCL	22.98	95% Chebyshev(Mean, Sd) UCL	27.04
97.5% Chebyshev(Mean, Sd) UCL	32.67	99% Chebyshev(Mean, Sd) UCL	43.74

Suggested UCL to Use

95% H-UCL 17.22

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

se of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

Benzo(a)anthracene

Statistics

Total Number of Observations	70	Number of Distinct Observations	58
		Number of Missing Observations	138
Number of Detects	62	Number of Non-Detects	8
Number of Distinct Detects	53	Number of Distinct Non-Detects	6
Minimum Detect	0.0014	Minimum Non-Detect	0.0072
Maximum Detect	39	Maximum Non-Detect	0.7
Variance Detects	24.33	Percent Non-Detects	11.43%
Mean Detects	1.146	SD Detects	4.932
Median Detects	0.335	CV Detects	4.304
Skewness Detects	7.656	Kurtosis Detects	59.61
Mean of Logged Detects	-1.333	SD of Logged Detects	1.621

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.206	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.431	Lilliefors GOF Test
5% Lilliefors Critical Value	0.112	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

an 0.556	KM Standard Error of Mean	1.018	KM Mean
CL 2.13	95% KM (BCA) UCL	4.618	KM SD
CL 2.145	95% KM (Percentile Bootstrap) UCL	1.946	95% KM (t) UCL
CL 6.794	95% KM Bootstrap t UCL	1.934	95% KM (z) UCL
CL 3.444	95% KM Chebyshev UCL	2.688	90% KM Chebyshev UCL
CL 6.555	99% KM Chebyshey UCL	4.494	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	4.065	Anderson-Darling GOF Test
5% A-D Critical Value	0.83	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.232	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.121	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.441	k star (bias corrected MLE)	0.43
Theta hat (MLE)	2.599	Theta star (bias corrected MLE)	2.663
nu hat (MLE)	54.68	nu star (bias corrected)	53.37
Mean (detects)	1.146		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

1.016	Mean	0.0014	Minimum
0.275	Median	39	Maximum
4.578	CV	4.652	SD
0.377	k star (bias corrected MLE)	0.384	k hat (MLE)
2.692	Theta star (bias corrected MLE)	2.643	Theta hat (MLE)
52.84	nu star (bias corrected)	53.82	nu hat (MLE)
		0.0466	Adjusted Level of Significance (β)
36.87	Adjusted Chi Square Value (52.84, β)	37.15	Approximate Chi Square Value (52.84, α)
1.456	95% Gamma Adjusted UCL (use when n<50)	1.446	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.018	SD (KM)	4.618
Variance (KM)	21.33	SE of Mean (KM)	0.556
k hat (KM)	0.0486	k star (KM)	0.0561
nu hat (KM)	6.81	nu star (KM)	7.851
theta hat (KM)	20.94	theta star (KM)	18.16
80% gamma percentile (KM)	0.202	90% gamma percentile (KM)	1.785
95% gamma percentile (KM)	5.615	99% gamma percentile (KM)	21.14

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (7.85, α)	2.649	Adjusted Chi Square Value (7.85, β)	2.586
15% Gamma Approximate KM-UCL (use when n>=50)	3.019	95% Gamma Adjusted KM-UCL (use when n<50)	3.092

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.964	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0.152	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.11	Lilliefors GOF Test
5% Lilliefors Critical Value	0.112	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-1.658	Mean in Log Scale	1.018	Mean in Original Scale
1.797	SD in Log Scale	4.651	SD in Original Scale
2.081	95% Percentile Bootstrap UCL	1.945	95% t UCL (assumes normality of ROS data)
6.833	95% Bootstrap t UCL	2.813	95% BCA Bootstrap UCL
		1.698	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.802	KM Geo Mean	0.165
KM SD (logged)	2.059	95% Critical H Value (KM-Log)	2.938
KM Standard Error of Mean (logged)	0.256	95% H-UCL (KM -Log)	2.845
KM SD (logged)	2.059	95% Critical H Value (KM-Log)	2.938
KM Standard Error of Mean (logged)	0.256		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.02	Mean in Log Scale	-1.745
SD in Original Scale	4.651	SD in Log Scale	1.979
95% t UCL (Assumes normality)	1.947	95% H-Stat UCL	2.45

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 2.845

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)pyrene

General Statistics

Total Number of Observations	70	Number of Distinct Observations	55
		Number of Missing Observations	138
Number of Detects	58	Number of Non-Detects	12
Number of Distinct Detects	47	Number of Distinct Non-Detects	10
Minimum Detect	0.0064	Minimum Non-Detect	0.0071
Maximum Detect	34	Maximum Non-Detect	0.7
Variance Detects	19.67	Percent Non-Detects	17.14%
Mean Detects	1.089	SD Detects	4.435
Median Detects	0.345	CV Detects	4.074
Skewness Detects	7.423	Kurtosis Detects	55.97
Mean of Logged Detects	-1.234	SD of Logged Detects	1.458

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.213	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.421	Lilliefors GOF Test
5% Lilliefors Critical Value	0.116	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.908	KM Standard Error of Mean	0.485
KM SD	4.022	95% KM (BCA) UCL	1.864
95% KM (t) UCL	1.716	95% KM (Percentile Bootstrap) UCL	1.887
95% KM (z) UCL	1.705	95% KM Bootstrap t UCL	6.065
90% KM Chebyshev UCL	2.362	95% KM Chebyshev UCL	3.021
97.5% KM Chebyshev UCL	3.936	99% KM Chebyshev UCL	5.732

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic 3	3.948	Anderson-Darling GOF Test			
5% A-D Critical Value 0	0.819	Detected Data Not Gamma Distributed at 5% Significance Level			
K-S Test Statistic 0	0.223	Kolmogorov-Smirnov GOF			
5% K-S Critical Value 0	0.124	Detected Data Not Gamma Distributed at 5% Significance Level			
Detected Data Not Gamma Distributed at 5% Significance Level					

Gamma Statistics on Detected Data Only

0.484	k star (bias corrected MLE)	0.471
2.249	Theta star (bias corrected MLE)	2.313
56.15	nu star (bias corrected)	54.58
1.089		
	2.249 56.15	2.249 Theta star (bias corrected MLE) 56.15 nu star (bias corrected)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0064	Mean	0.904
Maximum	34	Median	0.25
SD	4.051	CV	4.483
k hat (MLE)	0.387	k star (bias corrected MLE)	0.38
Theta hat (MLE)	2.336	Theta star (bias corrected MLE)	2.38
nu hat (MLE)	54.15	nu star (bias corrected)	53.16
Adjusted Level of Significance (β)	0.0466		
Approximate Chi Square Value (53.16, α)	37.41	Adjusted Chi Square Value (53.16, β)	37.14
95% Gamma Approximate UCL (use when n>=50)	1.284	95% Gamma Adjusted UCL (use when n<50)	1.294

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.908	SD (KM)	4.022
Variance (KM)	16.17	SE of Mean (KM)	0.485
k hat (KM)	0.051	k star (KM)	0.0583
nu hat (KM)	7.133	nu star (KM)	8.161
theta hat (KM)	17.82	theta star (KM)	15.57
80% gamma percentile (KM)	0.202	90% gamma percentile (KM)	1.658
95% gamma percentile (KM)	5.054	99% gamma percentile (KM)	18.54

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (8.16, α)	2.829	Adjusted Chi Square Value (8.16, β)	2.763
15% Gamma Approximate KM-UCL (use when n>=50)	2.619	95% Gamma Adjusted KM-UCL (use when n<50)	2.681

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.969	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0.278	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0967	Lilliefors GOF Test
5% Lilliefors Critical Value	0.116	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.907	Mean in Log Scale	-1.677
SD in Original Scale	4.051	SD in Log Scale	1.675
95% t UCL (assumes normality of ROS data)	1.714	95% Percentile Bootstrap UCL	1.865
95% BCA Bootstrap UCL	2.448	95% Bootstrap t UCL	5.736
95% H-UCL (Log ROS)	1.259		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.804	KM Geo Mean	0.165
KM SD (logged)	1.876	95% Critical H Value (KM-Log)	2.743
KM Standard Error of Mean (logged)	0.229	95% H-UCL (KM -Log)	1.779
KM SD (logged)	1.876	95% Critical H Value (KM-Log)	2.743
KM Standard Error of Mean (logged)	0.229		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed		
Mean in Original Scale	0.91	Mean in Log Scale	-1.813
SD in Original Scale	4.05	SD in Log Scale	1.961
95% t UCL (Assumes normality)	1.717	95% H-Stat UCL	2.185

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 1.779

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(b)fluoranthene

General Statistics

Total Number of Observations	70	Number of Distinct Observations	55
		Number of Missing Observations	138
Number of Detects	60	Number of Non-Detects	10
Number of Distinct Detects	47	Number of Distinct Non-Detects	8
Minimum Detect	0.0017	Minimum Non-Detect	0.0072
Maximum Detect	45	Maximum Non-Detect	0.7
Variance Detects	33.25	Percent Non-Detects	14.29%
Mean Detects	1.283	SD Detects	5.766
Median Detects	0.405	CV Detects	4.494
Skewness Detects	7.636	Kurtosis Detects	58.83
Mean of Logged Detects	-1.187	SD of Logged Detects	1.596

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.191	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.418	Lilliefors GOF Test
5% Lilliefors Critical Value	0.114	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.64	KM Standard Error of Mean	1.106	KM Mean
2.387	95% KM (BCA) UCL	5.312	KM SD
2.358	95% KM (Percentile Bootstrap) UCL	2.173	95% KM (t) UCL
9.768	95% KM Bootstrap t UCL	2.159	95% KM (z) UCL
3.896	95% KM Chebyshev UCL	3.026	90% KM Chebyshev UCL
7.476	99% KM Chebyshev UCL	5.104	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	4.602	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.828	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.25	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.122	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.438	k star (bias corrected MLE)	0.45	k hat (MLE)
2.928	Theta star (bias corrected MLE)	2.854	Theta hat (MLE)
52.59	nu star (bias corrected)	53.96	nu hat (MLE)
		1.283	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

1.101	Mean	0.0017	Minimum
0.315	Median	45	Maximum
4.859	CV	5.351	SD
0.369	k star (bias corrected MLE)	0.375	k hat (MLE)
2.987	Theta star (bias corrected MLE)	2.935	Theta hat (MLE)
51.62	nu star (bias corrected)	52.54	nu hat (MLE)
		0.0466	Adjusted Level of Significance (β)
35.84	Adjusted Chi Square Value (51.62, β)	36.12	Approximate Chi Square Value (51.62, α)
1.586	95% Gamma Adjusted UCL (use when n<50)	1.574	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

5.312	SD (KM)	1.106	Mean (KM)
0.64	SE of Mean (KM)	28.22	Variance (KM)
0.051	k star (KM)	0.0433	k hat (KM)
7.138	nu star (KM)	6.065	nu hat (KM)
21.68	theta star (KM)	25.52	theta hat (KM)
1.73	90% gamma percentile (KM)	0.161	80% gamma percentile (KM)
23.86	99% gamma percentile (KM)	5.921	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (7.14, α)	2.247	Adjusted Chi Square Value (7.14, β)	2.19
15% Gamma Approximate KM-UCL (use when n>=50)	3.513	95% Gamma Adjusted KM-UCL (use when n<50)	3.604

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.932	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0.00314	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.126	Lilliefors GOF Test
5% Lilliefors Critical Value	0.114	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-1.558	Mean in Log Scale	1.104	Mean in Original Scale
1.759	SD in Log Scale	5.35	SD in Original Scale
2.365	95% Percentile Bootstrap UCL	2.171	95% t UCL (assumes normality of ROS data)
9.431	95% Bootstrap t UCL	3.077	95% BCA Bootstrap UCL
		1.718	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.727	KM Geo Mean	0.178
KM SD (logged)	2.064	95% Critical H Value (KM-Log)	2.942
KM Standard Error of Mean (logged)	0.26	95% H-UCL (KM -Log)	3.11

	KM SI	D (log	ged)	2.064	95% Critical H Value (KM-Log)	2.942

KM Standard Error of Mean (logged) 0.26

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed			
Mean in Original Scale	1.108	Mean in Log Scale	-1.649		
SD in Original Scale	5.35	SD in Log Scale	1.972		
95% t UCL (Assumes normality)	2.174	95% H-Stat UCL	2.651		

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 3.896

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(k)fluoranthene

General Statistics

Total Number of Observations	70	Number of Distinct Observations	53
		Number of Missing Observations	138
Number of Detects	59	Number of Non-Detects	11
Number of Distinct Detects	46	Number of Distinct Non-Detects	9
Minimum Detect	0.0019	Minimum Non-Detect	0.0072
Maximum Detect	16	Maximum Non-Detect	0.7
Variance Detects	4.275	Percent Non-Detects	15.71%
Mean Detects	0.468	SD Detects	2.068
Median Detects	0.15	CV Detects	4.414
Skewness Detects	7.562	Kurtosis Detects	57.74
Mean of Logged Detects	-2.15	SD of Logged Detects	1.474

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.195	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.418	Lilliefors GOF Test
5% Lilliefors Critical Value	0.115	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.399	KM Standard Error of Mean	0.228
KM SD	1.889	95% KM (BCA) UCL	0.875
95% KM (t) UCL	0.779	95% KM (Percentile Bootstrap) UCL	0.85
95% KM (z) UCL	0.774	95% KM Bootstrap t UCL	3.307
% KM Chebyshev UCL	1.082	95% KM Chebyshev UCL	1.392
5% KM Chebyshev UCL	1.821	99% KM Chebyshev UCL	2.665

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	4.424	Anderson-Darling GOF Test
5% A-D Critical Value	0.825	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.229	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.123	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.45	k star (bias corrected MLE)	0.462	k hat (MLE)
1.041	Theta star (bias corrected MLE)	1.014	Theta hat (MLE)
53.08	nu star (bias corrected)	54.52	nu hat (MLE)
		0.469	Maan (datasta)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0019	Mean	0.396
Maximum	16	Median	0.11
SD	1.903	CV	4.801
k hat (MLE)	0.407	k star (bias corrected MLE)	0.399
Theta hat (MLE)	0.973	Theta star (bias corrected MLE)	0.992
nu hat (MLE)	57.03	nu star (bias corrected)	55.92
Adjusted Level of Significance (β)	0.0466		
Approximate Chi Square Value (55.92, α)	39.73	Adjusted Chi Square Value (55.92, β)	39.44
95% Gamma Approximate UCL (use when n>=50)	0.558	95% Gamma Adjusted UCL (use when n<50)	0.562

Estimates of Gamma Parameters using KM Estimates

1.889	SD (KM)	0.399	Mean (KM)
0.228	SE of Mean (KM)	3.568	Variance (KM)
0.0523	k star (KM)	0.0447	k hat (KM)
7.32	nu star (KM)	6.254	nu hat (KM)
7.636	theta star (KM)	8.937	theta hat (KM)
0.645	90% gamma percentile (KM)	0.0631	80% gamma percentile (KM)
8.531	99% gamma percentile (KM)	2.156	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (7.32, α)	2.348	Adjusted Chi Square Value (7.32, β)	2.289
15% Gamma Approximate KM-UCL (use when n>=50)	1.245	95% Gamma Adjusted KM-UCL (use when n<50)	1.277

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.965	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0.18	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.101	Lilliefors GOF Test
5% Lilliefors Critical Value	0.115	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.398	Mean in Log Scale	-2.496
SD in Original Scale	1.903	SD in Log Scale	1.608
95% t UCL (assumes normality of ROS data)	0.777	95% Percentile Bootstrap UCL	0.848
95% BCA Bootstrap UCL	1.083	95% Bootstrap t UCL	3.285
95% H-UCL (Log ROS)	0.481		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.572	KM Geo Mean	0.0764
KM SD (logged)	1.744	95% Critical H Value (KM-Log)	2.586
KM Standard Error of Mean (logged)	0.219	95% H-UCL (KM -Log)	0.601
KM SD (logged)	1.744	95% Critical H Value (KM-Log)	2.586
KM Standard Error of Mean (logged)	0.219		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.403	Mean in Log Scale	-2.523
SD in Original Scale	1.902	SD in Log Scale	1.734
95% t UCL (Assumes normality)	0.782	95% H-Stat UCL	0.618

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 0.601

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chrysene

General Statistics

Total Number of Observations	70	Number of Distinct Observations	51
		Number of Missing Observations	138
Number of Detects	62	Number of Non-Detects	8
Number of Distinct Detects	46	Number of Distinct Non-Detects	6
Minimum Detect	0.0023	Minimum Non-Detect	0.0072
Maximum Detect	45	Maximum Non-Detect	0.7
Variance Detects	32.25	Percent Non-Detects	11.43%
Mean Detects	1.293	SD Detects	5.679
Median Detects	0.38	CV Detects	4.391
Skewness Detects	7.719	Kurtosis Detects	60.31
Mean of Logged Detects	-1.109	SD of Logged Detects	1.54

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.195	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.428	Lilliefors GOF Test
5% Lilliefors Critical Value	0.112	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.15	KM Standard Error of Mean	0.641
KM SD	5.317	95% KM (BCA) UCL	2.46
95% KM (t) UCL	2.218	95% KM (Percentile Bootstrap) UCL	2.408
95% KM (z) UCL	2.203	95% KM Bootstrap t UCL	9.1
90% KM Chebyshev UCL	3.072	95% KM Chebyshev UCL	3.942
97.5% KM Chebyshev UCL	5.15	99% KM Chebyshev UCL	7.524

Gamma GOF Tests on Detected Observations Only

	A-D Test Statistic	5.098	Anderson-Darling GOF Test		
	5% A-D Critical Value	0.823	Detected Data Not Gamma Distributed at 5% Significance Level		
	K-S Test Statistic	0.246	Kolmogorov-Smirnov GOF		
	5% K-S Critical Value	0.12	Detected Data Not Gamma Distributed at 5% Significance Level		
Detected Data Not Gamma Distributed at 5% Significance Level					

Gamma Statistics on Detected Data Only

0.47	k star (bias corrected MLE)	0.458
2.755	Theta star (bias corrected MLE)	2.827
58.22	nu star (bias corrected)	56.74
1.293		
	2.755 58.22	2.755 Theta star (bias corrected MLE) 58.22 nu star (bias corrected)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ \verb|<|1.0|, especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ \verb|<|15-20|)$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0023	Mean	1.147
Maximum	45	Median	0.34
SD	5.355	CV	4.67
k hat (MLE)	0.4	k star (bias corrected MLE)	0.392
Theta hat (MLE)	2.867	Theta star (bias corrected MLE)	2.923
nu hat (MLE)	55.99	nu star (bias corrected)	54.93
Adjusted Level of Significance (β)	0.0466		
Approximate Chi Square Value (54.93, α)	38.89	Adjusted Chi Square Value (54.93, β)	38.61
95% Gamma Approximate UCL (use when n>=50)	1.619	95% Gamma Adjusted UCL (use when n<50)	1.631

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.15	SD (KM)	5.317
Variance (KM)	28.27	SE of Mean (KM)	0.641
k hat (KM)	0.0468	k star (KM)	0.0543
nu hat (KM)	6.545	nu star (KM)	7.598
theta hat (KM)	24.59	theta star (KM)	21.18
80% gamma percentile (KM)	0.205	90% gamma percentile (KM)	1.941
95% gamma percentile (KM)	6.28	99% gamma percentile (KM)	24.19

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (7.60, α)	2.505	Adjusted Chi Square Value (7.60, β)	2.444
15% Gamma Approximate KM-UCL (use when n>=50)	3.487	95% Gamma Adjusted KM-UCL (use when n<50)	3.575

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.921	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value 5	.0908E-4	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.159	Lilliefors GOF Test
5% Lilliefors Critical Value	0.112	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	1.149	Mean in Log Scale	-1.41
SD in Original Scale	5.355	SD in Log Scale	1.693
95% t UCL (assumes normality of ROS data)	2.217	95% Percentile Bootstrap UCL	2.414
95% BCA Bootstrap UCL	3.146	95% Bootstrap t UCL	8.932
95% H-UCL (Log ROS)	1.714		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

	KM Mean (logged)	-1.57	KM Geo Mean	0.208
	KM SD (logged)	1.98	95% Critical H Value (KM-Log)	2.871
K	M Standard Error of Mean (logged)	0.244	95% H-UCL (KM -Log)	2.931
	KM SD (logged)	1.98	95% Critical H Value (KM-Log)	2.871
k	M Standard Error of Mean (logged)	0 244		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.151	Mean in Log Scale	-1.546
SD in Original Scale	5.355	SD in Log Scale	1.964
95% t UCL (Assumes normality)	2.218	95% H-Stat UCL	2.879

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 3.942

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Cobalt

	General Statistics
Observations	74

То	tal Number of Observations	74	Number of Distinct Observations	54
			Number of Missing Observations	170
	Minimum	1.1	Mean	14.09
	Maximum	240	Median	6.5
	SD	31.26	Std. Error of Mean	3.634
	Coefficient of Variation	2.219	Skewness	5.925

Normal GOF Test

Shapiro Wilk Test Statistic	0.368	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.34	Lilliefors GOF Test
5% Lilliefors Critical Value	0.103	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	20.14	95% Adjusted-CLT UCL (Chen-1995)	22.74	
		95% Modified-t UCL (Johnson-1978)	20.56	

Gamma GOF Test

Anderson-Darling Gamma GOF Test	5.833	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Leve	0.786	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.234	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Leve	0.107	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.899	k star (bias corrected MLE)	0.871
Theta hat (MLE)	15.68	Theta star (bias corrected MLE)	16.17
nu hat (MLE)	133	nu star (bias corrected)	129
MLE Mean (bias corrected)	14.09	MLE Sd (bias corrected)	15.09
		Approximate Chi Square Value (0.05)	103.7
Adjusted Level of Significance	0.0468	Adjusted Chi Square Value	103.3

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 17.51 95% Adjusted Gamma UCL (use when n<50) 17.59

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.932	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value 6.4229E-4	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.135	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value 0.103	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.0953	Mean of logged Data	1.995
Maximum of Logged Data	5.481	SD of logged Data	0.938

Assuming Lognormal Distribution

95% H-UCL	14.52	90% Chebyshev (MVUE) UCL	15.64
95% Chebyshev (MVUE) UCL	17.6	97.5% Chebyshev (MVUE) UCL	20.32
99% Chebyshev (MVUE) UCL	25.67		

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	20.07	95% Jackknife UCL	20.14
95% Standard Bootstrap UCL	19.88	95% Bootstrap-t UCL	31.37
95% Hall's Bootstrap UCL	43.11	95% Percentile Bootstrap UCL	20.73
95% BCA Bootstrap UCL	23.88		
90% Chebyshev(Mean, Sd) UCL	24.99	95% Chebyshev(Mean, Sd) UCL	29.93
97.5% Chebyshev(Mean, Sd) UCL	36.78	99% Chebyshev(Mean, Sd) UCL	50.25

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 29.93

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Dibenzo(a,h)anthracene

General Statistics

Total Number of Observations	70	Number of Distinct Observations	51
		Number of Missing Observations	138
Number of Detects	53	Number of Non-Detects	17
Number of Distinct Detects	39	Number of Distinct Non-Detects	13
Minimum Detect	0.0029	Minimum Non-Detect	0.0071
Maximum Detect	7.4	Maximum Non-Detect	0.7
Variance Detects	1.013	Percent Non-Detects	24.29%
Mean Detects	0.256	SD Detects	1.007
Median Detects	0.09	CV Detects	3.932
Skewness Detects	7.137	Kurtosis Detects	51.56
Mean of Logged Detects	-2.463	SD of Logged Detects	1.177

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.211	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.403	Lilliefors GOF Test
5% Lilliefors Critical Value	0.121	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.199	KM Standard Error of Mean	0.105
KM SD	0.874	95% KM (BCA) UCL	0.407
95% KM (t) UCL	0.375	95% KM (Percentile Bootstrap) UCL	0.401
95% KM (z) UCL	0.372	95% KM Bootstrap t UCL	1.389
90% KM Chebyshev UCL	0.515	95% KM Chebyshev UCL	0.659
97.5% KM Chebyshev UCL	0.857	99% KM Chebyshev UCL	1.248

Gamma GOF Tests on Detected Observations Only

5.176 Anderson-Darling GOF Tes	t .
0.809 Detected Data Not Gamma Distributed at 5%	Significance Level
0.26 Kolmogorov-Smirnov GOF	:
0.129 Detected Data Not Gamma Distributed at 5%	Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.547	k star (bias corrected MLE)	0.566	k hat (MLE)
0.468	Theta star (bias corrected MLE)	0.452	Theta hat (MLE)
57.97	nu star (bias corrected)	60.03	nu hat (MLE)
		0.256	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as < 1.0, especially when the sample size is small (e.g., < 15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.196	Mean	0.0029	Minimum
0.057	Median	7.4	Maximum
4.485	CV	0.88	SD
0.462	k star (bias corrected MLE)	0.473	k hat (MLE)
0.425	Theta star (bias corrected MLE)	0.415	Theta hat (MLE)
64.7	nu star (bias corrected)	66.21	nu hat (MLE)
		0.0466	Adjusted Level of Significance (β)
46.88	Adjusted Chi Square Value (64.70, β)	47.19	Approximate Chi Square Value (64.70, α)
0.271	95% Gamma Adjusted UCL (use when n<50)	0.269	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

0.874	SD (KM)	0.199	Mean (KM)
0.105	SE of Mean (KM)	0.764	Variance (KM)
0.0591	k star (KM)	0.0518	k hat (KM)
8.272	nu star (KM)	7.249	nu hat (KM)
3.365	theta star (KM)	3.84	theta hat (KM)
0.368	90% gamma percentile (KM)	0.0459	80% gamma percentile (KM)
4.038	99% gamma percentile (KM)	1 111	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (8.27, α)	2.893	Adjusted Chi Square Value (8.27, β)	2.827
15% Gamma Approximate KM-UCL (use when n>=50)	0.568	95% Gamma Adjusted KM-UCL (use when n<50)	0.582

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.951	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0.0562	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.107	Lilliefors GOF Test
5% Lilliefors Critical Value	0.121	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale 0.198 Mean in Log Scale -2.907

Soil ProUCL Output - Warehouse and Laydown Area

SD in Original Scale	0.88	SD in Log Scale	1.337
95% t UCL (assumes normality of ROS data)	0.374	95% Percentile Bootstrap UCL	0.407
95% BCA Bootstrap UCL	0.619	95% Bootstrap t UCL	1.397
95% H-UCL (Log ROS)	0.187		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.055	KM Geo Mean	0.0471
KM SD (logged)	1.57	95% Critical H Value (KM-Log)	2.387
KM Standard Error of Mean (logged)	0.202	95% H-UCL (KM -Log)	0.254
KM SD (logged)	1.57	95% Critical H Value (KM-Log)	2.387
KM Standard Error of Mean (logged)	0.202		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.204	Mean in Log Scale	-2.98
SD in Original Scale	0.88	SD in Log Scale	1.57
95% t UCL (Assumes normality)	0.379	95% H-Stat UCL	0.273

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 0.254

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Diesel Range Organics (C10-C20)

General	Statistics

Total Number of Observations	71	Number of Distinct Observations	44
		Number of Missing Observations	163
Number of Detects	40	Number of Non-Detects	31
Number of Distinct Detects	34	Number of Distinct Non-Detects	12
Minimum Detect	14	Minimum Non-Detect	18
Maximum Detect	11000	Maximum Non-Detect	200
Variance Detects	5451075	Percent Non-Detects	43.66%
Mean Detects	1145	SD Detects	2335
Median Detects	150	CV Detects	2.039
Skewness Detects	2.75	Kurtosis Detects	8.088
Mean of Logged Detects	5.327	SD of Logged Detects	1.854

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.555	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.94	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.376	Lilliefors GOF Test
5% Lilliefors Critical Value	0.139	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

	·		, <i>,</i>
218.6	KM Standard Error of Mean	653	KM Mean
1058	95% KM (BCA) UCL	1818	KM SD
1024	95% KM (Percentile Bootstrap) UCL	1017	95% KM (t) UCL
1260	95% KM Bootstrap t UCL	1013	95% KM (z) UCL
1606	95% KM Chebyshev UCL	1309	90% KM Chebyshev UCL
2828	99% KM Chebyshev UCL	2018	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	3.037	Anderson-Darling GOF Test
5% A-D Critical Value	0.839	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.259	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.15	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.373	k star (bias corrected MLE)	0.386	k hat (MLE)
3066	Theta star (bias corrected MLE)	2969	Theta hat (MLE)
29.87	nu star (bias corrected)	30.85	nu hat (MLE)
		1145	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

645	Mean	0.01	Minimum
36	Median	11000	Maximum
2.843	CV	1834	SD
0.145	k star (bias corrected MLE)	0.141	k hat (MLE)
4452	Theta star (bias corrected MLE)	4560	Theta hat (MLE)
20.57	nu star (bias corrected)	20.09	nu hat (MLE)
		0.0466	Adjusted Level of Significance (β)
11.13	Adjusted Chi Square Value (20.57, β)	11.27	Approximate Chi Square Value (20.57, α)
1192	95% Gamma Adjusted UCL (use when n<50)	1177	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	653	SD (KM)	1818
Variance (KM)	3306529	SE of Mean (KM)	218.6
k hat (KM)	0.129	k star (KM)	0.133
nu hat (KM)	18.31	nu star (KM)	18.87
theta hat (KM)	5063	theta star (KM)	4913
80% gamma percentile (KM)	637.8	90% gamma percentile (KM)	1896
95% gamma percentile (KM)	3672	99% gamma percentile (KM)	8962

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (18.87, α)	10.03	Adjusted Chi Square Value (18.87, β)	9.892
15% Gamma Approximate KM-LICL (use when n>=50)	1229	95% Gamma Adjusted KM-UCL (use when n<50)	1246

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.922	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.94	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.134	Lilliefors GOF Test
5% Lilliefors Critical Value	0.139	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

649.6	Mean in Log Scale	3.874
1833	SD in Log Scale	2.26
1012	95% Percentile Bootstrap UCL	1044
1170	95% Bootstrap t UCL	1241
1698		
	649.6 1833 1012 1170 1698	1833 SD in Log Scale 1012 95% Percentile Bootstrap UCL 1170 95% Bootstrap t UCL

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

68.2	KM Geo Mean	4.222	KM Mean (logged)
3.247	95% Critical H Value (KM-Log)	1.877	KM SD (logged)
822.5	95% H-UCL (KM -Log)	0.227	KM Standard Error of Mean (logged)
3.247	95% Critical H Value (KM-Log)	1.877	KM SD (logged)
		0.227	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	653.8	Mean in Log Scale	4.159
SD in Original Scale	1831	SD in Log Scale	1.984
95% t UCL (Assumes normality)	1016	95% H-Stat UCL	1022

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 822.5

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Indeno(1,2,3-cd)pyrene

	General Statistics		
Total Number of Observations	70	Number of Distinct Observations	58
		Number of Missing Observations	138
Number of Detects	58	Number of Non-Detects	12
Number of Distinct Detects	49	Number of Distinct Non-Detects	10
Minimum Detect	0.0036	Minimum Non-Detect	0.0071
Maximum Detect	21	Maximum Non-Detect	0.7
Variance Detects	7.482	Percent Non-Detects	17.14%
Mean Detects	0.681	SD Detects	2.735
Median Detects	0.25	CV Detects	4.014
Skewness Detects	7.444	Kurtosis Detects	56.19
Mean of Logged Detects	-1.625	SD of Logged Detects	1.414

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.21	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.405	Lilliefors GOF Test
5% Lilliefors Critical Value	0.116	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.57	KM Standard Error of Mean	0.299
KM SD	2.481	95% KM (BCA) UCL	1.199
95% KM (t) UCL	1.068	95% KM (Percentile Bootstrap) UCL	1.157
95% KM (z) UCL	1.062	95% KM Bootstrap t UCL	3.799
90% KM Chebyshev UCL	1.467	95% KM Chebyshev UCL	1.873
97.5% KM Chebyshev UCL	2.437	99% KM Chebyshev UCL	3.546

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	3.953	Anderson-Darling GOF Test
5% A-D Critical Value	0.815	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.224	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.123	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.51	k star (bias corrected MLE)	0.495
Theta hat (MLE)	1.336	Theta star (bias corrected MLE)	1.377
nu hat (MLE)	59.15	nu star (bias corrected)	57.42
Mean (detects)	0.681		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.566	Mean	0.0036	Minimum
0.165	Median	21	Maximum
4.413	CV	2.499	SD
0.409	k star (bias corrected MLE)	0.417	k hat (MLE)
1.386	Theta star (bias corrected MLE)	1.358	Theta hat (MLE)
57.21	nu star (bias corrected)	58.37	nu hat (MLE)
		0.0466	Adjusted Level of Significance (β)
40.53	Adjusted Chi Square Value (57.21, β)	40.82	Approximate Chi Square Value (57.21, α)
0.799	95% Gamma Adjusted UCL (use when n<50)	0.794	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Soil ProUCL Output - Warehouse and Laydown Area

Mean (KM)	0.57	SD (KM)	2.481
Variance (KM)	6.154	SE of Mean (KM)	0.299
k hat (KM)	0.0527	k star (KM)	0.06
nu hat (KM)	7.381	nu star (KM)	8.398
theta hat (KM)	10.8	theta star (KM)	9.496
80% gamma percentile (KM)	0.137	90% gamma percentile (KM)	1.071
95% gamma percentile (KM)	3.192	99% gamma percentile (KM)	11.49

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (8.40, α)	2.968	Adjusted Chi Square Value (8.40, β)	2.9
15% Gamma Approximate KM-UCL (use when n>=50)	1.612	95% Gamma Adjusted KM-UCL (use when n<50)	1.649

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk GOF Test	0.962	Shapiro Wilk Approximate Test Statistic
Detected Data appear Lognormal at 5% Significance Level	0.147	5% Shapiro Wilk P Value
Lilliefors GOF Test	0.0956	Lilliefors Test Statistic
Detected Data appear Lognormal at 5% Significance Level	0.116	5% Lilliefors Critical Value

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.569	Mean in Log Scale	-2.04
SD in Original Scale	2.499	SD in Log Scale	1.61
95% t UCL (assumes normality of ROS data)	1.067	95% Percentile Bootstrap UCL	1.164
95% BCA Bootstrap UCL	1.526	95% Bootstrap t UCL	3.885
95% H-UCL (Log ROS)	0.761		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.205	KM Geo Mean	0.11
KM SD (logged)	1.884	95% Critical H Value (KM-Log)	2.752
KM Standard Error of Mean (logged)	0.231	95% H-UCL (KM -Log)	1.214
KM SD (logged)	1.884	95% Critical H Value (KM-Log)	2.752
KM Standard Error of Mean (logged)	0.231		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed		
Mean in Original Scale	0.573	Mean in Log Scale	-2.137
SD in Original Scale	2.498	SD in Log Scale	1.839
95% t UCL (Assumes normality)	1.071	95% H-Stat UCL	1.163

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 1.214

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Manganese

General Statistics

Total Number of Observations	74	Number of Distinct Observations	47
		Number of Missing Observations	170
Minimum	10	Mean	311.7
Maximum	6600	Median	160
SD	775.5	Std. Error of Mean	90.15
Coefficient of Variation	2.488	Skewness	7.551

Normal GOF Test

Shapiro Wilk Test Statistic	0.3	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.349	Lilliefors GOF Test
5% Lilliefors Critical Value	0.103	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

9576 NOTHIAI OCL		55% OCLS (Aujusteu foi Skewiless)	
95% Student's-t UCL	461.8	95% Adjusted-CLT UCL (Chen-1995)	544.5
		95% Modified-t UCL (Johnson-1978)	475

Gamma GOF Test

A-D Test Statistic	4.015	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.785	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.197	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.107	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.916	k star (bias corrected MLE)	0.888
Theta hat (MLE)	340.1	Theta star (bias corrected MLE)	350.9
nu hat (MLE)	135.6	nu star (bias corrected)	131.5
MLE Mean (bias corrected)	311.7	MLE Sd (bias corrected)	330.7
		Approximate Chi Square Value (0.05)	106
Adjusted Level of Significance	0.0468	Adjusted Chi Square Value	105.5

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 386.6 95% Adjusted Gamma UCL (use when n<50) 388.3

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.974	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.35	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0916	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.103	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2.303	Mean of logged Data	5.105
Maximum of Logged Data	8.795	SD of logged Data	0.963

Assuming Lognormal Distribution

95% H-UCL	336.6	90% Chebyshev (MVUE) UCL	362.5
95% Chebyshev (MVUE) UCL	409.1	97.5% Chebyshev (MVUE) UCL	473.7
99% Chebyshev (MVUE) UCL	600.6		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	459.9	95% Jackknife UCL	461.8
95% Standard Bootstrap UCL	456.9	95% Bootstrap-t UCL	824.7
95% Hall's Bootstrap UCL	999.9	95% Percentile Bootstrap UCL	486.9
95% BCA Bootstrap UCL	619.9		
90% Chebyshev(Mean, Sd) UCL	582.1	95% Chebyshev(Mean, Sd) UCL	704.6
97.5% Chebyshev(Mean, Sd) UCL	874.6	99% Chebyshev(Mean, Sd) UCL	1209

Suggested UCL to Use

95% H-UCL 336.6

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

se of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

Naphthalene

General Statistics

Total Number of Observations	70	Number of Distinct Observations	59
		Number of Missing Observations	138
Number of Detects	57	Number of Non-Detects	13
Number of Distinct Detects	49	Number of Distinct Non-Detects	10
Minimum Detect	0.002	Minimum Non-Detect	0.0071
Maximum Detect	0.44	Maximum Non-Detect	0.16
Variance Detects	0.0066	Percent Non-Detects	18.57%
Mean Detects	0.0862	SD Detects	0.0812
Median Detects	0.066	CV Detects	0.943
Skewness Detects	2.226	Kurtosis Detects	6.372
Mean of Logged Detects	-2.904	SD of Logged Detects	1.114

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.794	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value 2.1	95E-10	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.204	Lilliefors GOF Test
5% Lilliefors Critical Value	0.117	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.0716	KM Standard Error of Mean	0.00956
KM SD	0.0791	95% KM (BCA) UCL	0.0896
95% KM (t) UCL	0.0876	95% KM (Percentile Bootstrap) UCL	0.0876
95% KM (z) UCL	0.0873	95% KM Bootstrap t UCL	0.092
90% KM Chebyshev UCL	0.1	95% KM Chebyshev UCL	0.113
97.5% KM Chebyshev UCL	0.131	99% KM Chebyshev UCL	0.167

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.527	Anderson-Darling GOF Test
5% A-D Critical Value	0.774)etect	ted data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.101	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.121)etect	ted data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	1.246	k star (bias corrected MLE)	1.192
Theta hat (MLE)	0.0692	Theta star (bias corrected MLE)	0.0723
nu hat (MLE)	142	nu star (bias corrected)	135.9
Mean (detects)	0.0862		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.002	Mean	0.0724
Maximum	0.44	Median	0.0525
SD	0.0788	CV	1.088
k hat (MLE)	1.003	k star (bias corrected MLE)	0.969
Theta hat (MLE)	0.0722	Theta star (bias corrected MLE)	0.0747
nu hat (MLE)	140.4	nu star (bias corrected)	135.7
Adjusted Level of Significance (β)	0.0466		
Approximate Chi Square Value (135.67, α)	109.8	Adjusted Chi Square Value (135.67, β)	109.3
95% Gamma Approximate UCL (use when n>=50)	0.0895	95% Gamma Adjusted UCL (use when n<50)	0.0899

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.0716	SD (KM)	0.0791
Variance (KM)	0.00626	SE of Mean (KM)	0.00956
k hat (KM)	0.82	k star (KM)	0.794
nu hat (KM)	114.8	nu star (KM)	111.2
theta hat (KM)	0.0874	theta star (KM)	0.0902
80% gamma percentile (KM)	0.117	90% gamma percentile (KM)	0.174
95% gamma percentile (KM)	0.233	99% gamma percentile (KM)	0.371

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (111.20, α)	87.86	Adjusted Chi Square Value (111.20, β)	87.42
15% Gamma Approximate KM-UCL (use when n>=50)	0.0907	95% Gamma Adjusted KM-UCL (use when n<50)	0.0911

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.92	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value 8.9	246E-4	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.161	Lilliefors GOF Test
5% Lilliefors Critical Value	0.117	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0721	Mean in Log Scale	-3.235
SD in Original Scale	0.079	SD in Log Scale	1.237
95% t UCL (assumes normality of ROS data)	0.0878	95% Percentile Bootstrap UCL	0.0877
95% BCA Bootstrap UCL	0.0915	95% Bootstrap t UCL	0.0926
95% H-UCL (Log ROS)	0.115		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.379	KM Geo Mean	0.0341
KM SD (logged)	1.455	95% Critical H Value (KM-Log)	2.236
KM Standard Error of Mean (logged)	0.183	95% H-UCL (KM -Log)	0.145
KM SD (logged)	1.455	95% Critical H Value (KM-Log)	2.236
KM Standard Error of Mean (logged)	0 183		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	0.0722	Mean in Log Scale	-3.326	
SD in Original Scale	0.0794	SD in Log Scale	1.396	
95% t UCL (Assumes normality)	0.088	95% H-Stat UCL	0.137	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 0.0907 95% GROS Approximate Gamma UCL 0.0895

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Nickel

General Statistics

	donoral ottatoacc		
Total Number of Observations	74	Number of Distinct Observations	58
		Number of Missing Observations	170
Minimum	0.78	Mean	320.1
Maximum	8000	Median	23.5
SD	1216	Std. Error of Mean	141.3
Coefficient of Variation	3.797	Skewness	5.681

Normal GOF Test

Shapiro Wilk Test Statistic	0.277	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.396	Lilliefors GOF Test
5% Lilliefors Critical Value	0.103	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	555.6	95% Adjusted-CLT UCL (Chen-1995)	652.3
		95% Modified-t UCL (Johnson-1978)	571.1

Gamma GOF Test

Anderson-Darling Gamma GOF Test	6.781	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.862	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.219	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.113	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.313	k star (bias corrected MLE)	0.31
Theta hat (MLE)	1021	Theta star (bias corrected MLE)	1033
nu hat (MLE)	46.4	nu star (bias corrected)	45.85
MLE Mean (bias corrected)	320.1	MLE Sd (bias corrected)	575.2
		Approximate Chi Square Value (0.05)	31.31
Adjusted Level of Significance	0.0468	Adjusted Chi Square Value	31.08

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 468.7 95% Adjusted Gamma UCL (use when n<50) 472.3

Lognormal GOF Test

•	ognomiai aoi	1000
Shapiro Wilk Test Statistic	0.951	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.0149	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.12	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.103	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.248	Mean of logged Data	3.585
Maximum of Logged Data	8.987	SD of logged Data	1.877

Assuming Lognormal Distribution

95% H-UCL	429.9	90% Chebyshev (MVUE) UCL	390.4
95% Chebyshev (MVUE) UCL	477.9	97.5% Chebyshev (MVUE) UCL	599.2
99% Chebyshev (MVUE) UCL	837.6		

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	552.6	95% Jackknife UCL	555.6
95% Standard Bootstrap UCL	544.4	95% Bootstrap-t UCL	1499
95% Hall's Bootstrap UCL	1602	95% Percentile Bootstrap UCL	582.2
95% BCA Bootstrap UCL	664.8		
90% Chebyshev(Mean, Sd) UCL	744.1	95% Chebyshev(Mean, Sd) UCL	936.1
97.5% Chebyshev(Mean, Sd) UCL	1203	99% Chebyshev(Mean, Sd) UCL	1726

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 936.1

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

PCB, Total Aroclors (AECOM Calc)

General Statistics

Total Number of Observations	172	Number of Distinct Observations	128
		Number of Missing Observations	60
Number of Detects	152	Number of Non-Detects	20
Number of Distinct Detects	115	Number of Distinct Non-Detects	13
Minimum Detect	9.1000E-4	Minimum Non-Detect 8	3.8000E-4
Maximum Detect	14	Maximum Non-Detect	0.0099
Variance Detects	5.984	Percent Non-Detects	11.63%
Mean Detects	1.316	SD Detects	2.446
Median Detects	0.28	CV Detects	1.858
Skewness Detects	2.692	Kurtosis Detects	7.578
Mean of Logged Detects	-1.423	SD of Logged Detects	2.165

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.59	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.295	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0723	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.164	KM Standard Error of Mean	0.178
KM SD	2.33	95% KM (BCA) UCL	1.477
95% KM (t) UCL	1.458	95% KM (Percentile Bootstrap) UCL	1.45
95% KM (z) UCL	1.457	95% KM Bootstrap t UCL	1.502
90% KM Chebyshev UCL	1.698	95% KM Chebyshev UCL	1.941
97.5% KM Chebyshev UCL	2.277	99% KM Chebyshev UCL	2.937

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	3.009	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.847	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.122	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.0816	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.386	k star (bias corrected MLE)	0.389	k hat (MLE)
3.411	Theta star (bias corrected MLE)	3.382	Theta hat (MLE)
117.3	nu star (bias corrected)	118.3	nu hat (MLE)
		1 316	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as < 1.0, especially when the sample size is small (e.g., < 15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum !	Minimum 9.1000E-4		1.165
Maximum	14	Median	0.19
SD	2.337	CV	2.007
k hat (MLE)	0.346	k star (bias corrected MLE)	0.344
Theta hat (MLE)	3.363	Theta star (bias corrected MLE)	3.384
nu hat (MLE)	119.1	nu star (bias corrected)	118.4
Adjusted Level of Significance (β)	0.0486		
Approximate Chi Square Value (118.38, α)	94.25	Adjusted Chi Square Value (118.38, β)	94.07
95% Gamma Approximate UCL (use when n>=50)	1.463	95% Gamma Adjusted UCL (use when n<50)	1.465

Estimates of Gamma Parameters using KM Estimates

2.33	SD (KM)	1.164	Mean (KM)
0.178	SE of Mean (KM)	5.431	Variance (KM)
0.249	k star (KM)	0.249	k hat (KM)
85.6	nu star (KM)	85.77	nu hat (KM)
4.676	theta star (KM)	4.667	theta hat (KM)
3.494	90% gamma percentile (KM)	1.687	80% gamma percentile (KM)
11.36	99% gamma percentile (KM)	5 64	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (85.60, α)	65.28	Adjusted Chi Square Value (85.60, β)	65.13
15% Gamma Approximate KM-UCL (use when n>=50)	1.526	95% Gamma Adjusted KM-UCL (use when n<50)	1.529

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.965	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0.0145	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0523	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0723	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale 1.164 Mean in Log Scale -1.929

SD in Original Scale	2.337	SD in Log Scale	2.48
95% t UCL (assumes normality of ROS data)	1.459	95% Percentile Bootstrap UCL	1.48
95% BCA Bootstrap UCL	1.516	95% Bootstrap t UCL	1.53
95% H-UCL (Log ROS)	6.439		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2	KM Geo Mean	0.135
KM SD (logged)	2.588	95% Critical H Value (KM-Log)	3.903
KM Standard Error of Mean (logged)	0.2	95% H-UCL (KM -Log)	8.343
KM SD (logged)	2.588	95% Critical H Value (KM-Log)	3.903
KM Standard Error of Mean (logged)	0.2		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed			
Mean in Original Scale	1.164	Mean in Log Scale	-1.983	
SD in Original Scale	2.337	SD in Log Scale	2.566	
95% t UCL (Assumes normality)	1.458	95% H-Stat UCL	7.918	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 8.343

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

TCDD TEQ HH

General Statistics

Total Number of Observations 25	5	Number of Distinct Observations	24
		Number of Missing Observations	144
Minimum 6.010	00E-7	Mean	1.3515E-5
Maximum 5.870	00E-5	Median -	4.6100E-6
SD 1.722	26E-5	Std. Error of Mean	3.4453E-6
Coefficient of Variation N/A	/A	Skewness	1.528

Normal GOF Test

Shapiro Wilk Test Statistic	0.708	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.918	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.304	Lilliefors GOF Test
5% Lilliefors Critical Value	0.173	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 1.9409E-5 95% Adjusted-CLT UCL (Chen-1995) 2.0307E-5 95% Modified-t UCL (Johnson-1978) 1.9585E-5

Gamma GOF Test

A-D Test Statistic	1.528	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.781	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.22	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.181	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

	k hat (MLE)	0.81	k star (bias corrected MLE)	0.739
	Theta hat (MLE)	1.6694E-5	Theta star (bias corrected MLE)	1.8286E-5
	nu hat (MLE)	40.48	nu star (bias corrected)	36.95
MLE Me	ean (bias corrected)	1.3515E-5	MLE Sd (bias corrected)	1.5720E-5
			Approximate Chi Square Value (0.05)	24.04
Adjusted L	evel of Significance	0.0395	Adjusted Chi Square Value	23.33

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.0777E-5 95% Adjusted Gamma UCL (use when n<50) 2.1410E-5

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.93	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.918	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.163	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.173	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 -14.32
 Mean of logged Data
 -11.94

 Maximum of Logged Data
 -9.743
 SD of logged Data
 1.232

Assuming Lognormal Distribution

 95% H-UCL 2.8080E-5
 90% Chebyshev (MVUE) UCL 2.4762E-5

 95% Chebyshev (MVUE) UCL 2.9996E-5
 97.5% Chebyshev (MVUE) UCL 3.7261E-5

 99% Chebyshev (MVUE) UCL 5.1531E-5

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% Jackknife UCL 1.9409E-5	95% CLT UCL 1.9182E-5
95% Bootstrap-t UCL 2.1379E-5	95% Standard Bootstrap UCL 1.9101E-5
95% Percentile Bootstrap UCL 1.9306E-5	95% Hall's Bootstrap UCL 1.9384E-5
	95% BCA Bootstrap UCL 2.0311E-5
95% Chebyshev(Mean, Sd) UCL 2.8532E-5	90% Chebyshev(Mean, Sd) UCL 2.3851E-5
99% Chebyshev(Mean, Sd) UCL 4.7795E-5	97.5% Chebyshev(Mean, Sd) UCL 3.5031E-5

Suggested UCL to Use

95% H-UCL 2.8080E-5

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

se of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

Thallium

	General Statistics		
Total Number of Observations	74	Number of Distinct Observations	30
		Number of Missing Observations	170
Number of Detects	58	Number of Non-Detects	16
Number of Distinct Detects	30	Number of Distinct Non-Detects	4
Minimum Detect	0.033	Minimum Non-Detect	0.1
Maximum Detect	1.6	Maximum Non-Detect	0.13
Variance Detects	0.0463	Percent Non-Detects	21.62%
Mean Detects	0.167	SD Detects	0.215
Median Detects	0.125	CV Detects	1.293
Skewness Detects	5.545	Kurtosis Detects	35.63
Mean of Logged Detects	-2.089	SD of Logged Detects	0.677

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.457	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.287	Lilliefors GOF Test
5% Lilliefors Critical Value	0.116	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean 0.146 KM Standard Error of Mean 0.0227

KM SD	0.193	95% KM (BCA) UCL	0.193
95% KM (t) UCL	0.184	95% KM (Percentile Bootstrap) UCL	0.189
95% KM (z) UCL	0.183	95% KM Bootstrap t UCL	0.232
90% KM Chebyshev UCL	0.214	95% KM Chebyshev UCL	0.245
97.5% KM Chebyshev UCL	0.288	99% KM Chebyshev UCL	0.372

Gamma GOF Tests on Detected Observations Only

671 Anderson-Darling GOF Test	2.671	A-D Test Statistic	71 Anderson-Darling GOF Test
765 Detected Data Not Gamma Distributed at 5% Significance	0.765	5% A-D Critical Value	765 Detected Data Not Gamma Distributed at 5% Significance Lev
197 Kolmogorov-Smirnov GOF	0.197	K-S Test Statistic	97 Kolmogorov-Smirnov GOF
118 Detected Data Not Gamma Distributed at 5% Significance	0.118	5% K-S Critical Value	18 Detected Data Not Gamma Distributed at 5% Significance Lev

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.752	k star (bias corrected MLE)	1.835	k hat (MLE)
0.095	Theta star (bias corrected MLE)	0.0907	Theta hat (MLE)
203.2	nu star (bias corrected)	212.9	nu hat (MLE)
		0.167	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.137	Mean	0.01	Minimum
0.11	Median	1.6	Maximum
1.45	CV	0.199	SD
1.145	k star (bias corrected MLE)	1.184	k hat (MLE)
0.12	Theta star (bias corrected MLE)	0.116	Theta hat (MLE)
169.5	nu star (bias corrected)	175.3	nu hat (MLE)
		0.0468	Adjusted Level of Significance (β)
139.9	Adjusted Chi Square Value (169.51, β)	140.4	Approximate Chi Square Value (169.51, α)
0.166	95% Gamma Adjusted UCL (use when n<50)	0.165	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

0.193	SD (KM)	0.146	Mean (KM)
0.0227	SE of Mean (KM)	0.0373	Variance (KM)
0.557	k star (KM)	0.571	k hat (KM)
82.37	nu star (KM)	84.46	nu hat (KM)
0.262	theta star (KM)	0.256	theta hat (KM)
0.386	90% gamma percentile (KM)	0.24	80% gamma percentile (KM)
0.914	99% gamma percentile (KM)	0.54	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (82.37, α)	62.46	Adjusted Chi Square Value (82.37, β)	62.11
95% Gamma Approximate KM-UCL (use when n>=50)	0.193	95% Gamma Adjusted KM-UCL (use when n<50)	0.194

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.943	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0.0157	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.13	Lilliefors GOF Test
5% Lilliefors Critical Value	0.116	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.145	Mean in Log Scale	-2.229
SD in Original Scale	0.195	SD in Log Scale	0.67
95% t UCL (assumes normality of ROS data)	0.183	95% Percentile Bootstrap UCL	0.186
95% BCA Bootstrap UCL	0.206	95% Bootstrap t UCL	0.232
95% H-UCL (Log ROS)	0.157		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.221	KM Geo Mean	0.109
KM SD (logged)	0.666	95% Critical H Value (KM-Log)	1.964
KM Standard Error of Mean (logged)	0.0821	95% H-UCL (KM -Log)	0.158
KM SD (logged)	0.666	95% Critical H Value (KM-Log)	1.964

KM Standard Error of Mean (logged) 0.0821

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed				
Mean in Original Scale	0.143	Mean in Log Scale	-2.254		
SD in Original Scale	0.195	SD in Log Scale	0.677		
95% t UCL (Assumes normality)	0.181	95% H-Stat UCL	0.154		
DL/2 is not a recommended method, provided for comparisons and historical reasons					

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 0.245

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Vanadium

General Statistics

Total Number of Observations	80	Number of Distinct Observations	61
		Number of Missing Observations	164
Minimum	2.9	Mean	1472
Maximum	42000	Median	76.5
SD	6236	Std. Error of Mean	697.2
Coefficient of Variation	4.238	Skewness	5.968

Normal GOF Test

Shapiro Wilk GOF Test	0.247	Shapiro Wilk Test Statistic
Data Not Normal at 5% Significance Level	0	5% Shapiro Wilk P Value
Lilliefors GOF Test	0.407	Lilliefors Test Statistic
Data Not Normal at 5% Significance Level	0.0991	5% Lilliefors Critical Value

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2632	95% Adjusted-CLT UCL (Chen-1995)	3115
		95% Modified-t UCL (Johnson-1978)	2709

Gamma GOF Test

A-D Test Statistic	8.339	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.874	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.236	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.109	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

0.28	k star (bias corrected MLE)	0.282	k hat (MLE)
5253	Theta star (bias corrected MLE)	5211	Theta hat (MLE)
44.82	nu star (bias corrected)	45.18	nu hat (MLE)
2780	MLE Sd (bias corrected)	1472	MLE Mean (bias corrected)
30.47	Approximate Chi Square Value (0.05)		
30.25	Adjusted Chi Square Value	0.047	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2165 95% Adjusted Gamma UCL (use when n<50) 2181

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.937	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value 9.1502E-4	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.112	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value 0.0991	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.065	Mean of logged Data	4.828
Maximum of Logged Data	10.65	SD of logged Data	1.953

Assuming Lognormal Distribution

95% H-UCL	1771	90% Chebyshev (MVUE) UCL	1580
95% Chebyshev (MVUE) UCL	1938	97.5% Chebyshev (MVUE) UCL	2435
99% Chebyshev (MVUE) UCL	3411		

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

2632	95% Jackknife UCL	95% CLT UCL	
7957	95% Bootstrap-t UCL	Bootstrap UCL	95% Standard
2716	95% Percentile Bootstrap UCL	Bootstrap UCL	95% Hall's
		Bootstrap UCL	95% BCA
4510	95% Chebyshev(Mean, Sd) UCL	Mean, Sd) UCL	90% Chebyshev
8408	99% Chebyshev(Mean, Sd) UCL	Mean, Sd) UCL	97.5% Chebyshev

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 4510

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.18/29/2018 1:42:03 PM

From File Soil-SalvYard.xls

Full Precision OFF
Confidence Coefficient 95%
Imber of Bootstrap Operations 2000

Arsenic

General Statistics

Total Number of Observations	9	Number of Distinct Observations	9
		Number of Missing Observations	140
Minimum	0.39	Mean	5.421
Maximum	14	Median	2.9
SD	5.161	Std. Error of Mean	1.72
Coefficient of Variation	0.952	Skewness	0.877

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.846	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.243	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

Assuming Normal Distribution		
95% Normal UCL	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL 8.6	2 95% Adjusted-CLT UCL (Chen-1995) 8	8.789
	95% Modified-t UCL (Johnson-1978) 8	8.704

Gamma GOF Test

A-D Test Statistic	0.303	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.742)etecte	ed data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.164	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.286)etecte	ed data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.073	k star (bias corrected MLE)	0.79
Theta hat (MLE)	5.051	Theta star (bias corrected MLE)	6.866
nu hat (MLE)	19.32	nu star (bias corrected)	14.21
MLE Mean (bias corrected)	5.421	MLE Sd (bias corrected)	6.101
		Approximate Chi Square Value (0.05)	6.717
Adjusted Level of Significance	0.0231	Adjusted Chi Square Value	5.666

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 11.47 95% Adjusted Gamma UCL (use when n<50) 13.6

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.946	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.18	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.274	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.942	Mean of logged Data	1.157
Maximum of Logged Data	2.639	SD of logged Data	1.208

Assuming Lognormal Distribution

Soil ProUCL Output - Salvage Yard and Waste Storage Area

95% H-UCL	32.31	90% Chebyshev (MVUE) UCL	13.22
95% Chebyshev (MVUE) UCL	16.55	97.5% Chebyshev (MVUE) UCL	21.18
99% Chebyshey (MVUE) UCL	30.27		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

8.62	95% Jackknife UCL	8.251	95% CLT UCL
10.7	95% Bootstrap-t UCL	8.089	95% Standard Bootstrap UCL
8.254	95% Percentile Bootstrap UCL	9.392	95% Hall's Bootstrap UCL
		8.578	95% BCA Bootstrap UCL
12.92	95% Chebyshev(Mean, Sd) UCL	10.58	90% Chebyshev(Mean, Sd) UCL
22.54	99% Chebyshev(Mean, Sd) UCL	16.16	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 8.62

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)anthracene

General Statistics

Total Number of Observations	97	Number of Distinct Observations	80
		Number of Missing Observations	68
Number of Detects	81	Number of Non-Detects	16
Number of Distinct Detects	67	Number of Distinct Non-Detects	15
Minimum Detect	0.0036	Minimum Non-Detect	0.0076
Maximum Detect	530	Maximum Non-Detect	0.14
Variance Detects	4031	Percent Non-Detects	16.49%
Mean Detects	12.25	SD Detects	63.49
Median Detects	0.38	CV Detects	5.184
Skewness Detects	7.313	Kurtosis Detects	57.55
Mean of Logged Detects	-0.845	SD of Logged Detects	2.297

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.215	Normal GOF Test on Detected Observations Only		
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level		
Lilliefors Test Statistic	0.447	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.0985	Detected Data Not Normal at 5% Significance Level		
Detected Data Not Normal at 5% Significance Level				

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	10.23	KM Standard Error of Mean	5.909
KM SD	57.84	95% KM (BCA) UCL	21.89
95% KM (t) UCL	20.04	95% KM (Percentile Bootstrap) UCL	20.86
95% KM (z) UCL	19.95	95% KM Bootstrap t UCL	55.29
90% KM Chebyshev UCL	27.96	95% KM Chebyshev UCL	35.99
97.5% KM Chebyshev UCL	47.13	99% KM Chebyshey UCL	69.03

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	10.21	Anderson-Darling GOF Test
5% A-D Critical Value	0.907	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.29	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.11	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.217	k star (bias corrected MLE)	0.217
Theta hat (MLE)	56.48	Theta star (bias corrected MLE)	56.43
nu hat (MLE)	35.13	nu star (bias corrected)	35.16
Mean (detects)	12.25		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0036	Mean	10.23
Maximum	530	Median	0.24
SD	58.14	CV	5.684
k hat (MLE)	0.195	k star (bias corrected MLE)	0.196
Theta hat (MLE)	52.48	Theta star (bias corrected MLE)	52.26
nu hat (MLE)	37.81	nu star (bias corrected)	37.98
Adjusted Level of Significance (β)	0.0475		
Approximate Chi Square Value (37.98, α)	24.87	Adjusted Chi Square Value (37.98, β)	24.71
95% Gamma Approximate UCL (use when n>=50)	15.62	95% Gamma Adjusted UCL (use when n<50)	15.72

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	10.23	SD (KM)	57.84
Variance (KM)	3345	SE of Mean (KM)	5.909
k hat (KM)	0.0313	k star (KM)	0.0372
nu hat (KM)	6.068	nu star (KM)	7.213
theta hat (KM)	327	theta star (KM)	275.1
80% gamma percentile (KM)	0.395	90% gamma percentile (KM)	9.679
95% gamma percentile (KM)	46.92	99% gamma percentile (KM)	247.8

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (7.21, α)	2.288	Adjusted Chi Square Value (7.21, β)	2.247
15% Gamma Approximate KM-UCL (use when n>=50)	32.24	95% Gamma Adjusted KM-UCL (use when n<50)	32.84

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.971	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0.224	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0689	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0985	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	10.23	Mean in Log Scale	-1.568
SD in Original Scale	58.14	SD in Log Scale	2.664
95% t UCL (assumes normality of ROS data)	20.03	95% Percentile Bootstrap UCL	21.42
95% BCA Bootstrap UCL	27.17	95% Bootstrap t UCL	55.99
95% H-UCL (Log ROS)	23.29		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

0.206	KM Geo Mean	-1.58	KM Mean (logged)
4.299	95% Critical H Value (KM-Log)	2.67	KM SD (logged)
23.48	95% H-UCL (KM -Log)	0.274	KM Standard Error of Mean (logged)
4.299	95% Critical H Value (KM-Log)	2.67	KM SD (logged)
		0.274	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	10.23	Mean in Log Scale	-1.581	
SD in Original Scale	58.14	SD in Log Scale	2.692	
95% t UCL (Assumes normality)	20.03	95% H-Stat UCL	25.29	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 23.48

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)pyrene

General Statistics

Total Number of Observations	97	Number of Distinct Observations	86
		Number of Missing Observations	68
Number of Detects	80	Number of Non-Detects	17
Number of Distinct Detects	71	Number of Distinct Non-Detects	16
Minimum Detect	0.0032	Minimum Non-Detect	0.0076
Maximum Detect	420	Maximum Non-Detect	0.14
Variance Detects	2610	Percent Non-Detects	17.53%
Mean Detects	10.28	SD Detects	51.09
Median Detects	0.415	CV Detects	4.972
Skewness Detects	7.09	Kurtosis Detects	54.51
Mean of Logged Detects	-0.844	SD of Logged Detects	2.22

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.225	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.443	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0991	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

4.728	KM Standard Error of Mean	8.477	KM Mean
18.3	95% KM (BCA) UCL	46.27	KM SD
17.17	95% KM (Percentile Bootstrap) UCL	16.33	95% KM (t) UCL
43.4	95% KM Bootstrap t UCL	16.25	95% KM (z) UCL
29.09	95% KM Chebyshev UCL	22.66	90% KM Chebyshev UCL
55.52	99% KM Chebyshev UCL	38	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	9.989	Anderson-Darling GOF Test
5% A-D Critical Value	0.901	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.283	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.11	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.227	k star (bias corrected MLE)	0.227	k hat (MLE)
45.26	Theta star (bias corrected MLE)	45.22	Theta hat (MLE)
36.33	nu star (bias corrected)	36.36	nu hat (MLE)
		10.28	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0032	Mean	8.478
Maximum	420	Median	0.22
SD	46.51	CV	5.487
k hat (MLE)	0.202	k star (bias corrected MLE)	0.202
Theta hat (MLE)	42	Theta star (bias corrected MLE)	41.87
nu hat (MLE)	39.16	nu star (bias corrected)	39.28
Adjusted Level of Significance (β)	0.0475		
Approximate Chi Square Value (39.28, α)	25.92	Adjusted Chi Square Value (39.28, β)	25.76
95% Gamma Approximate UCL (use when n>=50)	12.85	95% Gamma Adjusted UCL (use when n<50)	12.93

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	8.477	SD (KM)	46.27
Variance (KM)	2141	SE of Mean (KM)	4.728
k hat (KM)	0.0336	k star (KM)	0.0394
nu hat (KM)	6.51	nu star (KM)	7.642
theta hat (KM)	252.6	theta star (KM)	215.2
80% gamma percentile (KM)	0.433	90% gamma percentile (KM)	8.945
95% gamma percentile (KM)	40.31	99% gamma percentile (KM)	201.4

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (7.64, α)	2.53	Adjusted Chi Square Value (7.64, β)	2.486
)5% Gamma Approximate KM-UCL (use when n>=50)	25.61	95% Gamma Adjusted KM-UCL (use when n<50)	26.06

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.972	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0.26	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0736	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0991	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	8.477	Mean in Log Scale	-1.616
SD in Original Scale	46.51	SD in Log Scale	2.63
95% t UCL (assumes normality of ROS data)	16.32	95% Percentile Bootstrap UCL	17.52
95% BCA Bootstrap UCL	22.34	95% Bootstrap t UCL	38.33
95% H-UCL (Log ROS)	19.74		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

0.193	KM Geo Mean	-1.646	KM Mean (logged)
4.289	95% Critical H Value (KM-Log)	2.662	KM SD (logged)
21.41	95% H-UCL (KM -Log)	0.274	KM Standard Error of Mean (logged)
4.289	95% Critical H Value (KM-Log)	2.662	KM SD (logged)
		0.274	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	8.477	Mean in Log Scale	-1.627
SD in Original Scale	46.51	SD in Log Scale	2.656
95% t UCL (Assumes normality)	16.32	95% H-Stat UCL	21.3

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 21.41

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(b)fluoranthene

General Statistics

Total Number of Observations	97	Number of Distinct Observations	80
		Number of Missing Observations	68
Number of Detects	79	Number of Non-Detects	18
Number of Distinct Detects	65	Number of Distinct Non-Detects	16
Minimum Detect	0.0073	Minimum Non-Detect	0.0076
Maximum Detect	510	Maximum Non-Detect	0.14
Variance Detects	3867	Percent Non-Detects	18.56%
Mean Detects	12.64	SD Detects	62.18
Median Detects	0.53	CV Detects	4.92
Skewness Detects	7.1	Kurtosis Detects	54.59
Mean of Logged Detects	-0.482	SD of Logged Detects	2.137

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.226	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.442	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0998	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	10.3	KM Standard Error of Mean	5.72
KM SD	55.98	95% KM (BCA) UCL	20.71
95% KM (t) UCL	19.8	95% KM (Percentile Bootstrap) UCL	20.16
95% KM (z) UCL	19.7	95% KM Bootstrap t UCL	47.26
90% KM Chebyshev UCL	27.46	95% KM Chebyshev UCL	35.23
97.5% KM Chebyshev UCL	46.02	99% KM Chebyshev UCL	67.21

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	9.752	Anderson-Darling GOF Test
5% A-D Critical Value	0.896	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.277	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.111	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.237	k star (bias corrected MLE)	0.237
Theta hat (MLE)	53.28	Theta star (bias corrected MLE)	53.41
nu hat (MLE)	37.48	nu star (bias corrected)	37.39
Mean (detects)	12.64		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0073	Mean	10.3
Maximum	510	Median	0.35
SD	56.27	CV	5.465
k hat (MLE)	0.205	k star (bias corrected MLE)	0.205
Theta hat (MLE)	50.26	Theta star (bias corrected MLE)	50.13
nu hat (MLE)	39.74	nu star (bias corrected)	39.84
Adjusted Level of Significance (β)	0.0475		
Approximate Chi Square Value (39.84, α)	26.38	Adjusted Chi Square Value (39.84, β)	26.22
95% Gamma Approximate UCL (use when n>=50)	15.55	95% Gamma Adjusted UCL (use when n<50)	15.65

Estimates of Gamma Parameters using KM Estimates

55.98	SD (KM)	10.3	Mean (KM)
5.72	SE of Mean (KM)	3134	Variance (KM)
0.0397	k star (KM)	0.0338	k hat (KM)
7.693	nu star (KM)	6.563	nu hat (KM)
259.6	theta star (KM)	304.3	theta hat (KM)
11	90% gamma percentile (KM)	0.543	80% gamma percentile (KM)
244	99% gamma percentile (KM)	49.15	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (7.69, α)	2.559	Adjusted Chi Square Value (7.69, β)	2.514
)5% Gamma Approximate KM-UCL (use when n>=50)	30.96	95% Gamma Adjusted KM-UCL (use when n<50)	31.5

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk GOF Test	0.968	Shapiro Wilk Approximate Test Statistic
Detected Data appear Lognormal at 5% Significance Level	0.168	5% Shapiro Wilk P Value
Lilliefors GOF Test	0.0723	Lilliefors Test Statistic
Detected Data appear Lognormal at 5% Significance Level	0.0998	5% Lilliefors Critical Value

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	10.3	Mean in Log Scale	-1.306
SD in Original Scale	56.27	SD in Log Scale	2.597
95% t UCL (assumes normality of ROS data)	19.78	95% Percentile Bootstrap UCL	20.96
95% BCA Bootstrap UCL	26.67	95% Bootstrap t UCL	47.46
95% H-UCL (Log ROS)	24		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.297	KM Geo Mean	0.273
KM SD (logged)	2.569	95% Critical H Value (KM-Log)	4.162
KM Standard Error of Mean (logged)	0.263	95% H-UCL (KM -Log)	22.09
KM SD (logged)	2.569	95% Critical H Value (KM-Log)	4.162
KM Standard Error of Mean (logged)	0.263		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	10.3	Mean in Log Scale	-1.381
SD in Original Scale	56.27	SD in Log Scale	2.715
95% t UCL (Assumes normality)	19.78	95% H-Stat UCL	33.56

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 22.09

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(k)fluoranthene

General Statistics

Total Number of Observations	97	Number of Distinct Observations	80
		Number of Missing Observations	68
Number of Detects	78	Number of Non-Detects	19
Number of Distinct Detects	65	Number of Distinct Non-Detects	17
Minimum Detect	0.003	Minimum Non-Detect	0.0076
Maximum Detect	200	Maximum Non-Detect	0.3
Variance Detects	603.8	Percent Non-Detects	19.59%
Mean Detects	5.005	SD Detects	24.57
Median Detects	0.215	CV Detects	4.909
Skewness Detects	7.012	Kurtosis Detects	53.48
Mean of Logged Detects	-1.485	SD of Logged Detects	2.128

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.228	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.444	Lilliefors GOF Test
5% Lilliefors Critical Value	0.1	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	4.026	KM Standard Error of Mean	2.246
KM SD	21.98	95% KM (BCA) UCL	8.455
95% KM (t) UCL	7.757	95% KM (Percentile Bootstrap) UCL	8.093
95% KM (z) UCL	7.721	95% KM Bootstrap t UCL	16.84
90% KM Chebyshev UCL	10.77	95% KM Chebyshev UCL	13.82
97.5% KM Chebyshev UCL	18.06	99% KM Chebyshev UCL	26.38

Gamma GOF Tests on Detected Observations Only

Statistic 1	10.36	Anderson-Darling GOF Test
al Value	0.899	Detected Data Not Gamma Distributed at 5% Significance Level
Statistic	0.296	Kolmogorov-Smirnov GOF
al Value (0 112	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.232	k star (bias corrected MLE)	0.232	k hat (MLE)
21.59	Theta star (bias corrected MLE)	21.55	Theta hat (MLE)
36.16	nu star (bias corrected)	36.22	nu hat (MLE)
		5 005	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.003	Mean	4.027
Maximum	200	Median	0.12
SD	22.1	CV	5.488
k hat (MLE)	0.209	k star (bias corrected MLE)	0.21
Theta hat (MLE)	19.23	Theta star (bias corrected MLE)	19.19
nu hat (MLE)	40.63	nu star (bias corrected)	40.7
Adjusted Level of Significance (β)	0.0475		
Approximate Chi Square Value (40.70, α)	27.08	Adjusted Chi Square Value (40.70, β)	26.92
95% Gamma Approximate UCL (use when n>=50)	6.052	95% Gamma Adjusted UCL (use when n<50)	6.089

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	4.026	SD (KM)	21.98
Variance (KM)	483.2	SE of Mean (KM)	2.246
k hat (KM)	0.0336	k star (KM)	0.0394
nu hat (KM)	6.509	nu star (KM)	7.641
theta hat (KM)	120	theta star (KM)	102.2
80% gamma percentile (KM)	0.206	90% gamma percentile (KM)	4.247
95% gamma percentile (KM)	19.14	99% gamma percentile (KM)	95.66

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (7.64, α)	2.529	Adjusted Chi Square Value (7.64, β)	2.485
15% Gamma Approximate KM-UCL (use when n>=50)	12.17	95% Gamma Adjusted KM-UCL (use when n<50)	12.38

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.96	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0.0488	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.09	Lilliefors GOF Test
5% Lilliefors Critical Value	0.1	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	4.026	Mean in Log Scale	-2.284
SD in Original Scale	22.1	SD in Log Scale	2.522
95% t UCL (assumes normality of ROS data)	7.752	95% Percentile Bootstrap UCL	8.154
95% BCA Bootstrap UCL	10.29	95% Bootstrap t UCL	17.25
95% H-UCL (Log ROS)	7.042		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

07
07
02
66
02
00

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	4.028	Mean in Log Scale	-2.201
SD in Original Scale	22.1	SD in Log Scale	2.44
95% t UCL (Assumes normality)	7.754	95% H-Stat UCL	5.862

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 5.866

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chrysene

General Statistics

97	Number of Distinct Observations	79
	Number of Missing Observations	68
82	Number of Non-Detects	15
67	Number of Distinct Non-Detects	14
0.0033	Minimum Non-Detect	0.0076
450	Maximum Non-Detect	0.14
2940	Percent Non-Detects	15.46%
10.78	SD Detects	54.22
0.42	CV Detects	5.032
7.16	Kurtosis Detects	55.48
-0.831	SD of Logged Detects	2.288
	82 67 0.0033 450 2940 10.78 0.42 7.16	Number of Missing Observations 82 Number of Non-Detects 67 Number of Distinct Non-Detects 0.0033 Minimum Non-Detect 450 Maximum Non-Detect 2940 Percent Non-Detects 10.78 SD Detects 0.42 CV Detects 7.16 Kurtosis Detects

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.222	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.447	Lilliefors GOF Test
5% Lilliefors Critical Value	0.098	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	9.111	KM Standard Error of Mean	5.078
KM SD	49.7	95% KM (BCA) UCL	20
95% KM (t) UCL	17.54	95% KM (Percentile Bootstrap) UCL	18.08
95% KM (z) UCL	17.46	95% KM Bootstrap t UCL	43.95
90% KM Chebyshev UCL	24.34	95% KM Chebyshev UCL	31.24
97.5% KM Chebyshev UCL	40.82	99% KM Chebyshev UCL	59.63

Gamma GOF Tests on Detected Observations Only

A-D T	est Statistic	9.929	Anderson-Darling GOF Test	
5% A-D C	ritical Value	0.903	Detected Data Not Gamma Distributed at 5% Significance Level	
K-S T	est Statistic	0.291	Kolmogorov-Smirnov GOF	
5% K-S C	ritical Value	0.109	Detected Data Not Gamma Distributed at 5% Significance Level	
Detected Data Not Gamma Distributed at 5% Significance Level				

Gamma Statistics on Detected Data Only

0.225	k star (bias corrected MLE)	0.225
47.87	Theta star (bias corrected MLE)	47.9
36.92	nu star (bias corrected)	36.9
10.78		
	47.87 36.92	47.87 Theta star (bias corrected MLE) 36.92 nu star (bias corrected)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

	33.		3
9.112	Mean	0.0033	Minimum
0.23	Median	450	Maximum
5.483	CV	49.96	SD
0.203	k star (bias corrected MLE)	0.203	k hat (MLE)
44.83	Theta star (bias corrected MLE)	44.97	Theta hat (MLE)
39.43	nu star (bias corrected)	39.31	nu hat (MLE)
		0.0475	Adjusted Level of Significance (β)
25.88	Adjusted Chi Square Value (39.43, β)	26.04	Approximate Chi Square Value (39.43, α)
13.88	95% Gamma Adjusted UCL (use when n<50)	13.79	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	9.111	SD (KM)	49.7
Variance (KM)	2470	SE of Mean (KM)	5.078
k hat (KM)	0.0336	k star (KM)	0.0394
nu hat (KM)	6.519	nu star (KM)	7.651
theta hat (KM)	271.1	theta star (KM)	231
80% gamma percentile (KM)	0.468	90% gamma percentile (KM)	9.634
95% gamma percentile (KM)	43.35	99% gamma percentile (KM)	216.4

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (7.65, α)	2.535	Adjusted Chi Square Value (7.65, β)	2.491
15% Gamma Approximate KM-UCL (use when n>=50)	27.5	95% Gamma Adjusted KM-UCL (use when n<50)	27.99

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.971	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0.221	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0751	Lilliefors GOF Test
5% Lilliefors Critical Value	0.098	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	9.111	Mean in Log Scale	-1.483
SD in Original Scale	49.96	SD in Log Scale	2.605
95% t UCL (assumes normality of ROS data)	17.54	95% Percentile Bootstrap UCL	18.43
95% BCA Bootstrap UCL	24.88	95% Bootstrap t UCL	45.15
95% H-UCL (Log ROS)	20.69		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.541	KM Geo Mean	0.214
KM SD (logged)	2.678	95% Critical H Value (KM-Log)	4.31
KM Standard Error of Mean (logged)	0.275	95% H-UCL (KM -Log)	25.11
KM SD (logged)	2.678	95% Critical H Value (KM-Log)	4.31
KM Standard Error of Mean (logged)	0.275		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	9.112	Mean in Log Scale	-1.522
SD in Original Scale	49.96	SD in Log Scale	2.67
95% t UCL (Assumes normality)	17.54	95% H-Stat UCL	24.86

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 25.11

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Cobalt

General Statistics

Total Number of Observations	9	Number of Distinct Observations	8
		Number of Missing Observations	140
Minimum	2.9	Mean	6.111
Maximum	17	Median	4.4
SD	4.516	Std. Error of Mean	1.505
Coefficient of Variation	0.739	Skewness	2.187

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk GOF Test	0.675	Shapiro Wilk Test Statistic
Data Not Normal at 5% Significance Level	0.829	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.392	Lilliefors Test Statistic
Data Not Normal at 5% Significance Level	0.274	5% Lilliefors Critical Value

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	8.91	95% Adjusted-CLT UCL (Chen-1995)	9.76
		95% Modified-t UCL (Johnson-1978)	9.093

Gamma GOF Test

A-D Test Statistic	1.041	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.726	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.366	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.281	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

2.191	k star (bias corrected MLE)	3.176	k hat (MLE)
2.789	Theta star (bias corrected MLE)	1.924	Theta hat (MLE)
39.45	nu star (bias corrected)	57.17	nu hat (MLE)
4.128	MLE Sd (bias corrected)	6.111	MLE Mean (bias corrected)
26.06	Approximate Chi Square Value (0.05)		
23.79	Adjusted Chi Square Value	0.0231	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<=50)) 9.251 95% Adjusted Gamma UCL (use when n<50) 10.13

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.819	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.829	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.332	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.274	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.065	Mean of logged Data	1.644
Maximum of Logged Data	2.833	SD of logged Data	0.555

Assuming Lognormal Distribution

95% H-UCL	9.544	90% Chebyshev (MVUE) UCL	9.275
95% Chebyshev (MVUE) UCL	10.79	97.5% Chebyshev (MVUE) UCL	12.9
99% Chebyshey (MVUE) UCL	17.03		

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

8.91	95% Jackknife UCL	8.587	95% CLT UCL
20.78	95% Bootstrap-t UCL	8.45	95% Standard Bootstrap UCL
8.722	95% Percentile Bootstrap UCL	27.52	95% Hall's Bootstrap UCL
		9.311	95% BCA Bootstrap UCL
12.67	95% Chebyshev(Mean, Sd) UCL	10.63	90% Chebyshev(Mean, Sd) UCL
21.09	99% Chebyshey(Mean, Sd) UCL	15.51	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 12.67

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Dibenzo(a,h)anthracene

General Statistics

Total Number of Observations	97	Number of Distinct Observations	75
		Number of Missing Observations	68
Number of Detects	67	Number of Non-Detects	30
Number of Distinct Detects	54	Number of Distinct Non-Detects	23
Minimum Detect	0.0046	Minimum Non-Detect	0.0076
Maximum Detect	62	Maximum Non-Detect	1.7
Variance Detects	61.39	Percent Non-Detects	30.93%
Mean Detects	1.578	SD Detects	7.835
Median Detects	0.11	CV Detects	4.966
Skewness Detects	7.273	Kurtosis Detects	55.76
Mean of Logged Detects	-2.141	SD of Logged Detects	1.9

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.216	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.445	Lilliefors GOF Test
5% Lilliefors Critical Value	0.108	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

Mean 0.6	KM Standard Error of M	1.096	KM Mean
UCL 2.3	95% KM (BCA)	6.503	KM SD
UCL 2.3	95% KM (Percentile Bootstrap)	2.201	95% KM (t) UCL
UCL 10.	95% KM Bootstrap t	2.19	95% KM (z) UCL
UCL 3.9	95% KM Chebyshev	3.092	90% KM Chebyshev UCL
UCL 7.7	99% KM Chebyshev	5.251	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	8.216	Anderson-Darling GOF Test			
5% A-D Critical Value	0.88	Detected Data Not Gamma Distributed at 5% Significance Level			
K-S Test Statistic	0.288	Kolmogorov-Smirnov GOF			
5% K-S Critical Value	0.119	Detected Data Not Gamma Distributed at 5% Significance Level			
Detected Data Not Gamma Distributed at 5% Significance Level					

Gamma Statistics on Detected Data Only

0.27	k star (bias corrected MLE)	0.268
5.842	Theta star (bias corrected MLE)	5.888
36.19	nu star (bias corrected)	35.91
1.578		
	5.842 36.19	5.842 Theta star (bias corrected MLE) 36.19 nu star (bias corrected)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

1.093	Mean	0.0046	Minimum
0.036	Median	62	Maximum
5.981	CV	6.537	SD
0.239	k star (bias corrected MLE)	0.239	k hat (MLE)
4.581	Theta star (bias corrected MLE)	4.571	Theta hat (MLE)
46.29	nu star (bias corrected)	46.39	nu hat (MLE)
		0.0475	Adjusted Level of Significance (β)
31.49	Adjusted Chi Square Value (46.29, β)	31.68	Approximate Chi Square Value (46.29, α)
1.606	95% Gamma Adjusted UCL (use when n<50)	1.597	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.096	SD (KM)	6.503
Variance (KM)	42.29	SE of Mean (KM)	0.665
k hat (KM)	0.0284	k star (KM)	0.0344
nu hat (KM)	5.511	nu star (KM)	6.674
theta hat (KM)	38.58	theta star (KM)	31.86
80% gamma percentile (KM)	0.028	90% gamma percentile (KM)	0.883
95% gamma percentile (KM)	4.761	99% gamma percentile (KM)	27.21

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (6.67, α)	1.993	Adjusted Chi Square Value (6.67, β)	1.955
15% Gamma Approximate KM-UCL (use when n>=50)	3.67	95% Gamma Adjusted KM-UCL (use when n<50)	3.741

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.955	Shapiro Wilk GOF Test		
5% Shapiro Wilk P Value	0.0405	Detected Data Not Lognormal at 5% Significance Level		
Lilliefors Test Statistic	0.077	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.108	Detected Data appear Lognormal at 5% Significance Level		
Detected Data appear Approximate Lognormal at 5% Significance Level				

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	1.092	Mean in Log Scale	-3.12
SD in Original Scale	6.537	SD in Log Scale	2.216
95% t UCL (assumes normality of ROS data)	2.195	95% Percentile Bootstrap UCL	2.33
95% BCA Bootstrap UCL	3.352	95% Bootstrap t UCL	6.504
95% H-UCL (Log ROS)	1.185		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.985	KM Geo Mean	0.0505
KM SD (logged)	2.076	95% Critical H Value (KM-Log)	3.508
KM Standard Error of Mean (logged)	0.217	95% H-UCL (KM -Log)	0.918
KM SD (logged)	2.076	95% Critical H Value (KM-Log)	3.508
KM Standard Error of Mean (logged)	0.217		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	1.111	Mean in Log Scale	-2.887	
SD in Original Scale	6.535	SD in Log Scale	2.133	
95% t UCL (Assumes normality)	2.213	95% H-Stat UCL	1.184	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 0.918

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Diesel Range Organics (C10-C20)

General Statistics

Total Number of Observations	25	Number of Distinct Observations	17
		Number of Missing Observations	143
Number of Detects	13	Number of Non-Detects	12
Number of Distinct Detects	12	Number of Distinct Non-Detects	6
Minimum Detect	20	Minimum Non-Detect	18
Maximum Detect	7900	Maximum Non-Detect	370
Variance Detects	5233218	Percent Non-Detects	48%
Mean Detects	1255	SD Detects	2288
Median Detects	150	CV Detects	1.823
Skewness Detects	2.427	Kurtosis Detects	6.104
Mean of Logged Detects	5.672	SD of Logged Detects	1.802

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.607	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.866	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.365	Lilliefors GOF Test
5% Lilliefors Critical Value	0.234	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

	KM Mean	663	KM Standard Error of Mean	354
	KM SD	1701	95% KM (BCA) UCL	1306
	95% KM (t) UCL	1269	95% KM (Percentile Bootstrap) UCL	1310
	95% KM (z) UCL	1245	95% KM Bootstrap t UCL	2009
	90% KM Chebyshev UCL	1725	95% KM Chebyshev UCL	2206
ç	7.5% KM Chebyshev UCL	2874	99% KM Chebyshev UCL	4186

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.958	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.801	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.236	K-S Test Statistic
) etected data annear Gamma Distributed at 5% Significance Le	0.252	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

0.392	k star (bias corrected MLE)	0.443	k hat (MLE)
3204	Theta star (bias corrected MLE)	2836	Theta hat (MLE)
10.18	nu star (bias corrected)	11.51	nu hat (MLE)
		1255	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

n 652.7	Mean	0.01	Minimum
n 20	Median	7900	Maximum
/ 2.665	CV	1740	SD
0.146	k star (bias corrected MLE)	0.136	k hat (MLE)
) 4466	Theta star (bias corrected MLE)	4807	Theta hat (MLE)
) 7.307	nu star (bias corrected)	6.789	nu hat (MLE)
		0.0395	Adjusted Level of Significance (β)
2.154	Adjusted Chi Square Value (7.31, β)	2.341	Approximate Chi Square Value (7.31, α)
) 2215	95% Gamma Adjusted UCL (use when n<50)	2038	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	663	SD (KM)	1701
Variance (KM)	2892100	SE of Mean (KM)	354
k hat (KM)	0.152	k star (KM)	0.16
nu hat (KM)	7.6	nu star (KM)	8.021
theta hat (KM)	4362	theta star (KM)	4133
80% gamma percentile (KM)	760.6	90% gamma percentile (KM)	1982
95% gamma percentile (KM)	3600	99% gamma percentile (KM)	8231

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (8.02, α)	2.747	Adjusted Chi Square Value (8.02, β)	2.541
15% Gamma Approximate KM-LICL (use when n>=50)	1936	95% Gamma Adjusted KM-LICL (use when n<50)	2093

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk GOF Test	0.926	Shapiro Wilk Test Statistic
Detected Data appear Lognormal at 5% Significance Level	0.866	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.188	Lilliefors Test Statistic
Detected Data appear Lognormal at 5% Significance Level	0.234	5% Lilliefors Critical Value

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	655.1	Mean in Log Scale	3.52
SD in Original Scale	1739	SD in Log Scale	2.717
95% t UCL (assumes normality of ROS data)	1250	95% Percentile Bootstrap UCL	1294
95% BCA Bootstrap UCL	1566	95% Bootstrap t UCL	2072
95% H-UCL (Log ROS)	23833		

RI Report - BHHRA

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	4.365	KM Geo Mean	78.63
KM SD (logged)	1.86	95% Critical H Value (KM-Log)	3.753
KM Standard Error of Mean (logged)	0.389	95% H-UCL (KM -Log)	1845
KM SD (logged)	1.86	95% Critical H Value (KM-Log)	3.753
KM Standard Error of Mean (logged)	0.389		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed			
Mean in Original Scale	664.4	Mean in Log Scale	4.165	
SD in Original Scale	1735	SD in Log Scale	2.125	
95% t UCL (Assumes normality)	1258	95% H-Stat UCL	3775	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 2093

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Indeno(1,2,3-cd)pyrene

	General Statistics		
Total Number of Observations	97	Number of Distinct Observations	87
		Number of Missing Observations	68
Number of Detects	79	Number of Non-Detects	18
Number of Distinct Detects	71	Number of Distinct Non-Detects	16
Minimum Detect	0.0034	Minimum Non-Detect	0.0076
Maximum Detect	260	Maximum Non-Detect	0.14
Variance Detects	1039	Percent Non-Detects	18.56%
Mean Detects	6.692	SD Detects	32.23
Median Detects	0.3	CV Detects	4.816
Skewness Detects	6.877	Kurtosis Detects	51.29
Mean of Logged Detects	-1.074	SD of Logged Detects	2.111

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.232	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.45	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0998	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	5.452	KM Standard Error of Mean	2.965
KM SD	29.02	95% KM (BCA) UCL	10.84
95% KM (t) UCL	10.38	95% KM (Percentile Bootstrap) UCL	10.88
95% KM (z) UCL	10.33	95% KM Bootstrap t UCL	25.84
90% KM Chebyshev UCL	14.35	95% KM Chebyshev UCL	18.38
97.5% KM Chebyshev UCL	23.97	99% KM Chebyshev UCL	34.95

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	9.886	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.895	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.283	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.111	5% K-S Critical Value

February 2020

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.24	k star (bias corrected MLE)	0.24	k hat (MLE)
27.93	Theta star (bias corrected MLE)	27.85	Theta hat (MLE)
37.86	nu star (bias corrected)	37.96	nu hat (MLE)
		6.692	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

5.452	Mean	0.0034	Minimum
0.17	Median	260	Maximum
5.349	CV	29.17	SD
0.213	k star (bias corrected MLE)	0.213	k hat (MLE)
25.59	Theta star (bias corrected MLE)	25.63	Theta hat (MLE)
41.33	nu star (bias corrected)	41.28	nu hat (MLE)
		0.0475	Adjusted Level of Significance (β)
27.43	Adjusted Chi Square Value (41.33, β)	27.6	Approximate Chi Square Value (41.33, α)
8.216	95% Gamma Adjusted UCL (use when n<50)	8 166	95% Gamma Approximate LICL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	5.452	SD (KM)	29.02
Variance (KM)	842	SE of Mean (KM)	2.965
k hat (KM)	0.0353	k star (KM)	0.0411
nu hat (KM)	6.848	nu star (KM)	7.969
theta hat (KM)	154.4	theta star (KM)	132.7
80% gamma percentile (KM)	0.338	90% gamma percentile (KM)	6.194
95% gamma percentile (KM)	26.55	99% gamma percentile (KM)	127.6

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (7.97, α)	2.717	Adjusted Chi Square Value (7.97, β)	2.671
)5% Gamma Approximate KM-LICL (use when n>=50)	15.99	95% Gamma Adjusted KM-UCL (use when n<50)	16.26

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.968	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0.16	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0821	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0998	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	5.451	Mean in Log Scale	-1.881
SD in Original Scale	29.17	SD in Log Scale	2.558
95% t UCL (assumes normality of ROS data)	10.37	95% Percentile Bootstrap UCL	11.05
95% BCA Bootstrap UCL	13.1	95% Bootstrap t UCL	26.04
95% H-UCL (Log ROS)	11.86		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

0.147	KM Geo Mean	-1.914	KM Mean (logged)
4.195	95% Critical H Value (KM-Log)	2.593	KM SD (logged)
12.91	95% H-UCL (KM -Log)	0.265	KM Standard Error of Mean (logged)
4.195	95% Critical H Value (KM-Log)	2.593	KM SD (logged)
		0.265	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	5.452	Mean in Log Scale	-1.863
SD in Original Scale	29.17	SD in Log Scale	2.542
95% t UCL (Assumes normality)	10.37	95% H-Stat UCL	11.46

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 12.91

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Manganese

	General Statistics		
Total Number of Observations	9	Number of Distinct Observations	9
		Number of Missing Observations	140
Minimum	24	Mean	142.2
Maximum	500	Median	110
SD	145.7	Std. Error of Mean	48.56
Coefficient of Variation	1.024	Skewness	2.208

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.744	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.284	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	232.5	95% Adjusted-CLT UCL (Chen-1995)	260.3
		95% Modified-t UCL (Johnson-1978)	238.5

Gamma GOF Test

A-D Test Statistic	0.288	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.734)ete	cted data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.176	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.284)ete	cted data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

1.071	k star (bias corrected MLE)	1.495	k hat (MLE)
132.9	Theta star (bias corrected MLE)	95.15	Theta hat (MLE)
19.27	nu star (bias corrected)	26.9	nu hat (MLE)
137.5	MLE Sd (bias corrected)	142.2	MLE Mean (bias corrected)
10.31	Approximate Chi Square Value (0.05)		
8.965	Adjusted Chi Square Value	0.0231	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 265.7 95% Adjusted Gamma UCL (use when n<50) 305.7

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.988	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.125	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.274	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	3.178	Mean of logged Data	4.587
Maximum of Logged Data	6.215	SD of logged Data	0.901

Assuming Lognormal Distribution

95% H-UCL	386.1	90% Chebyshev (MVUE) UCL	268.7
95% Chebyshev (MVUE) UCL	327.4	97.5% Chebyshev (MVUE) UCL	408.8
99% Chebyshey (MVUE) UCL	568.7		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	222.1	95% Jackknife UCL	232.5
95% Standard Bootstrap UCL	216.5	95% Bootstrap-t UCL	356.3
95% Hall's Bootstrap UCL	600.1	95% Percentile Bootstrap UCL	228.4
95% BCA Bootstrap UCL	255.1		
90% Chebyshev(Mean, Sd) UCL	287.9	95% Chebyshev(Mean, Sd) UCL	353.9
97.5% Chebyshev(Mean, Sd) UCL	445.5	99% Chebyshev(Mean, Sd) UCL	625.4

Suggested UCL to Use

95% Adjusted Gamma UCL 305.7

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Naphthalene

General Statistics

97	Number of Distinct Observations	78
	Number of Missing Observations	68
71	Number of Non-Detects	26
61	Number of Distinct Non-Detects	21
0.0018	Minimum Non-Detect	0.0076
130	Maximum Non-Detect	0.72
248.5	Percent Non-Detects	26.8%
2.456	SD Detects	15.76
0.069	CV Detects	6.418
7.863	Kurtosis Detects	63.73
-2.585	SD of Logged Detects	1.965
	71 61 0.0018 130 248.5 2.456 0.069 7.863	Number of Missing Observations 71 Number of Non-Detects 61 Number of Distinct Non-Detects 0.0018 Minimum Non-Detect 130 Maximum Non-Detect 248.5 Percent Non-Detects 2.456 SD Detects 0.069 CV Detects 7.863 Kurtosis Detects

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.165	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.479	Lilliefors GOF Test
5% Lilliefors Critical Value	0.105	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

1.374	KM Standard Error of Mean	1.801	KM Mean
4.503	95% KM (BCA) UCL	13.43	KM SD
4.488	95% KM (Percentile Bootstrap) UCL	4.083	95% KM (t) UCL
54.32	95% KM Bootstrap t UCL	4.061	95% KM (z) UCL
7.789	95% KM Chebyshev UCL	5.923	90% KM Chebyshev UCL
15.47	99% KM Chebyshev UCL	10.38	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	12.66	Anderson-Darling GOF Test
5% A-D Critical Value	0.91	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.365	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.117	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.21	k star (bias corrected MLE)	0.21
Theta hat (MLE)	11.71	Theta star (bias corrected MLE)	11.68
nu hat (MLE)	29.77	nu star (bias corrected)	29.85
Mean (detects)	2.456		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0018	Mean	1.8
Maximum	130	Median	0.038
SD	13.5	CV	7.5
k hat (MLE)	0.198	k star (bias corrected MLE)	0.199
Theta hat (MLE)	9.077	Theta star (bias corrected MLE)	9.043
nu hat (MLE)	38.48	nu star (bias corrected)	38.63
Adjusted Level of Significance (β)	0.0475		
Approximate Chi Square Value (38.63, α)	25.39	Adjusted Chi Square Value (38.63, β)	25.23
95% Gamma Approximate UCL (use when n>=50)	2.739	95% Gamma Adjusted UCL (use when n<50)	2.756

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.801	SD (KM)	13.43
Variance (KM)	180.5	SE of Mean (KM)	1.374
k hat (KM)	0.018	k star (KM)	0.0243
nu hat (KM)	3.488	nu star (KM)	4.713
theta hat (KM)	100.2	theta star (KM)	74.14
80% gamma percentile (KM)	0.00436	90% gamma percentile (KM)	0.56
95% gamma percentile (KM)	5.522	99% gamma percentile (KM)	48.83

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (4.71, α)	1.022	Adjusted Chi Square Value (4.71, β)	0.997
)5% Gamma Approximate KM-UCL (use when n>=50)	8.306	95% Gamma Adjusted KM-UCL (use when n<50)	8.513

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk GOF Test	0.943	Shapiro Wilk Approximate Test Statistic
Detected Data Not Lognormal at 5% Significance Level	0.00558	5% Shapiro Wilk P Value
Lilliefors GOF Test	0.0941	Lilliefors Test Statistic
Detected Data appear Lognormal at 5% Significance Level	0.105	5% Lilliefors Critical Value

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	1.8	Mean in Log Scale	-3.318
SD in Original Scale	13.5	SD in Log Scale	2.11
95% t UCL (assumes normality of ROS data)	4.077	95% Percentile Bootstrap UCL	4.454
95% BCA Bootstrap UCL	6.527	95% Bootstrap t UCL	58.18
95% H-UCL (Log ROS)	0.721		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

0.0371	KM Geo Mean	-3.294	KM Mean (logged)
3.542	95% Critical H Value (KM-Log)	2.103	KM SD (logged)
0.724	95% H-UCL (KM -Log)	0.223	KM Standard Error of Mean (logged)
3.542	95% Critical H Value (KM-Log)	2.103	KM SD (logged)
		0 223	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.807	Mean in Log Scale	-3.19
SD in Original Scale	13.5	SD in Log Scale	2.08
95% t LICL (Assumes normality)	4 084	95% H-Stat UCI	0.756

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 0.724

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Nickel

General Statistics

Total Number of Observations	9	Number of Distinct Observations	9
		Number of Missing Observations	140
Minimum	2.5	Mean	10.79
Maximum	27	Median	9.8
SD	7.572	Std. Error of Mean	2.524
Coefficient of Variation	0.702	Skewness	1.212

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.894	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.181	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	15.48	95% Adjusted-CLT UCL (Chen-1995)	16.03

Gamma GOF Test

21 Anderson-Darling Gamma GOF Test	0.221	A-D Test Statistic
29 Detected data appear Gamma Distributed at 5% Significance	0.729	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.167	K-S Test Statistic
32 Detected data appear Gamma Distributed at 5% Significance	0.282	5% K-S Critical Value

95% Modified-t UCL (Johnson-1978) 15.65

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	2.348	k star (bias corrected MLE)	1.639
Theta hat (MLE)	4.595	Theta star (bias corrected MLE)	6.582
nu hat (MLE)	42.26	nu star (bias corrected)	29.51
MLE Mean (bias corrected)	10.79	MLE Sd (bias corrected)	8.427
		Approximate Chi Square Value (0.05)	18.11
Adjusted Level of Significance	0.0231	Adjusted Chi Square Value	16.25

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 17.58 95% Adjusted Gamma UCL (use when n<50) 19.59

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.973	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.156	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.274	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.916	Mean of logged Data	2.151
Maximum of Logged Data	3.296	SD of logged Data	0.741

Assuming Lognormal Distribution

95% H-UCL	22.93	90% Chebyshev (MVUE) UCL	19.2
95% Chebyshev (MVUE) UCL	22.96	97.5% Chebyshev (MVUE) UCL	28.18
99% Chebyshev (MVUE) UCL	38.42		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

Soil ProUCL Output - Salvage Yard and Waste Storage Area

95% CLT UCL	14.94	95% Jackknife UCL	15.48
95% Standard Bootstrap UCL	14.66	95% Bootstrap-t UCL	16.77
95% Hall's Bootstrap UCL	18.01	95% Percentile Bootstrap UCL	14.89
95% BCA Bootstrap UCL	15.53		
90% Chebyshev(Mean, Sd) UCL	18.36	95% Chebyshev(Mean, Sd) UCL	21.79
97.5% Chebyshev(Mean, Sd) UCL	26.55	99% Chebyshev(Mean, Sd) UCL	35.9

Suggested UCL to Use

95% Student's-t UCL 15.48

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

PCB, Total Aroclors (AECOM Calc)

General Statistics

Total Number of Observations	110	Number of Distinct Observations	89
		Number of Missing Observations	55
Number of Detects	90	Number of Non-Detects	20
Number of Distinct Detects	75	Number of Distinct Non-Detects	15
Minimum Detect	8.6000E-4	Minimum Non-Detect	9.2000E-4
Maximum Detect	14	Maximum Non-Detect	0.01
Variance Detects	2.99	Percent Non-Detects	18.18%
Mean Detects	0.805	SD Detects	1.729
Median Detects	0.2	CV Detects	2.149
Skewness Detects	5.409	Kurtosis Detects	38.3
Mean of Logged Detects	-2.107	SD of Logged Detects	2.4

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.498	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.321	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0936	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.152	KM Standard Error of Mean	0.659	KM Mean
0.937	95% KM (BCA) UCL	1.586	KM SD
0.925	95% KM (Percentile Bootstrap) UCL	0.911	95% KM (t) UCL
1.088	95% KM Bootstrap t UCL	0.909	95% KM (z) UCL
1.321	95% KM Chebyshev UCL	1.115	90% KM Chebyshev UCL
2.171	99% KM Chebyshev UCL	1.608	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.248	Anderson-Darling GOF Test		
5% A-D Critical Value	0.854	Detected Data Not Gamma Distributed at 5% Significance Level		
K-S Test Statistic	0.11	Kolmogorov-Smirnov GOF		
5% K-S Critical Value	0.102	Detected Data Not Gamma Distributed at 5% Significance Level		
Detected Data Not Gamma Distributed at 5% Significance Level				

Gamma Statistics on Detected Data Only

0.351	k star (bias corrected MLE)	0.355	k hat (MLE)
2.295	Theta star (bias corrected MLE)	2.266	Theta hat (MLE)
63.11	nu star (bias corrected)	63.91	nu hat (MLE)
		0.805	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 8	Mean	0.66	
Maximum	14	Median	0.0595
SD	1.592	CV	2.412
k hat (MLE)	0.318	k star (bias corrected MLE)	0.316
Theta hat (MLE)	2.074	Theta star (bias corrected MLE)	2.091
nu hat (MLE)	70.02	nu star (bias corrected)	69.44
Adjusted Level of Significance (β)	0.0478		
Approximate Chi Square Value (69.44, α)	51.26	Adjusted Chi Square Value (69.44, β)	51.05
95% Gamma Approximate UCL (use when n>=50)	0.894	95% Gamma Adjusted UCL (use when n<50)	0.898

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.659	SD (KM)	1.586
Variance (KM)	2.515	SE of Mean (KM)	0.152
k hat (KM)	0.172	k star (KM)	0.174
nu hat (KM)	37.93	nu star (KM)	38.23
theta hat (KM)	3.819	theta star (KM)	3.789
80% gamma percentile (KM)	0.799	90% gamma percentile (KM)	1.982
95% gamma percentile (KM)	3.512	99% gamma percentile (KM)	7.829

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (38.23, α)	25.07	Adjusted Chi Square Value (38.23, β)	24.93
)5% Gamma Approximate KM-UCL (use when n>=50)	1.004	95% Gamma Adjusted KM-UCL (use when n<50)	1.01

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.943	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0.0011	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0976	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0936	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.659	Mean in Log Scale	-2.941
SD in Original Scale	1.593	SD in Log Scale	2.817
95% t UCL (assumes normality of ROS data)	0.911	95% Percentile Bootstrap UCL	0.93
95% BCA Bootstrap UCL	1.022	95% Bootstrap t UCL	1.076
95% H-UCL (Log ROS)	9.046		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

0.0517	KM Geo Mean	-2.962	KM Mean (logged)
4.374	95% Critical H Value (KM-Log)	2.828	KM SD (logged)
9.223	95% H-UCL (KM -Log)	0.272	KM Standard Error of Mean (logged)
4.374	95% Critical H Value (KM-Log)	2.828	KM SD (logged)
		0 272	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.659	Mean in Log Scale	-2.95
SD in Original Scale	1.593	SD in Log Scale	2.842
95% t UCL (Assumes normality)	0.911	95% H-Stat UCL	9.814

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 1.321

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

TCDD TEQ HH

General Statistics

 Total Number of Observations
 30
 Number of Distinct Observations
 28

 Number of Missing Observations
 132

 Minimum
 1.3800E-7
 Mean
 4.8730E-5

 Maximum
 4.8400E-4
 Median
 1.9700E-5

 SD
 9.2344E-5
 Std. Error of Mean
 1.6860E-5

 Coefficient of Variation
 N/A
 Skewness
 3.905

Normal GOF Test

Shapiro Wilk Test Statistic 0.532 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.927 Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.299 Lilliefors GOF Test

5% Lilliefors Critical Value 0.159 Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 7.7377E-5 95% Adjusted-CLT UCL (Chen-1995) 8.9306E-5 95% Modified-t UCL (Johnson-1978) 7.9380E-5

Gamma GOF Test

A-D Test Statistic 0.666 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.808 Detected data appear Gamma Distributed at 5% Significance Leve K-S Test Statistic 0.16 Kolmogorov-Smirnov Gamma GOF Test

5% K-S Critical Value 0.169 Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

 k hat (MLE)
 0.51
 k star (bias corrected MLE)
 0.481

 Theta hat (MLE)
 9.5635E-5
 Theta star (bias corrected MLE)
 1.0135E-4

 nu hat (MLE)
 30.57
 nu star (bias corrected)
 28.85

 MLE Mean (bias corrected)
 4.8730E-5
 MLE Sd (bias corrected)
 7.0277E-5

 Approximate Chi Square Value (0.05)
 17.59

 Adjusted Level of Significance
 0.041
 Adjusted Chi Square Value
 17.08

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 7.9920E-5 95% Adjusted Gamma UCL (use when n<50) 8.2294E-5

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.977 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.927 Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.104 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.159 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 -15.8
 Mean of logged Data
 -11.17

 Maximum of Logged Data
 -7.633
 SD of logged Data
 1.781

Assuming Lognormal Distribution

95% H-UCL 2.2509E-4 90% Chebyshev (MVUE) UCL 1.3879E-4 97.5% Chebyshev (MVUE) UCL 1.7409E-4 97.5% Chebyshev (MVUE) UCL 2.2309E-4 99% Chebyshev (MVUE) UCL 3.1934E-4

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 7.6462E-5 95% Jackknife UCL 7.7377E-5
95% Standard Bootstrap UCL 7.5534E-5 95% Bootstrap-t UCL 1.1229E-4
95% Hall's Bootstrap UCL 1.8299E-4 95% Percentile Bootstrap UCL 7.9441E-5
95% BCA Bootstrap UCL 8.8166E-5
90% Chebyshev(Mean, Sd) UCL 9.9309E-5 95% Chebyshev(Mean, Sd) UCL 1.2222E-4
97.5% Chebyshev(Mean, Sd) UCL 1.5402E-4 99% Chebyshev(Mean, Sd) UCL 2.1648E-4

Suggested UCL to Use

95% Adjusted Gamma UCL 8.2294E-5

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Thallium

	General Statistics			
Total Number of Observations	9	Number of Distinct Observations	9	
		Number of Missing Observations	140	
Minimum	0.039	Mean	0.13	
Maximum	0.2	Median	0.12	
SD	0.0561	Std. Error of Mean	0.0187	
Coefficient of Variation	0.432	Skewness	-0.26	

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.945	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.149	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

, accurate production			
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.165	95% Adjusted-CLT UCL (Chen-1995)	0.159
		95% Modified-t UCL (Johnson-1978)	0.164

Gamma GOF Test

A-D Test Statistic	0.329	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.723	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.177	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.28	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	4.745	k star (bias corrected MLE)	3.238
Theta hat (MLE)	0.0274	Theta star (bias corrected MLE)	0.0401
nu hat (MLE)	85.42	nu star (bias corrected)	58.28
MLE Mean (bias corrected)	0.13	MLE Sd (bias corrected)	0.0722
		Approximate Chi Square Value (0.05)	41.73
Adjusted Level of Significance	0.0231	Adjusted Chi Square Value	38.79

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.181 95% Adjusted Gamma UCL (use when n<50) 0.195

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.897	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.167	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.274	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-3.244	Mean of logged Data	-2.15
Maximum of Logged Data	-1.609	SD of logged Data	0.537

Assuming Lognormal Distribution

Soil ProUCL Output - Salvage Yard and Waste Storage Area

95% H-UCL	0.208	90% Chebyshev (MVUE) UCL	0.204
95% Chebyshev (MVUE) UCL	0.237	97.5% Chebyshev (MVUE) UCL	0.282
99% Chebyshey (MVUE) UCL	0.371		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

0.165	95% Jackknife UCL	0.161	95% CLT UCL
0.162	95% Bootstrap-t UCL	0.158	95% Standard Bootstrap UCL
0.158	95% Percentile Bootstrap UCL	0.158	95% Hall's Bootstrap UCL
		0.157	95% BCA Bootstrap UCL
0.211	95% Chebyshev(Mean, Sd) UCL	0.186	90% Chebyshev(Mean, Sd) UCL
0.316	99% Chebyshev(Mean, Sd) UCL	0.247	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 0.165

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Vanadium

General Statistics

Total Number of Observations	9	Number of Distinct Observations	9
		Number of Missing Observations	140
Minimum	13	Mean	23.67
Maximum	36	Median	24
SD	7.681	Std. Error of Mean	2.56
Coefficient of Variation	0.325	Skewness	0.271

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.963	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.141	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	28.43	95% Adjusted-CLT UCL (Chen-1995)	28.12
		95% Modified-t UCL (Johnson-1978)	28.47

Gamma GOF Test

3 Anderson-Daning Gamma GOF Test
2 Detected data appear Gamma Distributed at 5% Significance Leve
Kolmogorov-Smirnov Gamma GOF Test
9 Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

6.97	k star (bias corrected MLE)	10.34	k hat (MLE)
3.395	Theta star (bias corrected MLE)	2.288	Theta hat (MLE)
125.5	nu star (bias corrected)	186.2	nu hat (MLE)
8.964	MLE Sd (bias corrected)	23.67	MLE Mean (bias corrected)
100.6	Approximate Chi Square Value (0.05)		
95.9	Adjusted Chi Square Value	0.0231	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 29.52 95% Adjusted Gamma UCL (use when n<50) 30.96

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.965	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.138	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.274	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2.565	Mean of logged Data	3.115
Maximum of Logged Data	3.584	SD of logged Data	0.338

Assuming Lognormal Distribution

95% H-UCL	30.49	90% Chebyshev (MVUE) UCL	31.76
95% Chebyshev (MVUE) UCL	35.41	97.5% Chebyshev (MVUE) UCL	40.47
99% Chebyshey (MVUE) UCL	50.43		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	27.88	95% Jackknife UCL	28.43
95% Standard Bootstrap UCL	27.69	95% Bootstrap-t UCL	28.89
95% Hall's Bootstrap UCL	29.05	95% Percentile Bootstrap UCL	27.67
95% BCA Bootstrap UCL	27.67		
90% Chebyshev(Mean, Sd) UCL	31.35	95% Chebyshev(Mean, Sd) UCL	34.83
97.5% Chebyshev(Mean, Sd) UCL	39.66	99% Chebyshev(Mean, Sd) UCL	49.14

Suggested UCL to Use

95% Student's-t UCL 28.43

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.18/29/2018 2:05:15 PM

From File Soil_StoresFleet.xls

Full Precision OFF
Confidence Coefficient 95%
Imber of Bootstrap Operations 2000

Arsenic

Conorol	Statistics

Total Number of Observations	11	Number of Distinct Observations	10
		Number of Missing Observations	51
Minimum	1.6	Mean	4.491
Maximum	7.5	Median	4.1
SD	1.957	Std. Error of Mean	0.59
Coefficient of Variation	0.436	Skewness	0.231

Normal GOF Test

Shapiro Wilk Test Statistic	0.934	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.2	Lilliefors GOF Test
5% Lilliefors Critical Value	0.251	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	5.561	95% Adjusted-CLT UCL (Chen-1995)	5.505
		95% Modified-t UCL (Johnson-1978)	5.567

Gamma GOF Test

danina doi 1000				
A-D Test Statistic	0.341	Anderson-Darling Gamma GOF Test		
5% A-D Critical Value	0.731	Detected data appear Gamma Distributed at 5% Significance Leve		
K-S Test Statistic	0.177	Kolmogorov-Smirnov Gamma GOF Test		
5% K-S Critical Value	0.256	Detected data appear Gamma Distributed at 5% Significance Leve		

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

3.934	k star (bias corrected MLE)	5.326	k hat (MLE)
1.141	Theta star (bias corrected MLE)	0.843	Theta hat (MLE)
86.55	nu star (bias corrected)	117.2	nu hat (MLE)
2.264	MLE Sd (bias corrected)	4.491	MLE Mean (bias corrected)
66.11	Approximate Chi Square Value (0.05)		
63.2	Adjusted Chi Square Value	0.0278	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 5.88 95% Adjusted Gamma UCL (use when n<50) 6.15

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.935	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.85	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.148	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.251	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.47	Mean of logged Data	1.405
Maximum of Logged Data	2.015	SD of logged Data	0.479

Assuming Lognormal Distribution

95% H-UCL	6.329	90% Chebyshev (MVUE) UCL	6.516
95% Chebyshev (MVUE) UCL	7.42	97.5% Chebyshev (MVUE) UCL	8.675
99% Chebyshev (MVUE) UCL	11.14		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

5.561	95% Jackknife UCL	5.462	95% CLT UCL
5.72	95% Bootstrap-t UCL	5.432	95% Standard Bootstrap UCL
5.482	95% Percentile Bootstrap UCL	5.387	95% Hall's Bootstrap UCL
		5.436	95% BCA Bootstrap UCL
7.063	95% Chebyshev(Mean, Sd) UCL	6.261	90% Chebyshev(Mean, Sd) UCL
10.36	99% Chebyshev(Mean, Sd) UCL	8.176	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 5.561

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)anthracene

General Statistics

Total Number of Observations	44	Number of Distinct Observations	38
		Number of Missing Observations	45
Number of Detects	40	Number of Non-Detects	4
Number of Distinct Detects	34	Number of Distinct Non-Detects	4
Minimum Detect	0.0029	Minimum Non-Detect	0.0071
Maximum Detect	35	Maximum Non-Detect	0.008
Variance Detects	31	Percent Non-Detects	9.091%
Mean Detects	1.242	SD Detects	5.568
Median Detects	0.145	CV Detects	4.483
Skewness Detects	6.032	Kurtosis Detects	37.2
Mean of Logged Detects	-1.887	SD of Logged Detects	1.645

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.225	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.94	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.474	Lilliefors GOF Test
5% Lilliefors Critical Value	0.139	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.129	KM Standard Error of Mean	0.802
KM SD	5.254	95% KM (BCA) UCL	2.614
95% KM (t) UCL	2.478	95% KM (Percentile Bootstrap) UCL	2.668
95% KM (z) UCL	2.449	95% KM Bootstrap t UCL	26.68
90% KM Chebyshev UCL	3.536	95% KM Chebyshev UCL	4.626
97.5% KM Chebyshev UCL	6.139	99% KM Chebyshev UCL	9.111

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	5.431	Anderson-Darling GOF Test
5% A-D Critical Value	0.852	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.331	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.151	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.324	k star (bias corrected MLE)	0.316
Theta hat (MLE)	3.836	Theta star (bias corrected MLE)	3.928
nu hat (MLE)	25.9	nu star (bias corrected)	25.29
Mean (detects)	1.242		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Soil ProUCL Output - Stores and Fleet Maintenance Area

Minimum	0.0029	Mean	1.13
Maximum	35	Median	0.12
SD	5.315	CV	4.703
k hat (MLE)	0.305	k star (bias corrected MLE)	0.299
Theta hat (MLE)	3.706	Theta star (bias corrected MLE)	3.776
nu hat (MLE)	26.83	nu star (bias corrected)	26.33
Adjusted Level of Significance (β)	0.0445		
Approximate Chi Square Value (26.33, α)	15.64	Adjusted Chi Square Value (26.33, β)	15.36
95% Gamma Approximate UCL (use when n>=50)	1.903	95% Gamma Adjusted UCL (use when n<50)	1.938

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.129	SD (KM)	5.254
Variance (KM)	27.6	SE of Mean (KM)	0.802
k hat (KM)	0.0462	k star (KM)	0.0582
nu hat (KM)	4.066	nu star (KM)	5.122
theta hat (KM)	24.44	theta star (KM)	19.4
80% gamma percentile (KM)	0.25	90% gamma percentile (KM)	2.06
95% gamma percentile (KM)	6.285	99% gamma percentile (KM)	23.08

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (5.12, α)	1.209	Adjusted Chi Square Value (5.12, β)	1.147
15% Gamma Approximate KM-UCL (use when n>=50)	4.785	95% Gamma Adjusted KM-UCL (use when n<50)	5.044

95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.951	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.94	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.124	Lilliefors GOF Test
5% Lilliefors Critical Value	0.139	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level Lognormal ROS Statistics Using Imputed Non-Detects

-2.189	Mean in Log Scale	1.13	Mean in Original Scale
1.842	SD in Log Scale	5.315	SD in Original Scale
2.693	95% Percentile Bootstrap UCL	2.476	95% t UCL (assumes normality of ROS data)
26.13	95% Bootstrap t UCL	4.107	95% BCA Bootstrap UCL
		1.611	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

0.106	KM Geo Mean	-2.246	KM Mean (logged)
3.563	95% Critical H Value (KM-Log)	1.922	KM SD (logged)
1.905	95% H-UCL (KM -Log)	0.293	KM Standard Error of Mean (logged)
3.563	95% Critical H Value (KM-Log)	1.922	KM SD (logged)
		0.293	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.129	Mean in Log Scale	-2.223
SD in Original Scale	5.315	SD in Log Scale	1.901
95% t UCL (Assumes normality)	2.476	95% H-Stat UCL	1.837

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 4.626

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)pyrene

General Statistics

Total Number of Observations 44 Number of Distinct Observations 40

		Number of Missing Observations	45
Number of Detects	40	Number of Non-Detects	4
Number of Distinct Detects	36	Number of Distinct Non-Detects	4
Minimum Detect	0.0012	Minimum Non-Detect	0.0071
Maximum Detect	16	Maximum Non-Detect	0.008
Variance Detects	6.854	Percent Non-Detects	9.091%
Mean Detects	0.731	SD Detects	2.618
Median Detects	0.125	CV Detects	3.581
Skewness Detects	5.496	Kurtosis Detects	31.66
Mean of Logged Detects	-2.029	SD of Logged Detects	1.675

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.282	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.94	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.436	Lilliefors GOF Test
5% Lilliefors Critical Value	0.139	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.665	KM Standard Error of Mean	0.378
KM SD	2.474	95% KM (BCA) UCL	1.46
95% KM (t) UCL	1.3	95% KM (Percentile Bootstrap) UCL	1.37
95% KM (z) UCL	1.286	95% KM Bootstrap t UCL	6.643
90% KM Chebyshev UCL	1.798	95% KM Chebyshev UCL	2.311
97.5% KM Chebyshev UCL	3.023	99% KM Chebyshev UCL	4.423

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	3.726	Anderson-Darling GOF Test
5% A-D Critical Value	0.839	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.252	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.15	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.374	k star (bias corrected MLE)	0.386	k hat (MLE)
1.957	Theta star (bias corrected MLE)	1.895	Theta hat (MLE)
29.89	nu star (bias corrected)	30.87	nu hat (MLE)
		0.731	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0012	Mean	0.666
Maximum	16	Median	0.0995
SD	2.502	CV	3.76
k hat (MLE)	0.361	k star (bias corrected MLE)	0.351
Theta hat (MLE)	1.845	Theta star (bias corrected MLE)	1.895
nu hat (MLE)	31.73	nu star (bias corrected)	30.9
Adjusted Level of Significance (β)	0.0445		
Approximate Chi Square Value (30.90, α)	19.21	Adjusted Chi Square Value (30.90, β)	18.89
95% Gamma Approximate UCL (use when n>=50)	1.071	95% Gamma Adjusted UCL (use when n<50)	1.089

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.665	SD (KM)	2.474
Variance (KM)	6.12	SE of Mean (KM)	0.378
k hat (KM)	0.0722	k star (KM)	0.0824
nu hat (KM)	6.354	nu star (KM)	7.254
theta hat (KM)	9.206	theta star (KM)	8.064
80% gamma percentile (KM)	0.335	90% gamma percentile (KM)	1.605
95% gamma percentile (KM)	3.87	99% gamma percentile (KM)	11.61

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (7.25, α)	2.311	Adjusted Chi Square Value (7.25, β)	2.217
15% Gamma Approximate KM-UCL (use when n>=50)	2.086	95% Gamma Adjusted KM-UCL (use when n<50)	2.174

95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.969	Shapiro Wilk GOF Test			
5% Shapiro Wilk Critical Value	0.94	Detected Data appear Lognormal at 5% Significance Level			
Lilliefors Test Statistic	0.0928	Lilliefors GOF Test			
5% Lilliefors Critical Value	0.139	Detected Data appear Lognormal at 5% Significance Level			
Detected Data appear Lognormal at 5% Significance Level					

Lognormal ROS Statistics Using Imputed Non-Detects

-2.34	Mean in Log Scale	0.665	Mean in Original Scale
1.88	SD in Log Scale	2.502	SD in Original Scale
1.372	95% Percentile Bootstrap UCL	1.299	95% t UCL (assumes normality of ROS data)
6.638	95% Bootstrap t UCL	1.819	95% BCA Bootstrap UCL
		1.541	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.456	KM Geo Mean	0.0858
KM SD (logged)	2.076	95% Critical H Value (KM-Log)	3.784
KM Standard Error of Mean (logged)	0.317	95% H-UCL (KM -Log)	2.454
KM SD (logged)	2.076	95% Critical H Value (KM-Log)	3.784
KM Standard Error of Mean (logged)	0.317		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.665	Mean in Log Scale	-2.352
SD in Original Scale	2.502	SD in Log Scale	1.902
95% t UCL (Assumes normality)	1.299	95% H-Stat UCL	1.618

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 2.311

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(b)fluoranthene

General Statistics

Total Number of Observations	44	Number of Distinct Observations	42
		Number of Missing Observations	45
Number of Detects	40	Number of Non-Detects	4
Number of Distinct Detects	38	Number of Distinct Non-Detects	4
Minimum Detect	0.0027	Minimum Non-Detect	0.0071
Maximum Detect	35	Maximum Non-Detect	0.008
Variance Detects	30.83	Percent Non-Detects	9.091%
Mean Detects	1.294	SD Detects	5.553
Median Detects	0.2	CV Detects	4.292
Skewness Detects	6.048	Kurtosis Detects	37.38
Mean of Logged Detects	-1.644	SD of Logged Detects	1.608

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.231	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.94	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.46	Lilliefors GOF Test
5% Lilliefors Critical Value	0.139	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.176	KM Standard Error of Mean	0.8
KM SD	5.241	95% KM (BCA) UCL	2.725
95% KM (t) UCL	2.522	95% KM (Percentile Bootstrap) UCL	2.703

95% KM (z) UCL	2.493	95% KM Bootstrap t UCL	19.76
90% KM Chebyshev UCL	3.577	95% KM Chebyshev UCL	4.664
97.5% KM Chebyshev UCL	6.173	99% KM Chebyshev UCL	9.138

Gamma GOF Tests on Detected Observations Only

15 Anderson-Darling GOF Test	4.915	A-D Test Statistic
46 Detected Data Not Gamma Distributed at 5% Significance	0.846	5% A-D Critical Value
2 Kolmogorov-Smirnov GOF	0.302	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance	0.15	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.343	k star (bias corrected MLE)	0.353	k hat (MLE)
3.768	Theta star (bias corrected MLE)	3.663	Theta hat (MLE)
27.47	nu star (bias corrected)	28.25	nu hat (MLE)
		1.294	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

1.177	Mean	0.0027	Minimum
0.16	Median	35	Maximum
4.504	CV	5.301	SD
0.32	k star (bias corrected MLE)	0.327	k hat (MLE)
3.675	Theta star (bias corrected MLE)	3.595	Theta hat (MLE)
28.18	nu star (bias corrected)	28.82	nu hat (MLE)
		0.0445	Adjusted Level of Significance (β)
16.78	Adjusted Chi Square Value (28.18, β)	17.07	Approximate Chi Square Value (28.18, α)
1.977	95% Gamma Adjusted UCL (use when n<50)	1.943	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.176	SD (KM)	5.241
Variance (KM)	27.47	SE of Mean (KM)	8.0
k hat (KM)	0.0504	k star (KM)	0.0621
nu hat (KM)	4.433	nu star (KM)	5.464
theta hat (KM)	23.35	theta star (KM)	18.94
0% gamma percentile (KM)	0.312	90% gamma percentile (KM)	2.288
5% gamma percentile (KM)	6.64	99% gamma percentile (KM)	23.38

Gamma Kaplan-Meier (KM) Statistics

95

Approximate Chi Square Value (5.46, α)	1.373	Adjusted Chi Square Value (5.46, β)	1.305
15% Gamma Approximate KM-UCL (use when n>=50)	4.683	95% Gamma Adjusted KM-UCL (use when n<50)	4.925
95% Gamma Adjusted K	M-UCL (u	se when k<=1 and 15 < n < 50)	

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.958	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.94	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.111	Lilliefors GOF Test
5% Lilliefors Critical Value	0.139	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-1.94	Mean in Log Scale	Mean in Original Scale 1.177	
1.801	SD in Log Scale	SD in Original Scale 5.30°	
2.741	95% Percentile Bootstrap UCL	JCL (assumes normality of ROS data) 2.52	95
21.02	95% Bootstrap t UCL	95% BCA Bootstrap UCL 3.56	
		95% H-UCL (Log ROS) 1.849	

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

Claustics using Nin estimates on Eogget Data and Assuming Eognormal Distribution					
-2.032	KM Geo Mean	0.131			
1.949	95% Critical H Value (KM-Log)	3.603			
0.298	95% H-UCL (KM -Log)	2.558			
1.949	95% Critical H Value (KM-Log)	3.603			
0.298					
	-2.032 1.949 0.298 1.949	-2.032 KM Geo Mean 1.949 95% Critical H Value (KM-Log) 0.298 95% H-UCL (KM -Log) 1.949 95% Critical H Value (KM-Log)			

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed			
Mean in Original Scale	1.176	Mean in Log Scale	-2.002	
SD in Original Scale	5.302	SD in Log Scale	1.914	
95% t UCL (Assumes normality)	2.52	95% H-Stat UCL	2.375	
DL/2 is not a recommended method	provided for compariso	ons and historical reasons		

Nonparametric Distribution Free UCL Statistics Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 4.664

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(k)fluoranthene

General Statistics

Total Number of Observations	44	Number of Distinct Observations	35
		Number of Missing Observations	45
Number of Detects	39	Number of Non-Detects	5
Number of Distinct Detects	31	Number of Distinct Non-Detects	4
Minimum Detect	0.0046	Minimum Non-Detect	0.0071
Maximum Detect	7.1	Maximum Non-Detect	0.008
Variance Detects	1.358	Percent Non-Detects	11.36%
Mean Detects	0.341	SD Detects	1.165
Median Detects	0.063	CV Detects	3.422
Skewness Detects	5.513	Kurtosis Detects	31.83
Mean of Logged Detects	-2.558	SD of Logged Detects	1.446

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.288	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.939	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.427	Lilliefors GOF Test
5% Lilliefors Critical Value	0.14	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.302	KM Standard Error of Mean	0.166
KM SD	1.088	95% KM (BCA) UCL	0.637
95% KM (t) UCL	0.582	95% KM (Percentile Bootstrap) UCL	0.607
95% KM (z) UCL	0.576	95% KM Bootstrap t UCL	2.612
90% KM Chebyshev UCL	0.801	95% KM Chebyshev UCL	1.027
97.5% KM Chebyshev UCL	1.34	99% KM Chebyshev UCL	1.956

Gamma GOF Tests on Detected Observations Only

Test Statistic 3.807 Anderson-Darling GOF Test	
Critical Value 0.827 Detected Data Not Gamma Distributed at 5% Significance	Level
S Test Statistic 0.243 Kolmogorov-Smirnov GOF	
Critical Value 0.151 Detected Data Not Gamma Distributed at 5% Significance	Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.438	k star (bias corrected MLE)	0.421
Theta hat (MLE)	0.778	Theta star (bias corrected MLE)	0.808
nu hat (MLE)	34.15	nu star (bias corrected)	32.86
Mean (detects)	0.341		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.303	Mean	0.0046	Minimum
0.0475	Median	7.1	Maximum
3.633	CV	1.101	SD
0.398	k star (bias corrected MLE)	0.41	k hat (MLE)
0.762	Theta star (bias corrected MLE)	0.738	Theta hat (MLE)
34.98	nu star (bias corrected)	36.11	nu hat (MLE)
		0.0445	Adjusted Level of Significance (β)
22.11	Adjusted Chi Square Value (34.98, β)	22.45	Approximate Chi Square Value (34.98, α)
0.479	95% Gamma Adjusted UCL (use when n<50)	0.472	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.302	SD (KM)	1.088
Variance (KM)	1.184	SE of Mean (KM)	0.166
k hat (KM)	0.0772	k star (KM)	0.0871
nu hat (KM)	6.794	nu star (KM)	7.665
theta hat (KM)	3.916	theta star (KM)	3.472
80% gamma percentile (KM)	0.168	90% gamma percentile (KM)	0.754
95% gamma percentile (KM)	1.762	99% gamma percentile (KM)	5.142

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (7.66, α)	2.542	Adjusted Chi Square Value (7.66, β)	2.443
15% Gamma Approximate KM-UCL (use when n>=50)	0.912	95% Gamma Adjusted KM-UCL (use when n<50)	0.949

95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.957	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.939	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0857	Lilliefors GOF Test
5% Lilliefors Critical Value	0.14	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-2.893	Mean in Log Scale	0.302	Mean in Original Scale
1.656	SD in Log Scale	1.101	SD in Original Scale
0.608	95% Percentile Bootstrap UCL	0.581	95% t UCL (assumes normality of ROS data)
2.568	95% Bootstrap t UCL	0.895	95% BCA Bootstrap UCL
		0.489	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.877	KM Geo Mean	0.0563
KM SD (logged)	1.612	95% Critical H Value (KM-Log)	3.131
KM Standard Error of Mean (logged)	0.246	95% H-UCL (KM -Log)	0.446
KM SD (logged)	1.612	95% Critical H Value (KM-Log)	3.131
KM Standard Error of Mean (logged)	0.246		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.302	Mean in Log Scale	-2.904
SD in Original Scale	1.101	SD in Log Scale	1.673
95% t UCL (Assumes normality)	0.581	95% H-Stat UCL	0.505

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 0.446

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chrysene

General Statistics

Total Number of Observations	44	Number of Distinct Observations	40
		Number of Missing Observations	45
Number of Detects	40	Number of Non-Detects	4
Number of Distinct Detects	36	Number of Distinct Non-Detects	4
Minimum Detect	0.0022	Minimum Non-Detect	0.0071
Maximum Detect	32	Maximum Non-Detect	800.0
Variance Detects	25.7	Percent Non-Detects	9.091%
Mean Detects	1.173	SD Detects	5.069
Median Detects	0.175	CV Detects	4.321
Skewness Detects	6.076	Kurtosis Detects	37.66
Mean of Logged Detects	-1.728	SD of Logged Detects	1.587

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.229	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.94	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.461	Lilliefors GOF Test
5% Lilliefors Critical Value	0.139	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.067	KM Standard Error of Mean	0.73
KM SD	4.785	95% KM (BCA) UCL	2.563
95% KM (t) UCL	2.295	95% KM (Percentile Bootstrap) UCL	2.461
95% KM (z) UCL	2.268	95% KM Bootstrap t UCL	18.4
90% KM Chebyshev UCL	3.258	95% KM Chebyshev UCL	4.251
97.5% KM Chebyshev UCL	5.629	99% KM Chebyshev UCL	8.335

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	5.051	Anderson-Darling GOF Test			
5% A-D Critical Value	0.845	Detected Data Not Gamma Distributed at 5% Significance Level			
K-S Test Statistic	0.307	Kolmogorov-Smirnov GOF			
5% K-S Critical Value	0.15	Detected Data Not Gamma Distributed at 5% Significance Level			
Detected Data Not Gamma Distributed at 5% Significance Level					

Gamma Statistics on Detected Data Only

k hat (MLE)	0.355	k star (bias corrected MLE)	0.345
Theta hat (MLE)	3.302	Theta star (bias corrected MLE)	3.397
nu hat (MLE)	28.42	nu star (bias corrected)	27.62
Mean (detects)	1.173		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ \verb|<|1.0|, especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ \verb|<|15-20|)$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0022	Mean	1.067
Maximum	32	Median	0.165
SD	4.84	CV	4.534
k hat (MLE)	0.33	k star (bias corrected MLE)	0.323
Theta hat (MLE)	3.232	Theta star (bias corrected MLE)	3.305
nu hat (MLE)	29.07	nu star (bias corrected)	28.42
Adjusted Level of Significance (β)	0.0445		
Approximate Chi Square Value (28.42, α)	17.25	Adjusted Chi Square Value (28.42, β)	16.96
95% Gamma Approximate UCL (use when n>=50)	1.758	95% Gamma Adjusted UCL (use when n<50)	1.789

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.067	SD (KM)	4.785
Variance (KM)	22.89	SE of Mean (KM)	0.73
k hat (KM)	0.0497	k star (KM)	0.0615
nu hat (KM)	4.374	nu star (KM)	5.409
theta hat (KM)	21.46	theta star (KM)	17.35
80% gamma percentile (KM)	0.275	90% gamma percentile (KM)	2.055
95% gamma percentile (KM)	6.009	99% gamma percentile (KM)	21.3

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value $(5.41,\alpha)$ 1.346 Adjusted Chi Square Value $(5.41,\beta)$ 1.279 15% Gamma Approximate KM-UCL (use when n>=50) 4.288 95% Gamma Adjusted KM-UCL (use when n<50) 4.511

95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic 0.95 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.94 Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.114 Lilliefors GOF Test

5% Lilliefors Critical Value 0.139 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	1.067	Mean in Log Scale	-2.02
SD in Original Scale	4.84	SD in Log Scale	1.775
95% t UCL (assumes normality of ROS data)	2.294	95% Percentile Bootstrap UCL	2.497
95% BCA Bootstrap UCL	3.733	95% Bootstrap t UCL	18.2
95% H-UCL (Log ROS)	1.593		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.127	KM Geo Mean	0.119
KM SD (logged)	1.956	95% Critical H Value (KM-Log)	3.612
KM Standard Error of Mean (logged)	0.299	95% H-UCL (KM -Log)	2.368
KM SD (logged)	1.956	95% Critical H Value (KM-Log)	3.612
KM Standard Error of Mean (logged)	0.299		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.067	Mean in Log Scale	-2.079
SD in Original Scale	4.84	SD in Log Scale	1.882
95% t UCL (Assumes normality)	2.293	95% H-Stat UCL	2.012

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 4.251

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Cobalt

General Statistics

Total Number of Observations	11	Number of Distinct Observations	10
		Number of Missing Observations	51
Minimum	1	Mean	3.991
Maximum	7.9	Median	3.8
SD	2.019	Std. Error of Mean	0.609
Coefficient of Variation	0.506	Skewness	0.798

Normal GOF Test

918 Shapiro Wilk GOF Test	0.918	Shapiro Wilk Test Statistic
Data appear Normal at 5% Significance I	0.85	5% Shapiro Wilk Critical Value
225 Lilliefors GOF Test	0.225	Lilliefors Test Statistic
251 Data appear Normal at 5% Significance I	0.251	5% Lilliefors Critical Value

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	5.094	95% Adjusted-CLT UCL (Chen-1995)	5.149
		95% Modified-t UCL (Johnson-1978)	5.119

February 2020

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.346	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.733	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.195	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.256	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	4.013	k star (bias corrected MLE)	2.979
Theta hat (MLE)	0.995	Theta star (bias corrected MLE)	1.34
nu hat (MLE)	88.28	nu star (bias corrected)	65.54
MLE Mean (bias corrected)	3.991	MLE Sd (bias corrected)	2.312
		Approximate Chi Square Value (0.05)	47.91
Adjusted Level of Significance	0.0278	Adjusted Chi Square Value	45.46

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 5.459 95% Adjusted Gamma UCL (use when n<50) 5.753

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.926	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.85	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.232	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.251	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0	Mean of logged Data	1.254
Maximum of Logged Data	2.067	SD of logged Data	0.567

Assuming Lognormal Distribution

95% H-UCL	6.184	90% Chebyshev (MVUE) UCL	6.184
95% Chebyshev (MVUE) UCL	7.15	97.5% Chebyshev (MVUE) UCL	8.491
99% Chebyshev (MVUE) UCL	11.13		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	4.992	95% Jackknife UCL	5.094
95% Standard Bootstrap UCL	4.95	95% Bootstrap-t UCL	5.542
95% Hall's Bootstrap UCL	6.427	95% Percentile Bootstrap UCL	4.982
95% BCA Bootstrap UCL	5.082		
90% Chebyshev(Mean, Sd) UCL	5.817	95% Chebyshev(Mean, Sd) UCL	6.645
97.5% Chebyshev(Mean, Sd) UCL	7.793	99% Chebyshev(Mean, Sd) UCL	10.05

Suggested UCL to Use

95% Student's-t UCL 5.094

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Dibenzo(a,h)anthracene

General Statistics

Total Number of Observations	44	Number of Distinct Observations	39
		Number of Missing Observations	45
Number of Detects	35	Number of Non-Detects	9
Number of Distinct Detects	32	Number of Distinct Non-Detects	7
Minimum Detect	0.0029	Minimum Non-Detect	0.0071
Maximum Detect	2.9	Maximum Non-Detect	0.2
Variance Detects	0.257	Percent Non-Detects	20.45%
Mean Detects	0.158	SD Detects	0.507
Median Detects	0.032	CV Detects	3.199
Skewness Detects	5.074	Kurtosis Detects	27.1
Mean of Logged Detects	-3.338	SD of Logged Detects	1.479

Normal GOF Test on Detects Only

Shapiro Wilk GOF Test	0.315	Shapiro Wilk Test Statistic
Detected Data Not Normal at 5% Significance I	0.934	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.413	Lilliefors Test Statistic
Detected Data Not Normal at 5% Significance I	0.148	5% Lilliefors Critical Value

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.128	KM Standard Error of Mean	0.0687
KM SD	0.449	95% KM (BCA) UCL	0.253
95% KM (t) UCL	0.243	95% KM (Percentile Bootstrap) UCL	0.252
95% KM (z) UCL	0.241	95% KM Bootstrap t UCL	0.953
90% KM Chebyshev UCL	0.334	95% KM Chebyshev UCL	0.428
97.5% KM Chebyshev UCL	0.557	99% KM Chebyshev UCL	0.812

Gamma GOF Tests on Detected Observations Only

atistic 3.383	Anderson-Darling GOF Test
Value 0.827 Detec	ted Data Not Gamma Distributed at 5% Significance Level
atistic 0.271	Kolmogorov-Smirnov GOF
Value 0.159 Detec	ted Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.416	k star (bias corrected MLE)	0.434	k hat (MLE)
0.381	Theta star (bias corrected MLE)	0.365	Theta hat (MLE)
29.13	nu star (bias corrected)	30.41	nu hat (MLE)
		0.158	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.128	Mean	0.0029	Minimum
0.0205	Median	2.9	Maximum
3.55	CV	0.454	SD
0.409	k star (bias corrected MLE)	0.423	k hat (MLE)
0.313	Theta star (bias corrected MLE)	0.303	Theta hat (MLE)
36.02	nu star (bias corrected)	37.23	nu hat (MLE)
		0.0445	Adjusted Level of Significance (β)
22.94	Adjusted Chi Square Value (36.02, β)	23.29	Approximate Chi Square Value (36.02, α)
0.201	95% Gamma Adjusted UCL (use when n<50)	0.198	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.128	SD (KM)	0.449
Variance (KM)	0.202	SE of Mean (KM)	0.0687
k hat (KM)	0.081	k star (KM)	0.0907
nu hat (KM)	7.132	nu star (KM)	7.979
theta hat (KM)	1.579	theta star (KM)	1.411
80% gamma percentile (KM)	0.0763	90% gamma percentile (KM)	0.326
95% gamma percentile (KM)	0.745	99% gamma percentile (KM)	2.133

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (7.98, α)	2.723	Adjusted Chi Square Value (7.98, β)	2.619
15% Gamma Approximate KM-UCL (use when n>=50)	0.375	95% Gamma Adjusted KM-UCL (use when n<50)	0.39

95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.952	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.934	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.113	Lilliefors GOF Test
5% Lilliefors Critical Value	0.148	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Soil ProUCL Output - Stores and Fleet Maintenance Area

Mean in Original Scale	0.127	Mean in Log Scale	-3.745
SD in Original Scale	0.455	SD in Log Scale	1.582
95% t UCL (assumes normality of ROS data)	0.243	95% Percentile Bootstrap UCL	0.256
95% BCA Bootstrap UCL	0.324	95% Bootstrap t UCL	0.982
95% H-UCL (Log ROS)	0.174		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

an 0.0239	KM Geo Mean	-3.733	KM Mean (logged)
g) 3.065	95% Critical H Value (KM-Log)	1.563	KM SD (logged)
g) 0.169	95% H-UCL (KM -Log)	0.243	KM Standard Error of Mean (logged)
g) 3.065	95% Critical H Value (KM-Log)	1.563	KM SD (logged)
		0.243	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.13	Mean in Log Scale	-3.668
SD in Original Scale	0.454	SD in Log Scale	1.568
95% t UCL (Assumes normality)	0.245	95% H-Stat UCL	0.182

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 0.169

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Diesel Range Organics (C10-C20)

	General Statistics		
Total Number of Observations	24	Number of Distinct Observations	11
		Number of Missing Observations	66
Number of Detects	7	Number of Non-Detects	17
Number of Distinct Detects	7	Number of Distinct Non-Detects	4
Minimum Detect	21	Minimum Non-Detect	18
Maximum Detect	280	Maximum Non-Detect	99
Variance Detects	9211	Percent Non-Detects	70.83%
Mean Detects	132.1	SD Detects	95.97
Median Detects	140	CV Detects	0.726
Skewness Detects	0.317	Kurtosis Detects	-1.126
Mean of Logged Detects	4.554	SD of Logged Detects	0.976

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.947	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.17	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	51.45	KM Standard Error of Mean	15.59
KM SD	70.64	95% KM (BCA) UCL	77.18
95% KM (t) UCL	78.16	95% KM (Percentile Bootstrap) UCL	77.44
95% KM (z) UCL	77.08	95% KM Bootstrap t UCL	88.33
90% KM Chebyshev UCL	98.2	95% KM Chebyshev UCL	119.4
97.5% KM Chebyshev UCL	148.8	99% KM Chebyshev UCL	206.5

Gamma GOF Tests on Detected Observations Only

Α	-D Test Statistic	0.283	Anderson-Darling GOF Test
% A	-D Critical Value	0.719	Detected data appear Gamma Distributed at 5% Significance Leve
K	-S Test Statistic	0.203	Kolmogorov-Smirnov GOF
% K	-S Critical Value	0.316	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.046	k star (bias corrected MLE)	1.663	k hat (MLE)
126.4	Theta star (bias corrected MLE)	79.45	Theta hat (MLE)
14.64	nu star (bias corrected)	23.29	nu hat (MLE)
		132.1	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	38.55
Maximum	280	Median	0.01
SD	78.53	CV	2.037
k hat (MLE)	0.139	k star (bias corrected MLE)	0.149
Theta hat (MLE)	277.1	Theta star (bias corrected MLE)	257.9
nu hat (MLE)	6.677	nu star (bias corrected)	7.175
Adjusted Level of Significance (β)	0.0392		
Approximate Chi Square Value (7.18, α)	2.267	Adjusted Chi Square Value (7.18, β)	2.078
95% Gamma Approximate UCL (use when n>=50)	122	95% Gamma Adjusted UCL (use when n<50)	133.1

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	51.45	SD (KM)	70.64
Variance (KM)	4990	SE of Mean (KM)	15.59
k hat (KM)	0.53	k star (KM)	0.492
nu hat (KM)	25.46	nu star (KM)	23.61
theta hat (KM)	97	theta star (KM)	104.6
80% gamma percentile (KM)	84.43	90% gamma percentile (KM)	139.7
95% gamma percentile (KM)	198.8	99% gamma percentile (KM)	344.4

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (23.61, α)	13.55	Adjusted Chi Square Value (23.61, β)	13.02
15% Gamma Approximate KM-UCL (use when n>=50)	89.63	95% Gamma Adjusted KM-UCL (use when n<50)	93.32

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.918	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.226	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	42.64	Mean in Log Scale	2.263
SD in Original Scale	76.56	SD in Log Scale	1.813
95% t UCL (assumes normality of ROS data)	69.43	95% Percentile Bootstrap UCL	70.33
95% BCA Bootstrap UCL	75.2	95% Bootstrap t UCL	81.53
95% H-UCL (Log ROS)	207.1		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	3.38	KM Geo Mean	29.38
KM SD (logged)	0.9	95% Critical H Value (KM-Log)	2.413
KM Standard Error of Mean (logged)	0.199	95% H-UCL (KM -Log)	69.3
KM SD (logged)	0.9	95% Critical H Value (KM-Log)	2.413
KM Standard Error of Mean (logged)	0.199		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	46.9	Mean in Log Scale	2.987
SD in Original Scale	74.77	SD in Log Scale	1.19
95% t UCL (Assumes normality)	73.05	95% H-Stat UCL	80.81

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 78.16

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Indeno(1,2,3-cd)pyrene

	General Statistics		
Total Number of Observations	44	Number of Distinct Observations	37
		Number of Missing Observations	45
Number of Detects	39	Number of Non-Detects	5
Number of Distinct Detects	33	Number of Distinct Non-Detects	4
Minimum Detect	0.0086	Minimum Non-Detect	0.0071
Maximum Detect	7.8	Maximum Non-Detect	0.008
Variance Detects	1.763	Percent Non-Detects	11.36%
Mean Detects	0.436	SD Detects	1.328
Median Detects	0.093	CV Detects	3.047
Skewness Detects	5.028	Kurtosis Detects	26.7
Mean of Logged Detects	-2.198	SD of Logged Detects	1.431

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.325	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.939	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.425	Lilliefors GOF Test
5% Lilliefors Critical Value	0.14	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.19	KM Standard Error of Mean	0.387	KM Mean
0.789	95% KM (BCA) UCL	1.241	KM SD
0.718	95% KM (Percentile Bootstrap) UCL	0.706	95% KM (t) UCL
2.692	95% KM Bootstrap t UCL	0.699	95% KM (z) UCL
1.213	95% KM Chebyshev UCL	0.956	90% KM Chebyshev UCL
2.273	99% KM Chebyshev UCL	1.571	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	3.42	Anderson-Darling GOF Test
5% A-D Critical Value	0.82	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.241	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.15	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.469	k star (bias corrected MLE)	0.45
Theta hat (MLE)	0.929	Theta star (bias corrected MLE)	0.968
nu hat (MLE)	36.6	nu star (bias corrected)	35.12
Mean (detects)	0.436		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.387	Mean	0.0086	Minimum
0.08	Median	7.8	Maximum
3.241	CV	1.255	SD
0.413	k star (bias corrected MLE)	0.427	k hat (MLE)
0.937	Theta star (bias corrected MLE)	0.906	Theta hat (MLE)
36.38	nu star (bias corrected)	37.62	nu hat (MLE)
		0.0445	Adjusted Level of Significance (β)
23.23	Adjusted Chi Square Value (36.38, β)	23.58	Approximate Chi Square Value (36.38, α)
0.607	95% Gamma Adjusted UCL (use when n<50)	0.598	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

1.241	SD (KM)	0.387	Mean (KM)
0.19	SE of Mean (KM)	1.541	Variance (KM)
0.106	k star (KM)	0.0972	k hat (KM)
9.306	nu star (KM)	8.556	nu hat (KM)
3.66	theta star (KM)	3.981	theta hat (KM)
1.053	90% gamma percentile (KM)	0.29	80% gamma percentile (KM)
5.977	99% gamma percentile (KM)	2.238	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (9.31, α) 3.513 Adjusted Chi Square Value (9.31, β) 3.393 I5% Gamma Approximate KM-UCL (use when n>=50) 1.025 95% Gamma Adjusted KM-UCL (use when n<50) 1.062 95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.954	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.939	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0951	Lilliefors GOF Test
5% Lilliefors Critical Value	0.14	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.387	Mean in Log Scale	-2.56
SD in Original Scale	1.256	SD in Log Scale	1.69
95% t UCL (assumes normality of ROS data)	0.705	95% Percentile Bootstrap UCL	0.742
95% BCA Bootstrap UCL	0.989	95% Bootstrap t UCL	2.346
95% H-UCL (Log ROS)	0.744		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged	d) -2.51	KM Geo Mean	0.0812
KM SD (logged	d) 1.59	95% Critical H Value (KM-Log)	3.102
KM Standard Error of Mean (logged	d) 0.243	95% H-UCL (KM -Log)	0.611
KM SD (logged	d) 1.59	95% Critical H Value (KM-Log)	3.102
KM Standard Error of Mean (logged	1) 0.243		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed			
Mean in Original Scale	0.387	Mean in Log Scale	-2.584		
SD in Original Scale	1.256	SD in Log Scale	1.732		
95% t UCL (Assumes normality)	0.705	95% H-Stat UCL	0.808		

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 0.611

 $Note: Suggestions\ regarding\ the\ selection\ of\ a\ 95\%\ UCL\ are\ provided\ to\ help\ the\ user\ to\ select\ the\ most\ appropriate\ 95\%\ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Manganese

General Statistics

Total Number of Observations	11	Number of Distinct Observations	9
		Number of Missing Observations	51
Minimum	14	Mean	117.9
Maximum	230	Median	110
SD	68.37	Std. Error of Mean	20.61
Coefficient of Variation	0.58	Skewness	0.302

Normal GOF Test

Shapiro Wilk Test Statistic	0.954	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Data appear Normal at 5% Significance Level

Soil ProUCL Output - Stores and Fleet Maintenance Area

Lilliefors Test Statistic 0.182 Lilliefors GOF Test

5% Lilliefors Critical Value 0.251 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Student's-t UCL
 155.3
 95% Adjusted-CLT UCL (Chen-1995)
 153.8

 95% Modified-t UCL (Johnson-1978)
 155.6

Gamma GOF Test

A-D Test Statistic 0.327 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.737 > tected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic 0.182 Kolmogorov-Smirnov Gamma GOF Test

5% K-S Critical Value 0.258 > tected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

1.785	k star (bias corrected MLE)	2.371	k hat (MLE)
66.06	Theta star (bias corrected MLE)	49.73	Theta hat (MLE)
39.27	nu star (bias corrected)	52.16	nu hat (MLE)
88.26	MLE Sd (bias corrected)	117.9	MLE Mean (bias corrected)
25.91	Approximate Chi Square Value (0.05)		
24.15	Adjusted Chi Square Value	0.0278	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 178.7 95% Adjusted Gamma UCL (use when n<50) 191.7

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.882	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.85	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.221	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.251	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2.639	Mean of logged Data	4.544
Maximum of Logged Data	5.438	SD of logged Data	0.813

Assuming Lognormal Distribution

95% H-UCL	259.1	90% Chebyshev (MVUE) UCL	223.2
95% Chebyshev (MVUE) UCL	267.2	97.5% Chebyshev (MVUE) UCL	328.2
99% Chebyshev (MVUE) UCL	448		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	151.8	95% Jackknife UCL	155.3
95% Standard Bootstrap UCL	149.8	95% Bootstrap-t UCL	157.5
95% Hall's Bootstrap UCL	156.7	95% Percentile Bootstrap UCL	149
95% BCA Bootstrap UCL	150.5		
90% Chebyshev(Mean, Sd) UCL	179.8	95% Chebyshev(Mean, Sd) UCL	207.8
97.5% Chebyshev(Mean, Sd) UCL	246.6	99% Chebyshev(Mean, Sd) UCL	323

Suggested UCL to Use

95% Student's-t UCL 155.3

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Naphthalene

General Statistics

Total Number of Observations	44	Number of Distinct Observations	39
		Number of Missing Observations	45
Number of Detects	37	Number of Non-Detects	7
Number of Distinct Detects	33	Number of Distinct Non-Detects	6
Minimum Detect	0.0035	Minimum Non-Detect	0.0071
Maximum Detect	0.68	Maximum Non-Detect	0.2
Variance Detects	0.0175	Percent Non-Detects	15.91%
Mean Detects	0.067	SD Detects	0.132
Median Detects	0.035	CV Detects	1.975
Skewness Detects	3.915	Kurtosis Detects	15.63
Mean of Logged Detects	-3.549	SD of Logged Detects	1.236

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.452	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.936	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.341	Lilliefors GOF Test
5% Lilliefors Critical Value	0.144	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.0577	KM Standard Error of Mean	0.0186
KM SD	0.122	95% KM (BCA) UCL	0.0921
95% KM (t) UCL	0.089	95% KM (Percentile Bootstrap) UCL	0.0883
95% KM (z) UCL	0.0883	95% KM Bootstrap t UCL	0.169
90% KM Chebyshev UCL	0.114	95% KM Chebyshev UCL	0.139
97.5% KM Chebyshev UCL	0.174	99% KM Chebyshev UCL	0.243

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.68	Anderson-Darling GOF Test
5% A-D Critical Value	0.792	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.183	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.151	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.713	k star (bias corrected MLE)	0.673
Theta hat (MLE)	0.094	Theta star (bias corrected MLE)	0.0996
nu hat (MLE)	52.73	nu star (bias corrected)	49.79
Mean (detects)	0.067		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0035	Mean	0.0579
Maximum	0.68	Median	0.0225
SD	0.123	CV	2.122
k hat (MLE)	0.696	k star (bias corrected MLE)	0.664
Theta hat (MLE)	0.0832	Theta star (bias corrected MLE)	0.0873
nu hat (MLE)	61.27	nu star (bias corrected)	58.43
Adjusted Level of Significance (β)	0.0445		
Approximate Chi Square Value (58.43, α)	41.86	Adjusted Chi Square Value (58.43, β)	41.38
95% Gamma Approximate UCL (use when n>=50)	0.0809	95% Gamma Adjusted UCL (use when n<50)	0.0818

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.0577	SD (KM)	0.122
Variance (KM)	0.0148	SE of Mean (KM)	0.0186
k hat (KM)	0.225	k star (KM)	0.224
nu hat (KM)	19.76	nu star (KM)	19.74
theta hat (KM)	0.257	theta star (KM)	0.257
80% gamma percentile (KM)	0.0803	90% gamma percentile (KM)	0.174
95% gamma percentile (KM)	0.288	99% gamma percentile (KM)	0.596

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (19.74, α)	10.66	Adjusted Chi Square Value (19.74, β)	10.44
15% Gamma Approximate KM-UCL (use when n>=50)	0.107	95% Gamma Adjusted KM-UCL (use when n<50)	0.109

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk GOF Test	0.959	Shapiro Wilk Test Statistic
Detected Data appear Lognormal at 5% Significance Level	0.936	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.0901	Lilliefors Test Statistic
Detected Data appear Lognormal at 5% Significance Level	0.144	5% Lilliefors Critical Value

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0575	Mean in Log Scale	-3.8
SD in Original Scale	0.123	SD in Log Scale	1.29
95% t UCL (assumes normality of ROS data)	0.0887	95% Percentile Bootstrap UCL	0.0899
95% BCA Bootstrap UCL	0.106	95% Bootstrap t UCL	0.168
95% H-UCL (Log ROS)	0.0877		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.814	KM Geo Mean	0.0221
KM SD (logged)	1.303	95% Critical H Value (KM-Log)	2.726
KM Standard Error of Mean (logged)	0.201	95% H-UCL (KM -Log)	0.0886
KM SD (logged)	1.303	95% Critical H Value (KM-Log)	2.726
KM Standard Error of Mean (logged)	0.201		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.0591	Mean in Log Scale	-3.798
SD in Original Scale	0.123	SD in Log Scale	1.353
95% t UCL (Assumes normality)	0.0904	95% H-Stat UCL	0.0995

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 0.0886

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Nickel

General Statistics

Total Number of Observations	11	Number of Distinct Observations	11
		Number of Missing Observations	51
Minimum	1.7	Mean	9.045
Maximum	31	Median	3.7
SD	9.774	Std. Error of Mean	2.947
Coefficient of Variation	1.081	Skewness	1.48

Normal GOF Test

Shapiro Wilk Test Statistic	0.747	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.308	Lilliefors GOF Test
5% Lilliefors Critical Value	0.251	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	14.39	95% Adjusted-CLT UCL (Chen-1995)	15.3	
		95% Modified-t UCL (Johnson-1978)	14.61	

Gamma GOF Test

A-D Test Statistic	0.828	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.748	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.264	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.261	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

0.931	k star (bias corrected MLE)	1.196	k hat (MLE)
9.719	Theta star (bias corrected MLE)	7.561	Theta hat (MLE)
20.47	nu star (bias corrected)	26.32	nu hat (MLE)
9.376	MLE Sd (bias corrected)	9.045	MLE Mean (bias corrected)
11.2	Approximate Chi Square Value (0.05)		
10.1	Adjusted Chi Square Value	0.0278	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 16.53 95% Adjusted Gamma UCL (use when n<50) 18.34

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.894	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.85	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.211	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.251	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.531	Mean of logged Data	1.729
Maximum of Logged Data	3.434	SD of logged Data	0.985

Assuming Lognormal Distribution

95% H-UCL	23.07	90% Chebyshev (MVUE) UCL	16.77
95% Chebyshev (MVUE) UCL	20.45	97.5% Chebyshev (MVUE) UCL	25.57
99% Chebyshev (MVUE) UCL	35.62		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% Jackknife	JCL 14.39
5 95% Bootstrap-t	JCL 17.2
95% Percentile Bootstrap	JCL 13.75
3	
95% Chebyshev(Mean, Sd)	JCL 21.89
5 99% Chebyshev(Mean, Sd)	JCL 38.37

Suggested UCL to Use

95% H-UCL 23.07

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

se of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

PCB, Total Aroclors (AECOM Calc)

General Statistics

Total Number of Observations	76	Number of Distinct Observations	60
		Number of Missing Observations	15
Number of Detects	56	Number of Non-Detects	20
Number of Distinct Detects	49	Number of Distinct Non-Detects	14
Minimum Detect 9	9.5000E-4	Minimum Non-Detect	9.1000E-4
Maximum Detect	4.8	Maximum Non-Detect	0.01
Variance Detects	0.919	Percent Non-Detects	26.32%
Mean Detects	0.67	SD Detects	0.959
Median Detects	0.35	CV Detects	1.431
Skewness Detects	2.512	Kurtosis Detects	7.197
Mean of Logged Detects	-1.75	SD of Logged Detects	2.195

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic 0.698	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value 1.710E-14	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.243	Lilliefors GOF Test
5% Lilliefors Critical Value 0.118	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.494	KM Standard Error of Mean	0.1
KM SD	0.867	95% KM (BCA) UCL	0.651
95% KM (t) UCL	0.661	95% KM (Percentile Bootstrap) UCL	0.666
95% KM (z) UCL	0.659	95% KM Bootstrap t UCL	0.728
90% KM Chebyshev UCL	0.795	95% KM Chebyshev UCL	0.932
97.5% KM Chebyshev UCL	1.121	99% KM Chebyshev UCL	1.493

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.273	Anderson-Darling GOF Test
5% A-D Critical Value	0.821)etected	data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.0623	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.126 Detected	data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.475	k star (bias corrected MLE)	0.461
1.412	Theta star (bias corrected MLE)	1.453
53.15	nu star (bias corrected)	51.64
0.67		
	1.412 53.15	1.412 Theta star (bias corrected MLE) 53.15 nu star (bias corrected)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	9.5000E-4	Mean	0.496
Maximum	4.8	Median	0.108
SD	0.872	CV	1.756
k hat (MLE)	0.37	k star (bias corrected MLE)	0.364
Theta hat (MLE)	1.341	Theta star (bias corrected MLE)	1.363
nu hat (MLE)	56.25	nu star (bias corrected)	55.36
Adjusted Level of Significance (β)	0.0468		
Approximate Chi Square Value (55.36, α)	39.26	Adjusted Chi Square Value (55.36, β)	39
95% Gamma Approximate UCL (use when n>=50)	0.7	95% Gamma Adjusted UCL (use when n<50)	0.705

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.494	SD (KM)	0.867
Variance (KM)	0.752	SE of Mean (KM)	0.1
k hat (KM)	0.325	k star (KM)	0.321
nu hat (KM)	49.36	nu star (KM)	48.75
theta hat (KM)	1.522	theta star (KM)	1.541
80% gamma percentile (KM)	0.769	90% gamma percentile (KM)	1.445
95% gamma percentile (KM)	2.212	99% gamma percentile (KM)	4.189

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (48.75, α)	33.72	Adjusted Chi Square Value (48.75, β)	33.48
15% Gamma Approximate KM-UCL (use when n>=50)	0.714	95% Gamma Adjusted KM-UCL (use when n<50)	0.719

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.913	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	4.5126E-4	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.152	Lilliefors GOF Test
5% Lilliefors Critical Value	0.118	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.495	Mean in Log Scale	-2.895
SD in Original Scale	0.873	SD in Log Scale	2.72
95% t UCL (assumes normality of ROS data)	0.661	95% Percentile Bootstrap UCL	0.661
95% BCA Bootstrap UCL	0.699	95% Bootstrap t UCL	0.715
95% H-UCL (Log ROS)	8.858		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.072	KM Geo Mean	0.0463
KM SD (logged)	2.907	95% Critical H Value (KM-Log)	4.645
KM Standard Error of Mean (logged)	0.338	95% H-UCL (KM -Log)	15.09
KM SD (logged)	2.907	95% Critical H Value (KM-Log)	4.645
KM Standard Error of Mean (logged)	0.338		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.494	Mean in Log Scale	-3.013
SD in Original Scale	0.873	SD in Log Scale	2.879
95% t UCL (Assumes normality)	0.661	95% H-Stat UCL	14.33

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 0.714

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

TCDD TEQ HH

General Statistics

Total Number of Observations 16	Number of Distinct Observations	16
	Number of Missing Observations	46
Minimum 3.6700E-8	Mean 5	5.5064E-6
Maximum 2.2300E-5	Median 1	.7200E-6
SD 7.1809E-6	Std. Error of Mean 1	.7952E-6
Coefficient of Variation N/A	Skewness	1 434

Normal GOF Test

Shapiro Wilk GOF Test	0.762	Shapiro Wilk Test Statistic
Data Not Normal at 5% Significance Level	0.887	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.277	Lilliefors Test Statistic
Data Not Normal at 5% Significance Level	0.213	5% Lilliefors Critical Value

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

•	
95% Normal UCL	95% UCLs (Adjusted for Skewness)
95% Student's-t UCL 8.6536E-6	95% Adjusted-CLT UCL (Chen-1995) 9.1470E-6
	95% Modified-t UCL (Johnson-1978) 8.7608E-6

Gamma GOF Test

Soil ProUCL Output - Stores and Fleet Maintenance Area

A-D Test Statistic 0.3	Anderson-Darling Gamma GOF Test
5% A-D Critical Value 0.7	95 Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic 0.1	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value 0.2	27 Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

0.465	k star (bias corrected MLE)	0.521	k hat (MLE)
1.1843E-5	Theta star (bias corrected MLE)	1.0570E-5	Theta hat (MLE)
14.88	nu star (bias corrected)	16.67	nu hat (MLE)
8.0755E-6	MLE Sd (bias corrected)	5.5064E-6	MLE Mean (bias corrected)
7.177	Approximate Chi Square Value (0.05)		
6.575	Adjusted Chi Square Value	0.0335	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 1.1415E-5 95% Adjusted Gamma UCL (use when n<50) 1.2459E-5

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.953	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.887	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.135	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.213	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-17.12	Mean of logged Data	-13.32
Maximum of Logged Data	-10.71	SD of logged Data	1.944

Assuming Lognormal Distribution

95% H-UCL 9.6895E-5	90% Chebyshev (MVUE) UCL 2.2447E-5
95% Chebyshev (MVUE) UCL 2.8856E-5	97.5% Chebyshev (MVUE) UCL 3.7751E-5
99% Chebyshev (MVUE) UCL 5.5225E-5	

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 8.4593E-6	95% Jackknife UCL 8.6536E-6
95% Standard Bootstrap UCL 8.3804E-6	95% Bootstrap-t UCL 1.0227E-5
95% Hall's Bootstrap UCL 9.5253E-6	95% Percentile Bootstrap UCL 8.5437E-6
95% BCA Bootstrap UCL 9.2185E-6	
90% Chebyshev(Mean, Sd) UCL 1.0892E-5	95% Chebyshev(Mean, Sd) UCL 1.3332E-5
97.5% Chebyshev(Mean, Sd) UCL 1.6718E-5	99% Chebyshev(Mean, Sd) UCL 2.3369E-5

Suggested UCL to Use

95% Adjusted Gamma UCL 1.2459E-5

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Thallium

General Statistics Total Number of Observations Number of Distinct Observations Number of Missing Observations 51 Number of Detects Number of Non-Detects 4 Number of Distinct Detects 7 Number of Distinct Non-Detects 2 Minimum Detect 0.047 Minimum Non-Detect 0.11 Maximum Detect 0.17 Maximum Non-Detect 0.12 Variance Detects 0.0023 Percent Non-Detects 36.36% Mean Detects 0.105 SD Detects 0.0479 CV Detects 0.457 Median Detects 0.085

Skewness Detects 0.229

Mean of Logged Detects -2.353

Kurtosis Detects -1.923

SD of Logged Detects 0.49

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.911	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.232	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.0139	KM Standard Error of Mean	0.0916	KM Mean
0.116	95% KM (BCA) UCL	0.0406	KM SD
0.113	95% KM (Percentile Bootstrap) UCL	0.117	95% KM (t) UCL
0.118	95% KM Bootstrap t UCL	0.115	95% KM (z) UCL
0.152	95% KM Chebyshev UCL	0.133	90% KM Chebyshev UCL
0.23	99% KM Chebyshev UCL	0.179	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

0.351 Anderson-Darling GOF Test	0.351	A-D Test Statistic
0.71 Detected data appear Gamma Distributed at 5% Significant	0.71	5% A-D Critical Value
0.228 Kolmogorov-Smirnov GOF	0.228	K-S Test Statistic
0.313 Detected data appear Gamma Distributed at 5% Signification	0.313	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	5.261	k star (bias corrected MLE)	3.102
Theta hat (MLE)	0.0199	Theta star (bias corrected MLE)	0.0338
nu hat (MLE)	73.66	nu star (bias corrected)	43.42
Mean (detects)	0.105		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.047	Mean	0.0924
Maximum	0.17	Median	0.082
SD	0.0421	CV	0.455
k hat (MLE)	5.799	k star (bias corrected MLE)	4.278
Theta hat (MLE)	0.0159	Theta star (bias corrected MLE)	0.0216
nu hat (MLE)	127.6	nu star (bias corrected)	94.12
Adjusted Level of Significance (β)	0.0278		
Approximate Chi Square Value (94.12, α)	72.75	Adjusted Chi Square Value (94.12, β)	69.69
95% Gamma Approximate UCL (use when n>=50)	0.12	95% Gamma Adjusted UCL (use when n<50)	0.125

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.0916	SD (KM)	0.0406
Variance (KM)	0.00165	SE of Mean (KM)	0.0139
k hat (KM)	5.09	k star (KM)	3.763
nu hat (KM)	112	nu star (KM)	82.78
theta hat (KM)	0.018	theta star (KM)	0.0244
80% gamma percentile (KM)	0.127	90% gamma percentile (KM)	0.155
95% gamma percentile (KM)	0.181	99% gamma percentile (KM)	0.235

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (82.78, α)	62.81	Adjusted Chi Square Value (82.78, β)	59.98
15% Gamma Approximate KM-UCL (use when n>=50)	0.121	95% Gamma Adjusted KM-UCL (use when n<50)	0.126

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.926	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.214	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0919	Mean in Log Scale	-2.475
SD in Original Scale	0.0421	SD in Log Scale	0.432

Soil ProUCL Output - Stores and Fleet Maintenance Area

95% t UCL (assumes normality of ROS data)	0.115	95% Percentile Bootstrap UCL	0.112
95% BCA Bootstrap UCL	0.117	95% Bootstrap t UCL	0.12
95% H-UCL (Log ROS)	0.123		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.483	KM Geo Mean	0.0835
KM SD (logged)	0.426	95% Critical H Value (KM-Log)	2.084
KM Standard Error of Mean (logged)	0.154	95% H-UCL (KM -Log)	0.121
KM SD (logged)	0.426	95% Critical H Value (KM-Log)	2.084
KM Standard Error of Mean (logged)	0.154		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed			
Mean in Original Scale	0.0872	Mean in Log Scale	-2.544	
SD in Original Scale	0.0445	SD in Log Scale	0.463	
95% t UCL (Assumes normality)	0.112	95% H-Stat UCL	0.119	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.117

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Vanadium

Cananal	Statistics
General	Statistics

Total Number of Observations	11	Number of Distinct Observations	9
		Number of Missing Observations	51
Minimum	11	Mean	19.91
Maximum	30	Median	22
SD	6.949	Std. Error of Mean	2.095
Coefficient of Variation	0.349	Skewness	-0.0573

Normal GOF Test

Shapiro Wilk Test Statistic 0.904	Shapiro Wilk GOF Test
Shapiro Wilk Critical Value 0.85	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.204	Lilliefors GOF Test
5% Lilliefors Critical Value 0.251 [Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	23.71	95% Adjusted-CLT UCL (Chen-1995)	23.32
		95% Modified-t UCL (Johnson-1978)	23.7

Gamma GOF Test

A-D Test Statistic	0.592	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.73	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.212	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.256	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	8.321	k star (bias corrected MLE)	6.112
Theta hat (MLE)	2.393	Theta star (bias corrected MLE)	3.257
nu hat (MLE)	183.1	nu star (bias corrected)	134.5
MLE Mean (bias corrected)	19.91	MLE Sd (bias corrected)	8.053
		Approximate Chi Square Value (0.05)	108.7
Adjusted Level of Significance	0.0278	Adjusted Chi Square Value	104.9

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 24.63 95% Adjusted Gamma UCL (use when n<50) 25.52

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.878	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.85	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.211	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.251	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2.398	Mean of logged Data	2.93
Maximum of Logged Data	3.401	SD of logged Data	0.377

Assuming Lognormal Distribution

95% H-UCL	25.59	90% Chebyshev (MVUE) UCL	26.85
95% Chebyshev (MVUE) UCL	29.97	97.5% Chebyshev (MVUE) UCL	34.3
99% Chebyshev (MVUE) UCL	42.8		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	23.36	95% Jackknife UCL	23.71
95% Standard Bootstrap UCL	23.18	95% Bootstrap-t UCL	23.68
95% Hall's Bootstrap UCL	23	95% Percentile Bootstrap UCL	23.18
95% BCA Bootstrap UCL	23.09		
90% Chebyshev(Mean, Sd) UCL	26.19	95% Chebyshev(Mean, Sd) UCL	29.04
97.5% Chebyshev(Mean, Sd) UCL	32.99	99% Chebyshev(Mean, Sd) UCL	40.76

Suggested UCL to Use

95% Student's-t UCL 23.71

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.18/28/2018 4:37:58 PM

From File Pepco Soil Input_a.xls

Full Precision OFF
Confidence Coefficient 95%
Imber of Bootstrap Operations 2000

Arsenic

General Statistics

Total Number of Observations	6	Number of Distinct Observations	5
		Number of Missing Observations	33
Minimum	2.2	Mean	3.083
Maximum	4.2	Median	3
SD	0.76	Std. Error of Mean	0.31
Coefficient of Variation	0.247	Skewness	0.422

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.944	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.21	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	•	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	3.709	95% Adjusted-CLT UCL (Chen-1995)	3.651
		95% Modified-t UCL (Johnson-1978)	3.717

Gamma GOF Test

A-D Test Statistic	0.263	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.697)etect	ed data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.185	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.332)etect	ed data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	19.97	k star (bias corrected MLE)	10.09
Theta hat (MLE)	0.154	Theta star (bias corrected MLE)	0.305
nu hat (MLE)	239.6	nu star (bias corrected)	121.1
MLE Mean (bias corrected)	3.083	MLE Sd (bias corrected)	0.97
		Approximate Chi Square Value (0.05)	96.72
Adjusted Level of Significance	0.0122	Adjusted Chi Square Value	88.85

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 3.862 95% Adjusted Gamma UCL (use when n<50) 4.204

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.952	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.788	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.17	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.325	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.788	Mean of logged Data	1.101
Maximum of Logged Data	1.435	SD of logged Data	0.246

Assuming Lognormal Distribution

95% H-UCL	3.922	90% Chebyshev (MVUE) UCL	4.013
95% Chebyshev (MVUE) UCL	4.434	97.5% Chebyshev (MVUE) UCL	5.018
99% Chehyshey (MVUF) UCI	6.167		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	3.594	95% Jackknife UCL	3.709
95% Standard Bootstrap UCL	3.549	95% Bootstrap-t UCL	3.921
95% Hall's Bootstrap UCL	4.115	95% Percentile Bootstrap UCL	3.517
95% BCA Bootstrap UCL	3.533		
90% Chebyshev(Mean, Sd) UCL	4.014	95% Chebyshev(Mean, Sd) UCL	4.436
97.5% Chebyshev(Mean, Sd) UCL	5.021	99% Chebyshev(Mean, Sd) UCL	6.171

Suggested UCL to Use

95% Student's-t UCL 3.709

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)anthracene

General Statistics

Total Number of Observations	165	Number of Distinct Observations	115
		Number of Missing Observations	6
Number of Detects	152	Number of Non-Detects	13
Number of Distinct Detects	105	Number of Distinct Non-Detects	11
Minimum Detect	0.0011	Minimum Non-Detect	0.007
Maximum Detect	720	Maximum Non-Detect	0.16
Variance Detects	3771	Percent Non-Detects	7.879%
Mean Detects	11.57	SD Detects	61.41
Median Detects	2.45	CV Detects	5.307
Skewness Detects	10.65	Kurtosis Detects	120.3
Mean of Logged Detects	0.263	SD of Logged Detects	2.504

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.177	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.425	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0723	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

4.595	KM Standard Error of Mean	10.66	KM Mean
20.53	95% KM (BCA) UCL	58.83	KM SD
19.57	95% KM (Percentile Bootstrap) UCL	18.26	95% KM (t) UCL
58.19	95% KM Bootstrap t UCL	18.22	95% KM (z) UCL
30.69	95% KM Chebyshev UCL	24.44	90% KM Chebyshev UCL
56.38	99% KM Chebyshev UCL	39.35	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

0.865	5% A-D Critical Value
0.154	K-S Test Statistic
0.0824	5% K-S Critical Value
0.154	Statistic

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.313	k star (bias corrected MLE)	0.312
Theta hat (MLE)	36.93	Theta star (bias corrected MLE)	37.14
nu hat (MLE)	95.25	nu star (bias corrected)	94.71
Mean (detects)	11.57		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0011	Mean	10.66
Maximum	720	Median	2.1
SD	59.01	CV	5.535
k hat (MLE)	0.28	k star (bias corrected MLE)	0.279
Theta hat (MLE)	38.02	Theta star (bias corrected MLE)	38.16
nu hat (MLE)	92.52	nu star (bias corrected)	92.17
Adjusted Level of Significance (β)	0.0485		
Approximate Chi Square Value (92.17, α)	71.03	Adjusted Chi Square Value (92.17, β)	70.87
95% Gamma Approximate UCL (use when n>=50)	13.83	95% Gamma Adjusted UCL (use when n<50)	13.86

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	10.66	SD (KM)	58.83
Variance (KM)	3461	SE of Mean (KM)	4.595
k hat (KM)	0.0328	k star (KM)	0.0363
nu hat (KM)	10.83	nu star (KM)	11.97
theta hat (KM)	324.7	theta star (KM)	293.8
80% gamma percentile (KM)	0.362	90% gamma percentile (KM)	9.603
95% gamma percentile (KM)	48.1	99% gamma percentile (KM)	260.3

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (11.97, α)	5.208	Adjusted Chi Square Value (11.97, β)	5.169
15% Gamma Approximate KM-UCL (use when n>=50)	24.5	95% Gamma Adjusted KM-UCL (use when n<50)	24.69

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.92	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value 7.3	321E-11	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.124	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0723	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-0.0722	Mean in Log Scale	10.66	Mean in Original Scale
2.666	SD in Log Scale	59.01	SD in Original Scale
19.03	95% Percentile Bootstrap UCL	18.26	95% t UCL (assumes normality of ROS data)
58.1	95% Bootstrap t UCL	23.7	95% BCA Bootstrap UCL
		74.6	95% H-LICL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

0.807	KM Geo Mean	-0.215	KM Mean (logged)
4.293	95% Critical H Value (KM-Log)	2.91	KM SD (logged)
147.9	95% H-UCL (KM -Log)	0.229	KM Standard Error of Mean (logged)
4.293	95% Critical H Value (KM-Log)	2.91	KM SD (logged)
		0.220	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	10.66	Mean in Log Scale	-0.163
SD in Original Scale	59.01	SD in Log Scale	2.826
95% t UCL (Assumes normality)	18.26	95% H-Stat UCL	116.1

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 30.69

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)pyrene

General Statistics

Total Number of Observations	165	Number of Distinct Observations	112
		Number of Missing Observations	6
Number of Detects	147	Number of Non-Detects	18
Number of Distinct Detects	101	Number of Distinct Non-Detects	13
Minimum Detect	0.0022	Minimum Non-Detect	0.007
Maximum Detect	640	Maximum Non-Detect	0.16
Variance Detects	3043	Percent Non-Detects	10.91%
Mean Detects	10.64	SD Detects	55.16
Median Detects	2.4	CV Detects	5.184
Skewness Detects	10.59	Kurtosis Detects	118.9
Mean of Logged Detects	0.432	SD of Logged Detects	2.174

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.179	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.424	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0735	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

9.48	KM Standard Error of Mean	4.062
51.99	95% KM (BCA) UCL	17.58
16.2	95% KM (Percentile Bootstrap) UCL	16.86
16.16	95% KM Bootstrap t UCL	50.14
21.66	95% KM Chebyshev UCL	27.18
34.84	99% KM Chebyshev UCL	49.89
	51.99 16.2 16.16 21.66	51.99 95% KM (BCA) UCL 16.2 95% KM (Percentile Bootstrap) UCL 16.16 95% KM Bootstrap t UCL 21.66 95% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	5.503	Anderson-Darling GOF Test
5% A-D Critical Value	0.857	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.153	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.0834	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.346	k star (bias corrected MLE)	0.348	k hat (MLE)
30.78	Theta star (bias corrected MLE)	30.55	Theta hat (MLE)
101.6	nu star (bias corrected)	102.4	nu hat (MLE)
		10.64	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0022	Mean	9.48
Maximum	640	Median	2.1
SD	52.15	CV	5.501
k hat (MLE)	0.293	k star (bias corrected MLE)	0.291
Theta hat (MLE)	32.4	Theta star (bias corrected MLE)	32.54
nu hat (MLE)	96.55	nu star (bias corrected)	96.13
Adjusted Level of Significance (β)	0.0485		
Approximate Chi Square Value (96.13, α)	74.52	Adjusted Chi Square Value (96.13, β)	74.35
95% Gamma Approximate UCL (use when n>=50)	12.23	95% Gamma Adjusted UCL (use when n<50)	12.26

Estimates of Gamma Parameters using KM Estimates

51.99	SD (KM)	9.48	Mean (KM)
4.062	SE of Mean (KM)	2703	Variance (KM)
0.0367	k star (KM)	0.0332	k hat (KM)
12.1	nu star (KM)	10.97	nu hat (KM)
258.5	theta star (KM)	285.2	theta hat (KM)
8.732	90% gamma percentile (KM)	0.341	80% gamma percentile (KM)
230.6	99% gamma percentile (KM)	43.09	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (12.10, α)	5.296	Adjusted Chi Square Value (12.10, β)	5.256
15% Gamma Approximate KM-UCL (use when n>=50)	21.67	95% Gamma Adjusted KM-UCL (use when n<50)	21.83

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk GOF Test	0.945	Shapiro Wilk Approximate Test Statistic
Detected Data Not Lognormal at 5% Significance Level	1.3397E-5	5% Shapiro Wilk P Value
Lilliefors GOF Test	0.121	Lilliefors Test Statistic
Detected Data Not Lognormal at 5% Significance Level	0.0735	5% Lilliefors Critical Value

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	9.482	Mean in Log Scale	-0.013
SD in Original Scale	52.15	SD in Log Scale	2.419
95% t UCL (assumes normality of ROS data)	16.2	95% Percentile Bootstrap UCL	16.9
95% BCA Bootstrap UCL	22.66	95% Bootstrap t UCL	51.54
95% H-UCL (Log ROS)	36.98		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.197	KM Geo Mean	0.821
KM SD (logged)	2.73	95% Critical H Value (KM-Log)	4.068
KM Standard Error of Mean (logged)	0.215	95% H-UCL (KM -Log)	81.28
KM SD (logged)	2.73	95% Critical H Value (KM-Log)	4.068
KM Standard Error of Mean (logged)	0.215		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	9.48	Mean in Log Scale	-0.187
SD in Original Scale	52.15	SD in Log Scale	2.727
95% t UCL (Assumes normality)	16.2	95% H-Stat UCL	81.13

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 27.18

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichie, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(b)fluoranthene

General Statistics

Total Number of Observations	165	Number of Distinct Observations	120
		Number of Missing Observations	6
Number of Detects	148	Number of Non-Detects	17
Number of Distinct Detects	108	Number of Distinct Non-Detects	12
Minimum Detect	0.0019	Minimum Non-Detect	0.007
Maximum Detect	420	Maximum Non-Detect	0.16
Variance Detects	1479	Percent Non-Detects	10.3%
Mean Detects	10.15	SD Detects	38.46
Median Detects	3.05	CV Detects	3.788
Skewness Detects	9.19	Kurtosis Detects	92.59
Mean of Logged Detects	0.604	SD of Logged Detects	2.196

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.247	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.396	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0732	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	9.106	KM Standard Error of Mean	2.846
KM SD	36.43	95% KM (BCA) UCL	14.37
95% KM (t) UCL	13.81	95% KM (Percentile Bootstrap) UCL	14.37
95% KM (z) UCL	13.79	95% KM Bootstrap t UCL	26.47
90% KM Chebyshev UCL	17.64	95% KM Chebyshev UCL	21.51
97.5% KM Chebyshev UCL	26.88	99% KM Chebyshev UCL	37.42

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	2.955	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.847	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.121	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.0827	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.383	k star (bias corrected MLE)	0.386	k hat (MLE)
26.51	Theta star (bias corrected MLE)	26.28	Theta hat (MLE)
113.3	nu star (bias corrected)	114.3	nu hat (MLE)
		10 15	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

9.107	Mean	0.0019	Minimum
2.3	Median	420	Maximum
4.012	CV	36.54	SD
0.317	k star (bias corrected MLE)	0.319	k hat (MLE)
28.72	Theta star (bias corrected MLE)	28.56	Theta hat (MLE)
104.6	nu star (bias corrected)	105.2	nu hat (MLE)
		0.0485	Adjusted Level of Significance (β)
81.85	Adjusted Chi Square Value (104.63, β)	82.03	Approximate Chi Square Value (104.63, α)
11.64	95% Gamma Adjusted UCL (use when n<50)	11.62	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	9.106	SD (KM)	36.43
Variance (KM)	1327	SE of Mean (KM)	2.846
k hat (KM)	0.0625	k star (KM)	0.0654
nu hat (KM)	20.62	nu star (KM)	21.58
theta hat (KM)	145.7	theta star (KM)	139.3
0% gamma percentile (KM)	2.766	90% gamma percentile (KM)	18.57
5% gamma percentile (KM)	51.88	99% gamma percentile (KM)	176.9

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (21.58, α)	12.02	Adjusted Chi Square Value (21.58, β)	11.96
15% Gamma Approximate KM-UCL (use when n>=50)	16.34	95% Gamma Adjusted KM-UCL (use when n<50)	16.43

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.938	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value 6	.3330E-7	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.118	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0732	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

February 2020

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	9.109	Mean in Log Scale	0.171
SD in Original Scale	36.54	SD in Log Scale	2.446
95% t UCL (assumes normality of ROS data)	13.81	95% Percentile Bootstrap UCL	14.28
95% BCA Bootstrap UCL	17.15	95% Bootstrap t UCL	26.62
95% H-UCL (Log ROS)	48.05		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.0166	KM Geo Mean	0.983
KM SD (logged)	2.774	95% Critical H Value (KM-Log)	4.122
KM Standard Error of Mean (logged)	0.218	95% H-UCL (KM -Log)	112.5
KM SD (logged)	2.774	95% Critical H Value (KM-Log)	4.122
KM Standard Error of Mean (logged)	0.218		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	9.107	Mean in Log Scale	0.00226
SD in Original Scale	36.54	SD in Log Scale	2.751
95% t UCL (Assumes normality)	13.81	95% H-Stat UCL	106.4

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 21.51

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(k)fluoranthene

General	Statistics

113	Number of Distinct Observations	165	Total Number of Observations
6	Number of Missing Observations		
23	Number of Non-Detects	142	Number of Detects
18	Number of Distinct Non-Detects	97	Number of Distinct Detects
0.007	Minimum Non-Detect	0.0023	Minimum Detect
1.5	Maximum Non-Detect	570	Maximum Detect
13.94%	Percent Non-Detects	2371	Variance Detects
48.69	SD Detects	7.146	Mean Detects
6.814	CV Detects	1.1	Median Detects
129.3	Kurtosis Detects	11.2	Skewness Detects
2.106	SD of Logged Detects	-0.258	Mean of Logged Detects

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.138	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.442	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0747	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	6.154	KM Standard Error of Mean	3.522
KM SD	45.08	95% KM (BCA) UCL	12.97
95% KM (t) UCL	11.98	95% KM (Percentile Bootstrap) UCL	12.96
95% KM (z) UCL	11.95	95% KM Bootstrap t UCL	68.85
90% KM Chebyshev UCL	16.72	95% KM Chebyshev UCL	21.51
97.5% KM Chebyshev UCL	28.15	99% KM Chebyshev UCL	41.2

February 2020

Gamma GOF Tests on Detected Observations Only

A-D T	est Statistic	9.699	Anderson-Darling GOF Test
5% A-D C	ritical Value	0.866	Detected Data Not Gamma Distributed at 5% Significance Level
K-S T	est Statistic	0.206	Kolmogorov-Smirnov GOF
5% K-S C	ritical Value	0.0852	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.307	k star (bias corrected MLE)	0.309	k hat (MLE)
23.3	Theta star (bias corrected MLE)	23.16	Theta hat (MLE)
87.1	nu star (bias corrected)	87.62	nu hat (MLE)
		7.146	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0023	Mean	6.151
Maximum	570	Median	0.85
SD	45.22	CV	7.351
k hat (MLE)	0.263	k star (bias corrected MLE)	0.262
Theta hat (MLE)	23.41	Theta star (bias corrected MLE)	23.47
nu hat (MLE)	86.72	nu star (bias corrected)	86.48
Adjusted Level of Significance (β)	0.0485		
Approximate Chi Square Value (86.48, α)	66.04	Adjusted Chi Square Value (86.48, β)	65.89
95% Gamma Approximate UCL (use when n>=50)	8.055	95% Gamma Adjusted UCL (use when n<50)	8.074

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	6.154	SD (KM)	45.08
Variance (KM)	2032	SE of Mean (KM)	3.522
k hat (KM)	0.0186	k star (KM)	0.0223
nu hat (KM)	6.15	nu star (KM)	7.371
theta hat (KM)	330.2	theta star (KM)	275.5
80% gamma percentile (KM)	0.00722	90% gamma percentile (KM)	1.416
95% gamma percentile (KM)	16.81	99% gamma percentile (KM)	169.4

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (7.37, α)	2.376	Adjusted Chi Square Value (7.37, β)	2.352
15% Gamma Approximate KM-UCL (use when n>=50)	19.09	95% Gamma Adjusted KM-UCL (use when n<50)	19.29

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic 0.948	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value 7.7373E	5 Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.103	Lilliefors GOF Test
5% Lilliefors Critical Value 0.074	7 Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	6.154	Mean in Log Scale	-0.756
SD in Original Scale	45.22	SD in Log Scale	2.327
95% t UCL (assumes normality of ROS data)	11.98	95% Percentile Bootstrap UCL	12.81
95% BCA Bootstrap UCL	17.88	95% Bootstrap t UCL	68.89
95% H-UCL (Log ROS)	13.49		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.947	KM Geo Mean	0.388
KM SD (logged)	2.637	95% Critical H Value (KM-Log)	3.953
KM Standard Error of Mean (logged)	0.208	95% H-UCL (KM -Log)	28.31
KM SD (logged)	2.637	95% Critical H Value (KM-Log)	3.953
KM Standard Error of Mean (logged)	0.208		

DL/2 Statistics

	DL/2 Log-Transformed	
6.158	Mean in Log Scale	-0.863
45.22	SD in Log Scale	2.544
11.98	95% H-Stat UCL	23
	45.22	6.158 Mean in Log Scale 45.22 SD in Log Scale

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 21.51

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chrysene

General Statistics

	Gonordi Gidaga		
Total Number of Observations	165	Number of Distinct Observations	124
		Number of Missing Observations	6
Number of Detects	151	Number of Non-Detects	14
Number of Distinct Detects	114	Number of Distinct Non-Detects	12
Minimum Detect	0.0013	Minimum Non-Detect	0.007
Maximum Detect	620	Maximum Non-Detect	0.16
Variance Detects	2824	Percent Non-Detects	8.485%
Mean Detects	10.42	SD Detects	53.14
Median Detects	2.4	CV Detects	5.1
Skewness Detects	10.56	Kurtosis Detects	118.5
Mean of Logged Detects	0.291	SD of Logged Detects	2.391

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.183	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.422	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0725	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	9.536	KM Standard Error of Mean	3.964
KM SD	50.75	95% KM (BCA) UCL	17.2
95% KM (t) UCL	16.09	95% KM (Percentile Bootstrap) UCL	16.98
95% KM (z) UCL	16.06	95% KM Bootstrap t UCL	49.11
90% KM Chebyshev UCL	21.43	95% KM Chebyshev UCL	26.81
97.5% KM Chebyshev UCL	34.29	99% KM Chebyshev UCL	48.98

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	4.655	Anderson-Darling GOF Test
5% A-D Critical Value	0.861	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.14	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.0825	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.331	k star (bias corrected MLE)	0.328
Theta hat (MLE)	31.51	Theta star (bias corrected MLE)	31.72
nu hat (MLE)	99.85	nu star (bias corrected)	99.2
Mean (detects)	10.42		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0013	Mean	9.536
Maximum	620	Median	2
SD	50.9	CV	5.338
k hat (MLE)	0.291	k star (bias corrected MLE)	0.29
Theta hat (MLE)	32.75	Theta star (bias corrected MLE)	32.89
nu hat (MLE)	96.09	nu star (bias corrected)	95.68
Adjusted Level of Significance (β)	0.0485		
Approximate Chi Square Value (95.68, α)	74.12	Adjusted Chi Square Value (95.68, β)	73.95
95% Gamma Approximate UCL (use when n>=50)	12.31	95% Gamma Adjusted UCL (use when n<50)	12.34

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	9.536	SD (KM)	50.75
Variance (KM)	2575	SE of Mean (KM)	3.964
k hat (KM)	0.0353	k star (KM)	0.0387
nu hat (KM)	11.65	nu star (KM)	12.77
theta hat (KM)	270.1	theta star (KM)	246.4
80% gamma percentile (KM)	0.448	90% gamma percentile (KM)	9.741
95% gamma percentile (KM)	44.86	99% gamma percentile (KM)	227.9

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (12.77, α)	5.74	Adjusted Chi Square Value (12.77, β)	5.698
15% Gamma Approximate KM-LICL (use when n>=50)	21.22	95% Gamma Adjusted KM-UCL (use when n<50)	21.37

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.925	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	1.2432E-9	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.129	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0725	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	9.537	Mean in Log Scale	-0.0664
SD in Original Scale	50.9	SD in Log Scale	2.573
95% t UCL (assumes normality of ROS data)	16.09	95% Percentile Bootstrap UCL	17.46
95% BCA Bootstrap UCL	22.96	95% Bootstrap t UCL	49.64
95% H-UCL (Log ROS)	55.9		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

0.805	KM Geo Mean	-0.217	KM Mean (logged)
4.197	95% Critical H Value (KM-Log)	2.834	KM SD (logged)
113	95% H-UCL (KM -Log)	0.223	KM Standard Error of Mean (logged)
4.197	95% Critical H Value (KM-Log)	2.834	KM SD (logged)
		0 223	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	9.536	Mean in Log Scale	-0.173
SD in Original Scale	50.9	SD in Log Scale	2.763
95% t UCL (Assumes normality)	16.09	95% H-Stat UCL	92.86

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 26.81

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Cobalt

General Statistics

Total Number of Observations	6	Number of Distinct Observations	6
		Number of Missing Observations	33
Minimum	4.6	Mean	8.25
Maximum	13	Median	7.95
SD	3.318	Std. Error of Mean	1.354
Coefficient of Variation	0.402	Skewness	0.363

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.942	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.17	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

	·			
95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	10.98	95% Adjusted-CLT UCL (Chen-1995)	10.69	
		95% Modified-t UCL (Johnson-1978)	11.01	

Gamma GOF Test

52 Anderson-Darling Gamma GOF Test	0.252	A-D Test Statistic
98 Detected data appear Gamma Distributed at 5% Significance	0.698	5% A-D Critical Value
11 Kolmogorov-Smirnov Gamma GOF Test	0.201	K-S Test Statistic
33 Detected data appear Gamma Distributed at 5% Significance	0 333	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	7.25	k star (bias corrected MLE)	3.736
Theta hat (MLE)	1.138	Theta star (bias corrected MLE)	2.208
nu hat (MLE)	87	nu star (bias corrected)	44.83
MLE Mean (bias corrected)	8.25	MLE Sd (bias corrected)	4.268
		Approximate Chi Square Value (0.05)	30.47
Adjusted Level of Significance	0.0122	Adjusted Chi Square Value	26.27

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 12.14 95% Adjusted Gamma UCL (use when n<50) 14.08

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.94	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.788	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.182	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.325	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.526	Mean of logged Data	2.04
Maximum of Logged Data	2.565	SD of logged Data	0.417

Assuming Lognormal Distribution

95% H-UCL	13.24	90% Chebyshev (MVUE) UCL	12.47
95% Chebyshev (MVUE) UCL	14.38	97.5% Chebyshev (MVUE) UCL	17.03
99% Chebyshev (MVUE) UCL	22.23		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	10.48	95% Jackknife UCL	10.98
95% Standard Bootstrap UCL	10.27	95% Bootstrap-t UCL	11.43
95% Hall's Bootstrap UCL	11.47	95% Percentile Bootstrap UCL	10.33
95% BCA Bootstrap UCL	10.27		
90% Chebyshev(Mean, Sd) UCL	12.31	95% Chebyshev(Mean, Sd) UCL	14.15
97.5% Chebyshev(Mean, Sd) UCL	16.71	99% Chebyshev(Mean, Sd) UCL	21.73

Suggested UCL to Use

95% Student's-t UCL 10.98

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Dibenzo(a,h)anthracene

General Statistics

Total Number of Observations	165	Number of Distinct Observations	117
		Number of Missing Observations	6
Number of Detects	129	Number of Non-Detects	36
Number of Distinct Detects	101	Number of Distinct Non-Detects	26
Minimum Detect	0.0021	Minimum Non-Detect	0.007
Maximum Detect	100	Maximum Non-Detect	1.7
Variance Detects	89.09	Percent Non-Detects	21.82%
Mean Detects	2.283	SD Detects	9.439
Median Detects	0.67	CV Detects	4.135
Skewness Detects	9.278	Kurtosis Detects	92.88
Mean of Logged Detects	-0.754	SD of Logged Detects	1.857

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.224	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.405	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0784	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.799	KM Standard Error of Mean	0.654
KM SD	8.364	95% KM (BCA) UCL	2.989
95% KM (t) UCL	2.881	95% KM (Percentile Bootstrap) UCL	2.959
95% KM (z) UCL	2.875	95% KM Bootstrap t UCL	6.724
90% KM Chebyshev UCL	3.76	95% KM Chebyshev UCL	4.649
97.5% KM Chebyshev UCL	5.882	99% KM Chebyshev UCL	8.304

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	4.273	Anderson-Darling GOF Test
5% A-D Critical Value	0.84	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.134	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.0877	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.41	k star (bias corrected MLE)	0.414	k hat (MLE)
5.569	Theta star (bias corrected MLE)	5.509	Theta hat (MLE)
105.8	nu star (bias corrected)	106.9	nu hat (MLE)
		2.283	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0021	Mean	1.787
Maximum	100	Median	0.34
SD	8.392	CV	4.696
k hat (MLE)	0.315	k star (bias corrected MLE)	0.313
Theta hat (MLE)	5.679	Theta star (bias corrected MLE)	5.709
nu hat (MLE)	103.8	nu star (bias corrected)	103.3
Adjusted Level of Significance (β)	0.0485		
Approximate Chi Square Value (103.28, α)	80.83	Adjusted Chi Square Value (103.28, β)	80.66
95% Gamma Approximate UCL (use when n>=50)	2.283	95% Gamma Adjusted UCL (use when n<50)	2.288

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.799	SD (KM)	8.364
Variance (KM)	69.95	SE of Mean (KM)	0.654
k hat (KM)	0.0463	k star (KM)	0.0495
nu hat (KM)	15.27	nu star (KM)	16.33
theta hat (KM)	38.88	theta star (KM)	36.36
80% gamma percentile (KM)	0.235	90% gamma percentile (KM)	2.709
95% gamma percentile (KM)	9.534	99% gamma percentile (KM)	39.3

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (16.33, α)	8.195	Adjusted Chi Square Value (16.33, β)	8.145
15% Gamma Approximate KM-UCL (use when n>=50)	3.585	95% Gamma Adjusted KM-UCL (use when n<50)	3.608

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk GOF Test	0.971	Shapiro Wilk Approximate Test Statistic
Detected Data appear Lognormal at 5% Significance Leve	0.103	5% Shapiro Wilk P Value
Lilliefors GOF Test	0.0877	Lilliefors Test Statistic
Detected Data Not Lognormal at 5% Significance Level	0.0784	5% Lilliefors Critical Value

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-1.414	Mean in Log Scale	1.793	Mean in Original Scale
2.115	SD in Log Scale	8.39	SD in Original Scale
3.088	95% Percentile Bootstrap UCL	2.874	95% t UCL (assumes normality of ROS data)
6.681	95% Bootstrap t UCL	3.625	95% BCA Bootstrap UCL
		3 94	95% H-LICL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

0.202	KM Geo Mean	-1.601	KM Mean (logged)
3.694	95% Critical H Value (KM-Log)	2.425	KM SD (logged)
7.675	95% H-UCL (KM -Log)	0.199	KM Standard Error of Mean (logged)
3.694	95% Critical H Value (KM-Log)	2.425	KM SD (logged)
		0 199	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.815	Mean in Log Scale	-1.44
SD in Original Scale	8.386	SD in Log Scale	2.319
95% t UCL (Assumes normality)	2.895	95% H-Stat UCL	6.656

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 7.675

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Diesel Range Organics (C10-C20)

General Statistics

Total Number of Observations	12	Number of Distinct Observations	8
		Number of Missing Observations	27
Number of Detects	1	Number of Non-Detects	11
Number of Distinct Detects	1	Number of Distinct Non-Detects	7

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! ested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV

The data set for variable Diesel Range Organics (C10-C20) was not processed!

Indeno(1,2,3-cd)pyrene

General Statistics

Total Number of Observations	165	Number of Distinct Observations	110
		Number of Missing Observations	6
Number of Detects	147	Number of Non-Detects	18
Number of Distinct Detects	97	Number of Distinct Non-Detects	13
Minimum Detect	0.0021	Minimum Non-Detect	0.007
Maximum Detect	380	Maximum Non-Detect	0.16
Variance Detects	1081	Percent Non-Detects	10.91%
Mean Detects	7.053	SD Detects	32.87
Median Detects	1.9	CV Detects	4.661
Skewness Detects	10.43	Kurtosis Detects	116.1
Mean of Logged Detects	0.153	SD of Logged Detects	2.152

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.197	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.415	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0735	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

2.422	KM Standard Error of Mean	6.285	KM Mean
11.21	95% KM (BCA) UCL	31	KM SD
10.86	95% KM (Percentile Bootstrap) UCL	10.29	95% KM (t) UCL
26.87	95% KM Bootstrap t UCL	10.27	95% KM (z) UCL
16.84	95% KM Chebyshev UCL	13.55	90% KM Chebyshev UCL
30.38	99% KM Chebyshev UCL	21.41	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

4.341 Anderson-Darling GOF Test	Darling GOF Test	4.341	A-D Test Statistic
0.851 Detected Data Not Gamma Distributed at 5% Signif	Distributed at 5% Significance Level	0.851	5% A-D Critical Value
0.14 Kolmogorov-Smirnov GOF	ov-Smirnov GOF	0.14	K-S Test Statistic
0.0832 Detected Data Not Gamma Distributed at 5% Signif	Distributed at 5% Significance Level	0.0832	5% K-S Critical Value
a Distributed at 5% Significance Level	el	nma Distri	Detected Data Not Gam

Gamma Statistics on Detected Data Only

k hat (MLE)	0.37	k star (bias corrected MLE)	0.367
Theta hat (MLE)	19.06	Theta star (bias corrected MLE)	19.21
nu hat (MLE)	108.8	nu star (bias corrected)	107.9
Mean (detects)	7.053		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0021	Mean	6.285
Maximum	380	Median	1.5
SD	31.1	CV	4.948
k hat (MLE)	0.311	k star (bias corrected MLE)	0.309
Theta hat (MLE)	20.21	Theta star (bias corrected MLE)	20.31
nu hat (MLE)	102.6	nu star (bias corrected)	102.1
Adjusted Level of Significance (β)	0.0485		
Approximate Chi Square Value (102.11, α)	79.8	Adjusted Chi Square Value (102.11, β)	79.62
95% Gamma Approximate UCL (use when n>=50)	8.043	95% Gamma Adjusted UCL (use when n<50)	8.06

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	6.285	SD (KM)	31
Variance (KM)	961.1	SE of Mean (KM)	2.422
k hat (KM)	0.0411	k star (KM)	0.0444
nu hat (KM)	13.56	nu star (KM)	14.65
theta hat (KM)	152.9	theta star (KM)	141.6
80% gamma percentile (KM)	0.542	90% gamma percentile (KM)	8.1
95% gamma percentile (KM)	31.83	99% gamma percentile (KM)	143.1

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (14.65, α)	7.018	Adjusted Chi Square Value (14.65, β)	6.971
15% Gamma Approximate KM-UCL (use when n>=50)	13.12	95% Gamma Adjusted KM-UCL (use when n<50)	13.21

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.939	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value 1	.3648E-6	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.125	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0735	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	6.287	Mean in Log Scale	-0.271
SD in Original Scale	31.1	SD in Log Scale	2.37
95% t UCL (assumes normality of ROS data)	10.29	95% Percentile Bootstrap UCL	10.79
95% BCA Bootstrap UCL	14.63	95% Bootstrap t UCL	26.22
95% H-UCL (Log ROS)	24.79		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

0.642	KM Geo Mean	-0.444	KM Mean (logged)
3.976	95% Critical H Value (KM-Log)	2.655	KM SD (logged)
49.72	95% H-UCL (KM -Log)	0.209	KM Standard Error of Mean (logged)
3.976	95% Critical H Value (KM-Log)	2.655	KM SD (logged)
		0.209	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	6.285	Mean in Log Scale	-0.436
SD in Original Scale	31.1	SD in Log Scale	2.655
95% t UCL (Assumes normality)	10.29	95% H-Stat UCL	50.03

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 16.84

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Manganese

General Statistics

Total Number of Observations	6	Number of Distinct Observations	6
		Number of Missing Observations	33
Minimum	67	Mean	204.5
Maximum	400	Median	185
SD	115.7	Std. Error of Mean	47.25
Coefficient of Variation	0.566	Skewness	0.888

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.958	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.182	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

95% Student's-t UCL	299.7	95% Adjusted-CLT UCL (Chen-1995)	300.5
		95% Modified-t UCL (Johnson-1978)	302.6

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.149	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.7	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.113	K-S Test Statistic
Petected data appear Gamma Distributed at 5% Significance Leve	0.334	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

1.924	k star (bias corrected MLE)	3.627	k hat (MLE)
106.3	Theta star (bias corrected MLE)	56.39	Theta hat (MLE)
23.09	nu star (bias corrected)	43.52	nu hat (MLE)
147.4	MLE Sd (bias corrected)	204.5	MLE Mean (bias corrected)
13.16	Approximate Chi Square Value (0.05)		
10.56	Adjusted Chi Square Value	0.0122	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 358.8 95% Adjusted Gamma UCL (use when n<50) 447.3

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.987	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.788	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.14	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.325	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	4.205	Mean of logged Data	5.176
Maximum of Logged Data	5.991	SD of logged Data	0.611

Assuming Lognormal Distribution

95% H-UCL	474.4	90% Chebyshev (MVUE) UCL	360.1
95% Chebyshev (MVUE) UCL	429.8	97.5% Chebyshev (MVUE) UCL	526.6
99% Chebyshev (MVUE) UCL	716.7		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

299.7	95% Jackknife UCL	282.2	95% CLT UCL
345.7	95% Bootstrap-t UCL	274.4	95% Standard Bootstrap UCL
277.8	95% Percentile Bootstrap UCL	832.5	95% Hall's Bootstrap UCL
		287.8	95% BCA Bootstrap UCL
410.4	95% Chebyshev(Mean, Sd) UCL	346.2	90% Chebyshev(Mean, Sd) UCL
674.6	99% Chebyshev(Mean, Sd) UCL	499.6	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 299.7

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Naphthalene

General Statistics

Total Number of Observations	165	Number of Distinct Observations	112
		Number of Missing Observations	6
Number of Detects	105	Number of Non-Detects	60
Number of Distinct Detects	83	Number of Distinct Non-Detects	45
Minimum Detect	0.0013	Minimum Non-Detect	0.007
Maximum Detect	100	Maximum Non-Detect	2.8
Variance Detects	98.32	Percent Non-Detects	36.36%
Mean Detects	1.636	SD Detects	9.916
Median Detects	0.11	CV Detects	6.063
Skewness Detects	9.606	Kurtosis Detects	95.61
Mean of Logged Detects	-2.244	SD of Logged Detects	2.132

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.17	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.435	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0867	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.06	KM Standard Error of Mean	0.619
KM SD	7.909	95% KM (BCA) UCL	2.346
95% KM (t) UCL	2.084	95% KM (Percentile Bootstrap) UCL	2.215
95% KM (z) UCL	2.078	95% KM Bootstrap t UCL	6.882
90% KM Chebyshev UCL	2.916	95% KM Chebyshev UCL	3.757
97.5% KM Chebyshev UCL	4.924	99% KM Chebyshev UCL	7.216

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	9.851	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Leve	0.889	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.253	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.0966	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.258	k star (bias corrected MLE)	0.257
Theta hat (MLE)	6.333	Theta star (bias corrected MLE)	6.358
nu hat (MLE)	54.24	nu star (bias corrected)	54.02
Mean (detects)	1.636		

February 2020

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0013	Mean	1.044
Maximum	100	Median	0.02
SD	7.935	CV	7.598
k hat (MLE)	0.229	k star (bias corrected MLE)	0.229
Theta hat (MLE)	4.561	Theta star (bias corrected MLE)	4.564
nu hat (MLE)	75.56	nu star (bias corrected)	75.52
Adjusted Level of Significance (β)	0.0485		
Approximate Chi Square Value (75.52, α)	56.51	Adjusted Chi Square Value (75.52, β)	56.36
95% Gamma Approximate UCL (use when n>=50)	1.396	95% Gamma Adjusted UCL (use when n<50)	1.399

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.06	SD (KM)	7.909
Variance (KM)	62.56	SE of Mean (KM)	0.619
k hat (KM)	0.018	k star (KM)	0.0217
nu hat (KM)	5.927	nu star (KM)	7.153
theta hat (KM)	59.02	theta star (KM)	48.9
80% gamma percentile (KM)	9.4491E-4	90% gamma percentile (KM)	0.217
95% gamma percentile (KM)	2.769	99% gamma percentile (KM)	29.31

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (7.15, α)	2.255	Adjusted Chi Square Value (7.15, β)	2.231
15% Gamma Approximate KM-UCL (use when n>=50)	3.363	95% Gamma Adjusted KM-UCL (use when n<50)	3.399

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.983	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0.659	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0523	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0867	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	1.049	Mean in Log Scale	-3.036
SD in Original Scale	7.935	SD in Log Scale	2.115
95% t UCL (assumes normality of ROS data)	2.071	95% Percentile Bootstrap UCL	2.29
95% BCA Bootstrap UCL	3.063	95% Bootstrap t UCL	6.89
95% H-UCL (Log ROS)	0.779		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

n 0.046	KM Geo Mean	-3.078	KM Mean (logged)
3.506	95% Critical H Value (KM-Log)	2.269	KM SD (logged)
g) 1.123	95% H-UCL (KM -Log)	0.195	KM Standard Error of Mean (logged)
3.506	95% Critical H Value (KM-Log)	2.269	KM SD (logged)
		0 195	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.119	Mean in Log Scale	-2.516
SD in Original Scale	7.928	SD in Log Scale	2.157
95% t UCL (Assumes normality)	2.14	95% H-Stat UCL	1.46

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 1.123

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Nickel

General Statistics

Total Number of Observations	6	Number of Distinct Observations	5
		Number of Missing Observations	33
Minimum	11	Mean	18.33
Maximum	30	Median	18.5
SD	6.623	Std. Error of Mean	2.704
Coefficient of Variation	0.361	Skewness	1.076

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.892	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.293	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

	• • • • • • • • • • • • • • • • • • • •		
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	23.78	95% Adjusted-CLT UCL (Chen-1995)	24.05

95% Student's-t UCL 23.78 95% Adjusted-CLT UCL (Chen-1995) 24.05 95% Modified-t UCL (Johnson-1978) 23.98

Gamma GOF Test

A-D Test Statistic	0.348	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.698)e	etected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.247	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.332)€	etected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

5.047	k star (bias corrected MLE)	9.871	k hat (MLE)
3.633	Theta star (bias corrected MLE)	1.857	Theta hat (MLE)
60.56	nu star (bias corrected)	118.5	nu hat (MLE)
8.161	MLE Sd (bias corrected)	18.33	MLE Mean (bias corrected)
43.67	Approximate Chi Square Value (0.05)		
38.54	Adjusted Chi Square Value	0.0122	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 25.43 95% Adjusted Gamma UCL (use when n<50) 28.81

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.94	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.788	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.235	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.325	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2.398	Mean of logged Data	2.857
Maximum of Logged Data	3.401	SD of logged Data	0.349

Assuming Lognormal Distribution

95% H-UCL	26.55	90% Chebyshev (MVUE) UCL	26.13
95% Chebyshev (MVUE) UCL	29.68	97.5% Chebyshev (MVUE) UCL	34.6
99% Chebyshev (MVUE) UCL	44.26		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	22.78	95% Jackknife UCL	23.78
95% Standard Bootstrap UCL	22.36	95% Bootstrap-t UCL	24.35
95% Hall's Bootstrap UCL	29.15	95% Percentile Bootstrap UCL	22.5
95% BCA Bootstrap UCL	23.17		
90% Chebyshev(Mean, Sd) UCL	26.45	95% Chebyshev(Mean, Sd) UCL	30.12
97.5% Chebyshev(Mean, Sd) UCL	35.22	99% Chebyshev(Mean, Sd) UCL	45.24

Suggested UCL to Use

95% Student's-t UCL 23.78

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

PCB, Total Aroclors (AECOM Calc)

General Statistics

Total Number of Observations	22	Number of Distinct Observations	20
		Number of Missing Observations	149
Number of Detects	11	Number of Non-Detects	11
Number of Distinct Detects	11	Number of Distinct Non-Detects	9
Minimum Detect	0.017	Minimum Non-Detect	9.8000E-4
Maximum Detect	0.71	Maximum Non-Detect	0.01
Variance Detects	0.0379	Percent Non-Detects	50%
Mean Detects	0.215	SD Detects	0.195
Median Detects	0.18	CV Detects	0.907
Skewness Detects	1.735	Kurtosis Detects	3.941
Mean of Logged Detects	-1.96	SD of Logged Detects	1.07

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.84	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.186	Lilliefors GOF Test
5% Lilliefors Critical Value	0.251	Detected Data appear Normal at 5% Significance Level

Detected Data appear Approximate Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.108	KM Standard Error of Mean	0.0379
KM SD	0.169	95% KM (BCA) UCL	0.176
95% KM (t) UCL	0.173	95% KM (Percentile Bootstrap) UCL	0.17
95% KM (z) UCL	0.17	95% KM Bootstrap t UCL	0.214
00% KM Chebyshev UCL	0.221	95% KM Chebyshev UCL	0.273
.5% KM Chebyshev UCL	0.344	99% KM Chebyshev UCL	0.485

Gamma GOF Tests on Detected Observations Only

96 Anderson-Darling GOF Test	0.196	A-D Test Statistic
45 Detected data appear Gamma Distributed at 5% Significance	0.745	5% A-D Critical Value
23 Kolmogorov-Smirnov GOF	0.123	K-S Test Statistic
61 Detected data appear Gamma Distributed at 5% Significance	0.261	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.025	k star (bias corrected MLE)	1.326	k hat (MLE)
0.209	Theta star (bias corrected MLE)	0.162	Theta hat (MLE)
22.56	nu star (bias corrected)	29.18	nu hat (MLE)
		0.215	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.112
Maximum	0.71	Median	0.0135
SD	0.17	CV	1.517
k hat (MLE)	0.568	k star (bias corrected MLE)	0.521
Theta hat (MLE)	0.198	Theta star (bias corrected MLE)	0.216
nu hat (MLE)	24.99	nu star (bias corrected)	22.92
Adjusted Level of Significance (β)	0.0386		
Approximate Chi Square Value (22.92, α)	13.03	Adjusted Chi Square Value (22.92, β)	12.47
95% Gamma Approximate UCL (use when n>=50)	0.198	95% Gamma Adjusted UCL (use when n<50)	0.206

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.108	SD (KM)	0.169
Variance (KM)	0.0287	SE of Mean (KM)	0.0379
k hat (KM)	0.406	k star (KM)	0.381
nu hat (KM)	17.86	nu star (KM)	16.75
theta hat (KM)	0.266	theta star (KM)	0.283
80% gamma percentile (KM)	0.173	90% gamma percentile (KM)	0.307
95% gamma percentile (KM)	0.456	99% gamma percentile (KM)	0.831

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (16.75, α)	8.497	Adjusted Chi Square Value (16.75, β)	8.06
15% Gamma Approximate KM-UCL (use when n>=50)	0.213	95% Gamma Adjusted KM-UCL (use when n<50)	0.224

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.955	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.136	Lilliefors GOF Test
5% Lilliefors Critical Value	0.251	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-3.358	Mean in Log Scale	0.112	Mean in Original Scale
1.629	SD in Log Scale	0.171	SD in Original Scale
0.178	95% Percentile Bootstrap UCL	0.175	95% t UCL (assumes normality of ROS data)
0.217	95% Bootstrap t UCL	0.2	95% BCA Bootstrap UCL
		0.464	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

-4.444	KM Geo Mean	0.0117
2.586	95% Critical H Value (KM-Log)	5.226
0.578	95% H-UCL (KM -Log)	6.358
2.586	95% Critical H Value (KM-Log)	5.226
0.578		
	2.586 0.578 2.586	2.586 95% Critical H Value (KM-Log) 0.578 95% H-UCL (KM -Log) 2.586 95% Critical H Value (KM-Log)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.109	Mean in Log Scale	-4.135
SD in Original Scale	0.173	SD in Log Scale	2.419
95% t UCL (Assumes normality)	0.172	95% H-Stat UCL	4.008

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.173

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test

When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

TCDD TEQ HH

General Statistics

 Total Number of Observations
 4
 Number of Distinct Observations
 4

 Number of Missing Observations
 33

 Minimum
 4.7000E-7
 Mean
 6.5700E-6

 Maximum
 1.3700E-5
 Median
 6.0550E-6

 SD
 5.4494E-6
 Std. Error of Mean
 2.7247E-6

 Coefficient of Variation
 N/A
 Skewness
 0.554

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk GOF Test	0.963	Shapiro Wilk Test Statistic
Data appear Normal at 5% Significance Level	0.748	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.251	Lilliefors Test Statistic
Data appear Normal at 5% Significance Level	0.375	5% Lilliefors Critical Value

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95	5% UCLs (Adjusted for Skewness)
-------------------	---------------------------------

95% Student's-t UCL 1.2982E-5 95% Adjusted-CLT UCL (Chen-1995) 1.1858E-5 95% Modified-t UCL (Johnson-1978) 1.3108E-5

Gamma GOF Test

A-D Test Statistic	0.361	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.666	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.311	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.402	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

0.442	k star (bias corrected MLE)	1.102	k hat (MLE)
1.4862E-5	Theta star (bias corrected MLE)	5.9640E-6	Theta hat (MLE)
3.537	nu star (bias corrected)	8.813	nu hat (MLE)
9.8814E-6	MLE Sd (bias corrected)	6.5700E-6	MLE Mean (bias corrected)
0.548	Approximate Chi Square Value (0.05)		
N/A	Adjusted Chi Square Value	N/A	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 4.2425E-5 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.853	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.748	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.344	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.375	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-14.57	Mean of logged Data	-12.45
Maximum of Logged Data	-11.2	SD of logged Data	1.466

Assuming Lognormal Distribution

95% H-UCL 0.0407 90% Chebyshev (MVUE) UCL 2.2877E-5
95% Chebyshev (MVUE) UCL 2.9650E-5 97.5% Chebyshev (MVUE) UCL 3.9050E-5
99% Chebyshev (MVUE) UCL 5.7515E-5

February 2020

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 1.1052E-5	95% Jackknife UCL 1.2982E-5
95% Standard Bootstrap UCL N/A	95% Bootstrap-t UCL N/A
95% Hall's Bootstrap UCL N/A	95% Percentile Bootstrap UCL N/A
95% BCA Bootstrap UCL N/A	
90% Chebyshev(Mean, Sd) UCL 1.4744E-5	95% Chebyshev(Mean, Sd) UCL 1.8447E-5
97.5% Chebyshev(Mean, Sd) UCL 2.3586E-5	99% Chebyshev(Mean, Sd) UCL 3.3680E-5

Suggested UCL to Use

95% Student's-t UCL 1.2982E-5

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Thallium

General Statistics

Total Number of Observations	6	Number of Distinct Observations	5
		Number of Missing Observations	33
Number of Detects	3	Number of Non-Detects	3
Number of Distinct Detects	3	Number of Distinct Non-Detects	3
Minimum Detect	0.071	Minimum Non-Detect	0.1
Maximum Detect	0.13	Maximum Non-Detect	0.12
Variance Detects 8	3.7033E-4	Percent Non-Detects	50%
Mean Detects	0.1	SD Detects	0.0295
Median Detects	0.1	CV Detects	0.294
Skewness Detects	0.0508	Kurtosis Detects	N/A
Mean of Logged Detects	-2.329	SD of Logged Detects	0.303

Warning: Data set has only 3 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	1	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Normal at 5% Significance Level		
Lilliefors Test Statistic	0.176	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.425	Detected Data appear Normal at 5% Significance Level		
Detected Data appear Normal at 5% Significance Level				

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.0889	KM Standard Error of Mean	0.0122
KM SD	0.0222	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.114	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.109	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.126	95% KM Chebyshev UCL	0.142
97 5% KM Chehyshev LICI	0.165	99% KM Chebyshey UCL	0.211

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

k hat (MLE)	16.81	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.00597	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	100.9	nu star (bias corrected)	N/A
Mean (detects)	0.1		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.0887	Mean	0.0705	Minimum
0.0804	Median	0.13	Maximum
0.258	CV	0.0229	SD
10.35	k star (bias corrected MLE)	20.49	k hat (MLE)
0.00857	Theta star (bias corrected MLE)	0.00433	Theta hat (MLE)
124.2	nu star (bias corrected)	245.8	nu hat (MLE)
		0.0122	Adjusted Level of Significance (β)
91.51	Adjusted Chi Square Value (124.25, β)	99.51	Approximate Chi Square Value (124.25, α)
N/A	95% Gamma Adjusted UCL (use when n<50)	0.111	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.0889	SD (KM)	0.0222
Variance (KM)	4.9377E-4	SE of Mean (KM)	0.0122
k hat (KM)	16	k star (KM)	8.112
nu hat (KM)	192	nu star (KM)	97.35
theta hat (KM)	0.00555	theta star (KM)	0.011
80% gamma percentile (KM)	0.114	90% gamma percentile (KM)	0.13
95% gamma percentile (KM)	0.146	99% gamma percentile (KM)	0.177

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (97.35, α)	75.59	Adjusted Chi Square Value (97.35, β)	68.69
15% Gamma Approximate KM-LICL (use when n>=50)	0.114	95% Gamma Adjusted KM-UCL (use when n<50)	0.126

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.994	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.202	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0887	Mean in Log Scale	-2.448
SD in Original Scale	0.0229	SD in Log Scale	0.235
95% t UCL (assumes normality of ROS data)	0.107	95% Percentile Bootstrap UCL	0.103
95% BCA Bootstrap UCL	0.107	95% Bootstrap t UCL	0.154
95% H-UCL (Log ROS)	0.111		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.449	KM Geo Mean	0.0864
KM SD (logged)	0.235	95% Critical H Value (KM-Log)	2.12
KM Standard Error of Mean (logged)	0.132	95% H-UCL (KM -Log)	0.111
KM SD (logged)	0.235	95% Critical H Value (KM-Log)	2.12
KM Standard Error of Mean (logged)	0.132		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.0777	Mean in Log Scale	-2.616
SD in Original Scale	0.0312	SD in Log Scale	0.373
95% t UCL (Assumes normality)	0.103	95% H-Stat UCL	0.116

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.114

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Vanadium

General Statistics

Total Number of Observations	6	Number of Distinct Observations	6
		Number of Missing Observations	33
Minimum	16	Mean	24.17
Maximum	36	Median	21.5
SD	7.731	Std. Error of Mean	3.156
Coefficient of Variation	0.32	Skewness	0.792

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.91	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.227	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normai OCL		95% UCLS (Adjusted for Skewness)		95% UCLS (Adjusted for Skewness)	
95% Student's-t UCL	30.53	95% Adjusted-CLT UCL (Chen-1995)	30.45		

95% Student's-t UCL 30.53 95% Adjusted-CLT UCL (Chen-1995) 30.45 95% Modified-t UCL (Johnson-1978) 30.7

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.315	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.698	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.209	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.332	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

6.339	k star (bias corrected MLE)	12.46	k hat (MLE)
3.813	Theta star (bias corrected MLE)	1.94	Theta hat (MLE)
76.06	nu star (bias corrected)	149.5	nu hat (MLE)
9.599	MLE Sd (bias corrected)	24.17	MLE Mean (bias corrected)
56.98	Approximate Chi Square Value (0.05)		
51.05	Adjusted Chi Square Value	0.0122	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 32.26 95% Adjusted Gamma UCL (use when n<50) 36.01

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.944	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.788	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.185	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.325	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2.773	Mean of logged Data	3.144
Maximum of Logged Data	3.584	SD of logged Data	0.309

Assuming Lognormal Distribution

95% H-UCL	33.17	90% Chebyshev (MVUE) UCL	33.27
95% Chebyshev (MVUE) UCL	37.41	97.5% Chebyshev (MVUE) UCL	43.15
99% Chebyshev (MVUE) UCL	54.42		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	29.36	95% Jackknife UCL	30.53
95% Standard Bootstrap UCL	28.86	95% Bootstrap-t UCL	36.19
95% Hall's Bootstrap UCL	72.21	95% Percentile Bootstrap UCL	29.17
95% BCA Bootstrap UCL	29.67		
90% Chebyshev(Mean, Sd) UCL	33.64	95% Chebyshev(Mean, Sd) UCL	37.92
97.5% Chebyshev(Mean, Sd) UCL	43.88	99% Chebyshev(Mean, Sd) UCL	55.57

Suggested UCL to Use

95% Student's-t UCL 30.53

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.18/29/2018 2:19:22 PM

From File Soil_Substat7.xls

Full Precision OFF
Confidence Coefficient 95%
Imber of Bootstrap Operations 2000

Arsenic

General Statistics

Total Number of Observations	7	Number of Distinct Observations	7
		Number of Missing Observations	18
Minimum	0.65	Mean	6.636
Maximum	33	Median	2.6
SD	11.69	Std. Error of Mean	4.418
Coefficient of Variation	1.762	Skewness	2.586

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.551	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.453	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal OCL		90% OCLS (Aujusteu foi Skewiless)	
95% Student's-t UCL	15.22	95% Adjusted-CLT UCL (Chen-1995)	18.52
		95% Modified-t UCL (Johnson-1978)	15.94

Gamma GOF Test

A-D Test Statistic	0.821	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.739	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.363	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.323	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

0.498	k star (bias corrected MLE)	0.705	k hat (MLE)
13.32	Theta star (bias corrected MLE)	9.413	Theta hat (MLE)
6.973	nu star (bias corrected)	9.87	nu hat (MLE)
9.402	MLE Sd (bias corrected)	6.636	MLE Mean (bias corrected)
2.156	Approximate Chi Square Value (0.05)		
1.44	Adjusted Chi Square Value	0.0158	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 21.46 95% Adjusted Gamma UCL (use when n<50) 32.13

Lognormal GOF Test

Shapiro Wilk Lognormal GOF Test	0.9	Shapiro Wilk Test Statistic
03 Data appear Lognormal at 5% Significance Le	0.803	5% Shapiro Wilk Critical Value
63 Lilliefors Lognormal GOF Test	0.263	Lilliefors Test Statistic
04 Data appear Lognormal at 5% Significance Le	0.304	5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.431	Mean of logged Data	1.036
Maximum of Logged Data	3.497	SD of logged Data	1.258

Assuming Lognormal Distribution

Soil ProUCL Output - Substation #7

95% H-UCL	61.23	90% Chebyshev (MVUE) UCL	12.79
95% Chebyshev (MVUE) UCL	16.18	97.5% Chebyshev (MVUE) UCL	20.9
99% Chebyshev (MVUE) UCL	30.16		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

15.22	95% Jackknife UCL	13.9	95% CLT UCL
61.84	95% Bootstrap-t UCL	13.32	95% Standard Bootstrap UCL
15.15	95% Percentile Bootstrap UCL	55.51	95% Hall's Bootstrap UCL
		19.34	95% BCA Bootstrap UCL
25.89	95% Chebyshev(Mean, Sd) UCL	19.89	90% Chebyshev(Mean, Sd) UCL
50.59	99% Chebyshev(Mean, Sd) UCL	34.23	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 25.89

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)anthracene

General Statistics

Total Number of Observations	12	Number of Distinct Observations	12
		Number of Missing Observations	13
Number of Detects	6	Number of Non-Detects	6
Number of Distinct Detects	6	Number of Distinct Non-Detects	6
Minimum Detect	0.009	Minimum Non-Detect	0.0073
Maximum Detect	1.8	Maximum Non-Detect	0.036
Variance Detects	0.517	Percent Non-Detects	50%
Mean Detects	0.335	SD Detects	0.719
Median Detects	0.038	CV Detects	2.147
Skewness Detects	2.434	Kurtosis Detects	5.94
Mean of Logged Detects	-2.904	SD of Logged Detects	1.946

Normal C	GOF Test o	n Detects Only
Shapiro Wilk Test Statistic	0.541	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.456	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.171	KM Standard Error of Mean	0.156
KM SD	0.492	95% KM (BCA) UCL	0.467
95% KM (t) UCL	0.451	95% KM (Percentile Bootstrap) UCL	0.464
95% KM (z) UCL	0.427	95% KM Bootstrap t UCL	4.473
90% KM Chebyshev UCL	0.638	95% KM Chebyshev UCL	0.849
97.5% KM Chehyshey UCI	1.143	99% KM Chebyshey UCL	1.719

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic 0.793	Anderson-Darling GOF Test
5% A-D Critical Value 0.756	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic 0.333	Kolmogorov-Smirnov GOF
5% K-S Critical Value 0.354	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.368	k star (bias corrected MLE)	0.295
Theta hat (MLE)	0.909	Theta star (bias corrected MLE)	1.134
nu hat (MLE)	4.42	nu star (bias corrected)	3.544
Mean (detects)	0.335		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.009	Mean	0.172
Maximum	1.8	Median	0.01
SD	0.513	CV	2.978
k hat (MLE)	0.339	k star (bias corrected MLE)	0.309
Theta hat (MLE)	0.509	Theta star (bias corrected MLE)	0.557
nu hat (MLE)	8.125	nu star (bias corrected)	7.427
Adjusted Level of Significance (β)	0.029		
Approximate Chi Square Value (7.43, α)	2.408	Adjusted Chi Square Value (7.43, β)	1.995
95% Gamma Approximate UCL (use when n>=50)	0.532	95% Gamma Adjusted UCL (use when n<50)	0.642

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.171	SD (KM)	0.492
Variance (KM)	0.242	SE of Mean (KM)	0.156
k hat (KM)	0.121	k star (KM)	0.146
nu hat (KM)	2.909	nu star (KM)	3.515
theta hat (KM)	1.413	theta star (KM)	1.169
80% gamma percentile (KM)	0.183	90% gamma percentile (KM)	0.506
95% gamma percentile (KM)	0.947	99% gamma percentile (KM)	2.233

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (3.52, α)	0.54	Adjusted Chi Square Value (3.52, β)	0.396
15% Gamma Approximate KM-UCL (use when n>=50)	1.115	95% Gamma Adjusted KM-UCL (use when n<50)	1.522

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.88	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.207	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-5.26	Mean in Log Scale	0.168	Mean in Original Scale
2.813	SD in Log Scale	0.515	SD in Original Scale
0.458	95% Percentile Bootstrap UCL	0.435	95% t UCL (assumes normality of ROS data)
5.111	95% Bootstrap t UCL	0.616	95% BCA Bootstrap UCL
		84.69	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.893	KM Geo Mean	0.0204
KM SD (logged)	1.603	95% Critical H Value (KM-Log)	4.11
KM Standard Error of Mean (logged)	0.508	95% H-UCL (KM -Log)	0.536
KM SD (logged)	1.603	95% Critical H Value (KM-Log)	4.11
KM Standard Error of Mean (logged)	0.508		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	0.171	Mean in Log Scale	-4.108	
SD in Original Scale	0.514	SD in Log Scale	1.867	
95% t UCL (Assumes normality)	0.437	95% H-Stat UCL	1.302	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL 4.473 d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 1.522

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)pyrene

0	Statistics
General	Statistics

Total Number of Observations	12	Number of Distinct Observations	11
		Number of Missing Observations	13
Number of Detects	6	Number of Non-Detects	6
Number of Distinct Detects	6	Number of Distinct Non-Detects	6
Minimum Detect	0.0079	Minimum Non-Detect	0.0073
Maximum Detect	1.4	Maximum Non-Detect	0.036
Variance Detects	0.31	Percent Non-Detects	50%
Mean Detects	0.264	SD Detects	0.557
Median Detects	0.0405	CV Detects	2.111
Skewness Detects	2.436	Kurtosis Detects	5.948
Mean of Logged Detects	-2.975	SD of Logged Detects	1.833

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.541	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.463	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.136	KM Standard Error of Mean	0.121
KM SD	0.382	95% KM (BCA) UCL	0.37
95% KM (t) UCL	0.353	95% KM (Percentile Bootstrap) UCL	0.362
95% KM (z) UCL	0.335	95% KM Bootstrap t UCL	2.66
90% KM Chebyshev UCL	0.498	95% KM Chebyshev UCL	0.662
97.5% KM Chebyshev UCL	0.89	99% KM Chebyshev UCL	1.337

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.792	Anderson-Darling GOF Test
5% A-D Critical Value	0.751	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.365	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.353	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.311	k star (bias corrected MLE)	0.4	k hat (MLE)
0.848	Theta star (bias corrected MLE)	0.659	Theta hat (MLE)
3.736	nu star (bias corrected)	4.805	nu hat (MLE)
		0.264	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.137	Mean	0.0079	Minimum
0.01	Median	1.4	Maximum
2.908	CV	0.398	SD
0.333	k star (bias corrected MLE)	0.37	k hat (MLE)
0.412	Theta star (bias corrected MLE)	0.37	Theta hat (MLE)
7.99	nu star (bias corrected)	8.875	nu hat (MLE)
		0.029	Adjusted Level of Significance (β)
2.282	Adjusted Chi Square Value (7.99, β)	2.729	Approximate Chi Square Value (7.99, α)
0.48	95% Gamma Adjusted UCL (use when n<50)	0.401	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.136	SD (KM)	0.382
Variance (KM)	0.146	SE of Mean (KM)	0.121
k hat (KM)	0.127	k star (KM)	0.151
nu hat (KM)	3.041	nu star (KM)	3.614

Soil ProUCL Output - Substation #7

0.903	theta star (KM)	1.073	theta hat (KM)
0.403	90% gamma percentile (KM)	0.148	80% gamma percentile (KM)
1.746	99% gamma percentile (KM)	0.747	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (3.61, α)	0.575	Adjusted Chi Square Value (3.61, β)	0.423
)5% Gamma Approximate KM-UCL (use when n>=50)	0.854	95% Gamma Adjusted KM-UCL (use when n<50)	1.16

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.896	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.237	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-5.116	Mean in Log Scale	0.132	Mean in Original Scale
2.582	SD in Log Scale	0.4	SD in Original Scale
0.361	95% Percentile Bootstrap UCL	0.34	95% t UCL (assumes normality of ROS data)
3.052	95% Bootstrap t UCL	0.479	95% BCA Bootstrap UCL
		21.85	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.926	KM Geo Mean	0.0197
KM SD (logged)	1.524	95% Critical H Value (KM-Log)	3.946
KM Standard Error of Mean (logged)	0.484	95% H-UCL (KM -Log)	0.386
KM SD (logged)	1.524	95% Critical H Value (KM-Log)	3.946
KM Standard Error of Mean (logged)	0 484		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.135	Mean in Log Scale	-4.143
SD in Original Scale	0.399	SD in Log Scale	1.789
95% t UCL (Assumes normality)	0.342	95% H-Stat UCL	0.893

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

97.5% KM (Chebyshev) UCL 0.89 99% KM (Chebyshev) UCL 1.337

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(b)fluoranthene

General Statistics

12	Number of Distinct Observations	12
	Number of Missing Observations	13
7	Number of Non-Detects	5
7	Number of Distinct Non-Detects	5
0.004	Minimum Non-Detect	0.0074
3.2	Maximum Non-Detect	0.036
1.412	Percent Non-Detects	41.67%
0.509	SD Detects	1.188
0.046	CV Detects	2.334
2.628	Kurtosis Detects	6.927
-2.846	SD of Logged Detects	2.186
	7 7 0.004 3.2 1.412 0.509 0.046 2.628	Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Maximum Non-Detect August Percent Non-Detect SD Detects CV Detects Kurtosis Detects

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.5	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.46	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.299	KM Standard Error of Mean	0.273
KM SD	0.876	95% KM (BCA) UCL	0.827
95% KM (t) UCL	0.79	95% KM (Percentile Bootstrap) UCL	0.824
95% KM (z) UCL	0.748	95% KM Bootstrap t UCL	10.71
90% KM Chebyshev UCL	1.119	95% KM Chebyshev UCL	1.49
97.5% KM Chebyshev UCL	2.006	99% KM Chebyshev UCL	3.018

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.76	Anderson-Darling GOF Test
5% A-D Critical Value	0.782)etected	data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.295	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.334 Detected	data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.275	k star (bias corrected MLE)	0.315	k hat (MLE)
1.849	Theta star (bias corrected MLE)) 1.616	Theta hat (MLE)
3.854	nu star (bias corrected)) 4.411	nu hat (MLE)
		0.509	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.004	Mean	0.301
Maximum	3.2	Median	0.011
SD	0.915	CV	3.037
k hat (MLE)	0.291	k star (bias corrected MLE)	0.274
Theta hat (MLE)	1.034	Theta star (bias corrected MLE)	1.099
nu hat (MLE)	6.99	nu star (bias corrected)	6.576
Adjusted Level of Significance (β)	0.029		
Approximate Chi Square Value (6.58, α)	1.941	Adjusted Chi Square Value (6.58, β)	1.582
95% Gamma Approximate UCL (use when n>=50)	1.02	95% Gamma Adjusted UCL (use when n<50)	1.252

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.299	SD (KM)	0.876
Variance (KM)	0.768	SE of Mean (KM)	0.273
k hat (KM)	0.116	k star (KM)	0.143
nu hat (KM)	2.792	nu star (KM)	3.428
theta hat (KM)	2.569	theta star (KM)	2.093
80% gamma percentile (KM)	0.312	90% gamma percentile (KM)	0.88
95% gamma percentile (KM)	1.661	99% gamma percentile (KM)	3.95

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (3.43, α)	0.51	Adjusted Chi Square Value (3.43, β)	0.372
15% Gamma Approximate KM-UCL (use when n>=50)	2.011	95% Gamma Adjusted KM-UCL (use when n<50)	2.756

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.952	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.149	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.298	Mean in Log Scale	-4.245
SD in Original Scale	0.916	SD in Log Scale	2.375
95% t UCL (assumes normality of ROS data)	0.773	95% Percentile Bootstrap UCL	0.815
95% BCA Bootstrap UCL	1.088	95% Bootstrap t UCL	10.76
95% H-UCL (Log ROS)	15.19		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.929	KM Geo Mean	0.0197
KM SD (logged)	2.018	95% Critical H Value (KM-Log)	5.002
KM Standard Error of Mean (logged)	0.632	95% H-UCL (KM -Log)	3.161
KM SD (logged)	2.018	95% Critical H Value (KM-Log)	5.002
KM Standard Error of Mean (logged)	0.632		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	0.3	Mean in Log Scale	-3.848	
SD in Original Scale	0.915	SD in Log Scale	2.077	
95% t UCL (Assumes normality)	0.774	95% H-Stat UCL	4.584	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL 10.71 d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 2.756

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(k)fluoranthene

General Statistics

Total Number of Observations	12	Number of Distinct Observations	11
		Number of Missing Observations	13
Number of Detects	6	Number of Non-Detects	6
Number of Distinct Detects	6	Number of Distinct Non-Detects	6
Minimum Detect	0.0047	Minimum Non-Detect	0.0073
Maximum Detect	1.7	Maximum Non-Detect	0.036
Variance Detects	0.469	Percent Non-Detects	50%
Mean Detects	0.302	SD Detects	0.685
Median Detects	0.0235	CV Detects	2.265
Skewness Detects	2.445	Kurtosis Detects	5.984
Mean of Logged Detects	-3.386	SD of Logged Detects	2.124

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.521	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.474	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.147	KM Standard Error of Mean	0.154	KM Mean
0.437	95% KM (BCA) UCL	0.466	KM SD
0.433	95% KM (Percentile Bootstrap) UCL	0.419	95% KM (t) UCL
6.863	95% KM Bootstrap t UCL	0.397	95% KM (z) UCL
0.797	95% KM Chebyshev UCL	0.597	90% KM Chebyshev UCL
1.621	99% KM Chebyshev UCL	1.075	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

3 Anderson-Darling GOF Test	
5 Detected Data Not Gamma Distributed at 5% Significant	ficance Level
4 Kolmogorov-Smirnov GOF	
6 Detected Data Not Gamma Distributed at 5% Significant	ficance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.267	k star (bias corrected MLE)	0.313	k hat (MLE)
1.13	Theta star (bias corrected MLE)	0.967	Theta hat (MLE)
3.21	nu star (bias corrected)	3.753	nu hat (MLE)
		0.302	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.156	Mean	0.0047	Minimum
0.01	Median	1.7	Maximum
3.114	CV	0.486	SD
0.295	k star (bias corrected MLE)	0.319	k hat (MLE)
0.53	Theta star (bias corrected MLE)	0.489	Theta hat (MLE)
7.078	nu star (bias corrected)	7.66	nu hat (MLE)
		0.029	Adjusted Level of Significance (β)
1.822	Adjusted Chi Square Value (7.08, β)	2.214	Approximate Chi Square Value (7.08, α)
0.607	95% Gamma Adjusted UCL (use when n<50)	0.499	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.154	SD (KM)	0.466
Variance (KM)	0.217	SE of Mean (KM)	0.147
k hat (KM)	0.109	k star (KM)	0.137
nu hat (KM)	2.62	nu star (KM)	3.298
theta hat (KM)	1.411	theta star (KM)	1.121
80% gamma percentile (KM)	0.155	90% gamma percentile (KM)	0.45
95% gamma percentile (KM)	0.862	99% gamma percentile (KM)	2.078

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (3.30, α)	0.466	Adjusted Chi Square Value (3.30, β)	0.338
15% Gamma Approximate KM-UCL (use when n>=50)	1.091	95% Gamma Adjusted KM-UCL (use when n<50)	1.503

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.868	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.243	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.153	Mean in Log Scale	-4.633
SD in Original Scale	0.488	SD in Log Scale	1.956
95% t UCL (assumes normality of ROS data)	0.405	95% Percentile Bootstrap UCL	0.43
95% BCA Bootstrap UCL	0.578	95% Bootstrap t UCL	8.115
95% H-UCL (Log ROS)	1.162		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-4.309	KM Geo Mean	0.0134
KM SD (logged)	1.669	95% Critical H Value (KM-Log)	4.25
KM Standard Error of Mean (logged)	0.533	95% H-UCL (KM -Log)	0.46

Soil ProUCL Output - Substation #7

KM SD (logged) 1.669 95% Critical H Value (KM-Log) 4.25

KM Standard Error of Mean (logged) 0.533

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed				
Mean in Original Scale	0.154	Mean in Log Scale	-4.349		
SD in Original Scale	0.487	SD in Log Scale	1.802		
95% t UCL (Assumes normality)	0.407	95% H-Stat UCL	0.768		
DL/2 is not a recommended method, provided for comparisons and historical reasons					

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

99% KM (Chebyshev) UCL 1.621

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chrysene

General Statistics

Total Number of Observations	12	Number of Distinct Observations	12
		Number of Missing Observations	13
Number of Detects	6	Number of Non-Detects	6
Number of Distinct Detects	6	Number of Distinct Non-Detects	6
Minimum Detect	0.0098	Minimum Non-Detect	0.0073
Maximum Detect	3.2	Maximum Non-Detect	0.036
Variance Detects	1.64	Percent Non-Detects	50%
Mean Detects	0.591	SD Detects	1.281
Median Detects	0.049	CV Detects	2.168
Skewness Detects	2.43	Kurtosis Detects	5.921
Mean of Logged Detects	-2.54	SD of Logged Detects	2.117

Normal GOF Test on Detects Only

Shapiro Wilk GOF Test	0.544	Shapiro Wilk Test Statistic
Detected Data Not Normal at 5% Significance Leve	0.788	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.447	Lilliefors Test Statistic
Detected Data Not Normal at 5% Significance Leve	0.325	5% Lilliefors Critical Value

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.277	KM Standard Error of Mean	0.299	KM Mean
0.821	95% KM (BCA) UCL	0.877	KM SD
0.821	95% KM (Percentile Bootstrap) UCL	0.797	95% KM (t) UCL
14.37	95% KM Bootstrap t UCL	0.755	95% KM (z) UCL
1.508	95% KM Chebyshev UCL	1.131	90% KM Chebyshev UCL
3.057	99% KM Chebyshev UCL	2.03	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.721	Anderson-Darling GOF Test
5% A-D Critical Value	0.761	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.302	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.355	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.336	k star (bias corrected MLE)	0.279
Theta hat (MLE)	1.757	Theta star (bias corrected MLE)	2.116
nu hat (MLE)	4.034	nu star (bias corrected)	3.35
Mean (detects)	0.591		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0098	Mean	0.3
Maximum	3.2	Median	0.01
SD	0.915	CV	3.047
k hat (MLE)	0.292	k star (bias corrected MLE)	0.275
Theta hat (MLE)	1.028	Theta star (bias corrected MLE)	1.093
nu hat (MLE)	7.013	nu star (bias corrected)	6.593
Adjusted Level of Significance (β)	0.029		
Approximate Chi Square Value (6.59, α)	1.95	Adjusted Chi Square Value (6.59, β)	1.59
95% Gamma Approximate UCL (use when n>=50)	1.015	95% Gamma Adjusted UCL (use when n<50)	1.246

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.299	SD (KM)	0.877
Variance (KM)	0.768	SE of Mean (KM)	0.277
k hat (KM)	0.117	k star (KM)	0.143
nu hat (KM)	2.8	nu star (KM)	3.433
theta hat (KM)	2.566	theta star (KM)	2.093
80% gamma percentile (KM)	0.313	90% gamma percentile (KM)	0.881
95% gamma percentile (KM)	1.662	99% gamma percentile (KM)	3.952

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (3.43, α)	0.511	Adjusted Chi Square Value (3.43, β)	0.373
15% Gamma Approximate KM-UCL (use when n>=50)	2.009	95% Gamma Adjusted KM-UCL (use when n<50)	2.753

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.909	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.206	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.296	Mean in Log Scale	-5.121
SD in Original Scale	0.917	SD in Log Scale	3.078
95% t UCL (assumes normality of ROS data)	0.771	95% Percentile Bootstrap UCL	0.81
95% BCA Bootstrap UCL	1.099	95% Bootstrap t UCL	13.59
95% H-UCL (Log ROS)	634.2		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.703	KM Geo Mean	0.0247
KM SD (logged)	1.803	95% Critical H Value (KM-Log)	4.535
KM Standard Error of Mean (logged)	0.572	95% H-UCL (KM -Log)	1.472
KM SD (logged)	1.803	95% Critical H Value (KM-Log)	4.535
KM Standard Error of Mean (logged)	0.572		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.298	Mean in Log Scale	-3.926
SD in Original Scale	0.916	SD in Log Scale	2.077
95% t UCL (Assumes normality)	0.773	95% H-Stat UCL	4.245

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL 14.37 d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 2.753

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

General Statistics

Total Number of Observations	7	Number of Distinct Observations	6
		Number of Missing Observations	18
Minimum	1.8	Mean	3.786
Maximum	4.7	Median	4
SD	1.051	Std. Error of Mean	0.397
Coefficient of Variation	0.278	Skewness	-1.266

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.861	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.209	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

Assuming Normal Distribution			
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	4.558	95% Adjusted-CLT UCL (Chen-1995)	4.236
		95% Modified-t UCL (Johnson-1978)	4.526

Gamma GOF Test

A-D Test Statistic	0.606	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.708	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.222	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.312	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	11.63	k star (bias corrected MLE)	6.743
Theta hat (MLE)	0.325	Theta star (bias corrected MLE)	0.561
nu hat (MLE)	162.9	nu star (bias corrected)	94.4
MLE Mean (bias corrected)	3.786	MLE Sd (bias corrected)	1.458
		Approximate Chi Square Value (0.05)	73
Adjusted Level of Significance	0.0158	Adjusted Chi Square Value	67.33

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 4.896 95% Adjusted Gamma UCL (use when n<50) 5.308

Lognormal GOF Test

Shapiro Wilk Lognormal GOF Test	0.794	Shapiro Wilk Test Statistic
Data Not Lognormal at 5% Significance Level	0.803	5% Shapiro Wilk Critical Value
Lilliefors Lognormal GOF Test	0.238	Lilliefors Test Statistic
Data appear Lognormal at 5% Significance Leve	0.304	5% Lilliefors Critical Value

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.588	Mean of logged Data	1.288
Maximum of Logged Data	1.548	SD of logged Data	0.343

Assuming Lognormal Distribution

95% H-UCL	5.276	90% Chebyshev (MVUE) UCL	5.296
95% Chebyshev (MVUE) UCL	5.969	97.5% Chebyshev (MVUE) UCL	6.903
99% Chebyshev (MVUE) UCL	8.738		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	4.439	95% Jackknife UCL	4.558
95% Standard Bootstrap UCL	4.374	95% Bootstrap-t UCL	4.381

Soil ProUCL Output - Substation #7

95% Hall's Bootstrap UCL	4.26	95% Percentile Bootstrap UCL	4.343
95% BCA Bootstrap UCL	4.271		
90% Chebyshev(Mean, Sd) UCL	4.978	95% Chebyshev(Mean, Sd) UCL	5.517
97.5% Chebyshev(Mean, Sd) UCL	6.267	99% Chebyshev(Mean, Sd) UCL	7.738

Suggested UCL to Use

95% Student's-t UCL 4.558

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Dibenzo(a,h)anthracene

General Statistics

Total Number of Observations	12	Number of Distinct Observations	12
		Number of Missing Observations	13
Number of Detects	6	Number of Non-Detects	6
Number of Distinct Detects	6	Number of Distinct Non-Detects	6
Minimum Detect	0.002	Minimum Non-Detect	0.0073
Maximum Detect	0.4	Maximum Non-Detect	0.036
Variance Detects	0.0253	Percent Non-Detects	50%
Mean Detects	0.0764	SD Detects	0.159
Median Detects	0.0095	CV Detects	2.083
Skewness Detects	2.418	Kurtosis Detects	5.873
Mean of Logged Detects	-4.339	SD of Logged Detects	1.997

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.558	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.436	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.0344	KM Standard Error of Mean	0.0404	KM Mean
0.105	95% KM (BCA) UCL	0.109	KM SD
0.105	95% KM (Percentile Bootstrap) UCL	0.102	95% KM (t) UCL
0.972	95% KM Bootstrap t UCL	0.097	95% KM (z) UCL
0.19	95% KM Chebyshev UCL	0.144	90% KM Chebyshev UCL
0.383	99% KM Chebyshev UCL	0.255	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

65 Anderson-Darling GOF Test	0.665	A-D Test Statistic
55)etected data appear Gamma Distributed at 5% Significan	0.755	5% A-D Critical Value
85 Kolmogorov-Smirnov GOF	0.285	K-S Test Statistic
54)etected data appear Gamma Distributed at 5% Significan	0.354	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.376	k star (bias corrected MLE)	0.299
Theta hat (MLE)	0.203	Theta star (bias corrected MLE)	0.255
nu hat (MLE)	4.515	nu star (bias corrected)	3.591
Mean (detects)	0.0764		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ \verb|<|1.0|, especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ \verb|<|15-20|)$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

 Minimum
 0.002
 Mean
 0.0432

 Maximum
 0.4
 Median
 0.01

Soil ProUCL Output - Substation #7

2.61	CV	0.113	SD
0.416	k star (bias corrected MLE)	0.481	k hat (MLE)
0.104	Theta star (bias corrected MLE)	0.0898	Theta hat (MLE)
9.985	nu star (bias corrected)	11.54	nu hat (MLE)
		0.029	Adjusted Level of Significance (β)
3.373	Adjusted Chi Square Value (9.99, β)	3.933	Approximate Chi Square Value (9.99, α)
0.128	95% Gamma Adjusted UCL (use when n<50)	0.11	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.0404	SD (KM)	0.109
Variance (KM)	0.0118	SE of Mean (KM)	0.0344
k hat (KM)	0.137	k star (KM)	0.159
nu hat (KM)	3.3	nu star (KM)	3.808
theta hat (KM)	0.294	theta star (KM)	0.254
80% gamma percentile (KM)	0.0459	90% gamma percentile (KM)	0.121
95% gamma percentile (KM)	0.22	99% gamma percentile (KM)	0.504

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (3.81, α)	0.647	Adjusted Chi Square Value (3.81, β)	0.481
15% Gamma Approximate KM-UCL (use when n>=50)	0.237	95% Gamma Adjusted KM-LICL (use when n<50)	0.32

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.903	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.183	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-5.036	Mean in Log Scale	0.0398	Mean in Original Scale
1.536	SD in Log Scale	0.114	SD in Original Scale
0.104	95% Percentile Bootstrap UCL	0.0988	95% t UCL (assumes normality of ROS data)
1.478	95% Bootstrap t UCL	0.138	95% BCA Bootstrap UCL
		0.133	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

<u> </u>			
KM Mean (logged)	-5.028	KM Geo Mean	0.00655
KM SD (logged)	1.537	95% Critical H Value (KM-Log)	3.972
KM Standard Error of Mean (logged)	0.538	95% H-UCL (KM -Log)	0.134
KM SD (logged)	1.537	95% Critical H Value (KM-Log)	3.972
KM Standard Error of Mean (logged)	0.538		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed			
Mean in Original Scale	0.0413	Mean in Log Scale	-4.825	
SD in Original Scale	0.113	SD in Log Scale	1.501	
95% t UCL (Assumes normality)	0.1	95% H-Stat UCL	0.145	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL 0.972 d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 0.32

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Diesel Range Organics (C10-C20)

General Statistics

Total Number of Observations	14	Number of Distinct Observations	6	
		Number of Missing Observations	11	
Number of Detects	1	Number of Non-Detects	13	
Number of Distinct Detects	1	Number of Distinct Non-Detects	6	

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! ested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV

The data set for variable Diesel Range Organics (C10-C20) was not processed!

Indeno(1,2,3-cd)pyrene

	General Statistics		
Total Number of Observations	12	Number of Distinct Observations	12
		Number of Missing Observations	13
Number of Detects	6	Number of Non-Detects	6
Number of Distinct Detects	6	Number of Distinct Non-Detects	6
Minimum Detect	0.0061	Minimum Non-Detect	0.0073
Maximum Detect	1.3	Maximum Non-Detect	0.036
Variance Detects	0.268	Percent Non-Detects	50%
Mean Detects	0.245	SD Detects	0.518
Median Detects	0.034	CV Detects	2.115
Skewness Detects	2.432	Kurtosis Detects	5.931
Mean of Logged Detects	-3.143	SD of Logged Detects	1.93

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.546	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.455	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.126	KM Standard Error of Mean	0.112
KM SD	0.355	95% KM (BCA) UCL	0.344
95% KM (t) UCL	0.327	95% KM (Percentile Bootstrap) UCL	0.338
95% KM (z) UCL	0.31	95% KM Bootstrap t UCL	3.319
90% KM Chebyshev UCL	0.462	95% KM Chebyshev UCL	0.615
97.5% KM Chebyshev UCL	0.826	99% KM Chebyshev UCL	1.242

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.717	Anderson-Darling GOF Test
5% A-D Critical Value	0.754	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.331	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.353	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.382	k star (bias corrected MLE)	0.302
Theta hat (MLE)	0.641	Theta star (bias corrected MLE)	0.81
nu hat (MLE)	4.584	nu star (bias corrected)	3.625
Mean (detects)	0.245		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.127	Mean	0.0061	Minimum
0.01	Median	1.3	Maximum
2.904	CV	0.37	SD
0.331	k star (bias corrected MLE)	0.368	k hat (MLE)
0.385	Theta star (bias corrected MLE)	0.346	Theta hat (MLE)
7.953	nu star (bias corrected)	8.827	nu hat (MLE)
		0.029	Adjusted Level of Significance (β)
2.264	Adjusted Chi Square Value (7.95, β)	2.708	Approximate Chi Square Value (7.95, α)
0.448	95% Gamma Adjusted UCL (use when n<50)	0.374	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Soil ProUCL Output - Substation #7

Mean (KM)	0.126	SD (KM)	0.355
Variance (KM)	0.126	SE of Mean (KM)	0.112
k hat (KM)	0.125	k star (KM)	0.15
nu hat (KM)	3.01	nu star (KM)	3.591
theta hat (KM)	1.002	theta star (KM)	0.84
80% gamma percentile (KM)	0.137	90% gamma percentile (KM)	0.372
95% gamma percentile (KM)	0.692	99% gamma percentile (KM)	1.62

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (3.59, α) 0.567 Adjusted Chi Square Value (3.59, β) 0.417 I5% Gamma Approximate KM-UCL (use when n>=50) 0.796 95% Gamma Adjusted KM-UCL (use when n<50) 1.083

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.914	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.196	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.124	Mean in Log Scale	-4.509
SD in Original Scale	0.371	SD in Log Scale	1.938
95% t UCL (assumes normality of ROS data)	0.316	95% Percentile Bootstrap UCL	0.336
95% BCA Bootstrap UCL	0.445	95% Bootstrap t UCL	3.398
95% H-UCL (Log ROS)	1.211		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-4.104	KM Geo Mean	0.0165
KM SD (logged)	1.579	95% Critical H Value (KM-Log)	4.059
KM Standard Error of Mean (logged)	0.501	95% H-UCL (KM -Log)	0.396
KM SD (logged)	1.579	95% Critical H Value (KM-Log)	4.059
KM Standard Error of Mean (logged)	0.501		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.126	Mean in Log Scale	-4.227
SD in Original Scale	0.371	SD in Log Scale	1.778
95% t UCL (Assumes normality)	0.318	95% H-Stat UCL	0.782

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL 3.319 d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 1.083

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Manganese

General Statistics

Total Number of Observations	7	Number of Distinct Observations	7
		Number of Missing Observations	18
Minimum	32	Mean	133.7
Maximum	370	Median	120
SD	115.3	Std. Error of Mean	43.6
Coefficient of Variation	0.863	Skewness	1.677

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.828	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.267	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 218.4
 95% Adjusted-CLT UCL (Chen-1995)
 235

 95% Modified-t UCL (Johnson-1978)
 223

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.282	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.718	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.168	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.316	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

1.105	k star (bias corrected MLE)	1.768	k hat (MLE)
121	Theta star (bias corrected MLE)	75.65	Theta hat (MLE)
15.47	nu star (bias corrected)	24.75	nu hat (MLE)
127.2	MLE Sd (bias corrected)	133.7	MLE Mean (bias corrected)
7.592	Approximate Chi Square Value (0.05)		
6.004	Adjusted Chi Square Value	0.0158	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 272.5 95% Adjusted Gamma UCL (use when n<50) 344.6

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.942	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.803	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.168	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.304	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	3.466	Mean of logged Data	4.587
Maximum of Logged Data	5.914	SD of logged Data	0.869

Assuming Lognormal Distribution

95% H-UCL	468.1	90% Chebyshev (MVUE) UCL	267.1
95% Chebyshev (MVUE) UCL	327.3	97.5% Chebyshev (MVUE) UCL	410.9
99% Chebyshev (MVUE) UCL	575.1		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	205.4	95% Jackknife UCL	218.4
95% Standard Bootstrap UCL	199.6	95% Bootstrap-t UCL	275
95% Hall's Bootstrap UCL	526.9	95% Percentile Bootstrap UCL	206.1
95% BCA Bootstrap UCL	227		
90% Chebyshev(Mean, Sd) UCL	264.5	95% Chebyshev(Mean, Sd) UCL	323.8
97.5% Chebyshev(Mean, Sd) UCL	406	99% Chebyshev(Mean, Sd) UCL	567.5

Suggested UCL to Use

95% Student's-t UCL 218.4

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Naphthalene

General Statistics

12	Number of Distinct Observations	12
	Number of Missing Observations	13
4	Number of Non-Detects	8
4	Number of Distinct Non-Detects	8
0.0038	Minimum Non-Detect	0.0073
0.067	Maximum Non-Detect	0.036
0.00104	Percent Non-Detects	66.67%
0.0325	SD Detects	0.0323
0.0296	CV Detects	0.995
0.156	Kurtosis Detects	-5.06
-4.078	SD of Logged Detects	1.468
	4 4 0.0038 0.067 0.00104 0.0325 0.0296 0.156	Number of Missing Observations 4 Number of Non-Detects 4 Number of Distinct Non-Detects 0.0038 Minimum Non-Detect 0.067 Maximum Non-Detect 0.00104 Percent Non-Detects 0.0325 SD Detects 0.0296 CV Detects 0.156 Kurtosis Detects

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.84	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.293	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.0141	KM Standard Error of Mean	0.00695
KM SD	0.0207	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.0266	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.0256	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.035	95% KM Chebyshev UCL	0.0444
97.5% KM Chebyshev UCL	0.0575	99% KM Chebyshev UCL	0.0833

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.496	Anderson-Darling GOF Test
5% A-D Critical Value	0.668 Detected	data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.306	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.403)etected	data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.898	k star (bias corrected MLE)	0.391
Theta hat (MLE)	0.0361	Theta star (bias corrected MLE)	0.083
nu hat (MLE)	7.187	nu star (bias corrected)	3.13
Mean (detects)	0.0325		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0038	Mean	0.0175
Maximum	0.067	Median	0.01
SD	0.0202	CV	1.154
k hat (MLE)	1.448	k star (bias corrected MLE)	1.142
Theta hat (MLE)	0.0121	Theta star (bias corrected MLE)	0.0153
nu hat (MLE)	34.75	nu star (bias corrected)	27.4
Adjusted Level of Significance (β)	0.029		
Approximate Chi Square Value (27.40, α)	16.46	Adjusted Chi Square Value (27.40, β)	15.18
95% Gamma Approximate UCL (use when n>=50)	0.0291	95% Gamma Adjusted UCL (use when n<50)	N/A

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.0141	SD (KM)	0.0207
Variance (KM)	4.3017E-4	SE of Mean (KM)	0.00695
k hat (KM)	0.464	k star (KM)	0.403
nu hat (KM)	11.13	nu star (KM)	9.682
theta hat (KM)	0.0305	theta star (KM)	0.035
80% gamma percentile (KM)	0.0228	90% gamma percentile (KM)	0.0398
95% gamma percentile (KM)	0.0585	99% gamma percentile (KM)	0.105

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (9.68, α)	3.744	Adjusted Chi Square Value (9.68, β)	3.201
15% Gamma Approximate KM-UCL (use when n>=50)	0.0365	95% Gamma Adjusted KM-UCL (use when n<50)	0.0427

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.843	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.281	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0144	Mean in Log Scale	-4.848
SD in Original Scale	0.0215	SD in Log Scale	0.955
95% t UCL (assumes normality of ROS data)	0.0255	95% Percentile Bootstrap UCL	0.0246
95% BCA Bootstrap UCL	0.0287	95% Bootstrap t UCL	0.397
95% H-UCL (Log ROS)	0.028		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-4.917	KM Geo Mean	0.00732
KM SD (logged)	0.963	95% Critical H Value (KM-Log)	2.849
KM Standard Error of Mean (logged)	0.352	95% H-UCL (KM -Log)	0.0266
KM SD (logged)	0.963	95% Critical H Value (KM-Log)	2.849
KM Standard Error of Mean (logged)	0.352		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.0146	Mean in Log Scale	-4.928
SD in Original Scale	0.0218	SD in Log Scale	1.081
95% t UCL (Assumes normality)	0.0259	95% H-Stat UCL	0.0353

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.0266

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Nickel

General Statistics

Total Number of Observations	7	Number of Distinct Observations	6
		Number of Missing Observations	18
Minimum	1.3	Mean	7.557
Maximum	14	Median	7
SD	5.113	Std. Error of Mean	1.933
Coefficient of Variation	0.677	Skewness	0.0717

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.891	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.236	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	11.31	95% Adjusted-CLT UCL (Chen-1995)	10.79	
		95% Modified-t UCL (Johnson-1978)	11.32	

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.395	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Lev	0.716	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.252	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Lev	0.315	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.935	k star (bias corrected MLE)	1.201
Theta hat (MLE)	3.905	Theta star (bias corrected MLE)	6.292
nu hat (MLE)	27.09	nu star (bias corrected)	16.81
MLE Mean (bias corrected)	7.557	MLE Sd (bias corrected)	6.896
		Approximate Chi Square Value (0.05)	8.539
Adjusted Level of Significance	0.0158	Adjusted Chi Square Value	6.836

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<=50)) 14.88 95% Adjusted Gamma UCL (use when n<50) 18.59

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.899	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.803	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.226	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.304	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.262	Mean of logged Data	1.742
Maximum of Logged Data	2.639	SD of logged Data	0.891

Assuming Lognormal Distribution

95% H-UCL	29.23	90% Chebyshev (MVUE) UCL	15.97
95% Chebyshev (MVUE) UCL	19.62	97.5% Chebyshev (MVUE) UCL	24.68
99% Chebyshev (MVUE) UCL	34.63		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

11.31	95% Jackknife UCL	10.74	95% CLT UCL
11.48	95% Bootstrap-t UCL	10.5	95% Standard Bootstrap UCL
10.61	95% Percentile Bootstrap UCL	9.908	95% Hall's Bootstrap UCL
		10.57	95% BCA Bootstrap UCL
15.98	95% Chebyshev(Mean, Sd) UCL	13.36	90% Chebyshev(Mean, Sd) UCL
26.79	99% Chebyshev(Mean, Sd) UCL	19.63	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 11.31

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

PCB, Total Aroclors (AECOM Calc)

General Statistics

Total Number of Observations	25	Number of Distinct Observations	21
Number of Detects	13	Number of Non-Detects	12
Number of Distinct Detects	13	Number of Distinct Non-Detects	9
Minimum Detect	0.0011	Minimum Non-Detect	9.2000E-4
Maximum Detect	5.1	Maximum Non-Detect	0.0053
Variance Detects	1.957	Percent Non-Detects	48%
Mean Detects	0.463	SD Detects	1.399
Median Detects	0.022	CV Detects	3.023
Skewness Detects	3.557	Kurtosis Detects	12.74
Mean of Logged Detects	-3.58	SD of Logged Detects	2.417

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.372	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.866	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.435	Lilliefors GOF Test
5% Lilliefors Critical Value	0.234	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.241	KM Standard Error of Mean	0.207
KM SD	0.996	95% KM (BCA) UCL	0.653
95% KM (t) UCL	0.596	95% KM (Percentile Bootstrap) UCL	0.639
95% KM (z) UCL	0.582	95% KM Bootstrap t UCL	4.569
90% KM Chebyshev UCL	0.863	95% KM Chebyshev UCL	1.145
97.5% KM Chebyshev UCL	1.536	99% KM Chebyshev UCL	2.305

Gamma GOF Tests on Detected Observations Only

62 Anderson-Darling GOF Test	1.262	A-D Test Statistic
51 Detected Data Not Gamma Distributed at 5% Significance Le	0.851	5% A-D Critical Value
54 Kolmogorov-Smirnov GOF	0.254	K-S Test Statistic
59 Detected data appear Gamma Distributed at 5% Significance	0.259	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.252	k star (bias corrected MLE)	0.245
Theta hat (MLE)	1.833	Theta star (bias corrected MLE)	1.885
nu hat (MLE)	6.563	nu star (bias corrected)	6.381
Mean (detects)	0.463		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 ${\sf GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ {\it <1.0},\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ {\it <15-20}) }$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

			- -
0.245	Mean	0.0011	Minimum
0.01	Median	5.1	Maximum
4.138	CV	1.016	SD
0.259	k star (bias corrected MLE)	0.264	k hat (MLE)
0.948	Theta star (bias corrected MLE)	0.93	Theta hat (MLE)
12.95	nu star (bias corrected)	13.2	nu hat (MLE)
		0.0395	Adjusted Level of Significance (β)
5.534	Adjusted Chi Square Value (12.95, β)	5.857	Approximate Chi Square Value (12.95, α)
0.574	95% Gamma Adjusted UCL (use when n<50)	0.543	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.241	SD (KM)	0.996
Variance (KM)	0.992	SE of Mean (KM)	0.207
k hat (KM)	0.0586	k star (KM)	0.0782
nu hat (KM)	2.93	nu star (KM)	3.912
theta hat (KM)	4.115	theta star (KM)	3.082
80% gamma percentile (KM)	0.11	90% gamma percentile (KM)	0.564
95% gamma percentile (KM)	1.401	99% gamma percentile (KM)	4.316

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (3.91, α) 0.687 Adjusted Chi Square Value (3.91, β) 0.604

15% Gamma Approximate KM-UCL (use when n>=50) 1.373 95% Gamma Adjusted KM-UCL (use when n<=50) 1.561

95% Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50)

Lognormal GOF Test on Detected Observations Only

0.956 Shapiro Wilk GOF Test	0.956	Shapiro Wilk Test Statistic	
0.866 Detected Data appear Lognormal at 5% Sig	0.866	5% Shapiro Wilk Critical Value	
0.14 Lilliefors GOF Test	0.14	Lilliefors Test Statistic	
0.234 Detected Data appear Lognormal at 5% Sig	0.234	5% Lilliefors Critical Value	

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-6.405	Mean in Log Scale	0.241	Mean in Original Scale
3.536	SD in Log Scale	1.017	SD in Original Scale
0.633	95% Percentile Bootstrap UCL	0.589	95% t UCL (assumes normality of ROS data)
4.605	95% Bootstrap t UCL	0.877	95% BCA Bootstrap UCL
		98.62	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-5.168	KM Geo Mean	0.00569
KM SD (logged)	2.361	95% Critical H Value (KM-Log)	4.569
KM Standard Error of Mean (logged)	0.494	95% H-UCL (KM -Log)	0.836
KM SD (logged)	2.361	95% Critical H Value (KM-Log)	4.569
KM Standard Error of Mean (logged)	0.494		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.241	Mean in Log Scale	-5.135
SD in Original Scale	1.017	SD in Log Scale	2.443
95% t UCL (Assumes normality)	0.589	95% H-Stat UCL	1.217

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 1.561

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

TCDD TEQ HH

General Statistics

2	Number of Distinct Observations	2	Total Number of Observations
21	Number of Missing Observations		
2.3660E-6	Mean	3.6200E-7	Minimum 3
2.3660E-6	Median	4.3700E-6	Maximum 4

Warning: This data set only has 2 observations!

Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable TCDD TEQ HH was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods!

If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Thallium

General Statistics

Total Number of Observations	7	Number of Distinct Observations	5
		Number of Missing Observations	18
Number of Detects	3	Number of Non-Detects	4
Number of Distinct Detects	3	Number of Distinct Non-Detects	2
Minimum Detect	0.02	Minimum Non-Detect	0.1
Maximum Detect	0.25	Maximum Non-Detect	0.11
Variance Detects	0.0158	Percent Non-Detects	57.14%
Mean Detects	0.106	SD Detects	0.126
Median Detects	0.047	CV Detects	1.19
Skewness Detects	1.643	Kurtosis Detects	N/A
Mean of Logged Detects	-2.785	SD of Logged Detects	1.285

Warning: Data set has only 3 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk GOF Test	0.837	Shapiro Wilk Test Statistic
Detected Data appear Normal at 5% Significance Leve	0.767	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.346	Lilliefors Test Statistic
Detected Data appear Normal at 5% Significance Leve	0.425	5% Lilliefors Critical Value

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.0644	KM Standard Error of Mean	0.0365
KM SD	0.0768	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.135	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.124	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.174	95% KM Chebyshev UCL	0.223
97.5% KM Chebyshev UCL	0.292	99% KM Chebyshev UCL	0.427

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

N/A	k star (bias corrected MLE)	1.065	k hat (MLE)
N/A	Theta star (bias corrected MLE)	0.0992	Theta hat (MLE)
N/A	nu star (bias corrected)	6.392	nu hat (MLE)
		0.106	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.0675	Mean	0.01	Minimum
0.032	Median	0.25	Maximum
1.24	CV	0.0837	SD
0.748	k star (bias corrected MLE)	1.143	k hat (MLE)
0.0901	Theta star (bias corrected MLE)	0.059	Theta hat (MLE)
10.48	nu star (bias corrected)	16	nu hat (MLE)
		0.0158	Adjusted Level of Significance (β)
3.131	Adjusted Chi Square Value (10.48, β)	4.242	Approximate Chi Square Value (10.48, α)
N/A	95% Gamma Adjusted UCL (use when n<50)	0.167	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.0644	SD (KM)	0.0768
Variance (KM)	0.0059	SE of Mean (KM)	0.0365

Soil ProUCL Output - Substation #7

k hat (KM)	0.704	k star (KM)	0.498
nu hat (KM)	9.857	nu star (KM)	6.966
theta hat (KM)	0.0915	theta star (KM)	0.129
80% gamma percentile (KM)	0.106	90% gamma percentile (KM)	0.174
95% gamma percentile (KM)	0.248	99% gamma percentile (KM)	0.429

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (6.97, α)	2.152	Adjusted Chi Square Value (6.97, β)	1.437
15% Gamma Approximate KM-UCL (use when n>=50)	0.209	95% Gamma Adjusted KM-UCL (use when n<50)	0.312

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.966	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.251	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0652	Mean in Log Scale	-3.182
SD in Original Scale	0.083	SD in Log Scale	0.929
95% t UCL (assumes normality of ROS data)	0.126	95% Percentile Bootstrap UCL	0.125
95% BCA Bootstrap UCL	0.132	95% Bootstrap t UCL	0.326
95% H-UCL (Log ROS)	0.241		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.185	KM Geo Mean	0.0414
KM SD (logged)	0.834	95% Critical H Value (KM-Log)	3.244
KM Standard Error of Mean (logged)	0.465	95% H-UCL (KM -Log)	0.177
KM SD (logged)	0.834	95% Critical H Value (KM-Log)	3.244
KM Standard Error of Mean (logged)	0.465		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed		
Mean in Original Scale	0.076	Mean in Log Scale	-2.865
SD in Original Scale	0.0777	SD in Log Scale	0.746
95% t UCL (Assumes normality)	0.133	95% H-Stat UCL	0.189

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.135

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Vanadium

General Statistics

Total Number of Observations	7	Number of Distinct Observations	7
		Number of Missing Observations	18
Minimum	3.4	Mean	16.01
Maximum	32	Median	12
SD	9.742	Std. Error of Mean	3.682
Coefficient of Variation	0.608	Skewness	0.53

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic 0.95 Shapiro Wilk GOF Test

Soil ProUCL Output - Substation #7

5% Shapiro Wilk Critical Value 0.803 Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.231 **Lilliefors GOF Test**5% Lilliefors Critical Value 0.304 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)	;)
---	----

 95% Student's-t UCL
 23.17
 95% Adjusted-CLT UCL (Chen-1995)
 22.86

 95% Modified-t UCL (Johnson-1978)
 23.29

Gamma GOF Test

A-D Test Statistic 0.251 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.713 Detected data appear Gamma Distributed at 5% Significance Leve K-S Test Statistic 0.175 Kolmogorov-Smirnov Gamma GOF Test

5% K-S Critical Value 0.314 Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

1.623	k star (bias corrected MLE)	2.673	k hat (MLE)
9.869	Theta star (bias corrected MLE)	5.991	Theta hat (MLE)
22.72	nu star (bias corrected)	37.42	nu hat (MLE)
12.57	MLE Sd (bias corrected)	16.01	MLE Mean (bias corrected)
12.88	Approximate Chi Square Value (0.05)		
10.71	Adjusted Chi Square Value	0.0158	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<=50)) 28.25 95% Adjusted Gamma UCL (use when n<50) 33.97

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.932	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.803	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.198	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.304	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.224	Mean of logged Data	2.575
Maximum of Logged Data	3.466	SD of logged Data	0.74

Assuming Lognormal Distribution

95% H-UCL	42.75	90% Chebyshev (MVUE) UCL	30.43
95% Chebyshev (MVUE) UCL	36.74	97.5% Chebyshev (MVUE) UCL	45.5
99% Chebyshev (MVUE) UCL	62.71		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	22.07	95% Jackknife UCL	23.17
95% Standard Bootstrap UCL	21.68	95% Bootstrap-t UCL	24.91
95% Hall's Bootstrap UCL	23.87	95% Percentile Bootstrap UCL	21.81
95% BCA Bootstrap UCL	22.67		
90% Chebyshev(Mean, Sd) UCL	27.06	95% Chebyshev(Mean, Sd) UCL	32.06
97.5% Chebyshev(Mean, Sd) UCL	39.01	99% Chebyshev(Mean, Sd) UCL	52.65

Suggested UCL to Use

95% Student's-t UCL 23.17

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.18/29/2018 2:37:51 PM

From File Soil_TransformShop.xls

Full Precision OFF
Confidence Coefficient 95%
Imber of Bootstrap Operations 2000

Arsenic

General Statistics

Total Number of Observations	3	Number of Distinct Observations	3
		Number of Missing Observations	54
Minimum	0.81	Mean	3.403
Maximum	7.7	Median	1.7
SD	3.748	Std. Error of Mean	2.164
Coefficient of Variation	1.101	Skewness	1.623

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.845	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.342	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	9.721	95% Adjusted-CLT UCL (Chen-1995)	9.128
		95% Modified-t UCL (Johnson-1978)	10.06

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

N/A	k star (bias corrected MLE)	1.283	k hat (MLE)
N/A	Theta star (bias corrected MLE)	2.652	Theta hat (MLE)
N/A	nu star (bias corrected)	7.7	nu hat (MLE)
N/A	MLE Sd (bias corrected)	N/A	MLE Mean (bias corrected)
N/A	Approximate Chi Square Value (0.05)		
N/A	Adjusted Chi Square Value	N/A	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.963	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.255	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.425	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.211	Mean of logged Data	0.787
Maximum of Logged Data	2.041	SD of logged Data	1.148

Assuming Lognormal Distribution

95% H-UCL 81	2074	90% Chebyshev (MVUE) UCL	8.901
95% Chebyshev (MVUE) UCL	11.45	97.5% Chebyshev (MVUE) UCL	14.99
99% Chebyshev (MVUE) UCL	21.94		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	6.962	95% Jackknife UCL	9.721
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	9.894	95% Chebyshev(Mean, Sd) UCL	12.83
97.5% Chebyshev(Mean, Sd) UCL	16.92	99% Chebyshev(Mean, Sd) UCL	24.93

Suggested UCL to Use

95% Student's-t UCL 9.721

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)anthracene

General Statistics

Total Number of Observations	99	Number of Distinct Observations	77
		Number of Missing Observations	67
Number of Detects	79	Number of Non-Detects	20
Number of Distinct Detects	65	Number of Distinct Non-Detects	13
Minimum Detect	0.0033	Minimum Non-Detect	0.0069
Maximum Detect	23	Maximum Non-Detect	3.8
Variance Detects	17.14	Percent Non-Detects	20.2%
Mean Detects	2.741	SD Detects	4.139
Median Detects	1.1	CV Detects	1.51
Skewness Detects	2.861	Kurtosis Detects	9.499
Mean of Logged Detects	-0.141	SD of Logged Detects	1.96

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.653	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.254	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0998	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.387	KM Standard Error of Mean	2.225	KM Mean
2.923	95% KM (BCA) UCL	3.822	KM SD
2.887	95% KM (Percentile Bootstrap) UCL	2.868	95% KM (t) UCL
3.109	95% KM Bootstrap t UCL	2.862	95% KM (z) UCL
3.912	95% KM Chebyshev UCL	3.386	90% KM Chebyshev UCL
6.076	99% KM Chebyshev UCL	4.642	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.41	Anderson-Darling GOF Test
5% A-D Critical Value	0.814 Detected da	ta appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.0645	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.106 Detected da	ta appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.533	k star (bias corrected MLE)	0.545	k hat (MLE)
5.141	Theta star (bias corrected MLE)	5.025	Theta hat (MLE)
84.23	nu star (bias corrected)	86.17	nu hat (MLE)
		2.741	Mean (detects)

February 2020

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

RI Report - BHHRA

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0033	Mean	2.2
Maximum	23	Median	0.77
SD	3.849	CV	1.75
k hat (MLE)	0.373	k star (bias corrected MLE)	0.368
Theta hat (MLE)	5.897	Theta star (bias corrected MLE)	5.97
nu hat (MLE)	73.86	nu star (bias corrected)	72.96
Adjusted Level of Significance (β)	0.0476		
Approximate Chi Square Value (72.96, α)	54.29	Adjusted Chi Square Value (72.96, β)	54.05
95% Gamma Approximate UCL (use when n>=50)	2.956	95% Gamma Adjusted UCL (use when n<50)	2.969

Estimates of Gamma Parameters using KM Estimates

	Mean (KM)	2.225	SD (KM)	3.822
	Variance (KM)	14.61	SE of Mean (KM)	0.387
	k hat (KM)	0.339	k star (KM)	0.335
	nu hat (KM)	67.1	nu star (KM)	66.4
	theta hat (KM)	6.565	theta star (KM)	6.635
	80% gamma percentile (KM)	3.496	90% gamma percentile (KM)	6.466
1	95% gamma percentile (KM)	9.814	99% gamma percentile (KM)	18.4

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (66.40, α)	48.65	Adjusted Chi Square Value (66.40, β)	48.43
15% Gamma Approximate KM-UCL (use when n>=50)	3.037	95% Gamma Adjusted KM-UCL (use when n<50)	3.051

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.909	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value 5.1	1525E-6	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.122	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0998	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	2.206	Mean in Log Scale	-0.74
SD in Original Scale	3.845	SD in Log Scale	2.177
95% t UCL (assumes normality of ROS data)	2.847	95% Percentile Bootstrap UCL	2.884
95% BCA Bootstrap UCL	3.099	95% Bootstrap t UCL	3.091
95% H-UCL (Log ROS)	11.37		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

<u>-</u>			
KM Mean (logged)	-1.023	KM Geo Mean	0.36
KM SD (logged)	2.639	95% Critical H Value (KM-Log)	4.266
KM Standard Error of Mean (logged)	0.274	95% H-UCL (KM -Log)	36.5
KM SD (logged)	2.639	95% Critical H Value (KM-Log)	4.266
KM Standard Error of Mean (logged)	0.274		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	2.263	Mean in Log Scale	-0.837
SD in Original Scale	3.826	SD in Log Scale	2.501
95% t UCL (Assumes normality)	2.901	95% H-Stat UCL	27.71

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 3.037

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)pyrene

General Statistics

Total Number of Observations	99	Number of Distinct Observations	71
		Number of Missing Observations	67
Number of Detects	77	Number of Non-Detects	22
Number of Distinct Detects	61	Number of Distinct Non-Detects	14
Minimum Detect	0.0029	Minimum Non-Detect	0.0069
Maximum Detect	18	Maximum Non-Detect	3.8
Variance Detects	11.08	Percent Non-Detects	22.22%
Mean Detects	2.358	SD Detects	3.329
Median Detects	1.1	CV Detects	1.412
Skewness Detects	2.709	Kurtosis Detects	8.359
Mean of Logged Detects	-0.14	SD of Logged Detects	1.81

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.674	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.24	Lilliefors GOF Test
5% Lilliefors Critical Value	0.101	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.873	KM Standard Error of Mean	0.311
KM SD	3.064	95% KM (BCA) UCL	2.397
95% KM (t) UCL	2.388	95% KM (Percentile Bootstrap) UCL	2.409
95% KM (z) UCL	2.383	95% KM Bootstrap t UCL	2.534
90% KM Chebyshev UCL	2.804	95% KM Chebyshev UCL	3.226
97.5% KM Chebyshev UCL	3.812	99% KM Chebyshev UCL	4.963

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.435	Anderson-Darling GOF Test
5% A-D Critical Value	0.806)etected	data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.0666	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.107 Detected	data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.601	k star (bias corrected MLE)	0.617	k hat (MLE)
3.92	Theta star (bias corrected MLE)	3.822	Theta hat (MLE)
92.63	nu star (bias corrected)	94.99	nu hat (MLE)
		2.358	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0029	Mean	1.848
Maximum	18	Median	0.72
SD	3.087	CV	1.67
k hat (MLE)	0.394	k star (bias corrected MLE)	0.388
Theta hat (MLE)	4.695	Theta star (bias corrected MLE)	4.758
nu hat (MLE)	77.94	nu star (bias corrected)	76.91
Adjusted Level of Significance (β)	0.0476		
Approximate Chi Square Value (76.91, α)	57.71	Adjusted Chi Square Value (76.91, β)	57.46
95% Gamma Approximate UCL (use when n>=50)	2.463	95% Gamma Adjusted UCL (use when n<50)	2.473

Estimates of Gamma Parameters using KM Estimates

		8	
Mean (KM)	1.873	SD (KM)	3.064
Variance (KM)	9.389	SE of Mean (KM)	0.311
k hat (KM)	0.373	k star (KM)	0.369
nu hat (KM)	73.95	nu star (KM)	73.04
theta hat (KM)	5.014	theta star (KM)	5.076
80% gamma percentile (KM)	2.99	90% gamma percentile (KM)	5.363
95% gamma percentile (KM)	7.999	99% gamma percentile (KM)	14.69

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (73.04, α)	54.36	Adjusted Chi Square Value (73.04, β)	54.12
15% Gamma Approximate KM-UCL (use when n>=50)	2.516	95% Gamma Adjusted KM-UCL (use when n<50)	2.527

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.907	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value 4	.5766E-6	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.136	Lilliefors GOF Test
5% Lilliefors Critical Value	0.101	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	1.856	Mean in Log Scale	-0.766
SD in Original Scale	3.081	SD in Log Scale	2.039
95% t UCL (assumes normality of ROS data)	2.37	95% Percentile Bootstrap UCL	2.394
95% BCA Bootstrap UCL	2.532	95% Bootstrap t UCL	2.5
95% H-UCL (Log ROS)	7.599		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.13	KM Geo Mean	0.323
KM SD (logged)	2.627	95% Critical H Value (KM-Log)	4.249
KM Standard Error of Mean (logged)	0.275	95% H-UCL (KM -Log)	31.45
KM SD (logged)	2.627	95% Critical H Value (KM-Log)	4.249
KM Standard Error of Mean (logged)	0.275		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	nsformed	
Mean in Original Scale	1.911	Mean in Log Scale	-0.907	
SD in Original Scale	3.064	SD in Log Scale	2.441	
95% t UCL (Assumes normality)	2.423	95% H-Stat UCL	21.31	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 2.516

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(b)fluoranthene

General Statistics

Total Number of Observations	99	Number of Distinct Observations	74
		Number of Missing Observations	67
Number of Detects	79	Number of Non-Detects	20
Number of Distinct Detects	65	Number of Distinct Non-Detects	13
Minimum Detect	0.0038	Minimum Non-Detect	0.0069
Maximum Detect	23	Maximum Non-Detect	3.8
Variance Detects	17.6	Percent Non-Detects	20.2%
Mean Detects	3.004	SD Detects	4.195
Median Detects	1.4	CV Detects	1.397
Skewness Detects	2.597	Kurtosis Detects	7.819
Mean of Logged Detects	0.0559	SD of Logged Detects	1.887

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.689	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.237	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0998	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.395	KM Standard Error of Mean	2.436	KM Mean
3.127	95% KM (BCA) UCL	3.898	KM SD
3.109	95% KM (Percentile Bootstrap) UCL	3.091	95% KM (t) UCL
3.292	95% KM Bootstrap t UCL	3.085	95% KM (z) UCL
4.157	95% KM Chebyshev UCL	3.62	90% KM Chebyshev UCL
6.364	99% KM Chebyshev UCL	4.901	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.419	Anderson-Darling GOF Test
5% A-D Critical Value	0.809	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.0722	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.106	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.579	k star (bias corrected MLE)	0.593	k hat (MLE)
5.19	Theta star (bias corrected MLE)	5.067	Theta hat (MLE)
91.45	nu star (bias corrected)	93.67	nu hat (MLE)
		3.004	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

2.41	Mean	0.0038	Minimum
0.95	Median	23	Maximum
1.63	CV	3.928	SD
0.382	k star (bias corrected MLE)	0.387	k hat (MLE)
6.315	Theta star (bias corrected MLE)	6.234	Theta hat (MLE)
75.56	nu star (bias corrected)	76.55	nu hat (MLE)
		0.0476	Adjusted Level of Significance (β)
56.3	Adjusted Chi Square Value (75.56, β)	56.54	Approximate Chi Square Value (75.56, α)
3.235	95% Gamma Adjusted UCL (use when n<50)	3.221	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	2.436	SD (KM)	3.898
Variance (KM)	15.2	SE of Mean (KM)	0.395
k hat (KM)	0.39	k star (KM)	0.385
nu hat (KM)	77.31	nu star (KM)	76.3
theta hat (KM)	6.239	theta star (KM)	6.321
80% gamma percentile (KM)	3.913	90% gamma percentile (KM)	6.925
95% gamma percentile (KM)	10.25	99% gamma percentile (KM)	18.65

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (76.30, α)	57.18	Adjusted Chi Square Value (76.30, β)	56.94
15% Gamma Approximate KM-UCL (use when n>=50)	3.25	95% Gamma Adjusted KM-UCL (use when n<50)	3.264

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.896	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value 3	.7079E-7	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.135	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0998	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-0.528	Mean in Log Scale	2.419	Mean in Original Scale
2.099	SD in Log Scale	3.922	SD in Original Scale
3.11	95% Percentile Bootstrap UCL	3.073	95% t UCL (assumes normality of ROS data)
3.245	95% Bootstrap t UCL	3.203	95% BCA Bootstrap UCL
		11.31	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.836	KM Geo Mean	0.434
KM SD (logged)	2.6	95% Critical H Value (KM-Log)	4.212
KM Standard Error of Mean (logged)	0.271	95% H-UCL (KM -Log)	38.47

Soil ProUCL Output - Transformer Shop

KM SD (logged) 2.6 95% Critical H Value (KM-Log) 4.212

KM Standard Error of Mean (logged) 0.271

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	2.473	Mean in Log Scale	-0.68
SD in Original Scale	3.901	SD in Log Scale	2.502
95% t UCL (Assumes normality)	3.124	95% H-Stat UCL	32.54
DL/2 is not a recommended method	, provided	for comparisons and historical reasons	

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 3.25

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(k)fluoranthene

General Statistics

Total Number of Observations	99	Number of Distinct Observations	74
		Number of Missing Observations	67
Number of Detects	74	Number of Non-Detects	25
Number of Distinct Detects	60	Number of Distinct Non-Detects	15
Minimum Detect	0.0041	Minimum Non-Detect	0.0069
Maximum Detect	8.2	Maximum Non-Detect	5.9
Variance Detects	2.568	Percent Non-Detects	25.25%
Mean Detects	1.175	SD Detects	1.602
Median Detects	0.58	CV Detects	1.364
Skewness Detects	2.482	Kurtosis Detects	6.573
Mean of Logged Detects	-0.719	SD of Logged Detects	1.571

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.688	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.251	Lilliefors GOF Test
5% Lilliefors Critical Value	0.103	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.149	KM Standard Error of Mean	0.9	KM Mean
1.176	95% KM (BCA) UCL	1.4	KM SD
1.178	95% KM (Percentile Bootstrap) UCL	1.10	95% KM (t) UCL
1.216	95% KM Bootstrap t UCL	1.10	95% KM (z) UCL
1.568	95% KM Chebyshev UCL	1.3	90% KM Chebyshev UCL
2.402	99% KM Chebyshev UCL	1.8	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.518	Anderson-Darling GOF Test
5% A-D Critical Value	0.799	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.106	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.108	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.67	k star (bias corrected MLE)	0.688	k hat (MLE)
1.755	Theta star (bias corrected MLE)	1.707	Theta hat (MLE)
99.1	nu star (bias corrected)	101.9	nu hat (MLE)
		1.175	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0041	Mean	0.898
Maximum	8.2	Median	0.35
SD	1.466	CV	1.633
k hat (MLE)	0.454	k star (bias corrected MLE)	0.447
Theta hat (MLE)	1.977	Theta star (bias corrected MLE)	2.008
nu hat (MLE)	89.9	nu star (bias corrected)	88.51
Adjusted Level of Significance (β)	0.0476		
Approximate Chi Square Value (88.51, α)	67.82	Adjusted Chi Square Value (88.51, β)	67.55
95% Gamma Approximate UCL (use when n>=50)	1.171	95% Gamma Adjusted UCL (use when n<50)	1.176

Estimates of Gamma Parameters using KM Estimates

Mean (KM) 0.918	SD (KM)	1.462
Variance (KM) 2.137	SE of Mean (KM)	0.149
k hat (KM) 0.394	k star (KM)	0.389
nu hat (KM) 78.03	nu star (KM)	77
theta hat (KM) 2.329	theta star (KM)	2.36
gamma percentile (KM) 1.476	90% gamma percentile (KM)	2.605
gamma percentile (KM) 3.85	99% gamma percentile (KM)	6.992

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (77.00, α)	57.78	Adjusted Chi Square Value (77.00, β)	57.54
15% Gamma Approximate KM-UCL (use when n>=50)	1.223	95% Gamma Adjusted KM-UCL (use when n<50)	1.228

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.95	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0.014	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0836	Lilliefors GOF Test
5% Lilliefors Critical Value	0.103	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.9	Mean in Log Scale	-1.316
SD in Original Scale	1.464	SD in Log Scale	1.787
95% t UCL (assumes normality of ROS data)	1.144	95% Percentile Bootstrap UCL	1.158
95% BCA Bootstrap UCL	1.186	95% Bootstrap t UCL	1.215
95% H-UCL (Log ROS)	2.334		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.612	KM Geo Mean	0.199
KM SD (logged)	2.264	95% Critical H Value (KM-Log)	3.761
KM Standard Error of Mean (logged)	0.239	95% H-UCL (KM -Log)	6.117
KM SD (logged)	2.264	95% Critical H Value (KM-Log)	3.761
KM Standard Error of Mean (logged)	0.239		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.99	Mean in Log Scale	-1.427
SD in Original Scale	1.474	SD in Log Scale	2.245
95% t UCL (Assumes normality)	1.236	95% H-Stat UCL	6.97

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 1.223

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

General Statistics

Total Number of Observations	99	Number of Distinct Observations	74
		Number of Missing Observations	67
Number of Detects	79	Number of Non-Detects	20
Number of Distinct Detects	65	Number of Distinct Non-Detects	13
Minimum Detect	0.0029	Minimum Non-Detect	0.0069
Maximum Detect	20	Maximum Non-Detect	3.8
Variance Detects	13.58	Percent Non-Detects	20.2%
Mean Detects	2.527	SD Detects	3.685
Median Detects	1	CV Detects	1.458
Skewness Detects	2.734	Kurtosis Detects	8.595
Mean of Logged Detects	-0.17	SD of Logged Detects	1.923

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.668	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.247	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0998	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	2.054	KM Standard Error of Mean	0.345
KM SD	3.411	95% KM (BCA) UCL	2.554
95% KM (t) UCL	2.628	95% KM (Percentile Bootstrap) UCL	2.66
95% KM (z) UCL	2.622	95% KM Bootstrap t UCL	2.858
90% KM Chebyshev UCL	3.09	95% KM Chebyshev UCL	3.56
97.5% KM Chebyshev UCL	4.212	99% KM Chebyshev UCL	5.492

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.406	Anderson-Darling GOF Test
5% A-D Critical Value	0.812)et	ected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.066	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.106)et	ected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.568	k star (bias corrected MLE)	0.555
4.449	Theta star (bias corrected MLE)	4.554
89.74	nu star (bias corrected)	87.66
2.527		
	4.449 89.74	4.449 Theta star (bias corrected MLE) 89.74 nu star (bias corrected)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ \verb|<|1.0|, especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ \verb|<|15-20|)$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

2.03	Mean	0.0029	Minimum
0.79	Median	20	Maximum
1.693	CV	3.436	SD
0.382	k star (bias corrected MLE)	0.387	k hat (MLE)
5.312	Theta star (bias corrected MLE)	5.243	Theta hat (MLE)
75.66	nu star (bias corrected)	76.65	nu hat (MLE)
		0.0476	Adjusted Level of Significance (β)
56.38	Adjusted Chi Square Value (75.66, β)	56.62	Approximate Chi Square Value (75.66, α)
2.724	95% Gamma Adjusted UCL (use when n<50)	2.712	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	2.054	SD (KM)	3.411
Variance (KM)	11.63	SE of Mean (KM)	0.345
k hat (KM)	0.363	k star (KM)	0.358
nu hat (KM)	71.8	nu star (KM)	70.96
theta hat (KM)	5.664	theta star (KM)	5.731
80% gamma percentile (KM)	3.265	90% gamma percentile (KM)	5.909
95% gamma percentile (KM)	8.861	99% gamma percentile (KM)	16.37

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (70.96, α)	52.57	Adjusted Chi Square Value (70.96, β)	52.33
15% Gamma Approximate KM-UCL (use when n>=50)	2.773	95% Gamma Adjusted KM-UCL (use when n<50)	2.785

Lognormal GOF Test on Detected Observations Only

apiro Wilk Approximate Test Statistic	0.903	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value 1	.6105E-6	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.131	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0998	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	2.036	Mean in Log Scale	-0.751
SD in Original Scale	3.431	SD in Log Scale	2.13
95% t UCL (assumes normality of ROS data)	2.608	95% Percentile Bootstrap UCL	2.626
95% BCA Bootstrap UCL	2.825	95% Bootstrap t UCL	2.818
95% H-UCL (Log ROS)	9.855		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.048	KM Geo Mean	0.351
KM SD (logged)	2.616	95% Critical H Value (KM-Log)	4.235
KM Standard Error of Mean (logged)	0.272	95% H-UCL (KM -Log)	32.89
KM SD (logged)	2.616	95% Critical H Value (KM-Log)	4.235
KM Standard Error of Mean (logged)	0.272		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	2.092	Mean in Log Scale	-0.86
SD in Original Scale	3.413	SD in Log Scale	2.472
95% t UCL (Assumes normality)	2.662	95% H-Stat UCL	24.63

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 2.773

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Cobalt

General Statistics

Total Number of Observations	3	Number of Distinct Observations	3
		Number of Missing Observations	54
Minimum	1.2	Mean	3.467
Maximum	6.5	Median	2.7
SD	2.732	Std. Error of Mean	1.577
Coefficient of Variation	0.788	Skewness	1.163

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.941	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.277	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Soil ProUCL Output - Transformer Shop

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL 8.072	8.072	95% Adjusted-CLT UCL (Chen-1995)	7.193
		95% Modified-t UCL (Johnson-1978)	8.249

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

k hat (MLE)	2.352	k star (bias corrected MLE)	N/A
Theta hat (MLE)	1.474	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	14.11	nu star (bias corrected)	N/A
MLE Mean (bias corrected)	N/A	MLE Sd (bias corrected)	N/A
		Approximate Chi Square Value (0.05)	N/A
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.999	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.178	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.425	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.182	Mean of logged Data	1.016
Maximum of Logged Data	1.872	SD of logged Data	0.845

Assuming Lognormal Distribution

95% H-UCL	2854	90% Chebyshev (MVUE) UCL	8.118
95% Chebyshev (MVUE) UCL	10.23	97.5% Chebyshev (MVUE) UCL	13.16
99% Chebyshev (MVUE) UCL	18.91		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

8.072	95% Jackknife UCL	6.061	95% CLT UCL
N/A	95% Bootstrap-t UCL	N/A	95% Standard Bootstrap UCL
N/A	95% Percentile Bootstrap UCL	N/A	95% Hall's Bootstrap UCL
		N/A	95% BCA Bootstrap UCL
10.34	95% Chebyshev(Mean, Sd) UCL	8.198	90% Chebyshev(Mean, Sd) UCL
19.16	99% Chebyshev(Mean, Sd) UCL	13.32	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 8.072

Recommended UCL exceeds the maximum observation

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Dibenzo(a,h)anthracene

General Statistics

Total Number of Observations	99	Number of Distinct Observations	67
		Number of Missing Observations	67
Number of Detects	68	Number of Non-Detects	31
Number of Distinct Detects	51	Number of Distinct Non-Detects	20
Minimum Detect	0.0062	Minimum Non-Detect	0.0069
Maximum Detect	4.2	Maximum Non-Detect	3.9
Variance Detects	0.579	Percent Non-Detects	31.31%
Mean Detects	0.574	SD Detects	0.761

1.326	CV Detects	0.31	Median Detects
9.228	Kurtosis Detects	2.786	Skewness Detects
1.296	SD of Logged Detects	-1.255	Mean of Logged Detects

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.678	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.232	Lilliefors GOF Test
5% Lilliefors Critical Value	0.107	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.425	KM Standard Error of Mean	0.0702
KM SD	0.681	95% KM (BCA) UCL	0.549
95% KM (t) UCL	0.542	95% KM (Percentile Bootstrap) UCL	0.54
95% KM (z) UCL	0.54	95% KM Bootstrap t UCL	0.58
90% KM Chebyshev UCL	0.636	95% KM Chebyshev UCL	0.731
97.5% KM Chebyshev UCL	0.863	99% KM Chebyshev UCL	1.123

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test
3 Detected Data Not Gamma Distributed at 5% Significance Level
Kolmogorov-Smirnov GOF
2 Detected data appear Gamma Distributed at 5% Significance Leve
8

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.842	k star (bias corrected MLE)	0.815
Theta hat (MLE)	0.682	Theta star (bias corrected MLE)	0.705
nu hat (MLE)	114.5	nu star (bias corrected)	110.8
Mean (detects)	0.574		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.408	wean	0.0062	Minimum
0.18	Median	4.2	Maximum
1.662	CV	0.678	SD
0.499	k star (bias corrected MLE)	0.508	k hat (MLE)
0.818	Theta star (bias corrected MLE)	0.804	Theta hat (MLE)
98.8	nu star (bias corrected)	100.5	nu hat (MLE)
		0.0476	Adjusted Level of Significance (β)
76.58	Adjusted Chi Square Value (98.80, β)	76.87	Approximate Chi Square Value (98.80, α)
0.526	95% Gamma Adjusted UCL (use when n<50)	0.524	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

0.681	SD (KM)	0.425	Mean (KM)
0.0702	SE of Mean (KM)	0.463	Variance (KM)
0.385	k star (KM)	0.39	k hat (KM)
76.21	nu star (KM)	77.22	nu hat (KM)
1.104	theta star (KM)	1.09	theta hat (KM)
1.209	90% gamma percentile (KM)	0.683	80% gamma percentile (KM)
3.256	99% gamma percentile (KM)	1.789	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (76.21, α)	57.1	Adjusted Chi Square Value (76.21, β)	56.86
15% Gamma Approximate KM-UCL (use when n>=50)	0.567	95% Gamma Adjusted KM-UCL (use when n<50)	0.57

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.975	Shapiro Wilk GOF Test	
5% Shapiro Wilk P Value	0.435	Detected Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.0811	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.107	Detected Data appear Lognormal at 5% Significance Level	

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-1.882	Mean in Log Scale	0.413	Mean in Original Scale
1.51	SD in Log Scale	0.675	SD in Original Scale
0.535	95% Percentile Bootstrap UCL	0.526	95% t UCL (assumes normality of ROS data)
0.568	95% Bootstrap t UCL	0.565	95% BCA Bootstrap UCL
		0.731	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.142	KM Geo Mean	0.117
KM SD (logged)	1.922	95% Critical H Value (KM-Log)	3.317
KM Standard Error of Mean (logged)	0.206	95% H-UCL (KM -Log)	1.419
KM SD (logged)	1.922	95% Critical H Value (KM-Log)	3.317
KM Standard Error of Mean (logged)	0.206		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	0.502	Mean in Log Scale	-1.925	
SD in Original Scale	0.727	SD in Log Scale	1.989	
95% t UCL (Assumes normality)	0.623	95% H-Stat UCL	2.088	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 0.567

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Diesel Range Organics (C10-C20)

General	Statistics

Total Number of Observations	12	Number of Distinct Observations		
		Number of Missing Observations	69	
Number of Detects	3	Number of Non-Detects 9		
Number of Distinct Detects	3	Number of Distinct Non-Detects	6	
Minimum Detect	10	Minimum Non-Detect	18	
Maximum Detect	80	Maximum Non-Detect	190	
Variance Detects	1450	Percent Non-Detects SD Detects CV Detects		
Mean Detects	36.33			
Median Detects	19			
Skewness Detects	1.624	Kurtosis Detects	N/A	
Mean of Logged Detects	3.21	SD of Logged Detects	1.065	

Warning: Data set has only 3 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.845	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.342	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.425	Detected Data appear Normal at 5% Significance Level	

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	18.62	KM Standard Error of Mean	8.12
KM SD	20.74	95% KM (BCA) UCL	N/A
95% KM (t) UCL	33.2	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	31.98	95% KM Bootstrap t UCL	N/A

Soil ProUCL Output - Transformer Shop

90% KM Chebyshev UCL	42.98	95% KM Chebyshev UCL	54.02
97.5% KM Chebyshev UCL	69.33	99% KM Chebyshev UCL	99.42

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

N/A	k star (bias corrected MLE)	1.449	k hat (MLE)
N/A	Theta star (bias corrected MLE)	25.07	Theta hat (MLE)
N/A	nu star (bias corrected)	8.696	nu hat (MLE)
		36.33	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

14.17	Minimum 0.01 Mean		Minimum	
8.427	Median	80	Maximum	
1.537	CV	21.78	SD 21.78	
0.381	k star (bias corrected MLE)	0.434	k hat (MLE)	
37.17	Theta star (bias corrected MLE)	32.64	Theta hat (MLE)	
9.146	nu star (bias corrected)	10.42	nu hat (MLE)	
		0.029	Adjusted Level of Significance (β)	
2.902	Adjusted Chi Square Value (9.15, β)	3.416	Approximate Chi Square Value (9.15, α)	
N/A	95% Gamma Adjusted UCL (use when n<50)	37.94	95% Gamma Approximate UCL (use when n>=50)	

Estimates of Gamma Parameters using KM Estimates

SD (KM) 20.74		18.62	Mean (KM)
E of Mean (KM) 8.12		430.3	Variance (KM)
k star (KM) 0.66		0.806	k hat (KM)
nu star (KM) 15.84		19.34	nu hat (KM)
theta star (KM) 28.22	theta star (KM)		theta hat (KM)
percentile (KM) 47.39	90%	30.66	80% gamma percentile (KM)
percentile (KM) 106.4	99%	64.74	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (15.84, α)	7.847	Adjusted Chi Square Value (15.84, β)	7.005
15% Gamma Approximate KM-UCL (use when n>=50)	37.58	95% Gamma Adjusted KM-UCL (use when n<50)	42.1

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.953	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.265	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	17.13	Mean in Log Scale	2.537
SD in Original Scale	20.23	SD in Log Scale	0.686
95% t UCL (assumes normality of ROS data)	27.62	95% Percentile Bootstrap UCL	28.49
95% BCA Bootstrap UCL	35.39	95% Bootstrap t UCL	58.3
95% H-UCL (Log ROS)	26.26		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.626	KM Geo Mean	13.82
KM SD (logged)	0.634	95% Critical H Value (KM-Log)	2.318
KM Standard Error of Mean (logged)	0.26	95% H-UCL (KM -Log)	26.31
KM SD (logged)	0.634	95% Critical H Value (KM-Log)	2.318
KM Standard Error of Mean (logged)	0.26		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	26.33	Mean in Log Scale	2.826
SD in Original Scale	30.34	SD in Log Scale	0.889
95% t UCL (Assumes normality)	42.06	95% H-Stat UCL	51.95

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 33.2

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Indeno(1,2,3-cd)pyrene

	General Statistics		
Total Number of Observations	99	Number of Distinct Observations	77
		Number of Missing Observations	67
Number of Detects	79	Number of Non-Detects	20
Number of Distinct Detects	66	Number of Distinct Non-Detects	13
Minimum Detect	0.005	Minimum Non-Detect	0.0069
Maximum Detect	13	Maximum Non-Detect	3.8
Variance Detects	5.191	Percent Non-Detects	20.2%
Mean Detects	1.688	SD Detects	2.278
Median Detects	0.83	CV Detects	1.35
Skewness Detects	2.58	Kurtosis Detects	8.178
Mean of Logged Detects	-0.426	SD of Logged Detects	1.737

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.704	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.234	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0998	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

, ,		•	
KM Mean	1.381	KM Standard Error of Mean	0.215
KM SD	2.121	95% KM (BCA) UCL	1.753
95% KM (t) UCL	1.739	95% KM (Percentile Bootstrap) UCL	1.749
95% KM (z) UCL	1.735	95% KM Bootstrap t UCL	1.819
90% KM Chebyshev UCL	2.027	95% KM Chebyshev UCL	2.319
97.5% KM Chebyshev UCL	2.725	99% KM Chebyshev UCL	3.523

Gamma GOF Tests on Detected Observations Only

Anderson-Daning GOF Test	0.425	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Le	0.804	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.0736	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Le	0.105	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.628	k star (bias corrected MLE)	0.644	k hat (MLE)
2.687	Theta star (bias corrected MLE)	2.62	Theta hat (MLE)
99.25	nu star (bias corrected)	101.8	nu hat (MLE)
		1.688	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.005	Mean	1.363
Maximum	13	Median	0.56
SD	2.136	CV	1.567
k hat (MLE)	0.441	k star (bias corrected MLE)	0.434
Theta hat (MLE)	3.091	Theta star (bias corrected MLE)	3.138

Soil ProUCL Output - Transformer Shop

85.99	nu star (bias corrected)	87.31	nu hat (MLE)
		0.0476	Adjusted Level of Significance (β)
65.36	Adjusted Chi Square Value (85.99, β)	65.62	Approximate Chi Square Value (85.99, α)
1.793	95% Gamma Adjusted UCL (use when n<50)	1.786	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.381	SD (KM)	2.121
Variance (KM)	4.501	SE of Mean (KM)	0.215
k hat (KM)	0.424	k star (KM)	0.418
nu hat (KM)	83.96	nu star (KM)	82.75
theta hat (KM)	3.258	theta star (KM)	3.305
0% gamma percentile (KM)	2.24	90% gamma percentile (KM)	3.871
5% gamma percentile (KM)	5 653	99% gamma percentile (KM)	10 11

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (82.75, α)	62.79	Adjusted Chi Square Value (82.75, β)	62.53
15% Gamma Approximate KM-UCL (use when n>=50)	1.821	95% Gamma Adjusted KM-UCL (use when n<50)	1.828

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic	0.909	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value 4.9	9010E-6	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.125	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0998	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	1.367	Mean in Log Scale	-0.93
SD in Original Scale	2.132	SD in Log Scale	1.906
95% t UCL (assumes normality of ROS data)	1.723	95% Percentile Bootstrap UCL	1.72
95% BCA Bootstrap UCL	1.801	95% Bootstrap t UCL	1.823
95% H-LICL (Log ROS)	4 576		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

0.306	KM Geo Mean	-1.184	KM Mean (logged)
3.838	95% Critical H Value (KM-Log)	2.323	KM SD (logged)
11.17	95% H-UCL (KM -Log)	0.242	KM Standard Error of Mean (logged)
3.838	95% Critical H Value (KM-Log)	2.323	KM SD (logged)
		0.242	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.423	Mean in Log Scale	-1.064
SD in Original Scale	2.121	SD in Log Scale	2.301
95% t UCL (Assumes normality)	1.777	95% H-Stat UCL	11.8

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Approximate Gamma UCL 1.821

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Manganese

General Statistics

Total Number of Observations	3	Number of Distinct Observations	3
		Number of Missing Observations	54
Minimum	9.9	Mean	156.6
Maximum	260	Median	200
SD	130.6	Std. Error of Mean	75.38
Coefficient of Variation	0.834	Skewness	-1.33

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.917	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.297	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	376.8	95% Adjusted-CLT UCL (Chen-1995)	218.8
		95% Modified-t UCL (Johnson-1978)	367.1

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

N/A	k star (bias corrected MLE)	0.875	k hat (MLE)
N/A	Theta star (bias corrected MLE)	178.9	Theta hat (MLE)
N/A	nu star (bias corrected)	5.253	nu hat (MLE)
N/A	MLE Sd (bias corrected)	N/A	MLE Mean (bias corrected)
N/A	Approximate Chi Square Value (0.05)		
N/A	Adjusted Chi Square Value	N/A	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.81	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.359	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.425	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2.293	Mean of logged Data	4.384
Maximum of Logged Data	5.561	SD of logged Data	1.816

Assuming Lognormal Distribution

95% H-UCL 7	.139E+15	90% Chebyshev (MVUE) UCL	646.5
95% Chebyshev (MVUE) UCL	850.7	97.5% Chebyshev (MVUE) UCL	1134
99% Chebyshev (MVUE) UCL	1691		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	280.6	95% Jackknife UCL	376.8
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	382.8	95% Chebyshev(Mean, Sd) UCL	485.2
97.5% Chebyshev(Mean, Sd) UCL	627.4	99% Chebyshev(Mean, Sd) UCL	906.7

Suggested UCL to Use

95% Student's-t UCL 376.8

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Naphthalene

	General Statistics		
Total Number of Observations	99	Number of Distinct Observations	67
		Number of Missing Observations	67
Number of Detects	47	Number of Non-Detects	52
Number of Distinct Detects	38	Number of Distinct Non-Detects	34
Minimum Detect	0.0029	Minimum Non-Detect	0.0069
Maximum Detect	1.1	Maximum Non-Detect	5.9
Variance Detects	0.0593	Percent Non-Detects	52.53%
Mean Detects	0.168	SD Detects	0.244
Median Detects	0.09	CV Detects	1.453
Skewness Detects	2.736	Kurtosis Detects	7.187
Mean of Logged Detects	-2.487	SD of Logged Detects	1.228

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.606	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.946	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.285	Lilliefors GOF Test
5% Lilliefors Critical Value	0.128	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.0991	KM Standard Error of Mean	0.0203
KM SD	0.19	95% KM (BCA) UCL	0.137
95% KM (t) UCL	0.133	95% KM (Percentile Bootstrap) UCL	0.135
95% KM (z) UCL	0.133	95% KM Bootstrap t UCL	0.15
90% KM Chebyshev UCL	0.16	95% KM Chebyshev UCL	0.188
97.5% KM Chebyshev UCL	0.226	99% KM Chebyshev UCL	0.301

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.391	Anderson-Darling GOF Test
5% A-D Critical Value	0.786	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.164	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.134	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.802	k star (bias corrected MLE)	0.841	k hat (MLE)
0.209	Theta star (bias corrected MLE)	0.199	Theta hat (MLE)
75.34	nu star (bias corrected)	79.06	nu hat (MLE)
		0.168	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.0892	Mean	0.0029	Minimum
0.02	Median	1.1	Maximum
2.062	CV	0.184	SD
0.573	k star (bias corrected MLE)	0.584	k hat (MLE)
0.156	Theta star (bias corrected MLE)	0.153	Theta hat (MLE)
113.4	nu star (bias corrected)	115.6	nu hat (MLE)
		0.0476	Adjusted Level of Significance (β)
89.51	Adjusted Chi Square Value (113.40, β)	89.81	Approximate Chi Square Value (113.40, α)
0.113	95% Gamma Adjusted UCL (use when n<50)	0.113	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.0991	SD (KM)	0.19
Variance (KM)	0.0359	SE of Mean (KM)	0.0203

Soil ProUCL Output - Transformer Shop

k hat (KM)	0.273	k star (KM)	0.272
nu hat (KM)	54.09	nu star (KM)	53.79
theta hat (KM)	0.363	theta star (KM)	0.365
80% gamma percentile (KM)	0.148	90% gamma percentile (KM)	0.295
95% gamma percentile (KM)	0.468	99% gamma percentile (KM)	0.921

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (53.79, α)	37.94	Adjusted Chi Square Value (53.79, β)	37.74
15% Gamma Approximate KM-UCL (use when n>=50)	0.14	95% Gamma Adjusted KM-UCL (use when n<50)	0.141

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.973	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.946	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0865	Lilliefors GOF Test
5% Lilliefors Critical Value	0.128	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0909	Mean in Log Scale	-3.365
SD in Original Scale	0.183	SD in Log Scale	1.324
95% t UCL (assumes normality of ROS data)	0.121	95% Percentile Bootstrap UCL	0.122
95% BCA Bootstrap UCL	0.129	95% Bootstrap t UCL	0.135
95% H-UCL (Log ROS)	0.118		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.552	KM Geo Mean	0.0287
KM SD (logged)	1.675	95% Critical H Value (KM-Log)	3.008
KM Standard Error of Mean (logged)	0.212	95% H-UCL (KM -Log)	0.194
KM SD (logged)	1.675	95% Critical H Value (KM-Log)	3.008
KM Standard Error of Mean (logged)	0.212		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed			
Mean in Original Scale	0.242	Mean in Log Scale	-2.786	
SD in Original Scale	0.484	SD in Log Scale	1.79	
95% t UCL (Assumes normality)	0.323	95% H-Stat UCL	0.541	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 0.194

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Nickel

General Statistics

Total Number of Observations	3	Number of Distinct Observations	3
		Number of Missing Observations	54
Minimum	2.8	Mean	13.93
Maximum	23	Median	16
SD	10.26	Std. Error of Mean	5.922
Coefficient of Variation	0.736	Skewness	-0.87

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic 0.97 Shapiro Wilk GOF Test

Soil ProUCL Output - Transformer Shop

5% Shapiro Wilk Critical Value 0.767 Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.247 **Lilliefors GOF Test**5% Lilliefors Critical Value 0.425 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normai UCL		95% UCLS (Adjusted for Skewness)		
95% Student's t LICI	31 23	95% Adjusted-CLT LICL (Chen-1995)	20	

 95% Student's-t UCL
 31.23
 95% Adjusted-CLT UCL (Chen-1995)
 20.5

 95% Modified-t UCL (Johnson-1978)
 30.73

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

k hat (MLE) 1.702 k star (bias corrected MLE)	N/A
Theta hat (MLE) 8.188 Theta star (bias corrected MLE)	N/A
nu hat (MLE) 10.21 nu star (bias corrected)	N/A
MLE Mean (bias corrected) N/A MLE Sd (bias corrected)	N/A
Approximate Chi Square Value (0.05)	N/A
Adjusted Level of Significance N/A Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.875	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.325	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.425	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.03	Mean of logged Data	2.313
Maximum of Logged Data	3.135	SD of logged Data	1.126

Assuming Lognormal Distribution

95% H-UCL 2298411		298411	90% Chebyshev (MVUE) UCL	40
	95% Chebyshev (MVUE) UCL	51.4	97.5% Chebyshev (MVUE) UCL	67.21
	99% Chebyshev (MVUE) UCL	98.28		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	23.67	95% Jackknife UCL	31.23
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	31.7	95% Chebyshev(Mean, Sd) UCL	39.75
97.5% Chebyshev(Mean, Sd) UCL	50.92	99% Chebyshev(Mean, Sd) UCL	72.86

Suggested UCL to Use

95% Student's-t UCL 31.23

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

PCB, Total Aroclors (AECOM Calc)

General Statistics

Total Number of Observations	136	Number of Distinct Observations	116
		Number of Missing Observations	31
Number of Detects	125	Number of Non-Detects	11
Number of Distinct Detects	110	Number of Distinct Non-Detects	8
Minimum Detect	0.0015	Minimum Non-Detect	0.001
Maximum Detect	8800	Maximum Non-Detect	0.057
Variance Detects	620071	Percent Non-Detects	8.088%
Mean Detects	81.15	SD Detects	787.4
Median Detects	0.34	CV Detects	9.703
Skewness Detects	11.12	Kurtosis Detects	124.1
Mean of Logged Detects	-0.753	SD of Logged Detects	2.884

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.105	Normal GOF Test on Detected Observations Only
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.473	Lilliefors GOF Test
5% Lilliefors Critical Value	0.0796	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	74.59	KM Standard Error of Mean	64.76
KM SD	752.2	95% KM (BCA) UCL	206.5
95% KM (t) UCL	181.8	95% KM (Percentile Bootstrap) UCL	203.1
95% KM (z) UCL	181.1	95% KM Bootstrap t UCL	2749
90% KM Chebyshev UCL	268.9	95% KM Chebyshev UCL	356.9
97.5% KM Chebyshev UCL	479	99% KM Chebyshev UCL	719

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	17.65	Anderson-Darling GOF Test
5% A-D Critical Value	0.968	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.275	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.0938	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.149	k star (bias corrected MLE)	0.151
543.3	Theta star (bias corrected MLE)	537
37.34	nu star (bias corrected)	37.78
81.15		
	543.3 37.34	543.3 Theta star (bias corrected MLE) 37.34 nu star (bias corrected)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ \verb|<|1.0|, especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ \verb|<|15-20|)$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0015	Mean	74.59
Maximum	8800	Median	0.26
SD	755	CV	10.12
k hat (MLE)	0.144	k star (bias corrected MLE)	0.146
Theta hat (MLE)	518.6	Theta star (bias corrected MLE)	512.4
nu hat (MLE)	39.12	nu star (bias corrected)	39.59
Adjusted Level of Significance (β)	0.0482		
Approximate Chi Square Value (39.59, α)	26.18	Adjusted Chi Square Value (39.59, β)	26.06
95% Gamma Approximate UCL (use when n>=50)	112.8	95% Gamma Adjusted UCL (use when n<50)	113.3

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	74.59	SD (KM)	752.2
Variance (KM)	565849	SE of Mean (KM)	64.76
k hat (KM)	0.00983	k star (KM)	0.0145
nu hat (KM)	2.674	nu star (KM)	3.949
theta hat (KM)	7586	theta star (KM)	5138
80% gamma percentile (KM)	6.1618E-4	90% gamma percentile (KM)	2.058
95% gamma percentile (KM)	86.69	99% gamma percentile (KM)	2109

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (3.95, α)	0.702	Adjusted Chi Square Value (3.95, β)	0.688
15% Gamma Approximate KM-UCL (use when n>=50)	419.8	95% Gamma Adjusted KM-UCL (use when n<50)	428.2

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Approximate Test Statistic
5% Shapiro Wilk P Value
Lilliefors Test Statistic
5% Lilliefors Critical Value
10,0796

Detected Data appear Lognormal at 5% Significance Level
Lilliefors GOF Test
Detected Data Not Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-1.19	Mean in Log Scale	74.59	Mean in Original Scale
3.16	SD in Log Scale	755	SD in Original Scale
202.2	95% Percentile Bootstrap UCL	181.8	95% t UCL (assumes normality of ROS data)
2874	95% Bootstrap t UCL	273.9	95% BCA Bootstrap UCL
		162.9	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

ean 0.316	KM Geo Mean	-1.152	KM Mean (logged)
_og) 4.641	95% Critical H Value (KM-Log)	3.083	KM SD (logged)
og) 125.5	95% H-UCL (KM -Log)	0.266	KM Standard Error of Mean (logged)
_og) 4.641	95% Critical H Value (KM-Log)	3.083	KM SD (logged)
		0.266	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	74.59	Mean in Log Scale	-1.115
SD in Original Scale	755	SD in Log Scale	3.047
95% t UCL (Assumes normality)	181.8	95% H-Stat UCL	113.4

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 125.5

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Thallium

	General Statistics		
Total Number of Observations	3	Number of Distinct Observations	3
		Number of Missing Observations	54
Number of Detects	2	Number of Non-Detects	1
Number of Distinct Detects	2	Number of Distinct Non-Detects	1
Minimum Detect	0.085	Minimum Non-Detect	0.11
Maximum Detect	0.17	Maximum Non-Detect	0.11
Variance Detects	0.00361	Percent Non-Detects	33.33%
Mean Detects	0.128	SD Detects	0.0601
Median Detects	0.128	CV Detects	0.471
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	-2.119	SD of Logged Detects	0.49

Warning: Data set has only 2 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Not Enough Data to Perform GOF Test

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.0327	KM Standard Error of Mean	0.113	KM Mean
N/A	95% KM (BCA) UCL	0.0401	KM SD
N/A	95% KM (Percentile Bootstrap) UCL	0.209	95% KM (t) UCL
N/A	95% KM Bootstrap t UCL	0.167	95% KM (z) UCL
0.256	95% KM Chebyshev UCL	0.211	90% KM Chebyshev UCL
0.439	99% KM Chebyshev UCL	0.318	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

N/A	k star (bias corrected MLE)	8.653	k hat (MLE)
N/A	Theta star (bias corrected MLE)	0.0147	Theta hat (MLE)
N/A	nu star (bias corrected)	34.61	nu hat (MLE)
		0 128	Mean (detects)

Estimates of Gamma Parameters using KM Estimates

0.113	SD (KM)	0.0401
0.00161	SE of Mean (KM)	0.0327
8	k star (KM)	N/A
48	nu star (KM)	N/A
0.0142	theta star (KM)	N/A
N/A	90% gamma percentile (KM)	N/A
N/A	99% gamma percentile (KM)	N/A
	0.00161 8 48 0.0142 N/A	0.00161 SE of Mean (KM) 8 k star (KM) 48 nu star (KM) 0.0142 theta star (KM) N/A 90% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Gamma P	(aplan-	Meier (KM) Statistics	
		Adjusted Level of Significance (β)	0.00136
Approximate Chi Square Value (N/A, α)	N/A	Adjusted Chi Square Value (N/A, β)	N/A
15% Gamma Approximate KM-UCL (use when n>=50)	N/A	95% Gamma Adjusted KM-UCL (use when n<50)	N/A

Lognormal GOF Test on Detected Observations Only

Not Enough Data to Perform GOF Test

Lognormal ROS Statistics Using Imputed Non-Detects

-2.234	Mean in Log Scale	0.113	Mean in Original Scale
0.4	SD in Log Scale	0.0491	SD in Original Scale
N/A	95% Percentile Bootstrap UCL	0.196	95% t UCL (assumes normality of ROS data)
N/A	95% Bootstrap t UCL	N/A	95% BCA Bootstrap UCL
		0.509	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

-2.234	KM Geo Mean	0.107
0.327	95% Critical H Value (KM-Log)	4.377
0.267	95% H-UCL (KM -Log)	0.311
0.327	95% Critical H Value (KM-Log)	4.377
0.267		
	0.327 0.267 0.327	0.327 95% Critical H Value (KM-Log) 0.267 95% H-UCL (KM -Log) 0.327 95% Critical H Value (KM-Log)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.103	Mean in Log Scale	-2.379
SD in Original Scale	0.0597	SD in Log Scale	0.569
95% t UCL (Assumes normality)	0.204	95% H-Stat UCL	2.138

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.209 KM H-UCL 0.311 95% KM (BCA) UCL N/A

Warning: One or more Recommended UCL(s) not available!

Warning: Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Vanadium

	General Statistics		
Total Number of Observations	3	Number of Distinct Observations	3
		Number of Missing Observations	54
Minimum	9.7	Mean	16.57
Maximum	23	Median	17
SD	6.661	Std. Error of Mean	3.845
Coefficient of Variation	0.402	Skewness	-0.292

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.997	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.193	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	27.8	95% Adjusted-CLT UCL (Chen-1995)	22.2
		95% Modified-t UCL (Johnson-1978)	27.69

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

8.435	k star (bias corrected MLE)	N/A
1.964	Theta star (bias corrected MLE)	N/A
50.61	nu star (bias corrected)	N/A
N/A	MLE Sd (bias corrected)	N/A
	Approximate Chi Square Value (0.05)	N/A
N/A	Adjusted Chi Square Value	N/A
	50.61 N/A	1.964 Theta star (bias corrected MLE) 50.61 nu star (bias corrected) N/A MLE Sd (bias corrected) Approximate Chi Square Value (0.05)

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.971	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.767	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.245	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.425	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2.272	Mean of logged Data	2.747
Maximum of Logged Data	3.135	SD of logged Data	0.438

Assuming Lognormal Distribution

95% H-UCL	99.93	90% Chebyshev (MVUE) UCL	28.92
95% Chebyshev (MVUE) UCL	34.49	97.5% Chebyshev (MVUE) UCL	42.23
99% Chebyshev (MVUE) UCL	57.44		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

February 2020

Nonparametric Distribution Free UCLs

22.89	95% Jackknife UCL	27.8
N/A	95% Bootstrap-t UCL	N/A
N/A	95% Percentile Bootstrap UCL	N/A
N/A		
28.1	95% Chebyshev(Mean, Sd) UCL	33.33
40.58	99% Chebyshev(Mean, Sd) UCL	54.83
	N/A N/A N/A 28.1	N/A 95% Bootstrap-t UCL N/A 95% Percentile Bootstrap UCL N/A 28.1 95% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 27.8

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.18/29/2018 2:52:12 PM

From File Soil-VehicleRefuel.xls

Full Precision OFF
Confidence Coefficient 95%
Imber of Bootstrap Operations 2000

Arsenic

General Statistics

Total Number of Observations	5	Number of Distinct Observations	5
		Number of Missing Observations	10
Minimum	1.6	Mean	2.48
Maximum	3.7	Median	2.4
SD	0.853	Std. Error of Mean	0.381
Coefficient of Variation	0.344	Skewness	0.601

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.949	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.187	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal OCL		95% UCLS (Adjusted for Skewness)	
95% Student's-t UCL	3.293	95% Adjusted-CLT UCL (Chen-1995)	3.217
		95% Modified-t UCL (Johnson-1978)	3.31

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.23	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.679	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.215	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.358	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	10.8	k star (bias corrected MLE)	4.454
Theta hat (MLE)	0.23	Theta star (bias corrected MLE)	0.557
nu hat (MLE)	108	nu star (bias corrected)	44.54
MLE Mean (bias corrected)	2.48	MLE Sd (bias corrected)	1.175
		Approximate Chi Square Value (0.05)	30.24
Adjusted Level of Significance	0.0086	Adjusted Chi Square Value	25.2

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 3.654 95% Adjusted Gamma UCL (use when n<50) 4.384

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.963	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.762	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.188	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.343	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.47	Mean of logged Data	0.861
Maximum of Logged Data	1.308	SD of logged Data	0.343

February 2020

Assuming Lognormal Distribution

95% H-UCL	3.852	90% Chebyshev (MVUE) UCL	3.614
95% Chebyshev (MVUE) UCL	4.127	97.5% Chebyshev (MVUE) UCL	4.841
99% Chebyshev (MVUE) UCL	6.242		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

3.293	95% Jackknife UCL	3.107	95% CLT UCL
3.57	95% Bootstrap-t UCL	3.037	95% Standard Bootstrap UCL
3.12	95% Percentile Bootstrap UCL	3.042	95% Hall's Bootstrap UCL
		3.06	95% BCA Bootstrap UCL
4.142	95% Chebyshev(Mean, Sd) UCL	3.624	90% Chebyshev(Mean, Sd) UCL
6.274	99% Chebyshev(Mean, Sd) UCL	4.861	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 3.293

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)anthracene

General Statistics

Total Number of Observations	19	Number of Distinct Observations	18
		Number of Missing Observations	1
Number of Detects	16	Number of Non-Detects	3
Number of Distinct Detects	15	Number of Distinct Non-Detects	3
Minimum Detect	0.0015	Minimum Non-Detect	0.007
Maximum Detect	2.6	Maximum Non-Detect	0.0073
Variance Detects	0.463	Percent Non-Detects	15.79%
Mean Detects	0.443	SD Detects	0.68
Median Detects	0.19	CV Detects	1.537
Skewness Detects	2.488	Kurtosis Detects	6.723
Mean of Logged Detects	-2.055	SD of Logged Detects	2.026

Normal GOF Test on Detects Only					
Shapiro Wilk Test Statistic	0.666	Shapiro Wilk GOF Test			
5% Shapiro Wilk Critical Value	0.887	Detected Data Not Normal at 5% Significance Level			
Lilliefors Test Statistic	0.293	Lilliefors GOF Test			
5% Lilliefors Critical Value	0.213	Detected Data Not Normal at 5% Significance Level			

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.373	KM Standard Error of Mean	0.148
KM SD	0.625	95% KM (BCA) UCL	0.655
95% KM (t) UCL	0.63	95% KM (Percentile Bootstrap) UCL	0.632
95% KM (z) UCL	0.617	95% KM Bootstrap t UCL	0.92
90% KM Chebyshev UCL	0.818	95% KM Chebyshev UCL	1.019
97.5% KM Chehyshey LICI	1 299	99% KM Chehyshey UCI	1 848

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.22	Anderson-Darling GOF Test
5% A-D Critical Value	0.795	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.134	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.227	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.511	k star (bias corrected MLE)	0.456
Theta hat (MLE)	0.867	Theta star (bias corrected MLE)	0.97
nu hat (MLE)	16.34	nu star (bias corrected)	14.61
Mean (detects)	0.443		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.374	Mean	0.0015	Minimum
0.15	Median	2.6	Maximum
1.715	CV	0.642	SD
0.405	k star (bias corrected MLE)	0.439	k hat (MLE)
0.924	Theta star (bias corrected MLE)	0.852	Theta hat (MLE)
15.39	nu star (bias corrected)	16.7	nu hat (MLE)
		0.0369	Adjusted Level of Significance (β)
7.059	Adjusted Chi Square Value (15.39, β)	7.537	Approximate Chi Square Value (15.39, α)
0.816	95% Gamma Adjusted UCL (use when n<50)	0.765	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.373	SD (KM)	0.625
Variance (KM)	0.391	SE of Mean (KM)	0.148
k hat (KM)	0.356	k star (KM)	0.335
nu hat (KM)	13.54	nu star (KM)	12.73
theta hat (KM)	1.048	theta star (KM)	1.114
80% gamma percentile (KM)	0.586	90% gamma percentile (KM)	1.085
95% gamma percentile (KM)	1.647	99% gamma percentile (KM)	3.088

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (12.73, α)	5.714	Adjusted Chi Square Value (12.73, β)	5.307
15% Gamma Approximate KM-LICL (use when n>=50)	0.832	95% Gamma Adjusted KM-LICL (use when n<50)	0.896

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.942	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.887	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.157	Lilliefors GOF Test
5% Lilliefors Critical Value	0.213	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-2.574	Mean in Log Scale	0.373	Mean in Original Scale
2.222	SD in Log Scale	0.642	SD in Original Scale
0.634	95% Percentile Bootstrap UCL	0.629	95% t UCL (assumes normality of ROS data)
0.915	95% Bootstrap t UCL	0.717	95% BCA Bootstrap UCL
		10.27	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.661	KM Geo Mean	0.0699
KM SD (logged)	2.292	95% Critical H Value (KM-Log)	4.775
KM Standard Error of Mean (logged)	0.551	95% H-UCL (KM -Log)	12.77
KM SD (logged)	2.292	95% Critical H Value (KM-Log)	4.775
KM Standard Error of Mean (logged)	0.551		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	0.373	Mean in Log Scale	-2.62	
SD in Original Scale	0.642	SD in Log Scale	2.284	
95% t UCL (Assumes normality)	0.629	95% H-Stat UCL	12.81	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 0.896

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)pyrene

General Statistics

19	Number of Distinct Observations	18
	Number of Missing Observations	1
14	Number of Non-Detects	5
13	Number of Distinct Non-Detects	5
0.009	Minimum Non-Detect	0.007
1.4	Maximum Non-Detect	0.0091
0.264	Percent Non-Detects	26.32%
0.443	SD Detects	0.514
0.195	CV Detects	1.161
1.166	Kurtosis Detects	-0.207
-1.731	SD of Logged Detects	1.665
	14 13 0.009 1.4 0.264 0.443 0.195 1.166	Number of Missing Observations 14 Number of Non-Detects 13 Number of Distinct Non-Detects 0.009 Minimum Non-Detect 1.4 Maximum Non-Detect 0.264 Percent Non-Detects 0.443 SD Detects 0.195 CV Detects 1.166 Kurtosis Detects

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.772	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.874	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.253	Lilliefors GOF Test
5% Lilliefors Critical Value	0.226	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.111	KM Standard Error of Mean	0.328	KM Mean
0.518	95% KM (BCA) UCL	0.466	KM SD
0.518	95% KM (Percentile Bootstrap) UCL	0.521	95% KM (t) UCL
0.583	95% KM Bootstrap t UCL	0.511	95% KM (z) UCL
0.812	95% KM Chebyshev UCL	0.661	90% KM Chebyshev UCL
1.433	99% KM Chebyshey UCL	1.021	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.335	Anderson-Darling GOF Test
5% A-D Critical Value	0.778)etected	data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.14	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.239)etected	data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.664	k star (bias corrected MLE)	0.57
Theta hat (MLE)	0.666	Theta star (bias corrected MLE)	0.777
nu hat (MLE)	18.6	nu star (bias corrected)	15.95
Mean (detects)	0.443		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.009	Mean	0.329
Maximum	1.4	Median	0.066
SD	0.479	CV	1.455
k hat (MLE)	0.467	k star (bias corrected MLE)	0.428
Theta hat (MLE)	0.704	Theta star (bias corrected MLE)	0.768
nu hat (MLE)	17.74	nu star (bias corrected)	16.27
Adjusted Level of Significance (β)	0.0369		
Approximate Chi Square Value (16.27, α)	8.154	Adjusted Chi Square Value (16.27, β)	7.655
95% Gamma Approximate UCL (use when n>=50)	0.656	95% Gamma Adjusted UCL (use when n<50)	0.699

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.328	SD (KM)	0.466
Variance (KM)	0.217	SE of Mean (KM)	0.111
k hat (KM)	0.495	k star (KM)	0.452
nu hat (KM)	18.81	nu star (KM)	17.17
theta hat (KM)	0.663	theta star (KM)	0.726
80% gamma percentile (KM)	0.536	90% gamma percentile (KM)	0.906
95% gamma percentile (KM)	1.306	99% gamma percentile (KM)	2.3

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (17.17, α)	8.794	Adjusted Chi Square Value (17.17, β)	8.272
15% Gamma Approximate KM-UCL (use when n>=50)	0.64	95% Gamma Adjusted KM-UCL (use when n<50)	0.681

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.925	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.874	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.147	Lilliefors GOF Test
5% Lilliefors Critical Value	0.226	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.327	Mean in Log Scale	-2.711
SD in Original Scale	0.48	SD in Log Scale	2.201
95% t UCL (assumes normality of ROS data)	0.518	95% Percentile Bootstrap UCL	0.532
95% BCA Bootstrap UCL	0.566	95% Bootstrap t UCL	0.589
95% H-UCL (Log ROS)	8.195		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.579	KM Geo Mean	0.0759
KM SD (logged)	1.977	95% Critical H Value (KM-Log)	4.21
KM Standard Error of Mean (logged)	0.471	95% H-UCL (KM -Log)	3.809
KM SD (logged)	1.977	95% Critical H Value (KM-Log)	4.21
KM Standard Error of Mean (logged)	0.471		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.327	Mean in Log Scale	-2.742
SD in Original Scale	0.48	SD in Log Scale	2.241
95% t UCL (Assumes normality)	0.518	95% H-Stat UCL	9.428

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 0.681

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(b)fluoranthene

General Statistics

Total Number of Observations	19	Number of Distinct Observations	19
		Number of Missing Observations	1
Number of Detects	15	Number of Non-Detects	4
Number of Distinct Detects	15	Number of Distinct Non-Detects	4
Minimum Detect	0.011	Minimum Non-Detect	0.007
Maximum Detect	2.3	Maximum Non-Detect	0.0091
Variance Detects	0.597	Percent Non-Detects	21.05%
Mean Detects	0.555	SD Detects	0.773
Median Detects	0.21	CV Detects	1.391
Skewness Detects	1.647	Kurtosis Detects	1.581
Mean of Logged Detects	-1.665	SD of Logged Detects	1.688

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.713	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.881	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.286	Lilliefors GOF Test
5% Lilliefors Critical Value	0.22	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.44	KM Standard Error of Mean	0.166
KM SD	0.7	95% KM (BCA) UCL	0.753
95% KM (t) UCL	0.728	95% KM (Percentile Bootstrap) UCL	0.729
95% KM (z) UCL	0.713	95% KM Bootstrap t UCL	0.98
90% KM Chebyshev UCL	0.939	95% KM Chebyshev UCL	1.164
97.5% KM Chebyshev UCL	1.478	99% KM Chebyshev UCL	2.094

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.41	A-D Test Statistic
7 Detected data appear Gamma Distributed at 5% Significance Lev	0.787	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.159	K-S Test Statistic
3 Detected data appear Gamma Distributed at 5% Significance Lev	0.233	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.506	k star (bias corrected MLE)	0.577	k hat (MLE)
1.098	Theta star (bias corrected MLE)	0.963	Theta hat (MLE)
15.18	nu star (bias corrected)	17.31	nu hat (MLE)
		0.555	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.441	Mean	0.01	Minimum
0.099	Median	2.3	Maximum
1.631	CV	0.719	SD
0.407	k star (bias corrected MLE)	0.442	k hat (MLE)
1.081	Theta star (bias corrected MLE)	0.996	Theta hat (MLE)
15.48	nu star (bias corrected)	16.8	nu hat (MLE)
		0.0369	Adjusted Level of Significance (β)
7.119	Adjusted Chi Square Value (15.48, β)	7.599	Approximate Chi Square Value (15.48, α)
0.958	95% Gamma Adjusted UCL (use when n<50)	0.898	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.44	SD (KM)	0.7
Variance (KM)	0.49	SE of Mean (KM)	0.166
k hat (KM)	0.395	k star (KM)	0.368
nu hat (KM)	15.02	nu star (KM)	13.98
theta hat (KM)	1.113	theta star (KM)	1.196
80% gamma percentile (KM)	0.702	90% gamma percentile (KM)	1.261
95% gamma percentile (KM)	1.881	99% gamma percentile (KM)	3,457

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (13.98, α)	6.557	Adjusted Chi Square Value (13.98, β)	6.117
15% Gamma Approximate KM-UCL (use when n>=50)	0.938	95% Gamma Adjusted KM-UCL (use when n<50)	1.006

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.96	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.881	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0893	Lilliefors GOF Test
5% Lilliefors Critical Value	0.22	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.439	Mean in Log Scale	-2.485
SD in Original Scale	0.72	SD in Log Scale	2.208
95% t UCL (assumes normality of ROS data)	0.726	95% Percentile Bootstrap UCL	0.739
95% BCA Bootstrap UCL	0.779	95% Bootstrap t UCL	1.021
95% H-UCL (Log ROS)	10.58		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.359	KM Geo Mean	0.0945
KM SD (logged)	1.977	95% Critical H Value (KM-Log)	4.209
KM Standard Error of Mean (logged)	0.469	95% H-UCL (KM -Log)	4.736

KM SD (logged) 1.977 95% Critical H Value (KM-Log) 4.209

KM Standard Error of Mean (logged) 0.469

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.439	Mean in Log Scale	-2.488
SD in Original Scale	0.72	SD in Log Scale	2.213
95% t UCL (Assumes normality)	0.726	95% H-Stat UCL	10.77

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 1.006

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(k)fluoranthene

General Statistics

Total Number of Observations	19	Number of Distinct Observations	19
		Number of Missing Observations	1
Number of Detects	14	Number of Non-Detects	5
Number of Distinct Detects	14	Number of Distinct Non-Detects	5
Minimum Detect	0.0031	Minimum Non-Detect	0.007
Maximum Detect	0.61	Maximum Non-Detect	0.014
Variance Detects	0.0397	Percent Non-Detects	26.32%
Mean Detects	0.17	SD Detects	0.199
Median Detects	0.089	CV Detects	1.173
Skewness Detects	1.455	Kurtosis Detects	1.133
Mean of Logged Detects	-2.655	SD of Logged Detects	1.66

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.788	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.874	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.234	Lilliefors GOF Test
5% Lilliefors Critical Value	0.226	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.126	KM Standard Error of Mean	0.043
KM SD	0.18	95% KM (BCA) UCL	0.203
95% KM (t) UCL	0.201	95% KM (Percentile Bootstrap) UCL	0.198
95% KM (z) UCL	0.197	95% KM Bootstrap t UCL	0.252
90% KM Chebyshev UCL	0.255	95% KM Chebyshev UCL	0.313
97.5% KM Chebyshev UCL	0.394	99% KM Chebyshev UCL	0.553

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.203	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.776	5% A-D Critical Value
6 Kolmogorov-Smirnov GOF	0.0949	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.239	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.587	k star (bias corrected MLE)	0.687	k hat (MLE)
0.289	Theta star (bias corrected MLE)	0.247	Theta hat (MLE)
16.44	nu star (bias corrected)	19.23	nu hat (MLE)
		0.17	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0031	Mean	0.128
Maximum	0.61	Median	0.033
SD	0.184	CV	1.441
k hat (MLE)	0.562	k star (bias corrected MLE)	0.508
Theta hat (MLE)	0.228	Theta star (bias corrected MLE)	0.252
nu hat (MLE)	21.34	nu star (bias corrected)	19.31
Adjusted Level of Significance (β)	0.0369		
Approximate Chi Square Value (19.31, α)	10.34	Adjusted Chi Square Value (19.31, β)	9.771
95% Gamma Approximate UCL (use when n>=50)	0.239	95% Gamma Adjusted UCL (use when n<50)	0.253

Estimates of Gamma Parameters using KM Estimates

	Mean (KM)	0.126	SD (KM)	0.18
	Variance (KM)	0.0326	SE of Mean (KM)	0.043
	k hat (KM)	0.488	k star (KM)	0.446
	nu hat (KM)	18.54	nu star (KM)	16.94
	theta hat (KM)	0.258	theta star (KM)	0.283
	80% gamma percentile (KM)	0.206	90% gamma percentile (KM)	0.349
1	95% gamma percentile (KM)	0.504	99% gamma percentile (KM)	0.89

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (16.94, α)	8.633	Adjusted Chi Square Value (16.94, β)	8.117
15% Gamma Approximate KM-UCL (use when n>=50)	0.247	95% Gamma Adjusted KM-UCL (use when n<50)	0.263

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.928	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.874	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.145	Lilliefors GOF Test
5% Lilliefors Critical Value	0.226	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.126	Mean in Log Scale	-3.355
SD in Original Scale	0.185	SD in Log Scale	1.854
95% t UCL (assumes normality of ROS data)	0.2	95% Percentile Bootstrap UCL	0.2
95% BCA Bootstrap UCL	0.219	95% Bootstrap t UCL	0.269
95% H-UCL (Log ROS)	1.114		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

•			
KM Mean (logged)	-3.464	KM Geo Mean	0.0313
KM SD (logged)	1.929	95% Critical H Value (KM-Log)	4.124
KM Standard Error of Mean (logged)	0.459	95% H-UCL (KM -Log)	1.31
KM SD (logged)	1.929	95% Critical H Value (KM-Log)	4.124
KM Standard Error of Mean (logged)	0.459		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed			
Mean in Original Scale	0.126	Mean in Log Scale	-3.39		
SD in Original Scale	0.185	SD in Log Scale	1.899		
95% t UCL (Assumes normality)	0.2	95% H-Stat UCL	1.267		

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 0.263

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chrysene

General Statistics

То	tal Number of Observations	19	Number of Distinct Observations	18
			Number of Missing Observations	1
	Number of Detects	16	Number of Non-Detects	3
	Number of Distinct Detects	16	Number of Distinct Non-Detects	3
	Minimum Detect	0.0011	Minimum Non-Detect	0.007
	Maximum Detect	2.5	Maximum Non-Detect	0.0073
	Variance Detects	0.435	Percent Non-Detects	15.79%
	Mean Detects	0.464	SD Detects	0.659
	Median Detects	0.2	CV Detects	1.421
	Skewness Detects	2.279	Kurtosis Detects	5.742
	Mean of Logged Detects	-1.983	SD of Logged Detects	2.069

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.714	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.887	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.25	Lilliefors GOF Test
5% Lilliefors Critical Value	0.213	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.144	KM Standard Error of Mean	0.391	KM Mean
0.647	95% KM (BCA) UCL	0.61	KM SD
0.643	95% KM (Percentile Bootstrap) UCL	0.642	95% KM (t) UCL
0.819	95% KM Bootstrap t UCL	0.629	95% KM (z) UCL
1.021	95% KM Chebyshev UCL	0.825	90% KM Chebyshev UCL
1.829	99% KM Chebyshey UCL	1.293	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.125	Anderson-Darling GOF Test
5% A-D Critical Value	0.795)ete	ected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.0856	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.227)ete	ected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.52	k star (bias corrected MLE)	0.464
Theta hat (MLE)	0.894	Theta star (bias corrected MLE)	1.001
nu hat (MLE)	16.62	nu star (bias corrected)	14.84
Mean (detects)	0.464		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ \verb|<|1.0|, especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ \verb|<|15-20|)$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.392	Mean	0.0011	Minimum
0.14	Median	2.5	Maximum
1.594	CV	0.626	SD
0.408	k star (bias corrected MLE)	0.443	k hat (MLE)
0.962	Theta star (bias corrected MLE)	0.886	Theta hat (MLE)
15.51	nu star (bias corrected)	16.83	nu hat (MLE)
		0.0369	Adjusted Level of Significance (β)
7.135	Adjusted Chi Square Value (15.51, β)	7.615	Approximate Chi Square Value (15.51, α)
0.853	95% Gamma Adjusted UCL (use when n<50)	0.799	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.391	SD (KM)	0.61
Variance (KM)	0.372	SE of Mean (KM)	0.144
k hat (KM)	0.412	k star (KM)	0.382
nu hat (KM)	15.64	nu star (KM)	14.5
theta hat (KM)	0.95	theta star (KM)	1.025
80% gamma percentile (KM)	0.628	90% gamma percentile (KM)	1.114
95% gamma percentile (KM)	1.652	99% gamma percentile (KM)	3.011

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (14.50, α)	6.917	Adjusted Chi Square Value (14.50, β)	6.462
15% Gamma Approximate KM-UCL (use when n>=50)	0.82	95% Gamma Adjusted KM-UCL (use when n<50)	0.878

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.938	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.887	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.141	Lilliefors GOF Test
5% Lilliefors Critical Value	0.213	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-2.58	Mean in Log Scale	0.391	Mean in Original Scale
2.362	SD in Log Scale	0.626	SD in Original Scale
0.637	95% Percentile Bootstrap UCL	0.641	95% t UCL (assumes normality of ROS data)
0.875	95% Bootstrap t UCL	0.731	95% BCA Bootstrap UCL
		18.91	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.721	KM Geo Mean	0.0658
KM SD (logged)	2.515	95% Critical H Value (KM-Log)	5.181
KM Standard Error of Mean (logged)	0.598	95% H-UCL (KM -Log)	33.56
KM SD (logged)	2.515	95% Critical H Value (KM-Log)	5.181
KM Standard Error of Mean (logged)	0.598		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.391	Mean in Log Scale	-2.559
SD in Original Scale	0.626	SD in Log Scale	2.332
95% t UCL (Assumes normality)	0.641	95% H-Stat UCL	16.81

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 0.878

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Cobalt

General Statistics

Total Number of Observations	5	Number of Distinct Observations	5
		Number of Missing Observations	10
Minimum	2.6	Mean	5.52
Maximum	7.3	Median	6.8
SD	2.095	Std. Error of Mean	0.937
Coefficient of Variation	0.379	Skewness	-0.818

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.833	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.329	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	7.517	95% Adjusted-CLT UCL (Chen-1995)	6.694
		95% Modified-t UCL (Johnson-1978)	7.46

Gamma GOF Test

2 Anderson-Darling Gamma GOF Test	0.572	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Lev	0.68	5% A-D Critical Value
7 Kolmogorov-Smirnov Gamma GOF Test	0.357	K-S Test Statistic
3 Detected data appear Gamma Distributed at 5% Significance Lev	0.358	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

2.947	k star (bias corrected MLE)	7.035	k hat (MLE)
1.873	Theta star (bias corrected MLE)	0.785	Theta hat (MLE)
29.47	nu star (bias corrected)	70.35	nu hat (MLE)
3.215	MLE Sd (bias corrected)	5.52	MLE Mean (bias corrected)
18.08	Approximate Chi Square Value (0.05)		
14.32	Adjusted Chi Square Value	0.0086	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<=50)) 8.999 95% Adjusted Gamma UCL (use when n<50) 11.36

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.82	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.762	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.333	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.343	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.956	Mean of logged Data	1.636
Maximum of Logged Data	1.988	SD of logged Data	0.452

Assuming Lognormal Distribution

95% H-UCL	10.69	90% Chebyshev (MVUE) UCL	8.908
95% Chebyshev (MVUE) UCL	10.42	97.5% Chebyshev (MVUE) UCL	12.53
99% Chebyshev (MVUE) UCL	16.66		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

e UCL 7.517	95% Jackknife UCL	7.061	95% CLT UCL
-t UCL 7.31	95% Bootstrap-t UCL	6.881	95% Standard Bootstrap UCL
p UCL 6.96	95% Percentile Bootstrap UCL	6.367	95% Hall's Bootstrap UCL
		6.56	95% BCA Bootstrap UCL
d) UCL 9.603	95% Chebyshev(Mean, Sd) UCL	8.33	90% Chebyshev(Mean, Sd) UCL
d) UCL 14.84	99% Chebyshev(Mean, Sd) UCL	11.37	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 7.517

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Dibenzo(a,h)anthracene

General Statistics

19	Number of Distinct Observations	18
	Number of Missing Observations	1
11	Number of Non-Detects	8
10	Number of Distinct Non-Detects	8
0.0081	Minimum Non-Detect	0.007
0.31	Maximum Non-Detect	0.19
0.0153	Percent Non-Detects	42.11%
0.119	SD Detects	0.124
0.068	CV Detects	1.04
0.9	Kurtosis Detects	-1.023
-2.801	SD of Logged Detects	1.346
	11 10 0.0081 0.31 0.0153 0.119 0.068 0.9	Number of Missing Observations 11 Number of Non-Detects 10 Number of Distinct Non-Detects 0.0081 Minimum Non-Detect 0.31 Maximum Non-Detect 0.0153 Percent Non-Detects 0.119 SD Detects 0.068 CV Detects 0.9 Kurtosis Detects

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.787	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.224	Lilliefors GOF Test
5% Lilliefors Critical Value	0.251	Detected Data appear Normal at 5% Significance Level

Detected Data appear Approximate Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.0254	KM Standard Error of Mean	0.0731	KM Mean
0.115	95% KM (BCA) UCL	0.105	KM SD
0.116	95% KM (Percentile Bootstrap) UCL	0.117	95% KM (t) UCL
0.137	95% KM Bootstrap t UCL	0.115	95% KM (z) UCL
0.184	95% KM Chebyshev UCL	0.149	90% KM Chebyshev UCL
0.326	99% KM Chebyshev UCL	0.232	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.402	Anderson-Darling GOF Test
5% A-D Critical Value	0.757 Detected	data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.178	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.264 Detected	data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.695	k star (bias corrected MLE)	0.872	k hat (MLE)
0.171	Theta star (bias corrected MLE)	0.136	Theta hat (MLE)
15.29	nu star (bias corrected)	19.19	nu hat (MLE)
		0.119	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ \verb|<|1.0|, especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ \verb|<|15-20|)$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0081	Mean	0.0731
Maximum	0.31	Median	0.01
SD	0.108	CV	1.471
k hat (MLE)	0.647	k star (bias corrected MLE)	0.58
Theta hat (MLE)	0.113	Theta star (bias corrected MLE)	0.126
nu hat (MLE)	24.57	nu star (bias corrected)	22.03
Adjusted Level of Significance (β)	0.0369		
Approximate Chi Square Value (22.03, α)	12.36	Adjusted Chi Square Value (22.03, β)	11.73
95% Gamma Approximate UCL (use when n>=50)	0.13	95% Gamma Adjusted UCL (use when n<50)	0.137

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.0731	SD (KM)	0.105
Variance (KM)	0.0111	SE of Mean (KM)	0.0254
k hat (KM)	0.483	k star (KM)	0.442
nu hat (KM)	18.35	nu star (KM)	16.79
theta hat (KM)	0.151	theta star (KM)	0.165
80% gamma percentile (KM)	0.119	90% gamma percentile (KM)	0.203
95% gamma percentile (KM)	0.293	99% gamma percentile (KM)	0.519

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (16.79, α)	8.519	Adjusted Chi Square Value (16.79, β)	8.007
15% Gamma Approximate KM-UCL (use when n>=50)	0.144	95% Gamma Adjusted KM-UCL (use when n<50)	0.153

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.92	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.15	Lilliefors GOF Test

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-4.024	Mean in Log Scale	0.0705	Mean in Original Scale
1.808	SD in Log Scale	0.109	SD in Original Scale
0.112	95% Percentile Bootstrap UCL	0.114	95% t UCL (assumes normality of ROS data)
0.13	95% Bootstrap t UCL	0.12	95% BCA Bootstrap UCL
		0.486	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-3.666	KM Geo Mean	0.0256
KM SD (logged)	1.439	95% Critical H Value (KM-Log)	3.287
KM Standard Error of Mean (logged)	0.351	95% H-UCL (KM -Log)	0.22
KM SD (logged)	1.439	95% Critical H Value (KM-Log)	3.287
KM Standard Error of Mean (logged)	0.351		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.0753	Mean in Log Scale	-3.8
SD in Original Scale	0.108	SD in Log Scale	1.721
95% t UCL (Assumes normality)	0.118	95% H-Stat UCL	0.453

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.117

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Diesel Range Organics (C10-C20)

General Statistics

Total Number of Observations	12	Number of Distinct Observations	8
		Number of Missing Observations	4
Number of Detects	5	Number of Non-Detects	7
Number of Distinct Detects	5	Number of Distinct Non-Detects	3
Minimum Detect	12	Minimum Non-Detect	18
Maximum Detect	380	Maximum Non-Detect	20
Variance Detects	33549	Percent Non-Detects	58.33%
Mean Detects	150.8	SD Detects	183.2
Median Detects	27	CV Detects	1.215
Skewness Detects	0.665	Kurtosis Detects	-2.974
Mean of Logged Detects	4.039	SD of Logged Detects	1.684

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.754	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.35	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	70.71	KM Standard Error of Mean	40.53
KM SD	125.6	95% KM (BCA) UCL	150.3
95% KM (t) UCL	143.5	95% KM (Percentile Bootstrap) UCL	133.7
95% KM (z) UCL	137.4	95% KM Bootstrap t UCL	1285
90% KM Chebyshev UCL	192.3	95% KM Chebyshev UCL	247.4
97.5% KM Chebyshev UCL	323.8	99% KM Chebyshev UCL	474

Gamma GOF Tests on Detected Observations Only

Leve
Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.628	k star (bias corrected MLE)	0.385
Theta hat (MLE)	239.9	Theta star (bias corrected MLE)	392
nu hat (MLE)	6.285	nu star (bias corrected)	3.847
Mean (detects)	150.8		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

69.05	Mean	0.01	Minimum
13.5	Median	380	Maximum
1.925	CV	132.9	SD
0.198	k star (bias corrected MLE)	0.19	k hat (MLE)
348.4	Theta star (bias corrected MLE)	363	Theta hat (MLE)
4.757	nu star (bias corrected)	4.565	nu hat (MLE)
		0.029	Adjusted Level of Significance (β)
0.805	Adjusted Chi Square Value (4.76, β)	1.042	Approximate Chi Square Value (4.76, α)
407.9	95% Gamma Adjusted UCL (use when n<50)	315.3	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	70.71	SD (KM)	125.6
Variance (KM)	15766	SE of Mean (KM)	40.53
k hat (KM)	0.317	k star (KM)	0.293
nu hat (KM)	7.611	nu star (KM)	7.041
theta hat (KM)	223	theta star (KM)	241
80% gamma percentile (KM)	107.8	90% gamma percentile (KM)	209.1
95% gamma percentile (KM)	325.8	99% gamma percentile (KM)	629.8

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (7.04, α)	2.193	Adjusted Chi Square Value (7.04, β)	1.804
15% Gamma Approximate KM-UCL (use when n>=50)	227	95% Gamma Adjusted KM-UCL (use when n<50)	275.9

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.812	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.271	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	71.93	Mean in Log Scale	3.152
SD in Original Scale	130.8	SD in Log Scale	1.402
95% t UCL (assumes normality of ROS data)	139.7	95% Percentile Bootstrap UCL	132.4
95% BCA Bootstrap UCL	154.5	95% Bootstrap t UCL	867.2
95% H-UCL (Log ROS)	297 4		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	3.198	KM Geo Mean	24.48
KM SD (logged)	1.208	95% Critical H Value (KM-Log)	3.306
KM Standard Error of Mean (logged)	0.394	95% H-UCL (KM -Log)	169.2
KM SD (logged)	1.208	95% Critical H Value (KM-Log)	3.306
KM Standard Error of Mean (logged)	0.394		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	68.21	Mean in Log Scale	2.978
SD in Original Scale	132.3	SD in Log Scale	1.382
95% t UCL (Assumes normality)	136.8	95% H-Stat UCL	234

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL 1285 d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 275.9

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Indeno(1,2,3-cd)pyrene

General Statistics

Total Number of Observations	19	Number of Distinct Observations	18
		Number of Missing Observations	1
Number of Detects	14	Number of Non-Detects	5
Number of Distinct Detects	13	Number of Distinct Non-Detects	5
Minimum Detect	0.0065	Minimum Non-Detect	0.007
Maximum Detect	1	Maximum Non-Detect	0.0091
Variance Detects	0.118	Percent Non-Detects	26.32%
Mean Detects	0.285	SD Detects	0.344
Median Detects	0.115	CV Detects	1.209
Skewness Detects	1.287	Kurtosis Detects	0.225
Mean of Logged Detects	-2.198	SD of Logged Detects	1.66

Normal GOF Test on Detects Only

0.772	Shapiro Wilk GOF Test
0.874	Detected Data Not Normal at 5% Significance Level
0.255	Lilliefors GOF Test
0.226	Detected Data Not Normal at 5% Significance Level
	0.874 0.255

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.211	KM Standard Error of Mean	0.0738
KM SD	0.31	95% KM (BCA) UCL	0.333
95% KM (t) UCL	0.339	95% KM (Percentile Bootstrap) UCL	0.33
95% KM (z) UCL	0.333	95% KM Bootstrap t UCL	0.4
90% KM Chebyshev UCL	0.433	95% KM Chebyshev UCL	0.533
97.5% KM Chebyshev UCL	0.672	99% KM Chebyshev UCL	0.945

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.313	Anderson-Darling GOF Test
5% A-D Critical Value	0.78	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.14	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.239	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.649	k star (bias corrected MLE)	0.557
Theta hat (MLE)	0.439	Theta star (bias corrected MLE)	0.511
nu hat (MLE)	18.16	nu star (bias corrected)	15.6
Mean (detects)	0.285		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0065	Mean	0.212
Maximum	1	Median	0.054
SD	0.318	CV	1.496
k hat (MLE)	0.496	k star (bias corrected MLE)	0.453
Theta hat (MLE)	0.428	Theta star (bias corrected MLE)	0.469
nu hat (MLE)	18.85	nu star (bias corrected)	17.2
Adjusted Level of Significance (β)	0.0369		
Approximate Chi Square Value (17.20, α)	8.818	Adjusted Chi Square Value (17.20, β)	8.296
95% Gamma Approximate UCL (use when n>=50)	0.414	95% Gamma Adjusted UCL (use when n<50)	0.44

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.211	SD (KM)	0.31
Variance (KM)	0.096	SE of Mean (KM)	0.0738
k hat (KM)	0.466	k star (KM)	0.427
nu hat (KM)	17.7	nu star (KM)	16.24
theta hat (KM)	0.454	theta star (KM)	0.495
0% gamma percentile (KM)	0.344	90% gamma percentile (KM)	0.59
5% gamma percentile (KM)	0.859	99% gamma percentile (KM)	1.529

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (16.24, α)	8.133	Adjusted Chi Square Value (16.24, β)	7.635
15% Gamma Approximate KM-LICL (use when n>=50)	0.422	95% Gamma Adjusted KM-LICL (use when n<50)	0.45

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.936	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.874	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.141	Lilliefors GOF Test
5% Lilliefors Critical Value	0.226	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-2.897	Mean in Log Scale	0.212	Mean in Original Scale
1.853	SD in Log Scale	0.318	SD in Original Scale
0.335	95% Percentile Bootstrap UCL	0.338	95% t UCL (assumes normality of ROS data)
0.394	95% Bootstrap t UCL	0.358	95% BCA Bootstrap UCL
		1.756	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

0.0527	KM Geo Mean	-2.943	KM Mean (logged)
3.993	95% Critical H Value (KM-Log)	1.854	KM SD (logged)
1.684	95% H-UCL (KM -Log)	0.441	KM Standard Error of Mean (logged)
3.993	95% Critical H Value (KM-Log)	1.854	KM SD (logged)
		0.441	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.211	Mean in Log Scale	-3.086
SD in Original Scale	0.319	SD in Log Scale	2.079
95% t UCL (Assumes normality)	0.338	95% H-Stat UCL	3.409

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 0.45

80 95

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Manganese

General Statistics

Total Number of Observations	5	Number of Distinct Observations	4
		Number of Missing Observations	10
Minimum	65	Mean	141
Maximum	200	Median	140
SD	49.04	Std. Error of Mean	21.93
Coefficient of Variation	0.348	Skewness	-0.801

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.929	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.292	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL	187.8	95% Adjusted-CLT UCL (Chen-1995)	168.7
		95% Modified-t UCL (Johnson-1978)	186 4

Gamma GOF Test

A-D Test Statistic	0.465	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.68	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.339	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.358	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

3.397	k star (bias corrected MLE)	8.16	k hat (MLE)
41.51	Theta star (bias corrected MLE)	17.28	Theta hat (MLE)
33.97	nu star (bias corrected)	81.6	nu hat (MLE)
76.5	MLE Sd (bias corrected)	141	MLE Mean (bias corrected)
21.64	Approximate Chi Square Value (0.05)		
17.47	Adjusted Chi Square Value	0.0086	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 221.3 95% Adjusted Gamma UCL (use when n<50) 274.1

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.845	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.762	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.352	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.343	Data Not Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	4.174	Mean of logged Data	4.886
Maximum of Logged Data	5.298	SD of logged Data	0.424

Assuming Lognormal Distribution

95% H-UCL	257.7	90% Chebyshev (MVUE) UCL	222.5
95% Chebyshev (MVUE) UCL	258.9	97.5% Chebyshev (MVUE) UCL	309.4
99% Chebyshev (MVUE) UCL	408.6		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	177.1	95% Jackknife UCL	187.8
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	206.8	95% Chebyshev(Mean, Sd) UCL	236.6
97.5% Chebyshev(Mean, Sd) UCL	278	99% Chebyshev(Mean, Sd) UCL	359.2

Suggested UCL to Use

95% Student's-t UCL 187.8

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Naphthalene

General Statistics

Total Number of Observations	19	Number of Distinct Observations	19
		Number of Missing Observations	1
Number of Detects	12	Number of Non-Detects	7
Number of Distinct Detects	12	Number of Distinct Non-Detects	7
Minimum Detect 9	9.1000E-4	Minimum Non-Detect	0.007
Maximum Detect	0.63	Maximum Non-Detect	0.037
Variance Detects	0.0396	Percent Non-Detects	36.84%
Mean Detects	0.111	SD Detects	0.199
Median Detects	0.0265	CV Detects	1.79
Skewness Detects	2.202	Kurtosis Detects	4.145
Mean of Logged Detects	-3.733	SD of Logged Detects	1.998

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.61	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	e 0.859 Detected Data Not Normal at 5% Significance Le	
Lilliefors Test Statistic	0.356	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.0718	KM Standard Error of Mean	0.0383
KM SD	0.16	95% KM (BCA) UCL	0.144
95% KM (t) UCL	0.138	95% KM (Percentile Bootstrap) UCL	0.14
95% KM (z) UCL	0.135	95% KM Bootstrap t UCL	0.446
90% KM Chebyshev UCL	0.187	95% KM Chebyshev UCL	0.239
97.5% KM Chebyshev UCL	0.311	99% KM Chebyshev UCL	0.453

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.527	Anderson-Darling GOF Test
5% A-D Critical Value	8.0	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.181	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.261	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.374	k star (bias corrected MLE)	0.424	k hat (MLE)
0.297	Theta star (bias corrected MLE)	0.262	Theta hat (MLE)
8.974	nu star (bias corrected)	10.19	nu hat (MLE)
		0 111	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 9	Mean	0.0739	
Maximum	0.63	Median	0.01
SD	0.163	CV	2.212
k hat (MLE)	0.446	k star (bias corrected MLE)	0.411
Theta hat (MLE)	0.165	Theta star (bias corrected MLE)	0.18
nu hat (MLE)	16.96	nu star (bias corrected)	15.62
Adjusted Level of Significance (β)	0.0369		
Approximate Chi Square Value (15.62, α)	7.693	Adjusted Chi Square Value (15.62, β)	7.21
95% Gamma Approximate UCL (use when n>=50)	0.15	95% Gamma Adjusted UCL (use when n<50)	0.16

Estimates of Gamma Parameters using KM Estimates

SD (KM) 0.16	0.0718	Mean (KM)
SE of Mean (KM) 0.038	0.0256	Variance (KM)
k star (KM) 0.205	0.202	k hat (KM)
nu star (KM) 7.786	7.662	nu hat (KM)
theta star (KM) 0.35	0.356	theta hat (KM)
90% gamma percentile (KM) 0.21	0.0958	80% gamma percentile (KM)
99% gamma percentile (KM) 0.78	0.368	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (7.79, α)	2.612	Adjusted Chi Square Value (7.79, β)	2.357
15% Gamma Approximate KM-UCL (use when n>=50)	0.214	95% Gamma Adjusted KM-UCL (use when n<50)	0.237

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.97	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.129	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-4.462	Mean in Log Scale	0.0714	Mean in Original Scale
1.851	SD in Log Scale	0.164	SD in Original Scale
0.139	95% Percentile Bootstrap UCL	0.137	95% t UCL (assumes normality of ROS data)
0.428	95% Bootstrap t UCL	0.17	95% BCA Bootstrap UCL
		0.365	95% H-LICL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-4.492	KM Geo Mean	0.0112
KM SD (logged)	1.881	95% Critical H Value (KM-Log)	4.041
KM Standard Error of Mean (logged)	0.479	95% H-UCL (KM -Log)	0.395
KM SD (logged)	1.881	95% Critical H Value (KM-Log)	4.041
KM Standard Error of Mean (logged)	0.479		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.073	Mean in Log Scale	-4.258
SD in Original Scale	0.164	SD in Log Scale	1.773
95% t UCL (Assumes normality)	0.138	95% H-Stat UCL	0.34

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) $\,$ 0.237

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

General Statistics

Total Number of Observations	5	Number of Distinct Observations	5
		Number of Missing Observations	10
Minimum	3.4	Mean	6.34
Maximum	12	Median	4.1
SD	3.818	Std. Error of Mean	1.708
Coefficient of Variation	0.602	Skewness	1 015

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk GOF Test	0.822	Shapiro Wilk Test Statistic
Data appear Normal at 5% Significance Leve	0.762	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.321	Lilliefors Test Statistic
Data appear Normal at 5% Significance Leve	0.343	5% Lilliefors Critical Value

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

,			
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	9.98	95% Adjusted-CLT UCL (Chen-1995)	9.977
		95% Modified-t UCL (Johnson-1978)	10.11

Gamma GOF Test

A-D Test Statistic	0.538	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.681	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.332	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.359	Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	3.824	k star (bias corrected MLE)	1.663
Theta hat (MLE)	1.658	Theta star (bias corrected MLE)	3.812
nu hat (MLE)	38.24	nu star (bias corrected)	16.63
MLE Mean (bias corrected)	6.34	MLE Sd (bias corrected)	4.916
		Approximate Chi Square Value (0.05)	8.409
Adjusted Level of Significance	0.0086	Adjusted Chi Square Value	6.026

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 12.54 95% Adjusted Gamma UCL (use when n<50) 17.5

Lognormal GOF Test

Shapiro Wilk Lognormal GOF Test	0.842	Shapiro Wilk Test Statistic
Data appear Lognormal at 5% Significance Lev	0.762	5% Shapiro Wilk Critical Value
Lilliefors Lognormal GOF Test	0.3	Lilliefors Test Statistic
Data appear Lognormal at 5% Significance Lev	0.343	5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.224	Mean of logged Data	1.71
Maximum of Logged Data	2.485	SD of logged Data	0.571

Assuming Lognormal Distribution

95% H-UCL	16.17	90% Chebyshev (MVUE) UCL	11.05
95% Chebyshev (MVUE) UCL	13.2	97.5% Chebyshev (MVUE) UCL	16.19
99% Chebyshev (MVUE) UCL	22.07		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	9.149	95% Jackknife UCL	9.98
95% Standard Bootstrap UCL	8.887	95% Bootstrap-t UCL	35.37

95% Hall's Bootstrap UCL	32.7	95% Percentile Bootstrap UCL	8.96
95% BCA Bootstrap UCL	9.06		
90% Chebyshev(Mean, Sd) UCL	11.46	95% Chebyshev(Mean, Sd) UCL	13.78
97.5% Chebyshev(Mean, Sd) UCL	17	99% Chebyshev(Mean, Sd) UCL	23.33

Suggested UCL to Use

95% Student's-t UCL 9.98

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

PCB, Total Aroclors (AECOM Calc)

	General Statistics		
Total Number of Observations	19	Number of Distinct Observations	15
		Number of Missing Observations	1
Number of Detects	10	Number of Non-Detects	9
Number of Distinct Detects	9	Number of Distinct Non-Detects	7
Minimum Detect	0.0019	Minimum Non-Detect	9.0000E-4
Maximum Detect	0.14	Maximum Non-Detect	0.0093
Variance Detects	0.00282	Percent Non-Detects	47.37%
Mean Detects	0.0429	SD Detects	0.0531
Median Detects	0.00875	CV Detects	1.237
Skewness Detects	0.936	Kurtosis Detects	-0.812
Mean of Logged Detects	-4.26	SD of Logged Detects	1.739

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.779	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.337	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

, <i>,</i>		•	
KM Mean	0.0232	KM Standard Error of Mean	0.0102
KM SD	0.0421	95% KM (BCA) UCL	0.0405
95% KM (t) UCL	0.0408	95% KM (Percentile Bootstrap) UCL	0.0408
95% KM (z) UCL	0.0399	95% KM Bootstrap t UCL	0.0492
90% KM Chebyshev UCL	0.0537	95% KM Chebyshev UCL	0.0675
97.5% KM Chehyshey UCI	0.0867	99% KM Chebyshey UCL	0.124

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.711	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.772	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.27	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.28	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

rected	ed MLE) 0.46
rected	d MLE) 0.0934
as corre	rrected) 9.193

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0019	Mean	0.0273
Maximum	0.14	Median	0.01
SD	0.0412	CV	1.507
k hat (MLE)	0.73	k star (bias corrected MLE)	0.649
Theta hat (MLE)	0.0375	Theta star (bias corrected MLE)	0.0421

24.68	nu star (bias corrected)	27.72	nu hat (MLE)
		0.0369	Adjusted Level of Significance (β)
13.68	Adjusted Chi Square Value (24.68, β)	14.37	Approximate Chi Square Value (24.68, α)
0.0493	95% Gamma Adjusted UCL (use when n<50)	0.0469	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.0232	SD (KM)	0.0421
Variance (KM)	0.00177	SE of Mean (KM)	0.0102
k hat (KM)	0.303	k star (KM)	0.29
nu hat (KM)	11.52	nu star (KM)	11.03
theta hat (KM)	0.0764	theta star (KM)	0.0798
80% gamma percentile (KM)	0.0352	90% gamma percentile (KM)	0.0686
95% gamma percentile (KM)	0.107	99% gamma percentile (KM)	0.208

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (11.03, α)	4.596	Adjusted Chi Square Value (11.03, β)	4.238
15% Gamma Approximate KM-UCL (use when n>=50)	0.0556	95% Gamma Adjusted KM-UCL (use when n<50)	0.0603

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.867	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.195	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0228	Mean in Log Scale	-6.084
SD in Original Scale	0.0434	SD in Log Scale	2.39
95% t UCL (assumes normality of ROS data)	0.0401	95% Percentile Bootstrap UCL	0.0389
95% BCA Bootstrap UCL	0.0456	95% Bootstrap t UCL	0.0487
95% H-UCL (Log ROS)	0.645		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

0.00416	KM Geo Mean	-5.482	KM Mean (logged)
3.865	95% Critical H Value (KM-Log)	1.781	KM SD (logged)
0.103	95% H-UCL (KM -Log)	0.436	KM Standard Error of Mean (logged)
3.865	95% Critical H Value (KM-Log)	1.781	KM SD (logged)
		0.436	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed			
Mean in Original Scale	0.0233	Mean in Log Scale	-5.486		
SD in Original Scale	0.0431	SD in Log Scale	1.911		
95% t UCL (Assumes normality)	0.0405	95% H-Stat UCL	0.163		

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) $\,$ 0.0603

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Thallium

General Statistics

Total Number of Observations	5	Number of Distinct Observations	4
		Number of Missing Observations	10
Number of Detects	4	Number of Non-Detects	1
Number of Distinct Detects	3	Number of Distinct Non-Detects	1
Minimum Detect	0.042	Minimum Non-Detect	0.11
Maximum Detect	0.15	Maximum Non-Detect	0.11
Variance Detects	0.00259	Percent Non-Detects	20%
Mean Detects	0.118	SD Detects	0.0509
Median Detects	0.14	CV Detects	0.431
Skewness Detects	-1.948	Kurtosis Detects	3.841
Mean of Logged Detects	-2.25	SD of Logged Detects	0.614

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.709	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.417	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.103	KM Standard Error of Mean	0.0257
KM SD	0.0498	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.158	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.145	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.18	95% KM Chebyshev UCL	0.215
97.5% KM Chebyshev UCL	0.263	99% KM Chebyshev UCL	0.359

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.84	Anderson-Darling GOF Test
5% A-D Critical Value	0.659	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.452	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.396	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.315	k star (bias corrected MLE)	4.593	k hat (MLE)
0.0897	Theta star (bias corrected MLE)	0.0257	Theta hat (MLE)
10.52	nu star (bias corrected)	36.75	nu hat (MLE)
		0.118	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.042	Mean	0.107
Maximum	0.15	Median	0.14
SD	0.0507	CV	0.475
k hat (MLE)	4.342	k star (bias corrected MLE)	1.87
Theta hat (MLE)	0.0246	Theta star (bias corrected MLE)	0.0571
nu hat (MLE)	43.42	nu star (bias corrected)	18.7
Adjusted Level of Significance (β)	0.0086		
Approximate Chi Square Value (18.70, α)	9.899	Adjusted Chi Square Value (18.70, β)	7.268
95% Gamma Approximate UCL (use when n>=50)	0.202	95% Gamma Adjusted UCL (use when n<50)	N/A

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.103	SD (KM)	0.0498
Variance (KM)	0.00248	SE of Mean (KM)	0.0257

k hat (KM)	4.265	k star (KM)	1.839
nu hat (KM)	42.65	nu star (KM)	18.39
theta hat (KM)	0.0241	theta star (KM)	0.0559
80% gamma percentile (KM)	0.155	90% gamma percentile (KM)	0.204
95% gamma percentile (KM)	0.25	99% gamma percentile (KM)	0.354

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (18.39, α)	9.676	Adjusted Chi Square Value (18.39, β)	7.081
15% Gamma Approximate KM-UCL (use when n>=50)	0.195	95% Gamma Adjusted KM-UCL (use when n<50)	0.267

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.676	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.428	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data Not Lognormal at 5% Significance Level

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.104	Mean in Log Scale	-2.397
SD in Original Scale	0.0534	SD in Log Scale	0.626
95% t UCL (assumes normality of ROS data)	0.155	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A	95% Bootstrap t UCL	N/A
95% H-UCL (Log ROS)	0.318		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.434	KM Geo Mean	0.0877
KM SD (logged)	0.602	95% Critical H Value (KM-Log)	3.293
KM Standard Error of Mean (logged)	0.311	95% H-UCL (KM -Log)	0.283
KM SD (logged)	0.602	95% Critical H Value (KM-Log)	3.293
KM Standard Error of Mean (logged)	0.311		

DL/2 Statistics

	DL/2 Normal		DL/2 Log-Transformed	
	Mean in Original Scale	0.105	Mean in Log Scale	-2.38
	SD in Original Scale	0.0523	SD in Log Scale	0.606
95%	t UCL (Assumes normality)	0.155	95% H-Stat UCL	0.303

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 0.215

Warning: Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Vanadium

General Statistics Total Number of Observations 5 Number of Distinct Observations 4 Number of Missing Observations 10 Minimum 13 Mean 21.8 Maximum 29 Median 26 SD 7.259 Std. Error of Mean 3.247 Coefficient of Variation 0.333 Skewness -0.517

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic 0.838 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.762 Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.319 Lilliefors GOF Test

5% Lilliefors Critical Value 0.343 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)
----------------	----------------------------------

95% Student's-t UCL 28.72 95% Adjusted-CLT UCL (Chen-1995) 26.34 95% Modified-t UCL (Johnson-1978) 28.6

Gamma GOF Test

A-D Test Statistic 0.587 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.679 Detected data appear Gamma Distributed at 5% Significance Leve K-S Test Statistic 0.351 Kolmogorov-Smimov Gamma GOF Test

5% K-S Critical Value 0.358 Detected data appear Gamma Distributed at 5% Significance Leve

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

4.15	k star (bias corrected MLE)	10.0	k hat (MLE)
5.252	Theta star (bias corrected MLE)	2.17	Theta hat (MLE)
41.5	nu star (bias corrected)	100.4	nu hat (MLE)
10.7	MLE Sd (bias corrected)	21.8	MLE Mean (bias corrected)
27.74	Approximate Chi Square Value (0.05)		
22.94	Adjusted Chi Square Value	0.008	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 32.62 95% Adjusted Gamma UCL (use when n<50) 39.44

Lognormal GOF Test

tic 0.825 Shapiro Wilk Lognormal (al GOF Test
ue 0.762 Data appear Lognormal at 5% S	Significance Level
etic 0.332 Lilliefors Lognormal GC	GOF Test
ue 0.343 Data appear Lognormal at 5% S	Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2.565	Mean of logged Data	3.031
Maximum of Logged Data	3.367	SD of logged Data	0.367

Assuming Lognormal Distribution

95% H-UCL	35.46	90% Chebyshev (MVUE) UCL	32.56
95% Chebyshev (MVUE) UCL	37.41	97.5% Chebyshev (MVUE) UCL	44.14
99% Chebyshev (MVUE) UCL	57.35		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	27.14	95% Jackknife UCL	28.72
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	31.54	95% Chebyshev(Mean, Sd) UCL	35.95
97.5% Chebyshev(Mean, Sd) UCL	42.07	99% Chebyshev(Mean, Sd) UCL	54.1

Suggested UCL to Use

95% Student's-t UCL 28.72

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.18/31/2018 1:20:37 PM

 From File
 gw epcs_d.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

RA17_GW_VOCs|Bromodichloromethane (open lot)

General Statistics

Total Number of Observations	20	Number of Distinct Observations	1
Number of Detects	0	Number of Non-Detects	20
Number of Distinct Detects	0	Number of Distinct Non-Detects	1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDsI Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit

The data set for variable RA17_GW_VOCs|Bromodichloromethane (open lot) was not processed!

RA17_GW_VOCs|Chloroform (open lot)

General Statistics

Total Number of Observations	20	Number of Distinct Observations	4
Number of Detects	3	Number of Non-Detects	17
Number of Distinct Detects	3	Number of Distinct Non-Detects	1
Minimum Detect	0.22	Minimum Non-Detect	1
Maximum Detect	1.2	Maximum Non-Detect	1
Variance Detects	0.296	Percent Non-Detects	85%
Mean Detects	0.573	SD Detects	0.544
Median Detects	0.3	CV Detects	0.949
Skewness Detects	1.69	Kurtosis Detects	N/A
Mean of Logged Detects	-0.845	SD of Logged Detects	0.903

Warning: Data set has only 3 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.811	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.359	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.307	KM Standard Error of Mean	0.065
KM SD	0.209	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.419	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.414	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.502	95% KM Chebyshev UCL	0.591
97.5% KM Chebyshev UCL	0.713	99% KM Chebyshev UCL	0.954

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

k hat (MLE)	1.88	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.305	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	11.28	nu star (bias corrected)	N/A
Mean (detects)	0.573		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.34	Mean	0.01	Minimum
0.278	Median	1.2	Maximum
0.859	CV	0.292	SD
1.073	k star (bias corrected MLE)	1.223	k hat (MLE)
0.317	Theta star (bias corrected MLE)	0.278	Theta hat (MLE)
42.91	nu star (bias corrected)	48.92	nu hat (MLE)
		0.038	Adjusted Level of Significance (β)
27.98	Adjusted Chi Square Value (42.91, β)	28.89	Approximate Chi Square Value (42.91, α)
N/A	95% Gamma Adjusted UCL (use when n<50)	0.505	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.307	SD (KM)	0.209
Variance (KM)	0.0435	SE of Mean (KM)	0.065
k hat (KM)	2.167	k star (KM)	1.875
nu hat (KM)	86.68	nu star (KM)	75.01
theta hat (KM)	0.142	theta star (KM)	0.164
80% gamma percentile (KM)	0.463	90% gamma percentile (KM)	0.606
95% gamma percentile (KM)	0.743	99% gamma percentile (KM)	1.048

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (75.01, α)	56.07	Adjusted Chi Square Value (75.01, β)	54.77
95% Gamma Approximate KM-LICL (use when n>=50)	0.411	95% Gamma Adjusted KM-LICL (use when n<50)	0.42

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.882	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.321	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.343	Mean in Log Scale	-1.272
SD in Original Scale	0.256	SD in Log Scale	0.638
95% t UCL (assumes normality of ROS data)	0.442	95% Percentile Bootstrap UCL	0.439
95% BCA Bootstrap UCL	0.471	95% Bootstrap t UCL	0.495
95% H-UCL (Log ROS)	0.471		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.282	KM Geo Mean	0.277
KM SD (logged)	0.368	95% Critical H Value (KM-Log)	1.903
KM Standard Error of Mean (logged)	0.157	95% H-UCL (KM -Log)	0.349
KM SD (logged)	0.368	95% Critical H Value (KM-Log)	1.903
KM Standard Error of Mean (logged)	0.157		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed			
Mean in Original Scale	0.511	Mean in Log Scale	-0.716		
SD in Original Scale	0.179	SD in Log Scale	0.298		
95% t UCL (Assumes normality)	0.58	95% H-Stat UCL	0.58		

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.419

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

 $These \ recommendations \ are \ based \ upon \ the \ results \ of \ the \ simulation \ studies \ summarized \ in \ Singh, \ Maichle, \ and \ Lee \ (2006).$

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA17_GW_VOCs|Methyl tert-E

-Butyl Ether (MTBE) (open lot)			
	General S	Statistics	
Total Number of Observations	20	Number of Distinct Observations	11
Number of Detects	11	Number of Non-Detects	9
Number of Distinct Detects	10	Number of Distinct Non-Detects	1
Minimum Detect	0.28	Minimum Non-Detect	1
Maximum Detect	3.9	Maximum Non-Detect	1
Variance Detects	1.178	Percent Non-Detects	45%
Mean Detects	0.994	SD Detects	1.085
Median Detects	0.53	CV Detects	1.092
Skewness Detects	2.256	Kurtosis Detects	5.448
Mean of Logged Detects	-0.39	SD of Logged Detects	0.856
Norma	al GOF Test	on Detects Only	
Shapiro Wilk Test Statistic	0.691	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.85	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.323	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.251	Detected Data Not Normal at 5% Significance Level	
Detected Data I	Not Normal	at 5% Significance Level	
Kaplan-Meier (KM) Statistics using	Normal Criti	cal Values and other Nonparametric UCLs	
KM Mean	0.756	KM Standard Error of Mean	0.196
KM SD	0.819	95% KM (BCA) UCL	1.111
95% KM (t) UCL	1.095	95% KM (Percentile Bootstrap) UCL	1.083
95% KM (z) UCL	1.079	95% KM Bootstrap t UCL	1.479
90% KM Chebyshev UCL	1.345	95% KM Chebyshev UCL	1.611
97.5% KM Chebyshev UCL	1.981	99% KM Chebyshev UCL	2.708
Gamma GOF T	ests on Det	ected Observations Only	
A-D Test Statistic	0.727	Anderson-Darling GOF Test	
5% A-D Critical Value	0.743	Detected data appear Gamma Distributed at 5% Significance	Level
K-S Test Statistic	0.254	Kolmogorov-Smirnov GOF	

A-D Test Statistic	0.727	Anderson-Darling GOF Test
5% A-D Critical Value	0.743	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.254	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.26	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.112	k star (bias corrected MLE)	1.446	k hat (MLE)
0.893	Theta star (bias corrected MLE)	0.687	Theta hat (MLE)
24.47	nu star (bias corrected)	31.82	nu hat (MLE)
		0.994	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates Minimum 0.01

0.77	Mean	0.01	Minimum
0.52	Median	3.9	Maximum
1.138	CV	0.876	SD
0.798	k star (bias corrected MLE)	0.9	k hat (MLE)
0.965	Theta star (bias corrected MLE)	0.856	Theta hat (MLE)
31.94	nu star (bias corrected)	36	nu hat (MLE)
		0.038	Adjusted Level of Significance (β)
19.28	Adjusted Chi Square Value (31.94, β)	20.02	Approximate Chi Square Value (31.94, α)
1.276	95% Gamma Adjusted UCL (use when n<50)	1.228	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.756	SD (KM)	0.819
Variance (KM)	0.671	SE of Mean (KM)	0.196
k hat (KM)	0.852	k star (KM)	0.758
nu hat (KM)	34.1	nu star (KM)	30.32
theta hat (KM)	0.887	theta star (KM)	0.998
80% gamma percentile (KM)	1.239	90% gamma percentile (KM)	1.863
95% gamma percentile (KM)	2.502	99% gamma percentile (KM)	4.016

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (30.32, α)	18.74	Adjusted Chi Square Value (30.32, β)	18.02
95% Gamma Approximate KM-UCL (use when n>=50)	1.223	95% Gamma Adjusted KM-UCL (use when n<50)	1.272

Lognormal GOF Test on Detected Observations Only

0.895	Shapiro Wilk GOF Test
0.85	Detected Data appear Lognormal at 5% Significance Level
0.192	Lilliefors GOF Test
0.251	Detected Data appear Lognormal at 5% Significance Level
	0.85 0.192

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

0.782	Mean in Log Scale	-0.566
0.842	SD in Log Scale	0.749
1.108	95% Percentile Bootstrap UCL	1.112
1.268	95% Bootstrap t UCL	1.497
1.115		
	0.842 1.108 1.268	0.842 SD in Log Scale 1.108 95% Percentile Bootstrap UCL 1.268 95% Bootstrap t UCL

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.589	KM Geo Mean	0.555
KM SD (logged)	0.69	95% Critical H Value (KM-Log)	2.225
KM Standard Error of Mean (logged)	0.183	95% H-UCL (KM -Log)	1.002
KM SD (logged)	0.69	95% Critical H Value (KM-Log)	2.225
KM Standard Error of Mean (logged)	0.183		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed			
Mean in Original Scale	0.772	Mean in Log Scale	-0.527		
SD in Original Scale	0.827	SD in Log Scale	0.64		
95% t UCL (Assumes normality)	1.091	95% H-Stat UCL	0.996		

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Adjusted Gamma UCL 1.272 95% GROS Adjusted Gamma UCL 1.276

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA17_GW_VOCs|Tetrachloroethylene (open lot)

General Statistics

	acricial causios		
Total Number of Observations	20	Number of Distinct Observations	13
Number of Detects	13	Number of Non-Detects	7
Number of Distinct Detects	12	Number of Distinct Non-Detects	1
Minimum Detect	0.24	Minimum Non-Detect	1
Maximum Detect	30	Maximum Non-Detect	1
Variance Detects	77.13	Percent Non-Detects	35%
Mean Detects	5.597	SD Detects	8.782
Median Detects	2.2	CV Detects	1.569
Skewness Detects	2.267	Kurtosis Detects	4.938
Mean of Logged Detects	0.617	SD of Logged Detects	1.648

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.66	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.866	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.296	Lilliefors GOF Test
5% Lilliefors Critical Value	0.234	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	3.768	KM Standard Error of Mean	1.687
KM SD	7.246	95% KM (BCA) UCL	6.698
95% KM (t) UCL	6.685	95% KM (Percentile Bootstrap) UCL	6.695
95% KM (z) UCL	6.543	95% KM Bootstrap t UCL	12.73
90% KM Chebyshev UCL	8.829	95% KM Chebyshev UCL	11.12
97.5% KM Chebyshev UCL	14.3	99% KM Chebyshev UCL	20.55

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.5	Anderson-Darling GOF Test
5% A-D Critical Value	0.785	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.161	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.249	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.485	k star (bias corrected MLE)	0.564	k hat (MLE)
11.53	Theta star (bias corrected MLE)	9.917	Theta hat (MLE)
12.62	nu star (bias corrected)	14.67	nu hat (MLE)
		5.597	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	3.672
Maximum	30	Median	0.467
SD	7.482	CV	2.038
k hat (MLE)	0.299	k star (bias corrected MLE)	0.288
Theta hat (MLE)	12.27	Theta star (bias corrected MLE)	12.76
nu hat (MLE)	11.97	nu star (bias corrected)	11.51
Adjusted Level of Significance (β)	0.038		
Approximate Chi Square Value (11.51, α)	4.905	Adjusted Chi Square Value (11.51, β)	4.568
95% Gamma Approximate UCL (use when n>=50)	8.615	95% Gamma Adjusted UCL (use when n<50)	9.251

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	3.768	SD (KM)	7.246
Variance (KM)	52.51	SE of Mean (KM)	1.687
k hat (KM)	0.27	k star (KM)	0.263
nu hat (KM)	10.82	nu star (KM)	10.53
theta hat (KM)	13.93	theta star (KM)	14.32
80% gamma percentile (KM)	5.569	90% gamma percentile (KM)	11.26
95% gamma percentile (KM)	17.96	99% gamma percentile (KM)	35.65

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (10.53, α)	4.275	Adjusted Chi Square Value (10.53, β)	3.964
95% Gamma Approximate KM-UCL (use when n>=50)	9.281	95% Gamma Adjusted KM-UCL (use when n<50)	10.01

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.925	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.866	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.165	Lilliefors GOF Test
5% Lilliefors Critical Value	0.234	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	3.805	Mean in Log Scale	0.0264
SD in Original Scale	7.418	SD in Log Scale	1.639
95% t UCL (assumes normality of ROS data)	6.674	95% Percentile Bootstrap UCL	6.604
95% BCA Bootstrap UCL	8.073	95% Bootstrap t UCL	13.24
95% H-UCL (Log ROS)	15.59		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

0.012	KM Geo Mean	1.012
1.544	95% Critical H Value (KM-Log)	3.5
0.372	95% H-UCL (KM -Log)	11.5
1.544	95% Critical H Value (KM-Log)	3.5
0.372		
	1.544 0.372 1.544	1.544 95% Critical H Value (KM-Log) 0.372 95% H-UCL (KM -Log) 1.544 95% Critical H Value (KM-Log)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	3.813	Mean in Log Scale	0.159
SD in Original Scale	7.412	SD in Log Scale	1.458
95% t UCL (Assumes normality)	6.679	95% H-Stat UCL	10.42

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

a Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 10.01

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA17_GW_VOCs|Trichloroethene (open lot)

General Statistics

Total Number of Observations	20	Number of Distinct Observations	7
Number of Detects	6	Number of Non-Detects	14
Number of Distinct Detects	6	Number of Distinct Non-Detects	1
Minimum Detect	0.22	Minimum Non-Detect	1
Maximum Detect	5.9	Maximum Non-Detect	1
Variance Detects	5.189	Percent Non-Detects	70%
Mean Detects	1.863	SD Detects	2.278
Median Detects	0.815	CV Detects	1.222
Skewness Detects	1.425	Kurtosis Detects	1.226
Mean of Logged Detects	-0.118	SD of Logged Detects	1.387

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.799	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.281	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.334	KM Standard Error of Mean	0.764	KM Mean	
1.49	95% KM (BCA) UCL	1.35	KM SD	
1.405	95% KM (Percentile Bootstrap) UCL	1.342	95% KM (t) UCL	
2.776	95% KM Bootstrap t UCL	1.314	95% KM (z) UCL	
2.22	95% KM Chebyshev UCL	1.766	90% KM Chebyshev UCL	
4.087	99% KM Chebyshev UCL	2.85	97.5% KM Chebyshev UCL	

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.397	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.72	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.244	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.343	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.512	k star (bias corrected MLE)	0.8	k hat (MLE)
3.64	Theta star (bias corrected MLE)	2.3	Theta hat (MLE)
6.143	nu star (bias corrected)	9.0	nu hat (MLE)
		1.8	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.831
Maximum	5.9	Median	0.241
SD	1.434	CV	1.725
k hat (MLE)	0.393	k star (bias corrected MLE)	0.367
Theta hat (MLE)	2.117	Theta star (bias corrected MLE)	2.264
nu hat (MLE)	15.71	nu star (bias corrected)	14.69
Adjusted Level of Significance (β)	0.038		
Approximate Chi Square Value (14.69, α)	7.044	Adjusted Chi Square Value (14.69, β)	6.628
95% Gamma Approximate UCL (use when n>=50)	1.733	95% Gamma Adjusted UCL (use when n<50)	1.842

Estimates of Gamma Parameters using KM Estimates

		•	
Mean (KM)	0.764	SD (KM)	1.35
Variance (KM)	1.821	SE of Mean (KM)	0.334
k hat (KM)	0.321	k star (KM)	0.306
nu hat (KM)	12.83	nu star (KM)	12.24
theta hat (KM)	2.383	theta star (KM)	2.498
80% gamma percentile (KM)	1.178	90% gamma percentile (KM)	2.249
95% gamma percentile (KM)	3.474	99% gamma percentile (KM)	6.651

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (12.24, α)	5.385	Adjusted Chi Square Value (12.24, β)	5.029
95% Gamma Approximate KM-UCL (use when n>=50)	1.737	95% Gamma Adjusted KM-UCL (use when n<50)	1.86

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.901	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.2	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.839	Mean in Log Scale	-0.924
SD in Original Scale	1.383	SD in Log Scale	1.181
95% t UCL (assumes normality of ROS data)	1.374	95% Percentile Bootstrap UCL	1.393
95% BCA Bootstrap UCL	1.598	95% Bootstrap t UCL	2.615
95% H-UCL (Log ROS)	1.754		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.929	KM Geo Mean	0.395
KM SD (logged)	0.91	95% Critical H Value (KM-Log)	2.506
KM Standard Error of Mean (logged)	0.268	95% H-UCL (KM -Log)	1.009
KM SD (logged)	0.91	95% Critical H Value (KM-Log)	2.506
KM Standard Error of Mean (logged)	0.268		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.909	Mean in Log Scale	-0.521
SD in Original Scale	1.333	SD in Log Scale	0.761
95% t UCL (Assumes normality)	1.424	95% H-Stat UCL	1.188

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 1.342

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.18/31/2018 1:16:39 PM

 From File
 gw epcs_i.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

RA17_GW_VOCs|Bromodichloromethane (warehouse)

Ger	nera	l Sta	tieti	re

Total Number of Observations	20	Number of Distinct Observations	2	
		Number of Missing Observations	1	
Number of Detects	1	Number of Non-Detects	19	
Number of Distinct Detects	1	Number of Distinct Non-Detects	1	

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set!

It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable RA17_GW_VOCs|Bromodichloromethane (warehouse) was not processed!

RA17_GW_VOCs|Chloroform (warehouse)

eneral	Statistic

Total Number of Observations	20	Number of Distinct Observations	8
		Number of Missing Observations	1
Number of Detects	7	Number of Non-Detects	13
Number of Distinct Detects	7	Number of Distinct Non-Detects	1
Minimum Detect	0.28	Minimum Non-Detect	1
Maximum Detect	2.1	Maximum Non-Detect	1
Variance Detects	0.33	Percent Non-Detects	65%
Mean Detects	1.193	SD Detects	0.575
Median Detects	1.2	CV Detects	0.482
Skewness Detects	-0.0649	Kurtosis Detects	0.655
Mean of Logged Detects	0.0325	SD of Logged Detects	0.652

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.986	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.154	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

			•	
	KM Mean	0.759	KM Standard Error of Mean	0.176
	KM SD	0.489	95% KM (BCA) UCL	1.165
	95% KM (t) UCL	1.063	95% KM (Percentile Bootstrap) UCL	1.14
	95% KM (z) UCL	1.049	95% KM Bootstrap t UCL	1.157
90%	KM Chebyshev UCL	1.287	95% KM Chebyshev UCL	1.527
7.5%	KM Chebyshev UCL	1.859	99% KM Chebyshev UCL	2.512

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.342	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.711	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.224	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.313	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

2.171	k star (bias corrected MLE)	3.633	k hat (MLE)
0.549	Theta star (bias corrected MLE)	0.328	Theta hat (MLE)
30.4	nu star (bias corrected)	50.86	nu hat (MLE)
		1.193	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.722
Maximum	2.1	Median	0.646
SD	0.534	CV	0.74
k hat (MLE)	1.346	k star (bias corrected MLE)	1.177
Theta hat (MLE)	0.536	Theta star (bias corrected MLE)	0.613
nu hat (MLE)	53.84	nu star (bias corrected)	47.1
Adjusted Level of Significance (β)	0.038		
Approximate Chi Square Value (47.10, α)	32.35	Adjusted Chi Square Value (47.10, β)	31.38
95% Gamma Approximate UCL (use when n>=50)	1.051	95% Gamma Adjusted UCL (use when n<50)	1.084

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.759	SD (KM)	0.489
Variance (KM)	0.24	SE of Mean (KM)	0.176
k hat (KM)	2.403	k star (KM)	2.076
nu hat (KM)	96.14	nu star (KM)	83.05
theta hat (KM)	0.316	theta star (KM)	0.365
80% gamma percentile (KM)	1.131	90% gamma percentile (KM)	1.463
95% gamma percentile (KM)	1.779	99% gamma percentile (KM)	2.478

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (83.05, α)	63.05	Adjusted Chi Square Value (83.05, β)	61.67
95% Gamma Approximate KM-UCL (use when n>=50)	0.999	95% Gamma Adjusted KM-UCL (use when n<50)	1.022

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.872	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.253	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.726	Mean in Log Scale	-0.54
SD in Original Scale	0.506	SD in Log Scale	0.687
95% t UCL (assumes normality of ROS data)	0.922	95% Percentile Bootstrap UCL	0.909
95% BCA Bootstrap UCL	0.961	95% Bootstrap t UCL	0.989
95% H-UCL (Log ROS)	1.047		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.487	KM Geo Mean	0.614
KM SD (logged)	0.663	95% Critical H Value (KM-Log)	2.193
KM Standard Error of Mean (logged)	0.314	95% H-UCL (KM -Log)	1.068
KM SD (logged)	0.663	95% Critical H Value (KM-Log)	2.193
KM Standard Error of Mean (logged)	0.314		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	0.743	Mean in Log Scale	-0.439	
SD in Original Scale	0.468	SD in Log Scale	0.51	
95% t UCL (Assumes normality)	0.924	95% H-Stat UCL	0.931	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 1.063

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA17_GW_VOCs|Methyl tert-Butyl Ether (MTBE) (warehouse)

	General Statistics		
Total Number of Observations	20	Number of Distinct Observations	9
		Number of Missing Observations	1
Number of Detects	8	Number of Non-Detects	12
Number of Distinct Detects	8	Number of Distinct Non-Detects	1
Minimum Detect	0.47	Minimum Non-Detect	1
Maximum Detect	3.1	Maximum Non-Detect	1
Variance Detects	0.795	Percent Non-Detects	60%
Mean Detects	1.294	SD Detects	0.892
Median Detects	0.87	CV Detects	0.689
Skewness Detects	1.387	Kurtosis Detects	1.42
Mean of Logged Detects	0.0741	SD of Logged Detects	0.631

Normal GOF Test on Detects Only

Detected Data appear Normal at 5% Significance Level

Shapiro Wilk Test Statistic	0.839	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.271	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs			
KM Mean	0.956	KM Standard Error of Mean	0.155
KM SD	0.608	95% KM (BCA) UCL	1.239
95% KM (t) UCL	1.223	95% KM (Percentile Bootstrap) UCL	1.229
95% KM (z) UCL	1.21	95% KM Bootstrap t UCL	1.373
90% KM Chebyshev UCL	1.42	95% KM Chebyshev UCL	1.631
97.5% KM Chebyshev UCL	1.923	99% KM Chebyshey UCL	2.497

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.426	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.722	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.235	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.296	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.885	k star (bias corrected MLE)	2.882	k hat (MLE)
0.687	Theta star (bias corrected MLE)	0.449	Theta hat (MLE)
30.15	nu star (bias corrected)	46.11	nu hat (MLE)
		1.294	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,<15-20)$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0951	Mean	0.965
Maximum	3.1	Median	0.776
SD	0.691	CV	0.716
k hat (MLE)	2.193	k star (bias corrected MLE)	1.897
Theta hat (MLE)	0.44	Theta star (bias corrected MLE)	0.509
nu hat (MLE)	87.71	nu star (bias corrected)	75.89
Adjusted Level of Significance (β)	0.038		
Approximate Chi Square Value (75.89, α)	56.83	Adjusted Chi Square Value (75.89, β)	55.52
95% Gamma Approximate UCL (use when n>=50)	1.289	95% Gamma Adjusted UCL (use when n<50)	1.319

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.956	SD (KM)	0.608
Variance (KM)	0.369	SE of Mean (KM)	0.155
k hat (KM)	2.471	k star (KM)	2.134
nu hat (KM)	98.84	nu star (KM)	85.35
theta hat (KM)	0.387	theta star (KM)	0.448
80% gamma percentile (KM)	1.42	90% gamma percentile (KM)	1.83
95% gamma percentile (KM)	2.221	99% gamma percentile (KM)	3.083

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (85.35, α)	65.06	Adjusted Chi Square Value (85.35, β)	63.66
95% Gamma Approximate KM-UCL (use when n>=50)	1.254	95% Gamma Adjusted KM-UCL (use when n<50)	1.281

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.939	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.197	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.988	Mean in Log Scale	-0.164
SD in Original Scale	0.645	SD in Log Scale	0.539
95% t UCL (assumes normality of ROS data)	1.237	95% Percentile Bootstrap UCL	1.254
95% BCA Bootstrap UCL	1.307	95% Bootstrap t UCL	1.399
95% H-UCL (Log ROS)	1.266		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.175	KM Geo Mean	0.84
KM SD (logged)	0.462	95% Critical H Value (KM-Log)	1.983
KM Standard Error of Mean (logged)	0.136	95% H-UCL (KM -Log)	1.153
KM SD (logged)	0.462	95% Critical H Value (KM-Log)	1.983
KM Standard Error of Mean (logged)	0.136		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed			
Mean in Original Scale	0.818	Mean in Log Scale	-0.386		
SD in Original Scale	0.672	SD in Log Scale	0.544		
95% t UCL (Assumes normality)	1.078	95% H-Stat UCL	1.019		

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 1.223

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA17_GW_VOCs|Tetrachloroethylene (warehouse)

General Statistics

		Gonoral Calabase		
Т	otal Number of Observations	21	Number of Distinct Observations	6
	Number of Detects	5	Number of Non-Detects	16
	Number of Distinct Detects	5	Number of Distinct Non-Detects	1
	Minimum Detect	0.18	Minimum Non-Detect	1
	Maximum Detect	15	Maximum Non-Detect	1
	Variance Detects	38.87	Percent Non-Detects	76.19%
	Mean Detects	3.964	SD Detects	6.235
	Median Detects	2	CV Detects	1.573
	Skewness Detects	2.12	Kurtosis Detects	4.587
	Mean of Logged Detects	0.331	SD of Logged Detects	1.696

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic 0.6	79 Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value 0.7	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.4	11 Lilliefors GOF Test
5% Lilliefors Critical Value 0.3	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.18	KM Standard Error of Mean	0.77
KM SD	3.137	95% KM (BCA) UCL	2.92
95% KM (t) UCL	2.508	95% KM (Percentile Bootstrap) UCL	2.594
95% KM (z) UCL	2.446	95% KM Bootstrap t UCL	5.693
90% KM Chebyshev UCL	3.489	95% KM Chebyshev UCL	4.535
97.5% KM Chebyshev UCL	5.987	99% KM Chebyshev UCL	8.839

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.37	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Lev	0.706	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.284	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Lev	0.37	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.37	k star (bias corrected MLE)	0.592	k hat (MLE)
10.71	Theta star (bias corrected MLE)	6.7	Theta hat (MLE)
3.7	nu star (bias corrected)	5.917	nu hat (MLE)
		3 964	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	1.247
Maximum	15	Median	0.01
SD	3.269	CV	2.621
k hat (MLE)	0.267	k star (bias corrected MLE)	0.26
Theta hat (MLE)	4.676	Theta star (bias corrected MLE)	4.79
nu hat (MLE)	11.2	nu star (bias corrected)	10.93
Adjusted Level of Significance (β)	0.0383		
Approximate Chi Square Value (10.93, α)	4.533	Adjusted Chi Square Value (10.93, β)	4.219
95% Gamma Approximate UCL (use when n>=50)	3.007	95% Gamma Adjusted UCL (use when n<50)	3.231

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.18	SD (KM)	3.137
Variance (KM)	9.84	SE of Mean (KM)	0.77
k hat (KM)	0.142	k star (KM)	0.153
nu hat (KM)	5.943	nu star (KM)	6.428
theta hat (KM)	8.339	theta star (KM)	7.71
80% gamma percentile (KM)	1.306	90% gamma percentile (KM)	3.508
95% gamma percentile (KM)	6.469	99% gamma percentile (KM)	15.03

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (6.43, α)	1.862	Adjusted Chi Square Value (6.43, β)	1.68
95% Gamma Approximate KM-LICL (use when n>=50)	4 073	95% Gamma Adjusted KM-LICL (use when n<50)	4 515

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.963	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.194	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-0.991	Mean in Log Scale	1.268	Mean in Original Scale
1.484	SD in Log Scale	3.209	SD in Original Scale
2.595	95% Percentile Bootstrap UCL	2.476	95% t UCL (assumes normality of ROS data)
6.795	95% Bootstrap t UCL	3.424	95% BCA Bootstrap UCL
		3 319	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.887	KM Geo Mean	0.412
KM SD (logged)	1.079	95% Critical H Value (KM-Log)	2.673
KM Standard Error of Mean (logged)	0.388	95% H-UCL (KM -Log)	1.404
KM SD (logged)	1.079	95% Critical H Value (KM-Log)	2.673
KM Standard Error of Mean (logged)	0.388		

DL/2 Statistics

DL/2 Normal			DL/2 Log-Transformed				
	Mean in Original Scale	1.325	Mean in Log Scale	-0.449			
	SD in Original Scale	3.172	SD in Log Scale	0.88			
	95% t UCL (Assumes normality)	2.519	95% H-Stat UCL	1.509			

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

a Adjusted KM-UCL (use when $k \le 1$ and $15 \le n \le 50$ but $k \le 1$) 4.515

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA17_GW_VOCs|Trichloroethene (warehouse)

General Statistics

	acricial cuatouco		
Total Number of Observations	21	Number of Distinct Observations	4
Number of Detects	3	Number of Non-Detects	18
Number of Distinct Detects	3	Number of Distinct Non-Detects	1
Minimum Detect	0.23	Minimum Non-Detect	1
Maximum Detect	2.3	Maximum Non-Detect	1
Variance Detects	1.109	Percent Non-Detects	85.71%
Mean Detects	1.153	SD Detects	1.053
Median Detects	0.93	CV Detects	0.913
Skewness Detects	0.912	Kurtosis Detects	N/A
Mean of Logged Detects	-0.236	SD of Logged Detects	1.16

Warning: Data set has only 3 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Normal GOF Test on Detects Only

0.966	Shapiro Wilk GOF Test
0.767	Detected Data appear Normal at 5% Significance Level
0.251	Lilliefors GOF Test
0.425	Detected Data appear Normal at 5% Significance Level
	0.767 0.251

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.662	KM Standard Error of Mean	0.305
KM SD	0.501	95% KM (BCA) UCL	N/A
95% KM (t) UCL	1.188	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	1.163	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	1.576	95% KM Chebyshev UCL	1.991
97.5% KM Chebyshev UCL	2.566	99% KM Chebyshev UCL	3.695

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

k hat (MLE)	1.463	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.788	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	8.779	nu star (bias corrected)	N/A
Mean (detects)	1.153		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0767	Mean	0.699
Maximum	2.3	Median	0.571
SD	0.546	CV	0.781
k hat (MLE)	1.763	k star (bias corrected MLE)	1.543
Theta hat (MLE)	0.397	Theta star (bias corrected MLE)	0.453
nu hat (MLE)	74.04	nu star (bias corrected)	64.8
Adjusted Level of Significance (β)	0.0383		
Approximate Chi Square Value (64.80, α)	47.28	Adjusted Chi Square Value (64.80, β)	46.13
95% Gamma Approximate UCL (use when n>=50)	0.959	95% Gamma Adjusted UCL (use when n<50)	N/A

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.662	SD (KM)	0.501
Variance (KM)	0.251	SE of Mean (KM)	0.305
k hat (KM)	1.747	k star (KM)	1.529
nu hat (KM)	73.36	nu star (KM)	64.21
theta hat (KM)	0.379	theta star (KM)	0.433
80% gamma percentile (KM)	1.022	90% gamma percentile (KM)	1.373
95% gamma percentile (KM)	1.713	99% gamma percentile (KM)	2.481

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (64.21, α)	46.78	Adjusted Chi Square Value (64.21, β)	45.63
95% Gamma Approximate KM-UCL (use when n>=50)	0.909	95% Gamma Adjusted KM-UCL (use when n<50)	0.931

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.985	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.223	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.623	Mean in Log Scale	-0.769
SD in Original Scale	0.525	SD in Log Scale	0.793
95% t UCL (assumes normality of ROS data)	0.82	95% Percentile Bootstrap UCL	0.834
95% BCA Bootstrap UCL	0.867	95% Bootstrap t UCL	0.902
95% H-UCL (Log ROS)	0.953		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.695	KM Geo Mean	0.499
KM SD (logged)	0.763	95% Critical H Value (KM-Log)	2.262
KM Standard Error of Mean (logged)	0.583	95% H-UCL (KM -Log)	0.982
KM SD (logged)	0.763	95% Critical H Value (KM-Log)	2.262
KM Standard Error of Mean (logged)	0.583		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	0.593	Mean in Log Scale	-0.628	
SD in Original Scale	0.407	SD in Log Scale	0.402	
95% t UCL (Assumes normality)	0.747	95% H-Stat UCL	0.687	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 1.188

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.18/31/2018 1:20:02 PM

 From File
 gw epcs_e.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

RA17_GW_VOCs|Bromodichloromethane (salvage)

General Statistics

Total Number of Observations	8	Number of Distinct Observations	1
Number of Detects	0	Number of Non-Detects	8
Number of Distinct Detects	0	Number of Distinct Non-Detects	1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs!

Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit!

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable RA17_GW_VOCs|Bromodichloromethane (salvage) was not processed!

RA17_GW_VOCs|Chloroform (salvage)

General Statistics

Total Number of Observations	8	Number of Distinct Observations	1
Number of Detects	0	Number of Non-Detects	8
Number of Distinct Detects	0	Number of Distinct Non-Detects	1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDsl

Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit!

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable RA17_GW_VOCs|Chloroform (salvage) was not processed

RA17_GW_VOCs|Methyl tert-Butyl Ether (MTBE) (salvage)

	General Statistics		
Total Number of Observations	8	Number of Distinct Observations	7
		Number of Missing Observations	0
Minimum	0.25	Mean	1.564
Maximum	4.9	Median	0.35
SD	1.888	Std. Error of Mean	0.668
Coefficient of Variation	1.208	Skewness	1.133

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.74	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.358	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2.829	95% Adjusted-CLT UCL (Chen-1995)	2.948
		95% Modified-t UCL (Johnson-1978)	2.873

Gamma	GOF	Test	
-------	-----	------	--

Anderson-Darling Gamma GOF Test	0.993	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.743	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.356	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.303	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.806	k star (bias corrected MLE)	0.587
Theta hat (MLE)	1.94	Theta star (bias corrected MLE)	2.663
nu hat (MLE)	12.9	nu star (bias corrected)	9.396
MLE Mean (bias corrected)	1.564	MLE Sd (bias corrected)	2.041
		Approximate Chi Square Value (0.05)	3.568
Adjusted Level of Significance	0.0195	Adjusted Chi Square Value	2.72

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 4.118 95% Adjusted Gamma UCL (use when n<50) 5.40

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.769	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.818	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.318	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.283	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-1.386	Mean of logged Data	-0.288
Maximum of Logged Data	1.589	SD of logged Data	1.296

Assuming Lognormal Distribution

95% H-UCL	13.51	90% Chebyshev (MVUE) UCL	3.559
95% Chebyshev (MVUE) UCL	4.499	97.5% Chebyshev (MVUE) UCL	5.803
99% Chebyshev (MVUE) UCL	8.364		

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL	2.662	95% Jackknife UCL	2.829
95% Standard Bootstrap UCL	2.578	95% Bootstrap-t UCL	4.436
95% Hall's Bootstrap UCL	2.973	95% Percentile Bootstrap UCL	2.594
95% BCA Bootstrap UCL	2.908		
90% Chebyshev(Mean, Sd) UCL	3.567	95% Chebyshev(Mean, Sd) UCL	4.474
97.5% Chebyshev(Mean, Sd) UCL	5.733	99% Chebyshev(Mean, Sd) UCL	8.207

Suggested UCL to Use

95% Hall's Bootstrap UCL 2.973

In Case Bootstrap t and/or Hall's Bootstrap yields an unreasonably large UCL value, use 97.5% or 99% Chebyshev (Mean, Sd) UCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA17_GW_VOCs|Tetrachloroethylene (salvage)

General Statistics

3	Number of Distinct Observations	8	Total Number of Observations
6	Number of Non-Detects	2	Number of Detects
1	Number of Distinct Non-Detects	2	Number of Distinct Detects
1	Minimum Non-Detect	0.21	Minimum Detect
1	Maximum Non-Detect	0.27	Maximum Detect
75%	Percent Non-Detects	0.0018	Variance Detects
0.0424	SD Detects	0.24	Mean Detects
0.177	CV Detects	0.24	Median Detects
N/A	Kurtosis Detects	N/A	Skewness Detects
0.178	SD of Logged Detects	-1.435	Mean of Logged Detects

Warning: Data set has only 2 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Not Enough Data to Perform GOF Test

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.24	KM Standard Error of Mean	0.03
KM SD	0.03	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.297	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.289	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.33	95% KM Chebyshev UCL	0.371
97.5% KM Chebyshev UCL	0.427	99% KM Chebyshev UCL	0.538

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

k hat (MLE)	63.66	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.00377	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	254.7	nu star (bias corrected)	N/A
Mean (detects)	0.24		

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.24	SD (KM)	0.03
Variance (KM)	9.0000E-4	SE of Mean (KM)	0.03
k hat (KM)	64	k star (KM)	40.08
nu hat (KM)	1024	nu star (KM)	641.3
theta hat (KM)	0.00375	theta star (KM)	0.00599
80% gamma percentile (KM)	0.271	90% gamma percentile (KM)	0.29
95% gamma percentile (KM)	0.306	99% gamma percentile (KM)	0.337

Gamma Kaplan-Meier (KM) Statistics

Carrina rapian-wolei (raw) otatisacs						
		Adjusted Level of Significance (β)	0.0195			
Approximate Chi Square Value (641.33, α)	583.6	Adjusted Chi Square Value (641.33, β)	569.6			
95% Gamma Approximate KM-UCL (use when n>=50)	0.264	95% Gamma Adjusted KM-UCL (use when n<50)	0.27			

Lognormal GOF Test on Detected Observations Only

Not Enough Data to Perform GOF Test

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.242	Mean in Log Scale	-1.435
SD in Original Scale	0.0489	SD in Log Scale	0.202
95% t UCL (assumes normality of ROS data)	0.275	95% Percentile Bootstrap UCL	0.27
95% BCA Bootstrap UCL	0.271	95% Bootstrap t UCL	0.277
95% H-UCL (Log ROS)	0.282		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.435	KM Geo Mean	0.238
KM SD (logged)	0.126	95% Critical H Value (KM-Log)	1.871
KM Standard Error of Mean (logged)	0.126	95% H-UCL (KM -Log)	0.262
KM SD (logged)	0.126	95% Critical H Value (KM-Log)	1.871
KM Standard Error of Mean (logged)	0.126		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.435	Mean in Log Scale	-0.879
SD in Original Scale	0.121	SD in Log Scale	0.35
95% t UCL (Assumes normality)	0.516	95% H-Stat UCL	0.585

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

Warning: One or more Recommended UCL(s) not available!
Warning: Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA17_GW_VOCs|Trichloroethene (salvage)

General Statistics

Total Number of Observations	8	Number of Distinct Observations	1
Number of Detects	0	Number of Non-Detects	8
Number of Distinct Detects	0	Number of Distinct Non-Detects	1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDsI Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit

The data set for variable RA17_GW_VOCs|Trichloroethene (salvage) was not processed!

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.18/31/2018 1:22:55 PM

 From File
 gw epcs_a.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

RA17_GW_VOCs|Bromodichloromethane (maintenance)

General Statistics

2	Number of Distinct Observations	13	Total Number of Observations	
2	Number of Missing Observations			
12	Number of Non-Detects	1	Number of Detects	
1	Number of Distinct Non-Detects	1	Number of Distinct Detects	

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set!

It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable RA17_GW_VOCs|Bromodichloromethane (maintenance) was not processed!

RA17_GW_VOCs|Chloroform (maintenance)

General Statistics

Total Number of Observations	13	Number of Distinct Observations	5
		Number of Missing Observations	2
Number of Detects	4	Number of Non-Detects	9
Number of Distinct Detects	4	Number of Distinct Non-Detects	1
Minimum Detect	0.26	Minimum Non-Detect	1
Maximum Detect	15	Maximum Non-Detect	1
Variance Detects	52.93	Percent Non-Detects	69.23%
Mean Detects	4.09	SD Detects	7.275
Median Detects	0.55	CV Detects	1.779
Skewness Detects	1.997	Kurtosis Detects	3.989
Mean of Logged Detects	0.0291	SD of Logged Detects	1.827

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.651	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.431	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

			, , , , , , , , , , , , , , , , , , ,
1.246	KM Standard Error of Mean	1.572	KM Mean
N/A	95% KM (BCA) UCL	3.88	KM SD
N/A	95% KM (Percentile Bootstrap) UCL	3.792	95% KM (t) UCL
N/A	95% KM Bootstrap t UCL	3.621	95% KM (z) UCL
7.002	95% KM Chebyshev UCL	5.309	90% KM Chebyshev UCL
13.97	99% KM Chebyshev UCL	9.352	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.677	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.685	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.417	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.412	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.466	k star (bias corrected MLE)	0.283
Theta hat (MLE)	8.784	Theta star (bias corrected MLE)	14.45
nu hat (MLE)	3.725	nu star (bias corrected)	2.265
Mean (detects)	4.09		

Page 2 of 7

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

2.163	Mean	0.01	Minimum	
0.43	Median	15	Maximum	
1.941	CV	4.199	SD	
0.302	k star (bias corrected MLE)	0.326	k hat (MLE)	
7.163	Theta star (bias corrected MLE)	6.637	Theta hat (MLE)	
7.853	nu star (bias corrected)	8.475	nu hat (MLE)	
		0.0301	Adjusted Level of Significance (β)	
2.239	Adjusted Chi Square Value (7.85, β)	2.65	Approximate Chi Square Value (7.85, α)	
N/A	95% Gamma Adjusted UCL (use when n<50)	6.411	6% Gamma Approximate UCL (use when n>=50)	

Estimates of Gamma Parameters using KM Estimates

SD (KM) 3.88	SE	1.572	Mean (KM)
E of Mean (KM) 1.246	SE of Mear	15.05	Variance (KM)
k star (KM) 0.178	k sta	0.164	k hat (KM)
nu star (KM) 4.618	nu sta	4.27	nu hat (KM)
theta star (KM) 8.852	theta sta	9.573	theta hat (KM)
percentile (KM) 4.738	90% gamma percentile	1.935	80% gamma percentile (KM)
percentile (KM) 18.47	99% gamma percentile	8.344	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (4.62, α)	0.98	Adjusted Chi Square Value (4.62, β)	0.767
95% Gamma Approximate KM-UCL (use when n>=50)	7.409	95% Gamma Adjusted KM-UCL (use when n<50)	9.463

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.817	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.343	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	1.826	Mean in Log Scale	-0.525
SD in Original Scale	4.027	SD in Log Scale	1.404
95% t UCL (assumes normality of ROS data)	3.817	95% Percentile Bootstrap UCL	3.968
95% BCA Bootstrap UCL	5.302	95% Bootstrap t UCL	14.4
95% H-UCL (Log ROS)	6.795		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.589	KM Geo Mean	0.555
KM SD (logged)	1.022	95% Critical H Value (KM-Log)	2.886
KM Standard Error of Mean (logged)	0.387	95% H-UCL (KM -Log)	2.19
KM SD (logged)	1.022	95% Critical H Value (KM-Log)	2.886
KM Standard Error of Mean (logged)	0.387		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	1.605	Mean in Log Scale	-0.471	
SD in Original Scale	4.026	SD in Log Scale	0.977	
95% t UCL (Assumes normality)	3.595	95% H-Stat UCL	2.224	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL N/A a Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 9.463

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA17_GW_VOCs|Methyl tert-Butyl Ether (MTBE) (maintenance)

	General Statistics		
Total Number of Observations	13	Number of Distinct Observations	11
		Number of Missing Observations	2
Number of Detects	10	Number of Non-Detects	3
Number of Distinct Detects	10	Number of Distinct Non-Detects	1
Minimum Detect	0.21	Minimum Non-Detect	1
Maximum Detect	48	Maximum Non-Detect	1
Variance Detects	296.6	Percent Non-Detects	23.08%
Mean Detects	11.22	SD Detects	17.22
Median Detects	2.5	CV Detects	1.534
Skewness Detects	1.64	Kurtosis Detects	1.464
Mean of Logged Detects	0.944	SD of Logged Detects	2.022

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.7	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.301	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	8.717	KM Standard Error of Mean	4.398
KM SD	15.04	95% KM (BCA) UCL	15.48
95% KM (t) UCL	16.56	95% KM (Percentile Bootstrap) UCL	16.56
95% KM (z) UCL	15.95	95% KM Bootstrap t UCL	34.38
90% KM Chebyshev UCL	21.91	95% KM Chebyshev UCL	27.89
97.5% KM Chebyshev UCL	36.18	99% KM Chebyshev UCL	52.48

Gamma GOF Tests on Detected Observations Only

tic 0.475	A-D Test Statistic	Anderson-Darling GOF Test
ue 0.788	5% A-D Critical Value	Detected data appear Gamma Distributed at 5% Significance Level
tic 0.192	K-S Test Statistic	Kolmogorov-Smirnov GOF
ue 0.283	5% K-S Critical Value	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.374	k star (bias corrected MLE)	0.44	k hat (MLE)
29.98	Theta star (bias corrected MLE)	25.53	Theta hat (MLE)
7.489	nu star (bias corrected)	8.793	nu hat (MLE)
		11 22	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	8.636
Maximum	48	Median	0.55
SD	15.7	CV	1.818
k hat (MLE)	0.28	k star (bias corrected MLE)	0.267
Theta hat (MLE)	30.87	Theta star (bias corrected MLE)	32.4
nu hat (MLE)	7.275	nu star (bias corrected)	6.929
Adjusted Level of Significance (β)	0.0301		
Approximate Chi Square Value (6.93, α)	2.132	Adjusted Chi Square Value (6.93, β)	1.774
95% Gamma Approximate UCL (use when n>=50)	28.07	95% Gamma Adjusted UCL (use when n<50)	33.74

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	8.717	SD (KM)	15.04
Variance (KM)	226.3	SE of Mean (KM)	4.398
k hat (KM)	0.336	k star (KM)	0.31
nu hat (KM)	8.731	nu star (KM)	8.049
theta hat (KM)	25.96	theta star (KM)	28.16
80% gamma percentile (KM)	13.47	90% gamma percentile (KM)	25.61
95% gamma percentile (KM)	39.47	99% gamma percentile (KM)	75.36

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (8.05, α) 2.764 Adjusted Chi Square Value (8.05, β) 2.342 95% Gamma Approximate KM-UCL (use when n>=50) 25.39 95% Gamma Adjusted KM-UCL (use when n<50) 29.96

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.922	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.177	Lilliefors GOF Test
5% Lilliefors Critical Value	0.262	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

0.49	Mean in Log Scale	8.744	Mean in Original Scale
1.992	SD in Log Scale	15.64	SD in Original Scale
15.9	95% Percentile Bootstrap UCL	16.48	95% t UCL (assumes normality of ROS data)
34.21	95% Bootstrap t UCL	18.76	95% BCA Bootstrap UCL
		186.2	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.474	KM Geo Mean	1.606
KM SD (logged)	1.898	95% Critical H Value (KM-Log)	4.553
KM Standard Error of Mean (logged)	0.559	95% H-UCL (KM -Log)	117.8
KM SD (logged)	1.898	95% Critical H Value (KM-Log)	4.553
KM Standard Error of Mean (logged)	0.559		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	8.749	Mean in Log Scale	0.566	
SD in Original Scale	15.64	SD in Log Scale	1.893	
95% t UCL (Assumes normality)	16.48	95% H-Stat UCL	126.3	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL 34.38 a Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 29.96

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA17_GW_VOCs|Tetrachloroethylene (maintenance)

General Statistics

Total Number of Observations	15	Number of Distinct Observations	8
Number of Detects	8	Number of Non-Detects	7
Number of Distinct Detects	7	Number of Distinct Non-Detects	1
Minimum Detect	0.3	Minimum Non-Detect	1
Maximum Detect	24	Maximum Non-Detect	1
Variance Detects	68.13	Percent Non-Detects	46.67%
Mean Detects	3.944	SD Detects	8.254
Median Detects	0.5	CV Detects	2.093
Skewness Detects	2.645	Kurtosis Detects	7.121
Mean of Logged Detects	-0.056	SD of Logged Detects	1.592

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.528	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.403	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

1.63	KM Standard Error of Mean	2.309	KM Mean
5.221	95% KM (BCA) UCL	5.904	KM SD
5.416	95% KM (Percentile Bootstrap) UCL	5.181	95% KM (t) UCL
59.67	95% KM Bootstrap t UCL	4.991	95% KM (z) UCL
9.415	95% KM Chebyshev UCL	7.2	90% KM Chebyshev UCL
18.53	99% KM Chebyshev UCL	12.49	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	1.276	Anderson-Darling GOF Test
5% A-D Critical Value	0.771	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.398	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.311	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.366	k star (bias corrected MLE)	0.452	k hat (MLE)
10.78	Theta star (bias corrected MLE)	8.727	Theta hat (MLE)
5.852	nu star (bias corrected)	7.23	nu hat (MLE)
		3.944	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	2.581
Maximum	24	Median	0.44
SD	6.131	CV	2.375
k hat (MLE)	0.325	k star (bias corrected MLE)	0.304
Theta hat (MLE)	7.951	Theta star (bias corrected MLE)	8.487
nu hat (MLE)	9.738	nu star (bias corrected)	9.124
Adjusted Level of Significance (β)	0.0324		
Approximate Chi Square Value (9.12, α)	3.402	Adjusted Chi Square Value (9.12, β)	2.985
95% Gamma Approximate UCL (use when n>=50)	6.922	95% Gamma Adjusted UCL (use when n<50)	7.89

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	2.309	SD (KM)	5.904
Variance (KM)	34.85	SE of Mean (KM)	1.63
k hat (KM)	0.153	k star (KM)	0.167
nu hat (KM)	4.591	nu star (KM)	5.006
theta hat (KM)	15.09	theta star (KM)	13.84
80% gamma percentile (KM)	2.726	90% gamma percentile (KM)	6.93
95% gamma percentile (KM)	12.43	99% gamma percentile (KM)	28.07

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (5.01, α)	1.155	Adjusted Chi Square Value (5.01, β)	0.946
95% Gamma Approximate KM-UCL (use when n>=50)	10.01	95% Gamma Adjusted KM-UCL (use when n<50)	12.21

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.759	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.818	Detected Data Not Lognormal at 5% Significance Level		
Lilliefors Test Statistic	0.325	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.283	Detected Data Not Lognormal at 5% Significance Level		
Detected Data Not Lognormal at 5% Significance Level				

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	2.441	Mean in Log Scale -	-0.353
SD in Original Scale	6.083	SD in Log Scale	1.338
95% t UCL (assumes normality of ROS data)	5.208	95% Percentile Bootstrap UCL	5.377
95% BCA Bootstrap UCL	7.182	95% Bootstrap t UCL	29.77
95% H-UCL (Log ROS)	5.63		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.435	KM Geo Mean	0.647
KM SD (logged)	1.181	95% Critical H Value (KM-Log)	3.043
KM Standard Error of Mean (logged)	0.338	95% H-UCL (KM -Log)	3.393
KM SD (logged)	1.181	95% Critical H Value (KM-Log)	3.043
KM Standard Error of Mean (logged)	0.338		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	2.337	Mean in Log Scale	-0.353
SD in Original Scale	6.101	SD in Log Scale	1.173
95% t UCL (Assumes normality)	5.111	95% H-Stat UCL	3.61

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

975% KM (Chebyshev) UCL 12.49

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA17_GW_VOCs|Trichloroethene (maintenance)

General Statistics

	Gonordi Giadodo		
Total Number of Observations	15	Number of Distinct Observations	3
Number of Detects	2	Number of Non-Detects	13
Number of Distinct Detects	2	Number of Distinct Non-Detects	1
Minimum Detect	0.19	Minimum Non-Detect	1
Maximum Detect	0.58	Maximum Non-Detect	1
Variance Detects	0.0761	Percent Non-Detects	86.67%
Mean Detects	0.385	SD Detects	0.276
Median Detects	0.385	CV Detects	0.716
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	-1.103	SD of Logged Detects	0.789

Warning: Data set has only 2 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Normal GOF Test on Detects Only

Not Enough Data to Perform GOF Test

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.385	KM Standard Error of Mean	0.195
KM SD	0.195	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.728	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.706	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.97	95% KM Chebyshev UCL	1.235
97.5% KM Chebyshev UCL	1.603	99% KM Chebyshev UCL	2.325

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

N/A	k star (bias corrected MLE)	3.531	k hat (MLE)
N/A	Theta star (bias corrected MLE)	0.109	Theta hat (MLE)
N/A	nu star (bias corrected)	14.13	nu hat (MLE)
		0.385	Mean (detects)

Estimates of Gamma Parameters using KM Estimates

SD (KM) 0.195		0.385	Mean (KM)
E of Mean (KM) 0.195	SE	0.038	Variance (KM)
k star (KM) 3.163		3.898	k hat (KM)
nu star (KM) 94.89		116.9	nu hat (KM)
theta star (KM) 0.122	th	0.0988	theta hat (KM)
percentile (KM) 0.675	90% gamma pe	0.546	gamma percentile (KM)
percentile (KM) 1.057	99% gamma pe	0.796	gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

80% 95%

0.0324	Adjusted Level of Significance (b)		
71.1	Adjusted Chi Square Value (94.89, β)	73.42	Approximate Chi Square Value (94.89, α)
0.514	95% Gamma Adjusted KM-UCL (use when n<50)	0.498	95% Gamma Approximate KM-UCL (use when n>=50)

Lognormal GOF Test on Detected Observations Only

Not Enough Data to Perform GOF Test

Lognormal ROS Statistics Using Imputed Non-Detects

0.539	Mean in Log Scale	-1.103
0.581	SD in Log Scale	1.049
0.804	95% Percentile Bootstrap UCL	0.797
0.893	95% Bootstrap t UCL	1.018
1.268		
	0.581 0.804 0.893	0.581 SD in Log Scale 0.804 95% Percentile Bootstrap UCL 0.893 95% Bootstrap t UCL

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.103	KM Geo Mean	0.332
KM SD (logged)	0.558	95% Critical H Value (KM-Log)	2.132
KM Standard Error of Mean (logged)	0.558	95% H-UCL (KM -Log)	0.533
KM SD (logged)	0.558	95% Critical H Value (KM-Log)	2.132
KM Standard Error of Mean (logged)	0.558		

DL/2 Statistics

DL/2 Normai		DL/2 Log-Transformed	
Mean in Original Scale	0.485	Mean in Log Scale	-0.748
SD in Original Scale	0.0841	SD in Log Scale	0.255
95% t UCL (Assumes normality)	0.523	95% H-Stat UCL	0.555

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 1.235

Warning: Recommended UCL exceeds the maximum observation

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.19/6/2018 1:15:25 PM

From File GW_Offices_input.xls

Full Precision OFF
Confidence Coefficient 95%
Imber of Bootstrap Operations 2000

RA17_GW_VOCs|Bromodichloromethane

General Statistics

Tatal North and Observations	7	North and Picking A Observations	4
Total Number of Observations	/	Number of Distinct Observations	- 1
		Number of Missing Observations	20
Number of Detects	0	Number of Non-Detects	7
Number of Distinct Detects	0	Number of Distinct Non-Detects	1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDsI Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit

The data set for variable RA17_GW_VOCs|Bromodichloromethane was not processed!

RA17_GW_VOCs|Chloroform

General Statistics

Total Number of Observations	7	Number of Distinct Observations	3
		Number of Missing Observations	20
Number of Detects	2	Number of Non-Detects	5
Number of Distinct Detects	2	Number of Distinct Non-Detects	1
Minimum Detect	0.32	Minimum Non-Detect	1
Maximum Detect	1.3	Maximum Non-Detect	1
Variance Detects	0.48	Percent Non-Detects	71.43%
Mean Detects	0.81	SD Detects	0.693
Median Detects	0.81	CV Detects	0.856
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	-0.439	SD of Logged Detects	0.991

Warning: Data set has only 2 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Not Enough Data to Perform GOF Test

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.183	KM Standard Error of Mean	0.46	KM Mean
N/A	95% KM (BCA) UCL	0.343	KM SD
N/A	95% KM (Percentile Bootstrap) UCL	0.816	95% KM (t) UCL
N/A	95% KM Bootstrap t UCL	0.762	95% KM (z) UCL
1.259	95% KM Chebyshev UCL	1.01	90% KM Chebyshev UCL
2.284	99% KM Chebyshev UCL	1.605	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Groundwater ProUCL Output - Offices and Parking Lot

Gamma Statistics on Detected Data Only

N/A	k star (bias corrected MLE)	2.348	k hat (MLE)
N/A	Theta star (bias corrected MLE)	0.345	Theta hat (MLE)
N/A	nu star (bias corrected)	9.392	nu hat (MLE)
		0.01	Maan (datasta)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.46	SD (KM)	0.343
Variance (KM)	0.118	SE of Mean (KM)	0.183
k hat (KM)	1.799	k star (KM)	1.123
nu hat (KM)	25.19	nu star (KM)	15.73
theta hat (KM)	0.256	theta star (KM)	0.409
80% gamma percentile (KM)	0.733	90% gamma percentile (KM)	1.029
95% gamma percentile (KM)	1.323	99% gamma percentile (KM)	1.999

Gamma Kaplan-Meier (KM) Statistics

		Adjusted Level of Significance (β)	0.0158
Approximate Chi Square Value (15.73, α)	7.771	Adjusted Chi Square Value (15.73, β)	6.16
15% Gamma Approximate KM-UCL (use when n>=50)	0.931	95% Gamma Adjusted KM-UCL (use when n<50)	1.174

Lognormal GOF Test on Detected Observations Only

Not Enough Data to Perform GOF Test

Lognormal ROS Statistics Using Imputed Non-Detects

-0.96	Mean in Log Scale	0.48	Mean in Original Scale
0.697	SD in Log Scale	0.39	SD in Original Scale
0.716	95% Percentile Bootstrap UCL	0.766	95% t UCL (assumes normality of ROS data)
1.231	95% Bootstrap t UCL	0.821	95% BCA Bootstrap UCL
		1.114	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.939	KM Geo Mean	0.391
KM SD (logged)	0.491	95% Critical H Value (KM-Log)	2.443
Error of Mean (logged)	0.262	95% H-UCL (KM -Log)	0.719
KM SD (logged)	0.491	95% Critical H Value (KM-Log)	2.443
Error of Mean (logged)	0.262		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.589	Mean in Log Scale	-0.62
SD in Original Scale	0.321	SD in Log Scale	0.423
95% t UCL (Assumes normality)	0.824	95% H-Stat UCL	0.877

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 1.259

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA17_GW_VOCs|Methyl tert-Butyl Ether (MTBE)

General Statistics

Total Number of Observations	7	Number of Distinct Observations	6
		Number of Missing Observations	20
Number of Detects	5	Number of Non-Detects	2
Number of Distinct Detects	5	Number of Distinct Non-Detects	1
Minimum Detect	0.21	Minimum Non-Detect	1
Maximum Detect	5	Maximum Non-Detect	1
Variance Detects	4.021	Percent Non-Detects	28.57%
Mean Detects	1.43	SD Detects	2.005
Median Detects	0.65	CV Detects	1.402
Skewness Detects	2.182	Kurtosis Detects	4.821
Mean of Logged Detects	-0.254	SD of Logged Detects	1.151

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.643	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.44	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.175	KM Standard Error of Mean	0.666
KM SD	1.572	95% KM (BCA) UCL	2.453
95% KM (t) UCL	2.47	95% KM (Percentile Bootstrap) UCL	2.44
95% KM (z) UCL	2.271	95% KM Bootstrap t UCL	15.26
90% KM Chebyshev UCL	3.174	95% KM Chebyshev UCL	4.08
97.5% KM Chebyshev UCL	5.337	99% KM Chebyshev UCL	7.806

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.682	Anderson-Darling GOF Test
5% A-D Critical Value	0.693	Detected data appear Gamma Distributed at 5% Significance Leve
K-S Test Statistic	0.399	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.365	Detected Data Not Gamma Distributed at 5% Significance Level

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

0.513	k star (bias corrected MLE)	0.95	k hat (MLE)
2.786	Theta star (bias corrected MLE)	1.506	Theta hat (MLE)
5.132	nu star (bias corrected)	9.497	nu hat (MLE)
		1.43	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0772	Mean	1.185
Maximum	5	Median	0.65
SD	1.714	CV	1.446
k hat (MLE)	0.834	k star (bias corrected MLE)	0.572
Theta hat (MLE)	1.42	Theta star (bias corrected MLE)	2.072
nu hat (MLE)	11.68	nu star (bias corrected)	8.007
Adjusted Level of Significance (β)	0.0158		
Approximate Chi Square Value (8.01, α)	2.739	Adjusted Chi Square Value (8.01, β)	1.9
95% Gamma Approximate UCL (use when n>=50)	3.464	95% Gamma Adjusted UCL (use when n<50)	4.994

RI Report - BHHRA

Estimates of Gamma Parameters using KM Estimates

1.572	SD (KM)	1.175	Mean (KM)
0.666	SE of Mean (KM)	2.471	Variance (KM)
0.415	k star (KM)	0.559	k hat (KM)
5.803	nu star (KM)	7.823	nu hat (KM)
2.835	theta star (KM)	2.103	theta hat (KM)
3.298	90% gamma percentile (KM)	1.904	80% gamma percentile (KM)
8.641	99% gamma percentile (KM)	4.822	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (5.80, α)	1.54	Adjusted Chi Square Value (5.80, β)	0.972
15% Gamma Approximate KM-UCL (use when n>=50)	4.427	95% Gamma Adjusted KM-UCL (use when n<50)	7.014

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.876	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.331	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-0.363	Mean in Log Scale	1.188	Mean in Original Scale
0.993	SD in Log Scale	1.694	SD in Original Scale
1.986	95% Percentile Bootstrap UCL	2.432	95% t UCL (assumes normality of ROS data)
7.536	95% Bootstrap t UCL	2.53	95% BCA Bootstrap UCL
		5.053	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.387	KM Geo Mean	0.679
KM SD (logged)	0.933	95% Critical H Value (KM-Log)	3.511
KM Standard Error of Mean (logged)	0.417	95% H-UCL (KM -Log)	3.998
KM SD (logged)	0.933	95% Critical H Value (KM-Log)	3.511
KM Standard Error of Mean (logged)	0.417		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.164	Mean in Log Scale	-0.379
SD in Original Scale	1.699	SD in Log Scale	0.964
95% t UCL (Assumes normality)	2.412	95% H-Stat UCL	4.489

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL 15.26 d KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 7.014

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA17_GW_VOCs|Tetrachloroethylene

General Statistics

Total Number of Observations	27	Number of Distinct Observations	19
Number of Detects	19	Number of Non-Detects	8
Number of Distinct Detects	18	Number of Distinct Non-Detects	1
Minimum Detect	0.96	Minimum Non-Detect	1
Maximum Detect	470	Maximum Non-Detect	1
Variance Detects	18809	Percent Non-Detects	29.63%
Mean Detects	158	SD Detects	137.1
Median Detects	140	CV Detects	0.868
Skewness Detects	0.608	Kurtosis Detects	-0.367
Mean of Logged Detects	4.092	SD of Logged Detects	2.06

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.924	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.901	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.126	Lilliefors GOF Test
5% Lilliefors Critical Value	0.197	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	111.5	KM Standard Error of Mean	26.29
KM SD	133	95% KM (BCA) UCL	154.3
95% KM (t) UCL	156.3	95% KM (Percentile Bootstrap) UCL	156
95% KM (z) UCL	154.7	95% KM Bootstrap t UCL	162.6
90% KM Chebyshev UCL	190.4	95% KM Chebyshev UCL	226.1
97.5% KM Chebyshev UCL	275.7	99% KM Chebyshev UCL	373.1

Gamma GOF Tests on Detected Observations Only

0.909 Anderson-Darling GOF Test	
0.79 Detected Data Not Gamma Distributed at 5% Sign	nificance Level
0.189 Kolmogorov-Smirnov GOF	
0.208 Detected data appear Gamma Distributed at 5% Sig	gnificance Leve

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.632	k star (bias corrected MLE)	0.567
Theta hat (MLE)	250.2	Theta star (bias corrected MLE)	278.7
nu hat (MLE)	24	nu star (bias corrected)	21.54
Mean (detects)	158		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 ${\sf GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ {\it <1.0},\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ {\it <15-20}) }$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

114.8	Mean	0.01	Minimum
53	Median	470	Maximum
1.158	CV	132.9	SD
0.42	k star (bias corrected MLE)	0.445	k hat (MLE)
273.1	Theta star (bias corrected MLE)	257.9	Theta hat (MLE)
22.7	nu star (bias corrected)	24.04	nu hat (MLE)
		0.0401	Adjusted Level of Significance (β)
12.39	Adjusted Chi Square Value (22.70, β)	12.86	Approximate Chi Square Value (22.70, α)
210.3	95% Gamma Adjusted UCL (use when n<50)	202.5	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	111.5	SD (KM)	133
Variance (KM)	17681	SE of Mean (KM)	26.29
k hat (KM)	0.703	k star (KM)	0.65
nu hat (KM)	37.96	nu star (KM)	35.07
theta hat (KM)	158.6	theta star (KM)	171.6
80% gamma percentile (KM)	183.6	90% gamma percentile (KM)	284.8
95% gamma percentile (KM)	389.8	99% gamma percentile (KM)	642.3

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (35.07, α)	22.52	Adjusted Chi Square Value (35.07, β)	21.88
15% Gamma Approximate KM-UCL (use when n>=50)	173.6	95% Gamma Adjusted KM-UCL (use when n<50)	178.7

Lognormal GOF Test on Detected Observations Only

0.798 Shapiro Wilk GOF Test		
0.901 Detected Data Not Lognormal at 5% Significa	ance Level	
0.226 Lilliefors GOF Test		
0.197 Detected Data Not Lognormal at 5% Significa	ance Level	

Detected Data Not Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	112.1	Mean in Log Scale	3.072
SD in Original Scale	135	SD in Log Scale	2.413
95% t UCL (assumes normality of ROS data)	156.4	95% Percentile Bootstrap UCL	156.3
95% BCA Bootstrap UCL	161.8	95% Bootstrap t UCL	164.1
95% H-UCL (Log ROS)	3725		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.872	KM Geo Mean	17.67
KM SD (logged)	2.523	95% Critical H Value (KM-Log)	4.92
KM Standard Error of Mean (logged)	0.499	95% H-UCL (KM -Log)	4855
KM SD (logged)	2.523	95% Critical H Value (KM-Log)	4.92
KM Standard Error of Mean (logged)	0.499		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed			
	Mean in Original Scale	111.3	Mean in Log Scale	2.674	
	SD in Original Scale	135.6	SD in Log Scale	2.81	
	95% t UCL (Assumes normality)	155.9	95% H-Stat UCL	14844	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 156.3

 $Note: Suggestions \ regarding \ the \ selection \ of a 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA17_GW_VOCs|Trichloroethene

General Statistics

Total Number of Observations	27	Number of Distinct Observations	14
Number of Detects	15	Number of Non-Detects	12
Number of Distinct Detects	13	Number of Distinct Non-Detects	1
Minimum Detect	0.94	Minimum Non-Detect	1
Maximum Detect	41	Maximum Non-Detect	1
Variance Detects	112.2	Percent Non-Detects	44.44%
Mean Detects	15.88	SD Detects	10.59
Median Detects	14	CV Detects	0.667
Skewness Detects	0.763	Kurtosis Detects	0.765
Mean of Logged Detects	2.459	SD of Logged Detects	0.959

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.95	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.881	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.133	Lilliefors GOF Test
5% Lilliefors Critical Value	0.22	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	9.238	KM Standard Error of Mean	2.12
KM SD	10.64	95% KM (BCA) UCL	12.68
95% KM (t) UCL	12.85	95% KM (Percentile Bootstrap) UCL	12.48
95% KM (z) UCL	12.72	95% KM Bootstrap t UCL	13.62
90% KM Chebyshev UCL	15.6	95% KM Chebyshev UCL	18.48
97.5% KM Chebyshev UCL	22.48	99% KM Chebyshev UCL	30.33

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.295	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.75	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.136	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.225	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	1.785	k star (bias corrected MLE)	1.473
Theta hat (MLE)	8.892	Theta star (bias corrected MLE)	10.78
nu hat (MLE)	53.56	nu star (bias corrected)	44.18
Mean (detects)	15.88		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 ${\sf GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ {\it <1.0},\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ {\it <15-20}) }$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

9.224	Mean		0.01	Minimum
4.1	Median		41	Maximum
1.181	CV		10.9	SD
0.33	k star (bias corrected MLE)		0.343	k hat (MLE)
27.98	Theta star (bias corrected MLE)		26.89	Theta hat (MLE)
17.8	nu star (bias corrected)		18.53	nu hat (MLE)
			0.0401	Adjusted Level of Significance (β)
8.853	Adjusted Chi Square Value (17.80, β)		9.247	Approximate Chi Square Value (17.80, α)
18.55	amma Adjusted UCL (use when n<50)	95% G	17.76	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	9.238	SD (KM)	10.64
Variance (KM)	113.2	SE of Mean (KM)	2.12
k hat (KM)	0.754	k star (KM)	0.695
nu hat (KM)	40.69	nu star (KM)	37.51
theta hat (KM)	12.26	theta star (KM)	13.3
80% gamma percentile (KM)	15.19	90% gamma percentile (KM)	23.23
95% gamma percentile (KM)	31.53	99% gamma percentile (KM)	51.36

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (37.51, α)	24.48	Adjusted Chi Square Value (37.51, β)	23.81
15% Gamma Approximate KM-UCL (use when n>=50)	14.15	95% Gamma Adjusted KM-UCL (use when n<50)	14.55

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.89	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.881	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.177	Lilliefors GOF Test
5% Lilliefors Critical Value	0.22	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	9.652	Mean in Log Scale	1.553
SD in Original Scale	10.55	SD in Log Scale	1.336
95% t UCL (assumes normality of ROS data)	13.11	95% Percentile Bootstrap UCL	13.02
95% BCA Bootstrap UCL	13.38	95% Bootstrap t UCL	13.53
95% H-UCL (Log ROS)	25.24		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	1.339	KM Geo Mean	3.814
KM SD (logged)	1.431	95% Critical H Value (KM-Log)	3.131
KM Standard Error of Mean (logged)	0.285	95% H-UCL (KM -Log)	25.54
KM SD (logged)	1.431	95% Critical H Value (KM-Log)	3.131
KM Standard Error of Mean (logged)	0.285		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed			
Mean in Original Scale	9.042	Mean in Log Scale	1.058	
SD in Original Scale	11	SD in Log Scale	1.745	
95% t UCL (Assumes normality)	12.65	95% H-Stat UCL	45.57	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 12.85

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA17_GW_VOCs|Vinyl Chloride

General Statistics

Total Number of Observations	27	Number of Distinct Observations	2
Number of Detects	1	Number of Non-Detects	26
Number of Distinct Detects	1	Number of Distinct Non-Detects	1

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! ested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV

The data set for variable RA17_GW_VOCs|Vinyl Chloride was not processed!

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.18/31/2018 1:19:15 PM

From File gw epcs_f.xls
Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

RA17_GW_VOCs|Bromodichloromethane (substation #7)

General Statistics

Total Number of Observations	8	Number of Distinct Observations	1
Number of Detects	0	Number of Non-Detects	8
Number of Distinct Detects	0	Number of Distinct Non-Detects	1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs!

Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit!

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable RA17_GW_VOCs|Bromodichloromethane (substation #7) was not processed!

RA17_GW_VOCs|Chloroform (substation #7)

General Statistics

Total Number of Observations	8	Number of Distinct Observations	1
Number of Detects	0	Number of Non-Detects	8
Number of Distinct Detects	0	Number of Distinct Non-Detects	1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDsI Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit

The data set for variable RA17_GW_VOCs|Chloroform (substation #7) was not processed!

RA17_GW_VOCs|Methyl tert-Butyl Ether (MTBE) (substation #7)

	General Statistics		
Total Number of Observations	8	Number of Distinct Observations	6
Number of Detects	5	Number of Non-Detects	3
Number of Distinct Detects	5	Number of Distinct Non-Detects	1
Minimum Detect	0.33	Minimum Non-Detect	1
Maximum Detect	21	Maximum Non-Detect	1
Variance Detects	66.26	Percent Non-Detects	37.5%
Mean Detects	9.586	SD Detects	8.14
Median Detects	8.3	CV Detects	0.849
Skewness Detects	0.487	Kurtosis Detects	-0.746

SD of Logged Detects 1.642

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Mean of Logged Detects 1.63

Normal GOF Test on Detects Only

Detected Data appear Normal at 5% Significance Level

Shapiro Wilk Test Statistic	0.975	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.163	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	6.115	KM Standard Error of Mean	2.883
KM SD	7.294	95% KM (BCA) UCL	10.79
95% KM (t) UCL	11.58	95% KM (Percentile Bootstrap) UCL	10.58
95% KM (z) UCL	10.86	95% KM Bootstrap t UCL	12.93
90% KM Chebyshev UCL	14.77	95% KM Chebyshev UCL	18.68
97.5% KM Chebyshev UCL	24.12	99% KM Chebyshev UCL	34.8

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.274	Anderson-Darling GOF Test
5% A-D Critical Value	0.693	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.187	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.365	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.503	k star (bias corrected MLE)	0.924	k hat (MLE)
19.05	Theta star (bias corrected MLE)	10.37	Theta hat (MLE)
5.031	nu star (bias corrected)	9.244	nu hat (MLE)
		9.586	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs $\,$

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

6.132	Mean	0.01	Minimum
2.702	Median	21	Maximum
1.271	CV	7.791	SD
0.301	k star (bias corrected MLE)	0.348	k hat (MLE)
20.38	Theta star (bias corrected MLE)	17.62	Theta hat (MLE)
4.814	nu star (bias corrected)	5.569	nu hat (MLE)
		0.0195	Adjusted Level of Significance (β)
0.691	Adjusted Chi Square Value (4.81, β)	1.067	Approximate Chi Square Value (4.81, α)
42.7	95% Gamma Adjusted UCL (use when n<50)	27.66	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	6.115	SD (KM)	7.294
Variance (KM)	53.21	SE of Mean (KM)	2.883
k hat (KM)	0.703	k star (KM)	0.523
nu hat (KM)	11.24	nu star (KM)	8.361
theta hat (KM)	8.701	theta star (KM)	11.7
80% gamma percentile (KM)	10.06	90% gamma percentile (KM)	16.39
95% gamma percentile (KM)	23.12	99% gamma percentile (KM)	39.61

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (8.36, α)	2.946	Adjusted Chi Square Value (8.36, β)	2.196
95% Gamma Approximate KM-UCL (use when n>=50)	17.36	95% Gamma Adjusted KM-UCL (use when n<50)	23.29

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.86	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.258	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	6.185	Mean in Log Scale	0.676
SD in Original Scale	7.742	SD in Log Scale	1.874
95% t UCL (assumes normality of ROS data)	11.37	95% Percentile Bootstrap UCL	10.56
95% BCA Bootstrap UCL	12.05	95% Bootstrap t UCL	16.09
95% H-UCL (Log ROS)	682.1		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.603	KM Geo Mean	1.828
KM SD (logged)	1.762	95% Critical H Value (KM-Log)	5.467
KM Standard Error of Mean (logged)	0.697	95% H-UCL (KM -Log)	329.4
KM SD (logged)	1.762	95% Critical H Value (KM-Log)	5.467
KM Standard Error of Mean (logged)	0.697		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	6.179	Mean in Log Scale	0.759
SD in Original Scale	7.744	SD in Log Scale	1.728
95% t UCL (Assumes normality)	11.37	95% H-Stat UCL	317.3

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 11.58

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA17_GW_VOCs|Tetrachloroethylene (substation #7)

General Statistics

Total Number of Observations	8	Number of Distinct Observations	5
Number of Detects	4	Number of Non-Detects	4
Number of Distinct Detects	4	Number of Distinct Non-Detects	1
Minimum Detect	0.24	Minimum Non-Detect	1
Maximum Detect	0.96	Maximum Non-Detect	1
Variance Detects	0.0971	Percent Non-Detects	50%
Mean Detects	0.685	SD Detects	0.312
Median Detects	0.77	CV Detects	0.455
Skewness Detects	-1.438	Kurtosis Detects	2.473
Mean of Logged Detects	-0.498	SD of Logged Detects	0.629

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.887	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.307	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.685	KM Standard Error of Mean	0.156
KM SD	0.27	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.98	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.941	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	1.152	95% KM Chebyshev UCL	1.364
97.5% KM Chebyshev UCL	1.658	99% KM Chebyshev UCL	2.235

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.538	Anderson-Darling GOF Test
5% A-D Critical Value	0.659	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.366	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.396	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma	Statistics	on	Detected	Data	Only

k hat (MLE)	4.326	k star (bias corrected MLE)	1.248
Theta hat (MLE)	0.158	Theta star (bias corrected MLE)	0.549
nu hat (MLE)	34.61	nu star (bias corrected)	9.986
Mean (detects)	0.685		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.685	Mean	0.24	Minimum
0.746	Median	1.035	Maximum
0.401	CV	0.275	SD
3.521	k star (bias corrected MLE)	5.501	k hat (MLE)
0.195	Theta star (bias corrected MLE)	0.125	Theta hat (MLE)
56.34	nu star (bias corrected)	88.01	nu hat (MLE)
		0.0195	Adjusted Level of Significance (β)
36.65	Adjusted Chi Square Value (56.34, β)	40.09	Approximate Chi Square Value (56.34, α)
N/A	95% Gamma Adjusted UCL (use when n<50)	0.963	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.685	SD (KM)	0.27
Variance (KM)	0.0728	SE of Mean (KM)	0.156
k hat (KM)	6.443	k star (KM)	4.11
nu hat (KM)	103.1	nu star (KM)	65.77
theta hat (KM)	0.106	theta star (KM)	0.167
80% gamma percentile (KM)	0.941	90% gamma percentile (KM)	1.138
95% gamma percentile (KM)	1.318	99% gamma percentile (KM)	1.703

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (65.77, α)	48.1	Adjusted Chi Square Value (65.77, β)	44.31
95% Gamma Approximate KM-UCL (use when n>=50)	0.936	95% Gamma Adjusted KM-UCL (use when n<50)	1.017

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.792	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.365	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.682	Mean in Log Scale	-0.498
SD in Original Scale	0.315	SD in Log Scale	0.549
95% t UCL (assumes normality of ROS data)	0.893	95% Percentile Bootstrap UCL	0.853
95% BCA Bootstrap UCL	0.851	95% Bootstrap t UCL	0.896
95% H-UCL (Log ROS)	1.172		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.498	KM Geo Mean	0.608
KM SD (logged)	0.545	95% Critical H Value (KM-Log)	2.433
KM Standard Error of Mean (logged)	0.315	95% H-UCL (KM -Log)	1.163
KM SD (logged)	0.545	95% Critical H Value (KM-Log)	2.433
KM Standard Error of Mean (logged)	0.315		

DI /2 Statistics

	DDL Ciddolico		
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.593	Mean in Log Scale	-0.596
SD in Original Scale	0.227	SD in Log Scale	0.425
95% t UCL (Assumes normality)	0.744	95% H-Stat UCL	0.863

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.98

Warning: Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA17_GW_VOCs|Trichloroethene (substation #7)

General Statistics

2	Number of Distinct Observations	Total Number of Observations
7	Number of Non-Detects	Number of Detects
1	Number of Distinct Non-Detects	Number of Distinct Detects

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set!

It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable RA17_GW_VOCs|Trichloroethene (substation #7) was not processed!

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.18/31/2018 1:18:32 PM

 From File
 gw epcs_g.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

RA17_GW_VOCs|Bromodichloromethane (transformer shop)

General Statistics

Total Number of Observations	5	Number of Distinct Observations	1
Number of Detects	0	Number of Non-Detects	5
Number of Distinct Detects	0	Number of Distinct Non-Detects	1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs!

Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit!

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable RA17_GW_VOCs|Bromodichloromethane (transformer shop) was not processed!

RA17_GW_VOCs|Chloroform (transformer shop)

General Statistics

Total Number of Observations	5	Number of Distinct Observations	2
Number of Detects	1	Number of Non-Detects	4
Number of Distinct Detects	1	Number of Distinct Non-Detects	1

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set!

It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable RA17_GW_VOCs|Chloroform (transformer shop) was not processed!

RA17_GW_VOCs|Methyl tert-Butyl Ether (MTBE) (transformer shop)

General Statistics

Total Number of Observations	5	Number of Distinct Observations	1
Number of Detects	0	Number of Non-Detects	5
Number of Distinct Detects	0	Number of Distinct Non-Detects	1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs!

Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit!

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable RA17_GW_VOCs|Methyl tert-Butyl Ether (MTBE) (transformer shop) was not processed!

RA17_GW_VOCs|Tetrachloroethylene (transformer shop)

General Statistics

2	Number of Distinct Observations	5	Total Number of Observations
4	Number of Non-Detects	1	Number of Detects
1	Number of Distinct Non-Detects	1	Number of Distinct Detects

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set!

It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable RA17_GW_VOCs|Tetrachloroethylene (transformer shop) was not processed!

RA17_GW_VOCs|Trichloroethene (transformer shop)

General Statistics

Total Number of Observations	5	Number of Distinct Observations	1
Number of Detects	0	Number of Non-Detects	5
Number of Distinct Detects	0	Number of Distinct Non-Detects	1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDsI Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit!

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable RA17_GW_VOCs|Trichloroethene (transformer shop) was not processed!

February 2020

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.18/31/2018 1:17:44 PM

 From File
 gw epcs_h.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

RA17_GW_VOCs|Bromodichloromethane (vehicle refueling)

General Statistics

1	Number of Distinct Observations	6	Total Number of Observations
6	Number of Non-Detects	0	Number of Detects
1	Number of Distinct Non-Detects	0	Number of Distinct Detects

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs!

Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit!

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable RA17_GW_VOCs|Bromodichloromethane (vehicle refueling) was not processed!

RA17_GW_VOCs|Chloroform (vehicle refueling)

General Statistics

Total Number of Observations	6	Number of Distinct Observations	2
Number of Detects	1	Number of Non-Detects	5
Number of Distinct Detects	1	Number of Distinct Non-Detects	1

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set!

It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable RA17_GW_VOCs|Chloroform (vehicle refueling) was not processed!

RA17_GW_VOCs|Methyl tert-Butyl Ether (MTBE) (vehicle refueling)

General Statistics

Total Number of Observations	6	Number of Distinct Observations	3
Number of Detects	2	Number of Non-Detects	4
Number of Distinct Detects	2	Number of Distinct Non-Detects	1
Minimum Detect	1.2	Minimum Non-Detect	1
Maximum Detect	1.6	Maximum Non-Detect	1
Variance Detects	0.08	Percent Non-Detects	66.67%
Mean Detects	1.4	SD Detects	0.283
Median Detects	1.4	CV Detects	0.202
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	0.326	SD of Logged Detects	0.203

Warning: Data set has only 2 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Not Enough Data to Perform GOF Test

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.128	KM Standard Error of Mean	1.13	KM Mean
N/A	95% KM (BCA) UCL	0.22	KM SD
N/A	95% KM (Percentile Bootstrap) UCL	1.39	95% KM (t) UCL
N/A	95% KM Bootstrap t UCL	1.34	95% KM (z) UCL
1.69	95% KM Chebyshev UCL	1.51	90% KM Chebyshev UCL
2.404	99% KM Chebyshev UCL	1.93	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

N/A	k star (bias corrected MLE)	48.66	k hat (MLE)
N/A	Theta star (bias corrected MLE)	0.0288	Theta hat (MLE)
N/A	nu star (bias corrected)	194.7	nu hat (MLE)
		1 /	Mean (detects)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.133	SD (KM)	0.221
Variance (KM)	0.0489	SE of Mean (KM)	0.128
k hat (KM)	26.27	k star (KM)	13.25
nu hat (KM)	315.3	nu star (KM)	159
theta hat (KM)	0.0431	theta star (KM)	0.0856
80% gamma percentile (KM)	1.384	90% gamma percentile (KM)	1.546
95% gamma percentile (KM)	1.689	99% gamma percentile (KM)	1.98

Gamma Kaplan-Meier (KM) Statistics

		Adjusted Level of Significance (β)	0.0122
Approximate Chi Square Value (158.97, α)	130.8	Adjusted Chi Square Value (158.97, β)	121.6
95% Gamma Approximate KM-UCL (use when n>=50)	1.377	95% Gamma Adjusted KM-UCL (use when n<50)	1.482

Lognormal GOF Test on Detected Observations Only

Not Enough Data to Perform GOF Test

Lognormal ROS Statistics Using Imputed Non-Detects

-0.292	Mean in Log Scale	0.847	Mean in Original Scale
0.548	SD in Log Scale	0.468	SD in Original Scale
1.147	95% Percentile Bootstrap UCL	1.231	95% t UCL (assumes normality of ROS data)
1.664	95% Bootstrap t UCL	1.169	95% BCA Bootstrap UCL
		1.704	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.109	KM Geo Mean	1.115
KM SD (logged)	0.175	95% Critical H Value (KM-Log)	2.034
KM Standard Error of Mean (logged)	0.101	95% H-UCL (KM -Log)	1.327
KM SD (logged)	0.175	95% Critical H Value (KM-Log)	2.034
KM Standard Error of Mean (logged)	0.101		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	8.0	Mean in Log Scale	-0.353
SD in Original Scale	0.482	SD in Log Scale	0.534
95% t UCL (Assumes normality)	1.196	95% H-Stat UCL	1.552

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

 95% KM (t) UCL
 1.391

 95% KM (BCA) UCL
 N/A

Warning: One or more Recommended UCL(s) not available!

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA17_GW_VOCs|Tetrachloroethylene (vehicle refueling)

General Statistics

Total Number of Observations	6	Number of Distinct Observations	2
Number of Detects	1	Number of Non-Detects	5
Number of Distinct Detects	1	Number of Distinct Non-Detects	1

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set!

It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable RA17_GW_VOCs|Tetrachloroethylene (vehicle refueling) was not processed!

RA17_GW_VOCs|Trichloroethene (vehicle refueling)

	General Statistics		
Total Number of Observations	6	Number of Distinct Observations	1
Number of Detects	0	Number of Non-Detects	6
Number of Distinct Detects	0	Number of Distinct Non-Detects	1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDsI Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit!

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable RA17_GW_VOCs|Trichloroethene (vehicle refueling) was not processed!

for Uncensored Full Data Sets

User Selected Options

Date/Time of Computation ProUCL 5.17/23/2018 4:10:41 PM
From File HH Sediment ProUCL input.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

RA18_SE_DioxinFurans|TCDD TEQ HH

General Statistics

Total Number of Observations 24 Number of Distinct Observations 24

Number of Missing Observations 48

 Minimum 7.1200E-7
 Mean 7.2530E-5

 Maximum 7.0700E-4
 Median 1.3000E-5

 SD 1.5748E-4
 Std. Error of Mean 3.2146E-5

Coefficient of Variation N/A Skewness 3.4

Normal GOF Test

Shapiro Wilk Test Statistic 0.479 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.916 Data Not Normal at 5% Significance Level

Lilliefors Test Statistic 0.381 Lilliefors GOF Test

5% Lilliefors Critical Value 0.177 Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 1.2762E-4 95% Adjusted-CLT UCL (Chen-1995) 1.4924E-4 95% Modified-t UCL (Johnson-1978) 1.3134E-4

Gamma GOF Test

A-D Test Statistic 1.687 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.807 Data Not Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.222 Kolmogorov-Smirnov Gamma GOF Test

5% K-S Critical Value 0.188 Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

 k hat (MLE)
 0.496
 k star (bias corrected MLE)
 0.462

 Theta hat (MLE)
 1.4608E-4
 Theta star (bias corrected MLE)
 1.5692E-4

 nu hat (MLE)
 23.83
 nu star (bias corrected)
 22.19

 MLE Mean (bias corrected)
 7.2530E-5
 MLE Sd (bias corrected)
 1.0668E-4

 Approximate Chi Square Value (0.05)
 12.48

 Adjusted Level of Significance
 0.0392
 Adjusted Chi Square Value
 11.97

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 1.2896E-4 95% Adjusted Gamma UCL (use when n<50) 1.3447E-4

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.954 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.916 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.149 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.177 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 -14.16
 Mean of logged Data
 -10.81

 Maximum of Logged Data
 -7.254
 SD of logged Data
 1.583

Assuming Lognormal Distribution

95% H-UCL 2.1678E-4 90% Chebyshev (MVUE) UCL 1.3986E-4 95% Chebyshev (MVUE) UCL 1.7443E-4 97.5% Chebyshev (MVUE) UCL 2.2242E-4 99% Chebyshev (MVUE) UCL 3.1668E-4

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% Jackknife UCL 1.2762E-4	95% CLT UCL 1.2541E-4
95% Bootstrap-t UCL 2.3521E-4	95% Standard Bootstrap UCL 1.2596E-4
95% Percentile Bootstrap UCL 1.2470E-4	95% Hall's Bootstrap UCL 2.9573E-4
	95% BCA Bootstrap UCL 1.5696E-4
95% Chebyshev(Mean, Sd) UCL 2.1265E-4	90% Chebyshev(Mean, Sd) UCL 1.6897E-4
99% Chebyshev(Mean, Sd) UCL 3.9238E-4	97.5% Chebyshev(Mean, Sd) UCL 2.7328E-4

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 2.1265E-4

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA18_SE_Metals|Aluminum

General Statistics

Total Number of Observations	41	Number of Distinct Observations	27
		Number of Missing Observations	31
Minimum	2400	Mean	8066
Maximum	15500	Median	7500
SD	3244	Std. Error of Mean	506.7
Coefficient of Variation	0.402	Skewness	0.576

Normal GOF Test

tatistic 0.945 Shapiro Wilk GOF	F Test
Value 0.941 Data appear Normal at 5% Si	Significance Leve
tatistic 0.142 Lilliefors GOF T	Гest
Value 0.137 Data Not Normal at 5% Sign	nificance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)
----------------	----------------------------------

95% Student's-t UCL	8919	95% Adjusted-CLT UCL (Chen-1995)	8948
		95% Modified-t LICL (Johnson-1978)	8927

Gamma GOF Test

Test Statistic 0.335	A-D Test Statistic	Anderson-Darling Gamma GOF Test
Critical Value 0.751	5% A-D Critical Value	Detected data appear Gamma Distributed at 5% Significance Level
Test Statistic 0.103	K-S Test Statistic	Kolmogorov-Smirnov Gamma GOF Test
Critical Value 0.138	5% K-S Critical Value	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	6.264	k star (bias corrected MLE)	5.822
Theta hat (MLE)	1288	Theta star (bias corrected MLE)	1385
nu hat (MLE)	513.6	nu star (bias corrected)	477.4
MLE Mean (bias corrected)	8066	MLE Sd (bias corrected)	3343
		Approximate Chi Square Value (0.05)	427.7
Adjusted Level of Significance	0.0441	Adjusted Chi Square Value	426

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 9002 95% Adjusted Gamma UCL (use when n<50) 9039

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.973	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.941	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0928	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.137	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 7.783
 Mean of logged Data
 8.913

 Maximum of Logged Data
 9.649
 SD of logged Data
 0.42

Assuming Lognormal Distribution

 95% H-UCL
 9170
 90% Chebyshev (MVUE) UCL
 9742

 95% Chebyshev (MVUE) UCL
 10488
 97.5% Chebyshev (MVUE) UCL
 11523

 99% Chebyshev (MVUE) UCL
 13556

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	8899	95% Jackknife UCL	8919
95% Standard Bootstrap UCL	8888	95% Bootstrap-t UCL	8929
95% Hall's Bootstrap UCL	8959	95% Percentile Bootstrap UCL	8890
95% BCA Bootstrap UCL	8890		
90% Chebyshev(Mean, Sd) UCL	9586	95% Chebyshev(Mean, Sd) UCL	10274
97.5% Chebyshev(Mean, Sd) UCL	11230	99% Chebyshev(Mean, Sd) UCL	13107

Suggested UCL to Use

95% Student's-t UCL 8919

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

General Statistics

RA18_SE_Metals|Antimony

RI Report - BHHRA

Total Number of Observations	41	Number of Distinct Observations	31
		Number of Missing Observations	31
Minimum	0.27	Mean	1.931
Maximum	43	Median	0.68
SD	6.603	Std. Error of Mean	1.031

Coefficient of Variation 3.419 Skewness 6.316

Normal GOF Test

Shapiro Wilk Test Statistic	0.222	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.941	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.423	Lilliefors GOF Test
5% Lilliefors Critical Value	0.137	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

7.000			
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	3.668	95% Adjusted-CLT UCL (Chen-1995)	4.714
		95% Modified-t LICL (Johnson-1978)	3 837

Gamma GOF Test

Anderson-Darling Gamma GOF Test	6.14	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Leve	0.793	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.294	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Leve	0.144	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gan		

k hat (MLE)	0.711	k star (bias corrected MLE)	0.676
Theta hat (MLE)	2.714	Theta star (bias corrected MLE)	2.858
nu hat (MLE)	58.34	nu star (bias corrected)	55.4
MLE Mean (bias corrected)	1.931	MLE Sd (bias corrected)	2.349
		Approximate Chi Square Value (0.05)	39.3
Adjusted Level of Significance	0.0441	Adjusted Chi Square Value	38.8

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.723 95% Adjusted Gamma UCL (use when n<50) 2.757

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.81	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.941	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.125	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.137	Data appear Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-1.309	Mean of logged Data	-0.189
Maximum of Logged Data	3.761	SD of logged Data	0.866

Assuming Lognormal Distribution

95% H-UCL	1.629	90% Chebyshev (MVUE) UCL	1.734
95% Chebyshev (MVUE) UCL	1.981	97.5% Chebyshev (MVUE) UCL	2.324
99% Chebyshev (MVUE) UCL	2.998		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

3.668	95% Jackknife UCL	3.627	95% CLT UCL
17.11	95% Bootstrap-t UCL	3.629	95% Standard Bootstrap UCL
3.982	95% Percentile Bootstrap UCL	10.06	95% Hall's Bootstrap UCL
		6.062	95% BCA Bootstrap UCL
6.426	95% Chebyshev(Mean, Sd) UCL	5.025	90% Chebyshev(Mean, Sd) UCL
12.19	99% Chebyshev(Mean, Sd) UCL	8.371	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% H-UCL 1.629

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

RA18_SE_Metals|Arsenic

9-			
_Metals Arsenic			
	0	No. 10 and 10 an	
Table of Observation	General Sta		20
Total Number of Observations	41	Number of Distinct Observations Number of Missing Observations	32 31
Minimum	1.9	Mean	5.559
Maximum	17	Median	4.55
SD	3.717	Std. Error of Mean	0.58
Coefficient of Variation	0.669	Skewness	1.831
	Normal GOF	F Test	
Shapiro Wilk Test Statistic	0.79	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.941	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.183	Lilliefors GOF Test	
5% Lilliefors Critical Value Data Not	0.137 Normal at 5% 	Data Not Normal at 5% Significance Level Significance Level	
Δος	uming Normal	Dietribution	
95% Normal UCL	anning Norman	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	6.536	95% Adjusted-CLT UCL (Chen-1995)	6.691
		95% Modified-t UCL (Johnson-1978)	6.564
	Gamma GOI	F Test	
A-D Test Statistic	0.851	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.755	Data Not Gamma Distributed at 5% Significance Level	el
K-S Test Statistic	0.117	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.139	Detected data appear Gamma Distributed at 5% Significance	e Level
Detected data follow App	or. Gamma Dist	ribution at 5% Significance Level	
In the AMILES	Gamma Sta		2 007
k hat (MLE) Theta hat (MLE)	3.097 1.795	k star (bias corrected MLE) Theta star (bias corrected MLE)	2.887 1.925
nu hat (MLE)	254	nu star (bias corrected)	236.7
MLE Mean (bias corrected)	5.559	MLE Sd (bias corrected)	3.271
		Approximate Chi Square Value (0.05)	202.1
Adjusted Level of Significance	0.0441	Adjusted Chi Square Value	200.9
Ass	uming Gamma	Distribution	
95% Approximate Gamma UCL (use when n>=50)	6.511	95% Adjusted Gamma UCL (use when n<50)	6.548
	Lognormal GO		
Shapiro Wilk Test Statistic	0.955	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.941 0.0788	Data appear Lognormal at 5% Significance Level	
5% Lilliefors Critical Value	0.0766	Lilliefors Lognormal GOF Test Data appear Lognormal at 5% Significance Level	
		% Significance Level	
	Lognormal St	atistics	
Minimum of Logged Data	0.642	Mean of logged Data	1.545
Maximum of Logged Data	2.833	SD of logged Data	0.568
	ming Lognorma		
95% H-UCL	6.562	90% Chebyshev (MVUE) UCL	7.034
95% Chebyshev (MVUE) UCL	7.735	97.5% Chebyshev (MVUE) UCL	8.709
99% Chebyshev (MVUE) UCL	10.62		
·		Free UCL Statistics tribution at 5% Significance Level	
		-	
·		ution Free UCLs	
95% CLT UCL	6.513	95% Jackknife UCL	6.536
95% Standard Bootstrap UCL	6.472 6.72	95% Bootstrap-t UCL	6.825 6.568
95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL	6.734	95% Percentile Bootstrap UCL	0.008
90% Chebyshey(Mean, Sd) UCL	7.3	95% Chehyshey(Mean, Sd) UCI	8 089

95% Chebyshev(Mean, Sd) UCL 8.089 99% Chebyshev(Mean, Sd) UCL 11.33

90% Chebyshev(Mean, Sd) UCL 7.3 97.5% Chebyshev(Mean, Sd) UCL 9.183

Suggested UCL to Use

95% Adjusted Gamma UCL 6.548

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA18_SE_Metals|Chromium

	General St	atistics	
Total Number of Observations	41	Number of Distinct Observations	27
		Number of Missing Observations	31
Minimum	18	Mean	38.23
Maximum	80	Median	36
SD	14.53	Std. Error of Mean	2.269
Coefficient of Variation	0.38	Skewness	1.168
	Normal GC		
Shapiro Wilk Test Statistic	0.897	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.941	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.13	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.137	Data appear Normal at 5% Significance Level	
Data appear Appr	oximate Norm	nal at 5% Significance Level	
Ass	uming Norma	al Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	42.05	95% Adjusted-CLT UCL (Chen-1995)	42.41
		95% Modified-t UCL (Johnson-1978)	42.12
	Gamma GO	OF Teet	
A-D Test Statistic	0.555	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.75	Detected data appear Gamma Distributed at 5% Significance	o Lovol
K-S Test Statistic	0.73	Kolmogorov-Smirnov Gamma GOF Test	e Level
5% K-S Critical Value	0.114	Detected data appear Gamma Distributed at 5% Significance	e I evel
		ibuted at 5% Significance Level	e Level
		•	
	Gamma St	atistics	
k hat (MLE)	8.005	k star (bias corrected MLE)	7.436
Theta hat (MLE)	4.776	Theta star (bias corrected MLE)	5.142
nu hat (MLE)	656.4	nu star (bias corrected)	609.7
MLE Mean (bias corrected)	38.23	MLE Sd (bias corrected)	14.02
		Approximate Chi Square Value (0.05)	553.5
Adjusted Level of Significance	0.0441	Adjusted Chi Square Value	551.5
Ass	uming Gamm	a Distribution	
95% Approximate Gamma UCL (use when n>=50))	42.12	95% Adjusted Gamma UCL (use when n<50)	42.27
	Lognormal G	GOF Test	
Shapiro Wilk Test Statistic	0.967	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.941	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.0979	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.137	Data appear Lognormal at 5% Significance Level	
Data appear	Lognormal at	5% Significance Level	
	Lognormal S	Statistics	
Minimum of Logged Data	2.89	Mean of logged Data	3.58
Maximum of Logged Data	4.382	SD of logged Data	0.356
		and Platellands a	
Assu	ming Lognorn	nal Distribution	

95% H-UCL 42.31

90% Chebyshev (MVUE) UCL 44.69

95% Chebyshev (MVUE) UCL	47.65	97.5% Chebyshev (MVUE) UCL	51.75
99% Chebyshev (MVUE) UCL	59.82		

on onebysnev (mvoz) ooz oo.oz

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	41.96	95% Jackknife UCL	42.05
95% Standard Bootstrap UCL	41.88	95% Bootstrap-t UCL	42.66
95% Hall's Bootstrap UCL	42.58	95% Percentile Bootstrap UCL	42.11
95% BCA Bootstrap UCL	41.84		
90% Chebyshev(Mean, Sd) UCL	45.04	95% Chebyshev(Mean, Sd) UCL	48.12
97.5% Chebyshev(Mean, Sd) UCL	52.4	99% Chebyshev(Mean, Sd) UCL	60.8

Suggested UCL to Use

95% Student's-t UCL 42.05

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA18_SE_Metals|Cobalt

General Statistics		
41	Number of Distinct Observations	24
	Number of Missing Observations	31
4.9	Mean	15.07
32	Median	15
5.246	Std. Error of Mean	0.819
0.348	Skewness	0.717
Normal GOF Test		
0.968	Shapiro Wilk GOF Test	
	4.9 32 5.246 0.348	Number of Distinct Observations Number of Missing Observations 4.9 Mean 32 Median 5.246 Std. Error of Mean 0.348 Skewness Normal GOF Test

Shapiro wiik rest Statistic	0.500	Shapilo Wilk GOF Test
5% Shapiro Wilk Critical Value	0.941	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.0879	Lilliefors GOF Test
5% Lilliefors Critical Value	0.137	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	16.45	95% Adjusted-CLT UCL (Chen-1995)	16.51
		95% Modified-t UCL (Johnson-1978)	16.46

Gamma GOF Test

A-D Test Statistic	0.285	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.749	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.102	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.138	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

	Gamma Statistics		
k hat (MLE)	8.217	k star (bias corrected MLE)	7.632
Theta hat (MLE)	1.833	Theta star (bias corrected MLE)	1.974
nu hat (MLE)	673.8	nu star (bias corrected)	625.9
MLE Mean (bias corrected)	15.07	MLE Sd (bias corrected)	5.453
		Approximate Chi Square Value (0.05)	568.8
Adjusted Level of Significance	0.0441	Adjusted Chi Square Value	566.8

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 16.58 95% Adjusted Gamma UCL (use when n<50) 16.63

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.974	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.941	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.118	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.137	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.589	Mean of logged Data	2.65
Maximum of Logged Data	3.466	SD of logged Data	0.368

Assuming Lognormal Distribution

95% H-UCL	16.84	90% Chebyshev (MVUE) UCL	17.8
95% Chebyshev (MVUE) UCL	19.02	97.5% Chebyshev (MVUE) UCL	20.7
99% Chebyshev (MVUE) UCL	24.01		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

16.45	95% Jackknife UCL	JCL 1	95% CLT UCL
16.6	95% Bootstrap-t UCL	JCL 1	95% Standard Bootstrap UCL
16.39	95% Percentile Bootstrap UCL	JCL 1	95% Hall's Bootstrap UCL
		JCL 1	95% BCA Bootstrap UCL
18.64	95% Chebyshev(Mean, Sd) UCL	JCL 1	90% Chebyshev(Mean, Sd) UCL
23.22	99% Chebyshev(Mean, Sd) UCL	JCL 2	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 16.45

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA18_SE_Metals|Manganese

General	Statistics

Total Number of Observations	41	Number of Distinct Observations	24
		Number of Missing Observations	31
Minimum	86	Mean	210
Maximum	430	Median	200
SD	85.49	Std. Error of Mean	13.35
Coefficient of Variation	0.407	Skewness	0.97

Normal GOF Test

Shapiro Wilk Test Statistic	0.91	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.941	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.163	Lilliefors GOF Test
5% Lilliefors Critical Value	0.137	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

95% Student's-t UCL	232.4	95% Adjusted-CLT UCL (Chen-1995)	234.1
		95% Modified-t UCL (Johnson-1978)	232.8

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.454	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.751	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.112	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.138	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	6.728	k star (bias corrected MLE)	6.252
Theta hat (MLE)	31.21	Theta star (bias corrected MLE)	33.58
nu hat (MLE)	551.7	nu star (bias corrected)	512.6
MLE Mean (bias corrected)	210	MLE Sd (bias corrected)	83.97
		Approximate Chi Square Value (0.05)	461.1
Adjusted Level of Significance	0.0441	Adjusted Chi Square Value	459.4

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 233.4 95% Adjusted Gamma UCL (use when n<50) 234.3

Lognormal GOF Test

Shapiro Wilk Lognormal GOF Test	0.974	Shapiro Wilk Test Statistic
Data appear Lognormal at 5% Significance Leve	0.941	5% Shapiro Wilk Critical Value
Lilliefors Lognormal GOF Test	0.0915	Lilliefors Test Statistic
Data appear Lognormal at 5% Significance Leve	0.137	5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	4.454	Mean of logged Data	5.271
Maximum of Logged Data	6.064	SD of logged Data	0.394

Assuming Lognormal Distribution

95% H-UCL	235.6	90% Chebyshev (MVUE) UCL	249.7
95% Chebyshev (MVUE) UCL	267.8	97.5% Chebyshev (MVUE) UCL	292.9
99% Chebyshev (MVUE) UCL	342.1		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

231.9	95% Jackknife UCL	232.4
231.4	95% Bootstrap-t UCL	234.9
235.8	95% Percentile Bootstrap UCL	231.5
234.2		
250	95% Chebyshev(Mean, Sd) UCL	268.2
293.3	99% Chebyshev(Mean, Sd) UCL	342.8
	235.8 234.2 250	231.4 95% Bootstrap-t UCL 235.8 95% Percentile Bootstrap UCL 234.2 95% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Adjusted Gamma UCL 234.3

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA18_SE_Metals|Nickel

General Statistics

32	Number of Distinct Observations	41	Total Number of Observations
31	Number of Missing Observations		
50.72	Mean	15	Minimum
38	Median	160	Maximum
5.445	Std. Error of Mean	34.86	SD
1.681	Skewness	0.687	Coefficient of Variation

Normal GOF Test

Shapiro Wilk Test Statistic	0.807	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.941	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.191	Lilliefors GOF Test
5% Lilliefors Critical Value	0.137	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

	95% UCLs (Adjusted for Skewness)	
59.89	95% Adjusted-CLT UCL (Chen-1995)	61.2
	95% Modified-t UCL (Johnson-1978)	60.13
Commo C	COE Toot	
	-	
	-	
	_	e Level
	•	
Gamma S	Statistics	
2.872	k star (bias corrected MLE)	2.678
17.66	Theta star (bias corrected MLE)	18.94
235.5	nu star (bias corrected)	219.6
50.72	MLE Sd (bias corrected)	30.99
	Approximate Chi Square Value (0.05)	186.3
0.0441	Adjusted Chi Square Value	185.2
umina Gamı	na Dietribution	
59.78	95% Adjusted Gamma UCL (use when n<50)	60.15
	,	
Lognormal	GOF Test	
0.958	Shapiro Wilk Lognormal GOF Test	
0.941	Data appear Lognormal at 5% Significance Level	
0.103	Lilliefors Lognormal GOF Test	
0.137	Data appear Lognormal at 5% Significance Level	
Lognormal a	at 5% Significance Level	
Lognormal	Statistics	
2.708		3.742
5.075	SD of logged Data	0.591
		64.78
71.47	97.5% Chebyshev (MVUE) UCL	80.76
99.01		
tric Distributi	on Free UCL Statistics	
Discernible D	Distribution at 5% Significance Level	
	Gamma G 0.969 0.755 0.117 0.139 or. Gamma C Gamma S 2.872 17.66 235.5 50.72 0.0441 uming Gamr 59.78 Lognormal 0.958 0.941 0.103 0.137 Lognormal a 2.708 5.075 ming Lognor 60.39 71.47 99.01 tric Distributi	Gamma GOF Test 0.969 Anderson-Darling Gamma GOF Test 0.175 Data Not Gamma Distributed at 5% Significance Level 0.117 Kolmogorov-Smirnov Gamma GOF Test 0.139 Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics 2.872 k star (bias corrected MLE) 17.66 Theta star (bias corrected MLE) 235.5 nu star (bias corrected MLE) Approximate Chi Square Value (0.05) 0.0441 Approximate Chi Square Value (0.05) 0.0441 Adjusted Chi Square Value uming Gamma Distribution 59.78 95% Adjusted Gamma UCL (use when n<50) Lognormal GOF Test 0.958 Shapiro Wilk Lognormal GOF Test 0.941 Data appear Lognormal at 5% Significance Level 0.103 Lilliefors Lognormal GOF Test 0.137 Data appear Lognormal at 5% Significance Level Lognormal Statistics 2.708 Mean of logged Data 5.075 SD of logged Data ming Lognormal Distribution 60.39 90% Chebyshev (MVUE) UCL 71.47 97.5% Chebyshev (MVUE) UCL

Nonparametric Distribution Free UCLs

95% CLT UCL	59.68	95% Jackknife UCL	59.89
95% Standard Bootstrap UCL	59.49	95% Bootstrap-t UCL	61.69
95% Hall's Bootstrap UCL	61.37	95% Percentile Bootstrap UCL	59.87
95% BCA Bootstrap UCL	61.07		
90% Chebyshev(Mean, Sd) UCL	67.05	95% Chebyshev(Mean, Sd) UCL	74.45
97.5% Chebyshev(Mean, Sd) UCL	84.72	99% Chebyshev(Mean, Sd) UCL	104.9

Suggested UCL to Use

95% Adjusted Gamma UCL 60.15

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA18_SE_Metals|Thallium

Fringe 3	uriace Seulinein	FIOOCE Output	
E_Metals Thallium			
	General Stati		
Total Number of Observations	41	Number of Distinct Observations	22
		Number of Missing Observations	31
Minimum	0.037	Mean	0.21
Maximum	0.63	Median	0.18
SD	0.104	Std. Error of Mean	0.0163
Coefficient of Variation	0.498	Skewness	2.359
	Normal GOF	Test	
Shapiro Wilk Test Statistic	0.775	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.941	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.179	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.137	Data Not Normal at 5% Significance Level	
Data Not	Normal at 5% Si	ignificance Level	
As	suming Normal D	Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.237	95% Adjusted-CLT UCL (Chen-1995)	0.243
		95% Modified-t UCL (Johnson-1978)	0.238
	Gamma GOF	Teet	
A-D Test Statistic	1.374		
	0.752	Anderson-Darling Gamma GOF Test	J
5% A-D Critical Value		Data Not Gamma Distributed at 5% Significance Leve	1
K-S Test Statistic	0.143	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.138	Data Not Gamma Distributed at 5% Significance Leve	Я
Data Not Gamr	na Distributed at	5% Significance Level	
	Gamma Stati	stics	
k hat (MLE)	5.327	k star (bias corrected MLE)	4.954
Theta hat (MLE)	0.0394	Theta star (bias corrected MLE)	0.0424
nu hat (MLE)	436.8	nu star (bias corrected)	406.2
MLE Mean (bias corrected)	0.21	MLE Sd (bias corrected)	0.0943
		Approximate Chi Square Value (0.05)	360.5
Adjusted Level of Significance	0.0441	Adjusted Chi Square Value	358.9
Ass	suming Gamma (Distribution	
95% Approximate Gamma UCL (use when n>=50))	0.236	95% Adjusted Gamma UCL (use when n<50)	0.237
Shapiro Wilk Test Statistic	0.905	F Test Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.941	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.148	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.140	Data Not Lognormal at 5% Significance Level	
		Significance Level	
Marin and David Barr	Lognormal Sta		4.050
Minimum of Logged Data	-3.297	Mean of logged Data	-1.658
Maximum of Logged Data	-0.462	SD of logged Data	0.447
Assu	ıming Lognormal	Distribution	
95% H-UCL	0.24	90% Chebyshev (MVUE) UCL	0.256
95% Chebyshev (MVUE) UCL	0.276	97.5% Chebyshev (MVUE) UCL	0.305
99% Chebyshev (MVUE) UCL	0.361		
·		Free UCL Statistics le Distribution (0.05)	
Said do Hot i	J.J. G DIOCOTTIL	S. S. S. S. S. S. S. S. S. S. S. S. S. S	
·	ametric Distribut		
95% CLT UCL	0.237	95% Jackknife UCL	0.237
95% Standard Bootstrap UCL	0.237	95% Bootstrap-t UCL	0.248
95% Hall's Bootstrap UCL	0.266	95% Percentile Bootstrap UCL	0.238

95% Chebyshev(Mean, Sd) UCL 0.281 99% Chebyshev(Mean, Sd) UCL 0.372

95% BCA Bootstrap UCL 0.243 90% Chebyshev(Mean, Sd) UCL 0.259 97.5% Chebyshev(Mean, Sd) UCL 0.312

Suggested UCL to Use

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA18_SE_Metals|Vanadium

	General	Statistics	
Total Number of Observations	41	Number of Distinct Observations	33
Total Number of Observations	71	Number of Missing Observations	31
Minimum	21	Mean	87.32
Maximum	440	Median	48
SD	90.6	Std. Error of Mean	14.15
Coefficient of Variation	1.038	Skewness	2.374
Seemale.it of Variation		Silo III des	2.07
	Normal (GOF Test	
Shapiro Wilk Test Statistic	0.709	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.941	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.232	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.137	Data Not Normal at 5% Significance Level	
Data Not	Normal at 5	5% Significance Level	
Ası	suming Nor	mal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	111.1	95% Adjusted-CLT UCL (Chen-1995)	116.2
		95% Modified-t UCL (Johnson-1978)	112
	Gamma	GOF Test	
A-D Test Statistic	1.651	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.766	Data Not Gamma Distributed at 5% Significance Leve	I
K-S Test Statistic	0.184	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.14	Data Not Gamma Distributed at 5% Significance Leve	I
Data Not Gamm	na Distribut	ed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	1.506	k star (bias corrected MLE)	1.412
Theta hat (MLE)	57.98	Theta star (bias corrected MLE)	61.83
nu hat (MLE)	123.5	nu star (bias corrected)	115.8
MLE Mean (bias corrected)	87.32	MLE Sd (bias corrected)	73.48
		Approximate Chi Square Value (0.05)	91.95
Adjusted Level of Significance	0.0441	Adjusted Chi Square Value	91.18
	_	nma Distribution	
95% Approximate Gamma UCL (use when n>=50))	110	95% Adjusted Gamma UCL (use when n<50)	110.9
	Lognorma	I GOF Test	
Shapiro Wilk Test Statistic	0.92	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.941	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.16	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.137	Data Not Lognormal at 5% Significance Level	
Data Not L	ognormal a	t 5% Significance Level	
	Lognorma	al Statistics	
Minimum of Logged Data	3.045	Mean of logged Data	4.102
Maximum of Logged Data	6.087	SD of logged Data	0.818
waxiiiuiii oi Logged Data	0.007	SD of logged Data	0.010

Assuming Lognormal Distribution

95% H-UCL 111.8

95% Chebyshev (MVUE) UCL 135.7

99% Chebyshev (MVUE) UCL 202.5

90% Chebyshev (MVUE) UCL 119.5

97.5% Chebyshev (MVUE) UCL 158.3

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% Jackknife UCL 111.1	110.6	95% CLT UCL
95% Bootstrap-t UCL 118.4	110.4	95% Standard Bootstrap UCL
5% Percentile Bootstrap UCL 111.4	126.6	95% Hall's Bootstrap UCL
	117	95% BCA Bootstrap UCL
Chebyshev(Mean, Sd) UCL 149	129.8	90% Chebyshev(Mean, Sd) UCL
Chebyshev(Mean, Sd) UCL 228.1	175.7	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 149

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA18_SE_PestPCBs|PCB, Total Aroclors (AECOM Calc)

	General Statistics		
Total Number of Observations	41	Number of Distinct Observations	38
		Number of Missing Observations	31
Minimum	0.022	Mean	0.447
Maximum	1.9	Median	0.26
SD	0.457	Std. Error of Mean	0.0713
Coefficient of Variation	1.022	Skewness	1.699
	Normal GOF Test		
Shapiro Wilk Test Statistic	0.801	Shapiro Wilk GOF Test	

Shapiro Wilk Test Statistic 0.801 **Shapiro Wilk GOF Test**5% Shapiro Wilk Critical Value 0.941 Data Not Normal at 5% Significance Level

Lilliefors Test Statistic 0.187 Lilliefors GOF Test

5% Lilliefors Critical Value 0.137 Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

, 1000	/ tourising . to the contract of		
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.567	95% Adjusted-CLT UCL (Chen-1995)	0.584
		95% Modified-t LICL (Johnson-1978)	0.57

Gamma GOF Test

A-D Test Statistic	0.52	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.776	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.119	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.142	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.1	k star (bias corrected MLE)	1.035
Theta hat (MLE)	0.406	Theta star (bias corrected MLE)	0.432
nu hat (MLE)	90.16	nu star (bias corrected)	84.9
MLE Mean (bias corrected)	0.447	MLE Sd (bias corrected)	0.439
		Approximate Chi Square Value (0.05)	64.66
Adjusted Level of Significance	0.0441	Adjusted Chi Square Value	64.02

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 0.587 95% Adjusted Gamma UCL (use when n<50) 0.593

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.968	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.941	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.107	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.137	Data appear Lognormal at 5% Significance Level

February 2020

Data appear Lognormal at 5% Significance Level

Log	inorma	Statistics

Minimum of Logged Data	-3.817	Mean of logged Data	-1.325
Maximum of Logged Data	0.642	SD of logged Data	1.096

Assuming Lognormal Distribution

95% H-UCL	0.742	90% Chebyshev (MVUE) UCL	0.765
95% Chebyshev (MVUE) UCL	0.896	97.5% Chebyshev (MVUE) UCL	1.079
99% Chebyshey (MVUE) UCL	1.438		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

ife UCL 0.567	95% Jackknife UC	0.564	95% CLT UCL
o-t UCL 0.602	95% Bootstrap-t UC	0.561	95% Standard Bootstrap UCL
ap UCL 0.569	95% Percentile Bootstrap UC	0.595	95% Hall's Bootstrap UCL
		0.578	95% BCA Bootstrap UCL
d) UCL 0.758	95% Chebyshev(Mean, Sd) UC	0.661	90% Chebyshev(Mean, Sd) UCL
d) UCL 1.156	99% Chebyshev(Mean, Sd) UC	0.892	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Adjusted Gamma UCL 0.593

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA18_SE_Petroleum|Diesel Range Organics (C10-C20)

General Statistics

Total Number of Observations	11	Number of Distinct Observations	10
		Number of Missing Observations	59
Minimum	48	Mean	91.09
Maximum	220	Median	87
SD	47.9	Std. Error of Mean	14.44
Coefficient of Variation	0.526	Skewness	2.139

Normal GOF Test

Shapiro Wilk Test Statistic	0.763	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.256	Lilliefors GOF Test
5% Lilliefors Critical Value	0.251	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL	117.3	95% Adjusted-CLT UCL (Chen-1995)	124.8
		95% Modified-t UCL (Johnson-1978)	118.8

Gamma GOF Test

e Level
e Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

3.937	k star (bias corrected MLE)	5.33	k hat (MLE)
23.14	Theta star (bias corrected MLE)	17.09	Theta hat (MLE)
86.61	nu star (bias corrected)	117.3	nu hat (MLE)
45.91	MLE Sd (bias corrected)	91.09	MLE Mean (bias corrected)
66.15	Approximate Chi Square Value (0.05)		
63.25	Adjusted Chi Square Value	0.0278	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 119.3 95% Adjusted Gamma UCL (use when n<50) 124.7

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.91	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.85	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.167	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.251	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 3.871 Mean of logged Data 4.415 Maximum of Logged Data 5.394 SD of logged Data 0.44

Assuming Lognormal Distribution

95% H-UCL 122 90% Chebyshev (MVUE) UCL 126.7 95% Chebyshev (MVUE) UCL 143.3 97.5% Chebyshev (MVUE) UCL 166.2 99% Chebyshev (MVUE) UCL 211.3

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	114.8	95% Jackknife UCL	117.3
95% Standard Bootstrap UCL	114.3	95% Bootstrap-t UCL	135
95% Hall's Bootstrap UCL	221.6	95% Percentile Bootstrap UCL	114.5
95% BCA Bootstrap UCL	125.7		
90% Chebyshev(Mean, Sd) UCL	134.4	95% Chebyshev(Mean, Sd) UCL	154
97.5% Chebyshev(Mean, Sd) UCL	181.3	99% Chebyshev(Mean, Sd) UCL	234.8

Suggested UCL to Use

95% Adjusted Gamma UCL 124.7

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA18_SE_SVOCs|Benzo(a)anthracene

	General Statistics		
Total Number of Observations	32	Number of Distinct Observations	25
		Number of Missing Observations	40
Minimum	0.16	Mean	0.59
Maximum	2.3	Median	0.49
SD	0.376	Std. Error of Mean	0.0665
Coefficient of Variation	0.638	Skewness	3.201

Normal GOF Test

Shapiro Wilk Test Statistic	0.696	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.93	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.26	Lilliefors GOF Test
5% Lilliefors Critical Value	0.154	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.702	95% Adjusted-CLT UCL (Chen-1995)	0.739
		95% Modified-t UCL (Johnson-1978)	0.709
	Gamma GOF Test		

A-D Test Statistic	1.034	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.751	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.188	Kolmogorov-Smirnov Gamma GOF Test

Fringe Surface Sediment ProUCL Output

5% K-S Critical Value 0.156 Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	3.907	k star (bias corrected MLE)	3.562
Theta hat (MLE)	0.151	Theta star (bias corrected MLE)	0.166
nu hat (MLE)	250.1	nu star (bias corrected)	228
MLE Mean (bias corrected)	0.59	MLE Sd (bias corrected)	0.312
		Approximate Chi Square Value (0.05)	194
Adjusted Level of Significance	0.0416	Adjusted Chi Square Value	192.3

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<50) 0.693 95% Adjusted Gamma UCL (use when n<50) 0.699

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.941	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.93	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.152	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.154	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-1.833	Mean of logged Data	-0.662
Maximum of Logged Data	0.833	SD of logged Data	0.507

Assuming Lognormal Distribution

95% H-UCL	0.7	90% Chebyshev (MVUE) UCL	0.748
95% Chebyshev (MVUE) UCL	0.823	97.5% Chebyshev (MVUE) UCL	0.926
99% Chebyshev (MVUE) UCL	1.128		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

0.702	95% Jackknife UCL	0.699	95% CLT UCL
0.772	95% Bootstrap-t UCL	0.695	95% Standard Bootstrap UCL
0.706	95% Percentile Bootstrap UCL	1.218	95% Hall's Bootstrap UCL
		0.741	95% BCA Bootstrap UCL
0.88	95% Chebyshev(Mean, Sd) UCL	0.789	90% Chebyshev(Mean, Sd) UCL
1.251	99% Chebyshev(Mean, Sd) UCL	1.005	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% H-UCL 0.7

 $Note: Suggestions\ regarding\ the\ selection\ of\ a\ 95\%\ UCL\ are\ provided\ to\ help\ the\ user\ to\ select\ the\ most\ appropriate\ 95\%\ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

RA18_SE_SVOCs|Benzo(a)pyrene

General	Statistics
General	Ciananca

26	Number of Distinct Observations	32	Total Number of Observations
40	Number of Missing Observations		
0.65	Mean	0.16	Minimum
0.58	Median	2	Maximum
0.0597	Std. Error of Mean	0.338	SD
2.099	Skewness	0.519	Coefficient of Variation

Normal GOF Test

Shapiro Wilk Test Statistic	0.834	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.93	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.164	Lilliefors GOF Test
5% Lilliefors Critical Value	0.154	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	0.752	95% Adjusted-CLT UCL (Chen-1995)	0.772	
		95% Modified-t UCL (Johnson-1978)	0.755	

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.678	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.749	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.134	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.156	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

4.066	k star (bias corrected MLE)	4.464	k hat (MLE)
0.16	Theta star (bias corrected MLE)	0.146	Theta hat (MLE)
260.2	nu star (bias corrected)	285.7	nu hat (MLE)
0.322	MLE Sd (bias corrected)	0.65	MLE Mean (bias corrected)
223.9	Approximate Chi Square Value (0.05)		
222.1	Adjusted Chi Square Value	0.0416	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)	0.756	95% Adjusted Gamma UCL (use when n<50)	0.762
--	-------	--	-------

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.944	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.93	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.165	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.154	Data Not Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-1.833	Mean of logged Data	-0.546
Maximum of Logged Data	0.693	SD of logged Data	0.501

Assuming Lognormal Distribution

95% H-UCL	0.781	90% Chebyshev (MVUE) UCL	0.835
95% Chebyshev (MVUE) UCL	0.918	97.5% Chebyshev (MVUE) UCL	1.032
99% Chebyshev (MVUE) UCL	1.256		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.749	95% Jackknife UCL	0.752
95% Standard Bootstrap UCL	0.746	95% Bootstrap-t UCL	0.782
95% Hall's Bootstrap UCL	0.846	95% Percentile Bootstrap UCL	0.751
95% BCA Bootstrap UCL	0.778		
90% Chebyshev(Mean, Sd) UCL	0.829	95% Chebyshev(Mean, Sd) UCL	0.911
97.5% Chebyshev(Mean, Sd) UCL	1.023	99% Chebyshev(Mean, Sd) UCL	1.244

Suggested UCL to Use

95% Adjusted Gamma UCL 0.762

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA18_SE_SVOCs|Benzo(b)fluoranthene

	General S	Statistica	
Total Number of Observations	32	Number of Distinct Observations	20
Total Number of Observations	32	Number of Missing Observations	40
Minimum	0.29	Mean	0.968
Maximum	2.6	Median	0.88
SD	0.449	Std. Error of Mean	0.0795
Coefficient of Variation	0.464	Skewness	1.627
	Normal G	OF Test	
Shapiro Wilk Test Statistic	0.878	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.93	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.166	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.154	Data Not Normal at 5% Significance Level	
Data Not	Normal at 5	% Significance Level	
Ass	uming Norn	nal Distribution	
95% Normal UCL	·	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	1.103	95% Adjusted-CLT UCL (Chen-1995)	1.123
		95% Modified-t UCL (Johnson-1978)	1.106
	Gamma C	GOF Test	
A-D Test Statistic	0.608	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.748	Detected data appear Gamma Distributed at 5% Significance	e Level
K-S Test Statistic	0.12	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.156	Detected data appear Gamma Distributed at 5% Significance	e Level
Detected data appear	Gamma Dis	stributed at 5% Significance Level	
	Gamma S	Panaladan	
k hat (MLE)	5.276	k star (bias corrected MLE)	4.802
Theta hat (MLE)	0.183	Theta star (bias corrected MLE)	0.202
nu hat (MLE)	337.7	nu star (bias corrected)	307.3
MLE Mean (bias corrected)	0.968	MLE Sd (bias corrected)	0.442
(Approximate Chi Square Value (0.05)	267.7
Adjusted Level of Significance	0.0416	Adjusted Chi Square Value	265.7
	_	ma Distribution	4.440
95% Approximate Gamma UCL (use when n>=50)	1.111	95% Adjusted Gamma UCL (use when n<50)	1.119
	Lognormal	GOF Test	
Shapiro Wilk Test Statistic	0.95	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.93	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.149	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.154	Data appear Lognormal at 5% Significance Level	
Data appear	Lognormal	at 5% Significance Level	
	1 oar	Chalintina	
Minimum of Logged Data	Lognormal	Statistics Mean of logged Data	-0.13
Maximum of Logged Data	0.956	SD of logged Data	0.459
a		55 5. logged Data	
Assu	ming Logno	rmal Distribution	
95% H-UCL	1.141	90% Chebyshev (MVUE) UCL	1.217
95% Chebyshev (MVUE) UCL	1.329	97.5% Chebyshev (MVUE) UCL	1.483
99% Chebyshev (MVUE) UCL	1.786		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	1.099	95% Jackknife UCL	1.103
95% Standard Bootstrap UCL	1.095	95% Bootstrap-t UCL	1.135
95% Hall's Bootstrap UCL	1.175	95% Percentile Bootstrap UCL	1.099
95% BCA Bootstrap UCL	1.114		
90% Chebyshev(Mean, Sd) UCL	1.206	95% Chebyshev(Mean, Sd) UCL	1.314
97.5% Chebyshev(Mean, Sd) UCL	1.464	99% Chebyshev(Mean, Sd) UCL	1.758

Suggested UCL to Use

95% Adjusted Gamma UCL 1.119

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA18_SE_SVOCs|Benzo(k)fluoranthene

Total Number of Observations	32	Number of Distinct Observations	26
		Number of Missing Observations	40
Minimum	0.096	Mean	0.355
Maximum	0.96	Median	0.32
SD	0.175	Std. Error of Mean	0.031
Coefficient of Variation	0.495	Skewness	1.271

Normal GOF Test

Shapiro Wilk Test Statistic	0.915	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.93	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.146	Lilliefors GOF Test
5% Lilliefors Critical Value	0.154	Data appear Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)
----------------	----------------------------------

95% Student's-t UCL	0.407	95% Adjusted-CLT UCL (Chen-1995)	0.413
		95% Modified-t LICL (Johnson-1978)	0.408

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.344	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.75	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.0962	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.156	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	4.293	k star (bias corrected MLE)	3.911
Theta hat (MLE)	0.0826	Theta star (bias corrected MLE)	0.0907
nu hat (MLE)	274.7	nu star (bias corrected)	250.3
MLE Mean (bias corrected)	0.355	MLE Sd (bias corrected)	0.179
		Approximate Chi Square Value (0.05)	214.7
Adjusted Level of Significance	0.0416	Adjusted Chi Square Value	212.9

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50))	0.413	95% Adjusted Gamma UCL (use when n<50)	0.417

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.957	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.93	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.126	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.154	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

	Log	inormal	Statistics	
--	-----	---------	------------	--

Minimum of Logged Data	-2.343	Mean of logged Data	-1.158
Maximum of Logged Data	-0.0408	SD of logged Data	0.52

Assuming Lognormal Distribution

95% H-UCL	0.431	90% Chebyshev (MVUE) UCL	0.462
95% Chebyshev (MVUE) UCL	0.508	97.5% Chebyshev (MVUE) UCL	0.574
99% Chebyshev (MVUE) UCL	0.701		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

0.407	95% Jackknife UCL	0.406	95% CLT UCL
0.418	95% Bootstrap-t UCL	0.405	95% Standard Bootstrap UCL
0.404	95% Percentile Bootstrap UCL	0.427	95% Hall's Bootstrap UCL
		0.411	95% BCA Bootstrap UCL
0.49	95% Chebyshev(Mean, Sd) UCL	0.448	90% Chebyshev(Mean, Sd) UCL
0.663	99% Chebyshev(Mean, Sd) UCL	0.548	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 0.407

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA18_SE_SVOCs|Chrysene

General	Statistics
---------	------------

Total Number of Observations	32	Number of Distinct Observations	28
		Number of Missing Observations	40
Minimum	0.27	Mean	0.876
Maximum	2.4	Median	0.82
SD	0.403	Std. Error of Mean	0.0712
Coefficient of Variation	0.46	Skewness	1.754

Normal GOF Test

Shapiro Wilk Test Statistic	0.875	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.93	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.161	Lilliefors GOF Test
5% Lilliefors Critical Value	0.154	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adj	ljusted for Skewness)
------------------------------	-----------------------

95% Student's-t UCL	0.997	95% Adjusted-CLT UCL (Chen-1995)	1.017
		95% Modified-t UCL (Johnson-1978)	1.001

Gamma GOF Test

A-D Test Statistic	0.427	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.748	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.105	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.156	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	5.5	k star (bias corrected MLE)	5.005
Theta hat (MLE)	0.159	Theta star (bias corrected MLE)	0.175
nu hat (MLE)	352	nu star (bias corrected)	320.3

MLE Mean (bias corrected)	0.876	MLE Sd (bias corrected)	0.392
		Approximate Chi Square Value (0.05)	279.9
Adjusted Level of Significance	0.0416	Adjusted Chi Square Value	277.9

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 1.003 95% Adjusted Gamma UCL (use when n<50) 1.003

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.963	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value 0.93	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.106	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value 0.154	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-1.309	Mean of logged Data	-0.226
Maximum of Logged Data	0.875	SD of logged Data	0.446

Assuming Lognormal Distribution

95% H-UCL	1.026	90% Chebyshev (MVUE) UCL	1.094
95% Chebyshev (MVUE) UCL	1.192	97.5% Chebyshev (MVUE) UCL	1.327
99% Chebyshev (MVUE) UCL	1.593		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

0.997	95% Jackknife UCL	0.993	95% CLT UCL
1.027	95% Bootstrap-t UCL	0.994	95% Standard Bootstrap UCL
0.993	95% Percentile Bootstrap UCL	1.085	95% Hall's Bootstrap UCL
		1.015	95% BCA Bootstrap UCL
1.187	95% Chebyshev(Mean, Sd) UCL	1.09	90% Chebyshev(Mean, Sd) UCL
1.585	99% Chebyshev(Mean, Sd) UCL	1.321	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Adjusted Gamma UCL 1.01

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

RA18_SE_SVOCs|Indeno(1,2,3-cd)pyrene

General Statistics

	Gerierai Otatiotico		
Total Number of Observations	32	Number of Distinct Observations	30
		Number of Missing Observations	40
Minimum	0.12	Mean	0.567
Maximum	1.4	Median	0.53
SD	0.295	Std. Error of Mean	0.0521
Coefficient of Variation	0.52	Skewness	0.835

Normal GOF Test

Shapiro Wilk Test Statistic	0.942	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.93	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.139	Lilliefors GOF Test
5% Lilliefors Critical Value	0.154	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	0.655	95% Adjusted-CLT UCL (Chen-1995)	0.66
		95% Modified-t UCL (Johnson-1978)	0.656

Gamma GOF Test

Fringe Surface Sediment ProUCL Output

Anderson-Darling Gamma GOF Test	0.301	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.752	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.0961	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.156	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

3.308	k star (bias corrected MLE)	3.628	k hat (MLE)
0.171	Theta star (bias corrected MLE)	0.156	Theta hat (MLE)
211.7	nu star (bias corrected)	232.2	nu hat (MLE)
0.311	MLE Sd (bias corrected)	0.567	MLE Mean (bias corrected)
179.1	Approximate Chi Square Value (0.05)		
177.5	Adjusted Chi Square Value	0.0416	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.67 95% Adjusted Gamma UCL (use when n<50) 0.67

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.956	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.93	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.125	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.154	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-2.12	Mean of logged Data	-0.712
Maximum of Logged Data	0.336	SD of logged Data	0.577

Assuming Lognormal Distribution

95% H-UCL	0.712	90% Chebyshev (MVUE) UCL	0.762
95% Chebyshev (MVUE) UCL	0.847	97.5% Chebyshev (MVUE) UCL	0.964
99% Chebyshev (MVUE) UCL	1.194		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

0.652	95% Jackknife UCL	0.655
0.652	95% Bootstrap-t UCL	0.663
0.662	95% Percentile Bootstrap UCL	0.65
0.658		
0.723	95% Chebyshev(Mean, Sd) UCL	0.794
0.892	99% Chebyshev(Mean, Sd) UCL	1.085
	0.652 0.662 0.658 0.723	0.652 95% Bootstrap-t UCL 0.662 95% Percentile Bootstrap UCL 0.658 95% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 0.655

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.17/23/2018 4:14:13 PM
From File HH Sediment ProUCL input.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

RA18_SE_SVOCs|Dibenzo(a,h)anthracene

Canaral	Statistics

Total Number of Observations	32	Number of Distinct Observations	22
		Number of Missing Observations	40
Number of Detects	30	Number of Non-Detects	2
Number of Distinct Detects	21	Number of Distinct Non-Detects	2
Minimum Detect	0.04	Minimum Non-Detect	0.037
Maximum Detect	0.47	Maximum Non-Detect	0.13
Variance Detects	0.00717	Percent Non-Detects	6.25%
Mean Detects	0.154	SD Detects	0.0847
Median Detects	0.145	CV Detects	0.551
Skewness Detects	1.818	Kurtosis Detects	5.685
Mean of Logged Detects	-2.008	SD of Logged Detects	0.538

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.865	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.927	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.17	Lilliefors GOF Test
5% Lilliefors Critical Value	0.159	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

i torrilar Oria	cal values and saler monparametric GGES	
0.148	KM Standard Error of Mean	0.0152
0.0842	95% KM (BCA) UCL	0.175
0.173	95% KM (Percentile Bootstrap) UCL	0.174
0.173	95% KM Bootstrap t UCL	0.179
0.193	95% KM Chebyshev UCL	0.214
0.242	99% KM Chebyshev UCL	0.299
	0.148 0.0842 0.173 0.173 0.193	0.0842 95% KM (BCA) UCL 0.173 95% KM (Percentile Bootstrap) UCL 0.173 95% KM Bootstrap t UCL 0.193 95% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.309	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.75	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.101	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.161	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	3.876	k star (bias corrected MLE)	3.51
Theta hat (MLE)	0.0396	Theta star (bias corrected MLE)	0.0438
nu hat (MLE)	232.5	nu star (bias corrected)	210.6
Mean (detects)	0 154		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ \verb|<|1.0|, especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ \verb|<|15-20|)$

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.147	Mean	0.0129	Minimum
0.14	Median	0.47	Maximum
0.591	CV	0.0867	SD
2.67	k star (bias corrected MLE)	2.924	k hat (MLE)
0.0549	Theta star (bias corrected MLE)	0.0502	Theta hat (MLE)
170.9	nu star (bias corrected)	187.1	nu hat (MLE)
		0.0416	Adjusted Level of Significance (β)
140.3	Adjusted Chi Square Value (170.91, β)	141.7	Approximate Chi Square Value (170.91, α)

95% Gamma Approximate UCL (use when n>=50)	0.177	95% Gamma Adjusted UCL (use when n<50)	0.179

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.148	SD (KM)	0.0842
Variance (KM)	0.00709	SE of Mean (KM)	0.0152
k hat (KM)	3.072	k star (KM)	2.805
nu hat (KM)	196.6	nu star (KM)	179.5
theta hat (KM)	0.048	theta star (KM)	0.0526
80% gamma percentile (KM)	0.212	90% gamma percentile (KM)	0.266
95% gamma percentile (KM)	0.316	99% gamma percentile (KM)	0.425

Gamma Kaplan-Meier (KM) Statistics

 Approximate Chi Square Value (179.49, α)
 149.5
 Adjusted Chi Square Value (179.49, β)
 148

 95% Gamma Approximate KM-UCL (use when n>=50)
 0.177
 95% Gamma Adjusted KM-UCL (use when n<50)</td>
 0.178

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.972	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.927	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.131	Lilliefors GOF Test
5% Lilliefors Critical Value	0.159	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-2.067	Mean in Log Scale	0.148	Mean in Original Scale
0.578	SD in Log Scale	0.0855	SD in Original Scale
0.173	95% Percentile Bootstrap UCL	0.173	95% t UCL (assumes normality of ROS data)
0.179	95% Bootstrap t UCL	0.176	95% BCA Bootstrap UCL
		0.184	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.067	KM Geo Mean	0.127
KM SD (logged)	0.572	95% Critical H Value (KM-Log)	1.99
KM Standard Error of Mean (logged)	0.104	95% H-UCL (KM -Log)	0.183
KM SD (logged)	0.572	95% Critical H Value (KM-Log)	1.99
KM Standard Error of Mean (logged)	0.104		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	0.147	Mean in Log Scale	-2.093	
SD in Original Scale	0.0866	SD in Log Scale	0.638	
95% t UCL (Assumes normality)	0.173	95% H-Stat UCL	0.191	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Adjusted Gamma UCL 0.179 95% GROS Adjusted Gamma UCL 0.179

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

e/Time of Computation ProUCL 5.17/27/2018 3:48:17 PM From File ProUCL SE HH Cyanide.xls

Full Precision OFF
Confidence Coefficient 95%
f Bootstrap Operations 2000

RA18_SE_Other|Cyanide

	General S	Statistics	
Total Number of Observations	13	Number of Distinct Observations	13
		Number of Missing Observations	117
Number of Detects	11	Number of Non-Detects	2
Number of Distinct Detects	11	Number of Distinct Non-Detects	2
Minimum Detect	180	Minimum Non-Detect	140
Maximum Detect	4900	Maximum Non-Detect	170
Variance Detects	1863155	Percent Non-Detects	15.38%
Mean Detects	1010	SD Detects	1365
Median Detects	550	CV Detects	1.351
Skewness Detects	2.76	Kurtosis Detects	8.018
Mean of Logged Detects	6.43	SD of Logged Detects	0.931

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.601	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.352	Lilliefors GOF Test
5% Lilliefors Critical Value	0.251	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	876.2	KM Standard Error of Mean	360
KM SD	1238	95% KM (BCA) UCL	1550
95% KM (t) UCL	1518	95% KM (Percentile Bootstrap) UCL	1549
95% KM (z) UCL	1468	95% KM Bootstrap t UCL	3403
90% KM Chebyshev UCL	1956	95% KM Chebyshev UCL	2445
97.5% KM Chebyshev UCL	3124	99% KM Chebyshev UCL	4458

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.765	Anderson-Danling GOF Test
5% A-D Critical Value	0.748	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.244	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.262	letected data appear Gamma Distributed at 5% Significance Leve
Detected data follow A	ppr. Gam	rma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

0.907	k star (bias corrected MLE)	1.163	k hat (MLE)
1114	Theta star (bias corrected MLE)	868.3	Theta hat (MLE)
19.94	nu star (bias corrected)	25.59	nu hat (MLE)
		1010	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs ROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-2 For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

854.6	Mean	0.01	Minimum
480	Median	4900	Maximum
1.524	CV	1302	SD
0.309	k star (bias corrected MLE)	0.335	k hat (MLE)
2763	Theta star (bias corrected MLE)	2548	Theta hat (MLE)
8.042	nu star (bias corrected)	8.722	nu hat (MLE)
		0.0301	Adjusted Level of Significance (β)
2.338	Adjusted Chi Square Value (8.04, β)	2.76	Approximate Chi Square Value (8.04, α)
2940	95% Gamma Adjusted UCL (use when n<50)	2491	nma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	876.2	SD (KM)	1238
Variance (KM)	1531728	SE of Mean (KM)	360
k hat (KM)	0.501	k star (KM)	0.437
nu hat (KM)	13.03	nu star (KM)	11.36
theta hat (KM)	1748	theta star (KM)	2006
80% gamma percentile (KM)	1427	90% gamma percentile (KM)	2435
95% gamma percentile (KM)	3530	99% gamma percentile (KM)	6260

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (11.36, α)	4.806	Adjusted Chi Square Value (11.36, β)	4.215
Approximate KM-UCL (use when n>=50)	2070	95% Gamma Adjusted KM-UCL (use when n<50)	2360

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.933	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.165	Lilliefors GOF Test
5% Lilliefors Critical Value	0.251	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	865.4	Mean in Log Scale	6.095
SD in Original Scale	1295	SD in Log Scale	1.18
% t UCL (assumes normality of ROS data)	1506	95% Percentile Bootstrap UCL	1500
95% BCA Bootstrap UCL	1816	95% Bootstrap t UCL	3250
95% H-UCL (Log ROS)	2616		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

	KM Mean (logged)	6.201	KM Geo Mean	493.2
	KM SD (logged)	0.977	95% Critical H Value (KM-Log)	2.809
KM	Standard Error of Mean (logged)	0.284	95% H-UCL (KM -Log)	1756
	KM SD (logged)	0.977	95% Critical H Value (KM-Log)	2.809
KM	Standard Error of Mean (logged)	0.284		
	KM SD (logged)	0.977		

DL/2 Statistics

	DL/2 Statistics	•	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	866.5	Mean in Log Scale	6.109
SD in Original Scale	1294	SD in Log Scale	1.156
% t UCL (Assumes normality)	1506	95% H-Stat UCL	2491

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL 3403 i KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 2360

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test 'hen applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUC

s: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% U Recommendations are based upon data size, data distribution, and skewness.

ise recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (200 /er, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statis

RI Report - BHHRA

UCL Statistics for Uncensored Full Data Sets

User Selected Options
Date/Time of Computation ProUCL 5.1 1/22/2018 2:20:52 PM
From File Surface Water_b.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

RA_SW_Metals|Arsenic

	General St	tatistics	
Total Number of Observations	10	Number of Distinct Observations	8
Total Hamber of Obcol Hamono		Number of Missing Observations	0
Minimum	0.48	Mean	0.779
Maximum	1.2	Median	0.715
SD	0.246	Std. Error of Mean	0.0777
Coefficient of Variation	0.315	Skewness	1.005
	Normal GC		1.000
Shapiro Wilk Test Statistic	0.863	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.842	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.218	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.262	Data appear Normal at 5% Significance Level	
		% Significance Level	
	uming Norma		
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.921	95% Adjusted-CLT UCL (Chen-1995)	0.933
		95% Modified-t UCL (Johnson-1978)	0.926
	Gamma Go		
A-D Test Statistic	0.462	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.725	Detected data appear Gamma Distributed at 5% Significance	Level
K-S Test Statistic	0.175	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.267	Detected data appear Gamma Distributed at 5% Significance	Level
Detected data appear 0	Gamma Distri	buted at 5% Significance Level	
	Gamma St		
k hat (MLE)	12.31	k star (bias corrected MLE)	8.682
Theta hat (MLE)	0.0633	Theta star (bias corrected MLE)	0.0897
nu hat (MLE)	246.1	nu star (bias corrected)	173.6
MLE Mean (bias corrected)	0.779	MLE Sd (bias corrected)	0.264
,		Approximate Chi Square Value (0.05)	144.2
Adjusted Level of Significance	0.0267	Adjusted Chi Square Value	139.5
	uming Gamm	a Distribution	
95% Approximate Gamma UCL (use when n>=50))	0.938	95% Adjusted Gamma UCL (use when n<50)	0.97
	Lognormal G	GOF Test	
Shapiro Wilk Test Statistic	0.926	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.842	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.162	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.262	Data appear Lognormal at 5% Significance Level	
Data appear I	Lognormal at	5% Significance Level	
	Lognormal S	Statistics	
Minimum of Logged Data	-0.734	Mean of logged Data	-0.291
Maximum of Logged Data	0.182	SD of logged Data	0.297
Assu		nal Distribution	
95% H-UCL	0.95	90% Chebyshev (MVUE) UCL	0.999
95% Chebyshev (MVUE) UCL	1.099	97.5% Chebyshev (MVUE) UCL	1.237
99% Chebyshev (MVUE) UCL	1.51		
Nonparamet	ric Distribution	n Free UCL Statistics	
		tribution at 5% Significance Level	
		oution Free UCLs	
95% CLT UCL	0.907	95% Jackknife UCL	0.921
95% Standard Bootstrap UCL	0.896	95% Bootstrap-t UCL	1.009
95% Hall's Bootstrap UCL	1.178	95% Percentile Bootstrap UCL	0.904
95% BCA Bootstrap UCL	0.931		
90% Chebyshev(Mean, Sd) UCL	1.012	95% Chebyshev(Mean, Sd) UCL	1.118
97.5% Chebyshev(Mean, Sd) UCL	1.264	99% Chebyshev(Mean, Sd) UCL	1.552
	Suggested U	CL to Use	
95% Student's-t UCL	0.921		
Note: Suggestions regarding the solection of a QE%	LICI are prov	yidad ta bala the user to select the most appropriate QE% LICI	

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Number of Distinct Observations 8

General Statistics

10

Total Number of Observations

RA_SW_Metals|Cobalt

Total Number of Observations	10	Number of Distinct Observations	0
		Number of Missing Observations	0
Minimum	8.0	Mean	0.983
Maximum	1.1	Median	0.975
SD	0.0983	Std. Error of Mean	0.0311
Coefficient of Variation	0.1	Skewness	-0.334
	Normal GO	F Test	
Shapiro Wilk Test Statistic	0.92	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.842	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.183	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.262	Data appear Normal at 5% Significance Level	
		6 Significance Level	
	uming Norma		
95% Normal UCL	unning Norma		
95% Student's-t UCL	1.04	95% UCLs (Adjusted for Skewness)	1.031
95% Students-t OCL	1.04	95% Adjusted-CLT UCL (Chen-1995)	
	0	95% Modified-t UCL (Johnson-1978)	1.039
A.D.T. of Outlots	Gamma GC		
A-D Test Statistic	0.377	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.724	Detected data appear Gamma Distributed at 5% Significanc	e Levei
K-S Test Statistic	0.189	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.266	Detected data appear Gamma Distributed at 5% Significance	e Level
Detected data appear (outed at 5% Significance Level	
	Gamma St		
k hat (MLE)	108.1	k star (bias corrected MLE)	75.71
Theta hat (MLE)	0.0091	Theta star (bias corrected MLE)	0.013
nu hat (MLE)	2161	nu star (bias corrected)	1514
MLE Mean (bias corrected)	0.983	MLE Sd (bias corrected)	0.113
		Approximate Chi Square Value (0.05)	1425
Adjusted Level of Significance	0.0267	Adjusted Chi Square Value	1410
Ass	uming Gamma	a Distribution	
95% Approximate Gamma UCL (use when n>=50))	1.045	95% Adjusted Gamma UCL (use when n<50)	1.056
	Lognormal G	OF Test	
Shapiro Wilk Test Statistic	0.917	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.842	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.174	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.262	Data appear Lognormal at 5% Significance Level	
Data appear l	ognormal at 5	5% Significance Level	
··	Lognormal S		
Minimum of Logged Data	-0.223	Mean of logged Data	-0.0218
Maximum of Logged Data	0.0953	SD of logged Data	0.102
	mina Loanorm	al Distribution	
95% H-UCL	1.046	90% Chebyshev (MVUE) UCL	1.079
95% Chebyshev (MVUE) UCL	1.122	97.5% Chebyshev (MVUE) UCL	1.182
99% Chebyshev (MVUE) UCL	1.3	······································	
		Free UCL Statistics	
		ribution at 5% Significance Level	
		ution Free UCLs	
95% CLT UCL	1.034	95% Jackknife UCL	1.04
95% Standard Bootstrap UCL	1.032	95% Bootstrap-t UCL	1.038
95% Hall's Bootstrap UCL	1.034	95% Percentile Bootstrap UCL	1.030
95% BCA Bootstrap UCL	1.028	30 % Fercentile Bootstrap OCL	1.001
	1.026	QE% Chohychoy/Maca SdVIICI	1.119
90% Chebyshev(Mean, Sd) UCL		95% Chebyshev(Mean, Sd) UCL	
97.5% Chebyshev(Mean, Sd) UCL	1.177 Suggested LIC	99% Chebyshev(Mean, Sd) UCL	1.292
	Suggested UC	JE 10 USB	
95% Student's-t UCL	1.04	ided to help the user to select the most appropriate 95% LICI	

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

General Statistics

RA_SW_Metals|Manganese

```
Number of Distinct Observations
                   Total Number of Observations
                                                   10
                                                                                        Number of Missing Observations
                                                                                                                         140
                                       Minimum
                                                  120
                                                                                                                 Mean
                                      Maximum
                                                  170
                                                                                                                Median 140
                                            SD
                                                   13.33
                                                                                                      Std. Error of Mean
                                                                                                                          4.216
                          Coefficient of Variation
                                                   0.0952
                                                                                                             Skewness
                                                                                                                           1.055
                                                   Normal GOF Test
                       Shapiro Wilk Test Statistic
                                                                                    Shapiro Wilk GOF Test
                   5% Shapiro Wilk Critical Value
                                                   0.842
                                                                          Data appear Normal at 5% Significance Level
                           Lilliefors Test Statistic
                                                   0.3
                                                                                      Lilliefors GOF Test
                       5% Lilliefors Critical Value
                                                   0.262
                                                                            Data Not Normal at 5% Significance Level
                                                   mate Normal at 5% Signi
                               Data appear Appro
                                                                           cance Level
                                             Assuming Normal Distribution
                95% Normal UCL
                                                                               95% UCLs (Adjusted for Skewness)
                            95% Student's-t UCL 147.7
                                                                                    95% Adjusted-CLT UCL (Chen-1995) 148.4
                                                                                     95% Modified-t UCL (Johnson-1978) 148
                                                   Gamma GOF Test
                               A-D Test Statistic
                                                                              Anderson-Darling Gamma GOF Test
                                                   0.651
                           5% A-D Critical Value
                                                                Detected data appear Gamma Distributed at 5% Significance Level
                                                   0.724
                                                   0.288
                                                                            Kolmogorov-Smirnov Gamma GOF Test
                               K-S Test Statistic
                           5% K-S Critical Value
                                                   0.266
                                                                      Data Not Gamma Distributed at 5% Significance Level
                         Detected data follow Appr
                                                  Gamma Distribution at 5% Significance Level
                                                   Gamma Statistics
                                    k hat (MLE)
                                                 127.7
                                                                                              k star (bias corrected MLE)
                                                                                                                          89.43
                                Theta hat (MLE)
                                                   1.097
                                                                                          Theta star (bias corrected MLE)
                                                                                                                           1.565
                                   nu hat (MLE)
                                                2553
                                                                                                 nu star (bias corrected)
                                                                                                                        1789
                      MLE Mean (bias corrected)
                                                 140
                                                                                                MLE Sd (bias corrected)
                                                                                                                          14.8
                                                                                                                        1691
                                                                                    Approximate Chi Square Value (0.05)
                   Adjusted Level of Significance
                                                                                              Adjusted Chi Square Value
                                                  0.0267
                                                                                                                        1675
                                             Assuming Gamma Distribution
95% Approximate Gamma UCL (use when n>=50))
                                                                             95% Adjusted Gamma UCL (use when n<50) 149.5
                                                  Lognormal GOF Test
                                                                         Shapiro Wilk Lognormal GOF Test
Data appear Lognormal at 5% Significance Level
                       Shaniro Wilk Test Statistic
                                                   0.897
                   5% Shapiro Wilk Critical Value
                                                   0.842
                           Lilliefors Test Statistic
                                                   0.283
                                                                                 Lilliefors Lognormal GOF Test
                       5% Lilliefors Critical Value
                                                                           Data Not Lognormal at 5% Significance Level
                             Data appear Appro
                                                               al at 5% Significance Level
                                                  Lognormal Statistics
                        Minimum of Logged Data
                                                   4.787
                                                                                                   Mean of logged Data
                                                                                                                           4.938
                       Maximum of Logged Data
                                                   5.136
                                                                                                      SD of logged Data
                                                                                                                          0.0925
                                           Assuming Lognormal Distribution
                                    95% H-UCL
                                                                                           90% Chebyshev (MVUE) UCL
                   95% Chebyshev (MVUE) UCL
                                                  157.9
                                                                                         97.5% Chebyshev (MVUE) UCL 165.6
                   99% Chebyshev (MVUE) UCL
                                                 180.8
                                     Nonparametric Distribution Free UCL Statistics
                                         Nonparametric Distribution Free UCLs
                                                146.9
                                 95% CLT UCL
                                                                                                    95% Jackknife UCL 147.7
                    95% Standard Bootstrap UCL
                                                  146 7
                                                                                                   95% Bootstrap-t UCL 149.8
                                                                                          95% Percentile Bootstrap UCL 147
                       95% Hall's Bootstrap UCL
                                                  167 4
                        95% BCA Bootstrap UCL
                                                  146
                 90% Chebyshev(Mean, Sd) UCL
                                                  152.6
                                                                                        95% Chebyshev(Mean, Sd) UCL 158.4
               97.5% Chebyshev(Mean, Sd) UCL
                                                  166.3
                                                                                        99% Chebyshev(Mean, Sd) UCL 182
                                                Suggested UCL to Use
                            95% Student's-t UCL
                                                 147.7
```

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test

When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Uncensored Full Data Sets

User Selected Options

Date/Time of Computation ProUCL 5.17/30/2018 2:48:16 PM

From File Tissue LA UA NTA_a.xls

Total Number of Observations 6

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

4,4'-DDD

General Statistics		
i e	Number of Distinct Observations	6
	Number of Missing Observations	12
.95	Mean	10.83
2.2	Modian	2 775

 Minimum
 0.95
 Mean
 10.83

 Maximum
 33.2
 Median
 3.775

 SD
 13.31
 Std. Error of Mean
 5.434

Coefficient of Variation 1.229 Skewness 1.27

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.776	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.36	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)
95 % Normal OCL	93% OCLS (Aujusteu für Skewitess)

95% Student's-t UCL 21.78 95% Adjusted-CLT UCL (Chen-1995) 22.78 95% Modified-t UCL (Johnson-1978) 22.25

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.456	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.72	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.305	K-S Test Statistic
B Detected data appear Gamma Distributed at 5% Significance Leve	0.343	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.799	k star (bias corrected MLE)	0.511
Theta hat (MLE)	13.55	Theta star (bias corrected MLE)	21.2
nu hat (MLE)	9.592	nu star (bias corrected)	6.13
MLE Mean (bias corrected)	10.83	MLE Sd (bias corrected)	15.15
		Approximate Chi Square Value (0.05)	1.706
Adjusted Level of Significance	0.0122	Adjusted Chi Square Value	0.997

Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<=50) 38.9 95% Adjusted Gamma UCL (use when n<50) 66.57

Lognormal GOF Test

Shapiro Wilk Lognormal GOF Test	0.929	Shapiro Wilk Test Statistic
Data appear Lognormal at 5% Significance I	0.788	5% Shapiro Wilk Critical Value
Lilliefors Lognormal GOF Test	0.233	Lilliefors Test Statistic
Data appear Lognormal at 5% Significance I	0.325	5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 -0.0513
 Mean of logged Data
 1.64

 Maximum of Logged Data
 3.503
 SD of logged Data
 1.377

Assuming Lognormal Distribution

95% H-UCL	378.7	90% Chebyshev (MVUE) UCL	27.55
95% Chebyshev (MVUE) UCL	35.24	97.5% Chebyshev (MVUE) UCL	45.92
99% Chebyshev (MVUE) UCL	66.9		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

		200011100	
95% CLT UCL	19.77	95% Jackknife UCL	21.78
95% Standard Bootstrap UCL	18.84	95% Bootstrap-t UCL	96.8
95% Hall's Bootstrap UCL	112.9	95% Percentile Bootstrap UCL	19.53
95% BCA Bootstrap UCL	21.51		
90% Chebyshev(Mean, Sd) UCL	27.13	95% Chebyshev(Mean, Sd) UCL	34.52
97.5% Chebyshev(Mean, Sd) UCL	44.76	99% Chebyshev(Mean, Sd) UCL	64.9

Suggested UCL to Use

95% Adjusted Gamma UCL 66.57

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

4,4'-DDE

General Statistics

To	otal Number of Observations	6	Number of Distinct Observations	6
			Number of Missing Observations	12
	Minimum	2.96	Mean	36.33
	Maximum	100.7	Median	23.9
	SD	36.3	Std. Error of Mean	14.82
	Coefficient of Variation	0.999	Skewness	1.319

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.872	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.235	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	66.19	95% Adjusted-CLT UCL (Chen-1995)	69.23
		95% Modified-t UCL (Johnson-1978)	67.52

OEW LICE a (Adjusted for Skowness)

Gamma GOF Test

Anderson-Daning Gamma GOF Test	0.211	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.714	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.207	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.34	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.088	k star (bias corrected MLE)	0.655
Theta hat (MLE)	33.39	Theta star (bias corrected MLE)	55.45
nu hat (MLE)	13.06	nu star (bias corrected)	7.861
MLE Mean (bias corrected)	36.33	MLE Sd (bias corrected)	44.88
		Approximate Chi Square Value (0.05)	2.655
Adjusted Level of Significance	0.0122	Adjusted Chi Square Value	1.693

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 107.6 95% Adjusted Gamma UCL (use when n<50) 168.7

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.961 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.788 Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.186 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.325 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.085	Mean of logged Data	3.067
Maximum of Logged Data	4.612	SD of logged Data	1.248

Assuming Lognormal Distribution

95% H-UCL	756.7	90% Chebyshev (MVUE) UCL	96.79
95% Chebyshev (MVUE) UCL	122.9	97.5% Chebyshev (MVUE) UCL	159.2
99% Chebyshev (MVUE) UCL	230.5		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

66.19	95% Jackknife UCL	60.7	95% CLT UCL
108.9	95% Bootstrap-t UCL	57.57	95% Standard Bootstrap UCL
61.93	95% Percentile Bootstrap UCL	175	95% Hall's Bootstrap UCL
		63.68	95% BCA Bootstrap UCL
100.9	95% Chebyshev(Mean, Sd) UCL	80.79	90% Chebyshev(Mean, Sd) UCL
183.8	99% Chebyshev(Mean, Sd) UCL	128.9	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 66.19

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Mercury

General Statistics

Total Number of Observations	6	Number of Distinct Observations	6
		Number of Missing Observations	11
Minimum	0.025	Mean	0.072
Maximum	0.11	Median	0.0765
SD	0.0313	Std. Error of Mean	0.0128
Coefficient of Variation	0.435	Skewness	-0.458

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.974	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Data appear Normal at 5% Significance Leve
Lilliefors Test Statistic	0.161	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Data appear Normal at 5% Significance Leve

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 0.0977
 95% Adjusted-CLT UCL (Chen-1995)
 0.0905

 95% Modified-t UCL (Johnson-1978)
 0.0973

Gamma GOF Test

A-D Test Statistic 0.29 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.698 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.201 Kolmogorov-Smirnov Gamma GOF Test

5% K-S Critical Value 0.333 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

2.562	k star (bias corrected MLE)	4.902	k hat (MLE)
0.0281	Theta star (bias corrected MLE)	0.0147	Theta hat (MLE)
30.74	nu star (bias corrected)	58.82	nu hat (MLE)
0.045	MLE Sd (bias corrected)	0.072	MLE Mean (bias corrected)
19.08	Approximate Chi Square Value (0.05)		
15.85	Adjusted Chi Square Value	0.0122	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.116 95% Adjusted Gamma UCL (use when n<50) 0.14

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.902 Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value 0.788 Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.202 Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value 0.325 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 -3.89
 Mean of logged Data
 -2.737

 Maximum of Logged Data
 -2.207
 SD of logged Data
 0.545

Assuming Lognormal Distribution

 95% H-UCL
 0.147
 90% Chebyshev (MVUE) UCL
 0.122

 95% Chebyshev (MVUE) UCL
 0.144
 97.5% Chebyshev (MVUE) UCL
 0.175

 99% Chebyshev (MVUE) UCL
 0.235

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% Jackknife UCL 0.0977		0.093	95% CLT UCL
95% Bootstrap-t UCL 0.0956		0.0904	95% Standard Bootstrap UCL
Percentile Bootstrap UCL 0.091	95	0.0891	95% Hall's Bootstrap UCL
		0.0897	95% BCA Bootstrap UCL
Chebyshev(Mean, Sd) UCL 0.128	95%	0.11	90% Chebyshev(Mean, Sd) UCL
Chebyshev(Mean, Sd) UCL 0.199	99%	0.152	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 0.0977

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

alpha-Chlordane

	General Statistics		
Total Number of Observations	6	Number of Distinct Observations	6
		Number of Missing Observations	12
Minimum	0.957	Mean	18.91
Maximum	52.7	Median	8.5
SD	20.82	Std. Error of Mean	8.5
Coefficient of Variation	1.101	Skewness	1.133

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.813	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.352	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Data Not Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
	95% Student's-t UCL	36.04	95% Adjusted-CLT UCL (Chen-1995)	37.1
			95% Modified-t UCL (Johnson-1978)	36.7
		Gamma GOF Test		

Anderson-Darling Gamma GOF Test	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

0.547	k star (bias corrected MLE)	E) 0.8	k hat (MLE)
34.57	Theta star (bias corrected MLE)	Ξ) 21.	Theta hat (MLE)
6.564	nu star (bias corrected)	E) 10.	nu hat (MLE)
25.57	MLE Sd (bias corrected)	d) 18.	MLE Mean (bias corrected)
1.935	Approximate Chi Square Value (0.05)		
1.16	Adjusted Chi Square Value	e 0.0	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 64.17 95% Adjusted Gamma UCL (use when n<50) 107

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.931	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.788	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.204	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.325	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.044	Mean of logged Data	2.267
Maximum of Logged Data	3.965	SD of logged Data	1.433

Assuming Lognormal Distribution

95% H-UCL	1002	90% Chebyshev (MVUE) UCL	55.62
95% Chebyshev (MVUE) UCL	71.37	97.5% Chebyshev (MVUE) UCL	93.21
99% Chebyshev (MVUE) UCL	136.1		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 32.89 95% Jackknife UCL 36.04

Fish Tissue ProUCL Output - Lower Anacostia

95% Standard Bootstrap UCL	31.72	95% Bootstrap-t UCL	102
95% Hall's Bootstrap UCL	220.1	95% Percentile Bootstrap UCL	32.55
95% BCA Bootstrap UCL	34.12		
90% Chebyshev(Mean, Sd) UCL	44.41	95% Chebyshev(Mean, Sd) UCL	55.96
97.5% Chebyshev(Mean, Sd) UCL	71.99	99% Chebyshev(Mean, Sd) UCL	103.5

Suggested UCL to Use

95% Student's-t UCL 36.04

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

DIELDRIN

General Statistics

Total Number of Observations	6	Number of Distinct Observations	6
		Number of Missing Observations	12
Minimum	0.753	Mean	6.212
Maximum	17.8	Median	2.04
SD	7.434	Std. Error of Mean	3.035
Coefficient of Variation	1.197	Skewness	1.083

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.761	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.345	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	12.33	95% Adjusted-CLT UCL (Chen-1995)	12.64	
		95% Modified-t UCL (Johnson-1978)	12.55	

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.588	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.719	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.271	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.343	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.832	k star (bias corrected MLE)	0.527
Theta hat (MLE)	7.47	Theta star (bias corrected MLE)	11.79
nu hat (MLE)	9.979	nu star (bias corrected)	6.323
MLE Mean (bias corrected)	6.212	MLE Sd (bias corrected)	8.558
		Approximate Chi Square Value (0.05)	1.807
Adjusted Level of Significance	0.0122	Adjusted Chi Square Value	1.068

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)	21.74	95% Adjusted Gamma UCL (use when n<50)	36.76

Lognormal GOF Test

Shapiro Wilk Lognormal GOF Test	0.872	Shapiro Wilk Test Statistic
Data appear Lognormal at 5% Significance Leve	0.788	5% Shapiro Wilk Critical Value
Lilliefors Lognormal GOF Test	0.237	Lilliefors Test Statistic

5% Lilliefors Critical Value 0.325 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.284	Mean of logged Data	1.116
Maximum of Logged Data	2.879	SD of logged Data	1.325

Assuming Lognormal Distribution

95% H-UCL	165.5	90% Chebyshev (MVUE) UCL	15.24
95% Chebyshev (MVUE) UCL	19.44	97.5% Chebyshev (MVUE) UCL	25.27
99% Chebyshev (MVUE) UCL	36.72		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	11.2	95% Jackknife UCL	12.33
95% Standard Bootstrap UCL	10.69	95% Bootstrap-t UCL	45.82
95% Hall's Bootstrap UCL	73.78	95% Percentile Bootstrap UCL	11.07
95% BCA Bootstrap UCL	11.56		
90% Chebyshev(Mean, Sd) UCL	15.32	95% Chebyshev(Mean, Sd) UCL	19.44
97.5% Chebyshev(Mean, Sd) UCL	25.17	99% Chebyshev(Mean, Sd) UCL	36.41

Suggested UCL to Use

95% Adjusted Gamma UCL 36.76

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

HEPTACHLOR EPOXIDE

General Statistics

Total Number of Observations	6	Number of Distinct Observations	6
		Number of Missing Observations	12
Minimum	0.192	Mean	2.351
Maximum	5.36	Median	1.95
SD	2.329	Std. Error of Mean	0.951
Coefficient of Variation	0.991	Skewness	0.276

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.838	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.282	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal LICI

55% Horman GGE			SON SOLS (Najustou foi Chowness)	
	95% Student's-t UCL	4.267	95% Adjusted-CLT UCL (Chen-1995)	4.029
			95% Modified-t UCL (Johnson-1978)	4.284

Gamma GOF Test

A-D Test Statistic	0.569	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.721	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.26	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.343	Detected data appear Gamma Distributed at 5% Significance Level

95% LICLs (Adjusted for Skewness)

Detected data appear Gamma Distributed at 5% Significance Level

Gamma	Statist	ics
-------	---------	-----

k hat (MLE)	0.769	k star (bias corrected MLE)	0.496
Theta hat (MLE)	3.057	Theta star (bias corrected MLE)	4.743
nu hat (MLE)	9.227	nu star (bias corrected)	5.947
MLE Mean (bias corrected)	2.351	MLE Sd (bias corrected)	3.339
		Approximate Chi Square Value (0.05)	1.613
Adjusted Level of Significance	0.0122	Adjusted Chi Square Value	0.931

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<=50)) 8.668 95% Adjusted Gamma UCL (use when n<50) 15.01

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.823 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.788 Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.265 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.325 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 -1.65
 Mean of logged Data
 0.0788

 Maximum of Logged Data
 1.679
 SD of logged Data
 1.568

Assuming Lognormal Distribution

 95% H-UCI
 271.8
 90% Chebyshev (MVUE) UCI
 7.495

 95% Chebyshev (MVUE) UCI
 96.74
 97.5% Chebyshev (MVUE) UCI
 12.7

 99% Chebyshev (MVUE) UCI
 18.64

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	3.915	95% Jackknife UCL	4.267
95% Standard Bootstrap UCL	3.768	95% Bootstrap-t UCL	5.132
95% Hall's Bootstrap UCL	3.541	95% Percentile Bootstrap UCL	3.866
95% BCA Bootstrap UCL	3.716		
90% Chebyshev(Mean, Sd) UCL	5.203	95% Chebyshev(Mean, Sd) UCL	6.495
97.5% Chebyshev(Mean, Sd) UCL	8.289	99% Chebyshev(Mean, Sd) UCL	11.81

Suggested UCL to Use

95% Student's-t UCL 4.267

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

General Statistics

6	Number of Distinct Observations	6	Total Number of Observations
12	Number of Missing Observations		
316.7	Mean	41.11	Minimum
278.3	Median	645.2	Maximum
104.8	Std. Error of Mean	256.7	SD
0.211	Skewness	0.811	Coefficient of Variation

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.874	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.279	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	527.9	95% Adjusted-CLT UCL (Chen-1995)	498.7

Gamma GOF Test

A-D Test Statistic	0.437	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.71	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.251	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.338	Detected data appear Gamma Distributed at 5% Significance Level

95% Modified-t UCL (Johnson-1978) 529.4

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.361	k star (bias corrected MLE)	0.791
Theta hat (MLE)	232.8	Theta star (bias corrected MLE)	400.2
nu hat (MLE)	16.33	nu star (bias corrected)	9.497
MLE Mean (bias corrected)	316.7	MLE Sd (bias corrected)	356
		Approximate Chi Square Value (0.05)	3.63
Adjusted Level of Significance	0.0122	Adjusted Chi Square Value	2.448

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 828.6 95% Adjusted Gamma UCL (use when n<50) 1229

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.891	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.788	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.247	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.325	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	3.716	Mean of logged Data	5.347
Maximum of Logged Data	6.47	SD of logged Data	1.1

Assuming Lognormal Distribution

95% H-UCL	3479	90% Chebyshev (MVUE) UCL	780.4
95% Chebyshev (MVUE) UCL	981.2	97.5% Chebyshev (MVUE) UCL	1260
99% Chebyshev (MVUE) UCL	1808		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	489.1	95% Jackknife UCL	527.9
95% Standard Bootstrap UCL	474.6	95% Bootstrap-t UCL	525.3
95% Hall's Bootstrap UCL	426.4	95% Percentile Bootstrap UCL	488.2
95% BCA Bootstrap UCL	471.8		
90% Chebyshev(Mean, Sd) UCL	631.1	95% Chebyshev(Mean, Sd) UCL	773.5
97.5% Chebyshev(Mean, Sd) UCL	971.2	99% Chebyshev(Mean, Sd) UCL	1359

Suggested UCL to Use

95% Student's-t UCL 527.9

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

trans-NONACHLOR

General Statistics

T	otal Number of Observations	6	Number of Distinct Observations	6
			Number of Missing Observations	12
	Minimum	0.165	Mean	19.68
	Maximum	80.2	Median	7.34
	SD	30.54	Std. Error of Mean	12.47
	Coefficient of Variation	1.552	Skewness	2.157

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.694	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.319	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Data appear Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL

 -			
95% Student's-t UCL	44.81	95% Adjusted-CLT UCL (Chen-1995)	51.92
		95% Modified-t UCL (Johnson-1978)	46.64
	Gamma GOF Test		
A-D Test Statistic	0.215	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.736	Detected data appear Gamma Distributed at 5% Significance Level	

K-S Test Statistic 0.198 Kolmogorov-Smirnov Gamma GOF Test 5% K-S Critical Value 0.349 Detected data appear Gamma Distributed at 5% Significance Level

95% UCLs (Adjusted for Skewness)

February 2020

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.502	k star (bias corrected MLE)	0.362
Theta hat (MLE)	39.24	Theta star (bias corrected MLE)	54.39
nu hat (MLE)	6.019	nu star (bias corrected)	4.343
MLE Mean (bias corrected)	19.68	MLE Sd (bias corrected)	32.72
		Approximate Chi Square Value (0.05)	0.862
Adjusted Level of Significance	0.0122	Adjusted Chi Square Value	0.435

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 99.21 95% Adjusted Gamma UCL (use when n<50) 196.4 Lognormal GOF Test

Shapiro Wilk Test Statistic 0.962 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.788 Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.209 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.325 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 -1.802
 Mean of logged Data
 1.714

 Maximum of Logged Data
 4.385
 SD of logged Data
 2.123

Assuming Lognormal Distribution

 95% H-UCL
 121275
 90% Chebyshev (MVUE) UCL
 83.98

 95% Chebyshev (MVUE) UCL
 110.2
 97.5% Chebyshev (MVUE) UCL
 146.7

 99% Chebyshev (MVUE) UCL
 218.3

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

44.81	95% Jackknife UCL	40.19	95% CLT UCL
152.9	95% Bootstrap-t UCL	38.61	95% Standard Bootstrap UCL
42.45	95% Percentile Bootstrap UCL	158.3	95% Hall's Bootstrap UCL
		46.19	95% BCA Bootstrap UCL
74.04	95% Chebyshev(Mean, Sd) UCL	57.09	90% Chebyshev(Mean, Sd) UCL
143.8	99% Chebyshev(Mean, Sd) UCL	97.56	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 44.8

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

PCB-TEQ (Mammal)

General Statistics

Total Number of Observations	6	Number of Distinct Observations	6
		Number of Missing Observations	12
Minimum	1.1781E-4	Mean	0.00815
Maximum	0.018	Median	0.00835
SD	0.00716	Std. Error of Mean	0.00292
Coefficient of Variation	0.878	Skewness	0.106

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.93	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.788	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.196	Lilliefors GOF Test
5% Lilliefors Critical Value	0.325	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 0.014
 95% Adjusted-CLT UCL (Chen-1995)
 0.0131

 95% Modified-t UCL (Johnson-1978)
 0.0141

Gamma GOF Test

A-D Test Statistic	0.575	Anderson-Darling Gamma GOF Test
A-D Critical Value	0.73	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.307	Kolmogorov-Smirnov Gamma GOF Test
K-S Critical Value	0.346	Detected data appear Gamma Distributed at 5% Significance Level
S Test Statistic	0.307	Kolmogorov-Smirnov Gamma GOF Test

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

0.413	k star (bias corrected MLE)	0.604	k hat (MLE)
0.0197	Theta star (bias corrected MLE)	0.0135	Theta hat (MLE)
4.956	nu star (bias corrected)	7.246	nu hat (MLE)
0.0127	MLE Sd (bias corrected)	0.00815	MLE Mean (bias corrected)
1.132	Approximate Chi Square Value (0.05)		
0.606	Adjusted Chi Square Value	0.0122	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.0357 95% Adjusted Gamma UCL (use when n<50) 0.0666

Lognormal GOF Test

	Logilorina doi 1000	
Shapiro Wilk Test Statistic	0.803	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.788	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.332	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.325	Data Not Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-9.046	Mean of logged Data	-5.832
Maximum of Logged Data	-4.019	SD of logged Data	2.152

Assuming Lognormal Distribution

95% H-UCL	84.49	90% Chebyshev (MVUE) UCL	0.0463
95% Chebyshev (MVUE) UCL	0.0608	97.5% Chebyshev (MVUE) UCL	0.081
99% Chebyshev (MVUE) UCL	0.121		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% Jackknife UCL 0.014	0.013	95% CLT UCL
95% Bootstrap-t UCL 0.0138	0.0125	95% Standard Bootstrap UCL
95% Percentile Bootstrap UCL 0.0125	0.0133	95% Hall's Bootstrap UCL
	0.0125	95% BCA Bootstrap UCL
95% Chebyshev(Mean, Sd) UCL 0.0209	0.0169	90% Chebyshev(Mean, Sd) UCL
99% Chebyshev(Mean, Sd) UCL 0.0372	0.0264	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 0.014

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.17/30/2018 4:58:06 PM

From File Tissue LA UA NTA_a.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Arsenic

General Statistics

5	Number of Distinct Observations	6	Total Number of Observations
- 11		·	rotal rambol of observations
11	Number of Missing Observations		
5	Number of Non-Detects	1	Number of Detects
4	Number of Distinct Non-Detects	1	Number of Distinct Detects

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set!

It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Arsenic was not processed!

ALDRIN

General Statistics

Total Number of Observations	6	Number of Distinct Observations	6
		Number of Missing Observations	12
Number of Detects	4	Number of Non-Detects	2
Number of Distinct Detects	4	Number of Distinct Non-Detects	2
Minimum Detect	0.073	Minimum Non-Detect	0.0472
Maximum Detect	0.617	Maximum Non-Detect	0.1
Variance Detects	0.0651	Percent Non-Detects	33.33%
Mean Detects	0.277	SD Detects	0.255
Median Detects	0.209	CV Detects	0.922
Skewness Detects	0.982	Kurtosis Detects	-0.602
Mean of Logged Detects	-1.659	SD of Logged Detects	1.029

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.878	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.269	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.204	KM Standard Error of Mean	0.0981
KM SD	0.208	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.402	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.365	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.498	95% KM Chebyshev UCL	0.631
97.5% KM Chebyshev UCL	0.816	99% KM Chebyshev UCL	1.18

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.375	Anderson-Darling GOF Test
5% A-D Critical Value	0.663	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.307	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.4	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

February 2020

Gamma Statistics on Detected Data Only

0.537	k star (bias corrected MLE)	1.482	k hat (MLE)
0.515	Theta star (bias corrected MLE)	0.187	Theta hat (MLE)
4.297	nu star (bias corrected)	11.86	nu hat (MLE)
		0.277	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

n 0.188	Mean	0.01	Minimum
n 0.081	Median	0.617	Maximum
V 1.282	CV	0.241	SD
E) 0.428	k star (bias corrected MLE)	0.633	k hat (MLE)
E) 0.439	Theta star (bias corrected MLE)	0.297	Theta hat (MLE)
d) 5.131	nu star (bias corrected)	7.596	nu hat (MLE)
		0.0122	Adjusted Level of Significance (β)
3) 0.659	Adjusted Chi Square Value (5.13, β)	1.213	Approximate Chi Square Value (5.13, α)
0) N/A	95% Gamma Adjusted UCL (use when n<50)	0.794	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.204	SD (KM)	0.208
Variance (KM)	0.0432	SE of Mean (KM)	0.0981
k hat (KM)	0.963	k star (KM)	0.593
nu hat (KM)	11.56	nu star (KM)	7.112
theta hat (KM)	0.212	theta star (KM)	0.344
80% gamma percentile (KM)	0.336	90% gamma percentile (KM)	0.532
95% gamma percentile (KM)	0.737	99% gamma percentile (KM)	1.234

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (7.11, α)	2.232	Adjusted Chi Square Value (7.11, β)	1.377
95% Gamma Approximate KM-UCL (use when n>=50)	0.65	95% Gamma Adjusted KM-UCL (use when n<50)	1.054

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.895	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.27	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-2.266	Mean in Log Scale	0.196	Mean in Original Scale
1.286	SD in Log Scale	0.234	SD in Original Scale
0.342	95% Percentile Bootstrap UCL	0.389	95% t UCL (assumes normality of ROS data)
1.366	95% Bootstrap t UCL	0.384	95% BCA Bootstrap UCL
		4.501	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.064	KM Geo Mean	0.127
KM SD (logged)	0.938	95% Critical H Value (KM-Log)	3.898
KM Standard Error of Mean (logged)	0.446	95% H-UCL (KM -Log)	1.012
KM SD (logged)	0.938	95% Critical H Value (KM-Log)	3.898
KM Standard Error of Mean (logged)	0.446		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.197	Mean in Log Scale	-2.229
SD in Original Scale	0.233	SD in Log Scale	1.214
95% t UCL (Assumes normality)	0.389	95% H-Stat UCL	3.159

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.402

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

cis-NONACHLOR

	General Statistics		
Total Number of Observations	6	Number of Distinct Observations	6
		Number of Missing Observations	12
Number of Detects	5	Number of Non-Detects	1
Number of Distinct Detects	5	Number of Distinct Non-Detects	1
Minimum Detect	1.09	Minimum Non-Detect	0.05
Maximum Detect	26	Maximum Non-Detect	0.05
Variance Detects	108.2	Percent Non-Detects	16.67%
Mean Detects	8.542	SD Detects	10.4
Median Detects	2.94	CV Detects	1.218
Skewness Detects	1.667	Kurtosis Detects	2.51
Mean of Logged Detects	1.524	SD of Logged Detects	1.261

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.788	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.305	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

• • •	•	•	
KM Mean	7.127	KM Standard Error of Mean	4.137
KM SD	9.063	95% KM (BCA) UCL	13.98
95% KM (t) UCL	15.46	95% KM (Percentile Bootstrap) UCL	13.85
95% KM (z) UCL	13.93	95% KM Bootstrap t UCL	52.69
90% KM Chebyshev UCL	19.54	95% KM Chebyshev UCL	25.16
97.5% KM Chebyshev UCL	32.96	99% KM Chebyshev UCL	48.29

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.353	Anderson-Darling GOF Test
5% A-D Critical Value	0.693	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.295	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.365	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.508	k star (bias corrected MLE)	0.937	k hat (MLE)
16.81	Theta star (bias corrected MLE)	9.113	Theta hat (MLE)
5.083	nu star (bias corrected)	9.373	nu hat (MLE)
		8.542	Mean (detects)

February 2020

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

7.12	Mean	0.01	Minimum
2.66	Median	26	Maximum
1.395	CV	9.934	SD
0.333	k star (bias corrected MLE)	0.443	k hat (MLE)
21.4	Theta star (bias corrected MLE)	16.06	Theta hat (MLE)
3.993	nu star (bias corrected)	5.32	nu hat (MLE)
		0.0122	Adjusted Level of Significance (β)
0.35	Adjusted Chi Square Value (3.99, β)	0.719	Approximate Chi Square Value (3.99, α)
81.15	95% Gamma Adjusted UCL (use when n<50)	39.54	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	7.127	SD (KM)	9.063
Variance (KM)	82.14	SE of Mean (KM)	4.137
k hat (KM)	0.618	k star (KM)	0.42
nu hat (KM)	7.42	nu star (KM)	5.043
theta hat (KM)	11.53	theta star (KM)	16.96
80% gamma percentile (KM)	11.56	90% gamma percentile (KM)	19.95
95% gamma percentile (KM)	29.11	99% gamma percentile (KM)	52.01

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (5.04, α)	1.172	Adjusted Chi Square Value (5.04, β)	0.632
95% Gamma Approximate KM-LICL (use when n>=50)	30.66	95% Gamma Adjusted KM-LICL (use when n<50)	56.85

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.953	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.238	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

0.98	Mean in Log Scale	7.148	Mean in Original Scale
1.746	SD in Log Scale	9.91	SD in Original Scale
14	95% Percentile Bootstrap UCL	15.3	95% t UCL (assumes normality of ROS data)
58.01	95% Bootstrap t UCL	15.51	95% BCA Bootstrap UCL
		2417	95% HJICL (Log POS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.771	KM Geo Mean	2.162
KM SD (logged)	1.974	95% Critical H Value (KM-Log)	7.606
KM Standard Error of Mean (logged)	0.901	95% H-UCL (KM -Log)	12516
KM SD (logged)	1.974	95% Critical H Value (KM-Log)	7.606
KM Standard Error of Mean (logged)	0.901		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	7.123	Mean in Log Scale	0.656
SD in Original Scale	9.932	SD in Log Scale	2.409
95% t UCL (Assumes normality)	15.29	95% H-Stat UCL 7	10356

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 15.46

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chlordane, gamma

RI Report - BHHRA

General Statistics

Total Number of Observations	6	Number of Distinct Observations	6
		Number of Missing Observations	12
Number of Detects	5	Number of Non-Detects	1
Number of Distinct Detects	5	Number of Distinct Non-Detects	1
Minimum Detect	0.146	Minimum Non-Detect	0.05
Maximum Detect	26.1	Maximum Non-Detect	0.05
Variance Detects	181.3	Percent Non-Detects	16.67%
Mean Detects	10.88	SD Detects	13.47
Median Detects	2.18	CV Detects	1.238
Skewness Detects	0.598	Kurtosis Detects	-3.296
Mean of Logged Detects	1.037	SD of Logged Detects	2.235

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.736	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.341	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Normal at 5% Significance Level
Detected Data appear	Approxim	ate Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

5.345	KM Standard Error of Mean	KM Mean
17.29	95% KM (BCA) UCL	KM SD
17.41	95% KM (Percentile Bootstrap) UCL	95% KM (t) UCL
112.2	95% KM Bootstrap t UCL	95% KM (z) UCL
32.37	95% KM Chebyshev UCL	90% KM Chebyshev UCL
62 26	99% KM Chehyshey LICI	97.5% KM Chehyshey LICI

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.438	Anderson-Darling GOF Test
5% A-D Critical Value	0.715	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.27	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.373	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.323	k star (bias corrected MLE)	0.474	k hat (MLE)
33.66	Theta star (bias corrected MLE)	22.92	Theta hat (MLE)
3.231	nu star (bias corrected)	4.745	nu hat (MLE)
		10.88	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

9.065	Mean	0.01	Minimum
1.518	Median	26.1	Maximum
1.416	CV	12.83	SD
0.273	k star (bias corrected MLE)	0.323	k hat (MLE)
33.24	Theta star (bias corrected MLE)	28.05	Theta hat (MLE)
3.272	nu star (bias corrected)	3.878	nu hat (MLE)
		0.0122	Adjusted Level of Significance (β)
0.208	Adjusted Chi Square Value (3.27, β)	0.458	Approximate Chi Square Value (3.27, α)
142.6	95% Gamma Adjusted UCL (use when n<50)	64.84	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

11.71	SD (KM)	9.072	Mean (KM)
5.345	SE of Mean (KM)	137.2	Variance (KM)
0.411	k star (KM)	0.6	k hat (KM)
4.934	nu star (KM)	7.201	nu hat (KM)
22.07	theta star (KM)	15.12	theta hat (KM)
25.5	90% gamma percentile (KM)	14.69	80% gamma percentile (KM)
67.02	99% gamma percentile (KM)	37.34	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (4.93, α)	1.122	Adjusted Chi Square Value (4.93, β)	0.599
95% Gamma Approximate KM-UCL (use when n>=50)	39.9	95% Gamma Adjusted KM-UCL (use when n<50)	74.69

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.909	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.236	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	9.065	Mean in Log Scale	0.099
SD in Original Scale	12.83	SD in Log Scale	3.046
95% t UCL (assumes normality of ROS data)	19.62	95% Percentile Bootstrap UCL	17.38
95% BCA Bootstrap UCL	17.62	95% Bootstrap t UCL	119.2
95% H-UCL (Log ROS) 7	'.956E+8		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.365	KM Geo Mean	1.44
KM SD (logged)	2.364	95% Critical H Value (KM-Log)	9.043
KM Standard Error of Mean (logged)	1.079	95% H-UCL (KM -Log) 3	34609
KM SD (logged)	2.364	95% Critical H Value (KM-Log)	9.043
KM Standard Error of Mean (logged)	1.079		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Tra	nsformed			
Mean in Original Scale	9.068	Mean in Log Scale	0.249		
SD in Original Scale	12.83	SD in Log Scale	2.778		
95% t UCL (Assumes normality)	19.62	95% H-Stat UCL	31044169		
DL/2 is not a recommended method, provided for comparisons and historical reasons					

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 19.84

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

General Statistics

6	Number of Distinct Observations	6	Total Number of Observations
12	Number of Missing Observations		
2	Number of Non-Detects	4	Number of Detects
2	Number of Distinct Non-Detects	4	Number of Distinct Detects
0.0472	Minimum Non-Detect	0.077	Minimum Detect
0.0478	Maximum Non-Detect	0.496	Maximum Detect
33.33%	Percent Non-Detects	0.0447	Variance Detects
0.212	SD Detects	0.294	Mean Detects
0.719	CV Detects	0.302	Median Detects
-5.227	Kurtosis Detects	-0.0681	Skewness Detects
0.9	SD of Logged Detects	-1.488	Mean of Logged Detects

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.856	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.275	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.212	KM Standard Error of Mean	0.0894
KM SD	0.19	95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.392	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.359	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.48	95% KM Chebyshev UCL	0.601
97.5% KM Chebyshey UCL	0.77	99% KM Chebyshey UCL	1.101

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.42	Anderson-Darling GOF Test
5% A-D Critical Value	0.661	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.314	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.398	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.677	k star (bias corrected MLE)	2.04	k hat (MLE)
0.435	Theta star (bias corrected MLE)	0.144	Theta hat (MLE)
5.414	nu star (bias corrected)	16.32	nu hat (MLE)
		0.294	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.2
Maximum	0.496	Median	0.114
SD	0.22	CV	1.103
k hat (MLE)	0.665	k star (bias corrected MLE)	0.444
Theta hat (MLE)	0.3	Theta star (bias corrected MLE)	0.45
nu hat (MLE)	7.982	nu star (bias corrected)	5.324
Adjusted Level of Significance (β)	0.0122		
Approximate Chi Square Value (5.32, α)	1.305	Adjusted Chi Square Value (5.32, β)	0.72
95% Gamma Approximate UCL (use when n>=50)	0.814	95% Gamma Adjusted UCL (use when n<50)	N/A

Estimates of Gamma Parameters using KM Estimates

0.19	SD (KM)	0.212	Mean (KM)
0.0894	SE of Mean (KM)	0.0359	Variance (KM)
0.736	k star (KM)	1.25	k hat (KM)
8.831	nu star (KM)	14.99	nu hat (KM)
0.288	theta star (KM)	0.17	theta hat (KM)
0.526	90% gamma percentile (KM)	0.348	80% gamma percentile (KM)
1.143	99% gamma percentile (KM)	0.708	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (8.83, α)	3.225	Adjusted Chi Square Value (8.83, β)	2.131
95% Gamma Approximate KM-UCL (use when n>=50)	0.58	95% Gamma Adjusted KM-UCL (use when n<50)	0.878

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.884	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.281	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-2.279	Mean in Log Scale	0.203	Mean in Original Scale
1.411	SD in Log Scale	0.216	SD in Original Scale
0.345	95% Percentile Bootstrap UCL	0.381	95% t UCL (assumes normality of ROS data)
0.685	95% Bootstrap t UCL	0.355	95% BCA Bootstrap UCL
		9.229	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.01	KM Geo Mean	0.134
KM SD (logged)	0.975	95% Critical H Value (KM-Log)	4.03
KM Standard Error of Mean (logged)	0.459	95% H-UCL (KM -Log)	1.248
KM SD (logged)	0.975	95% Critical H Value (KM-Log)	4.03
KM Standard Error of Mean (logged)	0.459		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.204	Mean in Log Scale	-2.239
SD in Original Scale	0.215	SD in Log Scale	1.356
95% t UCL (Assumes normality)	0.381	95% H-Stat UCL	6.918

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.392

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

OXYCHLORDANE

RI Report - BHHRA

General Statistics

Total Number of Observations	6	Number of Distinct Observations	6
		Number of Missing Observations	12
Number of Detects	5	Number of Non-Detects	1
Number of Distinct Detects	5	Number of Distinct Non-Detects	1
Minimum Detect	0.374	Minimum Non-Detect	0.05
Maximum Detect	14.3	Maximum Non-Detect	0.05
Variance Detects	34.22	Percent Non-Detects	16.67%
Mean Detects	4.204	SD Detects	5.85
Median Detects	1.28	CV Detects	1.392
Skewness Detects	1.889	Kurtosis Detects	3.541
Mean of Logged Detects	0.626	SD of Logged Detects	1.443

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.746	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.294	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Normal at 5% Significance Level
Detected Data appear	Approxim	ate Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

	·		
2.292	KM Standard Error of Mean	3.51	KM Mean
7.404	95% KM (BCA) UCL	5.02	KM SD
7.434	95% KM (Percentile Bootstrap) UCL	8.13	95% KM (t) UCL
35.51	95% KM Bootstrap t UCL	7.28	95% KM (z) UCL
13.5	95% KM Chebyshev UCL	10.3	90% KM Chebyshev UCL
26.32	99% KM Chehyshey LICI	17.8	97.5% KM Chehyshey LICI

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.345	Anderson-Darling GOF Test
5% A-D Critical Value	0.699	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.27	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.367	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.429	k star (bias corrected MLE)	0.74	k hat (MLE)
9.793	Theta star (bias corrected MLE)	5.68	Theta hat (MLE)
4.293	nu star (bias corrected)	7.39	nu hat (MLE)
		4.20	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	3.505
Maximum	14.3	Median	1.029
SD	5.506	CV	1.571
k hat (MLE)	0.433	k star (bias corrected MLE)	0.328
Theta hat (MLE)	8.095	Theta star (bias corrected MLE)	10.7
nu hat (MLE)	5.196	nu star (bias corrected)	3.931
Adjusted Level of Significance (β)	0.0122		
Approximate Chi Square Value (3.93, α)	0.695	Adjusted Chi Square Value (3.93, β)	0.336
95% Gamma Approximate UCL (use when n>=50)	19.83	95% Gamma Adjusted UCL (use when n<50)	40.97

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	3.512	SD (KM)	5.021
Variance (KM)	25.21	SE of Mean (KM)	2.292
k hat (KM)	0.489	k star (KM)	0.356
nu hat (KM)	5.87	nu star (KM)	4.268
theta hat (KM)	7.18	theta star (KM)	9.874
80% gamma percentile (KM)	5.576	90% gamma percentile (KM)	10.12
95% gamma percentile (KM)	15.19	99% gamma percentile (KM)	28.11

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (4.27, α)	0.83	Adjusted Chi Square Value (4.27, β)	0.416
95% Gamma Approximate KM-UCL (use when n>=50)	18.05	95% Gamma Adjusted KM-UCL (use when n<50)	36

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.964	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.203	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	3.511	Mean in Log Scale	-0.0018
SD in Original Scale	5.501	SD in Log Scale	2.007
95% t UCL (assumes normality of ROS data)	8.036	95% Percentile Bootstrap UCL	7.539
95% BCA Bootstrap UCL	8.208	95% Bootstrap t UCL	36.37
95% H-UCL (Log ROS)	7684		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.022	KM Geo Mean	1.022
KM SD (logged)	1.792	95% Critical H Value (KM-Log)	6.938
KM Standard Error of Mean (logged)	0.818	95% H-UCL (KM -Log)	1321
KM SD (logged)	1.792	95% Critical H Value (KM-Log)	6.938
KM Standard Error of Mean (logged)	0.818		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed			
Mean in Original Scale	3.508	Mean in Log Scale	-0.0935	
SD in Original Scale	5.504	SD in Log Scale	2.184	
95% t UCL (Assumes normality)	8.035	95% H-Stat UCL	35314	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 8.13

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.17/31/2018 10:45:20 AM

From File Tissue LA UA NTA_b.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

ALDRIN

	General Statistics		
Total Number of Observations	7	Number of Distinct Observations	7
		Number of Missing Observations	14
Number of Detects	5	Number of Non-Detects	2
Number of Distinct Detects	5	Number of Distinct Non-Detects	2
Minimum Detect	0.056	Minimum Non-Detect	0.0494
Maximum Detect	0.382	Maximum Non-Detect	0.0502
Variance Detects	0.0279	Percent Non-Detects	28.57%
Mean Detects	0.184	SD Detects	0.167
Median Detects	0.069	CV Detects	0.908

Kurtosis Detects -3.214

SD of Logged Detects 0.975

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Skewness Detects 0.625

Mean of Logged Detects -2.069

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.735	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.354	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.146	KM Standard Error of Mean	0.0592
KM SD	0.14	95% KM (BCA) UCL	0.237
95% KM (t) UCL	0.261	95% KM (Percentile Bootstrap) UCL	0.235
95% KM (z) UCL	0.243	95% KM Bootstrap t UCL	1.722
90% KM Chebyshev UCL	0.323	95% KM Chebyshev UCL	0.404
97.5% KM Chebyshev UCL	0.515	99% KM Chebyshev UCL	0.735

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.775	Anderson-Darling GOF Test	
5% A-D Critical Value	0.687	Detected Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.367	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.362	Detected Data Not Gamma Distributed at 5% Significance Level	

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.723	k star (bias corrected MLE)	1.473	k hat (MLE)
0.255	Theta star (bias corrected MLE)	0.125	Theta hat (MLE)
7.225	nu star (bias corrected)	14.73	nu hat (MLE)
		0.184	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.134	Mean	0.01	Minimum
0.062	Median	0.382	Maximum
1.196	CV	0.161	SD
0.53	k star (bias corrected MLE)	0.76	k hat (MLE)
0.254	Theta star (bias corrected MLE)	0.177	Theta hat (MLE)
7.415	nu star (bias corrected)	10.64	nu hat (MLE)
		0.0158	Adjusted Level of Significance (β)
1.632	Adjusted Chi Square Value (7.42, β)	2.401	Approximate Chi Square Value (7.42, α)
0.61	95% Gamma Adjusted UCL (use when n<50)	0.415	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.146	SD (KM)	0.14
Variance (KM)	0.0196	SE of Mean (KM)	0.0592
k hat (KM)	1.079	k star (KM)	0.712
nu hat (KM)	15.1	nu star (KM)	9.963
theta hat (KM)	0.135	theta star (KM)	0.205
80% gamma percentile (KM)	0.239	90% gamma percentile (KM)	0.364
95% gamma percentile (KM)	0.492	99% gamma percentile (KM)	0.799

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (9.96, α)	3.918	Adjusted Chi Square Value (9.96, β)	2.861
95% Gamma Approximate KM-LICL (use when n>=50)	0.37	95% Gamma Adjusted KM-LICL (use when n<50)	0.507

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.755	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.332	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-2.745	Mean in Log Scale	0.135	Mean in Original Scale
1.402	SD in Log Scale	0.16	SD in Original Scale
0.232	95% Percentile Bootstrap UCL	0.252	95% t UCL (assumes normality of ROS data)
0.712	95% Bootstrap t UCL	0.239	95% BCA Bootstrap UCL
		2 815	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.337	KM Geo Mean	0.0966
KM SD (logged)	0.85	95% Critical H Value (KM-Log)	3.287
KM Standard Error of Mean (logged)	0.359	95% H-UCL (KM -Log)	0.434
KM SD (logged)	0.85	95% Critical H Value (KM-Log)	3.287
KM Standard Error of Mean (logged)	0.359		

DL/2 Statistics

DL/2 Normai	DL/2 Log- I ransformed			
Mean in Original Scale	0.139	Mean in Log Scale	-2.533	
SD in Original Scale	0.157	SD in Log Scale	1.123	
95% t UCL (Assumes normality)	0.254	95% H-Stat UCL	0.956	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

KM H-UCL 0.434

_.....

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

MIREX

General Statistics

Total Number of Observations	7	Number of Distinct Observations	7
		Number of Missing Observations	14
Number of Detects	5	Number of Non-Detects	2
Number of Distinct Detects	5	Number of Distinct Non-Detects	2
Minimum Detect	0.051	Minimum Non-Detect	0.0494
Maximum Detect	0.541	Maximum Non-Detect	0.0502
Variance Detects	0.0369	Percent Non-Detects	28.57%
Mean Detects	0.227	SD Detects	0.192
Median Detects	0.138	CV Detects	0.848
Skewness Detects	1.426	Kurtosis Detects	1.962
Mean of Logged Detects	-1.778	SD of Logged Detects	0.879

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.867	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.278	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.343	Detected Data appear Normal at 5% Significance Level	
Detected Data appear Normal at 5% Significance Level			

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

or of Mean	6 KM Standard Error of N	0.07	701
BCA) UCL	95% KM (BCA)	0.29	92
strap) UCL	95% KM (Percentile Bootstrap)	0.29	92
trap t UCL	95% KM Bootstrap t	0.4	75
shev UCL	95% KM Chebyshev	0.48	81
shev UCL	99% KM Chebyshev	0.8	73

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.264	Anderson-Darling GOF Test
5% A-D Critical Value	0.685	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.244	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.361	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	1.853	k star (bias corrected MLE)	0.875
Theta hat (MLE)	0.122	Theta star (bias corrected MLE)	0.259
nu hat (MLE)	18.53	nu star (bias corrected)	8.746
Mean (detects)	0.227		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.165	Mean	0.01	Minimum
0.135	Median	0.541	Maximum
1.148	CV	0.189	SD
0.532	k star (bias corrected MLE)	0.763	k hat (MLE)
0.31	Theta star (bias corrected MLE)	0.216	Theta hat (MLE)
7.441	nu star (bias corrected)	10.69	nu hat (MLE)
		0.0158	Adjusted Level of Significance (β)
1.643	Adjusted Chi Square Value (7.44, β)	2.416	Approximate Chi Square Value (7.44, α)
0.746	95% Gamma Adjusted UCL (use when n<50)	0.507	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.176	SD (KM)	0.166
Variance (KM)	0.0275	SE of Mean (KM)	0.0701
k hat (KM)	1.126	k star (KM)	0.739
nu hat (KM)	15.76	nu star (KM)	10.34
theta hat (KM)	0.156	theta star (KM)	0.238
80% gamma percentile (KM)	0.289	90% gamma percentile (KM)	0.436
95% gamma percentile (KM)	0.587	99% gamma percentile (KM)	0.947

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (10.34, α)	4.157	Adjusted Chi Square Value (10.34, β)	3.059
95% Gamma Approximate KM-UCL (use when n>=50)	0.438	95% Gamma Adjusted KM-UCL (use when n<50)	0.595

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.973	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.199	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.167	Mean in Log Scale	-2.432
SD in Original Scale	0.187	SD in Log Scale	1.328
95% t UCL (assumes normality of ROS data)	0.304	95% Percentile Bootstrap UCL	0.28
95% BCA Bootstrap UCL	0.318	95% Bootstrap t UCL	0.459
95% H-UCL (Log ROS)	2.654		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-2.129	KM Geo Mean	0.119
KM SD (logged)	0.866	95% Critical H Value (KM-Log)	3.329
KM Standard Error of Mean (logged)	0.366	95% H-UCL (KM -Log)	0.562
KM SD (logged)	0.866	95% Critical H Value (KM-Log)	3.329
KM Standard Error of Mean (logged)	0.366		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.169	Mean in Log Scale	-2.325
SD in Original Scale	0.185	SD in Log Scale	1.178
95% t UCL (Assumes normality)	0.305	95% H-Stat UCL	1.486

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.312

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Uncensored Full Data Sets

User Selected Options

Date/Time of Computation ProUCL 5.17/31/2018 10:46:53 AM

From File Tissue LA UA NTA_b.xls

Full Precision OFF
Confidence Coefficient 95%
Imber of Bootstrap Operations 2000

4,4'-DDD

General	Statistics

Total Number of Observations	7	Number of Distinct Observations	7
		Number of Missing Observations	14
Minimum	0.92	Mean	5.473
Maximum	21.89	Median	2.29
SD	7.533	Std. Error of Mean	2.847
Coefficient of Variation	1.376	Skewness	2.275

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk GOF Test	0.657	Shapiro Wilk Test Statistic
Data Not Normal at 5% Significance Level	0.803	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.355	Lilliefors Test Statistic
Data Not Normal at 5% Significance Level	0.304	5% Lilliefors Critical Value

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	11.01	95% Adjusted-CLT UCL (Chen-1995)	12.77
		95% Modified-t UCL (Johnson-1978)	11.41

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.633	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.728	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.315	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.32	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.981	k star (bias corrected MLE)	0.656
Theta hat (MLE)	5.581	Theta star (bias corrected MLE)	8.348
nu hat (MLE)	13.73	nu star (bias corrected)	9.178
MLE Mean (bias corrected)	5.473	MLE Sd (bias corrected)	6.759
		Approximate Chi Square Value (0.05)	3.435
Adjusted Level of Significance	0.0158	Adjusted Chi Square Value	2.463

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 14.62 95% Adjusted Gamma UCL (use when n<50) 20.39

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.913	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.803	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.249	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.304	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.0834	Mean of logged Data	1.11
Maximum of Logged Data	3.086	SD of logged Data	1.082

Fish Tissue ProUCL Output - Upper Anacostia

Assuming Lognormal Distribution

95% H-UCL	30.88	90% Chebyshev (MVUE) UCL	10.85
95% Chebyshev (MVUE) UCL	13.56	97.5% Chebyshev (MVUE) UCL	17.33
99% Chebyshey (MVUE) UCL	24.71		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	10.16	95% Jackknife UCL	11.01
95% Standard Bootstrap UCL	9.838	95% Bootstrap-t UCL	47.67
95% Hall's Bootstrap UCL	40.33	95% Percentile Bootstrap UCL	10.51
95% BCA Bootstrap UCL	11.97		
90% Chebyshev(Mean, Sd) UCL	14.01	95% Chebyshev(Mean, Sd) UCL	17.88
97.5% Chebyshev(Mean, Sd) UCL	23.25	99% Chebyshev(Mean, Sd) UCL	33.8

Suggested UCL to Use

95% Adjusted Gamma UCL 20.39

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

4,4'-DDE

	General Statistics		
Total Number of Observations	7	Number of Distinct Observations	7
		Number of Missing Observations	14
Minimum	3.46	Mean	15.56
Maximum	44.3	Median	9.37
SD	15.47	Std. Error of Mean	5.848
Coefficient of Variation	0.995	Skewness	1.358

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.812	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.267	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	` '		
95% Student's-t UCL	26.92	95% Adjusted-CLT UCL (Chen-1995)	28.38		
		95% Modified-t UCL (Johnson-1978)	27.42		

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.399	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.723	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.219	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.318	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.342	k star (bias corrected MLE)	0.862
Theta hat (MLE)	11.59	Theta star (bias corrected MLE)	18.04
nu hat (MLE)	18.79	nu star (bias corrected)	12.07
MLE Mean (bias corrected)	15.56	MLE Sd (bias corrected)	16.75
		Approximate Chi Square Value (0.05)	5.273
Adjusted Level of Significance	0.0158	Adjusted Chi Square Value	4.001

February 2020

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 35.61 95% Adjusted Gamma UCL (use when n<50) 46.93

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.923	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.803	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.2	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.304	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.241	Mean of logged Data	2.328
Maximum of Logged Data	3.791	SD of logged Data	0.982

Assuming Lognormal Distribution

95% H-UCL	71.58	90% Chebyshev (MVUE) UCL	32.2
95% Chebyshev (MVUE) UCL	39.9	97.5% Chebyshev (MVUE) UCL	50.58
99% Chebyshev (MVUE) UCL	71.57		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

26.92	95% Jackknife UCL	25.18	95% CLT UCL
48.77	95% Bootstrap-t UCL	24.44	95% Standard Bootstrap UCL
24.95	95% Percentile Bootstrap UCL	79.27	95% Hall's Bootstrap UCL
		26.9	95% BCA Bootstrap UCL
41.05	95% Chebyshev(Mean, Sd) UCL	33.1	90% Chebyshev(Mean, Sd) UCL
73.75	99% Chebyshev(Mean, Sd) UCL	52.08	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 26.92

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

alpha-Chlordane

RI Report - BHHRA

General Statistics

Total Number of Observations	7	Number of Distinct Observations	7
		Number of Missing Observations	14
Minimum	1.23	Mean	9.581
Maximum	31	Median	5.41
SD	10.45	Std. Error of Mean	3.95
Coefficient of Variation	1.091	Skewness	1.813

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal COE Test

	Nomial GOF 16	3L
Shapiro Wilk Test Statistic	0.784	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.311	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	17.26	95% Adjusted-CLT UCL (Chen-1995)	18.97
		95% Modified-t UCL (Johnson-1978)	17.71

Gamma GOF Test

A-D Test Statistic	0.273	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.725	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.217	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.319	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.196	k star (bias corrected MLE)	0.778
Theta hat (MLE)	8.015	Theta star (bias corrected MLE)	12.31
nu hat (MLE)	16.74	nu star (bias corrected)	10.9
MLE Mean (bias corrected)	9.581	MLE Sd (bias corrected)	10.86
		Approximate Chi Square Value (0.05)	4.51
Adjusted Level of Significance	0.0158	Adjusted Chi Square Value	3.355

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 23.15 95% Adjusted Gamma UCL (use when n<50) 31.12

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.987	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.803	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.153	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.304	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.207	Mean of logged Data	1.787
Maximum of Logged Data	3.434	SD of logged Data	1.067

Assuming Lognormal Distribution

95% H-UCL	57.33	90% Chebyshev (MVUE) UCL	20.94
95% Chebyshev (MVUE) UCL	26.14	97.5% Chebyshev (MVUE) UCL	33.35
99% Chebyshev (MVUE) UCL	47.53		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	16.08	95% Jackknife UCL	17.26
95% Standard Bootstrap UCL	15.44	95% Bootstrap-t UCL	36.67
95% Hall's Bootstrap UCL	53.96	95% Percentile Bootstrap UCL	16.21
95% BCA Bootstrap UCL	18.15		
90% Chebyshev(Mean, Sd) UCL	21.43	95% Chebyshev(Mean, Sd) UCL	26.8
97.5% Chebyshev(Mean, Sd) UCL	34.25	99% Chebyshev(Mean, Sd) UCL	48.88

Suggested UCL to Use

95% Adjusted Gamma UCL 31.12

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

February 2020

Chlordane, gamma

General Statistics

Total Number of Observations	7	Number of Distinct Observations	7
		Number of Missing Observations	14
Minimum	0.217	Mean	3.474
Maximum	9.19	Median	3.98
SD	3.085	Std. Error of Mean	1.166
Coefficient of Variation	0.888	Skewness	0.964

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.892	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.243	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	5.74	95% Adjusted-CLT UCL (Chen-1995)	5.846
		95% Modified-t UCL (Johnson-1978)	5.811

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.372	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Lev	0.727	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.252	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Lev	0.319	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.028	k star (bias corrected MLE)	0.683
Theta hat (MLE)	3.378	Theta star (bias corrected MLE)	5.086
nu hat (MLE)	14.4	nu star (bias corrected)	9.561
MLE Mean (bias corrected)	3.474	MLE Sd (bias corrected)	4.203
		Approximate Chi Square Value (0.05)	3.669
Adjusted Level of Significance	0.0158	Adjusted Chi Square Value	2.656

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 9.051 95% Adjusted Gamma UCL (use when n<50) 12.51

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.889	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.803	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.267	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.304	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-1.528	Mean of logged Data	0.686
Maximum of Logged Data	2.218	SD of logged Data	1.362

Assuming Lognormal Distribution

95% H-UCL	70.78	90% Chebyshev (MVUE) UCL	10.39
95% Chebyshev (MVUE) UCL	13.23	97.5% Chebyshev (MVUE) UCL	17.17
99% Chebyshev (MVUE) UCL	24.92		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	5.392	95% Jackknife UCL	5.74
95% Standard Bootstrap UCL	5.237	95% Bootstrap-t UCL	6.418
95% Hall's Bootstrap UCL	6.493	95% Percentile Bootstrap UCL	5.275
95% BCA Bootstrap UCL	5.817		
90% Chebyshev(Mean, Sd) UCL	6.972	95% Chebyshev(Mean, Sd) UCL	8.557
97.5% Chebyshev(Mean, Sd) UCL	10.76	99% Chebyshev(Mean, Sd) UCL	15.08

Suggested UCL to Use

95% Student's-t UCL 5.74

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

cis-NONACHLOR

Total Number of Observations	7	Number of Distinct Observations	7
		Number of Missing Observations	14
Minimum	1.29	Mean	4.134
Maximum	12.9	Median	2.48
SD	4.203	Std. Error of Mean	1.589
Coefficient of Variation	1.017	Skewness	1.94

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.739	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.311	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	7.221	95% Adjusted-CLT UCL (Chen-1995)	7.992
		95% Modified-t UCL (Johnson-1978)	7.415

Gamma GOF Test

0.522	A-D Test Statistic
0.72	5% A-D Critical Value
0.243	K-S Test Statistic
0.317	5% K-S Critical Value
3	0.72

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.595	k star (bias corrected MLE)	1.007
Theta hat (MLE)	2.592	Theta star (bias corrected MLE)	4.107
nu hat (MLE)	22.33	nu star (bias corrected)	14.09
MLE Mean (bias corrected)	4.134	MLE Sd (bias corrected)	4.121
		Approximate Chi Square Value (0.05)	6.635
Adjusted Level of Significance	0.0158	Adjusted Chi Square Value	5.171

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 8.782 95% Adjusted Gamma UCL (use when n<50) 11.27

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.9	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.803	B Data appear Lognormal at 5% Significance Leve	
Lilliefors Test Statistic	0.186	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.304	Data appear Lognormal at 5% Significance Level	

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.255	Mean of logged Data	1.074
Maximum of Logged Data	2.557	SD of logged Data	0.844

Assuming Lognormal Distribution

95% H-UCL	12.9	90% Chebyshev (MVUE) UCL	7.717
95% Chebyshev (MVUE) UCL	9.432	97.5% Chebyshev (MVUE) UCL	11.81
99% Chebyshey (MVUE) UCL	16.49		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	6.747	95% Jackknife UCL	7.221
95% Standard Bootstrap UCL	6.564	95% Bootstrap-t UCL	16.25
95% Hall's Bootstrap UCL	18.99	95% Percentile Bootstrap UCL	6.71
95% BCA Bootstrap UCL	7.916		
90% Chebyshev(Mean, Sd) UCL	8.9	95% Chebyshev(Mean, Sd) UCL	11.06
97.5% Chebyshev(Mean, Sd) UCL	14.05	99% Chebyshev(Mean, Sd) UCL	19.94

Suggested UCL to Use

95% Adjusted Gamma UCL 11.2

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

DIELDRIN

RI Report - BHHRA

General Statistics

Total Number of Observations	7	Number of Distinct Observations	7
		Number of Missing Observations	14
Minimum	1.03	Mean	2.889
Maximum	8.49	Median	2.49
SD	2.564	Std. Error of Mean	0.969
Coefficient of Variation	0.888	Skewness	2.251

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.7	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.371	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	4.772	95% Adjusted-CLT UCL (Chen-1995)	5.364
		95% Modified-t UCL (Johnson-1978)	4.909

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.549	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.714	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.286	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.315	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	2.226	k star (bias corrected MLE)	1.367
Theta hat (MLE)	1.298	Theta star (bias corrected MLE)	2.113
nu hat (MLE)	31.16	nu star (bias corrected)	19.14
MLE Mean (bias corrected)	2.889	MLE Sd (bias corrected)	2.471
		Approximate Chi Square Value (0.05)	10.22
Adjusted Level of Significance	0.0158	Adjusted Chi Square Value	8.325

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 5.41 95% Adjusted Gamma UCL (use when n<50) 6.641

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.907	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.803	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.239	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.304	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.0296	Mean of logged Data	0.82
Maximum of Logged Data	2.139	SD of logged Data	0.699

Assuming Lognormal Distribution

95% H-UCL	6.635	90% Chebyshev (MVUE) UCL	5.006
95% Chebyshev (MVUE) UCL	6.012	97.5% Chebyshev (MVUE) UCL	7.409
99% Chebyshev (MVUE) UCL	10.15		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

4.772	95% Jackknife UCL	4.483	95% CLT UCL
7.789	95% Bootstrap-t UCL	4.339	95% Standard Bootstrap UCL
4.526	95% Percentile Bootstrap UCL	11.25	95% Hall's Bootstrap UCL
		4.997	95% BCA Bootstrap UCL
7.113	95% Chebyshev(Mean, Sd) UCL	5.796	90% Chebyshev(Mean, Sd) UCL
12.53	99% Chebyshev(Mean, Sd) UCL	8.941	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Adjusted Gamma UCL 6.641

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

February 2020

HEPTACHLOR EPOXIDE

General Statistics

Total Number of Observations	7	Number of Distinct Observations	7
		Number of Missing Observations	14
Minimum	0.357	Mean	1.314
Maximum	3.69	Median	1.07
SD	1.126	Std. Error of Mean	0.426
Coefficient of Variation	0.857	Skewness	1.957

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.786	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.283	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Data appear Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2.141	95% Adjusted-CLT UCL (Chen-1995)	2.351
		95% Modified-t UCL (Johnson-1978)	2.194

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.306	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.715	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.211	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.315	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	2.103	k star (bias corrected MLE)	1.297
Theta hat (MLE)	0.625	Theta star (bias corrected MLE)	1.013
nu hat (MLE)	29.44	nu star (bias corrected)	18.16
MLE Mean (bias corrected)	1.314	MLE Sd (bias corrected)	1.154
		Approximate Chi Square Value (0.05)	9.506
Adjusted Level of Significance	0.0158	Adjusted Chi Square Value	7.691

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.51 95% Adjusted Gamma UCL (use when n<50) 3.102

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.979	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.803	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.163	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.304	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-1.03	Mean of logged Data	0.0168
Maximum of Logged Data	1.306	SD of logged Data	0.751

Assuming Lognormal Distribution

95% H-UCL	3.415	90% Chebyshev (MVUE) UCL	2.389
95% Chebyshev (MVUE) UCL	2.889	97.5% Chebyshev (MVUE) UCL	3.583
99% Chebyshev (MVUE) UCL	4.945		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	2.014	95% Jackknife UCL	2.141
95% Standard Bootstrap UCL	1.97	95% Bootstrap-t UCL	3.283
95% Hall's Bootstrap UCL	5.422	95% Percentile Bootstrap UCL	2.051
95% BCA Bootstrap UCL	2.251		
90% Chebyshev(Mean, Sd) UCL	2.591	95% Chebyshev(Mean, Sd) UCL	3.169
97.5% Chebyshev(Mean, Sd) UCL	3.972	99% Chebyshev(Mean, Sd) UCL	5.549

Suggested UCL to Use

95% Student's-t UCL 2.141

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Mercury

General Statistics

Total Number of Observations	7	Number of Distinct Observations	7
		Number of Missing Observations	13
Minimum	0.033	Mean	0.108
Maximum	0.236	Median	0.121
SD	0.0678	Std. Error of Mean	0.0256
Coefficient of Variation	0.627	Skewness	1.076

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.886	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.259	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.158	95% Adjusted-CLT UCL (Chen-1995)	0.161
		95% Modified-t UCL (Johnson-1978)	0.16

Gamma GOF Test

0.334	Anderson-Darling Gamma GOF Test
0.712	Detected data appear Gamma Distributed at 5% Significance Level
0.223	Kolmogorov-Smirnov Gamma GOF Test
0.314	Detected data appear Gamma Distributed at 5% Significance Level
	0.712 0.223

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	3.004	k star (bias corrected MLE)	1.812
Theta hat (MLE)	0.036	Theta star (bias corrected MLE)	0.0597
nu hat (MLE)	42.06	nu star (bias corrected)	25.37
MLE Mean (bias corrected)	0.108	MLE Sd (bias corrected)	0.0803
		Approximate Chi Square Value (0.05)	14.89
Adjusted Level of Significance	0.0158	Adjusted Chi Square Value	12.54

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.184 95% Adjusted Gamma UCL (use when n<50) 0.219

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.947	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.803	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.24	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.304	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 -3.411
 Mean of logged Data
 -2.4

 Maximum of Logged Data
 -1.444
 SD of logged Data
 0.659

Assuming Lognormal Distribution

 95% H-UCL
 0.24
 90% Chebyshev (MVUE) UCL
 0.191

 95% Chebyshev (MVUE) UCL
 0.228
 97.5% Chebyshev (MVUE) UCL
 0.279

 99% Chebyshev (MVUE) UCL
 0.38

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.15	95% Jackknife UCL	0.158
95% Standard Bootstrap UCL	0.147	95% Bootstrap-t UCL	0.175
95% Hall's Bootstrap UCL	0.181	95% Percentile Bootstrap UCL	0.148
95% BCA Bootstrap UCL	0.158		
90% Chebyshev(Mean, Sd) UCL	0.185	95% Chebyshev(Mean, Sd) UCL	0.22
97.5% Chebyshev(Mean, Sd) UCL	0.268	99% Chebyshev(Mean, Sd) UCL	0.363

Suggested UCL to Use

95% Student's-t UCL 0.15

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

OXYCHLORDANE

RI Report - BHHRA

General Statistics

Total Number of Observations	7	Number of Distinct Observations	7
		Number of Missing Observations	14
Minimum	0.635	Mean	1.817
Maximum	4.82	Median	1.71
SD	1.436	Std. Error of Mean	0.543
Coefficient of Variation	0.79	Skewness	1.863

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.79	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.279	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Data appear Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2.871	95% Adjusted-CLT UCL (Chen-1995)	3.118
		95% Modified-t LICL (Johnson-1978)	2 935

Gamma GOF Test

A-D Test Statistic	0.363	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.714	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.186	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.315	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	2.405	k star (bias corrected MLE)	1.469
Theta hat (MLE)	0.756	Theta star (bias corrected MLE)	1.237
nu hat (MLE)	33.67	nu star (bias corrected)	20.57
MLE Mean (bias corrected)	1.817	MLE Sd (bias corrected)	1.499
		Approximate Chi Square Value (0.05)	11.27
Adjusted Level of Significance	0.0158	Adjusted Chi Square Value	9.267

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 3.315 95% Adjusted Gamma UCL (use when n<50) 4.033

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.941	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.803	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.163	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.304	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.454	Mean of logged Data	0.375
Maximum of Logged Data	1.573	SD of logged Data	0.699

Assuming Lognormal Distribution

95% H-UCL	4.254	90% Chebyshev (MVUE) UCL	3.209
95% Chebyshev (MVUE) UCL	3.855	97.5% Chebyshev (MVUE) UCL	4.75
99% Chebyshev (MVUE) UCL	6.509		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

2.871	95% Jackknife UCL	2.709	95% CLT UCL
3.611	95% Bootstrap-t UCL	2.636	95% Standard Bootstrap UCL
2.748	95% Percentile Bootstrap UCL	6.53	95% Hall's Bootstrap UCL
		3.069	95% BCA Bootstrap UCL
4.182	95% Chebyshev(Mean, Sd) UCL	3.445	90% Chebyshev(Mean, Sd) UCL
7.215	99% Chebyshev(Mean, Sd) UCL	5.205	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 2.871

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

PCB-TEQ (Mammal)

General Statistics

 Total Number of Observations
 7
 Number of Distinct Observations Number of Missing Observations
 7

 Minimum
 1.1661E-4
 Mean
 0.0013

 Maximum
 0.00533
 Median
 5.1159E-4

 SD
 0.00189
 Std. Error of Mean
 7.1459E-4

 Coefficient of Variation
 1.455
 Skewness
 2.08

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic 0.71 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.803 Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.291 Lilliefors GOF Test

5% Lilliefors Critical Value 0.304 Data appear Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.00269	95% Adjusted-CLT UCL (Chen-1995)	0.00307	
		95% Modified-t UCL (Johnson-1978)	0.00278	

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.435	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.741	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.236	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.324	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.673	k star (bias corrected MLE)	0.48
Theta hat (MLE)	0.00193	Theta star (bias corrected MLE)	0.00271
nu hat (MLE)	9.418	nu star (bias corrected)	6.715
MLE Mean (bias corrected)	0.0013	MLE Sd (bias corrected)	0.00188
		Approximate Chi Square Value (0.05)	2.016
Adjusted Level of Significance	0.0158	Adjusted Chi Square Value	1.332

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.00433 95% Adjusted Gamma UCL (use when n<50) 0.00655

Lognormal GOF Test

est Statistic 0.907 Shapiro Wilk Lo	gnormal GOF Test
itical Value 0.803 Data appear Lognorma	al at 5% Significance Level
est Statistic 0.229 Lilliefors Logr	normal GOF Test
itical Value 0 304 Data annear Lognorma	al at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-9.057	Mean of logged Data	-7.549
Maximum of Logged Data	-5.235	SD of logged Data	1.481

Assuming Lognormal Distribution

95% H-UCL	0.0349	90% Chebyshev (MVUE) UCL	0.00326
95% Chebyshev (MVUE) UCL	0.00417	97.5% Chebyshev (MVUE) UCL	0.00544
99% Chebyshev (MVUE) UCL	0.00794		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.00247	95% Jackknife UCL	0.00269
95% Standard Bootstrap UCL	0.00237	95% Bootstrap-t UCL	0.00706
95% Hall's Bootstrap UCL	0.00743	95% Percentile Bootstrap UCL	0.0025
95% BCA Bootstrap UCL	0.00299		
90% Chebyshev(Mean, Sd) UCL	0.00344	95% Chebyshev(Mean, Sd) UCL	0.00441
97.5% Chebyshev(Mean, Sd) UCL	0.00576	99% Chebyshev(Mean, Sd) UCL	0.00841

Suggested UCL to Use

95% Student's-t UCL 0.00269

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Total PCBs (Congeners)

General Statistics

Total Number of Observations	7	Number of Distinct Observations	7
		Number of Missing Observations	14
Minimum	41.65	Mean	191.7
Maximum	680.6	Median	119.7
SD	227.9	Std. Error of Mean	86.14
Coefficient of Variation	1.188	Skewness	2.125

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.715	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.302	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Data appear Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

/ Counting Hornia Distribution			
95% Normal UCL	95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL 359.1	95% Adjusted-CLT UCL (Chen-1995)	407.3	
	95% Modified-t UCL (Johnson-1978)	370.7	

Gamma GOF Test

Anderson-Daning Gamma GOF Test	0.463	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.725	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.215	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.319	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.187	k star (bias corrected MLE)	0.774
Theta hat (MLE)	161.5	Theta star (bias corrected MLE)	247.9
nu hat (MLE)	16.62	nu star (bias corrected)	10.83
MLE Mean (bias corrected)	191.7	MLE Sd (bias corrected)	218
		Approximate Chi Square Value (0.05)	4.467
Adjusted Level of Significance	0.0158	Adjusted Chi Square Value	3.32

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 464.9 95% Adjusted Gamma UCL (use when n<50) 625.6

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.921	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.803	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.2	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.304	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	3.729	Mean of logged Data	4.779
Maximum of Logged Data	6.523	SD of logged Data	1.006

Assuming Lognormal Distribution

95% H-UCL	907.9	90% Chebyshev (MVUE) UCL	385.7
95% Chebyshev (MVUE) UCL	478.9	97.5% Chebyshev (MVUE) UCL	608.4
99% Chebyshev (MVUE) UCL	862.6		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	333.4	95% Jackknife UCL	359.1
95% Standard Bootstrap UCL	324.8	95% Bootstrap-t UCL	774.8
95% Hall's Bootstrap UCL	962.3	95% Percentile Bootstrap UCL	333.9
95% BCA Bootstrap UCL	380.1		
90% Chebyshev(Mean, Sd) UCL	450.2	95% Chebyshev(Mean, Sd) UCL	567.2
97.5% Chebyshev(Mean, Sd) UCL	729.7	99% Chebyshev(Mean, Sd) UCL	1049

Suggested UCL to Use

95% Student's-t UCL 359.1

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

trans-NONACHLOR

General Statistics

Total Number of Observations	7	Number of Distinct Observations	7
		Number of Missing Observations	14
Minimum	2.94	Mean	10.66
Maximum	30	Median	7.01
SD	9.683	Std. Error of Mean	3.66
Coefficient of Variation	0.909	Skewness	1.657

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.806	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.803	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.273	Lilliefors GOF Test
5% Lilliefors Critical Value	0.304	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	17.77	95% Adjusted-CLT UCL (Chen-1995)	19.13
		95% Modified-t UCL (Johnson-1978)	18.15

February 2020

Gamma GOF Test

A-D Test Statistic	0.343	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.718	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.188	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.316	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.783	k star (bias corrected MLE)	1.114
Theta hat (MLE)	5.978	Theta star (bias corrected MLE)	9.567
nu hat (MLE)	24.96	nu star (bias corrected)	15.6
MLE Mean (bias corrected)	10.66	MLE Sd (bias corrected)	10.1
		Approximate Chi Square Value (0.05)	7.678
Adjusted Level of Significance	0.0158	Adjusted Chi Square Value	6.079

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 21.65 95% Adjusted Gamma UCL (use when n<50) 27.34

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.956	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.803	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.158	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.304	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.078	Mean of logged Data	2.06
Maximum of Logged Data	3.401	SD of logged Data	0.821

Assuming Lognormal Distribution

95% H-UCL	32.21	90% Chebyshev (MVUE) UCL	20.09
95% Chebyshev (MVUE) UCL	24.49	97.5% Chebyshev (MVUE) UCL	30.6
99% Chebyshev (MVUE) UCL	42.61		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 16.68 95% Jackknife UCL 1	Jackknife UCL 17.77
andard Bootstrap UCL 16.27 95% Bootstrap-t UCL 3	Bootstrap-t UCL 31.5
6 Hall's Bootstrap UCL 47.77 95% Percentile Bootstrap UCL 1	Bootstrap UCL 16.66
% BCA Bootstrap UCL 18.77	
yshev(Mean, Sd) UCL 21.64 95% Chebyshev(Mean, Sd) UCL 2	(Mean, Sd) UCL 26.61
yshev(Mean, Sd) UCL 33.51 99% Chebyshev(Mean, Sd) UCL 4	(Mean, Sd) UCL 47.07

Suggested UCL to Use

95% Student's-t UCL 17.77

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.15/10/2018 2:59:46 PM

From File PotomacProUcl.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

4,4'-DDD (lower potomac)

General Statistics

Total Number of Observations	9	Number of Distinct Observations	9
		Number of Missing Observations	0
Minimum 4	1.5200E-4	Mean	0.00346
Maximum	0.014	Median	0.0024
SD	0.00414	Std. Error of Mean	0.00138
Coefficient of Variation	1.198	Skewness	2.509

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.673	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.318	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.00602	95% Adjusted-CLT UCL (Chen-1995)	0.00696
		95% Modified-t UCL (Johnson-1978)	0.00621

Gamma GOF Test

A-D Test Statistic	0.406	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.74	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.189	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.286	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

0.856	k star (bias corrected MLE)	1.173	k hat (MLE)
0.00404	Theta star (bias corrected MLE)	0.00295	Theta hat (MLE)
15.41	nu star (bias corrected)	21.11	nu hat (MLE)
0.00374	MLE Sd (bias corrected)	0.00346	MLE Mean (bias corrected)
7.545	Approximate Chi Square Value (0.05)		
6.42	Adjusted Chi Square Value	0.0231	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<=50) 0.00706 95% Adjusted Gamma UCL (use when n<50) 0.00829

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.95	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.172	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.274	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-7.702	Mean of logged Data	-6.151
Maximum of Logged Data	-4.269	SD of logged Data	1.044

Assuming Lognormal Distribution

95% H-UCL	0.0126	90% Chebyshev (MVUE) UCL	0.00705
95% Chebyshev (MVUE) UCL	0.00871	97.5% Chebyshev (MVUE) UCL	0.011
99% Chebyshev (MVUE) UCL	0.0155		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.00573	95% Jackknife UCL	0.00602
95% Standard Bootstrap UCL	0.0056	95% Bootstrap-t UCL	0.0104
95% Hall's Bootstrap UCL	0.0157	95% Percentile Bootstrap UCL	0.00599
95% BCA Bootstrap UCL	0.00656		
90% Chebyshev(Mean, Sd) UCL	0.0076	95% Chebyshev(Mean, Sd) UCL	0.00947
97.5% Chebyshev(Mean, Sd) UCL	0.0121	99% Chebyshev(Mean, Sd) UCL	0.0172

Suggested UCL to Use

95% Adjusted Gamma UCL 0.00829

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

4,4'-DDD (upper potomac)

General Statistics

Total Number of Observations	9	Number of Distinct Observations	9
		Number of Missing Observations	0
Minimum 2	.9100E-4	Mean	0.0103
Maximum	0.0516	Median	0.00188
SD	0.0174	Std. Error of Mean	0.00579
Coefficient of Variation	1.69	Skewness	2.139

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.649	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.37	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	•	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.021	95% Adjusted-CLT UCL (Chen-1995)	0.0242
		95% Modified-t UCL (Johnson-1978)	0.0217

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.53	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.772	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.22	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.294	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma	04-		
Gamma	Sta	rist	ICS

k hat (MLE)	0.492	k star (bias corrected MLE)	0.402
Theta hat (MLE)	0.0209	Theta star (bias corrected MLE)	0.0255
nu hat (MLE)	8.864	nu star (bias corrected)	7.243
MLE Mean (bias corrected)	0.0103	MLE Sd (bias corrected)	0.0162
		Approximate Chi Square Value (0.05)	2.305
Adjusted Level of Significance	0.0231	Adjusted Chi Square Value	1.763

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<=50) 0.0323 95% Adjusted Gamma UCL (use when n<50) 0.0422

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.953	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.147	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.274	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-8.142	Mean of logged Data	-5.871
Maximum of Logged Data	-2.964	SD of logged Data	1.758

Assuming Lognormal Distribution

95% H-UCL	0.312	90% Chebyshev (MVUE) UCL	0.0268
95% Chebyshev (MVUE) UCL	0.0346	97.5% Chebyshev (MVUE) UCL	0.0454
99% Chebyshev (MVUE) UCL	0.0667		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.0198	95% Jackknife UCL	0.021
95% Standard Bootstrap UCL	0.0191	95% Bootstrap-t UCL	0.0786
95% Hall's Bootstrap UCL	0.0717	95% Percentile Bootstrap UCL	0.0206
95% BCA Bootstrap UCL	0.0247		
90% Chebyshev(Mean, Sd) UCL	0.0276	95% Chebyshev(Mean, Sd) UCL	0.0355
97.5% Chebyshev(Mean, Sd) UCL	0.0464	99% Chebyshev(Mean, Sd) UCL	0.0678

Suggested UCL to Use

95% Adjusted Gamma UCL 0.0422

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

4,4'-DDE (lower potomac)

	General Statistics		
Total Number of Observations	9	Number of Distinct Observations	9
		Number of Missing Observations	0
Minimum	0.00243	Mean	0.0171
Maximum	0.0601	Median	0.00886
SD	0.0195	Std. Error of Mean	0.0065
Coefficient of Variation	1.139	Skewness	1.787

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

February 2020

Normal GOF Test

Shapiro Wilk Test Statistic 0.724 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.829 Data Not Normal at 5% Significance Level

Lilliefors Test Statistic 0.358 Lilliefors GOF Test

5% Lilliefors Critical Value 0.274 Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 0.0292 95% Adjusted-CLT UCL (Chen-1995) 0.032 95% Modified-t UCL (Johnson-1978) 0.0299

Gamma GOF Test

A-D Test Statistic 0.577 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.74 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.26 Kolmogorov-Smirnov Gamma GOF Test

5% K-S Critical Value 0.286 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

0.861	k star (bias corrected MLE)	1.181	k hat (MLE)
0.0199	Theta star (bias corrected MLE)	0.0145	Theta hat (MLE)
15.51	nu star (bias corrected)	21.26	nu hat (MLE)
0.0185	MLE Sd (bias corrected)	0.0171	MLE Mean (bias corrected)
7.614	Approximate Chi Square Value (0.05)		
6.483	Adjusted Chi Square Value	0.0231	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 0.0349 95% Adjusted Gamma UCL (use when n<50) 0.041

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.946	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.192	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.274	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-6.02	Mean of logged Data	-4.547
Maximum of Logged Data	-2.812	SD of logged Data	1.009

Assuming Lognormal Distribution

95% H-UCL	0.0564	90% Chebyshev (MVUE) UCL	0.0334
95% Chebyshev (MVUE) UCL	0.0412	97.5% Chebyshev (MVUE) UCL	0.0519
99% Chebyshev (MVUE) UCL	0.073		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.0278	95% Jackknife UCL	0.0292
95% Standard Bootstrap UCL	0.0271	95% Bootstrap-t UCL	0.0709
95% Hall's Bootstrap UCL	0.102	95% Percentile Bootstrap UCL	0.0286
95% BCA Bootstrap UCL	0.0305		
90% Chebyshev(Mean, Sd) UCL	0.0366	95% Chebyshev(Mean, Sd) UCL	0.0455
97.5% Chebyshev(Mean, Sd) UCL	0.0578	99% Chebyshev(Mean, Sd) UCL	0.0819

Suggested UCL to Use

95% Adjusted Gamma UCL 0.041

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

4,4'-DDE (upper potomac)

General Statistics	3	Statistics	General
--------------------	---	------------	---------

Total Number of Observation	ons 9	Number of Distinct Observations	9
		Number of Missing Observations	0
Minim	um 0.00416	Mean	0.0624
Maxim	um 0.243	Median	0.00967
;	SD 0.101	Std. Error of Mean	0.0337
Coefficient of Variat	ion 1.619	Skewness	1.593

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.602	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.414	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.125	95% Adjusted-CLT UCL (Chen-1995)	0.137
		95% Modified-t UCL (Johnson-1978)	0.128

Gamma GOF Test

Anderson-Darling Gamma GOF Test	1.063	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Lev	0.769	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.295	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Lev	0.294	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

0.422	k star (bias corrected MLE)	0.522	k hat (MLE)
0.148	Theta star (bias corrected MLE)	0.119	Theta hat (MLE)
7.601	nu star (bias corrected)	9.402	nu hat (MLE)
0.096	MLE Sd (bias corrected)	0.0624	MLE Mean (bias corrected)
2.506	Approximate Chi Square Value (0.05)		
1.934	Adjusted Chi Square Value	0.0231	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.189 95% Adjusted Gamma UCL (use when n<50) 0.245

Lognormal GOF Test

		Logitorina doi 1000	
Shapiro	Wilk Test Statistic	0.83	Shapiro Wilk Lognormal GOF Test
5% Shapiro V	Wilk Critical Value	0.829	Data appear Lognormal at 5% Significance Level
Lillie	fors Test Statistic	0.216	Lilliefors Lognormal GOF Test
5% Lillie	fors Critical Value	0.274	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-5.482	Mean of logged Data	-3.982
Maximum of Logged Data	-1.415	SD of logged Data	1.59

Assuming Lognormal Distribution

95% H-UCL	0.912	90% Chebyshev (MVUE) UCL	0.137
95% Chebyshev (MVUE) UCL	0.175	97.5% Chebyshev (MVUE) UCL	0.228
99% Chebyshev (MVUE) UCL	0.333		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

0.125	95% Jackknife UCL	0.118	95% CLT UCL
0.679	95% Bootstrap-t UCL	0.114	95% Standard Bootstrap UCL
0.115	95% Percentile Bootstrap UCL	0.556	95% Hall's Bootstrap UCL
		0.138	95% BCA Bootstrap UCL
0.209	95% Chebyshev(Mean, Sd) UCL	0.163	90% Chebyshev(Mean, Sd) UCL
0.397	99% Chebyshev(Mean, Sd) UCL	0.273	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

99% Chebyshev (Mean, Sd) UCL 0.397

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ALDRIN (upper potomac)

General Statistics

Total Number of Observations	9	Number of Distinct Observations	9
Number of Detects	5	Number of Non-Detects	4
Number of Distinct Detects	5	Number of Distinct Non-Detects	4
Minimum Detect 6	.7000E-5	Minimum Non-Detect	4.9200E-5
Maximum Detect	0.0012	Maximum Non-Detect	5.0200E-5
Variance Detects 2	.2902E-7	Percent Non-Detects	44.44%
Mean Detects 3	.5900E-4	SD Detects	4.7856E-4
Median Detects 1	.1500E-4	CV Detects	1.333
Skewness Detects	2.054	Kurtosis Detects	4.267
Mean of Logged Detects	-8.521	SD of Logged Detects	1.14

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.695	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.349	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM SD 3.5424E-4 95% KM (BCA) UCL 4.5429E-4 95% KM (t) UCL 4.6680E-4 95% KM (Percentile Bootstrap) UCL 4.5456E-4 95% KM (z) UCL 4.3846E-4 95% KM Bootstrap t UCL 0.00186 90% KM Chebyshev UCL 6.1736E-4 95% KM Chebyshev UCL 7.9676E-4 97.5% KM Chebyshev UCL 0.00153 99% KM Chebyshev UCL 0.00153	KM Standard Error of Mean 1.3202E-4	KM Mean 2.2131E-4
95% KM (z) UCL 4.3846E-4 95% KM Bootstrap t UCL 0.00186 90% KM Chebyshev UCL 6.1736E-4 95% KM Chebyshev UCL 7.9676E-4	95% KM (BCA) UCL 4.5429E-4	KM SD 3.5424E-4
90% KM Chebyshev UCL 6.1736E-4 95% KM Chebyshev UCL 7.9676E-4	95% KM (Percentile Bootstrap) UCL 4.5456E-4	95% KM (t) UCL 4.6680E-4
•	95% KM Bootstrap t UCL 0.00186	95% KM (z) UCL 4.3846E-4
97.5% KM Chebyshev UCL	95% KM Chebyshev UCL 7.9676E-4	90% KM Chebyshev UCL 6.1736E-4
	99% KM Chebyshev UCL 0.00153	97.5% KM Chebyshev UCL 0.00105

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.55	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.692	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.322	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.365	5% K-S Critical Value

Gamma Statistics on Detected Data Only

k hat (MLE) 0.982	k star (bias corrected MLE) 0.526	3
Theta hat (MLE) 3.6563E-4	Theta star (bias corrected MLE) 6.8241E	-4
nu hat (MLE) 9.819	nu star (bias corrected) 5.26	1
Mean (detects) 3.5900E-4		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.00464	Mean	Minimum 6.7000E-5		
0.0012	Median	0.01	Maximum	
1.097	CV	0.00509	SD	
0.379	k star (bias corrected MLE)	0.457	k hat (MLE)	
0.0123	Theta star (bias corrected MLE)	0.0102	Theta hat (MLE)	
6.821	nu star (bias corrected)	8.231	nu hat (MLE)	
		0.0231	Adjusted Level of Significance (β)	
1.567	Adjusted Chi Square Value (6.82, β)	2.073	Approximate Chi Square Value (6.82, α)	
0.0202	95% Gamma Adjusted UCL (use when n<50)	0.0153	95% Gamma Approximate UCL (use when n>=50)	

Estimates of Gamma Parameters using KM Estimates

Mean (KM) 2.2131E-4	SD (KM) 3.5424E-4
Variance (KM) 1.2548E-7	SE of Mean (KM) 1.3202E-4
k hat (KM) 0.39	k star (KM) 0.334
nu hat (KM) 7.026	nu star (KM) 6.017
theta hat (KM) 5.6700E-4	theta star (KM) 6.6204E-4
80% gamma percentile (KM) 3.4752E-4	90% gamma percentile (KM) 6.4346E-4
95% gamma percentile (KM) 9.7723E-4	99% gamma percentile (KM) 0.00183

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (6.02, α)	1.649	Adjusted Chi Square Value (6.02, β)	1.214
95% Gamma Approximate KM-UCL (use when n>=50) 8.	0774E-4	95% Gamma Adjusted KM-UCL (use when n<50)	0.0011

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.891	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.285	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Log Scale -9.	Mean in Original Scale 2.0294E-4
SD in Log Scale 1	SD in Original Scale 3.8569E-4
95% Percentile Bootstrap UCL 4.405	95% t UCL (assumes normality of ROS data) 4.4201E-4
95% Bootstrap t UCL 0.0	95% BCA Bootstrap UCL 5.6252E-4
	95% H-LICL (Log ROS) 0.0103

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

	KM Mean (logged)	-9.143	KM Geo Mean	1.0699E-4
	KM SD (logged)	1.03	95% Critical H Value (KM-Log)	3.306
KM S	Standard Error of Mean (logged)	0.384	95% H-UCL (KM -Log)	6.0609E-4
	KM SD (logged)	1.03	95% Critical H Value (KM-Log)	3.306
KM S	Standard Error of Mean (logged)	0.384		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed	
Mean in Original Scale 2.1052E-4	Mean in Log Scale	-9.445
SD in Original Scale 3.8146E-4	SD in Log Scale	1.36
95% t UCL (Assumes normality) 4.4697E-4	95% H-Stat UCL	0.00143

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

alpha-Chlordane (lower potomac)

General Statistics

9	Number of Distinct Observations	9	Total Number of Observations
0	Number of Missing Observations		
0.00571	Mean	1.1700E-4	Minimum -
0.0025	Median	0.0241	Maximum
0.0025	Std. Error of Mean	0.0075	SD
2.258	Skewness	1.312	Coefficient of Variation

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.688	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.331	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	0.0104	95% Adjusted-CLT UCL (Chen-1995)	0.0118
		95% Modified + LICL (Johnson-1978)	0.0107

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.502	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.746	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.294	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.288	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics

0.696	k star (bias corrected MLE)	0.933	k hat (MLE)
0.00821	Theta star (bias corrected MLE)	0.00612	Theta hat (MLE)
12.53	nu star (bias corrected)	16.79	nu hat (MLE)
0.00685	MLE Sd (bias corrected)	0.00571	MLE Mean (bias corrected)
5.577	Approximate Chi Square Value (0.05)		
4.637	Adjusted Chi Square Value	0.0231	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 0.0128 95% Adjusted Gamma UCL (use when n<50) 0.0154

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.96	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.229	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.274	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-7.782	Mean of logged Data	-5.789
Maximum of Logged Data	-3.726	SD of logged Data	1.19

Assuming Lognormal Distribution

95% H-UCL	0.0292	90% Chebyshev (MVUE) UCL	0.0124
95% Chebyshev (MVUE) UCL	0.0155	97.5% Chebyshev (MVUE) UCL	0.0198
99% Chebyshev (MVUE) UCL	0.0283		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.00982	95% Jackknife UCL	0.0104
95% Standard Bootstrap UCL	0.00957	95% Bootstrap-t UCL	0.0219
95% Hall's Bootstrap UCL	0.026	95% Percentile Bootstrap UCL	0.0103
95% BCA Bootstrap UCL	0.0112		
90% Chebyshev(Mean, Sd) UCL	0.0132	95% Chebyshev(Mean, Sd) UCL	0.0166
97.5% Chebyshev(Mean, Sd) UCL	0.0213	99% Chebyshev(Mean, Sd) UCL	0.0306

Suggested UCL to Use

95% Adjusted Gamma UCL 0.0154

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

alpha-Chlordane (upper potomac)

General Statistics

9	Number of Distinct Observations	9	Total Number of Observations
9	Number of Distinct Observations	9	Total Number of Observations
0	Number of Missing Observations		
0.0123	Mean	2.0500E-4	Minimum
0.00284	Median	0.0537	Maximum
0.00606	Std. Error of Mean	0.0182	SD
1.84	Skewness	1.48	Coefficient of Variation

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.73	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.284	Lilliefors GOF Test
5% Lilliefors Critical Value	0 274	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	0.0236	95% Adjusted-CLT UCL (Chen-1995)	0.0262
		95% Modified-t UCL (Johnson-1978)	0.0242

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.366	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.773	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.212	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.295	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

0.398	k star (bias corrected MLE)	0.486	k hat (MLE)
0.0309	Theta star (bias corrected MLE)	0.0253	Theta hat (MLE)
7.168	nu star (bias corrected)	8.752	nu hat (MLE)
0.0195	MLE Sd (bias corrected)	0.0123	MLE Mean (bias corrected)
2.263	Approximate Chi Square Value (0.05)		
1.727	Adjusted Chi Square Value	0.0231	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 0.0389 95% Adjusted Gamma UCL (use when n<50) 0.051

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.949	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.174	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.274	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-8.493	Mean of logged Data	-5.711
Maximum of Logged Data	-2.924	SD of logged Data	1.936

Assuming Lognormal Distribution

95% H-UCL	0.959	90% Chebyshev (MVUE) UCL	0.0419
95% Chebyshev (MVUE) UCL	0.0544	97.5% Chebyshev (MVUE) UCL	0.0718
99% Chebyshev (MVUE) UCL	0.106		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.0223	95% Jackknife UCL	0.0236
95% Standard Bootstrap UCL	0.0216	95% Bootstrap-t UCL	0.045
95% Hall's Bootstrap UCL	0.0711	95% Percentile Bootstrap UCL	0.0229
95% BCA Bootstrap UCL	0.0271		
90% Chebyshev(Mean, Sd) UCL	0.0305	95% Chebyshev(Mean, Sd) UCL	0.0387
97.5% Chebyshev(Mean, Sd) UCL	0.0501	99% Chebyshev(Mean, Sd) UCL	0.0726

Suggested UCL to Use

95% Adjusted Gamma UCL 0.051

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Arsenic (lower potomac)

General Statistics

Total Number of Observations	9	Number of Distinct Observations	8
Number of Detects	2	Number of Non-Detects	7
Number of Distinct Detects	2	Number of Distinct Non-Detects	6
Minimum Detect	0.192	Minimum Non-Detect	0.089
Maximum Detect	3.71	Maximum Non-Detect	0.167
Variance Detects	6.188	Percent Non-Detects	77.78%
Mean Detects	1.951	SD Detects	2.488
Median Detects	1.951	CV Detects	1.275
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	-0.17	SD of Logged Detects	2.094

Warning: Data set has only 2 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Not Enough Data to Perform GOF Test

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.503	KM Standard Error of Mean	0.535
KM SD	1.134	95% KM (BCA) UCL	N/A
95% KM (t) UCL	1.497	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	1.382	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	2.107	95% KM Chebyshev UCL	2.834
97.5% KM Chebyshev UCL	3.842	99% KM Chebyshev UCL	5.823

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

N/A	k star (bias corrected MLE)	0.719	k hat (MLE)
N/A	Theta star (bias corrected MLE)	2.715	Theta hat (MLE)
N/A	nu star (bias corrected)	2.874	nu hat (MLE)
		1.951	Mean (detects)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.503	SD (KM)	1.134
Variance (KM)	1.287	SE of Mean (KM)	0.535
k hat (KM)	0.196	k star (KM)	0.205
nu hat (KM)	3.536	nu star (KM)	3.691
theta hat (KM)	2.559	theta star (KM)	2.452
80% gamma percentile (KM)	0.671	90% gamma percentile (KM)	1.521
95% gamma percentile (KM)	2.574	99% gamma percentile (KM)	5.461

Gamma Kaplan-Meier (KM) Statistics

0.0231	Adjusted Level of Significance (β)		
0.395	Adjusted Chi Square Value (3.69, β)	0.603	Approximate Chi Square Value (3.69, α)
4.699	95% Gamma Adjusted KM-UCL (use when n<50)	3.075	95% Gamma Approximate KM-UCL (use when n>=50)

Lognormal GOF Test on Detected Observations Only

Not Enough Data to Perform GOF Test

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.434	Mean in Log Scale	-8.956
SD in Original Scale	1.23	SD in Log Scale	5.196
95% t UCL (assumes normality of ROS data)	1.196	95% Percentile Bootstrap UCL	1.237
95% BCA Bootstrap UCL	1.67	95% Bootstrap t UCL	13924
95% H-UCL (Log ROS) 2	.224E+13		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.919	KM Geo Mean	0.147
KM SD (logged)	1.167	95% Critical H Value (KM-Log)	3.621
KM Standard Error of Mean (logged)	0.55	95% H-UCL (KM -Log)	1.291
KM SD (logged)	1.167	95% Critical H Value (KM-Log)	3.621
KM Standard Error of Mean (logged)	0.55		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.475	Mean in Log Scale	-2.34
SD in Original Scale	1.214	SD in Log Scale	1.45
95% t UCL (Assumes normality)	1.227	95% H-Stat UCL	2.523

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

KM Bootstrap t UCL N/A

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Arsenic (upper potomac)

General Statistics

Total Number of Observations	9	Number of Distinct Observations	9
Number of Detects	5	Number of Non-Detects	4
Number of Distinct Detects	5	Number of Distinct Non-Detects	4
Minimum Detect	0.112	Minimum Non-Detect	0.095
Maximum Detect	0.846	Maximum Non-Detect	0.108
Variance Detects	0.0817	Percent Non-Detects	44.44%
Mean Detects	0.354	SD Detects	0.286
Median Detects	0.247	CV Detects	0.808
Skewness Detects	1.826	Kurtosis Detects	3.7
Mean of Logged Detects	-1.264	SD of Logged Detects	0.73

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.796	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.336	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

February 2020

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.239	KM Standard Error of Mean	0.0857
KM SD	0.23	95% KM (BCA) UCL	0.39
95% KM (t) UCL	0.398	95% KM (Percentile Bootstrap) UCL	0.38
95% KM (z) UCL	0.38	95% KM Bootstrap t UCL	0.526
90% KM Chebyshev UCL	0.496	95% KM Chebyshev UCL	0.612
97.5% KM Chebyshev UCL	0.774	99% KM Chebyshev UCL	1.091

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.381	Anderson-Darling GOF Test
5% A-D Critical Value	0.684	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.259	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.36	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.088	k star (bias corrected MLE)	2.386	k hat (MLE)
0.325	Theta star (bias corrected MLE)	0.148	Theta hat (MLE)
10.88	nu star (bias corrected)	23.86	nu hat (MLE)
		0.354	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and $\ensuremath{\mathsf{BTVs}}$

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.201
Maximum	0.846	Median	0.112
SD	0.271	CV	1.351
k hat (MLE)	0.548	k star (bias corrected MLE)	0.439
Theta hat (MLE)	0.367	Theta star (bias corrected MLE)	0.457
nu hat (MLE)	9.858	nu star (bias corrected)	7.905
Adjusted Level of Significance (β)	0.0231		
Approximate Chi Square Value (7.91, α)	2.68	Adjusted Chi Square Value (7.91, β)	2.083
95% Gamma Approximate UCL (use when n>=50)	0.593	95% Gamma Adjusted UCL (use when n<50)	0.762

Estimates of Gamma Parameters using KM Estimates

0.239 SI	D (KM) 0.23
0.0528 SE of Mea	n (KM) 0.085
1.078 k sta	ar (KM) 0.793
19.41 nu sta	ar (KM) 14.27
0.221 theta sta	ar (KM) 0.301
0.39 90% gamma percentil	le (KM) 0.582
0.777 99% gamma percentil	le (KM) 1.238

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (14.27, α)	6.757	Adjusted Chi Square Value (14.27, β)	5.703
95% Gamma Approximate KM-UCL (use when n>=50)	0.504	95% Gamma Adjusted KM-UCL (use when n<50)	0.597

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.951	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.762	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.219	Lilliefors GOF Test
5% Lilliefors Critical Value	0.343	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-2.179	Mean in Log Scale	0.212	Mean in Original Scale
1.202	SD in Log Scale	0.262	SD in Original Scale
0.359	95% Percentile Bootstrap UCL	0.375	95% t UCL (assumes normality of ROS data)
0.557	95% Bootstrap t UCL	0.405	95% BCA Bootstrap UCL
		1.125	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.748	KM Geo Mean	0.174
KM SD (logged)	0.728	95% Critical H Value (KM-Log)	2.672
KM Standard Error of Mean (logged)	0.271	95% H-UCL (KM -Log)	0.452
KM SD (logged)	0.728	95% Critical H Value (KM-Log)	2.672
KM Standard Error of Mean (logged)	0.271		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	0.219	Mean in Log Scale	-2.029	
SD in Original Scale	0.258	SD in Log Scale	1.045	
95% t UCL (Assumes normality)	0.379	95% H-Stat UCL	0.78	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.398

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

beta-BHC (upper potomac)

General Statistics

9	Number of Distinct Observations	9	Total Number of Observations
0	Number of Missing Observations		
6.9133E-4	Mean	6.0000E-5	Minimum
4.9600E-4	Median	0.00274	Maximum
2.7027E-4	Std. Error of Mean	8.1082E-4	SD
2.421	Skewness	1.173	Coefficient of Variation

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.697	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.337	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL

95% Student's-t UCL	0.00119	95% Adjusted-CLT UCL (Chen-1995)	0.00137
		95% Modified-t UCL (Johnson-1978)	0.00123

Gamma GOF Test

A-D Test Statistic	0.351	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.742	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.206	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.286	Detected data appear Gamma Distributed at 5% Significance Level

95% UCLs (Adjusted for Skewness)

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

 k hat (MLE)
 1.075
 k star (bias corrected MLE)
 0.791

 Theta hat (MLE)
 6.4314E-4
 Theta star (bias corrected MLE)
 8.7433E-4

 nu hat (MLE)
 19.35
 nu star (bias corrected)
 14.23

 MLE Mean (bias corrected)
 6.9133E-4
 MLE Sd (bias corrected)
 7.7747E-4

 Approximate Chi Square Value (0.05)
 6.731

 Adjusted Level of Significance
 0.0231
 Adjusted Chi Square Value
 5.679

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<50) 0.00146 95% Adjusted Gamma UCL (use when n<50) 0.00173

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.944 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.829 Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.194 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.274 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data -9.721 Mean of logged Data -7.809
Maximum of Logged Data -5.9 SD of logged Data 1.161

Assuming Lognormal Distribution

 95% H-UCL
 0.0035
 90% Chebyshev (MVUE) UCL
 0.00158

 95% Chebyshev (MVUE) UCL
 0.00197
 97.5% Chebyshev (MVUE) UCL
 0.00251

 99% Chebyshev (MVUE) UCL
 0.00358

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.00114	95% Jackknife UCL	0.00119
95% Standard Bootstrap UCL	0.0011	95% Bootstrap-t UCL	0.0018
95% Hall's Bootstrap UCL	0.00301	95% Percentile Bootstrap UCL	0.0012
95% BCA Bootstrap UCL	0.00136		
90% Chebyshev(Mean, Sd) UCL	0.0015	95% Chebyshev(Mean, Sd) UCL	0.00187
97.5% Chebyshev(Mean, Sd) UCL	0.00238	99% Chebyshev(Mean, Sd) UCL	0.00338

Suggested UCL to Use

95% Adjusted Gamma UCL 0.00173

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

Chlordane, gamma (lower potomac)

General Statistics

Total Number of Observations	9	Number of Distinct Observations	9
Number of Detects	8	Number of Non-Detects	1
Number of Distinct Detects	8	Number of Distinct Non-Detects	1
Minimum Detect	3.8400E-4	Minimum Non-Detect	4.9600E-5
Maximum Detect	0.00943	Maximum Non-Detect	4.9600E-5
Variance Detects	1.0633E-5	Percent Non-Detects	11.11%
Mean Detects	0.00313	SD Detects	0.00326
Median Detects	0.00157	CV Detects	1.043
Skewness Detects	1.341	Kurtosis Detects	0.706
Mean of Logged Detects	-6.261	SD of Logged Detects	1.088

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk GOF Test	0.814	Shapiro Wilk Test Statistic
Detected Data Not Normal at 5% Significance Leve	0.818	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.288	Lilliefors Test Statistic
Detected Data Not Normal at 5% Significance Leve	0.283	5% Lilliefors Critical Value

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.00279	KM Standard Error of Mean	0.00108
KM SD	0.00303	95% KM (BCA) UCL	0.00467
95% KM (t) UCL	0.0048	95% KM (Percentile Bootstrap) UCL	0.00456
95% KM (z) UCL	0.00456	95% KM Bootstrap t UCL	0.0075
90% KM Chebyshev UCL	0.00603	95% KM Chebyshev UCL	0.0075
97.5% KM Chebyshev UCL	0.00954	99% KM Chebyshev UCL	0.0135

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.325	Anderson-Darling GOF Test
5% A-D Critical Value	0.733	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.219	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.301	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.803	k star (bias corrected MLE)	1.151	k hat (MLE)
0.0039	Theta star (bias corrected MLE)	0.00272	Theta hat (MLE)
12.84	nu star (bias corrected)	18.41	nu hat (MLE)
		0.00313	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	3.8400E-4	Mean	0.00389
Maximum	0.01	Median	0.00176
SD	0.00381	CV	0.98
k hat (MLE)	1.083	k star (bias corrected MLE)	0.796
Theta hat (MLE)	0.00359	Theta star (bias corrected MLE)	0.00489
nu hat (MLE)	19.49	nu star (bias corrected)	14.33
Adjusted Level of Significance (β)	0.0231		
Approximate Chi Square Value (14.33, α)	6.796	Adjusted Chi Square Value (14.33, β)	5.739
95% Gamma Approximate UCL (use when n>=50)	0.0082	95% Gamma Adjusted UCL (use when n<50)	0.00971

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.00279	SD (KM)	0.00303
Variance (KM) 9	.2060E-6	SE of Mean (KM)	0.00108
k hat (KM)	0.843	k star (KM)	0.636
nu hat (KM)	15.17	nu star (KM)	11.45
theta hat (KM)	0.0033	theta star (KM)	0.00438
80% gamma percentile (KM)	0.00459	90% gamma percentile (KM)	0.00715
95% gamma percentile (KM)	0.00982	99% gamma percentile (KM)	0.0162

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (11.45, α) 4.865 Adjusted Chi Square Value (11.45, β) 4 95% Gamma Approximate KM-UCL (use when n>=50) 0.00655 95% Gamma Adjusted KM-UCL (use when n<50) 0.00797

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.969	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.155	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.00279	Mean in Log Scale	-6.563
SD in Original Scale	0.00321	SD in Log Scale	1.363
95% t UCL (assumes normality of ROS data)	0.00478	95% Percentile Bootstrap UCL	0.00448
95% BCA Bootstrap UCL	0.00515	95% Bootstrap t UCL	0.00772
95% H-UCL (Log ROS)	0.0257		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

0.00127	KM Geo Mean	-6.667	KM Mean (logged)
0.00127	NW Geo Wear	-0.007	Kivi ivieari (logged)
4.432	95% Critical H Value (KM-Log)	1.496	KM SD (logged)
0.0406	95% H-UCL (KM -Log)	0.533	KM Standard Error of Mean (logged)
4.432	95% Critical H Value (KM-Log)	1.496	KM SD (logged)
		0.533	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.00278	Mean in Log Scale	-6.744
SD in Original Scale	0.00322	SD in Log Scale	1.77
95% t UCL (Assumes normality)	0.00478	95% H-Stat UCL	0.138

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL 0.0075 na Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 0.00797

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chlordane, gamma (upper potomac)

General Statistics

Total Number of Observations	9	Number of Distinct Observations	9
Number of Detects	8	Number of Non-Detects	1
Number of Distinct Detects	8	Number of Distinct Non-Detects	1
Minimum Detect 5	.7000E-5	Minimum Non-Detect	4.9700E-5
Maximum Detect	0.00876	Maximum Non-Detect	4.9700E-5
Variance Detects 1	.1915E-5	Percent Non-Detects	11.11%
Mean Detects	0.00285	SD Detects	0.00345
Median Detects 9	.8050E-4	CV Detects	1.213
Skewness Detects	0.837	Kurtosis Detects	-1.033
Mean of Logged Detects	-7.159	SD of Logged Detects	2.037

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	8.0	Shapiro Wilk GOF Test			
5% Shapiro Wilk Critical Value	0.818	Detected Data Not Normal at 5% Significance Level			
Lilliefors Test Statistic	0.277	Lilliefors GOF Test			
5% Lilliefors Critical Value	0.283	Detected Data appear Normal at 5% Significance Level			
Detected Data appear Approximate Normal at 5% Significance Level					

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean 0.00254 KM Standard Error of Mea	n 0.00113
KM SD 0.00317 95% KM (BCA) UC	L 0.00452
95% KM (t) UCL 0.00464 95% KM (Percentile Bootstrap) UC	L 0.00443
95% KM (z) UCL 0.00439 95% KM Bootstrap t UC	L 0.00539
% KM Chebyshev UCL 0.00592 95% KM Chebyshev UC	L 0.00746
% KM Chebyshev UCL 0.00959 99% KM Chebyshev UC	L 0.0138

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.574	Anderson-Darling GOF Test
5% A-D Critical Value	0.764	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.276	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.309	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.491	k star (bias corrected MLE)	0.39
Theta hat (MLE)	0.0058	Theta star (bias corrected MLE)	0.00729
nu hat (MLE)	7.858	nu star (bias corrected)	6.244
Mean (detects)	0.00285		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

5.7000E-5	Mean	0.00364
0.01	Median	0.00174
0.00401	CV	1.102
0.504	k star (bias corrected MLE)	0.41
0.00723	Theta star (bias corrected MLE)	0.00888
9.067	nu star (bias corrected)	7.378
0.0231		
2.38	Adjusted Chi Square Value (7.38, β)	1.827
0.0113	95% Gamma Adjusted UCL (use when n<50)	0.0147
	0.01 0.00401 0.504 0.00723 9.067 0.0231 2.38	0.01 Median 0.00401 CV 0.504 k star (bias corrected MLE) 0.00723 Theta star (bias corrected MLE) 9.067 nu star (bias corrected) 0.0231 Adjusted Chi Square Value (7.38, β)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.00254	SD (KM)	0.00317
Variance (KM)	1.0040E-5	SE of Mean (KM)	0.00113
k hat (KM)	0.641	k star (KM)	0.501
nu hat (KM)	11.53	nu star (KM)	9.02
theta hat (KM)	0.00396	theta star (KM)	0.00506
80% gamma percentile (KM)	0.00417	90% gamma percentile (KM)	0.00686
95% gamma percentile (KM)	0.00973	99% gamma percentile (KM)	0.0168

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (9.02, α) 3.339 Adjusted Chi Square Value (9.02, β) 2.652 95% Gamma Approximate KM-UCL (use when n>=50) 0.00685 95% Gamma Adjusted KM-UCL (use when n<50) 0.00862

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.873	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.232	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.00253	Mean in Log Scale	-7.704
SD in Original Scale	0.00336	SD in Log Scale	2.512
95% t UCL (assumes normality of ROS data)	0.00462	95% Percentile Bootstrap UCL	0.00429
95% BCA Bootstrap UCL	0.00472	95% Bootstrap t UCL	0.00546
95% H-UCL (Log ROS)	5.554		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-7.464	KM Geo Mean 5	5.7321E-4
KM SD (logged)	1.994	95% Critical H Value (KM-Log)	5.693
KM Standard Error of Mean (logged)	0.71	95% H-UCL (KM -Log)	0.231
KM SD (logged)	1.994	95% Critical H Value (KM-Log)	5.693
KM Standard Error of Mean (logged)	0.71		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.00253	Mean in Log Scale	-7.541
SD in Original Scale	0.00336	SD in Log Scale	2.225
95% t UCL (Assumes normality)	0.00462	95% H-Stat UCL	0.891

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.00464

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test

When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

cis-NONACHLOR (upper potomac)

General Statistics

Total Number of Observations	9	Number of Distinct Observations	9
Number of Detects	8	Number of Non-Detects	1
Number of Distinct Detects	8	Number of Distinct Non-Detects	1
Minimum Detect 1	.0200E-4	Minimum Non-Detect	4.9700E-5
Maximum Detect	0.0222	Maximum Non-Detect 4	4.9700E-5
Variance Detects 5	.4893E-5	Percent Non-Detects	11.11%
Mean Detects	0.00435	SD Detects	0.00741
Median Detects	0.00113	CV Detects	1.703
Skewness Detects	2.552	Kurtosis Detects	6.75
Mean of Logged Detects	-6.491	SD of Logged Detects	1.61

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.608	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.341	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.00387	KM Standard Error of Mean	0.00238
KM SD	0.00667	95% KM (BCA) UCL	0.0075
95% KM (t) UCL	0.00829	95% KM (Percentile Bootstrap) UCL	0.00811
95% KM (z) UCL	0.00778	95% KM Bootstrap t UCL	0.022
90% KM Chebyshev UCL	0.011	95% KM Chebyshev UCL	0.0142
97.5% KM Chebyshev UCL	0.0187	99% KM Chebyshev UCL	0.0275

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.457	Anderson-Darling GOF Test
5% A-D Critical Value	0.756	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.255	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.307	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.588	k star (bias corrected MLE)	0.451
Theta hat (MLE)	0.0074	Theta star (bias corrected MLE)	0.00965
nu hat (MLE)	9.412	nu star (bias corrected)	7.216
Mean (detects)	0.00435		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 1	1.0200E-4	Mean	0.00498
Maximum	0.0222	Median	0.00125
SD	0.00718	CV	1.443
k hat (MLE)	0.627	k star (bias corrected MLE)	0.492
Theta hat (MLE)	0.00794	Theta star (bias corrected MLE)	0.0101
nu hat (MLE)	11.29	nu star (bias corrected)	8.86
Adjusted Level of Significance (β)	0.0231		
Approximate Chi Square Value (8.86, α)	3.243	Adjusted Chi Square Value (8.86, β)	2.568
95% Gamma Approximate UCL (use when n>=50)	0.0136	95% Gamma Adjusted UCL (use when n<50)	0.0172

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.00387	SD (KM)	0.00667
Variance (KM) 4	.4521E-5	SE of Mean (KM)	0.00238
k hat (KM)	0.337	k star (KM)	0.299
nu hat (KM)	6.064	nu star (KM)	5.376
theta hat (KM)	0.0115	theta star (KM)	0.013
80% gamma percentile (KM)	0.00593	90% gamma percentile (KM)	0.0114
95% gamma percentile (KM)	0.0177	99% gamma percentile (KM)	0.0342

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (5.38, α) 1.33 Adjusted Chi Square Value (5.38, β) 0.955 95% Gamma Approximate KM-UCL (use when n>=50) 0.0157 95% Gamma Adjusted KM-UCL (use when n<50) 0.0218

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.973	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.173	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-6.929	Mean in Log Scale	0.00387	Mean in Original Scale
2	SD in Log Scale	0.00708	SD in Original Scale
0.00812	95% Percentile Bootstrap UCL	0.00826	95% t UCL (assumes normality of ROS data)
0.022	95% Bootstrap t UCL	0.0096	95% BCA Bootstrap UCL
		0.409	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-6.871	KM Geo Mean	0.00104
KM SD (logged)	1.781	95% Critical H Value (KM-Log)	5.143
KM Standard Error of Mean (logged)	0.635	95% H-UCL (KM -Log)	0.129
KM SD (logged)	1.781	95% Critical H Value (KM-Log)	5.143
KM Standard Error of Mean (logged)	0.635		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.00387	Mean in Log Scale	-6.948
SD in Original Scale	0.00708	SD in Log Scale	2.036
95% t UCL (Assumes normality)	0.00826	95% H-Stat UCL	0.499

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL 0.022 na Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 0.0218

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

DIELDRIN (lower potomac)

General Statistics

9	Number of Distinct Observations	9	Total Number of Observations
0	Number of Missing Observations		
0.00382	Mean	3.8000E-4	Minimum
0.00202	Median	0.0148	Maximum
0.00151	Std. Error of Mean	0.00452	SD
2.139	Skewness	1.185	Coefficient of Variation

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.725	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.267	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Data appear Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

na	sulling Northan Distribution		
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
050/ 01 1 11 1100	0.00000	050/ A II + 1 01 T 1101 (01 4005)	_

95% Student's-t UCL	0.00662	95% Adjusted-CLT UCL (Chen-1995)	0.00745
		95% Modified t LICL (Johnson-1978)	0.0068

Gamma GOF Test

A-D Test Statistic	0.425	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.741	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.18	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.286	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.125	k star (bias corrected MLE)	0.824
Theta hat (MLE)	0.00339	Theta star (bias corrected MLE)	0.00463
nu hat (MLE)	20.26	nu star (bias corrected)	14.84
MLE Mean (bias corrected)	0.00382	MLE Sd (bias corrected)	0.00421
		Approximate Chi Square Value (0.05)	7.149
Adjusted Level of Significance	0.0231	Adjusted Chi Square Value	6.059

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<50) $\,$ 0.00793 $\,$ 95% Adjusted Gamma UCL (use when n<50) $\,$ 0.00935

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.942	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.143	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.274	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data -7.293 Mean of logged Data -6.074

Maximum of Logged Data -4.213 SD of logged Data 1.037

Assuming Lognormal Distribution

 95% H-UCL
 0.0133
 90% Chebyshev (MVUE) UCL
 0.00754

 95% Chebyshev (MVUE) UCL
 0.00931
 97.5% Chebyshev (MVUE) UCL
 0.0118

 99% Chebyshev (MVUE) UCL
 0.0166

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.0063	95% Jackknife UCL	0.00662
95% Standard Bootstrap UCL	0.00616	95% Bootstrap-t UCL	0.0099
95% Hall's Bootstrap UCL	0.0147	95% Percentile Bootstrap UCL	0.00641
95% BCA Bootstrap UCL	0.00758		
90% Chebyshev(Mean, Sd) UCL	0.00834	95% Chebyshev(Mean, Sd) UCL	0.0104
97.5% Chebyshev(Mean, Sd) UCL	0.0132	99% Chebyshev(Mean, Sd) UCL	0.0188

Suggested UCL to Use

95% Student's-t UCL 0.00662

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test

When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

DIELDRIN (upper potomac)

General Statistics

Total Number of Observations	9	Number of Distinct Observations	9
		Number of Missing Observations	0
Minimum 3	3.4500E-4	Mean	0.00728
Maximum	0.0378	Median	0.00101
SD	0.0124	Std. Error of Mean	0.00414
Coefficient of Variation	1.707	Skewness	2.302

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.637	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.36	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	0.015	95% Adjusted-CLT UCL (Chen-1995)	0.0175
		95% Modified-t UCL (Johnson-1978)	0.0155

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.653	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.769	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.276	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.294	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

0.422	k star (bias corrected MLE)	0.521	k hat (MLE)
0.0173	Theta star (bias corrected MLE)	0.014	Theta hat (MLE)
7.588	nu star (bias corrected)	9.383	nu hat (MLE)
0.0112	MLE Sd (bias corrected)	0.00728	MLE Mean (bias corrected)
2.499	Approximate Chi Square Value (0.05)		
1.928	Adjusted Chi Square Value	0.0231	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 0.0221 95% Adjusted Gamma UCL (use when n<50) 0.0287

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.912	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.234	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.274	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-7.972	Mean of logged Data	-6.133
Maximum of Logged Data	-3.275	SD of logged Data	1.646

Assuming Lognormal Distribution

95% H-UCL	0.138	90% Chebyshev (MVUE) UCL	0.0173
95% Chebyshev (MVUE) UCL	0.0222	97.5% Chebyshev (MVUE) UCL	0.0291
99% Chebyshev (MVUE) UCL	0.0425		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.0141	95% Jackknife UCL	0.015
95% Standard Bootstrap UCL	0.0138	95% Bootstrap-t UCL	0.0505
95% Hall's Bootstrap UCL	0.0477	95% Percentile Bootstrap UCL	0.0142
95% BCA Bootstrap UCL	0.0172		
90% Chebyshev(Mean, Sd) UCL	0.0197	95% Chebyshev(Mean, Sd) UCL	0.0253
97.5% Chebyshev(Mean, Sd) UCL	0.0332	99% Chebyshev(Mean, Sd) UCL	0.0485

Suggested UCL to Use

95% Adjusted Gamma UCL 0.0287

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

HEPTACHLOR EPOXIDE (lower potomac)

General Statistics

Total Number of Observations	9	Number of Distinct Observations	9
		Number of Missing Observations	0
Minimum 4	1.1400E-4	Mean	0.00137
Maximum	0.0056	Median	7.5200E-4
SD	0.00168	Std. Error of Mean	5.6124E-4
Coefficient of Variation	1.227	Skewness	2.45

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.63	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.342	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.00242	95% Adjusted-CLT UCL (Chen-1995)	0.00279
		95% Modified-t UCL (Johnson-1978)	0.00249

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.899	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.738	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.273	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.285	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics

0.959	k star (bias corrected MLE)	1.327	k hat (MLE)
0.00143	Theta star (bias corrected MLE)	0.00103	Theta hat (MLE)
17.26	nu star (bias corrected)	23.89	nu hat (MLE)
0.0014	MLE Sd (bias corrected)	0.00137	MLE Mean (bias corrected)
8.857	Approximate Chi Square Value (0.05)		
7.622	Adjusted Chi Square Value	0.0231	Adjusted Level of Significance

Assuming Gamma Distribution

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.847	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.222	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.274	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-7.79	Mean of logged Data	-7.013
Maximum of Logged Data	-5.185	SD of logged Data	0.868

Assuming Lognormal Distribution

95% H-UCL	0.00325	90% Chebyshev (MVUE) UCL	0.00236
95% Chebyshev (MVUE) UCL	0.00286	97.5% Chebyshev (MVUE) UCL	0.00356
99% Chebyshev (MVUE) UCL	0.00494		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.0023	95% Jackknife UCL	0.00242
95% Standard Bootstrap UCL	0.00223	95% Bootstrap-t UCL	0.00681
95% Hall's Bootstrap UCL	0.00646	95% Percentile Bootstrap UCL	0.00236
95% BCA Bootstrap UCL	0.003		
90% Chebyshev(Mean, Sd) UCL	0.00306	95% Chebyshev(Mean, Sd) UCL	0.00382
97.5% Chebyshev(Mean, Sd) UCL	0.00488	99% Chebyshev(Mean, Sd) UCL	0.00696

Suggested UCL to Use

95% Adjusted Gamma UCL 0.00311

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test

When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

HEPTACHLOR EPOXIDE (upper potomac)

General Statistics

Total Number of Observations	9	Number of Distinct Observations	9
		Number of Missing Observations	0
Minimum 2	2.1300E-4	Mean	0.00197
Maximum	0.0069	Median	7.2500E-4
SD	0.00229	Std. Error of Mean	7.6196E-4
Coefficient of Variation	1.161	Skewness	1.621

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk GOF Test	0.771	Shapiro Wilk Test Statistic
Data Not Normal at 5% Significance Level	0.829	5% Shapiro Wilk Critical Value
Lilliefors GOF Test	0.262	Lilliefors Test Statistic
Data appear Normal at 5% Significance Leve	0.274	5% Lilliefors Critical Value

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

	• • • • • • • • • • • • • • • • • • • •		
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
050/ 01 15 115 11101	0.00000	050/ 4-1'	

 95% Student's-t UCL
 0.00339
 95% Adjusted-CLT UCL (Chen-1995)
 0.00366

 95% Modified-t UCL (Johnson-1978)
 0.00345

Gamma GOF Test

A-D Test Statistic	0.405	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.744	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.247	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.287	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

nu hat (MLE) 17.93 nu star (bias corrected) 13.29 MLE Mean (bias corrected) 0.00197 MLE Sd (bias corrected) 0.00229 Approximate Chi Square Value (0.05) 6.087	0.738	k star (bias corrected MLE)	0.996	k hat (MLE)
MLE Mean (bias corrected) 0.00197 MLE Sd (bias corrected) 0.00229 Approximate Chi Square Value (0.05) 6.087	0.00267	Theta star (bias corrected MLE)	0.00198	Theta hat (MLE)
Approximate Chi Square Value (0.05) 6.087	13.29	nu star (bias corrected)	17.93	nu hat (MLE)
	0.00229	MLE Sd (bias corrected)	0.00197	MLE Mean (bias corrected)
Adjusted Level of Significance 0.0231 Adjusted Chi Square Value 5.097	6.087	Approximate Chi Square Value (0.05)		
	5.097	Adjusted Chi Square Value	0.0231	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<=50)) 0.0043 95% Adjusted Gamma UCL (use when n<50) 0.00513

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.961	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.198	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.274	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data -8.454 Mean of logged Data -6.81

Maximum of Logged Data -4.976 SD of logged Data 1.152

Assuming Lognormal Distribution

 95% H-UCL
 0.00923
 90% Chebyshev (MVUE) UCL
 0.00424

 95% Chebyshev (MVUE) UCL
 0.00528
 97.5% Chebyshev (MVUE) UCL
 0.00673

 99% Chebyshev (MVUE) UCL
 0.00958

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.00322	95% Jackknife UCL	0.00339
95% Standard Bootstrap UCL	0.00314	95% Bootstrap-t UCL	0.00554
95% Hall's Bootstrap UCL	0.00947	95% Percentile Bootstrap UCL	0.00325
95% BCA Bootstrap UCL	0.00355		
90% Chebyshev(Mean, Sd) UCL	0.00425	95% Chebyshev(Mean, Sd) UCL	0.00529
97.5% Chebyshev(Mean, Sd) UCL	0.00673	99% Chebyshev(Mean, Sd) UCL	0.00955

Suggested UCL to Use

95% Student's-t UCL 0.00339

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test

When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Mercury (lower potomac)

General Statistics

Total	Number of Observations	9	Number of Distinct Observations	9
			Number of Missing Observations	0
	Minimum	0.037	Mean	0.0831
	Maximum	0.143	Median	0.064
	SD	0.0436	Std. Error of Mean	0.0145
	Coefficient of Variation	0.525	Skewness	0.472

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.857	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.225	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.11	95% Adjusted-CLT UCL (Chen-1995)	0.109
		95% Modified-t UCL (Johnson-1978)	0.111

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.472	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.725	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.193	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.28	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

2.789	k star (bias corrected MLE)) 4.0	k hat (MLE)
0.0298	Theta star (bias corrected MLE)	0.02	Theta hat (MLE)
50.2	nu star (bias corrected)	73.3	nu hat (MLE)
0.0498	MLE Sd (bias corrected)	0.08	MLE Mean (bias corrected)
34.93	Approximate Chi Square Value (0.05)		
32.27	Adjusted Chi Square Value	e 0.02	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.119 95% Adjusted Gamma UCL (use when n<50) 0.129

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.895	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.179	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.274	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-3.297	Mean of logged Data	-2.615
Maximum of Logged Data	-1.945	SD of logged Data	0.541

Assuming Lognormal Distribution

95% H-UCL	0.131	90% Chebyshev (MVUE) UCL	0.129
95% Chebyshev (MVUE) UCL	0.15	97.5% Chebyshev (MVUE) UCL	0.178
99% Chebyshev (MVUE) UCL	0.235		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.107	95% Jackknife UCL	0.11
95% Standard Bootstrap UCL	0.106	95% Bootstrap-t UCL	0.112
95% Hall's Bootstrap UCL	0.103	95% Percentile Bootstrap UCL	0.106
95% BCA Bootstrap UCL	0.108		
90% Chebyshev(Mean, Sd) UCL	0.127	95% Chebyshev(Mean, Sd) UCL	0.147
97.5% Chebyshev(Mean, Sd) UCL	0.174	99% Chebyshev(Mean, Sd) UCL	0.228

Suggested UCL to Use

95% Student's-t UCL 0.11

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Mercury (upper potomac)

General Statistics

Total Number of Observations	9	Number of Distinct Observations	9
		Number of Missing Observations	0
Minimum	0.05	Mean	0.123
Maximum	0.241	Median	0.104
SD	0.0619	Std. Error of Mean	0.0206
Coefficient of Variation	0.505	Skewness	1.209
SD	0.0619	Std. Error of Mean	0.0206

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.841	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.314	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Data Not Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.161	95% Adjusted-CLT UCL (Chen-1995)	0.165
		95% Modified-t UCL (Johnson-1978)	0.162

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.52	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Le	0.723	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.259	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Le	0.28	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

3.406	k star (bias corrected MLE)	4.998	k hat (MLE)
0.036	Theta star (bias corrected MLE)	0.0245	Theta hat (MLE)
61.31	nu star (bias corrected)	89.96	nu hat (MLE)
0.0664	MLE Sd (bias corrected)	0.123	MLE Mean (bias corrected)
44.3	Approximate Chi Square Value (0.05)		
41.27	Adjusted Chi Square Value	0.0231	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.17 95% Adjusted Gamma UCL (use when n<50) 0.182

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.931	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.23	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.274	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-2.996	Mean of logged Data	-2.203
Maximum of Logged Data	-1.423	SD of logged Data	0.477

Assuming Lognormal Distribution

95% H-UCL	0.18	90% Chebyshev (MVUE) UCL	0.181
95% Chebyshev (MVUE) UCL	0.208	97.5% Chebyshev (MVUE) UCL	0.245
99% Chebyshev (MVUE) UCL	0.318		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% Jackknife UCL 0.161	57	95% CLT UCL
95% Bootstrap-t UCL 0.207	55	95% Standard Bootstrap UCL
ercentile Bootstrap UCL 0.158	54	95% Hall's Bootstrap UCL
	6	95% BCA Bootstrap UCL
ebyshev(Mean, Sd) UCL 0.213	34	90% Chebyshev(Mean, Sd) UCL
ebyshev(Mean, Sd) UCL 0.328	51	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 0.161

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

MIREX (upper potomac)

General Statistics

Total Number of Observations	9	Number of Distinct Observations	9
Number of Detects	4	Number of Non-Detects	5
Number of Distinct Detects	4	Number of Distinct Non-Detects	5
Minimum Detect 6	6.4000E-5	Minimum Non-Detect	4.9200E-5
Maximum Detect 7	7.8500E-4	Maximum Non-Detect	5.0000E-5
Variance Detects 1	1.0988E-7	Percent Non-Detects	55.56%
Mean Detects 3	3.3150E-4	SD Detects	3.3148E-4
Median Detects 2	2.3850E-4	CV Detects	1
Skewness Detects	1.148	Kurtosis Detects	0.307
Mean of Logged Detects	-8.464	SD of Logged Detects	1.146

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.884	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.252	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean 1.7467E-4	KM Standard Error of Mean 9).1330E-5
KM SD 2.3728E-4	95% KM (BCA) UCL	N/A
95% KM (t) UCL 3.4450E-4	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL 3.2489E-4	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL 4.4866E-4	95% KM Chebyshev UCL 5	5.7276E-4
97.5% KM Chebyshev UCL 7.4502E-4	99% KM Chebyshev UCL	0.00108

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.295	Anderson-Darling GOF Test
5% A-D Critical Value	0.665	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.273	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.401	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE) 1.245	k star (bias corrected MLE) 0.478
Theta hat (MLE) 2.6626E-4	Theta star (bias corrected MLE) 6.9362E
nu hat (MLE) 9.96	nu star (bias corrected) 3.823
Mean (detects) 3.3150E-4	

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 6.4000E-5		Mean	0.0057
Maximum	0.01	Median	0.01
SD	0.0051	CV	0.894
k hat (MLE)	0.544	k star (bias corrected MLE)	0.436
Theta hat (MLE)	0.0105	Theta star (bias corrected MLE)	0.0131
nu hat (MLE)	9.784	nu star (bias corrected)	7.856
Adjusted Level of Significance (β)	0.0231		
Approximate Chi Square Value (7.86, α)	2.652	Adjusted Chi Square Value (7.86, β)	2.059
95% Gamma Approximate UCL (use when n>=50)	0.0169	95% Gamma Adjusted UCL (use when n<50)	N/A

Estimates of Gamma Parameters using KM Estimates

Mean (KM) 1.7467E-4	SD (KM) 2.3728E-4
Variance (KM) 5.6303E-8	SE of Mean (KM) 9.1330E-5
k hat (KM) 0.542	k star (KM) 0.435
nu hat (KM) 9.754	nu star (KM) 7.836
theta hat (KM) 3.2234E-4	theta star (KM) 4.0124E-4
80% gamma percentile (KM) 2.8432E-4	90% gamma percentile (KM) 4.8577E-4
95% gamma percentile (KM) 7.0466E-4	99% gamma percentile (KM) 0.00125

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (7.84, α) 2.64 Adjusted Chi Square Value (7.84, β) 2.048 95% Gamma Approximate KM-UCL (use when n>=50) 5.1837E-4 95% Gamma Adjusted KM-UCL (use when n<50) 6.6814E-4

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.948	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.226	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-10.56	Mean in Log Scale	Mean in Original Scale 1.5002E-4
2.11	SD in Log Scale	SD in Original Scale 2.6617E-4
3.1150E-4	95% Percentile Bootstrap UCL	95% t UCL (assumes normality of ROS data) 3.1500E-4
9.8427E-4	95% Bootstrap t UCL	95% BCA Bootstrap UCL 3.5157E-4
		95% H-UCL (Log ROS) 0.021

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-9.273	KM Geo Mean 9.3938E-5
KM SD (logged)	0.98	95% Critical H Value (KM-Log) 3.195
KM Standard Error of Mean (logged)	0.377	95% H-UCL (KM -Log) 4.5957E-4
KM SD (logged)	0.98	95% Critical H Value (KM-Log) 3.195
KM Standard Error of Mean (logged)	0.377	

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed	
Mean in Original Scale 1.6113E-4	Mean in Log Scale	-9.653
SD in Original Scale 2.5948E-4	SD in Log Scale	1.328
95% t UCL (Assumes normality) 3.2196E-4	95% H-Stat UCL	0.00102

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 3.4450E-4

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

OXYCHLORDANE (lower potomac)

General Statistics

9	Number of Distinct Observations	9	Total Number of Observations
0	Number of Missing Observations		
0.00168	Mean	5.2300E-4	Minimum
7.7300E-4	Median	0.00725	Maximum
7.2308E-4	Std. Error of Mean	0.00217	SD
2.625	Skewness	1.292	Coefficient of Variation

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.597	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.312	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normai UCL		95% UCLS (Adjusted for Skewness)		
95% Student's t LICI	0.00303	95% Adjusted-CLT LICL (Chen-1995)	0 003	

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.967	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.738	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.271	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.285	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics

0.93	k star (bias corrected MLE)	1.284	k hat (MLE)
0.0018	Theta star (bias corrected MLE)	0.00131	Theta hat (MLE)
16.74	nu star (bias corrected)	23.12	nu hat (MLE)
0.00174	MLE Sd (bias corrected)	0.00168	MLE Mean (bias corrected)
8.49	Approximate Chi Square Value (0.05)		
7.284	Adjusted Chi Square Value	0.0231	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 0.00331 95% Adjusted Gamma UCL (use when n<50) 0.00386

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.829	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.218	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.274	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 -7.556
 Mean of logged Data
 -6.827

 Maximum of Logged Data
 -4.927
 SD of logged Data
 0.869

Assuming Lognormal Distribution

 95% H-UCL
 0.00392
 90% Chebyshev (MVUE) UCL
 0.00285

 95% Chebyshev (MVUE) UCL
 0.00345
 97.5% Chebyshev (MVUE) UCL
 0.0043

 99% Chebyshev (MVUE) UCL
 0.00596

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.00287	95% Jackknife UCL	0.00302
95% Standard Bootstrap UCL	0.00282	95% Bootstrap-t UCL	0.00801
95% Hall's Bootstrap UCL	0.00744	95% Percentile Bootstrap UCL	0.00304
95% BCA Bootstrap UCL	0.00353		
90% Chebyshev(Mean, Sd) UCL	0.00385	95% Chebyshev(Mean, Sd) UCL	0.00483
97.5% Chebyshev(Mean, Sd) UCL	0.00619	99% Chebyshev(Mean, Sd) UCL	0.00887

Suggested UCL to Use

95% Adjusted Gamma UCL 0.00386

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

OXYCHLORDANE (upper potomac)

RI Report - BHHRA

General Statistics

9	Number of Distinct Observations	9	Total Number of Observations
0	Number of Missing Observations		
0.00187	Mean	1.1800E-4	Minimum
7.9600E-4	Median	0.00985	Maximum
0.00102	Std. Error of Mean	0.00305	SD
2.799	Skewness	1.632	Coefficient of Variation

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.561	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.391	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.00376	95% Adjusted-CLT UCL (Chen-1995)	0.00455
		95% Modified-t UCL (Johnson-1978)	0.00392

Gamma GOF Test

A-D Test Statistic	0.689	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.75	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.245	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.289	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

0.609	k star (bias corrected MLE)	0.803	k hat (MLE)
0.00307	Theta star (bias corrected MLE)	0.00233	Theta hat (MLE)
10.97	nu star (bias corrected)	14.45	nu hat (MLE)
0.00239	MLE Sd (bias corrected)	0.00187	MLE Mean (bias corrected)
4.557	Approximate Chi Square Value (0.05)		
3.725	Adjusted Chi Square Value	0.0231	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<50) 0.0045 95% Adjusted Gamma UCL (use when n<50) 0.0055

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.951 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.829 Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.176 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.274 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 -9.045
 Mean of logged Data
 -7.021

 Maximum of Logged Data
 -4.62
 SD of logged Data
 1.218

Assuming Lognormal Distribution

 95% H-UCL
 0.00939
 90% Chebyshev (MVUE) UCL
 0.00376

 95% Chebyshev (MVUE) UCL
 0.00472
 97.5% Chebyshev (MVUE) UCL
 0.00604

 99% Chebyshev (MVUE) UCL
 0.00863

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

0.00376	95% Jackknife UCL	L 0.0	95% CLT UCL
0.00963	95% Bootstrap-t UCL	L 0.0	95% Standard Bootstrap UCL
0.00375	95% Percentile Bootstrap UCL	L 0.0	95% Hall's Bootstrap UCL
		L 0.0	95% BCA Bootstrap UCL
0.0063	95% Chebyshev(Mean, Sd) UCL	L 0.0	90% Chebyshev(Mean, Sd) UCL
0.012	99% Chebyshev(Mean, Sd) UCL	L 0.0	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Adjusted Gamma UCL 0.0055

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

PCB-TEQ_MAMMAL (lower potomac)

General Statistics

 Total Number of Observations
 9
 Number of Distinct Observations
 9

 Number of Missing Observations
 0

 Minimum 1.4958E-7
 Mean 3.4088E-6

 Maximum 7.4737E-6
 Median 2.0623E-6

 SD 3.3050E-6
 Std. Error of Mean 1.1017E-6

 Coefficient of Variation
 N/A
 Skewness 0.296

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic 0.799 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.829 Data Not Normal at 5% Significance Level
Lilliefors Test Statistic 0.244 Lilliefors GOF Test

5% Lilliefors Critical Value 0.274 Data appear Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL

95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 5.4575E-6

95% Adjusted-CLT UCL (Chen-1995) 5.3372E-6 95% Modified-t UCL (Johnson-1978) 5.4756E-6

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.635	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.751	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.231	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.289	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

0.576	k star (bias corrected MLE)	0.753	k hat (MLE)
5.9178E-6	Theta star (bias corrected MLE) 5	.5274E-6	Theta hat (MLE)
10.37	nu star (bias corrected)	13.55	nu hat (MLE)
4.4914E-6	MLE Sd (bias corrected) 4	.4088E-6	MLE Mean (bias corrected) 3
4.173	Approximate Chi Square Value (0.05)		
3.385	Adjusted Chi Square Value	0.0231	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 8.4690E-6

95% Adjusted Gamma UCL (use when n<50) 1.0441E-5

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.863	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.231	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.274	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-15.72	Mean of logged Data	-13.38
Maximum of Logged Data	-11.8	SD of logged Data	1.562

Assuming Lognormal Distribution

95% H-UCL 6.6001E-5	90% Chebyshev (MVUE) UCL 1.0794E-5
95% Chebyshev (MVUE) UCL 1.3809E-5	97.5% Chebyshev (MVUE) UCL 1.7994E-5
99% Chebyshev (MVUE) UCL 2.6214E-5	

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% Jackknife UCL 5.4575E-6	95% CLT UCL 5.2209E-6
95% Bootstrap-t UCL 5.5073E-6	95% Standard Bootstrap UCL 5.0828E-6
95% Percentile Bootstrap UCL 5.1127E-6	95% Hall's Bootstrap UCL 4.7033E-6
	95% BCA Bootstrap UCL 5.2131E-6
95% Chebyshev(Mean, Sd) UCL 8.2109E-6	90% Chebyshev(Mean, Sd) UCL 6.7139E-6
99% Chebyshev(Mean, Sd) UCL 1.4370E-5	97.5% Chebyshev(Mean, Sd) UCL 1.0289E-5

Suggested UCL to Use

95% Student's-t UCL 5.4575E-6

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

PCB-TEQ_MAMMAL (upper potomac)

General Statistics

9	Number of Distinct Observations	9	Total Number of Observations
0	Number of Missing Observations		
1.4776E-5	Mean	1.9674E-6	Minimum
4.6766E-6	Median	5.6469E-5	Maximum
6.4892E-6	Std. Error of Mean	1.9467E-5	SD
1.682	Skewness	N/A	Coefficient of Variation

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.716	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.3	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal LICI	95% LICLs (Adjusted for Skewness)

95% Student's-t UCL 2.6843E-5	95% Adjusted-CLT UCL (Chen-1995) 2.9337E-5
	95% Modified-t UCL (Johnson-1978) 2.7450E-5

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.666	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.749	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.243	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.289	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.828	k star (bias corrected MLE)	0.626
Theta hat (MLE)	1.7847E-5	Theta star (bias corrected MLE)	2.3603E-5
nu hat (MLE)	14.9	nu star (bias corrected)	11.27
MLE Mean (bias corrected)	1.4776E-5	MLE Sd (bias corrected)	1.8675E-5
		Approximate Chi Square Value (0.05)	4.75
Adjusted Level of Significance	0.0231	Adjusted Chi Square Value	3.896

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 3.5059E-5 95% Adjusted Gamma UCL (use when n<50) 4.2736E-5

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.896	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.194	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.274	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-13.14	Mean of logged Data	-11.84
Maximum of Logged Data	-9.782	SD of logged Data	1.232

Assuming Lognormal Distribution

90% Chebyshev (MVUE) UCL 3.1122	95% H-UCL 8.0027E-5
97.5% Chebyshev (MVUE) UCL 5.0017	95% Chebyshev (MVUE) UCL 3.9035E-5
	99% Chebyshey (MVUE) UCL 7.1589E-5

February 2020

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% Jackknife UCL 2.6843E-5	95% CLT UCL 2.5450E-5
95% Bootstrap-t UCL 6.1277E-5	95% Standard Bootstrap UCL 2.4783E-5
95% Percentile Bootstrap UCL 2.5561E-5	95% Hall's Bootstrap UCL 7.8146E-5
	95% BCA Bootstrap UCL 2.8884E-5
95% Chebyshev(Mean, Sd) UCL 4.3062E-5	90% Chebyshev(Mean, Sd) UCL 3.4244E-5
99% Chebyshev(Mean, Sd) UCL 7.9343E-5	97.5% Chebyshev(Mean, Sd) UCL 5.5301E-5

Suggested UCL to Use

95% Adjusted Gamma UCL 4.2736E-5

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Total PCBs (Congeners) (lower potomac)

		General Statistics	
9	Number of Distinct Observations	9	Total Number of Observations
0	Number of Missing Observations		
0.164	Mean	0.0333	Minimum
0.101	Median	0.469	Maximum
0.0477	Std. Error of Mean	0.143	SD
1.438	Skewness	0.875	Coefficient of Variation

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal	GOF	Test

Shapiro Wilk Test Statistic	0.842	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.228	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.252	95% Adjusted-CLT UCL (Chen-1995)	0.267
		95% Modified-t UCL (Johnson-1978)	0.256

Gamma GOF Test

A-D Test Statistic	0.263	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.733	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.177	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.283	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

1.193	k star (bias corrected MLE)	1.678	k hat (MLE)
0.137	Theta star (bias corrected MLE)	0.0976	Theta hat (MLE)
21.47	nu star (bias corrected)	30.2	nu hat (MLE)
0.15	MLE Sd (bias corrected)	0.164	MLE Mean (bias corrected)
11.94	Approximate Chi Square Value (0.05)		
10.47	Adjusted Chi Square Value	0.0231	Adjusted Level of Significance

Assuming Gamma Distribution

	-		
95% Approximate Gamma UCL (use when n>=50))	0.294	95% Adjusted Gamma UCL (use when n<50)	0.336

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.974	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.126	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.274	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-3.402	Mean of logged Data	-2.136
Maximum of Logged Data	-0.756	SD of logged Data	0.865

Assuming Lognormal Distribution

95% H-UCL	0.423	90% Chebyshev (MVUE) UCL	0.309
95% Chebyshev (MVUE) UCL	0.374	97.5% Chebyshev (MVUE) UCL	0.466
99% Chebyshev (MVUE) UCL	0.646		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.242	95% Jackknife UCL	0.252
95% Standard Bootstrap UCL	0.239	95% Bootstrap-t UCL	0.343
95% Hall's Bootstrap UCL	0.642	95% Percentile Bootstrap UCL	0.243
95% BCA Bootstrap UCL	0.256		
90% Chebyshev(Mean, Sd) UCL	0.307	95% Chebyshev(Mean, Sd) UCL	0.372
97.5% Chebyshev(Mean, Sd) UCL	0.462	99% Chebyshev(Mean, Sd) UCL	0.639

Suggested UCL to Use

95% Student's-t UCL 0.252

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Total PCBs (Congeners) (upper potomac)

	General Statistics		
Total Number of Observations	9	Number of Distinct Observations	9
		Number of Missing Observations	0
Minimum	0.0315	Mean	0.459
Maximum	1.608	Median	0.0673
SD	0.645	Std. Error of Mean	0.215
Coefficient of Variation	1.407	Skewness	1.402

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.691	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.304	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.859	95% Adjusted-CLT UCL (Chen-1995)	0.92
		95% Modified-t UCL (Johnson-1978)	0.875

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.807	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Lev	0.764	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.3	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Lev	0.292	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

0.469	k star (bias corrected MLE)	0.593	k hat (MLE)
0.978	Theta star (bias corrected MLE)	0.774	Theta hat (MLE)
8.444	nu star (bias corrected)	10.67	nu hat (MLE)
0.67	MLE Sd (bias corrected)	0.459	MLE Mean (bias corrected)
2.995	Approximate Chi Square Value (0.05)		
2.354	Adjusted Chi Square Value	0.0231	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 1.293 95% Adjusted Gamma UCL (use when n<50) 1.646

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.851	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.268	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.274	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-3.459	Mean of logged Data	-1.824
Maximum of Logged Data	0.475	SD of logged Data	1.565

Assuming Lognormal Distribution

95% H-UCL	7.009	90% Chebyshev (MVUE) UCL	1.136
95% Chebyshev (MVUE) UCL	1.454	97.5% Chebyshev (MVUE) UCL	1.895
99% Chebyshev (MVUE) UCL	2.761		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.813	95% Jackknife UCL	0.859
95% Standard Bootstrap UCL	0.794	95% Bootstrap-t UCL	1.789
95% Hall's Bootstrap UCL	2.485	95% Percentile Bootstrap UCL	0.797
95% BCA Bootstrap UCL	0.925		
90% Chebyshev(Mean, Sd) UCL	1.104	95% Chebyshev(Mean, Sd) UCL	1.396
97.5% Chebyshev(Mean, Sd) UCL	1.802	99% Chebyshev(Mean, Sd) UCL	2.599

Suggested UCL to Use

99% Chebyshev (Mean, Sd) UCL 2.599

Recommended UCL exceeds the maximum observation

 $Note: Suggestions\ regarding\ the\ selection\ of\ a\ 95\%\ UCL\ are\ provided\ to\ help\ the\ user\ to\ select\ the\ most\ appropriate\ 95\%\ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

trans-NONACHLOR (lower potomac)

General Statistics

9	Number of Distinct Observations	9	Total Number of Observations
0	Number of Missing Observations		
0.00781	Mean	0.00	Minimum
0.00339	Median	0.03	Maximum
0.0036	Std. Error of Mean	0.0	SD
2.691	Skewness	1.3	Coefficient of Variation

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test

Shapiro Wilk Test Statistic	0.603	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.829	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.327	Lilliefors GOF Test
5% Lilliefors Critical Value	0.274	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	0.0145	95% Adjusted-CLT UCL (Chen-1995)	0.0172
		95% Modified-t UCL (Johnson-1978)	0.015
	Gamma GOF Test		

A-D Test Statistic	0.675	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.742	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.222	Kolmogorov-Smirnov Gamma GOF Test

5% K-S Critical Value 0.286 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.099	k star (bias corrected MLE)	0.807
Theta hat (MLE)	0.00711	Theta star (bias corrected MLE)	0.00968
nu hat (MLE)	19.78	nu star (bias corrected)	14.52
MLE Mean (bias corrected)	0.00781	MLE Sd (bias corrected)	0.00869
		Approximate Chi Square Value (0.05)	6.928
Adjusted Level of Significance	0.0231	Adjusted Chi Square Value	5.859

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 0.0164 95% Adjusted Gamma UCL (use when n<50) 0.0194

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.94	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.829	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.181	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.274	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data-6.701Mean of logged Data-5.372Maximum of Logged Data-3.33SD of logged Data0.981

Assuming Lognormal Distribution

 95% H-UCL
 0.0228
 90% Chebyshev (MVUE) UCL
 0.0141

 95% Chebyshev (MVUE) UCL
 0.0173
 97.5% Chebyshev (MVUE) UCL
 0.0218

 99% Chebyshev (MVUE) UCL
 0.0306

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

0.0145	95% Jackknife UCL	0.0137	95% CLT UCL
0.0337	95% Bootstrap-t UCL	0.0134	95% Standard Bootstrap UCL
0.0146	95% Percentile Bootstrap UCL	0.0369	95% Hall's Bootstrap UCL
		0.0181	95% BCA Bootstrap UCL
0.0235	95% Chebyshev(Mean, Sd) UCL	0.0186	90% Chebyshev(Mean, Sd) UCL
0.0437	99% Chebyshev(Mean, Sd) UCL	0.0303	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Adjusted Gamma UCL 0.0194

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

trans-NONACHLOR (upper potomac)

General Statistics

Total Number of Observations	9	Number of Distinct Observations	9
Number of Detects	8	Number of Non-Detects	1
Number of Distinct Detects	8	Number of Distinct Non-Detects	1
Minimum Detect	0.00137	Minimum Non-Detect	4.9700E-5
Maximum Detect	0.0626	Maximum Non-Detect	4.9700E-5
Variance Detects 4	4.3914E-4	Percent Non-Detects	11.11%
Mean Detects	0.0118	SD Detects	0.021
Median Detects	0.00264	CV Detects	1.78
Skewness Detects	2.617	Kurtosis Detects	7.053
Mean of Logged Detects	-5.424	SD of Logged Detects	1.377

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.571	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.378	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.0105	KM Standard Error of Mean	0.00672
KM SD	0.0188	95% KM (BCA) UCL	0.0233
95% KM (t) UCL	0.023	95% KM (Percentile Bootstrap) UCL	0.0229
95% KM (z) UCL	0.0215	95% KM Bootstrap t UCL	0.0611
90% KM Chebyshev UCL	0.0306	95% KM Chebyshev UCL	0.0397
97.5% KM Chebyshev UCL	0.0524	99% KM Chebyshev UCL	0.0773

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.85	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.75	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.27	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.30	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.626	k star (bias corrected MLE)	0.474
Theta hat (MLE)	0.0188	Theta star (bias corrected MLE)	0.0248
nu hat (MLE)	10.01	nu star (bias corrected)	7.589
Mean (detects)	0.0118		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.00137	Mean	0.0116
Maximum	0.0626	Median	0.00333
SD	0.0196	CV	1.694
k hat (MLE)	0.693	k star (bias corrected MLE)	0.536
Theta hat (MLE)	0.0167	Theta star (bias corrected MLE)	0.0216
nu hat (MLE)	12.47	nu star (bias corrected)	9.645
Adjusted Level of Significance (β)	0.0231		
Approximate Chi Square Value (9.64, α)	3.721	Adjusted Chi Square Value (9.64, β)	2.986
95% Gamma Approximate UCL (use when n>=50)	0.03	95% Gamma Adjusted UCL (use when n<50)	0.0374

Estimates of Gamma Parameters using KM Estimates

Mean (K	(M) 0.0105	SD (KM)	0.0188
Variance (K	(M) 3.5513E-4	SE of Mean (KM)	0.00672
k hat (K	(M) 0.309	k star (KM)	0.28
nu hat (K	(M) 5.555	nu star (KM)	5.037
theta hat (K	(M) 0.0339	theta star (KM)	0.0374
80% gamma percentile (K	(M) 0.0158	90% gamma percentile (KM)	0.0311
95% gamma percentile (K	(M) 0.049	99% gamma percentile (KM)	0.0957

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (5.04, α)	1.169	Adjusted Chi Square Value (5.04, β)	0.826
95% Gamma Approximate KM-UCL (use when n>=50)	0.0451	95% Gamma Adjusted KM-UCL (use when n<50)	0.0638

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.842	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.818	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.223	Lilliefors GOF Test
5% Lilliefors Critical Value	0.283	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0105	Mean in Log Scale	-5.787
SD in Original Scale	0.02	SD in Log Scale	1.687
95% t UCL (assumes normality of ROS data)	0.0229	95% Percentile Bootstrap UCL	0.0231
95% BCA Bootstrap UCL	0.0298	95% Bootstrap t UCL	0.0618
95% H-UCL (Log ROS)	0.238		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-5.922	KM Geo Mean	0.00268
KM SD (logged)	1.86	95% Critical H Value (KM-Log)	5.347
KM Standard Error of Mean (logged)	0.663	95% H-UCL (KM -Log)	0.509
KM SD (logged)	1.86	95% Critical H Value (KM-Log)	5.347
KM Standard Error of Mean (logged)	0.663		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed			
Mean in Original Scale	0.0105	Mean in Log Scale	-5.999	
SD in Original Scale	0.02	SD in Log Scale	2.154	
95% t UCL (Assumes normality)	0.0229	95% H-Stat UCL	2.644	

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Bootstrap t UCL 0.0611 na Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 0.0638

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

 $Note: Suggestions\ regarding\ the\ selection\ of\ a\ 95\%\ UCL\ are\ provided\ to\ help\ the\ user\ to\ select\ the\ most\ appropriate\ 95\%\ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.17/31/2018 11:34:34 AM

From File Tissue UP Hexachlor.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

HEXACHLOROBENZENE

General Statistics

9	Number of Distinct Observations	9	Total Number of Observations
18	Number of Missing Observations		
5	Number of Non-Detects	4	Number of Detects
5	Number of Distinct Non-Detects	4	Number of Distinct Detects
0.0492	Minimum Non-Detect	0.471	Minimum Detect
0.05	Maximum Non-Detect	3.5	Maximum Detect
55.56%	Percent Non-Detects	1.949	Variance Detects
1.396	SD Detects	1.618	Mean Detects
0.863	CV Detects	1.251	Median Detects
-0.2	Kurtosis Detects	1.045	Skewness Detects
0.928	SD of Logged Detects	0.171	Mean of Logged Detects

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest.

For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.891	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.256	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.432	KM Standard Error of Mean	0.746	KM Mean
N/A	95% KM (BCA) UCL	1.121	KM SD
N/A	95% KM (Percentile Bootstrap) UCL	1.549	95% KM (t) UCL
N/A	95% KM Bootstrap t UCL	1.456	95% KM (z) UCL
2.628	95% KM Chebyshev UCL	2.041	90% KM Chebyshev UCL
5.041	99% KM Chebyshev UCL	3.442	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.316	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.661	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.283	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Level	0.399	5% K-S Critical Value
Detected data appear duming Distributed at 0.0 eigninearion zero.	0.000	ore o original value

Gamma Statistics on Detected Data Only

0.607	k star (bias corrected MLE)	1.763	k hat (MLE)
2.664	Theta star (bias corrected MLE)	0.918	Theta hat (MLE)
4.858	nu star (bias corrected)	14.1	nu hat (MLE)
		1.618	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.725
Maximum	3.5	Median	0.01
SD	1.204	CV	1.661
k hat (MLE)	0.316	k star (bias corrected MLE)	0.285
Theta hat (MLE)	2.29	Theta star (bias corrected MLE)	2.542
nu hat (MLE)	5.696	nu star (bias corrected)	5.131
Adjusted Level of Significance (β)	0.0231		
Approximate Chi Square Value (5.13, α)	1.213	Adjusted Chi Square Value (5.13, β)	0.861
95% Gamma Approximate UCL (use when n>=50)	3.065	95% Gamma Adjusted UCL (use when n<50)	N/A

Estimates of Gamma Parameters using KM Estimates

1.121	SD (KM)	0.746	Mean (KM)
0.432	SE of Mean (KM)	1.257	Variance (KM)
0.37	k star (KM)	0.443	k hat (KM)
6.651	nu star (KM)	7.977	nu hat (KM)
2.02	theta star (KM)	1.684	theta hat (KM)
2.137	90% gamma percentile (KM)	1.192	80% gamma percentile (KM)
5.85	99% gamma percentile (KM)	3.187	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (6.65, α)	1.981	Adjusted Chi Square Value (6.65, β)	1.49
95% Gamma Approximate KM-UCL (use when n>=50)	2.506	95% Gamma Adjusted KM-UCL (use when n<50)	3.332

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.935	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.241	Lilliefors GOF Test
5% Lilliefors Critical Value	0.375	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-1.523	Mean in Log Scale	0.75	Mean in Original Scale
1.705	SD in Log Scale	1.187	SD in Original Scale
1.398	95% Percentile Bootstrap UCL	1.486	95% t UCL (assumes normality of ROS data)
3.293	95% Bootstrap t UCL	1.603	95% BCA Bootstrap UCL
		18.5	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.597	KM Geo Mean	0.202
KM SD (logged)	1.67	95% Critical H Value (KM-Log)	4.866
KM Standard Error of Mean (logged)	0.643	95% H-UCL (KM -Log)	14.45
KM SD (logged)	1.67	95% Critical H Value (KM-Log)	4.866
KM Standard Error of Mean (logged)	0.643		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed			
Mean in Original Scale	0.733	Mean in Log Scale	-1.978		
SD in Original Scale	1.198	SD in Log Scale	2.116		
95% t UCL (Assumes normality)	1.476	95% H-Stat UCL	116.9		

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 1.549

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Uncensored Full Data Sets

User Selected Options

Date/Time of Computation ProUCL 5.17/31/2018 10:55:11 AM

From File Tissue LA UA NTA_c.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Arsenic

General Statistics

Total Number of Observations	24	Number of Distinct Observations	19
		Number of Missing Observations	43
Minimum	0.027	Mean	0.0643
Maximum	0.14	Median	0.0625
SD	0.0328	Std. Error of Mean	0.0067
Coefficient of Variation	0.51	Skewness	0.765

Normal GOF Test

Shapiro Wilk Test Statistic	0.914	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.916	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.139	Lilliefors GOF Test
5% Lilliefors Critical Value	0.177	Data appear Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Ac	ljusted for Skewness)
-----------------------------	-----------------------

95% Student's-t UCL 0.0758 95% Adjusted-CLT UCL (Chen-1995) 0.0765 95% Modified-t UCL (Johnson-1978) 0.076

Gamma GOF Test

			30. 100.
	A-D Test Statistic	0.449	Anderson-Darling Gamma GOF Test
5	% A-D Critical Value	0.748	Detected data appear Gamma Distributed at 5% Significance Level
	K-S Test Statistic	0.113	Kolmogorov-Smirnov Gamma GOF Test
5	% K-S Critical Value	0.179	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	4.109	k star (bias corrected MLE)	3.623
Theta hat (MLE)	0.0157	Theta star (bias corrected MLE)	0.0178
nu hat (MLE)	197.2	nu star (bias corrected)	173.9
MLE Mean (bias corrected)	0.0643	MLE Sd (bias corrected)	0.0338
		Approximate Chi Square Value (0.05)	144.4
Adjusted Level of Significance	0.0392	Adjusted Chi Square Value	142.5

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.0775 95% Adjusted Gamma UCL (use when n<50) 0.0785

Lognormal GOF Test

Logitorma aoi	1000
0.937	Shapiro Wilk Lognormal GOF Test
0.916	Data appear Lognormal at 5% Significance Level
0.115	Lilliefors Lognormal GOF Test
0.177	Data appear Lognormal at 5% Significance Level
	0.937 0.916 0.115

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-3.612	Mean of logged Data	-2.87
Maximum of Logged Data	-1.966	SD of logged Data	0.521

Assuming Lognormal Distribution

95% H-UCL	0.0806	90% Chebyshev (MVUE) UCL	0.086
95% Chebyshev (MVUE) UCL	0.0957	97.5% Chebyshev (MVUE) UCL	0.109
99% Chebyshev (MVUE) UCL	0.136		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

0.0758	95% Jackknife UCL	0.0754	95% CLT UCL
0.0775	95% Bootstrap-t UCL	0.0753	95% Standard Bootstrap UCL
0.0754	95% Percentile Bootstrap UCL	0.0765	95% Hall's Bootstrap UCL
		0.0764	95% BCA Bootstrap UCL
0.0935	95% Chebyshev(Mean, Sd) UCL	0.0844	90% Chebyshev(Mean, Sd) UCL
0.131	99% Chebyshev(Mean, Sd) UCL	0.106	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 0.0758

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

PCB-TEQ (Mammal)

General Statistics

29	Number of Distinct Observations	29	Total Number of Observations
44	Number of Missing Observations		
6.6477E-4	Mean	2.3650E-5	Minimum
5.5702E-4	Median	0.00254	Maximum
9.3530E-5	Std. Error of Mean	5.0368E-4	SD
1.997	Skewness	0.758	Coefficient of Variation

Normal GOF Test

Shapiro Wilk Test Statistic	0.843	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.926	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.174	Lilliefors GOF Test
5% Lilliefors Critical Value	0.161	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normai UCL	95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL 8.2387E-4	95% Adjusted-CLT UCL (Chen-1995) 8.5567E-4		
	95% Modified-t UCL (Johnson-1978) 8.2966E-4		

Gamma GOF Test

A-D Test Statistic	0.425	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.76	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.108	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.165	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 1.752	k star (bias corrected MLE) 1.593
Theta hat (MLE) 3.7952E-4	Theta star (bias corrected MLE) 4.1720E-4
nu hat (MLE) 101.6	nu star (bias corrected) 92.42
MLE Mean (bias corrected) 6.6477E-4	MLE Sd (bias corrected) 5.2663E-4
	Approximate Chi Square Value (0.05) 71.25
Adjusted Level of Significance 0.0407	Adjusted Chi Square Value 70.14

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 8.6228E-4 95% Adjusted Gamma UCL (use when n<50) 8.7593E-4

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.876	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.926	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.159	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.161	Data appear Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 -10.65
 Mean of logged Data
 -7.628

 Maximum of Logged Data
 -5.977
 SD of logged Data
 0.95

Assuming Lognormal Distribution

 95% H-UCL
 0.00118
 90% Chebyshev (MVUE) UCL
 0.0012

 95% Chebyshev (MVUE) UCL
 0.0014
 97.5% Chebyshev (MVUE) UCL
 0.00168

99% Chebyshev (MVUE) UCL 0.00224

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 8.1861E-4 95% Jackknife UCL 8.2387E-4
95% Standard Bootstrap UCL 8.1838E-4 95% Bootstrap-t UCL 8.8554E-4
95% Hall's Bootstrap UCL 9.3685E-4
95% BCA Bootstrap UCL 8.4602E-4
90% Chebyshev(Mean, Sd) UCL 9.4536E-4 95% Chebyshev(Mean, Sd) UCL 0.00107
97.5% Chebyshev(Mean, Sd) UCL 0.00125 99% Chebyshev(Mean, Sd) UCL 0.0016

Suggested UCL to Use

95% Adjusted Gamma UCL 8.7593E-4

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

TCDD-TEQ (Mammal)

General Statistics

Total Number of Observations 28	Number of Distinct Observations 28
	Number of Missing Observations 45
Minimum 1.1000E-5	Mean 9.7401E-5
Maximum 2.8900E-4	Median 8.4500E-5
SD 6.9283E-5	Std. Error of Mean 1.3093E-5
Coefficient of Variation N/A	Skewness 0.909

Normal GOF Test

Shapiro Wilk Test Statistic	0.93	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.924	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.106	Lilliefors GOF Test
5% Lilliefors Critical Value	0.164	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

•	
95% Normal UCL	95% UCLs (Adjusted for Skewness)
95% Student's-t UCL 1.1970E-4	95% Adjusted-CLT UCL (Chen-1995) 1.2134E-4
	95% Modified-t UCL (Johnson-1978) 1.2008E-4

Gamma GOF Test

A-D Test Statistic	0.328	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.76	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.118	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.168	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Fish Tissue ProUCL Output - Upstream Non-Tidal Anacostia

Gamma Statistics

k hat (MLE)	1.741	k star (bias corrected MLE)	1.578
Theta hat (MLE) 5.5	5947E-5	Theta star (bias corrected MLE)	6.1715E-5
nu hat (MLE)	97.49	nu star (bias corrected)	88.38
MLE Mean (bias corrected) 9.7	7401E-5	MLE Sd (bias corrected)	7.7531E-5
		Approximate Chi Square Value (0.05)	67.71
Adjusted Level of Significance	0.0404	Adjusted Chi Square Value	66.59

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 1.2714E-4 95% Adjusted Gamma UCL (use when n<50) 1.2928E-4

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.931	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.924	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.137	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.164	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-11.42	Mean of logged Data	-9.551
Maximum of Logged Data	-8.149	SD of logged Data	0.898

Assuming Lognormal Distribution

95% H-UCL 1.5947E-4	90% Chebyshev (MVUE) UCL 1.6412E-4
95% Chebyshev (MVUE) UCL 1.9114E-4	97.5% Chebyshev (MVUE) UCL 2.2865E-4
99% Chebyshev (MVUE) UCL 3.0232E-4	

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% Jackknife UCL 1.1970E-4	95% CLT UCL 1.1894E-4
95% Bootstrap-t UCL 1.2223E-4	95% Standard Bootstrap UCL 1.1817E-4
95% Percentile Bootstrap UCL 1.1867E-4	95% Hall's Bootstrap UCL 1.2293E-4
	95% BCA Bootstrap UCL 1.2195E-4
95% Chebyshev(Mean, Sd) UCL 1.5447E-4	90% Chebyshev(Mean, Sd) UCL 1.3668E-4
99% Chebyshev(Mean, Sd) UCL 2.2768E-4	97.5% Chebyshev(Mean, Sd) UCL 1.7917E-4

Suggested UCL to Use

95% Student's-t UCL 1.1970E-4

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Total PCBs (Congeners)

General S	tatistics
-----------	-----------

Total Number of Observations	29	Number of Distinct Observations	29
		Number of Missing Observations	44
Minimum	9.494	Mean	28.4
Maximum	59.66	Median	24.91
SD	12.83	Std. Error of Mean	2.383
Coefficient of Variation	0.452	Skewness	0.786

Normal GOF Test

Shapiro Wilk Test Statistic	0.919	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.926	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.162	Lilliefors GOF Test
5% Lilliefors Critical Value	0.161	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	32.45	95% Adjusted-CLT UCL (Chen-1995)	32.69	
		95% Modified-t UCL (Johnson-1978)	32.51	

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.56	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Lev	0.747	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.164	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.163	5% K-S Critical Value

Detected data follow Appr. Gamma Distribution at 5% Significance Level

Gamma Statistics

k hat (MLE)	5.334	k star (bias corrected MLE)	4.805
Theta hat (MLE)	5.325	Theta star (bias corrected MLE)	5.911
nu hat (MLE)	309.4	nu star (bias corrected)	278.7
MLE Mean (bias corrected)	28.4	MLE Sd (bias corrected)	12.96
		Approximate Chi Square Value (0.05)	241
Adjusted Level of Significance	0.0407	Adjusted Chi Square Value	238.9

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 32.84 95% Adjusted Gamma UCL (use when n<50) 33.13

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.963	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.926	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.153	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.161	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2.251	Mean of logged Data	3.25
Maximum of Logged Data	4.089	SD of logged Data	0.45

Assuming Lognormal Distribution

95% H-UCL	33.55	90% Chebyshev (MVUE) UCL	35.79
95% Chebyshev (MVUE) UCL	39.13	97.5% Chebyshev (MVUE) UCL	43.77
99% Chebyshey (MVUE) UCL	52.87		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

32.45	95% Jackknife UCL	32.32	95% CLT UCL
32.92	95% Bootstrap-t UCL	32.32	95% Standard Bootstrap UCL
32.39	95% Percentile Bootstrap UCL	32.67	95% Hall's Bootstrap UCL
		32.54	95% BCA Bootstrap UCL
38.79	95% Chebyshev(Mean, Sd) UCL	35.55	90% Chebyshev(Mean, Sd) UCL
52.11	99% Chebyshev(Mean, Sd) UCL	43.28	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Adjusted Gamma UCL 33.13

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

Date/Time of Computation ProUCL 5.17/31/2018 10:53:45 AM

From File Tissue LA UA NTA_c.xls

Full Precision OFF
Confidence Coefficient 95%
Imber of Bootstrap Operations 2000

CHLORDANE (ALL)

	General Statistics		
Total Number of Observations	26	Number of Distinct Observations	23
		Number of Missing Observations	47
Number of Detects	25	Number of Non-Detects	1
Number of Distinct Detects	22	Number of Distinct Non-Detects	1
Minimum Detect	6.3	Minimum Non-Detect	0.47
Maximum Detect	62	Maximum Non-Detect	0.47
Variance Detects	169.2	Percent Non-Detects	3.846%
Mean Detects	22.43	SD Detects	13.01
Median Detects	21	CV Detects	0.58
Skewness Detects	1.154	Kurtosis Detects	2.049
Mean of Logged Detects	2.946	SD of Logged Detects	0.603

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.912	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.918	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.113	Lilliefors GOF Test
5% Lilliefors Critical Value	0.173	Detected Data appear Normal at 5% Significance Level

Detected Data appear Approximate Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	21.59	KM Standard Error of Mean	2.64
KM SD	13.19	95% KM (BCA) UCL	25.57
95% KM (t) UCL	26.1	95% KM (Percentile Bootstrap) UCL	26.02
95% KM (z) UCL	25.93	95% KM Bootstrap t UCL	26.62
90% KM Chebyshev UCL	29.51	95% KM Chebyshev UCL	33.1
97.5% KM Chebyshev UCL	38.08	99% KM Chebyshev UCL	47.86

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.257	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.751	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.099	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.176	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	3.197	k star (bias corrected MLE)	2.84
Theta hat (MLE)	7.016	Theta star (bias corrected MLE)	7.898
nu hat (MLE)	159.9	nu star (bias corrected)	142
Mean (detects)	22.43		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

		,	
Minimum	1.001	Mean	21.61
Maximum	62	Median	20
SD	13.42	CV	0.621
k hat (MLE)	2.233	k star (bias corrected MLE)	2.001
Theta hat (MLE)	9.675	Theta star (bias corrected MLE)	10.8
nu hat (MLE)	116.1	nu star (bias corrected)	104.1
Adjusted Level of Significance (β)	0.0398		
Approximate Chi Square Value (104.06, α)	81.53	Adjusted Chi Square Value (104.06, β)	80.21
95% Gamma Approximate UCL (use when n>=50)	27.58	95% Gamma Adjusted UCL (use when n<50)	28.03

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	21.59	SD (KM)	13.19
Variance (KM)	174	SE of Mean (KM)	2.64
k hat (KM)	2.678	k star (KM)	2.395
nu hat (KM)	139.3	nu star (KM)	124.5
theta hat (KM)	8.061	theta star (KM)	9.015
80% gamma percentile (KM)	31.63	90% gamma percentile (KM)	40.27
95% gamma percentile (KM)	48.42	99% gamma percentile (KM)	66.32

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (124.52, α)	99.75	Adjusted Chi Square Value (124.52, β)	98.28
15% Gamma Approximate KM-UCL (use when n>=50)	26.95	95% Gamma Adjusted KM-UCL (use when n<50)	27.35

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.965	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.918	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.106	Lilliefors GOF Test
5% Lilliefors Critical Value	0.173	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	21.73	Mean in Log Scale	2.888
SD in Original Scale	13.23	SD in Log Scale	0.66
95% t UCL (assumes normality of ROS data)	26.17	95% Percentile Bootstrap UCL	26.34
95% BCA Bootstrap UCL	26.15	95% Bootstrap t UCL	26.89
95% H-UCL (Log ROS)	29.51		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	2.804	KM Geo Mean	16.51
KM SD (logged)	0.918	95% Critical H Value (KM-Log)	2.404
KM Standard Error of Mean (logged)	0.184	95% H-UCL (KM -Log)	39.09
KM SD (logged)	0.918	95% Critical H Value (KM-Log)	2.404
KM Standard Error of Mean (logged)	0 184		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	21.58	Mean in Log Scale	2.777
SD in Original Scale	13.47	SD in Log Scale	1.045
95% t UCL (Assumes normality)	26.09	95% H-Stat UCL	47.41

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 26.1

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test

When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

General Statistics

Total Number of Observations	24	Number of Distinct Observations	18
		Number of Missing Observations	43
Number of Detects	12	Number of Non-Detects	12
Number of Distinct Detects	11	Number of Distinct Non-Detects	10
Minimum Detect	0.0062	Minimum Non-Detect	0.008
Maximum Detect	0.047	Maximum Non-Detect	0.046
Variance Detects	1.2592E-4	Percent Non-Detects	50%
Mean Detects	0.0154	SD Detects	0.0112
Median Detects	0.012	CV Detects	0.728
Skewness Detects	2.32	Kurtosis Detects	6.087
Mean of Logged Detects	-4.343	SD of Logged Detects	0.569

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.733	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.265	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mear	0.0121	KM Standard Error of Mean	0.00191
KM SE	0.00857	95% KM (BCA) UCL	0.0157
95% KM (t) UCL	0.0154	95% KM (Percentile Bootstrap) UCL	0.0154
95% KM (z) UCL	0.0153	95% KM Bootstrap t UCL	0.0176
90% KM Chebyshev UCL	0.0178	95% KM Chebyshev UCL	0.0204
97.5% KM Chebyshev UCL	0.024	99% KM Chebyshey UCL	0.0311

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.548	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance L	0.739	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.206	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Lo	0.247	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

2.376	k star (bias corrected MLE)	3.094	k hat (MLE)
0.00649	Theta star (bias corrected MLE)	0.00498	Theta hat (MLE)
57.03	nu star (bias corrected)	74.26	nu hat (MLE)
		0.0154	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.0127	Mean	0.0062	Minimum
0.01	Median	0.047	Maximum
0.648	CV	0.00824	SD
4.206	k star (bias corrected MLE)	4.775	k hat (MLE)
0.00302	Theta star (bias corrected MLE)	0.00266	Theta hat (MLE)
201.9	nu star (bias corrected)	229.2	nu hat (MLE)
		0.0392	Adjusted Level of Significance (β)
168	Adjusted Chi Square Value (201.90, β)	170	Approximate Chi Square Value (201.90, α)
0.0153	95% Gamma Adjusted UCL (use when n<50)	0.0151	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.0121	SD (KM)	0.00857
Variance (KM)	7.3444E-5	SE of Mean (KM)	0.00191
k hat (KM)	2.004	k star (KM)	1.781
nu hat (KM)	96.18	nu star (KM)	85.49
theta hat (KM)	0.00605	theta star (KM)	0.00681
80% gamma percentile (KM)	0.0184	90% gamma percentile (KM)	0.0243
95% gamma percentile (KM)	0.0299	99% gamma percentile (KM)	0.0424

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (85.49, α) 65.18 Adjusted Chi Square Value (85.49, β) 63.93 15% Gamma Approximate KM-UCL (use when α) 0.0159 95% Gamma Adjusted KM-UCL (use when α) 0.0162

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic 0.937 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.859 Detected Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.167 Lilliefors GOF Test

5% Lilliefors Critical Value 0.243 Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0119	Mean in Log Scale	-4.569
SD in Original Scale	0.00861	SD in Log Scale	0.478
95% t UCL (assumes normality of ROS data)	0.0149	95% Percentile Bootstrap UCL	0.0149
95% BCA Bootstrap UCL	0.0167	95% Bootstrap t UCL	0.0186
95% H-UCL (Log ROS)	0.0141		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-4.561	KM Geo Mean	0.0105
KM SD (logged)	0.494	95% Critical H Value (KM-Log)	1.975
KM Standard Error of Mean (logged)	0.12	95% H-UCL (KM -Log)	0.0145
KM SD (logged)	0.494	95% Critical H Value (KM-Log)	1.975
KM Standard Error of Mean (logged)	0.12		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.0124	Mean in Log Scale	-4.569
SD in Original Scale	0.00912	SD in Log Scale	0.566
95% t UCL (Assumes normality)	0.0155	95% H-Stat UCL	0.0155

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Adjusted Gamma UCL 0.0162 95% GROS Adjusted Gamma UCL 0.0153

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

DIELDRIN

	General Statistics		
Total Number of Observations	26	Number of Distinct Observations	24
		Number of Missing Observations	47
Number of Detects	23	Number of Non-Detects	3
Number of Distinct Detects	21	Number of Distinct Non-Detects	3
Minimum Detect	0.2	Minimum Non-Detect	0.078
Maximum Detect	4.7	Maximum Non-Detect	0.14
Variance Detects	1.547	Percent Non-Detects	11.54%
Mean Detects	1.731	SD Detects	1.244
Median Detects	1.6	CV Detects	0.718
Skewness Detects	0.662	Kurtosis Detects	-0.21
Mean of Logged Detects	0.222	SD of Logged Detects	0.911

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.932	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.914	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.121	Lilliefors GOF Test
5% Lilliefors Critical Value	0.18	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	1.541	KM Standard Error of Mean	0.253
KM SD	1.26	95% KM (BCA) UCL	1.957
95% KM (t) UCL	1.972	95% KM (Percentile Bootstrap) UCL	1.962
95% KM (z) UCL	1.956	95% KM Bootstrap t UCL	2.012
90% KM Chebyshev UCL	2.299	95% KM Chebyshev UCL	2.642
97.5% KM Chebyshev UCL	3.119	99% KM Chebyshev UCL	4.055

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.446	Anderson-Darling GOF Test		
5% A-D Critical Value	0.758	Detected data appear Gamma Distributed at 5% Significance Leve		
K-S Test Statistic	0.139	Kolmogorov-Smirnov GOF		
5% K-S Critical Value	0.185	Detected data appear Gamma Distributed at 5% Significance Leve		
Detected data appear Gamma Distributed at 5% Significance Level				

Gamma Statistics on Detected Data Only

1.488	k star (bias corrected MLE)	1.677	k hat (MLE)
1.164	Theta star (bias corrected MLE)	1.032	Theta hat (MLE)
68.43	nu star (bias corrected)	77.16	nu hat (MLE)
		1.731	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

1.533	Mean	0.01	Minimum
1.4	Median	4.7	Maximum
0.845	CV	1.294	SD
0.717	k star (bias corrected MLE)	0.781	k hat (MLE)
2.138	Theta star (bias corrected MLE)	1.962	Theta hat (MLE)
37.28	nu star (bias corrected)	40.63	nu hat (MLE)
		0.0398	Adjusted Level of Significance (β)
23.61	Adjusted Chi Square Value (37.28, β)	24.3	Approximate Chi Square Value (37.28, α)
2.42	95% Gamma Adjusted UCL (use when n<50)	2.351	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	1.541	SD (KM)	1.26
Variance (KM)	1.588	SE of Mean (KM)	0.253
k hat (KM)	1.495	k star (KM)	1.348
nu hat (KM)	77.72	nu star (KM)	70.09
theta hat (KM)	1.031	theta star (KM)	1.143
80% gamma percentile (KM)	2.411	90% gamma percentile (KM)	3.295
95% gamma percentile (KM)	4.16	99% gamma percentile (KM)	6.128

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (70.09, α)	51.81	Adjusted Chi Square Value (70.09, β)	50.78
15% Gamma Approximate KM-UCL (use when n>=50)	2.084	95% Gamma Adjusted KM-UCL (use when n<50)	2.126

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.928	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.914	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.17	Lilliefors GOF Test
5% Lilliefors Critical Value	0.18	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

078
949
032
9

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.0979	KM Geo Mean	0.907
KM SD (logged)	1.219	95% Critical H Value (KM-Log)	2.803
KM Standard Error of Mean (logged)	0.245	95% H-UCL (KM -Log)	3.778
KM SD (logged)	1.219	95% Critical H Value (KM-Log)	2.803
KM Standard Error of Mean (logged)	0.245		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed			
Mean in Original Scale	1.537	Mean in Log Scale	-0.155		
SD in Original Scale	1.289	SD in Log Scale	1.368		
95% t UCL (Assumes normality)	1.969	95% H-Stat UCL	4.987		

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 1.972

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

HEPTACHLOR EPOXIDE

	General Statistics		
Total Number of Observations	26	Number of Distinct Observations	21
		Number of Missing Observations	47
Number of Detects	18	Number of Non-Detects	8
Number of Distinct Detects	16	Number of Distinct Non-Detects	6
Minimum Detect	0.12	Minimum Non-Detect	0.05
Maximum Detect	4.8	Maximum Non-Detect	0.2
Variance Detects	2	Percent Non-Detects	30.77%
Mean Detects	1.761	SD Detects	1.414
Median Detects	1.3	CV Detects	0.803
Skewness Detects	0.7	Kurtosis Detects	-0.471
Mean of Logged Detects	0.118	SD of Logged Detects	1.121

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.918	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.897	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.183	Lilliefors GOF Test
5% Lilliefors Critical Value	0.202	Detected Data appear Normal at 5% Significance Level

Detected Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.28	KM Standard Error of Mean	1.23	KM Mean
1.723	95% KM (BCA) UCL	1.38	KM SD
1.687	95% KM (Percentile Bootstrap) UCL	1.71	95% KM (t) UCL
1.775	95% KM Bootstrap t UCL	1.69	95% KM (z) UCL
2.458	95% KM Chebyshev UCL	2.07	90% KM Chebyshev UCL
4.024	99% KM Chebyshev UCL	2.98	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

D Test Statistic 0.309 Anderson-Darling GO	F Test					
O Critical Value 0.761 Detected data appear Gamma Distributed	d at 5% Significance Leve					
S Test Statistic 0.118 Kolmogorov-Smirnov	GOF					
S Critical Value 0.208 Detected data appear Gamma Distributed	d at 5% Significance Leve					
Detected data appear Gamma Distributed at 5% Significance Level						

Gamma Statistics on Detected Data Only

k hat (MLE)	1.257	k star (bias corrected MLE)	1.085
Theta hat (MLE)	1.401	Theta star (bias corrected MLE)	1.624
nu hat (MLE)	45.26	nu star (bias corrected)	39.05
Mean (detects)	1.761		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

1.222	Mean	0.01	Minimum
0.635	Median	4.8	Maximum
1.168	CV	1.428	SD
0.401	k star (bias corrected MLE)	0.424	k hat (MLE)
3.048	Theta star (bias corrected MLE)	2.88	Theta hat (MLE)
20.86	nu star (bias corrected)	22.07	nu hat (MLE)
		0.0398	Adjusted Level of Significance (β)
11.02	Adjusted Chi Square Value (20.86, β)	11.48	Approximate Chi Square Value (20.86, α)
2.312	95% Gamma Adjusted UCL (use when n<50)	2.22	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

1.388	SD (KM)	1.237	Mean (KM)
0.28	SE of Mean (KM)	1.927	Variance (KM)
0.728	k star (KM)	0.794	k hat (KM)
37.86	nu star (KM)	41.29	nu hat (KM)
1.699	theta star (KM)	1.558	theta hat (KM)
3.076	90% gamma percentile (KM)	2.03	80% gamma percentile (KM)
6.708	99% gamma percentile (KM)	4.151	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (37.86, α)	24.77	Adjusted Chi Square Value (37.86, β)	24.07
15% Gamma Approximate KM-UCL (use when n>=50)	1.89	95% Gamma Adjusted KM-UCL (use when n<50)	1.945

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.921	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.897	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.162	Lilliefors GOF Test
5% Lilliefors Critical Value	0.202	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-0.64	Mean in Log Scale	1.25	Mean in Original Scale
1.494	SD in Log Scale	1.404	SD in Original Scale
1.682	95% Percentile Bootstrap UCL	1.72	95% t UCL (assumes normality of ROS data)
1.836	95% Bootstrap t UCL	1.736	95% BCA Bootstrap UCL
		4.197	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-0.814	KM Geo Mean	0.443
KM SD (logged)	1.673	95% Critical H Value (KM-Log)	3.484
KM Standard Error of Mean (logged)	0.339	95% H-UCL (KM -Log)	5.762
KM SD (logged)	1.673	95% Critical H Value (KM-Log)	3.484
KM Standard Error of Mean (logged)	0.339		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.236	Mean in Log Scale	-0.855
SD in Original Scale	1.416	SD in Log Scale	1.78
95% t UCL (Assumes normality)	1.711	95% H-Stat UCL	7.61

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 1.715

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Mercury

	General Statistics		
Total Number of Observations	24	Number of Distinct Observations	19
		Number of Missing Observations	43
Number of Detects	23	Number of Non-Detects	1
Number of Distinct Detects	18	Number of Distinct Non-Detects	1
Minimum Detect	0.16	Minimum Non-Detect	0.076
Maximum Detect	0.5	Maximum Non-Detect	0.076
Variance Detects	0.00854	Percent Non-Detects	4.167%
Mean Detects	0.265	SD Detects	0.0924
Median Detects	0.24	CV Detects	0.349
Skewness Detects	0.932	Kurtosis Detects	0.258
Mean of Logged Detects	-1.383	SD of Logged Detects	0.33

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.905	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.914	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.202	Lilliefors GOF Test
5% Lilliefors Critical Value	0.18	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.257	KM Standard Error of Mean	0.0201
KM SD	0.0962	95% KM (BCA) UCL	0.292
95% KM (t) UCL	0.291	95% KM (Percentile Bootstrap) UCL	0.29
95% KM (z) UCL	0.29	95% KM Bootstrap t UCL	0.297
90% KM Chebyshev UCL	0.317	95% KM Chebyshev UCL	0.344
97.5% KM Chebyshev UCL	0.382	99% KM Chebyshev UCL	0.457

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.581	A-D Test Statistic			
Detected data appear Gamma Distributed at 5% Significance Level	0.744	5% A-D Critical Value			
Kolmogorov-Smirnov GOF	0.196	K-S Test Statistic			
Detected Data Not Gamma Distributed at 5% Significance Level	0.182	5% K-S Critical Value			
Detected data follow Appr. Gamma Distribution at 5% Significance Level					

Gamma Statistics on Detected Data Only

k hat (MLE)	9.453	k star (bias corrected MLE)	8.249
Theta hat (MLE)	0.028	Theta star (bias corrected MLE)	0.0321
nu hat (MLE)	434.8	nu star (bias corrected)	379.4
Mean (detects)	0.265		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

 $GROS\ may\ not\ be\ used\ when\ kstar\ of\ detects\ is\ small\ such\ as\ <1.0,\ especially\ when\ the\ sample\ size\ is\ small\ (e.g.,\ <15-20)$

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.257	Mean	0.0812	Minimum
0.225	Median	0.5	Maximum
0.381	CV	0.0979	SD
6.288	k star (bias corrected MLE)	7.155	k hat (MLE)
0.0409	Theta star (bias corrected MLE)	0.0359	Theta hat (MLE)
301.8	nu star (bias corrected)	343.4	nu hat (MLE)
		0.0392	Adjusted Level of Significance (β)
260	Adjusted Chi Square Value (301.84, β)	262.6	Approximate Chi Square Value (301.84, α)
0.298	95% Gamma Adjusted UCL (use when n<50)	0.296	5% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	0.257	SD (KM)	0.0962
Variance (KM)	0.00926	SE of Mean (KM)	0.0201
k hat (KM)	7.132	k star (KM)	6.268
nu hat (KM)	342.3	nu star (KM)	300.9
theta hat (KM)	0.036	theta star (KM)	0.041
80% gamma percentile (KM)	0.337	90% gamma percentile (KM)	0.394
95% gamma percentile (KM)	0.446	99% gamma percentile (KM)	0.554

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (300.86, α)	261.7	Adjusted Chi Square Value (300.86, β)	259.1
15% Gamma Approximate KM-UCL (use when n>=50)	0.295	95% Gamma Adjusted KM-UCL (use when n<50)	0.298

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.943	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.914	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.183	Lilliefors GOF Test
5% Lilliefors Critical Value	0.18	Detected Data Not Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-1.417	Mean in Log Scale	0.258	Mean in Original Scale
0.364	SD in Log Scale	0.0957	SD in Original Scale
0.291	95% Percentile Bootstrap UCL	0.292	95% t UCL (assumes normality of ROS data)
0.296	95% Bootstrap t UCL	0.293	95% BCA Bootstrap UCL
		0.299	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-1.432	KM Geo Mean	0.239
KM SD (logged)	0.396	95% Critical H Value (KM-Log)	1.894
KM Standard Error of Mean (logged)	0.0827	95% H-UCL (KM -Log)	0.302
KM SD (logged)	0.396	95% Critical H Value (KM-Log)	1.894
KM Standard Error of Mean (logged)	0.0827		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.255	Mean in Log Scale	-1.461
SD in Original Scale	0.102	SD in Log Scale	0.503
95% t UCL (Assumes normality)	0.291	95% H-Stat UCL	0.324

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM Adjusted Gamma UCL 0.298 95% GROS Adjusted Gamma UCL 0.298

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Thallium

General Statistics

Total Number of Observations	24	Number of Distinct Observations	18
		Number of Missing Observations	43
Number of Detects	19	Number of Non-Detects	5
Number of Distinct Detects	15	Number of Distinct Non-Detects	5
Minimum Detect	0.0024	Minimum Non-Detect	0.0021
Maximum Detect	0.0062	Maximum Non-Detect	0.0026
Variance Detects	1.2789E-6	Percent Non-Detects	20.83%
Mean Detects	0.00377	SD Detects	0.00113
Median Detects	0.00355	CV Detects	0.3
Skewness Detects	0.932	Kurtosis Detects	0.0233
Mean of Logged Detects	-5.621	SD of Logged Detects	0.283

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.897	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.901	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.172	Lilliefors GOF Test
5% Lilliefors Critical Value	0.197	Detected Data appear Normal at 5% Significance Level

Detected Data appear Approximate Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	0.00343	KM Standard Error of Mean	2.4852E-4
KM SD	0.00118	95% KM (BCA) UCL	0.00388
95% KM (t) UCL	0.00385	95% KM (Percentile Bootstrap) UCL	0.00384
95% KM (z) UCL	0.00383	95% KM Bootstrap t UCL	0.00388
90% KM Chebyshev UCL	0.00417	95% KM Chebyshev UCL	0.00451
97.5% KM Chebyshev UCL	0.00498	99% KM Chebyshev UCL	0.0059

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	0.512	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.741	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.176	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Leve	0.198	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

10.87	k star (bias corrected MLE)	12.87	k hat (MLE)
3.4636E-4	Theta star (bias corrected MLE)	2.9262E-4	Theta hat (MLE)
413.2	nu star (bias corrected)	489	nu hat (MLE)
		0.00377	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.0024	Mean	0.00506
Maximum	0.01	Median	0.0041
SD	0.00277	CV	0.548
k hat (MLE)	4.192	k star (bias corrected MLE)	3.695
Theta hat (MLE)	0.00121	Theta star (bias corrected MLE)	0.00137
nu hat (MLE)	201.2	nu star (bias corrected)	177.4
Adjusted Level of Significance (β)	0.0392		
Approximate Chi Square Value (177.38, α)	147.6	Adjusted Chi Square Value (177.38, β)	145.7
95% Gamma Approximate UCL (use when n>=50)	0.00609	95% Gamma Adjusted UCL (use when n<50)	0.00617

Estimates of Gamma Parameters using KM Estimates

Mean (KM) 0.00343	SD (KM) 0.00118
Variance (KM) 1.4022E-6	SE of Mean (KM) 2.4852E-4
k hat (KM) 8.366	k star (KM) 7.348
nu hat (KM) 401.6	nu star (KM) 352.7
theta hat (KM) 4.0940E-4	theta star (KM) 4.6611E-4
80% gamma percentile (KM) 0.00442	90% gamma percentile (KM) 0.00511
95% gamma percentile (KM) 0.00573	99% gamma percentile (KM) 0.00702

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (352.70, α)	310.2	Adjusted Chi Square Value (352.70, β)	307.4
15% Gamma Approximate KM-UCL (use when n>=50)	0.00389	95% Gamma Adjusted KM-UCL (use when n<50)	0.00393

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.941	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.901	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.168	Lilliefors GOF Test
5% Lilliefors Critical Value	0.197	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.00338	Mean in Log Scale	-5.754
SD in Original Scale	0.00126	SD in Log Scale	0.365
95% t UCL (assumes normality of ROS data)	0.00382	95% Percentile Bootstrap UCL	0.00379
95% BCA Bootstrap UCL	0.00386	95% Bootstrap t UCL	0.00389
95% H-UCL (Log ROS)	0.00391		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	-5.732	KM Geo Mean	0.00324
KM SD (logged)	0.327	95% Critical H Value (KM-Log)	1.845
KM Standard Error of Mean (logged)	0.0687	95% H-UCL (KM -Log)	0.00388
KM SD (logged)	0.327	95% Critical H Value (KM-Log)	1.845
KM Standard Error of Mean (logged)	0.0687		

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	DL/2 Log-Transformed				
Mean in Original Scale	0.00323	Mean in Log Scale	-5.855				
SD in Original Scale	0.00147	SD in Log Scale	0.531				
95% t UCL (Assumes normality)	0.00374	95% H-Stat UCL	0.00412				

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 0.00385

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Attachment F

Derivation of Volatilization Factors for Groundwater to Excavation Trench

Attachment F Derivation of Volatilization Factors for Groundwater to Excavation Trench

The Virginia Department of Environmental Quality (VADEQ) has published an approach for predicting exposure of workers to volatile substances in trenches from standing groundwater in the trench (VADEQ, 2018, Appendix 2). The model is based on the assumption that the trench would only intercept groundwater for a few inches, as any deeper than that would require dewatering. The VADEQ model uses a simple box model to simulate the mixing of contaminants in air. The main equation is:

 $C_{trench} = C_{GW} \times VF$ Equation (1)

where:

 C_{trench} = concentration of volatile substance in trench ($\mu g/m^3$)

 C_{GW} = concentration of volatile substance in groundwater (μ g/L)

VF = volatilization factor

The exposed groundwater model is very conservative, and in some cases yields unrealistically high vapor concentrations in a trench, as discussed in the uncertainty section of this attachment. However, the default model is conservatively used in this evaluation as a screening tool.

For standing groundwater in the floor of an excavation trench exposed to the atmosphere, the following equation is used to determine the volatilization factor:

$$VF = (K_i \times A \times F \times 10^{-3} \times 10^4 \times 3,600) \div (ACH \times V)$$

Equation (2)

where:

Ki = overall mass transfer coefficient of the volatile substance (cm/s)

A = area of trench (m²)

F = fraction of floor through which contaminant can enter (dimensionless)

ACH = air changes per hour (hr⁻¹)

V = volume of trench (m³)

Per United States Environmental Protection Agency (USEPA) Region III, a value of 2 hr⁻¹ is to be used for ACH in cases when the trench depth is greater than the trench width. Table F-1 presents the calculations based on the default model for exposed groundwater.

Uncertainty

The default VADEQ ACH of 2 hr⁻¹ represents the restricted gas exchange between the trench and the ambient atmosphere in an 8-foot-long by 3-foot-wide by 8-foot-deep trench (i.e., its depth is greater than its width). When the trench width exceeds the trench depth, the gas exchange between the trench and the ambient atmosphere is assumed to be relatively unrestricted, and a value of 360 hr⁻¹ is suggested by the USEPA. For an ambient wind speed of 1 meter per second (m/s), it is assumed that the in-trench air velocity is 0.1 m/s (10% of ambient), resulting in a more realistic ACH of 148 hr⁻¹. In that case, the air concentrations estimated by the default model are over 70 times greater than those predicted by a model based on a more realistic ACH.

Reference:

VADEQ. 2018. Virginia Unified Risk Assessment Model (VURAM) 2.0 User's Guide for Risk Assessors. Virginia Department of Environmental Quality.

Table F-1: Calculation of Volatilization Factors for the Trench Air Pathway

Exposure-point concentrations (inhalation) for construction/utility workers in a trench

Groundwater less than 15 feet deep (Groundwater exposed in Trench)

For Mass-Transfer Coefficients

For Emission Flux and Concentration in Tren: Trench dimensions

Kg,H2O	0.833	cm/s	CF1	1.00E-03	L/cm3	Length	8	ft
MWH2O	18		CF2	1.00E+04	cm2/m2		2.44	m
KI,O2	0.002	cm/s	CF3	3600	s/hr	Width	3	ft
MWO2	32		F	1			0.91	m
Т	77	F	ACH	2	hr-1	Depth	8	ft
Т	298	K					2.44	m
R	8.20E-05	atm-m3/mol-K				Width/Depth	0.38	

Chemical	CAS No.	Molecular Weight MWi g/mol (a)	Henry's Law Constant Hi atm-m3/mol (a)	Gas-Phase Mass Transfer Coefficient KiG cm/s	Liquid-Phase Mass Transfer Coefficient KiL cm/s	Overall Mass Transfer Coefficient Ki cm/s	Unit Concentration of Contaminant in Groundwater Cgw ug/L	Volatilization Factor VF L/m3	Concentration of Contaminant in Trench Ctrench ug/m3	Concentration of Contaminant in Trench Ctrench mg/m3
Bromodichloromethane	75-27-4	163.83	2.12E-03	3.98E-01	8.84E-04	8.62E-04	1.00E+00	6.36E+00	6.36E+00	6.36E-03
Butyl alcohol, tert-	75-65-0	60.10	8.10E-06	5.56E-01	1.46E-03	1.64E-04	1.00E+00	1.21E+00	1.21E+00	1.21E-03
Chloroform	67-66-3	119.38	3.67E-03	4.42E-01	1.04E-03	1.02E-03	1.00E+00	7.53E+00	7.53E+00	7.53E-03
Methyl tert-butyl ether	1634-04-4	88.15	5.87E-04	4.89E-01	1.21E-03	1.09E-03	1.00E+00	8.07E+00	8.07E+00	8.07E-03
Tetrachloroethene	127-18-4	165.83	1.77E-02	3.96E-01	8.79E-04	8.76E-04	1.00E+00	6.47E+00	6.47E+00	6.47E-03
Trichloroethene	79-01-6	131.39	9.85E-03	4.28E-01	9.87E-04	9.81E-04	1.00E+00	7.24E+00	7.24E+00	7.24E-03
Vinyl Chloride	75-01-4	62.50	2.78E-02	5.49E-01	1.43E-03	1.43E-03	1.00E+00	1.05E+01	1.05E+01	1.05E-02

⁽a) Values from USEPA Regional Screening Level table parameters, November 2018. Values for isopropanol were used for tert-butyl alcohol.

Attachment G

Calculation of Groundwater-to-Surface Water Dilution and Attenuation Factor

Groundwater discharge from MW-1 upper aquifer to the Anacostia (Q) = KIA

Calculation of A (lxh):

Elevation of top of silt-clay layer

-21.36 ft MLLW

Elevation of water table (low tide)

2.43 ft MLLW

Saturated thickness (h) of unconfined aquifer

23.79 ft

Width of boundary segment through which GW flows (I)

235 ft

(distance from property boundary to halfway between MW-1 and MW-2, from Google Earth)

A= 5590.65 square ft

Calculation of K:

Average of K from slug tests:

MW-1A

0.00002596 ft/sec

0.00002817 ft/sec

0.00002737 ft/sec

0.0000275 ft/sec

0.00002781 ft/sec

K= 2.7362E-05 ft/sec

Calculation of I (dh/dL):

dh/dl = slope of the plane formed by gw level at MW-1, MW-2, and MW-5

x (easting) y (northing) z (water level, ft MLLW)

MW-1A 1323686.71 448230.77 2.43 MW-2A 1323684.71 448456.98 2.50 MW-5A 1324032.04 448172.22 5.52

I= 0.009 ft/ft

Q= 0.001380108 cu.ft./sec

7Q10 Anacostia streamflow 13.9 cu.ft./sec

DAF= 9.92883E-05

Groundwater discharge from MW-1 lower aquifer to the Anacostia (Q) = KIA

Calculation of A (lxh):

Thickness of lower aquifer (h)

Top of LWZ Bottom of

(ft bgs) LWZ (ft bgs) Thickness

52

39

13

Width of boundary segment through which GW flows (I)

235 ft (distance from property boundary to halfway

between MW-1 and MW-2, from Google Earth)

A= 3055 square ft

Calculation of K:

Average of K from slug tests:

MW-1B

0.00005158 ft/sec

0.00005409 ft/sec

0.00005568 ft/sec

0.00005965 ft/sec

0.00007115 ft/sec

0.00005471 ft/sec

K= 0.00005781 ft/sec

Calculation of I (dh/dL):

dh/dl = slope of the plane formed by gw level at MW-1, MW-2, and MW-5

x (easting) y (northing) z (water level, ft MLLW)

MW-1B 1323686.71 448230.768 2.42 MW-2B 1323684.71 448456.975 2.65 MW-5B 1324032.04 448172.221 3.11

<mark>l= 0.002408</mark> ft/ft

Q= 0.00042528 cu.ft./sec

7Q10 Anacostia streamflow 13.9 cu.ft./sec

DAF= 3.0595E-05

Groundwater discharge from MW-2 upper aquifer to the Anacostia (Q) = KIA

Calculation of A (lxh):

Elevation of top of silt-clay layer

-14.72 ft MLLW

Elevation of water table (low tide)

2.50 ft MLLW

Saturated thickness (h) of unconfined aquifer

17.22 ft

Width of boundary segment through which GW flows (I)

290 ft (distance from midpoint of MW-1 and MW-2 to midpoint

of MW-2 and MW-3, from Google Earth)

A= 4993.8 square ft

Calculation of K:

Average of K from slug tests at 3 wells in the western portion of the site:

	MW-1A	MW-3A	MW-6A	
	0.00002596	8.022E-05	0.0000173	ft/sec
	0.00002817	0.0000565	2.399E-05	ft/sec
	0.00002737	5.023E-05	2.221E-05	ft/sec
	0.0000275	5.748E-05	2.251E-05	ft/sec
	0.00002781	4.915E-05	2.131E-05	ft/sec
		5.104E-05	1.976E-05	ft/sec
average	2.7362E-05	5.744E-05	2.118E-05	ft/sec

K= 3.2168E-05 ft/sec

Calculation of I (dh/dL):

dh/dl = slope of the plane formed by gw level at MW-2, MW-3, and MW-6

	x (easting)	y (northing)	z (water level, ft MLLW)
MW-2A	1323684.71	448456.98	2.50
MW-3A	1323686.31	448809.39	3.83
MW-6A	1324211.25	448553.86	4.52

I= 0.005 ft/ft

Q= 0.000787294 cu.ft./sec

7Q10 Anacostia streamflow 13.9 cu.ft./sec

DAF= 5.66398E-05

Groundwater discharge from MW-2 lower aquifer to the Anacostia (Q) = KIA

Calculation of A (lxh):

Thickness of lower aquifer (h)

Top of LWZ Bottom of

(ft bgs) LWZ (ft bgs) Thickness

35 53

53

Width of boundary segment through which GW flows (I)

290 ft (distance from midpoint of MW-1 and MW-2 to

18

midpoint of MW-2 and MW-3, from Google

A= 5220 square ft

Calculation of K:

Average of K from slug tests at 3 wells in the western portion of the site:

	MW-6B	MW-3B	MW-1B
ft/sec	0.0000268	0.00008006	0.00005158
ft/sec	0.00001901	0.00007025	0.00005409
ft/sec	0.00002869	0.00007011	0.00005568
ft/sec	0.00002498	0.00005106	0.00005965
ft/sec	0.00002324	0.00009747	0.00007115
ft/sec	0.00001652	0.0000648	0.00005471
ft/sec	2.3207E-05	7.2292E-05	0.00005781

K= 4.5945E-05 ft/sec

Calculation of I (dh/dL):

average

dh/dl = slope of the plane formed by gw level at MW-1, MW-2, and MW-5

•	•	•	, 0	•
		x (easting)	y (northing)	z (water level, ft MLLW)
MW-2B		1323684.71	448456.975	2.65
MW-3B		1323686.31	448809.394	3.52
MW-6B		1324211.25	448553.855	4.86

l= 0.004477 ft/ft

Q= 0.00107372 cu.ft./sec

7Q10 Anacostia streamflow 13.9 cu.ft./sec

DAF= 7.7246E-05

Groundwater discharge from MW-3 upper aquifer to the Anacostia (Q) = KIA

Calculation of A (lxh):

Elevation of top of silt-clay layer

-8.42 ft MLLW

Elevation of water table (low tide)

3.83 ft MLLW

Saturated thickness (h) of unconfined aquifer

12.25 ft

Width of boundary segment through which GW flows (I)

330 ft (distance from midpoint of MW-2 and MW-3

to midpoint of MW-3 and MW-4, from Google

4042.5 square ft

Calculation of K:

Average of K from slug tests:

MW-3A

8.022E-05 ft/sec

0.0000565 ft/sec

5.023E-05 ft/sec

5.748E-05 ft/sec

4.915E-05 ft/sec

5.104E-05 ft/sec

K= 5.872E-05 ft/sec

Calculation of I (dh/dL):

dh/dl = slope of the plane formed by gw level at MW-3, MW-4, and MW-8

x (easting) y (northing) z (water level, ft MLLW)

1323686.3 448809.39 MW-3A 3.83 MW-4A 1323752.9 449113.68 4.05 MW-8A 1324070.2 449146.9 4.26

0.0008 ft/ft

0.000199999 cu.ft./sec

7Q10 Anacostia streamflow 13.9 cu.ft./sec

1.43884E-05

Groundwater discharge from MW-3 lower aquifer to the Anacostia (Q) = KIA

Calculation of A (lxh):

Thickness of lower aquifer (h)

Top of LWZ Bottom of

(ft bgs) LWZ (ft bgs) Thickness

40

50

Width of boundary segment through which GW flows (I)

330 ft (distance from property boundary to halfway

10

between MW-1 and MW-2, from Google Earth)

A= 3300 square ft

Calculation of K:

Average of K from slug tests:

MW-3B

0.00008006 ft/sec

0.00007025 ft/sec

0.00007011 ft/sec

0.00005106 ft/sec

0.00009747 ft/sec

0.0000648 ft/sec

K= 7.2292E-05 ft/sec

Calculation of I (dh/dL):

dh/dl = slope of the plane formed by gw level at MW-3, MW-4, and MW-7

x (easting) y (northing) z (water level, ft MLLW)

MW-3B 1323686.31 448809.394 3.52 MW-4B 1323752.88 449113.68 3.80 MW-7B 1324287.51 448860.381 6.05

I= 0.004208 ft/ft

Q= 0.001003871 cu.ft./sec

7Q10 Anacostia streamflow 13.9 cu.ft./sec

DAF= 7.22209E-05

Groundwater discharge from MW-4 upper aquifer to the Anacostia (Q) = KIA

Calculation of A (lxh):

Elevation of top of silt-clay layer

-9.95 ft MLLW

Elevation of water table (low tide)

4.05 ft MLLW

Saturated thickness (h) of unconfined aguifer

14 ft

Width of boundary segment through which GW flows (I)

250 ft (distance from midpoint of MW-3 and MW-4 to midpoint of MW-4 and MW-8, from Google Earth)

A= 3500 square ft

Calculation of K:

Average of K from slug tests at 3 wells in the western portion of the site:

MW-1A	MW-3A	MW-6A
2.596E-05	8.022E-05	0.0000173 ft/sec
2.817E-05	0.0000565	2.399E-05 ft/sec
2.737E-05	5.023E-05	2.221E-05 ft/sec
0.0000275	5.748E-05	2.251E-05 ft/sec
2.781E-05	4.915E-05	2.131E-05 ft/sec
	5.104E-05	1.976E-05 ft/sec
2.736E-05	5.744E-05	2.118E-05 ft/sec
3.217E-05	ft/sec	
	2.596E-05 2.817E-05 2.737E-05 0.0000275 2.781E-05 2.736E-05	2.817E-05 0.0000565 2.737E-05 5.023E-05 0.0000275 5.748E-05 2.781E-05 4.915E-05 5.104E-05

Calculation of I (dh/dL):

dh/dl = slope of the plane formed by gw level at MW-4, MW-6, and MW-8

	x (easting)	y (northing)	z (water level, ft MLLW)
MW-4A	1323752.9	449113.68	4.05
MW-6A	1324211.3	448553.86	4.52
MW-8A	1324070.2	449146.9	4.26

I= 0.0007 ft/ft

Q= 8.3641E-05 cu.ft./sec

7Q10 Anacostia streamflow 13.9 cu.ft./sec

DAF= 6.01734E-06

Groundwater discharge from MW-4 lower aquifer to the Anacostia (Q) = KIA

Calculation of A (lxh):

Thickness of lower aquifer (h)

Top of LWZ Bottom of

(ft bgs) LWZ (ft bgs) Thickness

35 45 10

Width of boundary segment through which GW flows (I)

250 ft (distance from midpoint of MW-3 and MW-4 to

midpoint of MW-4 and MW-8, from Google

A= 2500 square ft

Calculation of K:

Average of K from slug tests at 3 wells in the western portion of the site:

MW-1B	MW-3B	MW-6B	
0.00005158	0.00008006	0.0000268	ft/sec
0.00005409	0.00007025	0.00001901	ft/sec
0.00005568	0.00007011	0.00002869	ft/sec
0.00005965	0.00005106	0.00002498	ft/sec
0.00007115	0.00009747	0.00002324	ft/sec
0.00005471	0.0000648	0.00001652	ft/sec
0.00005781	7.2292E-05	2.3207E-05	ft/sec

K= 4.5945E-05 ft/sec

Calculation of I (dh/dL):

average

dh/dl = slope of the plane formed by gw level at MW-4, MW-6, and MW-7

. ,		/ 0	
	x (easting)	y (northing)	z (water level, ft MLLW)
MW-4B	1323752.88	449113.68	3.80
MW-6B	1324211.25	448553.855	4.86
MW-7B	1324287.51	448860.381	6.05

I= 0.005975 ft/ft

Q= 0.000686298 cu.ft./sec

7Q10 Anacostia streamflow 13.9 cu.ft./sec

DAF= 4.93739E-05

Groundwater discharge from MW-8 upper aquifer to the Anacostia (Q) = KIA

Calculation of A (lxh):

Elevation of top of silt-clay layer

-6.4 ft MLLW

Elevation of water table (low tide)

4.26 ft MLLW

Saturated thickness (h) of unconfined aquifer

10.66 ft

Width of boundary segment through which GW flows (I)

440 ft (distance from midpoint of MW-4 and MW-8 to midpoint

of MW-8 and MW-11, from Google Earth)

A= 4690.4 square ft

Calculation of K:

Average of K from slug tests at 3 wells in the northwest portion of the site:

	MW-3A	MW-6A	MW-11A	
	8.022E-05	0.0000173	1.376E-05	ft/sec
	0.0000565	2.399E-05	1.278E-05	ft/sec
	5.023E-05	2.221E-05	2.109E-05	ft/sec
	5.748E-05	2.251E-05	1.388E-05	ft/sec
	4.915E-05	2.131E-05	1.903E-05	ft/sec
	5.104E-05	1.976E-05	1.377E-05	ft/sec
average	5.872E-05	2.118E-05	1.572E-05	ft/sec
K=	2.694E-05	ft/sec		

Calculation of I (dh/dL):

dh/dl = slope of the plane formed by gw level at MW-8, MW-7, and MW-11

	x (easting)	y (northing)	z (water level, ft ML
MW-8A	1324070.2	449146.9	4.26
MW-7A	1324287.5	448860.38	5.89
MW-11A	1324624.3	449241.15	5.09

I= 0.0046 ft/ft

Q= 0.000579438 cu.ft./sec

7Q10 Anacostia streamflow 13.9 cu.ft./sec

DAF= 4.16862E-05

Groundwater discharge from MW-8 lower aquifer to the Anacostia (Q) = KIA

Calculation of A (lxh):

Thickness of lower aquifer (h)

Top of LWZ Bottom of

(ft bgs) LWZ (ft bgs) Thickness

50 60

Width of boundary segment through which GW flows (I)

440 ft (distance from midpoint of MW-4 and MW-8 to

10

midpoint of MW-8 and MW-11, from Google

Earth)

A= 4400 square ft

Calculation of K:

Average of K from slug tests at 3 wells in the northwest portion of the site:

MW-3A	MW-6A	MW-11A
0.00008022	0.0000173	0.00001376 ft/sec
0.0000565	0.00002399	0.00001278 ft/sec
0.00005023	0.00002221	0.00002109 ft/sec
0.00005748	0.00002251	0.00001388 ft/sec
0.00004915	0.00002131	0.00001903 ft/sec
0.00005104	0.00001976	0.00001377 ft/sec
5.7437E-05	0.00002118	1.5718E-05 ft/sec

K= 2.6741E-05 ft/sec

Calculation of I (dh/dL):

average

dh/dl = slope of the plane formed by gw level at MW-8, MW-7, and MW-11

	x (easting)	y (northing)	z (water level, ft MLLW)
MW-8B	1324070.24	449146.902	2.96
MW-7B	1324287.51	448860.381	6.05
MW-11B	1324624.32	449241.152	3.74

I= 0.009073 ft/ft

Q= 0.001067524 cu.ft./sec

7Q10 Anacostia streamflow 13.9 cu.ft./sec

DAF= 7.68003E-05

Groundwater discharge from MW-11 upper aquifer to the Anacostia (Q) = KIA

Calculation of A (lxh):

Elevation of top of silt-clay layer

-23.5 ft MLLW

Elevation of water table (low tide)

5.09 ft MLLW

Saturated thickness (h) of unconfined aquifer

28.59 ft

Width of boundary segment through which GW flows (I)

500 ft (distance from midpoint of MW-8 and MW-1 to site

boundary, from Google Earth)

A= 14295 square ft

Calculation of K:

Average of K from slug tests:

MW-11A

1.376E-05 ft/sec

1.278E-05 ft/sec

2.109E-05 ft/sec

1.388E-05 ft/sec

1.903E-05 ft/sec

1.377E-05 ft/sec

K= 1.572E-05 ft/sec

Calculation of I (dh/dL):

dh/dl = slope of the plane formed by gw level at MW-11, MW-7, and MW-10

x (easting) y (northing) z (water level, ft MLLW)

MW-11A 1324624.3 449241.15 5.09 MW-7A 1324287.5 448860.38 5.89 MW-10A 1324574 448707.16 9.50

I= 0.0119 ft/ft

Q= 0.00267385 cu.ft./sec

7Q10 Anacostia streamflow 13.9 cu.ft./sec

DAF= 0.00019236

Groundwater discharge from MW-11 lower aquifer to the Anacostia (Q) = KIA

Calculation of A (lxh):

Thickness of lower aquifer (h)

Top of LWZ Bottom of

(ft bgs) LWZ (ft bgs) Thickness

50 61.8

11.8

Width of boundary segment through which GW flows (I)

500 ft (distance from property boundary to halfway

between MW-1 and MW-2, from Google Earth)

A= 5900 square ft

Calculation of K:

Average of K from slug tests:

MW-11B

3.333E-05 ft/sec

2.153E-05 ft/sec

2.161E-05 ft/sec

2.016E-05 ft/sec

0.0000233 ft/sec

2.235E-05 ft/sec

K= 2.371E-05 ft/sec

Calculation of I (dh/dL):

dh/dl = slope of the plane formed by gw level at MW-11, MW-7, and MW-10

x (easting) y (northing) z (water level, ft MLLW)

MW-11B 1324624.3 449241.152 3.74 MW-7B 1324287.5 448860.381 6.05 MW-10B 1324574 448707.159 9.21

I= 0.01197 ft/ft

Q= 0.001674707 cu.ft./sec

7Q10 Anacostia streamflow 13.9 cu.ft./sec

DAF= 0.000120482

Notes:

7Q10 is the annual minimum 7-day average streamflow with a 10-year recurrence interval 7Q10 estimated by USGS Maryland StreamStats application

(http://water.usgs.gov/osw/streamstats/maryland.html)

Hydraulic gradient calculated using EPA's on-line tool for Site Assessments

(https://www3.epa.gov/ceampubl/learn2model/part-two/onsite/gradient4plus-ns.html)

A = Flow cross section area

I = hydraulic gradient

K = hydraulic conductivity

Q = flow rate

DAF = Dillution Attenuation Factor

Attachment H

Risk Calculation Spreadsheets

February 2020

Reasonable Maximum Exposure (RME)

Risk Calculation Tables (RME)

Table H-1-1. RME

Calculation of Chemical Cancer Risks and Non-Cancer Hazards Based on Unit Concentrations - Construction Worker Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future

Receptor Population: Construction Worker

Receptor Age: Adult

						Cancer Risk Calculations - Based on Unit Concentration							Noncancer Hazard Calculations - Based on Unit Concentration						
	Exposure	Exposure	Exposure	Chemical of	Unit EP	C (1)		re Concentration		F/IUR		Cancer		e Concentration	RfD/RfC		Hazard		
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (2) Risk		Value	Units	Value	Units	Quotient		
Soil	Soil		Ingestion	Dioxin 2,3,7,8-TCDD-TEQ Inorganics Arsenic Cobalt	1.00E+00 1.00E+00 1.00E+00	mg/kg mg/kg mg/kg	6.46E-09 3.87E-09 6.46E-09	mg/kg-day mg/kg-day mg/kg-day	1.30E+05 1.50E+00 NA	kg-day/mg kg-day/mg kg-day/mg		8.40E-04 5.81E-09 NA	4.52E-07 2.71E-07 4.52E-07	mg/kg-day mg/kg-day mg/kg-day	7.00E-10 3.00E-04 3.00E-04	mg/kg-day mg/kg-day mg/kg-day	6.46E+02 9.04E-04 1.51E-03		
				Manganese	1.00E+00	mg/kg	6.46E-09	mg/kg-day	NA	kg-day/mg		NA	4.52E-07	mg/kg-day	2.40E-02	mg/kg-day	1.88E-05		
				Nickel	1.00E+00	mg/kg	6.46E-09	mg/kg-day	NA	kg-day/mg		NA	4.52E-07	mg/kg-day	2.00E-02	mg/kg-day	2.26E-05		
				Thallium	1.00E+00	mg/kg	6.46E-09	mg/kg-day	NA	kg-day/mg		NA	4.52E-07	mg/kg-day	1.00E-05	mg/kg-day	4.52E-02		
				Vanadium PCBs	1.00E+00	mg/kg	6.46E-09	mg/kg-day	NA	kg-day/mg		NA	4.52E-07	mg/kg-day	5.04E-03	mg/kg-day	8.97E-05		
				Total PCBs SVOCs	1.00E+00	mg/kg	6.46E-09	mg/kg-day	2.00E+00	kg-day/mg		1.29E-08	4.52E-07	mg/kg-day	5.00E-05	mg/kg-day	9.04E-03		
				Benzo(a)anthracene	1.00E+00	mg/kg	6.46E-09	mg/kg-day	1.00E-01	kg-day/mg	1	6.46E-10	4.52E-07	mg/kg-day	NA	mg/kg-day	NA		
				Benzo(a)pyrene	1.00E+00	mg/kg	6.46E-09	mg/kg-day	1.00E+00	kg-day/mg	1	6.46E-09	4.52E-07	mg/kg-day	3.00E-04	mg/kg-day	1.51E-03		
				Benzo(b)fluoranthene	1.00E+00	mg/kg	6.46E-09	mg/kg-day	1.00E-01	kg-day/mg	1	6.46E-10	4.52E-07	mg/kg-day	NA	mg/kg-day	NA		
				Benzo(k)fluoranthene	1.00E+00	mg/kg	6.46E-09	mg/kg-day	1.00E-02	kg-day/mg	1	6.46E-11	4.52E-07	mg/kg-day	NA	mg/kg-day	NA		
				Chrysene	1.00E+00	mg/kg	6.46E-09	mg/kg-day	1.00E-03	kg-day/mg	1	6.46E-12	4.52E-07	mg/kg-day	NA	mg/kg-day	NA		
				Dibenzo(a,h)anthracene	1.00E+00	mg/kg	6.46E-09	mg/kg-day	1.00E+00	kg-day/mg	1	6.46E-09	4.52E-07	mg/kg-day	NA	mg/kg-day	NA NA		
				Indeno(1,2,3-cd)pyrene Naphthalene	1.00E+00 1.00E+00	mg/kg mg/kg	6.46E-09 6.46E-09	mg/kg-day mg/kg-day	1.00E-01 NA	kg-day/mg kg-day/mg	1	6.46E-10 NA	4.52E-07 4.52E-07	mg/kg-day	NA 2.00E-02	mg/kg-day mg/kg-day	2.26E-05		
				TPH	1.00E+00	mg/kg	6.46E-09	mg/kg-day	INA	kg-day/mg		NA	4.52E-07	mg/kg-day	2.00E-02	mg/kg-day	2.20E-03		
				Diesel Range Organics (C10-C20)	1.00E+00	mg/kg	6.46E-09	mg/kg-day	NA	kg-day/mg		NA	4.52E-07	mg/kg-day	1.00E-02	mg/kg-day	4.52E-05		
			Exp. Route Total	1	1				1			(3)			l		(3)		
Soil	Sol		Dermal																
				Dioxin 2,3,7,8-TCDD-TEQ Inorganics	1.00E+00	mg/kg	6.21E-10	mg/kg-day	1.30E+05	kg-day/mg		8.08E-05	4.35E-08	mg/kg-day	7.00E-10	mg/kg-day	6.21E+01		
				Arsenic	1.00E+00	mg/kg	6.21E-10	mg/kg-day	1.50E+00	kg-day/mg		9.32E-10	4.35E-08	mg/kg-day	3.00E-04	mg/kg-day	1.45E-04		
				Cobalt	1.00E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	3.00E-04	mg/kg-day	NA		
				Manganese	1.00E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	9.60E-04	mg/kg-day	NA		
				Nickel	1.00E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	8.00E-04	mg/kg-day	NA		
				Thallium	1.00E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-05	mg/kg-day	NA		
				Vanadium PCBs	1.00E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.31E-04	mg/kg-day	NA		
				Total PCBs SVOCs	1.00E+00	mg/kg	2.90E-09	mg/kg-day	2.00E+00	kg-day/mg		5.80E-09	2.03E-07	mg/kg-day	5.00E-05	mg/kg-day	4.06E-03		
				Benzo(a)anthracene	1.00E+00	mg/kg	2.69E-09	mg/kg-day	1.00E-01	kg-day/mg	1	2.69E-10	1.88E-07	mg/kg-day	NA	mg/kg-day	NA		
				Benzo(a)pyrene	1.00E+00	mg/kg	2.69E-09	mg/kg-day	1.00E+00	kg-day/mg	1	2.69E-09	1.88E-07	mg/kg-day	3.00E-04	mg/kg-day	6.28E-0		
				Benzo(b)fluoranthene	1.00E+00	mg/kg	2.69E-09	mg/kg-day	1.00E-01	kg-day/mg	1	2.69E-10	1.88E-07	mg/kg-day	NA	mg/kg-day	NA		
				Benzo(k)fluoranthene	1.00E+00	mg/kg	2.69E-09	mg/kg-day	1.00E-02	kg-day/mg	1	2.69E-11	1.88E-07	mg/kg-day	NA	mg/kg-day	NA		
				Chrysene	1.00E+00	mg/kg	2.69E-09	mg/kg-day	1.00E-03	kg-day/mg	1	2.69E-12	1.88E-07	mg/kg-day	NA NA	mg/kg-day	NA NA		
				Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene	1.00E+00 1.00E+00	mg/kg	2.69E-09 2.69E-09	mg/kg-day	1.00E+00 1.00E-01	kg-day/mg kg-day/mg	1	2.69E-09 2.69E-10	1.88E-07 1.88E-07	mg/kg-day	NA NA	mg/kg-day	NA NA		
				Naphthalene	1.00E+00 1.00E+00	mg/kg mg/kg	2.69E-09 2.69E-09	mg/kg-day mg/kg-day	1.00E-01 NA	kg-day/mg kg-day/mg	'	2.69E-10 NA	1.88E-07 1.88E-07	mg/kg-day mg/kg-day	2.00E-02	mg/kg-day mg/kg-day	9.42E-06		
			1	TPH	1.002+00	mg/kg	2.031-03	ilig/kg-uay	INA	ng-uay/iilg		INC	1.002-07	mg/kg-uay	2.00L-02	mg/kg-udy	3.426-0		
				Diesel Range Organics (C10-C20)	1.00E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-02	mg/kg-day	NA		

Table H-1-1. RME

Calculation of Chemical Cancer Risks and Non-Cancer Hazards Based on Unit Concentrations - Construction Worker Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future

Receptor Population: Construction Worker

Receptor Age: Adult

							C	ancer Risk Calcula	ations - Baser	d on Unit Con	centration		Noncance	er Hazard Calculat	tions - Based	on Unit Cond	entration
	Exposure	Exposure	Exposure	Chemical of	Unit EF	C (1)		e Concentration		/IUR	- CONTRIGUED I	Cancer		re Concentration		/RfC	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (2)	Risk	Value	Units	Value	Units	Quotie
Soil	Outdoor air	TOTAL	Inhalation	1 Giornia Geneem	raido	Ormo	Value	OTILO	valuo				value	- Crinio	valuo		-,
00			maaaaa	Dioxin													
				2,3,7,8-TCDD-TEQ	1.00E+00	mg/m3	5.22E-04	mg/m3	3.80E+01	mg/m3		1.98E-02	3.65E-02	mg/m3	4.00E-08	mg/m3	9.13E
				Inorganics				3		3						3	
				Arsenic	1.00E+00	mg/m3	5.22E-04	mg/m3	4.30E-03	mg/m3		2.24E-06	3.65E-02	mg/m3	1.50E-05	mg/m3	2.44E
				Cobalt	1.00E+00	mg/m3	5.22E-04	mg/m3	9.00E-03	mg/m3		4.70E-06	3.65E-02	mg/m3	6.00E-06	mg/m3	6.09E
				Manganese	1.00E+00	mg/m3	5.22E-04	mg/m3	NA	mg/m3		NA	3.65E-02	mg/m3	5.00E-05	mg/m3	7.31
				Nickel	1.00E+00	mg/m3	5.22E-04	mg/m3	2.60E-04	mg/m3		1.36E-07	3.65E-02	mg/m3	9.00E-05	mg/m3	4.06
				Thallium	1.00E+00	mg/m3	5.22E-04	mg/m3	NA	mg/m3		NA	3.65E-02	mg/m3	NA	mg/m3	N
				Vanadium	1.00E+00	mg/m3	5.22E-04	mg/m3	NA	mg/m3		NA	3.65E-02	mg/m3	1.00E-04	mg/m3	3.65
				PCBs		_		-		-				_			
				Total PCBs	1.00E+00	mg/m3	5.22E-04	mg/m3	5.71E-04	mg/m3		2.98E-07	3.65E-02	mg/m3	NA	mg/m3	N
				SVOCs													
				Benzo(a)anthracene	1.00E+00	mg/m3	5.22E-04	mg/m3	6.00E-05	mg/m3	1	3.13E-08	3.65E-02	mg/m3	NA	mg/m3	N
				Benzo(a)pyrene	1.00E+00	mg/m3	5.22E-04	mg/m3	6.00E-04	mg/m3	1	3.13E-07	3.65E-02	mg/m3	2.00E-06	mg/m3	1.83
				Benzo(b)fluoranthene	1.00E+00	mg/m3	5.22E-04	mg/m3	6.00E-05	mg/m3	1	3.13E-08	3.65E-02	mg/m3	NA	mg/m3	N
				Benzo(k)fluoranthene	1.00E+00	mg/m3	5.22E-04	mg/m3	6.00E-06	mg/m3	1	3.13E-09	3.65E-02	mg/m3	NA	mg/m3	N
				Chrysene	1.00E+00	mg/m3	5.22E-04	mg/m3	6.00E-07	mg/m3	1	3.13E-10	3.65E-02	mg/m3	NA	mg/m3	N
				Dibenzo(a,h)anthracene	1.00E+00	mg/m3	5.22E-04	mg/m3	6.00E-04	mg/m3	1	3.13E-07	3.65E-02	mg/m3	NA	mg/m3	١
				Indeno(1,2,3-cd)pyrene	1.00E+00	mg/m3	5.22E-04	mg/m3	6.00E-05	mg/m3	1	3.13E-08	3.65E-02	mg/m3	NA	mg/m3	N
				Naphthalene	1.00E+00	mg/m3	5.22E-04	mg/m3	3.40E-05	mg/m3		1.77E-08	3.65E-02	mg/m3	3.00E-03	mg/m3	1.22
				ТРН													
				Diesel Range Organics (C10-C20)	1.00E+00	mg/m3	5.22E-04	mg/m3	NA	mg/m3		NA	3.65E-02	mg/m3	1.00E-01	mg/m3	3.65
											l .	(0)					
	r	F	Exp. Route Total	<u> </u>			<u> </u>					(3)					(3
	Connector Madi	Exposure Point Total					<u> </u>					(3)					(3
Total	Exposure Mediu	ım rotai										(3)					(3
oundwater	Trench Air		Inhalation	1	1		11					(3)					(3
ounawater	TTCTICTTY		IIIIdidiloII	VOCs													
				Bromodichloromethane	1.00E+00	mg/m3	1.30E-04	mg/m3	3.70E-05	mg/m3		4.83E-09	9.13E-03	mg/m3	NA	mg/m3	N
				Butyl alcohol, tert-	1.00E+00	mg/m3	1.30E-04	mg/m3	NA	mg/m3		NA	9.13E-03	mg/m3	2.00E-01	mg/m3	4.57
				Chloroform	1.00E+00	mg/m3	1.30E-04	mg/m3	2.30E-05	mg/m3		3.00E-09	9.13E-03	mg/m3	9.80E-02	mg/m3	9.32
				Methyl tert-Butyl Ether (MTBE)	1.00E+00	mg/m3	1.30E-04	mg/m3	2.60E-07	mg/m3		3.39E-11	9.13E-03	mg/m3	3.00E+00	mg/m3	3.04
				Tetrachloroethylene	1.00E+00	mg/m3	1.30E-04	mg/m3	2.60E-07	mg/m3		3.39E-11	9.13E-03	mg/m3	4.00E-02	mg/m3	2.28
				Trichloroethene	1.00E+00	mg/m3	1.30E-04	mg/m3	4.10E-06	mg/m3	1	5.35E-10	9.13E-03	mg/m3	2.00E-03	mg/m3	4.57
				Vinyl Chloride	1.00E+00	mg/m3	1.30E-04	mg/m3	4.40E-06	mg/m3		5.74E-10	9.13E-03	mg/m3	1.00E-01	mg/m3	9.13
				,													
			Exp. Route Total	1								(3)					(3
		Exposure Point Total	·	-			Î					(3)					(3
	Exposure Mediu	ım Total										(3)					(3
												(2)					(3
undwater												(3)					- 1

Notes:

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

PCB - Polychlorinated Biphenyl.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

NA - Not Applicable; no dose-response value. TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

- (2) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.
- (3) Totals not provided here; potential risks and hazards are based on the unit concentration. Totals are provided in the scaling table.

⁽¹⁾ Due to the multiple soil areas, a unit soil concentration of 1 mg/kg and a unit air concentration of 1 mg/m3 is used to calculate a potential excess lifetime cancer risk (ELCR) and noncancer hazard quotient (HQ) based on a unit soil concentration. Potential ELCRs and HQs calculated based on a unit concentration will be adjusted based on the area-specific EPCs in a scaling table.

Table H-1-2. RME

Calculation of Chemical Cancer Risks and Non-Cancer Hazards Based on Unit Concentrations - Outdoor Industrial Worker Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future

Receptor Population: Outdoor Industrial Worker

Receptor Age: Adult

							С	ancer Risk Calcula	ations - Based	d on Unit Con	centration		Noncancer Hazard Calculations - Based on Unit Concentration					
	Exposure	Exposure	Exposure	Chemical of	Unit EP	C (1)	Intake/Exposu	re Concentration	CSF	F/IUR		Cancer	Intake/Exposure Concentration		Rfl	D/RfC	Hazard	
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (2)	Risk	Value	Units	Value	Units	Quotient	
Surface Soil	Surface Soil		Ingestion	Dioxin 2,3,7,8-TCDD-TEQ	1.00E+00	mg/kg	2.75E-07	mg/kg-day	1.30E+05	kg-day/mg		3.58E-02	7.71E-07	mg/kg-day	7.00E-10	mg/kg-day	1.10E+03	
				Inorganics Arsenic	1.00E+00	mg/kg	1.65E-07	mg/kg-day	1.50E+00	kg-day/mg		2.48E-07	4.62E-07	mg/kg-day	3.00E-04	mg/kg-day	1.54E-03	
				Cobalt	1.00E+00	mg/kg	2.75E-07	mg/kg-day	NA	kg-day/mg		NA	7.71E-07	mg/kg-day	3.00E-04	mg/kg-day	2.57E-03	
				Manganese	1.00E+00	mg/kg	2.75E-07 2.75E-07	mg/kg-day	NA NA	kg-day/mg		NA NA	7.71E-07 7.71E-07	mg/kg-day	2.40E-02	mg/kg-day	3.21E-05	
				Nickel	1.00E+00	mg/kg	2.75E-07 2.75E-07	mg/kg-day	NA NA	kg-day/mg		NA NA	7.71E-07 7.71E-07	mg/kg-day	2.40E-02 2.00E-02	mg/kg-day	3.85E-05	
				Thallium	1.00E+00	mg/kg	2.75E-07	mg/kg-day	NA.	kg-day/mg		NA.	7.71E-07	mg/kg-day	1.00E-05	mg/kg-day	7.71E-02	
				Vanadium	1.00E+00	mg/kg	2.75E-07	mg/kg-day	NA.	kg-day/mg		NA.	7.71E-07	mg/kg-day	5.04E-03	mg/kg-day	1.53E-04	
				PCBs	1.002100	mg/kg	2.702 07	mg/kg day	100	ng day/mg		100	7.712 07	mg/kg day	3.04E 03	mg/kg day	1.552 04	
				Total PCBs SVOCs	1.00E+00	mg/kg	2.75E-07	mg/kg-day	2.00E+00	kg-day/mg		5.50E-07	7.71E-07	mg/kg-day	2.00E-05	mg/kg-day	3.85E-02	
				Benzo(a)anthracene	1.00E+00	mg/kg	2.75E-07	mg/kg-day	1.00E-01	kg-day/mg	1	2.75E-08	7.71E-07	mg/kg-day	NA	mg/kg-day	NA	
	l			Benzo(a)pyrene	1.00E+00	mg/kg	2.75E-07	mg/kg-day	1.00E+00	kg-day/mg	1	2.75E-07	7.71E-07	mg/kg-day	3.00E-04	mg/kg-day	2.57E-03	
	l			Benzo(b)fluoranthene	1.00E+00	mg/kg	2.75E-07	mg/kg-day	1.00E-01	kg-day/mg	1	2.75E-08	7.71E-07	mg/kg-day	NA	mg/kg-day	NA	
				Benzo(k)fluoranthene	1.00E+00	mg/kg	2.75E-07	mg/kg-day	1.00E-02	kg-day/mg	1	2.75E-09	7.71E-07	mg/kg-day	NA	mg/kg-day	NA	
				Chrysene	1.00E+00	mg/kg	2.75E-07	mg/kg-day	1.00E-03	kg-day/mg	1	2.75E-10	7.71E-07	mg/kg-day	NA	mg/kg-day	NA	
				Dibenzo(a,h)anthracene	1.00E+00	mg/kg	2.75E-07	mg/kg-day	1.00E+00	kg-day/mg	1	2.75E-07	7.71E-07	mg/kg-day	NA	mg/kg-day	NA	
				Indeno(1,2,3-cd)pyrene	1.00E+00	mg/kg	2.75E-07	mg/kg-day	1.00E-01	kg-day/mg	1	2.75E-08	7.71E-07	mg/kg-day	NA	mg/kg-day	NA	
				Naphthalene TPH	1.00E+00	mg/kg	2.75E-07	mg/kg-day	NA	kg-day/mg		NA	7.71E-07	mg/kg-day	2.00E-02	mg/kg-day	3.85E-05	
				Diesel Range Organics (C10-C20)	1.00E+00	mg/kg	2.75E-07	mg/kg-day	NA	kg-day/mg		NA	7.71E-07	mg/kg-day	1.00E-02	mg/kg-day	7.71E-05	
			Exp. Route Total]		l			ļ		ļ	(3)			ļ		(3)	
Surface Soil	Surface Soil		Dermal															
				Dioxin														
				2,3,7,8-TCDD-TEQ	1.00E+00	mg/kg	3.49E-08	mg/kg-day	1.30E+05	kg-day/mg		4.54E-03	9.78E-08	mg/kg-day	7.00E-10	mg/kg-day	1.40E+02	
				Inorganics														
				Arsenic	1.00E+00	mg/kg	3.49E-08	mg/kg-day	1.50E+00	kg-day/mg		5.24E-08	9.78E-08	mg/kg-day	3.00E-04	mg/kg-day	3.26E-04	
				Cobalt	1.00E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	3.00E-04	mg/kg-day	NA	
				Manganese	1.00E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	9.60E-04	mg/kg-day	NA	
				Nickel	1.00E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	8.00E-04	mg/kg-day	NA	
				Thallium	1.00E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-05	mg/kg-day	NA	
				Vanadium PCBs	1.00E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.31E-04	mg/kg-day	NA	
				Total PCBs	1.00E+00	mg/kg	1.63E-07	mg/kg-day	2.00E+00	kg-day/mg		3.26E-07	4.57E-07	mg/kg-day	2.00E-05	mg/kg-day	2.28E-02	
	l			SVOCs Renze (a) enthrocene	1.005.00	malks	1.515.07	ma/ka da:	1 00E 04	ka dov/m=	1	1 515 00	4 245 07	ma/ka de::	NIA	malka da	NA	
	l			Benzo(a)anthracene	1.00E+00	mg/kg	1.51E-07	mg/kg-day	1.00E-01	kg-day/mg	1 4	1.51E-08	4.24E-07	mg/kg-day	NA 2.00E.04	mg/kg-day	NA 1.41E.03	
	l			Benzo(a)pyrene Benzo(b)fluoranthone	1.00E+00 1.00E+00	mg/kg	1.51E-07 1.51E-07	mg/kg-day	1.00E+00 1.00E-01	kg-day/mg		1.51E-07 1.51E-08	4.24E-07 4.24E-07	mg/kg-day	3.00E-04 NA	mg/kg-day	1.41E-03 NA	
	l			Benzo(b)fluoranthene Benzo(k)fluoranthene	1.00E+00 1.00E+00	mg/kg mg/kg	1.51E-07 1.51E-07	mg/kg-day mg/kg-day	1.00E-01 1.00E-02	kg-day/mg kg-day/mg	'	1.51E-08 1.51E-09	4.24E-07 4.24E-07	mg/kg-day mg/kg-day	NA NA	mg/kg-day	NA NA	
	l				1.00E+00 1.00E+00		1.51E-07 1.51E-07		1.00E-02 1.00E-03		'	1.51E-09 1.51E-10	4.24E-07 4.24E-07		NA NA	mg/kg-day	NA NA	
	l			Chrysene Dibenzo(a h)anthracene	1.00E+00 1.00E+00	mg/kg mg/kg	1.51E-07 1.51E-07	mg/kg-day	1.00E-03 1.00E+00	kg-day/mg kg-day/mg		1.51E-10 1.51E-07	4.24E-07 4.24E-07	mg/kg-day	NA NA	mg/kg-day	NA NA	
	l			Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene	1.00E+00 1.00E+00	mg/kg	1.51E-07 1.51E-07	mg/kg-day mg/kg-day	1.00E+00 1.00E-01	kg-day/mg	1	1.51E-07 1.51E-08	4.24E-07 4.24E-07	mg/kg-day mg/kg-day	NA NA	mg/kg-day mg/kg-day	NA NA	
	l			Naphthalene	1.00E+00 1.00E+00	mg/kg	1.51E-07 1.51E-07	mg/kg-day	NA	kg-day/mg	'	NA	4.24E-07 4.24E-07	mg/kg-day	2.00E-02	mg/kg-day	2.12E-05	
	l			TPH	1.002+00	ilig/kg	1.512-07	mg/kg-uay	11/1	ng-uay/illy		14/7	4.241-07	ilig/kg-udy	2.001-02	mg/kg-day	2.121-00	
				Diesel Range Organics (C10-C20)	1.00E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-02	mg/kg-day	NA	
			Exp. Route Total	1 1		<u> </u>		<u> </u>	<u> </u>	<u> </u>	ļ	(3)			ļ	<u> </u>	(3)	

Table H-1-2. RME

Calculation of Chemical Cancer Risks and Non-Cancer Hazards Based on Unit Concentrations - Outdoor Industrial Worker Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future

Receptor Population: Outdoor Industrial Worker

Receptor Age: Adult

							С	ancer Risk Calcula	ations - Based	d on Unit Con	centration		Noncancer Hazard Calculation			l on Unit Con	centration
	Exposure	Exposure	Exposure	Chemical of	Unit EP	C (1)	Intake/Exposu	re Concentration	CSF	/IUR		Cancer	Intake/Exposu	re Concentration	RfD	/RfC	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (2)	Risk	Value	Units	Value	Units	Quotient
Surface Soil	Outdoor air		Inhalation														
				Dioxin													
				2,3,7,8-TCDD-TEQ	1.00E+00	mg/m3	7.34E-02	mg/m3	3.80E+01	mg/m3		2.79E+00	2.05E-01	mg/m3	4.00E-08	mg/m3	5.14E+06
				Inorganics													
				Arsenic	1.00E+00	mg/m3	7.34E-02	mg/m3	4.30E-03	mg/m3		3.16E-04	2.05E-01	mg/m3	1.50E-05	mg/m3	1.37E+04
				Cobalt	1.00E+00	mg/m3	7.34E-02	mg/m3	9.00E-03	mg/m3		6.60E-04	2.05E-01	mg/m3	6.00E-06	mg/m3	3.42E+04
				Manganese	1.00E+00	mg/m3	7.34E-02	mg/m3	NA	mg/m3		NA	2.05E-01	mg/m3	5.00E-05	mg/m3	4.11E+03
				Nickel	1.00E+00	mg/m3	7.34E-02	mg/m3	2.60E-04	mg/m3		1.91E-05	2.05E-01	mg/m3	9.00E-05	mg/m3	2.28E+03
				Thallium	1.00E+00	mg/m3	7.34E-02	mg/m3	NA	mg/m3		NA	2.05E-01	mg/m3	NA	mg/m3	NA
				Vanadium	1.00E+00	mg/m3	7.34E-02	mg/m3	NA	mg/m3		NA	2.05E-01	mg/m3	1.00E-04	mg/m3	2.05E+03
				PCBs													
				Total PCBs	1.00E+00	mg/m3	7.34E-02	mg/m3	5.71E-04	mg/m3		4.19E-05	2.05E-01	mg/m3	NA	mg/m3	NA
				SVOCs													
				Benzo(a)anthracene	1.00E+00	mg/m3	7.34E-02	mg/m3	6.00E-05	mg/m3	1	4.40E-06	2.05E-01	mg/m3	NA	mg/m3	NA
				Benzo(a)pyrene	1.00E+00	mg/m3	7.34E-02	mg/m3	6.00E-04	mg/m3	1	4.40E-05	2.05E-01	mg/m3	2.00E-06	mg/m3	1.03E+05
				Benzo(b)fluoranthene	1.00E+00	mg/m3	7.34E-02	mg/m3	6.00E-05	mg/m3	1	4.40E-06	2.05E-01	mg/m3	NA	mg/m3	NA
				Benzo(k)fluoranthene	1.00E+00	mg/m3	7.34E-02	mg/m3	6.00E-06	mg/m3	1	4.40E-07	2.05E-01	mg/m3	NA	mg/m3	NA
				Chrysene	1.00E+00	mg/m3	7.34E-02	mg/m3	6.00E-07	mg/m3	1	4.40E-08	2.05E-01	mg/m3	NA	mg/m3	NA
				Dibenzo(a,h)anthracene	1.00E+00	mg/m3	7.34E-02	mg/m3	6.00E-04	mg/m3	1	4.40E-05	2.05E-01	mg/m3	NA	mg/m3	NA
				Indeno(1,2,3-cd)pyrene	1.00E+00	mg/m3	7.34E-02	mg/m3	6.00E-05	mg/m3	1	4.40E-06	2.05E-01	mg/m3	NA	mg/m3	NA
				Naphthalene	1.00E+00	mg/m3	7.34E-02	mg/m3	3.40E-05	mg/m3		2.50E-06	2.05E-01	mg/m3	3.00E-03	mg/m3	6.85E+01
				TPH													
				Diesel Range Organics (C10-C20)	1.00E+00	mg/m3	7.34E-02	mg/m3	NA	mg/m3		NA	2.05E-01	mg/m3	1.00E-01	mg/m3	2.05E+00
				<u> </u>													
			Exp. Route Total	1								(3)					(3)
ļ		Exposure Point Total										(3)					(3)
	Exposure Medio	ım Total										(3)					(3)
pil Total						, and the second	•	•				(3)			,	,	(3)
tal Receptor R	Risk/Hazard		•				•	•				(3)					(3)

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

NA - Not applicable; no dose-response value.

PCB - Polychlorinated Biphenyl.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

- (1) Due to the multiple soil areas, a unit soil concentration of 1 mg/kg and a unit air concentration of 1 mg/m3 is used to calculate a potential excess lifetime cancer risk (ELCR) and noncancer hazard quotient (HQ) based on a unit soil concentration. Potential ELCRs and HQs calculated based on a unit concentration will be adjusted based on the area-specific EPCs in a scaling table.
- (2) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.
- (3) Totals not provided here; potential risks and hazards are based on the unit concentration. Totals are provided in the scaling table.

Table H-1-3. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Recreational Visitor Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future Receptor Population: Recreational Visitor Receptor Age: Older Child/Teen (7 to <19 years)

Mode Mode Port South Protect South Protect									Can	cer Risk Calc	ulations				Noncancer	Hazard Calc	ulations	
Part		Exposure	Exposure	Exposure	Chemical of	EPC		Intake/Exposu	re Concentration	CSF	F/IUR		Cancer	Intake/Exposu	re Concentration	RfE	D/RfC	Hazard
Post post official Future Post post official Future Post post official Future Post post official Future Post post official Future Post post official Future Post post official Future Post post official Future Post post official Future Post post official Future Post post official Future Post post post post post post post post p	Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Annanic 2,006-100 apliga 2,776-00 apliga 2,776-00 apliga 2,766-00 ap	Surface Soil	Surface Soil	Park Land/Green	Ingestion	2,3,7,8-TCDD-TEQ	2.51E-06	mg/kg	4.34E-14	mg/kg-day	1.30E+05	kg-day/mg		5.64E-09	2.53E-13	mg/kg-day	7.00E-10	mg/kg-day	3.61E-04
Coloit					_	2 605 .00	ma/ka	2.705.00	ma/ka day	1 505 .00	ka dov/ma		4 04E 00	1 575 07	ma/ka day	2 00E 04	ma/ka day	5.24E-04
Managemene														II				4.37E-02
Novie 1,000									00,		0 , 0					l	00,	8.40E-04
Thaillarin N.D					•											l		6.05E-05
Vanadum S.00E-01 mg/kg 1.00E-06 mg/kg-day NA kg-daying NA S.0EE-06 mg/kg-day 5.04E-03 mg/kg-day 1.0E-06 mg/kg-day 2.0E-06 mg/kg-day 2.0E-06 mg/kg-day 2.0E-07								1	00,		0 , 0					l	00,	ND
PCB Total PCBs 9.20E-02 mg/kg 1.59E-09 mg/kg 2.00E-00 mg/kg day 2.00E-00 mg/kg day 3.18E-00 9.27E-00 mg/kg day 2.00E-00 mg/kg day 3.18E-00 9.27E-00 mg/kg day 3.18E-00 mg/kg day										1				II		l		1.16E-03
Section Sect					PCBs		3 3		3 3,		3,. 3				3 3,		3 3,	
Benzoticipyrene 1.60E-01 mg/kg d. 3.11E-00 mg/kg-day 1.00E-01 kg-day/mg 2.5 7.78E-00 1.01E-08 mg/kg-day 3.00E-04						9.20E-02	mg/kg	1.59E-09	mg/kg-day	2.00E+00	kg-day/mg		3.18E-09	9.27E-09	mg/kg-day	2.00E-05	mg/kg-day	4.64E-04
Bezoz(h)thoranthene					Benzo(a)anthracene	1.90E-01	mg/kg	3.28E-09	mg/kg-day	1.00E-01	kg-day/mg	2.5	8.21E-10	1.92E-08	mg/kg-day	NA	mg/kg-day	NA
Benzo(httocrambene 9,16E-02 mg/kg 1,57E-09 mg/kg-day 1,00E-02 kg-day/mg 2.5 3,38E-11 9,7TE-09 mg/kg-day NA mg/kg-day				ĺ	Benzo(a)pyrene	1.80E-01	mg/kg	3.11E-09	mg/kg-day	1.00E+00	kg-day/mg	2.5	7.78E-09	1.81E-08	mg/kg-day	3.00E-04	mg/kg-day	6.05E-05
Chycane					Benzo(b)fluoranthene		mg/kg		mg/kg-day	1	kg-day/mg				mg/kg-day	NA	mg/kg-day	NA
Debracola hambracenee 4,60E-02 mg/kg 79SE-10 mg/kg 2,5EE-09 mg/kg day 1,00E-10 kg-day/mg 2,5 4,6EE-09 mg/kg day NA mg/kg-day NA mg/kg-day NA mg/kg-day NA mg/kg-day NA mg/kg-day NA ng/kg-day NA 1,3EE-09 mg/kg-day NA 1,3EE-09 mg/kg-day NA 1,3EE-09 mg/kg-day NA 1,3EE-09 mg/kg-day NA 1,3EE-09 mg/kg-day NA 1,3EE-09 mg/kg-day NA 1,3EE-09 mg/kg-day NA 1,3EE-09 mg/kg-day NA 1,3EE-09 mg/kg-day NA 1,3EE-09 mg/kg-day NA 1,3EE-09 mg/kg-day NA 1,3EE-09 mg/kg-day NA 1,3EE-09 mg/kg-day NA NG NG NG NG NG NG NG					1.7		mg/kg				0 , 0						00,	NA
Moderol (1.3-drolyystene 1.50E-01 mg/kg 2.5E-09 mg/kg-day 1.0E-01 kg-day/mg 2.5 6.48E-10 1.5E-08 mg/kg-day 2.00E-02 mg/kg-day 9.07 FPH Diesel Range Organics (C10-C20) 1.30E+01 mg/kg 2.25E-07 mg/kg-day NA kg-day/mg NA kg-day/mg NA 1.3E-09 mg/kg-day 1.0DE-02 mg/kg-day 9.07 FPH NA Mg-day/mg NA Mg-day/mg NA Mg-day/mg NA Mg-day/mg NA Mg-day/mg NA Mg-day/mg NA Mg-day/mg NA Mg-day/mg Mg-day Mg-day Mg-day Mg-day Mg-day Mg-day Mg-day Mg-day Mg-day Mg-day Mg-day Mg-day/mg Mg-day Mg-day/mg Mg-day Mg-day/mg Mg-day Mg-day/mg Mg-day Mg-day/mg Mg-day Mg-day/mg Mg-day Mg-day/mg Mg-day Mg-day/mg Mg-day Mg-day/mg Mg-day Mg-day/mg Mg-day/mg Mg-day/mg Mg-day/mg Mg-day/mg Mg-day Mg-day/mg M					*				00,		0 , 0	-			0 0 ,		00,	NA
Naphthalene					1 1					1								NA
TPH Diesel Range Organics (C10-C20) 1.30E+01 mg/kg 2.25E+07 mg/kg-day NA kg-day/mg NA 1.31E-06 mg/kg-day 1.00E+02 mg/kg-day 1.31E-06 mg/kg-day 1.30E+05					1 11 1					1		2.5				l		NA
Expression Surface Soil Hypothetical Future Park Land/Green Space Park Land/Green Space Dioxin 2,37,8-TCDD-TEQ 2,51E-06 mg/kg 1.03E-15 mg/kg-day 1.30E-05 kg-day/mg 1.34E-10 6.00E-15 mg/kg-day 7.00E-10 mg/kg-day 8.57 Arsenic 2,60E+00 mg/kg 1.03E-05 mg/kg-day 1.50E+00 kg-day/mg 1.60E-09 mg/kg-day 1.60E-09 mg/k					TPH		mg/kg		mg/kg-day		kg-day/mg				mg/kg-day			9.07E-08
Dermal Dioxin Land/Green Space Phypothetical Future Park Land/Green Space Phypothetical Future Park Land/Green Space Phypothetical Future Park Land/Green Space Phypothetical Future Park Land/Green Space Phypothetical Future Park Land/Green Space Phypothetical Future Park Land/Green Space Phypothetical Future Park Land/Green Space Phypothetical Future Park Land/Green Space Phypothetical Future Park Land/Green Space Phypothetical Future Park Land/Green Space Phypothetical Future Phypothe					Diesel Range Organics (C10-C20)	1.30E+01	mg/kg	2.25E-07	mg/kg-day	NA	kg-day/mg		NA	1.31E-06	mg/kg-day	1.00E-02	mg/kg-day	1.31E-04
Hypothetical Future Park Land/Green Space Dioxin 2.3,7.8-TCDD-TEQ 2.51E-06 mg/kg 1.03E-15 mg/kg-day 1.30E+05 kg-day/mg 1.34E-10 6.00E-15 mg/kg-day 7.00E-10 mg/kg-day 8.57				Exp. Route Total								•	6.17E-08			•		4.73E-02
Discreted Park Land/Green Space Capter	Surface Soil	Surface Soil	Hypothetical Future	Dermal														
Inorganics Ansenic 2,60E+00 mg/kg 1,06E-09 mg/kg-day 1,50E+00 kg-day/mg 1,60E-09 mg/kg-day 3,00E-04 mg/kg-day NA mg/kg-day NA kg-day/mg NA mg/kg-day NA kg-day/mg NA mg/kg-day NA kg-day/mg NA mg/kg-day NA Mg/kg-day/mg NA Mg/kg-day/mg NA Mg/kg-day/mg NA Mg/kg-day/mg NA Mg/kg-day/mg NA Mg/kg-day/mg NA Mg/kg-day NA Mg/kg-day/mg NA Mg/kg-day																		
Arsenic 2.60E+00 mg/kg 1.06E-09 mg/kg 1.06E-09 mg/kg-day ng/kg-day			Space			2.51E-06	mg/kg	1.03E-15	mg/kg-day	1.30E+05	kg-day/mg		1.34E-10	6.00E-15	mg/kg-day	7.00E-10	mg/kg-day	8.57E-06
Cobalt					_	2 605 .00	ma/ka	1.065.00	ma/ka day	1 505 .00	ka dov/ma		1 605 00	6 24 5 00	ma/ka dov	2 00E 04	ma/ka day	2.07E-05
Manganese 2.00E+02 mg/kg NA mg/kg-day NA kg-day/mg NA kg-day/mg NA NA mg/kg-day NA mg/kg-day NA mg/kg-day NA kg-day/mg ND ND mg/kg-day NA mg/kg-day NA kg-day/mg ND ND ND mg/kg-day NA mg/kg-day NA mg/kg-day NA mg/kg-day NA mg/kg-day NA mg/kg-day NA mg/kg-day NA mg/kg-day NA mg/kg-day NA MA mg/kg-day NA mg/kg-day NA mg/kg-day NA mg/kg-day NA mg/kg-day NA mg/kg-day NA mg/kg-day NA mg/kg-day NA mg/kg-day NA mg/kg-day NA mg/kg-day NA MA mg/kg-day NA mg/kg-														II		l		2.07E-03 NA
Nickel 1.20E+01 mg/kg MA mg/kg-day MA kg-day/mg MA kg-day/mg MA kg-day/mg MA Mg/kg-day MA Mg/kg-day/mg MA Mg/kg-day MA Mg/kg-day/mg MA Mg/kg-day Ma Mg/kg-day Ma Mg/kg-day Ma Mg/kg-day Mg														II				NA NA
Thallium					•				00,	1	0 , 0				00,	l	0 0 ,	NA NA
Vanadium PCBs PCBs Total PCBs 9.20E-02 mg/kg 1.76E-10 mg/kg-day 2.00E+00 kg-day/mg 3.5E-10 1.03E-09 mg/kg-day 2.00E-05 mg/kg-day 5.13 SVOCs Benzo(a)anthracene 1.90E-01 mg/kg 3.37E-10 mg/kg-day 1.00E-01 kg-day/mg 2.5 8.43E-11 1.97E-09 mg/kg-day NA mg/kg											0 , 0					l		ND
Total PCBs syOCs Benzo(a) anthracene 1.90E-01 mg/kg Benzo(b) fluoranthene 2.60E-01 mg/kg 4.61E-10 mg/kg 4.61E-10 mg/kg-day Dibenzo(a,h)anthracene 4.60E-02 mg/kg 1.50E-01 mg/kg 3.55E-10 mg/kg-day 1.00E-02 mg/kg 4.60E-11 mg/kg 4.60E-11 mg/kg 4.60E-11 mg/kg-day 1.00E-02 mg/kg-day 1.00E-02 mg/kg 4.60E-11 mg/kg-day 1.00E-02 kg-day/mg 2.5 4.04E-12 9.42E-10 mg/kg-day NA mg						5.80E+01		NA		NA	0 , 0		NA	NA		l		NA
Benzo(a)anthracene 1.90E-01 mg/kg 3.37E-10 mg/kg-day 1.00E-01 kg-day/mg 2.5 8.43E-11 1.97E-09 mg/kg-day NA mg/kg-day					Total PCBs	9.20E-02	mg/kg	1.76E-10	mg/kg-day	2.00E+00	kg-day/mg		3.52E-10	1.03E-09	mg/kg-day	2.00E-05	mg/kg-day	5.13E-05
Benzo(a)pyrene 1.80E-01 mg/kg 3.19E-10 mg/kg-day 1.00E+00 kg-day/mg 2.5 7.99E-10 1.86E-09 mg/kg-day 3.00E-04 mg/kg-day NA mg/kg-d				ĺ		1005.01		0.075.46		4.005.61	1	0.5	0.405.41	4.075.00				
Benzo(b)fluoranthene 2.60E-01 mg/kg 4.61E-10 mg/kg-day 1.00E-01 kg-day/mg 2.5 1.15E-10 2.69E-09 mg/kg-day NA mg/kg-day NA plote-02 mg/kg 1.61E-10 mg/kg-day NA ng/kg-day NA ng				ĺ	* *					1						l		NA COAF OC
Benzo(k)fluoranthene 9.10E-02 mg/kg 1.61E-10 mg/kg-day 1.00E-02 kg-day/mg 2.5 4.04E-12 9.42E-10 mg/kg-day NA mg/kg-day NA pg/kg-day NA mg/kg-day NA				ĺ						1								6.21E-06 NA
Chrysene 2.00E-01 mg/kg 3.55E-10 mg/kg-day 1.00E-03 kg-day/mg 2.5 8.87E-13 2.07E-09 mg/kg-day NA				ĺ					00,		0 , 0				00,		00,	NA NA
Dibenzo(a,h)anthracene 4.60E-02 mg/kg lndeno(1,2,3-cd)pyrene 1.50E-01 mg/kg 2.66E-10 mg/kg day naphthalene 1.80E-02 mg/kg NA mg/kg-day mg/kg-day NA mg/kg-day NA mg/kg-day mg/kg-day mg/kg-				ĺ	1.7					1	0 , 0	-						NA NA
Indeno(1,2,3-cd)pyrene 1.50E-01 mg/kg 2.66E-10 mg/kg-day 1.00E-01 kg-day/mg 2.5 6.65E-11 1.55E-09 mg/kg-day NA mg/kg-day NA phthalene 1.80E-02 mg/kg 3.19E-11 mg/kg-day NA mg/kg-day NA mg/kg-day NA kg-day/mg NA NA NA mg/kg-day 1.00E-02 mg/kg-day NA mg/k				ĺ	*						0 , 0	-				l		NA NA
Naphthalene 1.80E-02 mg/kg 3.19E-11 mg/kg-day NA kg-dai/mg NA 1.86E-10 mg/kg-day 2.00E-02 mg/kg-day 9.32 TPH Diesel Range Organics (C10-C20) 1.30E+01 mg/kg NA mg/kg-day NA kg-dai/mg NA NA mg/kg-day NA NA mg/kg-day NA NA NA Mg-day/mg NA NA Mg-day/mg NA NA Mg-day/mg NA NA NA Mg-day/mg NA NA NA Mg-da				ĺ	1 1					1								NA NA
TPH Diesel Range Organics (C10-C20) 1.30E+01 mg/kg NA mg/kg-day NA kg-day/mg NA NA mg/kg-day 1.00E-02 mg/kg-day N				1	1 11 1					1						l		9.32E-09
				ĺ			, ,		3 3 ,		3,]		3 3)	
Fyo Route Total					Diesel Range Organics (C10-C20)	1.30E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-02	mg/kg-day	NA
				Exp. Route Total	1		-						3.36E-09			-	-	8.68E-05

Table H-1-3. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Recreational Visitor Reasonable Maximum Exposure Benning Road Facility RI/FS Project

3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future Receptor Population: Recreational Visitor Receptor Age: Older Child/Teen (7 to <19 years)

-								Cano	cer Risk Calc	ulations	•			Noncancer	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposu	re Concentration	CSF	/IUR		Cancer	Intake/Exposur	re Concentration	RfD)/RfC	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Medium Surface Soil		1		Potential Concern Dioxin 2,3,7,8-TCDD-TEQ Inorganics Arsenic Cobalt Manganese Nickel Thallium Vanadium PCBs Total PCBs SVOCs Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene	Value 4.39E-15 4.55E-09 2.27E-07 3.50E-07 2.10E-08 ND 1.01E-07 1.61E-10 3.32E-10 3.15E-10 4.55E-10 1.59E-10	Units mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3					2.5 2.5 2.5 2.5 2.5	2.55E-16 2.98E-14 3.12E-12 NA 8.33E-15 ND NA 1.40E-16 7.61E-17 7.21E-16 3.64E-18					9.77E-10 2.70E-06 3.37E-04 6.23E-05 2.08E-06 ND 9.03E-06 NA NA 1.40E-06 NA NA
				Chrysene Dibenzo(a,h)anthracene	3.50E-10 8.05E-11	mg/m3 mg/m3	5.34E-13 1.23E-13	mg/m3 mg/m3	6.00E-07 6.00E-04	mg/m3 mg/m3	2.5 2.5	8.01E-19 1.84E-16	3.11E-12 7.16E-13	mg/m3 mg/m3	NA NA	mg/m3 mg/m3	NA NA
				Indeno(1,2,3-cd)pyrene Naphthalene TPH	2.62E-10 3.15E-11	mg/m3 mg/m3	4.00E-13 4.81E-14	mg/m3 mg/m3	6.00E-05 3.40E-05	mg/m3 mg/m3	2.5	6.01E-17 1.63E-18	2.34E-12 2.80E-13	mg/m3 mg/m3	NA 3.00E-03	mg/m3 mg/m3	NA 9.34E-11
				Diesel Range Organics (C10-C20)	2.27E-08	mg/m3	3.47E-11	mg/m3	NA	mg/m3		NA	2.02E-10	mg/m3	1.00E-01	mg/m3	2.02E-09
			Exp. Route Total	1		•						3.16E-12		ı	1	1	4.15E-04
		Exposure Point Total		"			 					6.50E-08					4.78E-02
	Exposure Mediu	ım Total					ì					6.50E-08					4.78E-02
Surface Soil Tot	al					-1						6.50E-08					4.78E-02
Total Receptor I	Risk/Hazard											6.50E-08					4.78E-02

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

NA - Not applicable/no dose-response value.

ND - Not Detected in this area.

PCB - Polychlorinated Biphenyl.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

(1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.

Table H-1-4. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Adult Angler (Mixed Fish Diet) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

								Car	ncer Risk Cal	lculations				Noncancer I	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposu	re Concentration	C	SF		Cancer	Intake/Exposur	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Ingestion														
	Surface	Investigation		Dioxin													
	Sediment	Area		2,3,7,8-TCDD-TEQ	2.13E-04	mg/kg	2.70E-12	mg/kg-day	1.30E+05	kg-day/mg		3.52E-07	9.47E-12	mg/kg-day	7.00E-10	mg/kg-day	1.35E-02
				Metals													
				Aluminum	8.92E+03	mg/kg	1.13E-04	mg/kg-day	NA	kg-day/mg		NA	3.97E-04	mg/kg-day	1.00E+00	mg/kg-day	3.97E-04
				Antimony	6.43E+00	mg/kg	8.17E-08	mg/kg-day	NA	kg-day/mg		NA	2.86E-07	mg/kg-day	4.00E-04	mg/kg-day	7.15E-04
				Arsenic	6.55E+00	mg/kg	5.00E-08	mg/kg-day	1.50E+00	kg-day/mg		7.50E-08	1.75E-07	mg/kg-day	3.00E-04	mg/kg-day	5.83E-04
				Cobalt	1.65E+01	mg/kg	2.09E-07	mg/kg-day	NA	kg-day/mg		NA	7.32E-07	mg/kg-day	3.00E-04	mg/kg-day	2.44E-03
				Cyanide	3.40E+00	mg/kg	4.33E-08	mg/kg-day	NA	kg-day/mg	1	NA	1.52E-07	mg/kg-day	6.30E-04	mg/kg-day	2.40E-04
				Manganese	2.34E+02	mg/kg	2.98E-06	mg/kg-day	NA	kg-day/mg		NA	1.04E-05	mg/kg-day	2.40E-02	mg/kg-day	4.35E-04
				Nickel	6.02E+01	mg/kg	7.65E-07	mg/kg-day	NA	kg-day/mg		NA	2.68E-06	mg/kg-day	2.00E-02	mg/kg-day	1.34E-04
				Thallium	2.38E-01	mg/kg	3.03E-09	mg/kg-day	NA	kg-day/mg		NA	1.06E-08	mg/kg-day	1.00E-05	mg/kg-day	1.06E-03
				Vanadium	1.49E+02	mg/kg	1.90E-06	mg/kg-day	NA	kg-day/mg		NA	6.63E-06	mg/kg-day	5.04E-03	mg/kg-day	1.32E-03
				PCBs													
				Total PCBs	5.93E-01	mg/kg	7.54E-09	mg/kg-day	2.00E+00	kg-day/mg		1.51E-08	2.64E-08	mg/kg-day	2.00E-05	mg/kg-day	1.32E-03
				SVOCs													
				Benzo(a)anthracene	1.25E+00	mg/kg	1.59E-08	mg/kg-day	1.00E-01	kg-day/mg	1	1.59E-09	5.57E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	7.62E-01	mg/kg	9.69E-09	mg/kg-day	1.00E+00	kg-day/mg	1	9.69E-09	3.39E-08	mg/kg-day	3.00E-04	mg/kg-day	1.13E-04
				Benzo(b)fluoranthene	1.12E+00	mg/kg	1.42E-08	mg/kg-day	1.00E-01	kg-day/mg	1	1.42E-09	4.98E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	4.07E-01	mg/kg	5.18E-09	mg/kg-day	1.00E-02	kg-day/mg	1	5.18E-11	1.81E-08	mg/kg-day	NA	mg/kg-day	NA
				Chrysene	1.01E+00	mg/kg	1.28E-08	mg/kg-day	1.00E-03	kg-day/mg	1	1.28E-11	4.50E-08	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.79E-01	mg/kg	2.28E-09	mg/kg-day	1.00E+00	kg-day/mg	1	2.28E-09	7.97E-09	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	6.55E-01	mg/kg	8.33E-09	mg/kg-day	1.00E-01	kg-day/mg	1	8.33E-10	2.92E-08	mg/kg-day	NA	mg/kg-day	NA
				TPH													
				Diesel Range Organics (C10-C20)	1.25E+02	mg/kg	1.59E-06	mg/kg-day	NA	kg-day/mg		NA	5.55E-06	mg/kg-day	1.00E-02	mg/kg-day	5.55E-04
		,															
			Exp. Route Total									4.58E-07					2.28E-02

Table H-1-4. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Adult Angler (Mixed Fish Diet) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

								Can	cer Risk Cal	culations				Noncancer F	lazard Calci	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposur	re Concentration	C	SF		Cancer	Intake/Exposu	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Dermal														
	Surface	Investigation		Dioxin													
	Sediment	Area		2,3,7,8-TCDD-TEQ	2.13E-04	mg/kg	1.85E-12	mg/kg-day	1.30E+05	kg-day/mg		2.41E-07	6.48E-12	mg/kg-day	7.00E-10	mg/kg-day	9.25E-03
				Metals													
				Aluminum	8.92E+03	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E+00	mg/kg-day	NA
				Antimony	6.43E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	6.00E-05	mg/kg-day	NA
				Arsenic	6.55E+00	mg/kg	5.70E-08	mg/kg-day	1.50E+00	kg-day/mg		8.55E-08	1.99E-07	mg/kg-day	3.00E-04	mg/kg-day	6.65E-04
				Cobalt	1.65E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	3.00E-04	mg/kg-day	NA
				Cyanide	3.40E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	NA	mg/kg-day	NA
				Manganese	2.34E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	9.60E-04	mg/kg-day	NA
				Nickel	6.02E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	8.00E-04	mg/kg-day	NA
				Thallium	2.38E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-05	mg/kg-day	NA
				Vanadium	1.49E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.31E-04	mg/kg-day	NA
				PCBs													
				Total PCBs	5.93E-01	mg/kg	2.41E-08	mg/kg-day	2.00E+00	kg-day/mg		4.82E-08	8.43E-08	mg/kg-day	2.00E-05	mg/kg-day	4.21E-03
				SVOCs													
				Benzo(a)anthracene	1.25E+00	mg/kg	4.72E-08	mg/kg-day	1.00E-01	kg-day/mg	1	4.72E-09	1.65E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	7.62E-01	mg/kg	2.87E-08	mg/kg-day	1.00E+00	kg-day/mg	1	2.87E-08	1.01E-07	mg/kg-day	3.00E-04	mg/kg-day	3.35E-04
				Benzo(b)fluoranthene	1.12E+00	mg/kg	4.22E-08	mg/kg-day	1.00E-01	kg-day/mg	1	4.22E-09	1.48E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	4.07E-01	mg/kg	1.53E-08	mg/kg-day	1.00E-02	kg-day/mg	1	1.53E-10	5.37E-08	mg/kg-day	NA	mg/kg-day	NA
				Chrysene	1.01E+00	mg/kg	3.81E-08	mg/kg-day	1.00E-03	kg-day/mg	1	3.81E-11	1.33E-07	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.79E-01	mg/kg	6.75E-09	mg/kg-day	1.00E+00	kg-day/mg	1	6.75E-09	2.36E-08	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	6.55E-01	mg/kg	2.47E-08	mg/kg-day	1.00E-01	kg-day/mg	1	2.47E-09	8.64E-08	mg/kg-day	NA	mg/kg-day	NA
				TPH													
				Diesel Range Organics (C10-C20)	1.25E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-02	mg/kg-day	NA
														1			
		,															
			Exp. Route Total									4.21E-07					1.45E-02
<u> </u>		Exposure Point Tota	1									8.79E-07					3.73E-02
	Exposure Medio	um Total									`	8.79E-07			<u> </u>	,	3.73E-02
Sediment Total				<u>'</u>								8.79E-07					3.73E-02

Table H-1-4. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Adult Angler (Mixed Fish Diet) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

								Car	ncer Risk Cal	lculations				Noncancer	Hazard Calci	ulatione	
	Exposure	Exposure	Exposure	Chemical of	EPC		Intake/Evnosur	e Concentration		SF		Cancer	Intake/Evnosur	e Concentration		RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Surface	Surface	Waterside	Ingestion	i oteritiai concern	value	Office	value	Office	value	Offits	/ LD/ (I	RISK	value	Office	value	Office	Quotient
Water	Water	Investigation	ingestion	Dioxin													
Water	Water	Area		2,3,7,8-TCDD-TEQ	6.12E-07	ug/L	2.02E-15	mg/kg-day	1.30E+05	kg-day/mg		2.63E-10	7.08E-15	mg/kg-day	7.00E-10	mg/kg-day	1.01E-05
		/ lica		Metals	0.122 07	ug/L	2.022 10	mg/kg day	1.002100	kg day/ing		2.002 10	7.002 10	mg/kg day	7.002 10	mg/kg day	1.012 00
				Arsenic	9.21E-01	ug/L	3.05E-09	mg/kg-day	1.50E+00	kg-day/mg		4.57E-09	1.07E-08	mg/kg-day	3.00E-04	mg/kg-day	3.55E-05
				Cobalt	1.04E+00	ug/L	3.44E-09	mg/kg-day	NA	kg-day/mg		4.57L-03	1.20E-08	mg/kg-day	3.00E-04	mg/kg-day	4.01E-05
				Manganese	1.48E+02	ug/L ug/L	4.88E-07	mg/kg-day	NA NA	kg-day/mg		NA NA	1.71E-06	mg/kg-day	2.40E-02	mg/kg-day	7.12E-05
				Pesticides	1.400+02	ug/L	4.000-07	mg/kg-day	INA	kg-uay/mg		INA	1.712-00	ilig/kg-uay	2.40E-02	ilig/kg-uay	7.12E-05
				4.4'-DDT	1.60E-03	ug/L	5.29E-12	mg/kg-day	3.40E-01	kg-day/mg		1.80E-12	1.85E-11	mg/kg-day	5.00E-04	mg/kg-day	3.70E-08
				PCBs	1.00L-03	ug/L	J.29L-12	mg/kg-day	3.40L-01	kg-day/ilig		1.00L-12	1.03L-11	ilig/kg-day	J.00L-04	ilig/kg-day	3.70L-00
				Total PCBs	9.40E-03	ug/L	3.11E-11	mg/kg-day	4.00E-01	kg-day/mg		1.24E-11	1.09E-10	mg/kg-day	2.00E-05	mg/kg-day	5.44E-06
				Total FCBs	9.40E-03	ug/L	3.116-11	mg/kg-day	4.00E-01	kg-uay/mg		1.246-11	1.09E-10	ilig/kg-uay	2.00E-03	ilig/kg-uay	3.44E-00
			Exp. Route Total	1	I.							4.85E-09				l .	1.62E-04
			Dermal Dermal	<u></u>						1		1.002 00				1	
			Demia	Dioxin													
				2,3,7,8-TCDD-TEQ	6.12E-07	ug/L	Outside EPD	mg/kg-day	1.30E+05	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	7.00E-10	mg/kg-day	Outside EPD
				Metals	0.12L-07	ug/L	Outside Li D	mg/kg-day	1.30L+03	kg-day/ilig		Outside Li D	Outside Li D	ilig/kg-day	7.00L-10	ilig/kg-day	Outside Li D
				Arsenic	9.21E-01	ug/L	8.90E-10	mg/kg-day	1.50E+00	kg-day/mg		1.34E-09	3.12E-09	mg/kg-day	3.00E-04	mg/kg-day	1.04E-05
				Cobalt	1.04E+00	ug/L	4.02E-10	mg/kg-day	NA	kg-day/mg		NA	1.41E-09	mg/kg-day	3.00E-04	mg/kg-day	4.69E-06
				Manganese	1.48E+02	ug/L	1.43E-07	mg/kg-day	NA.	kg-day/mg		NA NA	5.00E-07	mg/kg-day	9.60E-04	mg/kg-day	5.21E-04
				Pesticides	1.400+02	ug/L	1.43E-07	mg/kg-day	INA	kg-uay/mg		INA	5.00E-07	ilig/kg-uay	9.00E-04	ilig/kg-uay	3.21E-04
				4,4'-DDT	1.60E-03	ug/L	Outside EPD	mg/kg-day	3.40E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	5.00E-04	mg/kg-day	Outside EPD
				PCBs	1.00L-03	ug/L	Outside Li D	mg/kg-day	3.40L-01	kg-day/mg		Outside Li D	Outside Li D	mg/kg-day	J.00L-04	ilig/kg-uay	Outside Li D
				Total PCBs	9.40E-03	ug/L	Outside EPD	mg/kg-day	4.00E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	2.00E-05	mg/kg-day	Outside EPD
				Total 1 CDS	9.40L-03	ug/L	Outside Li D	mg/kg-day	4.00L-01	kg-day/mg		Outside Li D	Outside Li D	mg/kg-day	2.00L-03	ilig/kg-uay	Outside Li D
			Exp. Route Total	1	ı							1.34E-09				l	5.36E-04
	l i	Exposure Point Tota	ıl	*								6.18E-09					6.98E-04
	Exposure Mediu	um Total										6.18E-09					6.98E-04
Surface Water	Total											6.18E-09					6.98E-04
Fish Tissue	Tissue - Mixed	Upper Anacostia	Ingestion														
	Diet (2)			Metals													
				Mercury	1.58E-01	mg/kg	5.64E-06	mg/kg-day	NA	kg-day/mg		NA	1.98E-05	mg/kg-day	1.00E-04	mg/kg-day	1.98E-01
				Pesticides													
				4,4'-DDD	2.04E-02	mg/kg	6.55E-07	mg/kg-day	2.40E-01	kg-day/mg		1.57E-07	2.29E-06	mg/kg-day	3.00E-05	mg/kg-day	7.65E-02
				4,4'-DDE	2.69E-02	mg/kg	8.65E-07	mg/kg-day	3.40E-01	kg-day/mg		2.94E-07	3.03E-06	mg/kg-day	3.00E-04	mg/kg-day	1.01E-02
				Aldrin	3.82E-04	mg/kg	1.23E-08	mg/kg-day	1.70E+01	kg-day/mg		2.09E-07	4.30E-08	mg/kg-day	3.00E-05	mg/kg-day	1.43E-03
				alpha-Chlordane	3.10E-02	mg/kg	9.95E-07	mg/kg-day	3.50E-01	kg-day/mg		3.48E-07	3.48E-06	mg/kg-day	5.00E-04	mg/kg-day	6.97E-03
				cis-Nonachlor	1.13E-02	mg/kg	3.62E-07	mg/kg-day	3.50E-01	kg-day/mg		1.27E-07	1.27E-06	mg/kg-day	5.00E-04	mg/kg-day	2.54E-03
				Dieldrin	6.64E-03	mg/kg	2.13E-07	mg/kg-day	1.60E+01	kg-day/mg		3.42E-06	7.47E-07	mg/kg-day	5.00E-05	mg/kg-day	1.49E-02
				gamma-Chlordane	5.74E-03	mg/kg	1.85E-07	mg/kg-day	3.50E-01	kg-day/mg		6.46E-08	6.46E-07	mg/kg-day	5.00E-04	mg/kg-day	1.29E-03
				Heptachlor epoxide	2.14E-03	mg/kg	6.88E-08	mg/kg-day	9.10E+00	kg-day/mg		6.26E-07	2.41E-07	mg/kg-day	1.30E-05	mg/kg-day	1.85E-02
				Mirex	3.12E-04	mg/kg	1.00E-08	mg/kg-day	1.80E+01	kg-day/mg		1.81E-07	3.51E-08	mg/kg-day	2.00E-04	mg/kg-day	1.76E-04
				Oxychlordane	2.87E-03	mg/kg	9.23E-08	mg/kg-day	3.50E-01	kg-day/mg		3.23E-08	3.23E-07	mg/kg-day	5.00E-04	mg/kg-day	6.46E-04
				trans-Nonachlor	1.78E-02	mg/kg	5.71E-07	mg/kg-day	3.50E-01	kg-day/mg		2.00E-07	2.00E-06	mg/kg-day	5.00E-04	mg/kg-day	4.00E-03
				PCBs												1	1
				Total PCBs	3.59E-01	mg/kg	1.12E-05	mg/kg-day	2.00E+00	kg-day/mg		2.23E-05	3.91E-05	mg/kg-day	2.00E-05	mg/kg-day	1.95E+00
II				PCB-TEQ	2.69E-06	mg/kg	6.82E-11	mg/kg-day	1.30E+05	kg-day/mg		8.87E-06	2.39E-10	mg/kg-day	7.00E-10	mg/kg-day	3.41E-01
			ı												I	l	
		ostia (Total PCBs) ³										2.80E-05					2.29E+00
Fish Tissue Tot	al - Upper Anaco	ostia (Total PCBs) ³ ostia (PCB-TEQ) ³										2.80E-05 1.45E-05					2.29E+00 6.76E-01
Fish Tissue Total	al - Upper Anaco	ostia (PCB-TEQ)*										1.45E-05					6.76E-01
Fish Tissue Total Receptor Total Total Receptor	al - Upper Anaco Is Risk/Hazard - Up	pper Anacostia (inclu		sediment, surface water, and fish) sediment and surface water and PCB													

Table H-1-4. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Adult Angler (Mixed Fish Diet) Reasonable Maximum Exposure Benning Road Facility RI/FS Project

3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Adult

									Can	cer Risk Cald	culations				Noncancer F	lazard Calcu	ulations	
		Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposu	re Concentration	C!	SF		Cancer	Intake/Exposur	e Concentration	R	:fD	Hazard
Me	1edium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient

Notes

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

PCB-TEQ - PCB Toxicity Equivalence.

EPC - Exposure Point Concentration.

EPD - Effective Predictive Domain.

SVOC - Semivolatile Organic Compound.

NA - Not applicable. TCDD-TEQ - 2,3,7,8-Tetrachloro-dibenzo-p-dioxin Toxicity Equivalence.

- (1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.
- (2) Assumes a mixed fish diet of the species with available fillet data based on a pooled EPC.
- (3) Fish consumption Risk/Hazard based on all COPCs except PCB-TEQ.
- (4) Fish consumption Risk/Hazard based on all COPCs except Total PCBs.

Table H-1-5. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Older Child/Teen Angler (Mixed Fish Diet) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

								Can	cer Risk Ca	culations				Noncancer	Hazard Cal	culations	
	Exposure	Exposure	Exposure	Chemical of	EPC)	Intake/Exposu	re Concentration	C	SF		Cancer	Intake/Exposu	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Ingestion														
	Surface	Investigation		Dioxin													1
	Sediment	Area		2,3,7,8-TCDD-TEQ	2.13E-04	mg/kg	2.45E-12	mg/kg-day	1.30E+05	kg-day/mg		3.18E-07	1.43E-11	mg/kg-day	7.00E-10	mg/kg-day	2.04E-02
				Metals													1
				Aluminum	8.92E+03	mg/kg	1.03E-04	mg/kg-day	NA	kg-day/mg		NA	5.99E-04	mg/kg-day	1.00E+00	mg/kg-day	5.99E-04
				Antimony	6.43E+00	mg/kg	7.40E-08	mg/kg-day	NA	kg-day/mg		NA	4.32E-07	mg/kg-day	4.00E-04	mg/kg-day	1.08E-03
				Arsenic	6.55E+00	mg/kg	4.53E-08	mg/kg-day	1.50E+00	kg-day/mg		6.79E-08	2.64E-07	mg/kg-day	3.00E-04	mg/kg-day	8.80E-04
				Cobalt	1.65E+01	mg/kg	1.90E-07	mg/kg-day	NA	kg-day/mg		NA	1.11E-06	mg/kg-day	3.00E-04	mg/kg-day	3.68E-03
				Cyanide	3.40E+00	mg/kg	3.92E-08	mg/kg-day	NA	kg-day/mg		NA	2.29E-07	mg/kg-day	6.30E-04	mg/kg-day	3.63E-04
				Manganese	2.34E+02	mg/kg	2.70E-06	mg/kg-day	NA	kg-day/mg		NA	1.57E-05	mg/kg-day	2.40E-02	mg/kg-day	6.56E-04
				Nickel	6.02E+01	mg/kg	6.93E-07	mg/kg-day	NA	kg-day/mg		NA	4.04E-06	mg/kg-day	2.00E-02	mg/kg-day	2.02E-04
				Thallium	2.38E-01	mg/kg	2.74E-09	mg/kg-day	NA	kg-day/mg		NA	1.60E-08	mg/kg-day	1.00E-05	mg/kg-day	1.60E-03
				Vanadium	1.49E+02	mg/kg	1.72E-06	mg/kg-day	NA	kg-day/mg		NA	1.00E-05	mg/kg-day	5.04E-03	mg/kg-day	1.99E-03
				PCBs													1
				Total PCBs	5.93E-01	mg/kg	6.83E-09	mg/kg-day	2.00E+00	kg-day/mg		1.37E-08	3.99E-08	mg/kg-day	2.00E-05	mg/kg-day	1.99E-03
				SVOCs													1
				Benzo(a)anthracene	1.25E+00	mg/kg	1.44E-08	mg/kg-day	1.00E-01	kg-day/mg	2.5	3.60E-09	8.41E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	7.62E-01	mg/kg	8.78E-09	mg/kg-day	1.00E+00	kg-day/mg	2.5	2.19E-08	5.12E-08	mg/kg-day	3.00E-04	mg/kg-day	1.71E-04
				Benzo(b)fluoranthene	1.12E+00	mg/kg	1.29E-08	mg/kg-day	1.00E-01	kg-day/mg	2.5	3.22E-09	7.52E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	4.07E-01	mg/kg	4.69E-09	mg/kg-day	1.00E-02	kg-day/mg	2.5	1.17E-10	2.74E-08	mg/kg-day	NA	mg/kg-day	NA
				Chrysene	1.01E+00	mg/kg	1.16E-08	mg/kg-day	1.00E-03	kg-day/mg	2.5	2.91E-11	6.79E-08	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.79E-01	mg/kg	2.06E-09	mg/kg-day	1.00E+00	kg-day/mg	2.5	5.16E-09	1.20E-08	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	6.55E-01	mg/kg	7.55E-09	mg/kg-day	1.00E-01	kg-day/mg	2.5	1.89E-09	4.40E-08	mg/kg-day	NA	mg/kg-day	NA
				TPH													i
				Diesel Range Organics (C10-C20)	1.25E+02	mg/kg	1.44E-06	mg/kg-day	NA	kg-day/mg		NA	8.38E-06	mg/kg-day	1.00E-02	mg/kg-day	8.38E-04
																	i
																L	
			Exp. Route Total									4.36E-07					3.45E-02

Table H-1-5. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Older Child/Teen Angler (Mixed Fish Diet) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

								Can	cer Risk Cal	culations				Noncancer	Hazard Cal	culations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposu	re Concentration	С	SF		Cancer	Intake/Exposu	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Dermal														i
	Surface	Investigation		Dioxin													ł
	Sediment	Area		2,3,7,8-TCDD-TEQ	2.13E-04	mg/kg	9.96E-13	mg/kg-day	1.30E+05	kg-day/mg		1.29E-07	5.81E-12	mg/kg-day	7.00E-10	mg/kg-day	8.30E-03
				Metals													ł
				Aluminum	8.92E+03	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E+00	mg/kg-day	NA
				Antimony	6.43E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	6.00E-05	0 0 ,	NA
				Arsenic	6.55E+00	mg/kg	3.07E-08	mg/kg-day	1.50E+00	kg-day/mg		4.60E-08	1.79E-07	mg/kg-day	3.00E-04	mg/kg-day	5.96E-04
				Cobalt	1.65E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	3.00E-04	mg/kg-day	NA
				Cyanide	3.40E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	NA	mg/kg-day	NA
				Manganese	2.34E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	9.60E-04	mg/kg-day	NA
				Nickel	6.02E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	8.00E-04	mg/kg-day	NA
				Thallium	2.38E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-05	mg/kg-day	NA
				Vanadium	1.49E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.31E-04	mg/kg-day	NA
				PCBs													i I
				Total PCBs	5.93E-01	mg/kg	1.30E-08	mg/kg-day	2.00E+00	kg-day/mg		2.59E-08	7.56E-08	mg/kg-day	2.00E-05	mg/kg-day	3.78E-03
				SVOCs													1
				Benzo(a)anthracene	1.25E+00	mg/kg	2.54E-08	mg/kg-day	1.00E-01	kg-day/mg	2.5	6.35E-09	1.48E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	7.62E-01	mg/kg	1.55E-08	mg/kg-day	1.00E+00	kg-day/mg	2.5	3.87E-08	9.02E-08	mg/kg-day	3.00E-04	mg/kg-day	3.01E-04
				Benzo(b)fluoranthene	1.12E+00	mg/kg	2.27E-08	mg/kg-day	1.00E-01	kg-day/mg	2.5	5.68E-09	1.32E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	4.07E-01	mg/kg	8.26E-09	mg/kg-day	1.00E-02	kg-day/mg	2.5	2.06E-10	4.82E-08	mg/kg-day	NA	mg/kg-day	NA
				Chrysene	1.01E+00	mg/kg	2.05E-08	mg/kg-day	1.00E-03	kg-day/mg	2.5	5.12E-11	1.20E-07	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.79E-01	mg/kg	3.63E-09	mg/kg-day	1.00E+00	kg-day/mg	2.5	9.08E-09	2.12E-08	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	6.55E-01	mg/kg	1.33E-08	mg/kg-day	1.00E-01	kg-day/mg	2.5	3.32E-09	7.75E-08	mg/kg-day	NA	mg/kg-day	NA
				ТРН													ł
				Diesel Range Organics (C10-C20)	1.25E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-02	mg/kg-day	NA
																	ł
			5 5 · T · I			l							-			L	1005.00
	ı		Exp. Route Total	<u> </u>			<u></u>					2.65E-07	<u> </u>				1.30E-02
		Exposure Point Tota	11				<u> </u>					7.01E-07	<u> </u>				4.74E-02
	Exposure Mediur	m rotai										7.01E-07	<u> </u>				4.74E-02
Sediment Total												7.01E-07	<u> </u>				4.74E-02

Table H-1-5. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Older Child/Teen Angler (Mixed Fish Diet) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

								Can	cer Risk Cal	culations				Noncance	Hazard Cal	culations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposur	e Concentration	C	SF		Cancer	Intake/Exposur	e Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Surface	Surface	Waterside	Ingestion														
Water	Water	Investigation		Dioxin													1
		Area		2,3,7,8-TCDD-TEQ	6.12E-07	ug/L	1.83E-15	mg/kg-day	1.30E+05	kg-day/mg		2.38E-10	1.07E-14	mg/kg-day	7.00E-10	mg/kg-day	1.53E-05
				Metals													1
				Arsenic	9.21E-01	ug/L	2.76E-09	mg/kg-day	1.50E+00	kg-day/mg		4.14E-09	1.61E-08	mg/kg-day		mg/kg-day	5.36E-05
				Cobalt	1.04E+00	ug/L	3.12E-09	mg/kg-day	NA	kg-day/mg		NA	1.82E-08	mg/kg-day	3.00E-04	mg/kg-day	6.06E-05
				Manganese	1.48E+02	ug/L	4.42E-07	mg/kg-day	NA	kg-day/mg		NA	2.58E-06	mg/kg-day	2.40E-02	mg/kg-day	1.08E-04
				Pesticides													
				4,4'-DDT	1.60E-03	ug/L	4.79E-12	mg/kg-day	3.40E-01	kg-day/mg		1.63E-12	2.80E-11	mg/kg-day	5.00E-04	mg/kg-day	5.59E-08
				PCBs													
				Total PCBs	9.40E-03	ug/L	2.82E-11	mg/kg-day	4.00E-01	kg-day/mg		1.13E-11	1.64E-10	mg/kg-day	2.00E-05	mg/kg-day	8.21E-06
			Exp. Route Total	1		l .			ļ.	ļ.	Į	4.39E-09					2.45E-04
			Dermal														
				Dioxin													l !
				2.3.7.8-TCDD-TEQ	6.12E-07	ug/L	Outside EPD	mg/kg-day	1.30E+05	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	7.00E-10	mg/kg-day	Outside EPD
				Metals				00,						0 0 ,		0 0 ,	1
				Arsenic	9.21E-01	ug/L	5.75E-10	mg/kg-day	1.50E+00	kg-day/mg		8.63E-10	3.35E-09	mg/kg-day	3.00E-04	mg/kg-day	1.12E-05
				Cobalt	1.04E+00	ug/L	2.60E-10	mg/kg-day	NA	kg-day/mg		NA	1.52E-09	mg/kg-day	3.00E-04	mg/kg-day	5.05E-06
				Manganese	1.48E+02	ug/L	9.22E-08	mg/kg-day	NA	kg-day/mg		NA	5.38E-07	mg/kg-day	9.60E-04	mg/kg-day	5.60E-04
				Pesticides													1
				4,4'-DDT	1.60E-03	ug/L	Outside EPD	mg/kg-day	3.40E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	5.00E-04	mg/kg-day	Outside EPD
				PCBs													1 "
				Total PCBs	9.40E-03	ug/L	Outside EPD	mg/kg-day	4.00E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	2.00E-05	mg/kg-day	Outside EPD
				1													
		5 5	Exp. Route Total	JI								8.63E-10	!				5.77E-04
	E Maril	Exposure Point Tota	il				<u> </u>					5.25E-09					8.22E-04
Surface Water	Exposure Mediur	m rotai										5.25E-09	<u> </u>				8.22E-04 8.22E-04
ourrace vyater	าบเสเ											5.25E-09					6.22E-U4

Table H-1-5. RME

Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Older Child/Teen Angler (Mixed Fish Diet) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future
Receptor Population: Angler
Receptor Age: Older Child/Teen

								Car	cer Risk Cal	culations				Noncancer	Hazard Cal	culations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposu	re Concentration	С	SF		Cancer	Intake/Exposur	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Fish Tissue	Fish Fillet	Upper Anacostia	Ingestion														
	Tissue - Mixed			Metals													
	Diet (2)			Mercury	1.58E-01	mg/kg	3.32E-06	mg/kg-day	NA	kg-day/mg		NA	1.94E-05	mg/kg-day	1.00E-04	mg/kg-day	1.94E-01
				Pesticides													
				4,4'-DDD	2.04E-02	mg/kg	3.86E-07	mg/kg-day	2.40E-01	kg-day/mg		9.26E-08	2.25E-06	mg/kg-day	3.00E-05	mg/kg-day	7.50E-02
				4,4'-DDE	2.69E-02	mg/kg	5.09E-07	mg/kg-day	3.40E-01	kg-day/mg		1.73E-07	2.97E-06	mg/kg-day	3.00E-04	mg/kg-day	9.90E-03
				Aldrin	3.82E-04	mg/kg	7.23E-09	mg/kg-day	1.70E+01	kg-day/mg		1.23E-07	4.22E-08	mg/kg-day	3.00E-05	mg/kg-day	1.41E-03
				alpha-Chlordane	3.10E-02	mg/kg	5.86E-07	mg/kg-day	3.50E-01	kg-day/mg		2.05E-07	3.42E-06	mg/kg-day	5.00E-04	mg/kg-day	6.84E-03
				cis-Nonachlor	1.13E-02	mg/kg	2.13E-07	mg/kg-day	3.50E-01	kg-day/mg		7.46E-08	1.24E-06	mg/kg-day	5.00E-04	mg/kg-day	2.49E-03
				Dieldrin	6.64E-03	mg/kg	1.26E-07	mg/kg-day	1.60E+01	kg-day/mg		2.01E-06	7.33E-07	mg/kg-day	5.00E-05	mg/kg-day	1.47E-02
				gamma-Chlordane	5.74E-03	mg/kg	1.09E-07	mg/kg-day	3.50E-01	kg-day/mg		3.80E-08	6.34E-07	mg/kg-day	5.00E-04	mg/kg-day	1.27E-03
				Heptachlor epoxide	2.14E-03	mg/kg	4.05E-08	mg/kg-day	9.10E+00	kg-day/mg		3.69E-07	2.36E-07	mg/kg-day		mg/kg-day	1.82E-02
				Mirex	3.12E-04	mg/kg	5.90E-09	mg/kg-day	1.80E+01	kg-day/mg		1.06E-07	3.44E-08	mg/kg-day	2.00E-04	mg/kg-day	1.72E-04
				Oxychlordane	2.87E-03	mg/kg	5.43E-08	mg/kg-day	3.50E-01	kg-day/mg		1.90E-08	3.17E-07	mg/kg-day	5.00E-04	mg/kg-day	6.34E-04
				trans-Nonachlor	1.78E-02	mg/kg	3.36E-07	mg/kg-day	3.50E-01	kg-day/mg		1.18E-07	1.96E-06	mg/kg-day	5.00E-04	mg/kg-day	3.92E-03
				PCBs													
				Total PCBs	3.59E-01	mg/kg	6.57E-06	mg/kg-day	2.00E+00	kg-day/mg		1.31E-05	3.83E-05	mg/kg-day	2.00E-05	mg/kg-day	1.92E+00
				PCB-TEQ	2.69E-06	mg/kg	4.02E-11	mg/kg-day	1.30E+05	kg-day/mg		5.22E-06	2.34E-10	mg/kg-day	7.00E-10	mg/kg-day	3.35E-01
sh Tissue Tot	al - Upper Anacos	tia (Total PCBs) ³					<u> </u>					1.65E-05	<u> </u>				2.24E+00
sh Tissue Tot	al - Upper Anacos	tia (PCB-TEQ)*										8.55E-06					6.63E-01
eceptor Tota	ls												11.				
otal Receptor	Risk/Hazard - Upp	er Anacostia (include	es Total PCBs for s	sediment, surface water, and fish)			-			•		1.72E-05	1	-			2.29E+00
otal Receptor	Risk/Hazard - Upr	er Anacostia (include	es Total PCBs for	sediment and surface water and PCB-TEC	Q for fish)							9.25E-06					7.11E-01

Notes:

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

PCB-TEQ - PCB Toxicity Equivalence.

PC - Exposure Point Concentration.

RfD - Oral Reference Dose.

EPD - Effective Predictive Domain.

SVOC - Semivolatile Organic Compound.

NA - Not applicable. TCDD-TEQ - 2,3,7,8-Tetrachloro-dibenzo-p-dioxin Toxicity Equivalence.

- (1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.
- (2) Assumes a mixed fish diet of the species with available fillet data based on a pooled EPC.
- (3) Fish consumption Risk/Hazard based on all COPCs except PCB-TEQ.
- (4) Fish consumption Risk/Hazard based on all COPCs except Total PCBs.

Table H-1-6. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Child Angler (Mixed Fish Diet) Reasonable Maximum Exposure Benning Road Facility RVFS Project 3400 Benning Rd, N.E., Washington DC 20019

l								Ca	ncer Risk Ca	lculations				Noncancer H	azard Calcul	ations	
	Exposure	Exposure	Exposure	Chemical of	EPC			re Concentration		SF		Cancer		re Concentration		RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Ingestion														
	Surface Sediment	Investigation		Dioxin 2,3,7,8-TCDD-TEQ	2.13E-04		7.64E-12		1.30E+05	1		9.93E-07	8.91E-11		7.00E-10		1.27E-01
	Sediment	Area		Metals	2.13E-04	mg/kg	7.04E-12	mg/kg-day	1.30E+05	kg-day/mg		9.93E-07	6.91E-11	mg/kg-day	7.00E-10	mg/kg-day	1.2/E-01
				Aluminum	8.92E+03	mg/kg	3.20E-04	mg/kg-day	NA	kg-day/mg		NA	3.74E-03	mg/kg-day	1.00E+00	mg/kg-day	3.74E-03
				Antimony	6.43E+00	mg/kg	2.31E-07	mg/kg-day	NA.	kg-day/mg		NA.	2.69E-06	mg/kg-day	4.00E-04	mg/kg-day	
				Arsenic	6.55E+00	mg/kg	1.41E-07	mg/kg-day	1.50E+00	kg-day/mg		2.12E-07	1.65E-06	mg/kg-day	3.00E-04	mg/kg-day	
				Cobalt	1.65E+01	mg/kg	5.91E-07	mg/kg-day	NA	kg-day/mg		NA	6.89E-06	mg/kg-day	3.00E-04	mg/kg-day	
				Cyanide	3.40E+00	mg/kg	1.22E-07	mg/kg-day	NA	kg-day/mg		NA	1.43E-06	mg/kg-day	6.30E-04	mg/kg-day	
				Manganese	2.34E+02	mg/kg	8.42E-06	mg/kg-day	NA	kg-day/mg		NA	9.82E-05	mg/kg-day	2.40E-02	mg/kg-day	
				Nickel	6.02E+01	mg/kg	2.16E-06	mg/kg-day	NA	kg-day/mg		NA	2.52E-05	mg/kg-day	2.00E-02	mg/kg-day	1.26E-03
				Thallium	2.38E-01	mg/kg	8.55E-09	mg/kg-day	NA	kg-day/mg		NA	9.97E-08	mg/kg-day	1.00E-05	mg/kg-day	
				Vanadium	1.49E+02	mg/kg	5.35E-06	mg/kg-day	NA	kg-day/mg		NA	6.24E-05	mg/kg-day	5.04E-03	mg/kg-day	1.24E-02
				PCBs													
				Total PCBs SVOCs	5.93E-01	mg/kg	2.13E-08	mg/kg-day	2.00E+00	kg-day/mg		4.26E-08	2.48E-07	mg/kg-day	2.00E-05	mg/kg-day	1.24E-02
				Benzo(a)anthracene	1.25E+00	mg/kg	4.49E-08	mg/kg-day	1.00E-01	kg-day/mg	4.2	1.89E-08	5.24E-07	mg/kg-day	NA	mg/kg-day	NA.
			l	Benzo(a)pyrene	7.62E-01	mg/kg	2.74E-08	mg/kg-day	1.00E+00	kg-day/mg	4.2	1.15E-07	3.19E-07	mg/kg-day	3.00E-04	mg/kg-day	
				Benzo(b)fluoranthene	1.12E+00	mg/kg	4.02E-08	mg/kg-day	1.00E-01	kg-day/mg	4.2	1.69E-08	4.69E-07	mg/kg-day	NA NA	mg/kg-day	
				Benzo(k)fluoranthene	4.07E-01	mg/kg	1.46E-08	mg/kg-day	1.00E-02	kg-day/mg	4.2	6.14E-10	1.71E-07	mg/kg-day	NA	mg/kg-day	
				Chrysene	1.01E+00	mg/kg	3.63E-08	mg/kg-day	1.00E-03	kg-day/mg	4.2	1.52E-10	4.23E-07	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.79E-01	mg/kg	6.43E-09	mg/kg-day	1.00E+00	kg-day/mg	4.2	2.70E-08	7.50E-08	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	6.55E-01	mg/kg	2.35E-08	mg/kg-day	1.00E-01	kg-day/mg	4.2	9.88E-09	2.74E-07	mg/kg-day	NA	mg/kg-day	NA
				ТРН													
				Diesel Range Organics (C10-C20)	1.25E+02	mg/kg	4.48E-06	mg/kg-day	NA	kg-day/mg		NA	5.23E-05	mg/kg-day	1.00E-02	mg/kg-day	5.23E-03
		1	Exp. Route Total	 			-		<u> </u>		<u> </u>	1.44E-06	1				2.15E-01
Sediment	Fringe	Waterside	Dermal											1			
Codimoni	Surface	Investigation	Doma	Dioxin													
	Sediment	Area		2,3,7,8-TCDD-TEQ	2.13E-04	mg/kg	1.32E-12	mg/kg-day	1.30E+05	kg-day/mg		1.72E-07	1.54E-11	mg/kg-day	7.00E-10	mg/kg-day	2.20E-02
				Metals													
				Aluminum	8.92E+03	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E+00	mg/kg-day	NA
				Antimony	6.43E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	6.00E-05	mg/kg-day	
				Arsenic	6.55E+00	mg/kg	4.06E-08	mg/kg-day	1.50E+00	kg-day/mg		6.10E-08	4.74E-07	mg/kg-day	3.00E-04	mg/kg-day	
				Cobalt	1.65E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	3.00E-04	mg/kg-day	
				Cyanide	3.40E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	NA	mg/kg-day	
				Manganese Nickel	2.34E+02	mg/kg	NA NA	mg/kg-day	NA NA	kg-day/mg		NA NA	NA NA	mg/kg-day	9.60E-04	mg/kg-day	
				Thallium	6.02E+01 2.38E-01	mg/kg mg/kg	NA NA	mg/kg-day mg/kg-day	NA NA	kg-day/mg kg-day/mg		NA NA	NA NA	mg/kg-day mg/kg-day	8.00E-04 1.00E-05	mg/kg-day mg/kg-day	
				Vanadium	1.49E+02	mg/kg	NA NA	mg/kg-day	NA NA	kg-day/mg		NA NA	NA NA	mg/kg-day	1.31E-04	mg/kg-day	
				PCBs	1.432402	mg/kg	IVA	ilig/kg-day	14/5	kg-day/mg		14/5	19/5	mg/kg-day	1.512-04	ilig/kg-uay	14/5
				Total PCBs	5.93E-01	mg/kg	1.72E-08	mg/kg-day	2.00E+00	kg-day/mg		3.43E-08	2.00E-07	mg/kg-day	2.00E-05	mg/kg-day	1.00E-02
				SVOCs				1 ,			l						1
				Benzo(a)anthracene	1.25E+00	mg/kg	3.36E-08	mg/kg-day	1.00E-01	kg-day/mg	4.2	1.41E-08	3.92E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	7.62E-01	mg/kg	2.05E-08	mg/kg-day	1.00E+00	kg-day/mg	4.2	8.61E-08	2.39E-07	mg/kg-day	3.00E-04	mg/kg-day	
				Benzo(b)fluoranthene	1.12E+00	mg/kg	3.01E-08	mg/kg-day	1.00E-01	kg-day/mg	4.2	1.26E-08	3.51E-07	mg/kg-day	NA	mg/kg-day	
				Benzo(k)fluoranthene	4.07E-01	mg/kg	1.09E-08	mg/kg-day	1.00E-02	kg-day/mg	4.2	4.60E-10	1.28E-07	mg/kg-day	NA	mg/kg-day	
				Chrysene	1.01E+00 1.79E-01	mg/kg	2.72E-08	mg/kg-day	1.00E-03 1.00E+00	kg-day/mg	4.2 4.2	1.14E-10 2.02E-08	3.17E-07 5.62E-08	mg/kg-day	NA NA	mg/kg-day	
				Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene	6.55E-01	mg/kg mg/kg	4.81E-09 1.76E-08	mg/kg-day mg/kg-day	1.00E+00 1.00E-01	kg-day/mg kg-day/mg	4.2	7.40E-09	2.05E-07	mg/kg-day	NA NA	mg/kg-day mg/kg-day	
				TPH	0.33E=01	IIIg/kg	1.702-00	mg/kg-day	1.00E-01	kg-day/ilig	4.2	7.402-09	2.03E=07	mg/kg-day	INA	ilig/kg-uay	INA
				Diesel Range Organics (C10-C20)	1.25E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-02	mg/kg-day	NA
				(C10 020)	1.202.102	99		g.ng ody		g Gay, ring	l			g.ng day		.ng.ng day	'*'
				1				<u> </u>	L		L		<u></u>				
			Exp. Route Total									4.08E-07					3.44E-02
		Exposure Point Total										1.84E-06					2.49E-01
l M	Exposure Mediu	m Total					Ì					1.84E-06	ĺ				2.49E-01
Sediment Total												1.84E-06	ĺ				2.49E-01

Table H-1-6. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Child Angler (Mixed Fish Diet) Reasonable Maximum Exposure Benning Road Facility RI/FS Project

3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Child

Metals Arsenic 9.21E-01 ug/L 4.30E-09 mg/kg-day 1.50E-00 kg-day/mg NA kg-day/mg NA 8.6E-09 5.02E-08 mg/kg-day 3.00E-04 restricted NA Manganese 1.48E-02 ug/L 4.86E-09 mg/kg-day NA kg-day/mg NA 8.0E-05 mg/kg-day NA kg-day/mg NA 8.0E-05 mg/kg-day NA 8.0	Ha		azard Calcula					Luiauuis	ncer Risk Cal	Car								
Surface Water Wa		(fD	R	e Concentration	Intake/Exposure			SF	С	e Concentration	Intake/Exposur				Exposure	Exposure	Exposure	
Water Water Water Investigation 2.37 ATCD-TEQ 6.12E-07 ug/L 2.86E-15 mg/kg-day 1.30E-05 kg-day/mg 3.71E-10 3.33E-14 mg/kg-day 7.00E-10 regular	Inits Qu	Units	Value	Units	Value	Risk	ADAF (1)	Units	Value	Units	Value	Units	Value	Potential Concern	Route	Point	Medium	Medium
Area					i										Ingestion			
Metals			1 .	1	1												Water	Water
Anseric 9.21E-01 ug L 4.30E-00 mgkg-day 1.50E-00 kg-dayling 6.45E-08 6.0E-08 mgkg-day 3.00E-04 restrictions 1.48E-02 ug L 6.90E-07 mgkg-day 3.40E-01 kg-dayling NA kg-dayling NA 8.0E-08 mgkg-day 2.40E-02 restrictions 1.48E-02 ug L 7.47E-12 mgkg-day 3.40E-01 kg-dayling 2.54E-12 8.72E-11 mgkg-day 2.00E-04 restrictions 1.76E-11 mgkg-day 2.00E-04 restrictions 1.76E-11 mgkg-day 2.00E-04 restrictions 1.76E-11 mgkg-day 1.00E-01 kg-dayling 1.76E-11 mgkg-day 2.00E-04 restrictions 1.76E-11 mgkg-day 1.00E-05 restrictions 1.76E-11 mgkg-day 1.00E-05 restrictions 1.76E-11 mgkg-day 1.00E-05 restrictions 1.76E-11 mgkg-day 1.00E-05 restrictions 1.76E-11 mgkg-day 1.00E-05 restrictions 1.76E-11 mgkg-day 1.00E-05 restrictions 1.76E-11 mgkg-day 1.00E-05 restrictions 1.76E-11 mgkg-day 1.00E-05 restrictions 1.76E-11 mgkg-day 1.00E-05 restrictions 1.76E-11 mgkg-day 1.00E-05 restrictions 1.76E-11 mgkg-day 1.00E-05 restrictions 1.76E-11 mgkg-day 1.00E-05 restrictions 1.76E-09 restrictions 1.76E	kg-day 4.7	mg/kg-da	7.00E-10	mg/kg-day	3.33E-14	3.71E-10		kg-day/mg	1.30E+05	mg/kg-day	2.86E-15	ug/L	6.12E-07			Area		
Cobat 1.04E+00 ug/L 4.86E+09 mg/kg-day NA kg-day/mg NA 8.05E+06 mg/kg-day NA 8.05E+06 mg/kg-day NA 8.05E+06 mg/kg-day NA 8.05E+06 mg/kg-day 2.24E+12 8.72E+11 mg/kg-day 2.00E+05 mg/k	kg-day 1.6	mg/kg-da	2 OOE 04	ma/ka day	E 02E 00	6.455.00		ka day/ma	1 505 : 00	ma/ka day	4 20 = 00	ug/l	0.215.01					
Marganese 1.48E-02 Ug/L 6.50E-07 mg/kg-day NA kg-day/mg NA 8.05E-06 mg/kg-day 2.40E-02 process 4.4-DDT 1.60E-03 ug/L 7.47E-12 mg/kg-day 3.40E-01 kg-day/mg 2.54E-12 8.72E-11 mg/kg-day 2.00E-05 process proces		mg/kg-da																
Pesticides 4,4-DOT 1,60E-03 ug/L 7,47E-12 mg/kg-day 3,40E-01 kg-day/mg 2,54E-12 8,72E-11 mg/kg-day 5,00E-04 r		mg/kg-da																
PCBs District PCBs District PCBs District PCBs District PCBs District PCBs District PCBs District PCBs District PCBs District PCBs District PCBs District PCBs District PCBs District Distri	• •		1 '		il I									Pesticides				
Total PCBs	kg-day 1.7	mg/kg-da	5.00E-04	mg/kg-day	8.72E-11	2.54E-12		kg-day/mg	3.40E-01	mg/kg-day	7.47E-12	ug/L	1.60E-03					
Exp. Route Total		l	l '	1	1													
Dermal Dioxin D	kg-day 2.5	mg/kg-da	2.00E-05	mg/kg-day	5.12E-10	1.76E-11		kg-day/mg	4.00E-01	mg/kg-day	4.39E-11	ug/L	9.40E-03	Total PCBs				
Dioxin 2.3,7.8-TCD-TEQ 6.12E-07 ug/L Outside EPD mg/kg-day 1.30E+05 kg-day/mg 0utside EPD mg/kg-day 7.00E-04 mg/kg-day 1.50E+00 kg-day/mg 1.02E-09 mg/kg-day 3.00E-04 mg/kg-day 1.50E+00 kg-day/mg 1.02E-09 mg/kg-day 3.00E-04 mg/kg-day 1.20E-09 mg/kg-day 1.20E-09 mg/kg-day 3.00E-04 mg/kg-day 1.20E-09 mg/k	7.6				il '	6.84E-09			1					i	Exp. Route Total			
2.3,7,8-TCDD-TEQ 6.12E-07 ug/L Outside EPD mg/kg-day 1.30E+05 kg-day/mg Outside EPD Outside EPD mg/kg-day 7.00E-10 7.00E-10 mg/kg-day															Dermal			
Motals			1	l	1 1									Dioxin				
Arsenic S221E-01 ug/L 3.07E-10 mg/kg-day 1.50E+00 kg-day/mg 1.02E-09 7.94E-09 mg/kg-day 3.00E-04 mg/kg-day 1.50E+00 mg/kg-day 1.50	kg-day Dutsi	mg/kg-da	7.00E-10	mg/kg-day	Outside EPD	Outside EPD		kg-day/mg	1.30E+05	mg/kg-day	Outside EPD	ug/L	6.12E-07					
Cobalt 1,04E+00 ug/L 1,09E+07 mg/kg-day NA kg-day/mg NA 3,59E-09 mg/kg-day 3,00E-04 mg/kg-day 0,04E-02 mg/kg-day 0,04E-03 mg/kg-		l	l '	1	1 1													
Manganese 1.48E+02 ug/L 1.09E-07 mg/kg-day NA kg-day/mg NA 1.27E-06 mg/kg-day 9.60E-04 ng/kg-day 1.60E-03 ug/L 0.04side EPD mg/kg-day 3.40E-01 kg-day/mg 0.04side EPD 0.04side EPD mg/kg-day 5.00E-04 ng/kg-day 0.04side EPD 0.04side EPD mg/kg-day 0.04side EPD 0.0		mg/kg-da mg/kg-da																
Pesticides 4.4-DDT PCBs 9.40E-03 ug/L Outside EPD mg/kg-day 3.40E-01 kg-day/mg Outside EPD Outside EPD mg/kg-day 5.00E-04 mg/kg-day 2.00E-05 mg/kg-day		mg/kg-da																
A4-DDT A4-DDT A50E-03 Ug/L Outside EPD Outside	tg day 1.0	mg ng da	0.002 01	grkg day	1.272 00			ng day/mg	10.	mg ng day	1.002 07	09/2	1.102102					
Exp. Route Total Exp. Route	kg-day Dutsi	mg/kg-da	5.00E-04	mg/kg-day	Outside EPD	Outside EPD		kg-day/mg	3.40E-01	mg/kg-day	Outside EPD	ug/L	1.60E-03					
Exposure Point Total			1	1	1 1													
Exposure Medium Total 7.86E-09	kg-day Dutsi	mg/kg-da	2.00E-05	mg/kg-day	Outside EPD	Outside EPD		kg-day/mg	4.00E-01	mg/kg-day	Outside EPD	ug/L	9.40E-03	Total PCBs				
Exposure Point Total	1.3	Щ		<u> </u>	 	4.005.00								1)	Free Devite Tetal			
Exposure Medium Total	2.1													<u> </u>	exp. Route Total	Evenouro Boint Total		
Fish Tissue	2.1				 												Evoceure Mediu	
Tissue - Mixed Mercury 1.58E-01 mg/kg 2.79E-06 mg/kg-day NA kg-day/mg NA 3.25E-05 mg/kg-day 3.00E-04 mg/kg 4.25E-07 mg/kg-day 3.40E-07 mg/kg-day 3.	2.1				 											an rota		Surface Water 1
Diet Diet					i l T										Ingestion	Upper Anacostia	Fish Fillet	Fish Tissue
Pesticides			1 '	1	il I									Metals				
4,4-DDD 2,04E-02 mg/kg 3,24E-07 mg/kg-day 2,40E-01 kg-day/mg 7,77E-08 3,78E-06 mg/kg-day 3,00E-05 mg/kg-day 3,40E-01 kg-day/mg 1,45E-07 mg/kg-day 3,00E-05 mg/kg-day 3,00E-05 mg/kg-day 3,40E-01 kg-day/mg 1,45E-07 mg/kg-day 1,05E-07 mg/kg-day 1,05E-07 mg/kg-day 1,05E-07 mg/kg-day 1,05E-07 mg/kg-day 1,05E-07 mg/kg-day 1,05E-07 mg/kg-day 1,05E-07 mg/kg-day 1,05E-07 mg/kg-day 1,05E-07 mg/kg-day 1,05E-07 mg/kg-day 1,05E-08 mg	kg-day 3.2	mg/kg-da	1.00E-04	mg/kg-day	3.25E-05	NA		kg-day/mg	NA	mg/kg-day	2.79E-06	mg/kg	1.58E-01	Mercury			Diet (2)	
4,4-DDE			1 '	1	il I													
Aldrin 3.82E-04 mg/kg 6.07E-09 mg/kg-day 1.70E+01 kg-day/mg 1.03E-07 7.08E-08 mg/kg-day 3.00E-05 mg/kg-day 3		mg/kg-da																
alpha-Chlordane 3.10E-02 mg/kg 4.92E-07 mg/kg-day 3.50E-01 kg-day/mg 1.72E-07 5.74E-06 mg/kg-day 5.00E-04 r mg/kg-day 3.50E-01 kg-day/mg 6.26E-08 2.09E-06 mg/kg-day 5.00E-04 r mg/kg-day 1.09E-07 mg/kg-day 1.00E-06 mg/kg-day 1.09E-06 mg/kg-day 1.09E-06 mg/kg-day 3.50E-01 kg-day/mg 1.69E-06 1.23E-06 mg/kg-day 5.00E-04 r mg/kg-day 3.50E-01 kg-day/mg 3.19E-08 1.06E-06 mg/kg-day 5.00E-04 r mg/kg-day 3.50E-01 kg-day/mg 3.19E-08 1.06E-06 mg/kg-day 5.00E-04 r mg/kg-day 5.00E-04 r mg/kg-day 5.00E-05 mg/kg-day 5.00E-05 mg/kg-day 5.00E-06 5.00E-06		mg/kg-da					l										l	
cis-Nonachlor 1.13E-02 mg/kg 1.79E-07 mg/kg-day 3.50E-01 kg-day/mg 6.26E-08 2.09E-06 mg/kg-day 5.00E-04 mg/kg 1.05E-07 mg/kg-day 3.50E-01 kg-day/mg 1.69E-08 1.23E-06 mg/kg-day 5.00E-04 mg/kg 1.05E-07 mg/kg-day 3.50E-01 kg-day/mg 3.19E-08 1.06E-06 mg/kg-day 5.00E-04 mg/kg-day 3.50E-01 kg-day/mg 3.19E-08 1.06E-06 mg/kg-day 5.00E-04 mg/kg-day 3.50E-01 kg-day/mg 3.19E-08 1.06E-06 mg/kg-day 5.00E-04 mg/kg-day 3.50E-01 kg-day/mg 3.19E-08 1.06E-06 mg/kg-day 5.00E-04 mg/kg-day 3.50E-01 kg-day/mg 3.19E-08 1.06E-06 mg/kg-day 5.00E-04 mg/kg-day 5.00E-04 mg/kg-day 3.50E-01 kg-day/mg 3.19E-08 1.06E-06 mg/kg-day 5.00E-04 mg/kg-day 3.50E-01 kg-day/mg 3.19E-08 1.06E-06 mg/kg-day 5.00E-04 mg/kg-day 3.50E-01 kg-day/mg 3.19E-08 1.06E-06 mg/kg-day 5.00E-04 mg/kg-d		mg/kg-da					l										l	
Dieldrin 6.64E-03 mg/kg 1.05E-07 mg/kg-day 1.60E+01 kg-day/mg 1.69E-06 1.23E-06 mg/kg-day 5.00E-05 mg/kg-day 3.50E-01 kg-day/mg 3.19E-08 1.06E-06 mg/kg-day 5.00E-04 mg/kg-day 5.00E-04 mg/kg-day 5.00E-04 mg/kg-day 5.00E-04 mg/kg-day 5.00E-05 mg/		mg/kg-da mg/kg-da					l										l	
gamma-Chlordane 5.74E-03 mg/kg 9.12E-08 mg/kg-day 3.50E-01 kg-day/mg 3.19E-08 1.06E-06 mg/kg-day 5.00E-04 m		mg/kg-da					l										l	
		mg/kg-da																
		mg/kg-da	1.30E-05	mg/kg-day	3.97E-07	3.09E-07	l	kg-day/mg	9.10E+00	mg/kg-day	3.40E-08	mg/kg	2.14E-03	Heptachlor epoxide			l	
		mg/kg-da					l										l	
Oxychlordane 2.87E-03 mg/kg 4.56E-08 mg/kg-day 3.50E-01 kg-day/mg 1.60E-08 5.32E-07 mg/kg-day 5.00E-04 r	kg-day 1.0	mg/kg-da	5.00E-04	mg/kg-day	5.32E-07	1.60E-08		kg-day/mg	3.50E-01	mg/kg-day	4.56E-08	mg/kg	2.87E-03	Oxychlordane				
	kg-day 6.5	mg/kg-da	5.00E-04	mg/kg-day	3.29E-06	9.88E-08	l	kg-day/mg	3.50E-01	mg/kg-day	2.82E-07	mg/kg	1.78E-02				l	
PCBs PCBs		1	1	ĺ	1													
		mg/kg-da					l										l	
PCB-TEQ 2.69E-06 mg/kg 3.37E-11 mg/kg-day 1.30E+05 kg-day/mg 4.38E-06 3.93E-10 mg/kg-day 7.00E-10 mg/kg-day	kg-day 5.6	mg/kg-da	7.00E-10	mg/kg-day	3.93E-10	4.38E-06	l	kg-day/mg	1.30E+05	mg/kg-day	3.37E-11	mg/kg	2.69E-06	PCB-TEQ				
Fish Tissue Total - Upper Anacostia (Total PCBs)*	3.7	Ь			┟────┴	1.38F-05	.		i				1	1	l .	stia (Total PCBs) ³	al - Upper Anaco	Fish Tissue Tota
Table Tabl	1.1			-	 													
Receptor Totals																	s	Receptor Total
Tatal December Distribution of Library Association for the DODs for antique to surface and finds	4.0				í	1.57E-05								diment, surface water, and fish)	es Total PCBs for sec	per Anacostia (include	Risk/Hazard - Up	Total Receptor F
Total Receptor Risk/Hazard - Upper Anacostia (includes Total PCBs for sediment, surface water, and fish)	1.30					9.03E-06							fish)	diment and surface water and PCB-TEQ for				

Notes:
ADAF - Age-Dependent Adjustment Factor.
CSF - Cancer Slope Factor.
EPC - Exposure Point Concentration.

PCB - Polychlorinated Biphenyl. PCB-TEQ - PCB Toxicity Equivalence. RfD - Oral Reference Dose.

NA - Not applicable.

(1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation. (2) Assumes a mixed fish diet of the species with available fillet data based on a pooled EPC. (3) Total Risk/Hazard based on all COPCs except PCB-TEQ. (4) Total Risk/Hazard based on all COPCs except Total PCBs.

Table H-1-7. RME

Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Adult Angler (Mixed Fish Diet) - Regional Areas Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

								Cano	er Risk Calc	ulations				Noncancer Ha	azard Calcul	ations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposu	re Concentration	C	SF		Cancer	Intake/Exposu	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotien
Fish Tissue	Fish Fillet	Upper Potomac	Ingestion														
	Tissue - Mixed			Inorganics													
	Diet (2)			Arsenic	3.98E-02	mg/kg	1.42E-06	mg/kg-day	1.50E+00	kg-day/mg		2.13E-06	4.98E-06	mg/kg-day	3.00E-04	mg/kg-day	/ 1.66E-02
				Arsenic, organic	3.58E-01	mg/kg	1.28E-05	mg/kg-day	NA	kg-day/mg		NA	4.48E-05	mg/kg-day	2.00E-02	mg/kg-day	2.24E-03
				Mercury	1.61E-01	mg/kg	5.75E-06	mg/kg-day	NA	kg-day/mg		NA	2.01E-05	mg/kg-day	1.00E-04	mg/kg-day	2.01E-0
				Pesticides													
				4,4'-DDD	4.22E-02	mg/kg	1.36E-06	mg/kg-day	2.40E-01	kg-day/mg		3.26E-07	4.75E-06	mg/kg-day	3.00E-05	mg/kg-day	
				4,4'-DDE	2.43E-01	mg/kg	7.81E-06	mg/kg-day	3.40E-01	kg-day/mg		2.66E-06	2.73E-05	mg/kg-day	3.00E-04	mg/kg-day	
				Aldrin	1.20E-03	mg/kg	3.86E-08	mg/kg-day	1.70E+01	kg-day/mg		6.56E-07	1.35E-07	mg/kg-day	3.00E-05	mg/kg-day	
				alpha-Chlordane	5.10E-02	mg/kg	1.64E-06	mg/kg-day	3.50E-01	kg-day/mg		5.74E-07	5.74E-06	mg/kg-day	5.00E-04	mg/kg-day	
				beta-BHC	1.73E-03	mg/kg	5.56E-08	mg/kg-day	1.80E+00	kg-day/mg		1.00E-07	1.95E-07	mg/kg-day	NA	mg/kg-day	
				cis-Nonachlor	2.20E-02	mg/kg	7.07E-07	mg/kg-day	3.50E-01	kg-day/mg		2.48E-07	2.48E-06	mg/kg-day	5.00E-04	mg/kg-day	
				Dieldrin	2.87E-02	mg/kg	9.23E-07	mg/kg-day	1.60E+01	kg-day/mg		1.48E-05	3.23E-06	mg/kg-day	5.00E-05	mg/kg-day	
				gamma-Chlordane	4.64E-03	mg/kg	1.49E-07	mg/kg-day	3.50E-01	kg-day/mg		5.22E-08	5.22E-07	mg/kg-day	5.00E-04	mg/kg-day	
				Heptachlor epoxide	3.39E-03	mg/kg	1.09E-07	mg/kg-day	9.10E+00	kg-day/mg		9.92E-07	3.81E-07	mg/kg-day	1.30E-05	mg/kg-day	
				Hexachlorobenzene	1.55E-03	mg/kg	4.98E-08	mg/kg-day	1.60E+00	kg-day/mg		7.97E-08	1.74E-07	mg/kg-day	8.00E-04	mg/kg-day	
				Mirex	3.45E-04	mg/kg	1.11E-08	mg/kg-day	1.80E+01	kg-day/mg		1.99E-07	3.88E-08	mg/kg-day	2.00E-04	mg/kg-day	
				Oxychlordane	5.50E-03 6.26E-02	mg/kg	1.77E-07	mg/kg-day	3.50E-01	kg-day/mg		6.19E-08 7.04E-07	6.19E-07 7.04E-06	mg/kg-day	5.00E-04	mg/kg-day	
				trans-Nonachlor PCBs	6.26E-02	mg/kg	2.01E-06	mg/kg-day	3.50E-01	kg-day/mg		7.04E-07	7.04E-06	mg/kg-day	5.00E-04	mg/kg-day	/ 1.41E-02
				Total PCBs	1.61E+00	ma/ka	5.00E-05	ma/ka day	2.00E+00	kg-day/mg		9.99E-05	1.75E-04	ma/ka day	2.00E-05	ma/ka day	8.75E+0
				PCB-TEQ	4.27E-05	mg/kg mg/kg	1.08E-09	mg/kg-day mg/kg-day	1.30E+05	kg-day/mg		1.41E-04	3.79E-09	mg/kg-day mg/kg-day	7.00E-05	mg/kg-day mg/kg-day	
				FOB-TEQ	4.27 E-05	mg/kg	1.00E-09	mg/kg-uay	1.300+03	kg-uay/iiig		1.416-04	3.79E-09	mg/kg-uay	7.00E-10	ilig/kg-uay	3.42E+U
Fish Tissue Tot	al - Upper Potom	ac (Total PCBs)3		<u> </u>		·	I <u>. </u>		l .	I		1.23E-04		1	I .		9.35E+0
	al - Upper Potom											1.64E-04					6.02E+0
Fish Tissue	Fish Fillet	Lower Potomac	Ingestion														
	Tissue - Mixed		· ·	Inorganics													
	Diet (2)			Arsenic	3.71E-01	mg/kg	1.33E-05	mg/kg-day	1.50E+00	kg-day/mg		1.99E-05	4.64E-05	mg/kg-day	3.00E-04	mg/kg-day	/ 1.55E-01
				Arsenic, organic	3.34E+00	mg/kg	1.19E-04	mg/kg-day	NA	kg-day/mg		NA	4.17E-04	mg/kg-day	2.00E-02	mg/kg-day	2.09E-02
				Mercury	1.10E-01	mg/kg	3.93E-06	mg/kg-day	NA	kg-day/mg		NA	1.38E-05	mg/kg-day	1.00E-04	mg/kg-day	/ 1.38E-01
				Pesticides													
				4,4'-DDD	8.29E-03	mg/kg	2.66E-07	mg/kg-day	2.40E-01	kg-day/mg		6.40E-08	9.33E-07	mg/kg-day	3.00E-05	mg/kg-day	/ 3.11E-02
				4,4'-DDE	4.10E-02	mg/kg	1.32E-06	mg/kg-day	3.40E-01	kg-day/mg		4.48E-07	4.61E-06	mg/kg-day	3.00E-04	mg/kg-day	/ 1.54E-02
				alpha-Chlordane	1.54E-02	mg/kg	4.95E-07	mg/kg-day	3.50E-01	kg-day/mg		1.73E-07	1.73E-06	mg/kg-day	5.00E-04	mg/kg-day	3.47E-03
				Dieldrin	6.62E-03	mg/kg	2.13E-07	mg/kg-day	1.60E+01	kg-day/mg		3.40E-06	7.45E-07	mg/kg-day	5.00E-05	mg/kg-day	/ 1.49E-02
				gamma-Chlordane	7.97E-03	mg/kg	2.56E-07	mg/kg-day	3.50E-01	kg-day/mg		8.97E-08	8.97E-07	mg/kg-day	5.00E-04	mg/kg-day	/ 1.79E-03
]			Heptachlor epoxide	3.11E-03	mg/kg	1.00E-07	mg/kg-day	9.10E+00	kg-day/mg		9.10E-07	3.50E-07	mg/kg-day	1.30E-05	mg/kg-day	
				Oxychlordane	3.86E-03	mg/kg	1.24E-07	mg/kg-day	3.50E-01	kg-day/mg		4.34E-08	4.34E-07	mg/kg-day	5.00E-04	mg/kg-day	
				trans-Nonachlor	1.94E-02	mg/kg	6.24E-07	mg/kg-day	3.50E-01	kg-day/mg		2.18E-07	2.18E-06	mg/kg-day	5.00E-04	mg/kg-day	4.37E-03
				PCBs													
				Total PCBs	2.52E-01	mg/kg	7.83E-06	mg/kg-day	2.00E+00	kg-day/mg		1.57E-05	2.74E-05	mg/kg-day	2.00E-05	mg/kg-day	
				PCB-TEQ	5.46E-06	mg/kg	1.38E-10	mg/kg-day	1.30E+05	kg-day/mg		1.80E-05	4.84E-10	mg/kg-day	7.00E-10	mg/kg-day	6.92E-0
				<u> </u>													
	al - Lower Potom al - Lower Potom											4.09E-05					1.78E+0
												4.32E-05					

Table H-1-7. RME

Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Adult Angler (Mixed Fish Diet) - Regional Areas Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

		l l						Cano	er Risk Calc	ulations				Noncancer Ha	zard Calcul	ations	
	Exposure	Exposure	Exposure	Chemical of	EPC	:	Intake/Exposu	re Concentration		SF		Cancer	Intake/Exposur	re Concentration		RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Fish Tissue	Fish Fillet	Non-Tidal Anacostia	Ingestion														
	Tissue - Mixed			Dioxin													
	Diet (2)			2,3,7,8-TCDD-TEQ	1.20E-07	mg/kg	3.04E-12	mg/kg-day	1.30E+05	kg-day/mg		3.95E-07	1.06E-11	mg/kg-day	7.00E-10	mg/kg-day	1.52E-02
				Inorganics													
				Arsenic	7.58E-03	mg/kg	2.71E-07	mg/kg-day	1.50E+00	kg-day/mg		4.06E-07	9.48E-07	mg/kg-day	3.00E-04	mg/kg-day	3.16E-03
				Arsenic, organic	6.82E-02	mg/kg	2.44E-06	mg/kg-day	NA	kg-day/mg		NA	8.53E-06	mg/kg-day	2.00E-02	mg/kg-day	4.26E-04
				Cobalt	1.62E-02	mg/kg	5.79E-07	mg/kg-day	NA	kg-day/mg		NA	2.03E-06	mg/kg-day	3.00E-04	mg/kg-day	6.75E-03
				Mercury	2.98E-01	mg/kg	1.06E-05	mg/kg-day	NA	kg-day/mg		NA	3.73E-05	mg/kg-day	1.00E-04	mg/kg-day	3.73E-01
				Thallium	3.85E-03	mg/kg	1.38E-07	mg/kg-day	NA	kg-day/mg		NA	4.81E-07	mg/kg-day	1.00E-05	mg/kg-day	4.81E-02
				Pesticides													
				Chlordane	2.61E-02	mg/kg	8.39E-07	mg/kg-day	3.50E-01	kg-day/mg		2.94E-07	2.94E-06	mg/kg-day	5.00E-04	mg/kg-day	5.87E-03
				Dieldrin	1.97E-03	mg/kg	6.34E-08	mg/kg-day	1.60E+01	kg-day/mg		1.01E-06	2.22E-07	mg/kg-day	5.00E-05	mg/kg-day	4.44E-03
				Heptachlor epoxide	1.72E-03	mg/kg	5.51E-08	mg/kg-day	9.10E+00	kg-day/mg		5.02E-07	1.93E-07	mg/kg-day	1.30E-05	mg/kg-day	1.48E-02
				PCBs													
				Total PCBs	3.31E-02	mg/kg	1.03E-06	mg/kg-day	2.00E+00	kg-day/mg		2.06E-06	3.60E-06	mg/kg-day	2.00E-05	mg/kg-day	1.80E-01
				PCB-TEQ	8.76E-07	mg/kg	2.22E-11	mg/kg-day	1.30E+05	kg-day/mg		2.89E-06	7.77E-11	mg/kg-day	7.00E-10	mg/kg-day	1.11E-01
Fish Tissue Tot	al - Non-Tidal A	nacostia (Total PCBs)3										4.67E-06					6.51E-01
Fish Tissue Tot	al - Non-Tidal A	nacostia (PCB-TEQ)*										5.50E-06					5.82E-01
Fish Tissue	Fish Fillet	Lower Anacostia	Ingestion														1
	Tissue - Mixed			Metals													
	Diet (2)			Arsenic	2.45E-02	mg/kg	8.75E-07	mg/kg-day	1.50E+00	kg-day/mg		1.31E-06	3.06E-06	mg/kg-day	3.00E-04	mg/kg-day	1.02E-02
				Arsenic, organic	2.21E-01	mg/kg	7.88E-06	mg/kg-day	NA	kg-day/mg		NA	2.76E-05	mg/kg-day	2.00E-02	mg/kg-day	1.38E-03
				Mercury	9.77E-02	mg/kg	3.49E-06	mg/kg-day	NA	kg-day/mg		NA	1.22E-05	mg/kg-day	1.00E-04	mg/kg-day	1.22E-01
				Pesticides													
				4,4'-DDD	3.32E-02	mg/kg	1.07E-06	mg/kg-day	2.40E-01	kg-day/mg		2.56E-07	3.74E-06	mg/kg-day	3.00E-05	mg/kg-day	1.25E-01
				4,4'-DDE	6.62E-02	mg/kg	2.13E-06	mg/kg-day	3.40E-01	kg-day/mg		7.23E-07	7.45E-06	mg/kg-day	3.00E-04	mg/kg-day	2.48E-02
				Aldrin	4.02E-04	mg/kg	1.29E-08	mg/kg-day	1.70E+01	kg-day/mg		2.20E-07	4.52E-08	mg/kg-day	3.00E-05	mg/kg-day	1.51E-03
				alpha-Chlordane	3.60E-02	mg/kg	1.16E-06	mg/kg-day	3.50E-01	kg-day/mg		4.05E-07	4.05E-06	mg/kg-day	5.00E-04	mg/kg-day	8.11E-03
				cis-Nonachlor	1.55E-02	mg/kg	4.97E-07	mg/kg-day	3.50E-01	kg-day/mg		1.74E-07	1.74E-06	mg/kg-day	5.00E-04	mg/kg-day	3.48E-03
				Dieldrin	1.78E-02	mg/kg	5.72E-07	mg/kg-day	1.60E+01	kg-day/mg		9.15E-06	2.00E-06	mg/kg-day	5.00E-05	mg/kg-day	4.01E-02
				gamma-Chlordane	1.98E-02	mg/kg	6.38E-07	mg/kg-day	3.50E-01	kg-day/mg		2.23E-07	2.23E-06	mg/kg-day	5.00E-04	mg/kg-day	4.46E-03
				Heptachlor epoxide	4.27E-03	mg/kg	1.37E-07	mg/kg-day	9.10E+00	kg-day/mg		1.25E-06	4.80E-07	mg/kg-day	1.30E-05	mg/kg-day	3.69E-02
				Mirex	3.92E-04	mg/kg	1.26E-08	mg/kg-day	1.80E+01	kg-day/mg		2.27E-07	4.41E-08	mg/kg-day	2.00E-04	mg/kg-day	2.21E-04
				Oxychlordane	8.13E-03	mg/kg	2.61E-07	mg/kg-day	3.50E-01	kg-day/mg		9.15E-08	9.15E-07	mg/kg-day	5.00E-04	mg/kg-day	1.83E-03
				trans-Nonachlor	4.48E-02	mg/kg	1.44E-06	mg/kg-day	3.50E-01	kg-day/mg		5.04E-07	5.04E-06	mg/kg-day	5.00E-04	mg/kg-day	1.01E-02
				PCBs													
				Total PCBs	5.28E-01	mg/kg	1.64E-05	mg/kg-day	2.00E+00	kg-day/mg		3.28E-05	5.74E-05	mg/kg-day	2.00E-05	mg/kg-day	2.87E+00
				PCB-TEQ	1.40E-05	mg/kg	3.55E-10	mg/kg-day	1.30E+05	kg-day/mg		4.62E-05	1.24E-09	mg/kg-day	7.00E-10	mg/kg-day	1.78E+00
		ostia (Total PCBs)3										4.73E-05					3.26E+00
Fish Tissue Tot	al - Lower Anac	ostia (PCB-TEQ)*										6.07E-05					2.16E+00
Receptor Total	s																
		pper Potomac (Total PC										1.23E-04					9.35E+00
Total Receptor	Risk/Hazard - U	pper Potomac (PCB-TE	(Q)*					•				1.64E-04					6.02E+00
		ower Potomac (Total PC										4.09E-05					1.78E+00
Total Receptor	Risk/Hazard - Lo	ower Potomac (PCB-TE	Q)4									4.32E-05					1.10E+00
Total Receptor	Risk/Hazard - N	on-Tidal Anacostia (Tot	al PCBs)3									4.67E-06					6.51E-01
Total Receptor	Risk/Hazard - N	on-Tidal Anacostia (PC	B-TEQ)*									5.50E-06					5.82E-01
		ower Anacostia (Total P										4.73E-05					3.26E+00
Total Receptor	Risk/Hazard - Lo	ower Anacostia (PCB-TI	EQ)*									6.07E-05					2.16E+00

Table H-1-7. RME

Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Adult Angler (Mixed Fish Diet) - Regional Areas Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Adult

								Cano	er Risk Calcı	ulations				Noncancer Ha	zard Calcula	ations	
	Exposure	Exposure	Exposure	Chemical of	EPC	EPC Into		re Concentration	C	SF		Cancer	Intake/Exposur	e Concentration	R	tfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient

Notes:

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

PCB - Polychlorinated Biphenyl.

PCB-TEQ - PCB Toxicity Equivalence.

RfD - Oral Reference Dose.

NA - Not applicable.

- (1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.
- (2) Assumes a mixed fish diet of the species with available fillet data based on a pooled EPC.
- (3) Total Receptor Risk/Hazard based on all COPCs except PCB-TEQ.
- (4) Total Receptor Risk/Hazard based on all COPCs except Total PCBs.

Table H-1-8. RME

Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Older Child/Teen Angler (Mixed Fish Diet) - Regional Areas Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

	1							Cano	er Risk Calc	ulations				Noncancer Ha	zard Calcul	ations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposu	re Concentration		SF		Cancer	Intake/Exposu	re Concentration		RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotien
Fish Tissue	Fish Fillet	Upper Potomac	Ingestion														
	Tissue - Mixed	* *	ŭ	Metals													
	Diet (2)			Arsenic	3.98E-02	mg/kg	8.37E-07	mg/kg-day	1.50E+00	kg-day/mg		1.26E-06	4.88E-06	mg/kg-day	3.00E-04	mg/kg-day	1.63E-02
				Arsenic, organic	3.58E-01	mg/kg	7.53E-06	mg/kg-day	NA	kg-day/mg		NA	4.39E-05	mg/kg-day	2.00E-02	mg/kg-day	2.20E-03
				Mercury	1.61E-01	mg/kg	3.38E-06	mg/kg-day	NA	kg-day/mg		NA	1.97E-05	mg/kg-day	1.00E-04	mg/kg-day	1.97E-01
				Pesticides													
				4,4'-DDD	4.22E-02	mg/kg	7.99E-07	mg/kg-day	2.40E-01	kg-day/mg		1.92E-07	4.66E-06	mg/kg-day	3.00E-05	mg/kg-day	1.55E-01
				4,4'-DDE	2.43E-01	mg/kg	4.60E-06	mg/kg-day	3.40E-01	kg-day/mg		1.56E-06	2.68E-05	mg/kg-day	3.00E-04	mg/kg-day	8.94E-02
				Aldrin	1.20E-03	mg/kg	2.27E-08	mg/kg-day	1.70E+01	kg-day/mg		3.86E-07	1.32E-07	mg/kg-day	3.00E-05	mg/kg-day	4.42E-03
				alpha-Chlordane	5.10E-02	mg/kg	9.65E-07	mg/kg-day	3.50E-01	kg-day/mg		3.38E-07	5.63E-06	mg/kg-day	5.00E-04	mg/kg-day	1.13E-02
				beta-BHC	1.73E-03	mg/kg	3.27E-08	mg/kg-day	1.80E+00	kg-day/mg		5.89E-08	1.91E-07	mg/kg-day	NA	mg/kg-day	NA
				cis-Nonachlor	2.20E-02	mg/kg	4.16E-07	mg/kg-day	3.50E-01	kg-day/mg		1.46E-07	2.43E-06	mg/kg-day	5.00E-04	mg/kg-day	4.86E-03
				Dieldrin	2.87E-02	mg/kg	5.43E-07	mg/kg-day	1.60E+01	kg-day/mg		8.69E-06	3.17E-06	mg/kg-day	5.00E-05	mg/kg-day	6.34E-02
				gamma-Chlordane	4.64E-03	mg/kg	8.78E-08	mg/kg-day	3.50E-01	kg-day/mg		3.07E-08	5.12E-07	mg/kg-day	5.00E-04	mg/kg-day	1.02E-03
				Heptachlor epoxide	3.39E-03	mg/kg	6.41E-08	mg/kg-day	9.10E+00	kg-day/mg		5.84E-07	3.74E-07	mg/kg-day	1.30E-05	mg/kg-day	2.88E-02
				Hexachlorobenzene	1.55E-03	mg/kg	2.93E-08	mg/kg-day	1.60E+00	kg-day/mg		4.69E-08	1.71E-07	mg/kg-day	8.00E-04	mg/kg-day	2.14E-04
				Mirex	3.45E-04	mg/kg	6.52E-09	mg/kg-day	1.80E+01	kg-day/mg		1.17E-07	3.80E-08	mg/kg-day	2.00E-04	mg/kg-day	1.90E-04
				Oxychlordane	5.50E-03	mg/kg	1.04E-07	mg/kg-day	3.50E-01	kg-day/mg		3.64E-08	6.07E-07	mg/kg-day	5.00E-04	mg/kg-day	1.21E-03
				trans-Nonachlor PCBs	6.26E-02	mg/kg	1.18E-06	mg/kg-day	3.50E-01	kg-day/mg		4.15E-07	6.91E-06	mg/kg-day	5.00E-04	mg/kg-day	1.38E-02
				Total PCBs	1.61E+00	ma/ka	2.94E-05	ma/ka dov	2.00E+00	ka dov/ma		5.88E-05	1.72E-04	ma/ka dov	2.00E-05	ma/ka dov	8.58E+00
				PCB-TEQ	4.27E-05	mg/kg mg/kg	6.38E-10	mg/kg-day mg/kg-day	1.30E+05	kg-day/mg kg-day/mg		8.29E-05	3.72E-04 3.72E-09	mg/kg-day mg/kg-day	7.00E-05	mg/kg-day mg/kg-day	5.32E+00
				FCB-TEQ	4.27E-05	Hig/kg	0.36⊑-10	ilig/kg-uay	1.300+03	kg-uay/ilig		0.29E-03	3.72E-09	ilig/kg-uay	7.00E-10	ilig/kg-uay	3.32E+00
Fish Tissue Tota	al - Upper Potom	ac (Total PCBs)3		I .			IL	I	<u> </u>	1		7.27E-05				1	9.17E+00
Fish Tissue Tota	al - Upper Potom	ac (PCB-TEQ)*										9.68E-05					5.91E+00
Fish Tissue	Fish Fillet	Lower Potomac	Ingestion														
	Tissue - Mixed			Metals													
	Diet (2)			Arsenic	3.71E-01	mg/kg	7.80E-06	mg/kg-day	1.50E+00	kg-day/mg		1.17E-05	4.55E-05	mg/kg-day	3.00E-04	mg/kg-day	1.52E-01
				Arsenic, organic	3.34E+00	mg/kg	7.02E-05	mg/kg-day	NA	kg-day/mg		NA	4.10E-04	mg/kg-day	2.00E-02	mg/kg-day	2.05E-02
				Mercury	1.10E-01	mg/kg	2.31E-06	mg/kg-day	NA	kg-day/mg		NA	1.35E-05	mg/kg-day	1.00E-04	mg/kg-day	1.35E-01
				Pesticides													
				4,4'-DDD	8.29E-03	mg/kg	1.57E-07	mg/kg-day	2.40E-01	kg-day/mg		3.76E-08	9.15E-07	mg/kg-day	3.00E-05	mg/kg-day	3.05E-02
	l			4,4'-DDE	4.10E-02	mg/kg	7.76E-07	mg/kg-day	3.40E-01	kg-day/mg		2.64E-07	4.53E-06	mg/kg-day	3.00E-04	mg/kg-day	1.51E-02
	l			alpha-Chlordane	1.54E-02	mg/kg	2.91E-07	mg/kg-day	3.50E-01	kg-day/mg		1.02E-07	1.70E-06	mg/kg-day	5.00E-04	mg/kg-day	3.40E-03
	l			Dieldrin	6.62E-03	mg/kg	1.25E-07	mg/kg-day	1.60E+01	kg-day/mg		2.00E-06	7.31E-07	mg/kg-day	5.00E-05	mg/kg-day	1.46E-02
	l			gamma-Chlordane	7.97E-03	mg/kg	1.51E-07	mg/kg-day	3.50E-01	kg-day/mg		5.28E-08	8.80E-07	mg/kg-day	5.00E-04	mg/kg-day	1.76E-03
	l			Heptachlor epoxide	3.11E-03	mg/kg	5.88E-08	mg/kg-day	9.10E+00	kg-day/mg		5.36E-07	3.43E-07	mg/kg-day	1.30E-05	mg/kg-day	2.64E-02
	l			Oxychlordane trans-Nonachlor	3.86E-03 1.94E-02	mg/kg	7.30E-08	mg/kg-day	3.50E-01 3.50E-01	kg-day/mg		2.56E-08	4.26E-07 2.14E-06	mg/kg-day	5.00E-04	mg/kg-day	8.52E-04
	l			PCBs	1.94E-02	mg/kg	3.67E-07	mg/kg-day	3.5UE-U1	kg-day/mg		1.28E-07	2.14E-Ub	mg/kg-day	5.00E-04	mg/kg-day	4.28E-03
	l			Total PCBs	2.52E-01	mg/kg	4.61E-06	ma/ka-day	2.00E+00	kg-day/mg		9.22E-06	2.69E-05	mg/kg-day	2.00E-05	mg/kg-day	1.34E+00
	l			PCB-TEQ	5.46E-06	mg/kg	8.15E-11	mg/kg-day mg/kg-day	1.30E+05	kg-day/mg		9.22E-06 1.06E-05	4.75E-10	mg/kg-day	7.00E-05	mg/kg-day	6.79E-01
	l			I OD ILQ	J.40L-00	ilig/kg	0.10L-11	ilig/kg-day	1.502+05	ng-uay/illg		1.001-00	4.73L-10	riig/kg-udy	7.00L-10	ilig/kg-uay	J./ JL=0
Fish Tissue Tota	al - Lower Potom	ac (Total PCBs) ³		1	1		(L		l .			2.41E-05					1.75E+0
	al - Lower Potom											2.54E-05					1.08E+0

Table H-1-8. RME

Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Older Child/Teen Angler (Mixed Fish Diet) - Regional Areas Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

I		I						Cano	er Risk Calc	ulations		l	Noncancer Ha	azard Calcul	ations	
	Exposure	Exposure	Exposure	Chemical of	EPC		Intake/Evnosu	re Concentration		SF	Cancer	Intake/Evnosi	re Concentration		RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1) Risk	Value	Units	Value	Units	Quotient
Fish Tissue	Tissue - Mixed	Upstream Non-Tidal	Ingestion	r otoridar concern	Value	Omio	Value	O.I.I.O	raido			Value	OTING	Value		
	Diet (2)	Anacostia		Dioxin						, i						
				2,3,7,8-TCDD-TEQ	1.20E-07	mg/kg	1.79E-12	mg/kg-day	1.30E+05	kg-day/mg	2.32E-07	1.04E-11	mg/kg-day	7.00E-10	mg/kg-day	1.49E-02
				Metals												
				Arsenic	7.58E-03	mg/kg	1.59E-07	mg/kg-day	1.50E+00	kg-day/mg	2.39E-07	9.30E-07	mg/kg-day	3.00E-04	mg/kg-day	3.10E-03
				Arsenic, organic	6.82E-02	mg/kg	1.43E-06	mg/kg-day	NA	kg-day/mg	NA	8.36E-06	mg/kg-day	2.00E-02	mg/kg-day	4.18E-04
				Cobalt	1.62E-02	mg/kg	3.41E-07	mg/kg-day	NA	kg-day/mg	NA	1.99E-06	mg/kg-day	3.00E-04	mg/kg-day	6.62E-03
				Mercury	2.98E-01	mg/kg	6.27E-06	mg/kg-day	NA	kg-day/mg	NA	3.65E-05	mg/kg-day	1.00E-04	mg/kg-day	3.65E-01
				Thallium	3.85E-03	mg/kg	8.09E-08	mg/kg-day	NA	kg-day/mg	NA	4.72E-07	mg/kg-day	1.00E-05	mg/kg-day	4.72E-02
				Pesticides												
				Chlordane	2.61E-02	mg/kg	4.94E-07	mg/kg-day	3.50E-01	kg-day/mg	1.73E-07	2.88E-06	mg/kg-day	5.00E-04	mg/kg-day	5.76E-03
				Dieldrin	1.97E-03	mg/kg	3.73E-08	mg/kg-day	1.60E+01	kg-day/mg	5.97E-07	2.18E-07	mg/kg-day	5.00E-05	mg/kg-day	4.35E-03
				Heptachlor epoxide	1.72E-03	mg/kg	3.25E-08	mg/kg-day	9.10E+00	kg-day/mg	2.95E-07	1.89E-07	mg/kg-day	1.30E-05	mg/kg-day	1.46E-02
				PCBs												
				Total PCBs	3.31E-02	mg/kg	6.06E-07	mg/kg-day	2.00E+00	kg-day/mg	1.21E-06	3.53E-06	mg/kg-day	2.00E-05	mg/kg-day	1.77E-01
				PCB-TEQ	8.76E-07	mg/kg	1.31E-11	mg/kg-day	1.30E+05	kg-day/mg	1.70E-06	7.63E-11	mg/kg-day	7.00E-10	mg/kg-day	1.09E-01
		nacostia (Total PCBs)3									2.52E-06					6.24E-01
Fish Tissue Tota	al - Non-Tidal Ar	nacostia (PCB-TEQ)*									3.00E-06					5.56E-01
Fish Tissue	Fish Fillet	Lower Anacostia	Ingestion									1				
	Tissue - Mixed			Metals												
	Diet (2)			Arsenic	2.45E-02	mg/kg	5.15E-07	mg/kg-day	1.50E+00	kg-day/mg	7.73E-07	3.00E-06	mg/kg-day	3.00E-04	mg/kg-day	1.00E-02
				Arsenic, organic	2.21E-01	mg/kg	4.64E-06	mg/kg-day	NA	kg-day/mg	NA	2.70E-05	mg/kg-day	2.00E-02	mg/kg-day	1.35E-03
				Mercury	9.77E-02	mg/kg	2.05E-06	mg/kg-day	NA	kg-day/mg	NA	1.20E-05	mg/kg-day	1.00E-04	mg/kg-day	1.20E-01
				Pesticides												
				4,4'-DDD	3.32E-02	mg/kg	6.28E-07	mg/kg-day	2.40E-01	kg-day/mg	1.51E-07	3.66E-06	mg/kg-day	3.00E-05	mg/kg-day	1.22E-01
				4,4'-DDE	6.62E-02	mg/kg	1.25E-06	mg/kg-day	3.40E-01	kg-day/mg	4.26E-07	7.31E-06	mg/kg-day	3.00E-04	mg/kg-day	2.44E-02
				Aldrin	4.02E-04	mg/kg	7.61E-09	mg/kg-day	1.70E+01	kg-day/mg	1.29E-07	4.44E-08	mg/kg-day	3.00E-05	mg/kg-day	1.48E-03
				alpha-Chlordane	3.60E-02	mg/kg	6.82E-07	mg/kg-day	3.50E-01	kg-day/mg	2.39E-07	3.98E-06	mg/kg-day	5.00E-04	mg/kg-day	7.96E-03
				cis-Nonachlor	1.55E-02	mg/kg	2.93E-07	mg/kg-day	3.50E-01	kg-day/mg	1.02E-07	1.71E-06	mg/kg-day	5.00E-04	mg/kg-day	3.41E-03
				Dieldrin	1.78E-02	mg/kg	3.37E-07	mg/kg-day	1.60E+01	kg-day/mg	5.39E-06	1.96E-06	mg/kg-day	5.00E-05	mg/kg-day	3.93E-02
				gamma-Chlordane	1.98E-02	mg/kg	3.75E-07	mg/kg-day	3.50E-01	kg-day/mg	1.31E-07	2.19E-06	mg/kg-day	5.00E-04	mg/kg-day	4.38E-03
				Heptachlor epoxide	4.27E-03	mg/kg	8.07E-08	mg/kg-day	9.10E+00	kg-day/mg	7.35E-07	4.71E-07	mg/kg-day	1.30E-05	mg/kg-day	3.62E-02
				Mirex	3.92E-04	mg/kg	7.42E-09	mg/kg-day	1.80E+01	kg-day/mg	1.34E-07	4.33E-08	mg/kg-day	2.00E-04	mg/kg-day	2.16E-04
				Oxychlordane	8.13E-03	mg/kg	1.54E-07	mg/kg-day	3.50E-01	kg-day/mg	5.38E-08	8.97E-07	mg/kg-day	5.00E-04	mg/kg-day	1.79E-03
				trans-Nonachlor	4.48E-02	mg/kg	8.48E-07	mg/kg-day	3.50E-01	kg-day/mg	2.97E-07	4.95E-06	mg/kg-day	5.00E-04	mg/kg-day	9.89E-03
				PCBs												
				Total PCBs	5.28E-01	mg/kg	9.66E-06	mg/kg-day	2.00E+00	kg-day/mg	1.93E-05	5.63E-05	mg/kg-day	2.00E-05	mg/kg-day	2.82E+00
				PCB-TEQ	1.40E-05	mg/kg	2.09E-10	mg/kg-day	1.30E+05	kg-day/mg	2.72E-05	1.22E-09	mg/kg-day	7.00E-10	mg/kg-day	1.74E+00
		ostia (Total PCBs)3									2.79E-05					3.20E+00
		ostia (PCB-TEQ)*									3.57E-05					2.12E+00
Receptor Totals																
		oper Potomac (Total PC									7.27E-05	 				9.17E+00
		oper Potomac (PCB-TE									9.68E-05	<u></u>				5.91E+00
		ower Potomac (Total PC									2.41E-05	 				1.75E+00
		wer Potomac (PCB-TE	·								2.54E-05	<u> </u>				1.08E+00
		on-Tidal Anacostia (Tot									2.52E-06					6.24E-01
		on-Tidal Anacostia (PC									3.00E-06	<u> </u>				5.56E-01
		wer Anacostia (Total P		<u> </u>							2.79E-05					3.20E+00
Total Receptor F	Risk/Hazard - Lo	wer Anacostia (PCB-T	EQ)*								3.57E-05			·		2.12E+0

Table H-1-8. RME

Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Older Child/Teen Angler (Mixed Fish Diet) - Regional Areas Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Older Child/Teen

I									Cano	er Risk Calc	ulations				Noncancer Ha	zard Calcul	ations	
		Exposure	Exposure	Exposure	Chemical of	EPC	:	Intake/Exposu	re Concentration	С	SF		Cancer	Intake/Exposur	e Concentration	F	RfD	Hazard
	Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient

Notes

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

PCB - Polychlorinated Biphenyl.

PCB-TEQ - PCB Toxicity Equivalence.

RfD - Oral Reference Dose.

NA - Not applicable. ND - Not Detected.

- (1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.
- (2) Assumes a mixed fish diet of the species with available fillet data based on a pooled EPC.
- (3) Total Receptor Risk/Hazard based on all COPCs except PCB-TEQ.
- (4) Total Receptor Risk/Hazard based on all COPCs except Total PCBs.

Table H-1-9. RME

Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Child Angler (Mixed Fish Diet) - Regional Areas Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

								Cano	er Risk Calc	ulations				Noncancer Ha	zard Calcul	ations	
	Exposure	Exposure	Exposure	Chemical of	EPC	:	Intake/Exposu	re Concentration		SF		Cancer	Intake/Exposur	re Concentration		tfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Fish Tissue	Fish Fillet	Upper Potomac	Ingestion														
	Tissue - Mixed			Metals													
	Diet (2)			Arsenic	3.98E-02	mg/kg	7.02E-07	mg/kg-day	1.50E+00	kg-day/mg		1.05E-06	8.19E-06	mg/kg-day	3.00E-04	mg/kg-day	2.73E-02
				Arsenic, organic	3.58E-01	mg/kg	6.32E-06	mg/kg-day	NA	kg-day/mg		NA	7.37E-05	mg/kg-day	2.00E-02	mg/kg-day	3.69E-03
				Mercury	1.61E-01	mg/kg	2.84E-06	mg/kg-day	NA	kg-day/mg		NA	3.31E-05	mg/kg-day	1.00E-04	mg/kg-day	3.31E-01
				Pesticides													
				4,4'-DDD	4.22E-02	mg/kg	6.70E-07	mg/kg-day	2.40E-01	kg-day/mg		1.61E-07	7.82E-06	mg/kg-day	3.00E-05	mg/kg-day	2.61E-01
				4,4'-DDE	2.43E-01	mg/kg	3.86E-06	mg/kg-day	3.40E-01	kg-day/mg		1.31E-06	4.50E-05	mg/kg-day	3.00E-04	mg/kg-day	1.50E-01
				Aldrin	1.20E-03	mg/kg	1.91E-08	mg/kg-day	1.70E+01	kg-day/mg		3.24E-07	2.22E-07	mg/kg-day	3.00E-05	mg/kg-day	7.41E-03
				alpha-Chlordane	5.10E-02	mg/kg	8.10E-07	mg/kg-day	3.50E-01	kg-day/mg		2.84E-07	9.45E-06	mg/kg-day	5.00E-04	mg/kg-day	1.89E-02
				beta-BHC	1.73E-03	mg/kg	2.75E-08	mg/kg-day	1.80E+00	kg-day/mg		4.95E-08	3.21E-07	mg/kg-day	NA	mg/kg-day	NA
				cis-Nonachlor	2.20E-02	mg/kg	3.49E-07	mg/kg-day	3.50E-01	kg-day/mg		1.22E-07	4.08E-06	mg/kg-day	5.00E-04	mg/kg-day	8.15E-03
				Dieldrin	2.87E-02	mg/kg	4.56E-07	mg/kg-day	1.60E+01	kg-day/mg		7.29E-06	5.32E-06	mg/kg-day	5.00E-05	mg/kg-day	1.06E-01
				gamma-Chlordane	4.64E-03	mg/kg	7.37E-08	mg/kg-day	3.50E-01	kg-day/mg		2.58E-08	8.60E-07	mg/kg-day	5.00E-04	mg/kg-day	1.72E-03
				Heptachlor epoxide	3.39E-03	mg/kg	5.38E-08	mg/kg-day	9.10E+00	kg-day/mg		4.90E-07	6.28E-07	mg/kg-day	1.30E-05	mg/kg-day	4.83E-02
				Hexachlorobenzene	1.55E-03	mg/kg	2.46E-08	mg/kg-day	1.60E+00	kg-day/mg		3.94E-08	2.87E-07	mg/kg-day	8.00E-04	mg/kg-day	3.59E-04
				Mirex	3.45E-04	mg/kg	5.47E-09	mg/kg-day	1.80E+01	kg-day/mg		9.85E-08	6.38E-08	mg/kg-day	2.00E-04	mg/kg-day	3.19E-04
				Oxychlordane	5.50E-03	mg/kg	8.74E-08	mg/kg-day	3.50E-01	kg-day/mg		3.06E-08	1.02E-06	mg/kg-day	5.00E-04	mg/kg-day	2.04E-03
				trans-Nonachlor	6.26E-02	mg/kg	9.94E-07	mg/kg-day	3.50E-01	kg-day/mg		3.48E-07	1.16E-05	mg/kg-day	5.00E-04	mg/kg-day	2.32E-02
				PCBs													
				Total PCBs	1.61E+00	mg/kg	2.47E-05	mg/kg-day	2.00E+00	kg-day/mg		4.94E-05	2.88E-04	mg/kg-day	2.00E-05	mg/kg-day	1.44E+01
				PCB-TEQ	4.27E-05	mg/kg	5.35E-10	mg/kg-day	1.30E+05	kg-day/mg		6.96E-05	6.25E-09	mg/kg-day	7.00E-10	mg/kg-day	8.92E+00
Figh Tiggue Tot	al - Upper Poton	nac (Total PCBs) ³				l	<u> </u>				l .	6.10E-05					1.54E+01
	al - Upper Poton											8.12E-05					9.91E+00
Fish Tissue	Fish Fillet	Lower Potomac	Ingestion				Ĭ										+
	Tissue - Mixed		9	Metals													
	Diet (2)			Arsenic	3.71E-01	mg/kg	6.55E-06	mg/kg-day	1.50E+00	kg-day/mg		9.82E-06	7.64E-05	mg/kg-day	3.00E-04	mg/kg-day	2.55E-01
				Arsenic, organic	3.34E+00	mg/kg	5.89E-05	mg/kg-day	NA	kg-day/mg		NA	6.87E-04	mg/kg-day	2.00E-02	mg/kg-day	3.44E-02
				Mercury	1.10E-01	mg/kg	1.94E-06	mg/kg-day	NA	kg-day/mg		NA	2.26E-05	mg/kg-day	1.00E-04	mg/kg-day	2.26E-01
				Pesticides													
				4,4'-DDD	8.29E-03	mg/kg	1.32E-07	mg/kg-day	2.40E-01	kg-day/mg		3.16E-08	1.54E-06	mg/kg-day	3.00E-05	mg/kg-day	5.12E-02
				4,4'-DDE	4.10E-02	mg/kg	6.51E-07	mg/kg-day	3.40E-01	kg-day/mg		2.21E-07	7.60E-06	mg/kg-day	3.00E-04	mg/kg-day	2.53E-02
				alpha-Chlordane	1.54E-02	mg/kg	2.45E-07	mg/kg-day	3.50E-01	kg-day/mg		8.56E-08	2.85E-06	mg/kg-day	5.00E-04	mg/kg-day	5.71E-03
				Dieldrin	6.62E-03	mg/kg	1.05E-07	mg/kg-day	1.60E+01	kg-day/mg		1.68E-06	1.23E-06	mg/kg-day	5.00E-05	mg/kg-day	2.45E-02
				gamma-Chlordane	7.97E-03	mg/kg	1.27E-07	mg/kg-day	3.50E-01	kg-day/mg		4.43E-08	1.48E-06	mg/kg-day	5.00E-04	mg/kg-day	2.95E-03
				Heptachlor epoxide	3.11E-03	mg/kg	4.94E-08	mg/kg-day	9.10E+00	kg-day/mg		4.49E-07	5.76E-07	mg/kg-day	1.30E-05	mg/kg-day	4.43E-02
				Oxychlordane	3.86E-03	mg/kg	6.13E-08	mg/kg-day	3.50E-01	kg-day/mg		2.15E-08	7.15E-07	mg/kg-day	5.00E-04	mg/kg-day	1.43E-03
				trans-Nonachlor	1.94E-02	mg/kg	3.08E-07	mg/kg-day	3.50E-01	kg-day/mg		1.08E-07	3.59E-06	mg/kg-day	5.00E-04	mg/kg-day	7.19E-03
				PCBs													
				Total PCBs	2.52E-01	mg/kg	3.87E-06	mg/kg-day	2.00E+00	kg-day/mg		7.74E-06	4.51E-05	mg/kg-day	2.00E-05	mg/kg-day	2.26E+00
				PCB-TEQ	5.46E-06	mg/kg	6.84E-11	mg/kg-day	1.30E+05	kg-day/mg		8.89E-06	7.98E-10	mg/kg-day	7.00E-10	mg/kg-day	1.14E+00
<u></u>																	<u> </u>
		nac (Total PCBs)3										2.02E-05					2.94E+00
⊢ish Tissue Tota	al - Lower Poton	nac (PCB-TEQ)*										2.14E-05	1				1.82E+00

Table H-1-9. RME

Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Child Angler (Mixed Fish Diet) - Regional Areas Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

							1	Cano	er Risk Calc	ulations		1	Noncancer H	azard Calcu	lations	
	Exposure	Exposure	Exposure	Chemical of	EPO		Intake/Exposu	re Concentration		SF	Cance	Intake/Expo	sure Concentration		RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1) Risk	Value	Units	Value	Units	Quotient
Fish Tissue	Fish Fillet	Upstream Non-Tidal	Ingestion									1				
	Tissue - Mixed	Anacostia		Dioxin												
	Diet (2)			2,3,7,8-TCDD-TEQ	1.20E-07	mg/kg	1.50E-12	mg/kg-day	1.30E+05	kg-day/mg	1.95E-0	7 1.75E-11	mg/kg-day	7.00E-10	mg/kg-day	2.50E-02
				Metals												
				Arsenic	7.58E-03	mg/kg	1.34E-07	mg/kg-day	1.50E+00	kg-day/mg	2.01E-0	7 1.56E-06	mg/kg-day	3.00E-04	mg/kg-day	5.20E-03
				Arsenic, organic	6.82E-02	mg/kg	1.20E-06	mg/kg-day	NA	kg-day/mg	NA	1.40E-05	mg/kg-day	2.00E-02	mg/kg-day	7.02E-04
				Cobalt	1.62E-02	mg/kg	2.86E-07	mg/kg-day	NA	kg-day/mg	NA	3.34E-06	mg/kg-day	3.00E-04	mg/kg-day	
				Mercury	2.98E-01	mg/kg	5.26E-06	mg/kg-day	NA	kg-day/mg	NA	6.14E-05	mg/kg-day	1.00E-04	mg/kg-day	
				Thallium	3.85E-03	mg/kg	6.79E-08	mg/kg-day	NA	kg-day/mg	NA	7.93E-07	mg/kg-day	1.00E-05	mg/kg-day	7.93E-02
				Pesticides												
				Chlordane	2.61E-02	mg/kg	4.15E-07	mg/kg-day	2.40E-01	kg-day/mg	9.95E-0		mg/kg-day	3.00E-05	mg/kg-day	
				Dieldrin	1.97E-03	mg/kg	3.13E-08	mg/kg-day	3.40E-01	kg-day/mg	1.06E-0		mg/kg-day	3.00E-04	mg/kg-day	
				Heptachlor epoxide	1.72E-03	mg/kg	2.72E-08	mg/kg-day	1.70E+01	kg-day/mg	4.63E-0	7 3.18E-07	mg/kg-day	3.00E-05	mg/kg-day	1.06E-02
				PCBs	0.045.00		5 00F 07		0.005.00	Landardon a	4.005.0	5 005 00		0.005.05		0.075.04
				Total PCBs	3.31E-02	mg/kg	5.09E-07	mg/kg-day	2.00E+00	kg-day/mg	1.02E-0	11	mg/kg-day	2.00E-05	mg/kg-day	
				PCB-TEQ	8.76E-07	mg/kg	1.10E-11	mg/kg-day	1.30E+05	kg-day/mg	1.43E-0	1.28E-10	mg/kg-day	7.00E-10	mg/kg-day	1.83E-01
Fich Ticcup Tot	al - Non-Tidal A	nacostia (Total PCBs) ³					JI				1.99E-0					1.20E+00
		nacostia (PCB-TEQ)*									2.40E-0					1.09E+00
Fish Tissue	Fish Fillet	Lower Anacostia	Ingestion				Ĭ					†				+
	Tissue - Mixed			Metals												
	Diet (2)			Arsenic	2.45E-02	mg/kg	4.32E-07	mg/kg-day	1.50E+00	kg-day/mg	6.49E-0	5.04E-06	mg/kg-day	3.00E-04	mg/kg-day	1.68E-02
				Arsenic, organic	2.21E-01	mg/kg	3.89E-06	mg/kg-day	NA	kg-day/mg	NA NA	4.54E-05	mg/kg-day	2.00E-02	mg/kg-day	
				Mercury	9.77E-02	mg/kg	1.72E-06	mg/kg-day	NA	kg-day/mg	NA	2.01E-05	mg/kg-day	1.00E-04	mg/kg-day	
				Pesticides				,		. , .			,			
				4,4'-DDD	3.32E-02	mg/kg	5.27E-07	mg/kg-day	2.40E-01	kg-day/mg	1.27E-0	6.15E-06	mg/kg-day	3.00E-05	mg/kg-day	2.05E-01
				4,4'-DDE	6.62E-02	mg/kg	1.05E-06	mg/kg-day	3.40E-01	kg-day/mg	3.57E-0	7 1.23E-05	mg/kg-day	3.00E-04	mg/kg-day	4.09E-02
				Aldrin	4.02E-04	mg/kg	6.38E-09	mg/kg-day	1.70E+01	kg-day/mg	1.09E-0	7.45E-08	mg/kg-day	3.00E-05	mg/kg-day	2.48E-03
				alpha-Chlordane	3.60E-02	mg/kg	5.72E-07	mg/kg-day	3.50E-01	kg-day/mg	2.00E-0	6.68E-06	mg/kg-day	5.00E-04	mg/kg-day	1.34E-02
				cis-Nonachlor	1.55E-02	mg/kg	2.46E-07	mg/kg-day	3.50E-01	kg-day/mg	8.59E-0	2.86E-06	mg/kg-day	5.00E-04	mg/kg-day	5.73E-03
				Dieldrin	1.78E-02	mg/kg	2.83E-07	mg/kg-day	1.60E+01	kg-day/mg	4.52E-0	3.30E-06	mg/kg-day	5.00E-05	mg/kg-day	6.60E-02
				gamma-Chlordane	1.98E-02	mg/kg	3.15E-07	mg/kg-day	3.50E-01	kg-day/mg	1.10E-0	7 3.68E-06	mg/kg-day	5.00E-04	mg/kg-day	7.35E-03
				Heptachlor epoxide	4.27E-03	mg/kg	6.78E-08	mg/kg-day	9.10E+00	kg-day/mg	6.17E-0	7.91E-07	mg/kg-day	1.30E-05	mg/kg-day	6.08E-02
				Mirex	3.92E-04	mg/kg	6.23E-09	mg/kg-day	1.80E+01	kg-day/mg	1.12E-0	7.26E-08	mg/kg-day	2.00E-04	mg/kg-day	3.63E-04
				Oxychlordane	8.13E-03	mg/kg	1.29E-07	mg/kg-day	3.50E-01	kg-day/mg	4.52E-0	1.51E-06	mg/kg-day	5.00E-04	mg/kg-day	3.01E-03
				trans-Nonachlor	4.48E-02	mg/kg	7.12E-07	mg/kg-day	3.50E-01	kg-day/mg	2.49E-0	8.30E-06	mg/kg-day	5.00E-04	mg/kg-day	1.66E-02
				PCBs												
				Total PCBs	5.28E-01	mg/kg	8.10E-06	mg/kg-day	2.00E+00	kg-day/mg	1.62E-0		mg/kg-day	2.00E-05	mg/kg-day	
				PCB-TEQ	1.40E-05	mg/kg	1.75E-10	mg/kg-day	1.30E+05	kg-day/mg	2.28E-0	2.05E-09	mg/kg-day	7.00E-10	mg/kg-day	2.92E+00
							<u> </u>					<u> </u>				<u> </u>
		ostia (Total PCBs) ³									2.34E-0					5.37E+00
		ostia (PCB-TEQ)									3.00E-0					3.57E+00
Receptor Total		anas Datamas (Tatal DC	2Da)3								0.405.0	-11				14.545.04
		pper Potomac (Total PC pper Potomac (PCB-TE									6.10E-0 8.12E-0					1.54E+01 9.91E+00
		ower Potomac (Total PC									2.02E-0					2.94E+00
		ower Potomac (PCB-TE									2.02E-0					1.82E+00
		on-Tidal Anacostia (Tot									1.99E-0					1.20E+00
		on-Tidal Anacostia (PC									1.99E-0					1.20E+00
		ower Anacostia (Total P									2.34E-0					5.37E+0
		ower Anacostia (PCB-TI									2.34E-0					3.57E+00
· · · · · · · · · · · · · · ·	LC		,								3.00E-0	,				3.37 ⊑+0

Table H-1-9. RME

Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Child Angler (Mixed Fish Diet) - Regional Areas Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Child

ĺ									Canc	er Risk Calci	ulations				Noncancer Ha	zard Calcula	ations	
		Exposure	Exposure	Exposure	Chemical of	EPC	EPC Inta		re Concentration	C	SF		Cancer	Intake/Exposur	e Concentration	R	RfD	Hazard
	Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient

Notes

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

PCB - Polychlorinated Biphenyl.

PCB-TEQ - PCB Toxicity Equivalence.

RfD - Oral Reference Dose.

NA - Not applicable.

- (1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.
- (2) Assumes a mixed fish diet of the species with available fillet data based on a pooled EPC.
- (3) Total Receptor Risk/Hazard based on all COPCs except PCB-TEQ.
- (4) Total Receptor Risk/Hazard based on all COPCs except Total PCBs.

Table H-1-10. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Adult Swimmer Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

								Can	cer Risk Cal	culations				Noncancer I	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposur	e Concentration	C	SF		Cancer	Intake/Exposur	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Ingestion														
	Surface	Investigation		Dioxin													
	Sediment	Area		2,3,7,8-TCDD-TEQ	2.13E-04	mg/kg	1.35E-12	mg/kg-day	1.30E+05	kg-day/mg		1.76E-07	4.73E-12	mg/kg-day	7.00E-10	mg/kg-day	6.76E-03
				Metals													1
				Aluminum	8.92E+03	mg/kg	5.67E-05	mg/kg-day	NA	kg-day/mg		NA	1.99E-04	mg/kg-day	1.00E+00	mg/kg-day	1.99E-04
				Antimony	6.43E+00	mg/kg	4.09E-08	mg/kg-day	NA	kg-day/mg		NA	1.43E-07	mg/kg-day	4.00E-04	mg/kg-day	3.58E-04
				Arsenic	6.55E+00	mg/kg	2.50E-08	mg/kg-day	1.50E+00	kg-day/mg		3.75E-08	8.75E-08	mg/kg-day	3.00E-04	mg/kg-day	2.92E-04
				Cobalt	1.65E+01	mg/kg	1.05E-07	mg/kg-day	NA	kg-day/mg		NA	3.66E-07	mg/kg-day	3.00E-04	mg/kg-day	1.22E-03
				Cyanide	3.40E+00	mg/kg	2.16E-08	mg/kg-day	NA	kg-day/mg		NA	7.58E-08	mg/kg-day	6.30E-04	mg/kg-day	1.20E-04
				Manganese	2.34E+02	mg/kg	1.49E-06	mg/kg-day	NA	kg-day/mg		NA	5.22E-06	mg/kg-day	2.40E-02	mg/kg-day	2.17E-04
				Nickel	6.02E+01	mg/kg	3.83E-07	mg/kg-day	NA	kg-day/mg		NA	1.34E-06	mg/kg-day	2.00E-02	mg/kg-day	6.69E-05
				Thallium	2.38E-01	mg/kg	1.51E-09	mg/kg-day	NA	kg-day/mg		NA	5.30E-09	mg/kg-day	1.00E-05	mg/kg-day	5.30E-04
				Vanadium	1.49E+02	mg/kg	9.48E-07	mg/kg-day	NA	kg-day/mg		NA	3.32E-06	mg/kg-day	5.04E-03	mg/kg-day	6.58E-04
				PCBs													İ
				Total PCBs	5.93E-01	mg/kg	3.77E-09	mg/kg-day	2.00E+00	kg-day/mg		7.54E-09	1.32E-08	mg/kg-day	2.00E-05	mg/kg-day	6.60E-04
				SVOCs													İ
				Benzo(a)anthracene	1.25E+00	mg/kg	7.96E-09	mg/kg-day	1.00E-01	kg-day/mg	1	7.96E-10	2.78E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	7.62E-01	mg/kg	4.85E-09	mg/kg-day	1.00E+00	kg-day/mg	1	4.85E-09	1.70E-08	mg/kg-day	3.00E-04	mg/kg-day	5.65E-05
				Benzo(b)fluoranthene	1.12E+00	mg/kg	7.12E-09	mg/kg-day	1.00E-01	kg-day/mg	1	7.12E-10	2.49E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	4.07E-01	mg/kg	2.59E-09	mg/kg-day	1.00E-02	kg-day/mg	1	2.59E-11	9.06E-09	mg/kg-day	NA	mg/kg-day	NA
				Chrysene	1.01E+00	mg/kg	6.42E-09	mg/kg-day	1.00E-03	kg-day/mg	1	6.42E-12	2.25E-08	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.79E-01	mg/kg	1.14E-09	mg/kg-day	1.00E+00	kg-day/mg	1	1.14E-09	3.98E-09	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	6.55E-01	mg/kg	4.17E-09	mg/kg-day	1.00E-01	kg-day/mg	1	4.17E-10	1.46E-08	mg/kg-day	NA	mg/kg-day	NA
				TPH												1	1
] .		Diesel Range Organics (C10-C20)	1.25E+02	mg/kg	7.93E-07	mg/kg-day	NA	kg-day/mg		NA	2.78E-06	mg/kg-day	1.00E-02	mg/kg-day	2.78E-04
			Exp. Route Total									2.29E-07					1.14E-02

Table H-1-10. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Adult Swimmer Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Adult

								Can	cer Risk Cald	culations				Noncancer	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposur	e Concentration	С	SF		Cancer	Intake/Exposur	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Dermal														
	Surface	Investigation		Dioxin													l
	Sediment	Area		2,3,7,8-TCDD-TEQ	2.13E-04	mg/kg	9.25E-13	mg/kg-day	1.30E+05	kg-day/mg		1.20E-07	3.24E-12	mg/kg-day	7.00E-10	mg/kg-day	4.63E-03
				Metals													İ
				Aluminum	8.92E+03	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E+00	mg/kg-day	NA
				Antimony	6.43E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	6.00E-05	mg/kg-day	NA
				Arsenic	6.55E+00	mg/kg	2.85E-08	mg/kg-day	1.50E+00	kg-day/mg		4.27E-08	9.97E-08	mg/kg-day	3.00E-04	mg/kg-day	3.32E-04
				Cobalt	1.65E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	3.00E-04	mg/kg-day	NA
				Cyanide	3.40E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	NA	mg/kg-day	NA
				Manganese	2.34E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	9.60E-04	mg/kg-day	NA
				Nickel	6.02E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	8.00E-04	mg/kg-day	NA
				Thallium	2.38E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-05	mg/kg-day	NA
				Vanadium	1.49E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.31E-04	mg/kg-day	NA
				PCBs													İ
				Total PCBs	5.93E-01	mg/kg	1.20E-08	mg/kg-day	2.00E+00	kg-day/mg		2.41E-08	4.21E-08	mg/kg-day	2.00E-05	mg/kg-day	2.11E-03
				SVOCs													İ
				Benzo(a)anthracene	1.25E+00	mg/kg	2.36E-08	mg/kg-day	1.00E-01	kg-day/mg	1	2.36E-09	8.25E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	7.62E-01	mg/kg	1.44E-08	mg/kg-day	1.00E+00	kg-day/mg	1	1.44E-08	5.03E-08	mg/kg-day	3.00E-04	mg/kg-day	1.68E-04
				Benzo(b)fluoranthene	1.12E+00	mg/kg	2.11E-08	mg/kg-day	1.00E-01	kg-day/mg	1	2.11E-09	7.38E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	4.07E-01	mg/kg	7.67E-09	mg/kg-day	1.00E-02	kg-day/mg	1	7.67E-11	2.69E-08	mg/kg-day	NA	mg/kg-day	NA
				Chrysene	1.01E+00	mg/kg	1.90E-08	mg/kg-day	1.00E-03	kg-day/mg	1	1.90E-11	6.66E-08	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.79E-01	mg/kg	3.37E-09	mg/kg-day	1.00E+00	kg-day/mg	1	3.37E-09	1.18E-08	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	6.55E-01	mg/kg	1.23E-08	mg/kg-day	1.00E-01	kg-day/mg	1	1.23E-09	4.32E-08	mg/kg-day	NA	mg/kg-day	NA
				TPH						l <i>,</i>							
			E . D	Diesel Range Organics (C10-C20)	1.25E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-02	mg/kg-day	NA
			Exp. Route Total	<u> </u>								2.11E-07					7.23E-03
		Exposure Point	lotal				<u> </u>					4.39E-07					1.86E-02
. .	Exposure Medi	um rotal										4.39E-07					1.86E-02
ediment Tota	I											4.39E-07					1.86E-02

Table H-1-10. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Adult Swimmer Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Adult

								Car	cer Risk Cal	culations				Noncancer	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	:	Intake/Exposur	e Concentration	C	SF		Cancer	Intake/Exposur	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotien
Surface	Surface	Waterside	Ingestion														
Water	Water	Investigation		Dioxin													
		Area		2,3,7,8-TCDD-TEQ	6.12E-07	ug/L	2.76E-15	mg/kg-day	1.30E+05	kg-day/mg		3.59E-10	9.67E-15	mg/kg-day	7.00E-10	mg/kg-day	1.38E-0
				Metals													
				Arsenic	9.21E-01	ug/L	4.16E-09	mg/kg-day	1.50E+00	kg-day/mg		6.24E-09	1.46E-08	mg/kg-day	3.00E-04	mg/kg-day	4.85E-0
				Cobalt	1.04E+00	ug/L	4.70E-09	mg/kg-day	NA	kg-day/mg		NA	1.64E-08	mg/kg-day	3.00E-04	mg/kg-day	5.48E-0
				Manganese	1.48E+02	ug/L	6.67E-07	mg/kg-day	NA	kg-day/mg		NA	2.33E-06	mg/kg-day	2.40E-02	mg/kg-day	9.73E-0
				Pesticides													
				4,4'-DDT	1.60E-03	ug/L	7.23E-12	mg/kg-day	3.40E-01	kg-day/mg		2.46E-12	2.53E-11	mg/kg-day	5.00E-04	mg/kg-day	5.06E-0
				PCBs													
				Total PCBs	9.40E-03	ug/L	4.24E-11	mg/kg-day	4.00E-01	kg-day/mg		1.70E-11	1.49E-10	mg/kg-day	2.00E-05	mg/kg-day	7.43E-0
			Exp. Route Total									6.62E-09					2.22E-0
			Dermal	1													
				Dioxin													
				2,3,7,8-TCDD-TEQ	6.12E-07	ug/L	3.35E-12	mg/kg-day	1.30E+05	kg-day/mg		4.36E-07	1.17E-11	mg/kg-day	7.00E-10	mg/kg-day	1.68E-0
				Metals													
				Arsenic	9.21E-01	ug/L	1.22E-09	mg/kg-day	1.50E+00	kg-day/mg		1.84E-09	4.28E-09	mg/kg-day		mg/kg-day	1.43E-0
				Cobalt	1.04E+00	ug/L	5.53E-10	mg/kg-day	NA	kg-day/mg		NA	1.94E-09	mg/kg-day	3.00E-04	mg/kg-day	6.45E-0
				Manganese	1.48E+02	ug/L	1.96E-07	mg/kg-day	NA	kg-day/mg		NA	6.87E-07	mg/kg-day	9.60E-04	mg/kg-day	7.16E-0
				Pesticides													
				4,4'-DDT	1.60E-03	ug/L	5.06E-09	mg/kg-day	3.40E-01	kg-day/mg		1.72E-09	1.77E-08	mg/kg-day	5.00E-04	mg/kg-day	3.54E-0
				PCBs													
] .		Total PCBs	9.40E-03	ug/L	3.54E-08	mg/kg-day	4.00E-01	kg-day/mg		1.42E-08	1.24E-07	mg/kg-day	2.00E-05	mg/kg-day	6.20E-0
			Exp. Route Total	<u> </u>			<u></u>					4.54E-07					2.37E-0
		Exposure Point	t Total				<u> </u>					4.60E-07					2.40E-0
	Exposure Medi	ium Total										4.60E-07					2.40E-0
face Wate												4.60E-07					2.40E-0
I Recepto	r Risk/Hazard											9.00E-07					4.26E-0

Notes:

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

NA - Not applicable.

PCB - Polychlorinated Biphenyl.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

(1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.

Table H-1-11. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Teen Swimmer Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Teen

								Ca	ncer Risk Ca	alculations				Noncancer	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposur	e Concentration	C	SF		Cancer	Intake/Exposur	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Ingestion														
	Surface	Investigation		Dioxin													1
	Sediment	Area		2,3,7,8-TCDD-TEQ	2.13E-04	mg/kg	2.45E-12	mg/kg-day	1.30E+05	kg-day/mg		3.18E-07	1.43E-11	mg/kg-day	7.00E-10	mg/kg-day	2.04E-02
				Metals													1
				Aluminum	8.92E+03	mg/kg	1.03E-04	mg/kg-day	NA	kg-day/mg		NA	5.99E-04	mg/kg-day	1.00E+00	mg/kg-day	5.99E-04
				Antimony	6.43E+00	mg/kg	7.40E-08	mg/kg-day	NA	kg-day/mg		NA	4.32E-07	mg/kg-day	4.00E-04	mg/kg-day	1.08E-03
				Arsenic	6.55E+00	mg/kg	4.53E-08	mg/kg-day	1.50E+00	kg-day/mg		6.79E-08	2.64E-07	mg/kg-day	3.00E-04	mg/kg-day	8.80E-04
				Cobalt	1.65E+01	mg/kg	1.90E-07	mg/kg-day	NA	kg-day/mg		NA	1.11E-06	mg/kg-day	3.00E-04	mg/kg-day	3.68E-03
				Cyanide	3.40E+00	mg/kg	3.92E-08	mg/kg-day	NA	kg-day/mg		NA	2.29E-07	mg/kg-day	6.30E-04	mg/kg-day	3.63E-04
				Manganese	2.34E+02	mg/kg	2.70E-06	mg/kg-day	NA	kg-day/mg		NA	1.57E-05	mg/kg-day	2.40E-02	mg/kg-day	6.56E-04
				Nickel	6.02E+01	mg/kg	6.93E-07	mg/kg-day	NA	kg-day/mg		NA	4.04E-06	mg/kg-day	2.00E-02	mg/kg-day	2.02E-04
				Thallium	2.38E-01	mg/kg	2.74E-09	mg/kg-day	NA	kg-day/mg		NA	1.60E-08	mg/kg-day	1.00E-05	mg/kg-day	1.60E-03
				Vanadium	1.49E+02	mg/kg	1.72E-06	mg/kg-day	NA	kg-day/mg		NA	1.00E-05	mg/kg-day	5.04E-03	mg/kg-day	1.99E-03
				PCBs													1
				Total PCBs	5.93E-01	mg/kg	6.83E-09	mg/kg-day	2.00E+00	kg-day/mg		1.37E-08	3.99E-08	mg/kg-day	2.00E-05	mg/kg-day	1.99E-03
				SVOCs													1
				Benzo(a)anthracene	1.25E+00	mg/kg	1.44E-08	mg/kg-day	1.00E-01	kg-day/mg	2.5	3.60E-09	8.41E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	7.62E-01	mg/kg	8.78E-09	mg/kg-day	1.00E+00	kg-day/mg	2.5	2.19E-08	5.12E-08	mg/kg-day	3.00E-04	mg/kg-day	1.71E-04
				Benzo(b)fluoranthene	1.12E+00	mg/kg	1.29E-08	mg/kg-day	1.00E-01	kg-day/mg	2.5	3.22E-09	7.52E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	4.07E-01	mg/kg	4.69E-09	mg/kg-day	1.00E-02	kg-day/mg	2.5	1.17E-10	2.74E-08	mg/kg-day	NA	mg/kg-day	NA
				Chrysene	1.01E+00	mg/kg	1.16E-08	mg/kg-day	1.00E-03	kg-day/mg	2.5	2.91E-11	6.79E-08	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.79E-01	mg/kg	2.06E-09	mg/kg-day	1.00E+00	kg-day/mg	2.5	5.16E-09	1.20E-08	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	6.55E-01	mg/kg	7.55E-09	mg/kg-day	1.00E-01	kg-day/mg	2.5	1.89E-09	4.40E-08	mg/kg-day	NA	mg/kg-day	NA
				ТРН												1	j
		ļ		Diesel Range Organics (C10-C20)	1.25E+02	mg/kg	1.44E-06	mg/kg-day	NA	kg-day/mg		NA	8.38E-06	mg/kg-day	1.00E-02	mg/kg-day	8.38E-04
			Exp. Route Total									4.36E-07					3.45E-02

Table H-1-11. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Teen Swimmer Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Teen

								Car	ncer Risk Ca	lculations				Noncancer I	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC		Intake/Exposur	e Concentration	C	SF		Cancer	Intake/Exposur	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Dermal														
	Surface	Investigation		Dioxin													
	Sediment	Area		2,3,7,8-TCDD-TEQ	2.13E-04	mg/kg	9.96E-13	mg/kg-day	1.30E+05	kg-day/mg		1.29E-07	5.81E-12	mg/kg-day	7.00E-10	mg/kg-day	8.30E-03
				Metals													
				Aluminum	8.92E+03	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E+00	mg/kg-day	NA
				Antimony	6.43E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	6.00E-05	mg/kg-day	NA
				Arsenic	6.55E+00	mg/kg	3.07E-08	mg/kg-day	1.50E+00	kg-day/mg		4.60E-08	1.79E-07	mg/kg-day	3.00E-04	mg/kg-day	5.96E-04
				Cobalt	1.65E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	3.00E-04	mg/kg-day	NA
				Cyanide	3.40E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	NA	mg/kg-day	NA
				Manganese	2.34E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	9.60E-04	mg/kg-day	NA
				Nickel	6.02E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	8.00E-04	mg/kg-day	NA
				Thallium	2.38E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-05	mg/kg-day	NA
				Vanadium	1.49E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.31E-04	mg/kg-day	NA
				PCBs													
				Total PCBs	5.93E-01	mg/kg	1.30E-08	mg/kg-day	2.00E+00	kg-day/mg		2.59E-08	7.56E-08	mg/kg-day	2.00E-05	mg/kg-day	3.78E-03
				SVOCs													
				Benzo(a)anthracene	1.25E+00	mg/kg	2.54E-08	mg/kg-day	1.00E-01	kg-day/mg	2.5	6.35E-09	1.48E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	7.62E-01	mg/kg	1.55E-08	mg/kg-day	1.00E+00	kg-day/mg	2.5	3.87E-08	9.02E-08	mg/kg-day	3.00E-04	mg/kg-day	3.01E-04
				Benzo(b)fluoranthene	1.12E+00	mg/kg	2.27E-08	mg/kg-day	1.00E-01	kg-day/mg	2.5	5.68E-09	1.32E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	4.07E-01	mg/kg	8.26E-09	mg/kg-day	1.00E-02	kg-day/mg	2.5	2.06E-10	4.82E-08	mg/kg-day	NA	mg/kg-day	NA
				Chrysene	1.01E+00	mg/kg	2.05E-08	mg/kg-day	1.00E-03	kg-day/mg	2.5	5.12E-11	1.20E-07	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.79E-01	mg/kg	3.63E-09	mg/kg-day	1.00E+00	kg-day/mg	2.5	9.08E-09	2.12E-08	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	6.55E-01	mg/kg	1.33E-08	mg/kg-day	1.00E-01	kg-day/mg	2.5	3.32E-09	7.75E-08	mg/kg-day	NA	mg/kg-day	NA
				TPH						l							
			E D . T	Diesel Range Organics (C10-C20)	1.25E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg	l,	NA 0.05F.07	NA	mg/kg-day	1.00E-02	mg/kg-day	NA 1 00E 00
			Exp. Route Total	<u> </u>								2.65E-07	<u> </u>				1.30E-02
		Exposure Point	ıotal									7.01E-07					4.74E-02
	Exposure Med	ium rotal										7.01E-07	<u> </u>				4.74E-02
Sediment Tota	aı											7.01E-07					4.74E-02

Table H-1-11. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Teen Swimmer Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Teen

								Ca	ncer Risk Ca	alculations				Noncancer I	Hazard Calci	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposure	Concentration	C	SF		Cancer	Intake/Exposure	e Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Surface	Surface	Waterside	Ingestion														
Water	Water	Investigation		Dioxin													
		Area		2,3,7,8-TCDD-TEQ	6.12E-07	ug/L	5.01E-15	mg/kg-day	1.30E+05	kg-day/mg		6.51E-10	2.92E-14	mg/kg-day	7.00E-10	mg/kg-day	4.17E-05
				Metals													
				Arsenic	9.21E-01	ug/L	7.53E-09	mg/kg-day	1.50E+00	kg-day/mg		1.13E-08	4.39E-08	mg/kg-day	3.00E-04	mg/kg-day	1.46E-04
				Cobalt	1.04E+00	ug/L	8.51E-09	mg/kg-day	NA	kg-day/mg		NA	4.96E-08	mg/kg-day	3.00E-04	mg/kg-day	1.65E-04
				Manganese	1.48E+02	ug/L	1.21E-06	mg/kg-day	NA	kg-day/mg		NA	7.05E-06	mg/kg-day	2.40E-02	mg/kg-day	2.94E-04
				Pesticides													
				4,4'-DDT	1.60E-03	ug/L	1.31E-11	mg/kg-day	3.40E-01	kg-day/mg		4.45E-12	7.63E-11	mg/kg-day	5.00E-04	mg/kg-day	1.53E-07
				PCBs													
				Total PCBs	9.40E-03	ug/L	7.69E-11	mg/kg-day	4.00E-01	kg-day/mg		3.08E-11	4.48E-10	mg/kg-day	2.00E-05	mg/kg-day	2.24E-05
			Exp. Route Total			l	ļ		l	ı	ı	1.20E-08			l	l	6.70E-04
			Dermal														
				Dioxin													
				2,3,7,8-TCDD-TEQ	6.12E-07	ug/L	Outside EPD	mg/kg-day	1.30E+05	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	7.00E-10	mg/kg-day	Outside EPD
				Metals													
				Arsenic	9.21E-01	ug/L	1.57E-09	mg/kg-day	1.50E+00	kg-day/mg		2.36E-09	9.18E-09	mg/kg-day	3.00E-04	mg/kg-day	3.06E-05
				Cobalt	1.04E+00	ug/L	7.10E-10	mg/kg-day	NA	kg-day/mg		NA	4.14E-09	mg/kg-day	3.00E-04	mg/kg-day	1.38E-05
				Manganese	1.48E+02	ug/L	2.52E-07	mg/kg-day	NA	kg-day/mg		NA	1.47E-06	mg/kg-day	9.60E-04	mg/kg-day	1.53E-03
				Pesticides													
				4,4'-DDT	1.60E-03	ug/L	Outside EPD	mg/kg-day	3.40E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	5.00E-04	mg/kg-day	Outside EPD
				PCBs						l		l			l <u></u>		
				Total PCBs	9.40E-03	ug/L	Outside EPD	mg/kg-day	4.00E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	2.00E-05	mg/kg-day	Outside EPD
			Exp. Route Total	Ì	1				1	1		2.36E-09		1		1	1.58E-03
		Exposure Point	Total									1.43E-08					2.25E-03
	Exposure Me	dium Total										1.43E-08					2.25E-03
Surface Water	r Total					•						1.43E-08					2.25E-03
Total Receptor	or Risk/Hazard					`			·	·	·	7.15E-07		·	·		4.97E-02

Notes:

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

NA - Not applicable.

PCB - Polychlorinated Biphenyl.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

(1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.

Table H-1-12. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Child Swimmer Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Child

								Ca	ncer Risk Ca	alculations				Noncancer	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposur	e Concentration	С	SF		Cancer	Intake/Exposur	e Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Ingestion														
	Surface	Investigation		Dioxin													
	Sediment	Area		2,3,7,8-TCDD-TEQ	2.13E-04	mg/kg	3.82E-12	mg/kg-day	1.30E+05	kg-day/mg		4.96E-07	4.46E-11	mg/kg-day	7.00E-10	mg/kg-day	6.36E-02
				Metals													
				Aluminum	8.92E+03	mg/kg	1.60E-04	mg/kg-day	NA	kg-day/mg		NA	1.87E-03	mg/kg-day	1.00E+00	mg/kg-day	1.87E-03
				Antimony	6.43E+00	mg/kg	1.15E-07	mg/kg-day	NA	kg-day/mg		NA	1.35E-06	mg/kg-day	4.00E-04	mg/kg-day	3.37E-03
				Arsenic	6.55E+00	mg/kg	7.06E-08	mg/kg-day	1.50E+00	kg-day/mg		1.06E-07	8.23E-07	mg/kg-day	3.00E-04	mg/kg-day	2.74E-03
				Cobalt	1.65E+01	mg/kg	2.95E-07	mg/kg-day	NA	kg-day/mg		NA	3.45E-06	mg/kg-day	3.00E-04	mg/kg-day	1.15E-02
				Cyanide	3.40E+00	mg/kg	6.11E-08	mg/kg-day	NA	kg-day/mg		NA	7.13E-07	mg/kg-day	6.30E-04	mg/kg-day	1.13E-03
				Manganese	2.34E+02	mg/kg	4.21E-06	mg/kg-day	NA	kg-day/mg		NA	4.91E-05	mg/kg-day	2.40E-02	mg/kg-day	2.05E-03
				Nickel	6.02E+01	mg/kg	1.08E-06	mg/kg-day	NA	kg-day/mg		NA	1.26E-05	mg/kg-day	2.00E-02	mg/kg-day	6.30E-04
				Thallium	2.38E-01	mg/kg	4.27E-09	mg/kg-day	NA	kg-day/mg		NA	4.99E-08	mg/kg-day	1.00E-05	mg/kg-day	4.99E-03
				Vanadium	1.49E+02	mg/kg	2.68E-06	mg/kg-day	NA	kg-day/mg		NA	3.12E-05	mg/kg-day	5.04E-03	mg/kg-day	6.19E-03
				PCBs													
				Total PCBs	5.93E-01	mg/kg	1.06E-08	mg/kg-day	2.00E+00	kg-day/mg		2.13E-08	1.24E-07	mg/kg-day	2.00E-05	mg/kg-day	6.21E-03
				SVOCs													
				Benzo(a)anthracene	1.25E+00	mg/kg	2.25E-08	mg/kg-day	1.00E-01	0 , 0	4.2	9.44E-09	2.62E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	7.62E-01	mg/kg	1.37E-08	mg/kg-day	1.00E+00	kg-day/mg	4.2	5.75E-08	1.60E-07	mg/kg-day	3.00E-04	mg/kg-day	5.32E-04
				Benzo(b)fluoranthene	1.12E+00	mg/kg	2.01E-08	mg/kg-day	1.00E-01	kg-day/mg	4.2	8.44E-09	2.34E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	4.07E-01	mg/kg	7.31E-09	mg/kg-day	1.00E-02	kg-day/mg	4.2	3.07E-10	8.53E-08	mg/kg-day	NA	mg/kg-day	NA
				Chrysene	1.01E+00	mg/kg	1.81E-08	mg/kg-day	1.00E-03	kg-day/mg	4.2	7.62E-11	2.12E-07	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.79E-01	mg/kg	3.21E-09	mg/kg-day	1.00E+00	kg-day/mg	4.2	1.35E-08	3.75E-08	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	6.55E-01	mg/kg	1.18E-08	mg/kg-day	1.00E-01	kg-day/mg	4.2	4.94E-09	1.37E-07	mg/kg-day	NA	mg/kg-day	NA
				TPH					l	l <i>.</i>							
				Diesel Range Organics (C10-C20)	1.25E+02	mg/kg	2.24E-06	mg/kg-day	NA	kg-day/mg	L	NA	2.61E-05	mg/kg-day	1.00E-02	mg/kg-day	2.61E-03
			Exp. Route Total									7.18E-07					1.07E-01

Table H-1-12. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Child Swimmer Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Child

								Ca	ncer Risk Ca	lculations				Noncancer	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposur	e Concentration	С	SF		Cancer	Intake/Exposur	e Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Dermal														
	Surface	Investigation		Dioxin													
	Sediment	Area		2,3,7,8-TCDD-TEQ	2.13E-04	mg/kg	6.60E-13	mg/kg-day	1.30E+05	kg-day/mg		8.58E-08	7.70E-12	mg/kg-day	7.00E-10	mg/kg-day	1.10E-02
				Metals													
				Aluminum	8.92E+03	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E+00	mg/kg-day	NA
				Antimony	6.43E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	6.00E-05	mg/kg-day	NA
				Arsenic	6.55E+00	mg/kg	2.03E-08	mg/kg-day	1.50E+00	kg-day/mg		3.05E-08	2.37E-07	mg/kg-day	3.00E-04	mg/kg-day	7.90E-04
				Cobalt	1.65E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	3.00E-04	mg/kg-day	NA
				Cyanide	3.40E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	NA	mg/kg-day	NA
				Manganese	2.34E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	9.60E-04	mg/kg-day	NA
				Nickel	6.02E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	8.00E-04	mg/kg-day	NA
				Thallium	2.38E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-05	mg/kg-day	NA
				Vanadium	1.49E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.31E-04	mg/kg-day	NA
				PCBs													
				Total PCBs	5.93E-01	mg/kg	8.59E-09	mg/kg-day	2.00E+00	kg-day/mg		1.72E-08	1.00E-07	mg/kg-day	2.00E-05	mg/kg-day	5.01E-03
				SVOCs													
				Benzo(a)anthracene	1.25E+00	mg/kg	1.68E-08	mg/kg-day		kg-day/mg	4.2	7.06E-09	1.96E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	7.62E-01	mg/kg	1.02E-08	mg/kg-day	1.00E+00	kg-day/mg	4.2	4.30E-08	1.20E-07	mg/kg-day	3.00E-04	mg/kg-day	3.98E-04
				Benzo(b)fluoranthene	1.12E+00	mg/kg	1.50E-08	mg/kg-day	1.00E-01	kg-day/mg	4.2	6.32E-09	1.76E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	4.07E-01	mg/kg	5.47E-09	mg/kg-day	1.00E-02	kg-day/mg	4.2	2.30E-10	6.38E-08	mg/kg-day	NA	mg/kg-day	NA
				Chrysene	1.01E+00	mg/kg	1.36E-08	mg/kg-day	1.00E-03	kg-day/mg	4.2	5.70E-11	1.58E-07	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.79E-01	mg/kg	2.41E-09	mg/kg-day	1.00E+00	kg-day/mg	4.2	1.01E-08	2.81E-08	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	6.55E-01	mg/kg	8.81E-09	mg/kg-day	1.00E-01	kg-day/mg	4.2	3.70E-09	1.03E-07	mg/kg-day	NA	mg/kg-day	NA
				TPH Diesel Range Organics (C10-C20)	1 255 . 02	malle	NA	ma/ka da:	NA	ka dov/r		NIA	NA	ma/ka de::	1.005.00	malka d-::	NA
			Exp. Route Total	Diesei Kange Organics (C10-C20)	1.25E+02	mg/kg	NA NA	mg/kg-day	NA	kg-day/mg	L	NA 2.04E-07	NA NA	mg/kg-day	1.00E-02	mg/kg-day	1.72E-02
		Exposure Point		Л			I <u> </u>					9.22E-07	<u> </u>				1.72E-02 1.25E-01
I	Exposure Medi		TUIAI				II <u></u> II					9.22E-07 9.22E-07					1.25E-01 1.25E-01
Sediment Tota		um Tulai					<u> </u>					9.22E-07 9.22E-07	<u> </u>				1.25E-01
Sediment 10ta	aı											3.22E-U/					1.206-01

Table H-1-12. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Child Swimmer Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Child

								Ca	ncer Risk Ca	lculations				Noncancer	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	:	Intake/Exposure	e Concentration	C	SF		Cancer	Intake/Exposure	e Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Surface	Surface	Waterside	Ingestion														
Water	Water	Investigation		Dioxin													
		Area		2,3,7,8-TCDD-TEQ	6.12E-07	ug/L	6.59E-15	mg/kg-day	1.30E+05	kg-day/mg		8.57E-10	7.69E-14	mg/kg-day	7.00E-10	mg/kg-day	1.10E-04
				Metals													
				Arsenic	9.21E-01	ug/L	9.92E-09	mg/kg-day	1.50E+00	0 , 0		1.49E-08	1.16E-07	mg/kg-day	3.00E-04	0 0 7	3.86E-04
				Cobalt	1.04E+00	ug/L	1.12E-08	mg/kg-day	NA	kg-day/mg		NA	1.31E-07	mg/kg-day	3.00E-04	mg/kg-day	4.36E-04
				Manganese	1.48E+02	ug/L	1.59E-06	mg/kg-day	NA	kg-day/mg		NA	1.86E-05	mg/kg-day	2.40E-02	mg/kg-day	7.74E-04
				Pesticides													
				4,4'-DDT	1.60E-03	ug/L	1.72E-11	mg/kg-day	3.40E-01	kg-day/mg		5.86E-12	2.01E-10	mg/kg-day	5.00E-04	mg/kg-day	4.02E-07
				PCBs													
				Total PCBs	9.40E-03	ug/L	1.01E-10	mg/kg-day	4.00E-01	kg-day/mg		4.05E-11	1.18E-09	mg/kg-day	2.00E-05	mg/kg-day	5.91E-05
			Exp. Route Total	<u> </u>	1				•			1.58E-08			ı	•	1.76E-03
			Dermal														
				Dioxin													
				2,3,7,8-TCDD-TEQ	6.12E-07	ug/L	Outside EPD	mg/kg-day	1.30E+05	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	7.00E-10	mg/kg-day	Outside EPD
				Metals													
				Arsenic	9.21E-01	ug/L	6.20E-10	mg/kg-day	1.50E+00	0 , 0		9.30E-10	7.24E-09	mg/kg-day	3.00E-04	0 0 7	2.41E-05
				Cobalt	1.04E+00	ug/L	2.80E-10	mg/kg-day	NA	kg-day/mg		NA	3.27E-09	mg/kg-day	3.00E-04	mg/kg-day	1.09E-05
				Manganese	1.48E+02	ug/L	9.95E-08	mg/kg-day	NA	kg-day/mg		NA	1.16E-06	mg/kg-day	9.60E-04	mg/kg-day	1.21E-03
				Pesticides													
				4,4'-DDT	1.60E-03	ug/L	Outside EPD	mg/kg-day	3.40E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	5.00E-04	mg/kg-day	Outside EPD
				PCBs													
				Total PCBs	9.40E-03	ug/L	Outside EPD	mg/kg-day	4.00E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	2.00E-05	mg/kg-day	Outside EPD
			Exp. Route Total	1	I.	ı			1		1	9.30E-10		1	ı	ı	1.24E-03
		Exposure Point	Total				ĺ					1.67E-08					3.01E-03
	Exposure Medi	um Total										1.67E-08					3.01E-03
Surface Water	r Total			-							•	1.67E-08					3.01E-03
Total Receptor	r Risk/Hazard				•	`	·		·		`	9.38E-07		•			1.28E-01

Notes:

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

NA - Not applicable.

PCB - Polychlorinated Biphenyl.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

(1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.

Table H-1-13. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Adult Wader Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Adult

								Cano	er Risk Calcu	ulations				Noncancer	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposu	re Concentration	C	SF		Cancer	Intake/Exposul	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Ingestion														
	Surface	Investigation		Dioxin													
	Sediment	Area		2,3,7,8-TCDD-TEQ	2.13E-04	mg/kg	3.64E-12	mg/kg-day	1.30E+05	kg-day/mg		4.73E-07	1.27E-11	mg/kg-day	7.00E-10	mg/kg-day	1.82E-02
				Metals													
				Aluminum	8.92E+03	mg/kg	1.53E-04	mg/kg-day	NA	kg-day/mg		NA	5.35E-04	mg/kg-day	1.00E+00	mg/kg-day	5.35E-04
				Antimony	6.43E+00	mg/kg	1.10E-07	mg/kg-day	NA	kg-day/mg		NA	3.85E-07	mg/kg-day	4.00E-04	mg/kg-day	9.63E-04
				Arsenic	6.55E+00	mg/kg	6.73E-08	mg/kg-day	1.50E+00	kg-day/mg		1.01E-07	2.35E-07	mg/kg-day	3.00E-04	mg/kg-day	7.85E-04
				Cobalt	1.65E+01	mg/kg	2.82E-07	mg/kg-day	NA	kg-day/mg		NA	9.86E-07	mg/kg-day	3.00E-04	mg/kg-day	3.29E-03
				Cyanide	3.40E+00	mg/kg	5.83E-08	mg/kg-day	NA	kg-day/mg		NA	2.04E-07	mg/kg-day	6.30E-04	mg/kg-day	3.24E-04
				Manganese	2.34E+02	mg/kg	4.01E-06	mg/kg-day	NA	kg-day/mg		NA	1.40E-05	mg/kg-day	2.40E-02	mg/kg-day	5.85E-04
				Nickel	6.02E+01	mg/kg	1.03E-06	mg/kg-day	NA	kg-day/mg		NA	3.60E-06	mg/kg-day	2.00E-02	mg/kg-day	1.80E-04
				Thallium	2.38E-01	mg/kg	4.08E-09	mg/kg-day	NA	kg-day/mg		NA	1.43E-08	mg/kg-day	1.00E-05	mg/kg-day	1.43E-03
				Vanadium	1.49E+02	mg/kg	2.55E-06	mg/kg-day	NA	kg-day/mg		NA	8.93E-06	mg/kg-day	5.04E-03	mg/kg-day	1.77E-03
				PCBs													
				Total PCBs	5.93E-01	mg/kg	1.02E-08	mg/kg-day	2.00E+00	kg-day/mg		2.03E-08	3.55E-08	mg/kg-day	2.00E-05	mg/kg-day	1.78E-03
				SVOCs													
				Benzo(a)anthracene	1.25E+00	mg/kg	2.14E-08	mg/kg-day	1.00E-01	kg-day/mg	1	2.14E-09	7.50E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	7.62E-01	mg/kg	1.30E-08	mg/kg-day	1.00E+00	kg-day/mg	1	1.30E-08	4.57E-08	mg/kg-day	3.00E-04	mg/kg-day	1.52E-04
				Benzo(b)fluoranthene	1.12E+00	mg/kg	1.92E-08	mg/kg-day	1.00E-01	kg-day/mg	1	1.92E-09	6.71E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	4.07E-01	mg/kg	6.97E-09	mg/kg-day	1.00E-02	kg-day/mg	1	6.97E-11	2.44E-08	mg/kg-day	NA	mg/kg-day	NA
				Chrysene	1.01E+00	mg/kg	1.73E-08	mg/kg-day	1.00E-03	kg-day/mg	1	1.73E-11	6.05E-08	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.79E-01	mg/kg	3.07E-09	mg/kg-day	1.00E+00	kg-day/mg	1	3.07E-09	1.07E-08	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	6.55E-01	mg/kg	1.12E-08	mg/kg-day	1.00E-01	kg-day/mg	1	1.12E-09	3.93E-08	mg/kg-day	NA	mg/kg-day	NA
				TPH													
				Diesel Range Organics (C10-C20)	1.25E+02	mg/kg	2.14E-06	mg/kg-day	NA	kg-day/mg		NA	7.47E-06	mg/kg-day	1.00E-02	mg/kg-day	7.47E-04
		<u> </u>															
			Exp. Route Total									6.16E-07					3.07E-02

Table H-1-13. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Adult Wader Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Adult

								Cano	er Risk Calcu	ulations				Noncancer	Hazard Calci	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposu	re Concentration	C	SF		Cancer	Intake/Exposul	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Dermal														ĺ
	Surface	Investigation		Dioxin													1
	Sediment	Area		2,3,7,8-TCDD-TEQ	2.13E-04	mg/kg	2.49E-12	mg/kg-day	1.30E+05	kg-day/mg		3.24E-07	8.72E-12	mg/kg-day	7.00E-10	mg/kg-day	1.25E-02
				Metals													1
				Aluminum	8.92E+03	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E+00	mg/kg-day	NA
				Antimony	6.43E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	6.00E-05	mg/kg-day	NA
				Arsenic	6.55E+00	mg/kg	7.67E-08	mg/kg-day	1.50E+00	kg-day/mg		1.15E-07	2.68E-07	mg/kg-day	3.00E-04	mg/kg-day	8.95E-04
				Cobalt	1.65E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	3.00E-04	mg/kg-day	NA
				Cyanide	3.40E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	NA	mg/kg-day	NA
				Manganese	2.34E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	9.60E-04	mg/kg-day	NA
				Nickel	6.02E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	8.00E-04	mg/kg-day	NA
				Thallium	2.38E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-05	mg/kg-day	NA
				Vanadium	1.49E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.31E-04	mg/kg-day	NA
				PCBs													i "
				Total PCBs	5.93E-01	mg/kg	3.24E-08	mg/kg-day	2.00E+00	kg-day/mg		6.48E-08	1.13E-07	mg/kg-day	2.00E-05	mg/kg-day	5.67E-03
				SVOCs													1
				Benzo(a)anthracene	1.25E+00	mg/kg	6.35E-08	mg/kg-day	1.00E-01	kg-day/mg	1	6.35E-09	2.22E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	7.62E-01	mg/kg	3.87E-08	mg/kg-day	1.00E+00	kg-day/mg	1	3.87E-08	1.35E-07	mg/kg-day	3.00E-04	mg/kg-day	4.51E-04
				Benzo(b)fluoranthene	1.12E+00	mg/kg	5.68E-08	mg/kg-day	1.00E-01	kg-day/mg	1	5.68E-09	1.99E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	4.07E-01	mg/kg	2.07E-08	mg/kg-day	1.00E-02	kg-day/mg	1	2.07E-10	7.23E-08	mg/kg-day	NA	mg/kg-day	NA
				Chrysene	1.01E+00	mg/kg	5.13E-08	mg/kg-day	1.00E-03	kg-day/mg	1	5.13E-11	1.79E-07	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.79E-01	mg/kg	9.08E-09	mg/kg-day	1.00E+00	kg-day/mg	1	9.08E-09	3.18E-08	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	6.55E-01	mg/kg	3.32E-08	mg/kg-day	1.00E-01	kg-day/mg	1	3.32E-09	1.16E-07	mg/kg-day	NA	mg/kg-day	NA
				TPH													1
				Diesel Range Organics (C10-C20)	1.25E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-02	mg/kg-day	NA
			Exp. Route Total									5.67E-07					1.95E-02
		Exposure Point	Total									1.18E-06					5.02E-02
	Exposure Mediu	ım Total										1.18E-06					5.02E-02
Sediment Tota	al	•	•	_	•	-				•	•	1.18E-06				·	5.02E-02

Table H-1-13. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Adult Wader Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Adult

								Cano	er Risk Calcu	lations				Noncancer	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC)	Intake/Exposu	re Concentration	C	SF		Cancer	Intake/Exposur	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Surface	Surface	Waterside	Ingestion														
Water	Water	Investigation		Dioxin													
		Area		2,3,7,8-TCDD-TEQ	6.12E-07	ug/L	2.72E-15	mg/kg-day	1.30E+05	kg-day/mg		3.54E-10	9.54E-15	mg/kg-day	7.00E-10	mg/kg-day	1.36E-05
				Metals													
				Arsenic	9.21E-01	ug/L	4.10E-09	mg/kg-day	1.50E+00	0 , 0		6.15E-09	1.44E-08	mg/kg-day		mg/kg-day	4.78E-05
				Cobalt	1.04E+00	ug/L	4.63E-09	mg/kg-day	NA	kg-day/mg		NA	1.62E-08	mg/kg-day	3.00E-04	mg/kg-day	5.40E-05
				Manganese	1.48E+02	ug/L	6.58E-07	mg/kg-day	NA	kg-day/mg		NA	2.30E-06	mg/kg-day	2.40E-02	mg/kg-day	9.59E-05
				Pesticides													
				4,4'-DDT	1.60E-03	ug/L	7.12E-12	mg/kg-day	3.40E-01	kg-day/mg		2.42E-12	2.49E-11	mg/kg-day	5.00E-04	mg/kg-day	4.99E-08
				PCBs						l							
			E D . T . I	Total PCBs	9.40E-03	ug/L	4.18E-11	mg/kg-day	4.00E-01	kg-day/mg		1.67E-11	1.46E-10	mg/kg-day	2.00E-05	mg/kg-day	7.32E-06
			Exp. Route Total					ı	1	1	ı	6.52E-09		1			2.19E-04
			Dermal	District													
				Dioxin 2.3.7.8-TCDD-TEQ	6.12E-07	ug/L	2.32E-12	ma/ka day	1.30E+05	lea dou/ma		3.02E-07	8.12E-12	mg/kg-day	7.00F.10	mg/kg-day	1.16E-02
				Metals	0.12E-07	ug/L	2.32E-12	mg/kg-day	1.30E+03	kg-day/mg		3.02E-07	0.120-12	mg/kg-day	7.00E-10	mg/kg-day	1.166-02
				Arsenic	9.21E-01	ug/L	1.20E-09	mg/kg-day	1.50E+00	kg-day/mg		1.80E-09	4.19E-09	mg/kg-day	3.00E-04	mg/kg-day	1.40E-05
				Cobalt	1.04E+00	ug/L ug/L	5.41E-10	mg/kg-day	NA	kg-day/mg		NA	1.89E-09	mg/kg-day	3.00E-04	mg/kg-day	6.32E-06
				Manganese	1.48E+02	ug/L ug/L	1.92E-07	mg/kg-day	NA NA	kg-day/mg		NA NA	6.73E-07	mg/kg-day	9.60E-04	mg/kg-day	7.01E-04
				Pesticides	1.402102	ug/L	1.022 07	mg/kg day	1471	ng day/mg		100	0.702 07	mg/kg day	3.00L 04	mg/kg day	7.012 04
				4.4'-DDT	1.60E-03	ug/L	3.50E-09	mg/kg-day	3.40E-01	kg-day/mg		1.19E-09	1.23E-08	mg/kg-day	5.00E-04	mg/kg-day	2.45E-05
				PCBs	1.002 00		0.002 00	g.ng day	302 31					g.ng day	2.00E 04	g, ng day	
				Total PCBs	9.40E-03	ug/L	2.45E-08	mg/kg-day	4.00E-01	kg-day/mg		9.81E-09	8.58E-08	mg/kg-day	2.00E-05	mg/kg-day	4.29E-03
			Exp. Route Total									3.15E-07				,	1.66E-02
		Exposure Point	Total	-								3.21E-07					1.69E-02
	Exposure Medi	um Total										3.21E-07					1.69E-02
Surface Wate	r Total					•					•	3.21E-07				_	1.69E-02
Total Recepto	r Risk/Hazard				_		_					1.50E-06					6.71E-02

Notes:

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

NA - Not applicable.

PCB - Polychlorinated Biphenyl.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

(1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.

Table H-1-14. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Teen Wader Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Teen

								Ca	ncer Risk Ca	lculations				Noncancer	Hazard Calci	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposur	e Concentration	C	SF		Cancer	Intake/Exposur	e Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Ingestion														
	Surface	Investigation		Dioxin													
	Sediment	Area		2,3,7,8-TCDD-TEQ	2.13E-04	mg/kg	4.05E-12	mg/kg-day	1.30E+05	kg-day/mg		5.27E-07	2.36E-11	mg/kg-day	7.00E-10	mg/kg-day	3.38E-02
				Metals													
				Aluminum	8.92E+03	mg/kg	1.70E-04	mg/kg-day	NA	kg-day/mg		NA	9.91E-04	mg/kg-day	1.00E+00	mg/kg-day	9.91E-04
				Antimony	6.43E+00	mg/kg	1.22E-07	mg/kg-day	NA	kg-day/mg		NA	7.14E-07	mg/kg-day	4.00E-04	mg/kg-day	1.79E-03
				Arsenic	6.55E+00	mg/kg	7.49E-08	mg/kg-day	1.50E+00	kg-day/mg		1.12E-07	4.37E-07	mg/kg-day	3.00E-04	mg/kg-day	1.46E-03
				Cobalt	1.65E+01	mg/kg	3.13E-07	mg/kg-day	NA	kg-day/mg		NA	1.83E-06	mg/kg-day	3.00E-04	mg/kg-day	6.09E-03
				Cyanide	3.40E+00	mg/kg	6.48E-08	mg/kg-day	NA	kg-day/mg		NA	3.78E-07	mg/kg-day	6.30E-04	mg/kg-day	6.00E-04
				Manganese	2.34E+02	mg/kg	4.46E-06	mg/kg-day	NA	kg-day/mg		NA	2.60E-05	mg/kg-day	2.40E-02	mg/kg-day	1.09E-03
				Nickel	6.02E+01	mg/kg	1.15E-06	mg/kg-day	NA	kg-day/mg		NA	6.69E-06	mg/kg-day	2.00E-02	mg/kg-day	3.34E-04
				Thallium	2.38E-01	mg/kg	4.53E-09	mg/kg-day	NA	kg-day/mg		NA	2.65E-08	mg/kg-day	1.00E-05	mg/kg-day	2.65E-03
				Vanadium	1.49E+02	mg/kg	2.84E-06	mg/kg-day	NA	kg-day/mg		NA	1.66E-05	mg/kg-day	5.04E-03	mg/kg-day	3.29E-03
				PCBs													
				Total PCBs	5.93E-01	mg/kg	1.13E-08	mg/kg-day	2.00E+00	kg-day/mg		2.26E-08	6.59E-08	mg/kg-day	2.00E-05	mg/kg-day	3.30E-03
				SVOCs													
				Benzo(a)anthracene	1.25E+00	mg/kg	2.38E-08	mg/kg-day	1.00E-01	kg-day/mg	2.5	5.96E-09	1.39E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	7.62E-01	mg/kg	1.45E-08	mg/kg-day	1.00E+00	kg-day/mg	2.5	3.63E-08	8.47E-08	mg/kg-day	3.00E-04	mg/kg-day	2.82E-04
				Benzo(b)fluoranthene	1.12E+00	mg/kg	2.13E-08	mg/kg-day	1.00E-01	kg-day/mg	2.5	5.33E-09	1.24E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	4.07E-01	mg/kg	7.75E-09	mg/kg-day	1.00E-02	kg-day/mg	2.5	1.94E-10	4.52E-08	mg/kg-day	NA	mg/kg-day	NA
				Chrysene	1.01E+00	mg/kg	1.92E-08	mg/kg-day	1.00E-03	kg-day/mg	2.5	4.81E-11	1.12E-07	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.79E-01	mg/kg	3.41E-09	mg/kg-day	1.00E+00	kg-day/mg	2.5	8.53E-09	1.99E-08	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	6.55E-01	mg/kg	1.25E-08	mg/kg-day	1.00E-01	kg-day/mg	2.5	3.12E-09	7.28E-08	mg/kg-day	NA	mg/kg-day	NA
				TPH				1						1			
				Diesel Range Organics (C10-C20)	1.25E+02	mg/kg	2.38E-06	mg/kg-day	NA	kg-day/mg		NA	1.39E-05	mg/kg-day	1.00E-02	mg/kg-day	1.39E-03
				Ĺ								[
			Exp. Route Total									7.21E-07			-		5.70E-02

Table H-1-14. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Teen Wader Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Teen

								Car	ncer Risk Ca	lculations				Noncancer I	lazard Calcu	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposur	e Concentration	C	SF		Cancer	Intake/Exposur	e Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Dermal														i
	Surface	Investigation		Dioxin													i
	Sediment	Area		2,3,7,8-TCDD-TEQ	2.13E-04	mg/kg	1.65E-12	mg/kg-day	1.30E+05	kg-day/mg		2.14E-07	9.61E-12	mg/kg-day	7.00E-10	mg/kg-day	1.37E-02
				Metals													i
				Aluminum	8.92E+03	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E+00	mg/kg-day	NA
				Antimony	6.43E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	6.00E-05	mg/kg-day	NA
				Arsenic	6.55E+00	mg/kg	5.07E-08	mg/kg-day	1.50E+00	kg-day/mg		7.61E-08	2.96E-07	mg/kg-day	3.00E-04	mg/kg-day	9.86E-04
				Cobalt	1.65E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	3.00E-04	mg/kg-day	NA
				Cyanide	3.40E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	NA	mg/kg-day	NA
				Manganese	2.34E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	9.60E-04	mg/kg-day	NA
				Nickel	6.02E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	8.00E-04	mg/kg-day	NA
				Thallium	2.38E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-05	mg/kg-day	NA
				Vanadium	1.49E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.31E-04	mg/kg-day	NA
				PCBs													ı l
				Total PCBs	5.93E-01	mg/kg	2.14E-08	mg/kg-day	2.00E+00	kg-day/mg		4.29E-08	1.25E-07	mg/kg-day	2.00E-05	mg/kg-day	6.25E-03
				SVOCs													i I
				Benzo(a)anthracene	1.25E+00	mg/kg	4.20E-08	mg/kg-day	1.00E-01	kg-day/mg	2.5	1.05E-08	2.45E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	7.62E-01	mg/kg	2.56E-08	mg/kg-day	1.00E+00	kg-day/mg	2.5	6.39E-08	1.49E-07	mg/kg-day	3.00E-04	mg/kg-day	4.97E-04
				Benzo(b)fluoranthene	1.12E+00	mg/kg	3.76E-08	mg/kg-day	1.00E-01	kg-day/mg	2.5	9.39E-09	2.19E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	4.07E-01	mg/kg	1.37E-08	mg/kg-day	1.00E-02	kg-day/mg		3.41E-10	7.97E-08	mg/kg-day	NA	mg/kg-day	NA
				Chrysene	1.01E+00	mg/kg	3.39E-08	mg/kg-day	1.00E-03	kg-day/mg	2.5	8.47E-11	1.98E-07	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.79E-01	mg/kg	6.01E-09	mg/kg-day	1.00E+00	kg-day/mg	2.5	1.50E-08	3.50E-08	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	6.55E-01	mg/kg	2.20E-08	mg/kg-day	1.00E-01	kg-day/mg	2.5	5.50E-09	1.28E-07	mg/kg-day	NA	mg/kg-day	NA
				ТРН													ı
				Diesel Range Organics (C10-C20)	1.25E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-02	mg/kg-day	NA
			Exp. Route Total	┪							L	4.38E-07				l .	2.15E-02
	ı	Exposure Point	<u> </u>	л								1.16E-06					7.85E-02
į	Exposure Mediu						<u> </u>					1.16E-06					7.85E-02
Sediment Tot							I					1.16E-06	<u> </u>				7.85E-02
Cumont 10t	ui											1.10L-00					7.00L-02

Table H-1-14. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Teen Wader Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Teen

Exposure Medium Medium Point Route Point Route Potential Concern Value Units Value Uni	Value 0 1.77E-14 9 2.66E-08 3.01E-08 4.27E-06 2 4.62E-11	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	7.00E-10 3.00E-04 3.00E-04 2.40E-02 5.00E-04	mg/kg-day mg/kg-day mg/kg-day	Hazard Quotient 2.53E-05 8.87E-05 1.00E-04 1.78E-04
Surface Water Water Water Water Water Surface Water Water Water Water Water Water Water Water Water Dioxin	0 1.77E-14 9 2.66E-08 3.01E-08 4.27E-06 2 4.62E-11	mg/kg-day mg/kg-day mg/kg-day mg/kg-day	7.00E-10 3.00E-04 3.00E-04 2.40E-02	mg/kg-day mg/kg-day mg/kg-day	2.53E-05 8.87E-05 1.00E-04
Water Water Investigation Area Dioxin 2,3,7,8-TCDD-TEQ Metals Arsenic 6.12E-07 ug/L 3.03E-15 mg/kg-day 1.30E+05 kg-day/mg 3.94E-10 kg-day/mg Cobalt (Cobalt Manganese Pesticides 4,4'-DDT 1.48E+02 ug/L 7.32E-07 mg/kg-day NA kg-day/mg NA kg-day/mg NA kg-day/mg NA Yesticides 4,4'-DDT 1.60E-03 ug/L 7.93E-12 mg/kg-day 3.40E-01 kg-day/mg 2.69E-1	9 2.66E-08 3.01E-08 4.27E-06 2 4.62E-11	mg/kg-day mg/kg-day mg/kg-day	3.00E-04 3.00E-04 2.40E-02	mg/kg-day mg/kg-day mg/kg-day	8.87E-05 1.00E-04
Area 2,3,7,8-TCDD-TEQ 6.12E-07 ug/L 3.03E-15 mg/kg-day 1.30E+05 kg-day/mg 3.94E-1 Metals	9 2.66E-08 3.01E-08 4.27E-06 2 4.62E-11	mg/kg-day mg/kg-day mg/kg-day	3.00E-04 3.00E-04 2.40E-02	mg/kg-day mg/kg-day mg/kg-day	8.87E-05 1.00E-04
Metals	9 2.66E-08 3.01E-08 4.27E-06 2 4.62E-11	mg/kg-day mg/kg-day mg/kg-day	3.00E-04 3.00E-04 2.40E-02	mg/kg-day mg/kg-day mg/kg-day	8.87E-05 1.00E-04
Arsenic 9.21E-01 ug/L 4.56E-09 mg/kg-day 1.50E+00 kg-day/mg 6.84E-05 mg/kg-day NA kg-day/mg NA hanganese 1.48E+02 ug/L 7.32E-07 mg/kg-day NA kg-day/mg NA hanganese 4.4'-DDT 1.60E-03 ug/L 7.93E-12 mg/kg-day 3.40E-01 kg-day/mg 2.69E-1	3.01E-08 4.27E-06 2 4.62E-11	mg/kg-day mg/kg-day	3.00E-04 2.40E-02	mg/kg-day mg/kg-day	1.00E-04
Cobalt 1.04E+00 ug/L 5.15E-09 mg/kg-day NA kg-day/mg NA Manganese 1.48E+02 ug/L 7.32E-07 mg/kg-day NA kg-day/mg NA Pesticides 4,4'-DDT 1.60E-03 ug/L 7.93E-12 mg/kg-day 3.40E-01 kg-day/mg 2.69E-1	3.01E-08 4.27E-06 2 4.62E-11	mg/kg-day mg/kg-day	3.00E-04 2.40E-02	mg/kg-day mg/kg-day	1.00E-04
Manganese 1.48E+02 ug/L 7.32E-07 mg/kg-day NA kg-day/mg NA Pesticides 4,4'-DDT 1.60E-03 ug/L 7.93E-12 mg/kg-day 3.40E-01 kg-day/mg 2.69E-1	4.27E-06 2 4.62E-11	mg/kg-day	2.40E-02	mg/kg-day	
Pesticides 4,4'-DDT 1.60E-03 ug/L 7.93E-12 mg/kg-day 3.40E-01 kg-day/mg 2.69E-1	2 4.62E-11				1.78E-04
4,4'-DDT 1.60E-03 ug/L 7.93E-12 mg/kg-day 3.40E-01 kg-day/mg 2.69E-1		mg/kg-day	5 00E 04		
		mg/kg-day	E 00E 04		
			3.00⊑-04	mg/kg-day	9.25E-08
Total PCBs 9.40E-03 ug/L 4.66E-11 mg/kg-day 4.00E-01 kg-day/mg 1.86E-1	1 2.72E-10	mg/kg-day	2.00E-05	mg/kg-day	1.36E-05
Exp. Route Total 7.26E-0	19			1	4.06E-04
Dermal					
Dioxin					
2,3,7,8-TCDD-TEQ 6.12E-07 ug/L Outside EPD mg/kg-day 1.30E+05 kg-day/mg Outside E	PD Outside EPD	mg/kg-day	7.00E-10	mg/kg-day	Outside EPD
Metals .					
Arsenic 9.21E-01 ug/L 9.51E-10 mg/kg-day 1.50E+00 kg-day/mg 1.43E-0	9 5.55E-09	mg/kg-day	3.00E-04	mg/kg-day	1.85E-05
Cobalt 1.04E+00 ug/L 4.30E-10 mg/kg-day NA kg-day/mg NA	2.51E-09	mg/kg-day	3.00E-04	mg/kg-day	8.35E-06
Manganese 1.48E+02 ug/L 1.53E-07 mg/kg-day NA kg-day/mg NA	8.90E-07	mg/kg-day	9.60E-04	mg/kg-day	9.27E-04
Pesticides Pesticides					
4,4'-DDT 1.60E-03 ug/L Outside EPD mg/kg-day 3.40E-01 kg-day/mg Outside E	PD Outside EPD	mg/kg-day	5.00E-04	mg/kg-day	Outside EPD
PCBs PCBs					
Total PCBs 9.40E-03 ug/L Outside EPD mg/kg-day 4.00E-01 kg-day/mg Outside E	PD Outside EPD	mg/kg-day	2.00E-05	mg/kg-day	Outside EPD
Exo, Route Total	19				9.54E-04
Exposure Point Total 8.695-C					1.36E-03
Exposure Medium Total 8.69E-0	-				1.36E-03
Surface Water Total 8.69E-0					1.36E-03
Total Receptor Risk/Hazard 1.17E-C	6				7.98E-02

Notes:

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

NA - Not applicable.

PCB - Polychlorinated Biphenyl.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

(1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.

Table H-1-15. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Child Wader Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Child

								Ca	ncer Risk Ca	lculations				Noncancer	Hazard Cald	culations	
	Exposure	Exposure	Exposure	Chemical of	EPC		Intake/Exposur	e Concentration	C	SF		Cancer	Intake/Exposur	e Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Ingestion														
	Surface	Investigation		Dioxin													
	Sediment	Area		2,3,7,8-TCDD-TEQ	2.13E-04	mg/kg	1.03E-11	mg/kg-day	1.30E+05	kg-day/mg		1.34E-06	1.20E-10	mg/kg-day	7.00E-10	mg/kg-day	1.71E-01
				Metals													
				Aluminum	8.92E+03	mg/kg	4.31E-04	mg/kg-day	NA	kg-day/mg		NA	5.03E-03	mg/kg-day	1.00E+00	mg/kg-day	5.03E-03
				Antimony	6.43E+00	mg/kg	3.11E-07	mg/kg-day	NA	kg-day/mg		NA	3.62E-06	mg/kg-day	4.00E-04	mg/kg-day	9.06E-03
				Arsenic	6.55E+00	mg/kg	1.90E-07	mg/kg-day	1.50E+00	kg-day/mg		2.85E-07	2.22E-06	mg/kg-day	3.00E-04	mg/kg-day	7.39E-03
				Cobalt	1.65E+01	mg/kg	7.95E-07	mg/kg-day	NA	kg-day/mg		NA	9.28E-06	mg/kg-day	3.00E-04	mg/kg-day	3.09E-02
				Cyanide	3.40E+00	mg/kg	1.65E-07	mg/kg-day	NA	kg-day/mg		NA	1.92E-06	mg/kg-day	6.30E-04	mg/kg-day	3.05E-03
				Manganese	2.34E+02	mg/kg	1.13E-05	mg/kg-day	NA	kg-day/mg		NA	1.32E-04	mg/kg-day	2.40E-02	mg/kg-day	5.51E-03
				Nickel	6.02E+01	mg/kg	2.91E-06	mg/kg-day	NA	kg-day/mg		NA	3.39E-05	mg/kg-day	2.00E-02	mg/kg-day	1.70E-03
				Thallium	2.38E-01	mg/kg	1.15E-08	mg/kg-day	NA	kg-day/mg		NA	1.34E-07	mg/kg-day	1.00E-05	mg/kg-day	1.34E-02
				Vanadium	1.49E+02	mg/kg	7.20E-06	mg/kg-day	NA	kg-day/mg		NA	8.40E-05	mg/kg-day	5.04E-03	mg/kg-day	1.67E-02
				PCBs													
				Total PCBs	5.93E-01	mg/kg	2.87E-08	mg/kg-day	2.00E+00	kg-day/mg		5.73E-08	3.34E-07	mg/kg-day	2.00E-05	mg/kg-day	1.67E-02
				SVOCs													
				Benzo(a)anthracene	1.25E+00	mg/kg	6.05E-08	mg/kg-day	1.00E-01	kg-day/mg	4.2	2.54E-08	7.06E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	7.62E-01	mg/kg	3.68E-08	mg/kg-day	1.00E+00	kg-day/mg	4.2	1.55E-07	4.30E-07	mg/kg-day	3.00E-04	mg/kg-day	1.43E-03
				Benzo(b)fluoranthene	1.12E+00	mg/kg	5.41E-08	mg/kg-day	1.00E-01	kg-day/mg	4.2	2.27E-08	6.31E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	4.07E-01	mg/kg	1.97E-08	mg/kg-day	1.00E-02	kg-day/mg	4.2	8.26E-10	2.30E-07	mg/kg-day	NA	mg/kg-day	NA
				Chrysene	1.01E+00	mg/kg	4.88E-08	mg/kg-day	1.00E-03	kg-day/mg	4.2	2.05E-10	5.70E-07	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.79E-01	mg/kg	8.65E-09	mg/kg-day	1.00E+00	kg-day/mg	4.2	3.63E-08	1.01E-07	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	6.55E-01	mg/kg	3.17E-08	mg/kg-day	1.00E-01	kg-day/mg	4.2	1.33E-08	3.69E-07	mg/kg-day	NA	mg/kg-day	NA
				TPH													
				Diesel Range Organics (C10-C20)	1.25E+02	mg/kg	6.03E-06	mg/kg-day	NA	kg-day/mg		NA	7.03E-05	mg/kg-day	1.00E-02	mg/kg-day	7.03E-03
		.															
			Exp. Route Total									1.93E-06					2.89E-01

Table H-1-15. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Child Wader Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Child

								Cai	ncer Risk Ca	lculations				Noncancer	Hazard Calo	culations	
	Exposure	Exposure	Exposure	Chemical of	EPC		Intake/Exposur	e Concentration	C	SF		Cancer	Intake/Exposur	e Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Dermal														
	Surface	Investigation		Dioxin													ĺ
	Sediment	Area		2,3,7,8-TCDD-TEQ	2.13E-04	mg/kg	1.78E-12	mg/kg-day	1.30E+05	kg-day/mg		2.31E-07	2.07E-11	mg/kg-day	7.00E-10	mg/kg-day	2.96E-02
				Metals													ĺ
				Aluminum	8.92E+03	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E+00	mg/kg-day	NA
				Antimony	6.43E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	6.00E-05	mg/kg-day	NA
				Arsenic	6.55E+00	mg/kg	5.47E-08	mg/kg-day	1.50E+00	kg-day/mg		8.21E-08	6.38E-07	mg/kg-day	3.00E-04	mg/kg-day	2.13E-03
				Cobalt	1.65E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	3.00E-04	mg/kg-day	NA
				Cyanide	3.40E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	NA	mg/kg-day	NA
				Manganese	2.34E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	9.60E-04	mg/kg-day	NA
				Nickel	6.02E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	8.00E-04	mg/kg-day	NA
				Thallium	2.38E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-05	mg/kg-day	NA
				Vanadium	1.49E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.31E-04	mg/kg-day	NA
				PCBs													l
				Total PCBs	5.93E-01	mg/kg	2.31E-08	mg/kg-day	2.00E+00	kg-day/mg		4.62E-08	2.70E-07	mg/kg-day	2.00E-05	mg/kg-day	1.35E-02
				SVOCs													l
				Benzo(a)anthracene	1.25E+00	mg/kg	4.53E-08	mg/kg-day	1.00E-01	kg-day/mg	4.2	1.90E-08	5.28E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	7.62E-01	mg/kg	2.76E-08	mg/kg-day	1.00E+00	kg-day/mg	4.2	1.16E-07	3.22E-07	mg/kg-day	3.00E-04	mg/kg-day	1.07E-03
				Benzo(b)fluoranthene	1.12E+00	mg/kg	4.05E-08	mg/kg-day	1.00E-01	kg-day/mg	4.2	1.70E-08	4.73E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	4.07E-01	mg/kg	1.47E-08	mg/kg-day	1.00E-02	kg-day/mg	4.2	6.19E-10	1.72E-07	mg/kg-day	NA	mg/kg-day	NA
				Chrysene	1.01E+00	mg/kg	3.66E-08	mg/kg-day	1.00E-03	kg-day/mg	4.2	1.54E-10	4.27E-07	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.79E-01	mg/kg	6.48E-09	mg/kg-day	1.00E+00	kg-day/mg	4.2	2.72E-08	7.56E-08	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	6.55E-01	mg/kg	2.37E-08	mg/kg-day	1.00E-01	kg-day/mg	4.2	9.96E-09	2.77E-07	mg/kg-day	NA	mg/kg-day	NA
				TPH													l
				Diesel Range Organics (C10-C20)	1.25E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-02	mg/kg-day	NA
			Exp. Route Total	J <u></u>			<u></u>					5.49E-07	<u> </u>				4.63E-02
		Exposure Point	t Total				<u></u>					2.48E-06					3.36E-01
	Exposure Medi	um Total										2.48E-06	<u> </u>				3.36E-01
ediment Total												2.48E-06	<u> </u>				3.36E-01

Table H-1-15. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Child Wader Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Child

								Cai	ncer Risk Ca	Iculations				Noncancer	Hazard Calc	culations	
	Exposure	Exposure	Exposure	Chemical of	EPC		Intake/Exposure	e Concentration	C	SF		Cancer	Intake/Exposure	e Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Surface	Surface	Waterside	Ingestion														
Water	Water	Investigation		Dioxin													
		Area		2,3,7,8-TCDD-TEQ	6.12E-07	ug/L	3.85E-15	mg/kg-day	1.30E+05	kg-day/mg		5.00E-10	4.49E-14	mg/kg-day	7.00E-10	mg/kg-day	6.41E-05
				Metals													
				Arsenic	9.21E-01	ug/L	5.79E-09	mg/kg-day	1.50E+00	kg-day/mg		8.68E-09	6.75E-08	mg/kg-day	3.00E-04	mg/kg-day	2.25E-04
				Cobalt	1.04E+00	ug/L	6.54E-09	mg/kg-day	NA	kg-day/mg		NA	7.63E-08	mg/kg-day	3.00E-04	mg/kg-day	2.54E-04
				Manganese	1.48E+02	ug/L	9.28E-07	mg/kg-day	NA	kg-day/mg		NA	1.08E-05	mg/kg-day	2.40E-02	mg/kg-day	4.51E-04
				Pesticides													
				4,4'-DDT	1.60E-03	ug/L	1.01E-11	mg/kg-day	3.40E-01	kg-day/mg		3.42E-12	1.17E-10	mg/kg-day	5.00E-04	mg/kg-day	2.35E-07
				PCBs													
				Total PCBs	9.40E-03	ug/L	5.91E-11	mg/kg-day	4.00E-01	kg-day/mg		2.36E-11	6.89E-10	mg/kg-day	2.00E-05	mg/kg-day	3.45E-05
			Exp. Route Total							l	1	9.21E-09			Į		1.03E-03
		'	Dermal														
				Dioxin													
				2,3,7,8-TCDD-TEQ	6.12E-07	ug/L	Outside EPD	mg/kg-day	1.30E+05	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	7.00E-10	mg/kg-day	Outside EPD
				Metals													
				Arsenic	9.21E-01	ug/L	9.16E-10	mg/kg-day	1.50E+00	kg-day/mg		1.37E-09	1.07E-08	mg/kg-day	3.00E-04	mg/kg-day	3.56E-05
				Cobalt	1.04E+00	ug/L	4.14E-10	mg/kg-day	NA	kg-day/mg		NA	4.83E-09	mg/kg-day	3.00E-04	mg/kg-day	1.61E-05
				Manganese	1.48E+02	ug/L	1.47E-07	mg/kg-day	NA	kg-day/mg		NA	1.71E-06	mg/kg-day	9.60E-04	mg/kg-day	1.79E-03
				Pesticides													
				4,4'-DDT	1.60E-03	ug/L	Outside EPD	mg/kg-day	3.40E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	5.00E-04	mg/kg-day	Outside EPD
		1		PCBs													
				Total PCBs	9.40E-03	ug/L	Outside EPD	mg/kg-day	4.00E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	2.00E-05	mg/kg-day	Outside EPD
			Exp. Route Total	1	l	1			1	l	1	1.37E-09			I	1	1.84E-03
1		Exposure Point	t Total		_			•				1.06E-08		•			2.87E-03
	Exposure Medi	um Total			-			_				1.06E-08					2.87E-03
Surface Water	Total											1.06E-08					2.87E-03
Total Receptor	Risk/Hazard	-	•				•					2.49E-06		-			3.38E-01

Notes:

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

NA - Not applicable.

PCB - Polychlorinated Biphenyl.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

(1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.

February 2020

Table H-1-16. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards -Shoreline Worker Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Shoreline Worker Receptor Age: Adult

								Canc	er Risk Calcu	lations				Noncancer Ha	azard Calcula	ations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposu	re Concentration	С	SF		Cancer	Intake/Exposur	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Ingestion														
	Surface	Investigation		Dioxin													
	Sediment	Area		2,3,7,8-TCDD-TEQ	2.13E-04	mg/kg	1.30E-11	mg/kg-day	1.30E+05	kg-day/mg		1.69E-06	3.64E-11	mg/kg-day	7.00E-10	mg/kg-day	5.20E-02
				Metals													
				Aluminum	8.92E+03	mg/kg	5.45E-04	mg/kg-day	NA	kg-day/mg		NA	1.53E-03	mg/kg-day	1.00E+00	mg/kg-day	1.53E-03
				Antimony	6.43E+00	mg/kg	3.93E-07	mg/kg-day	NA	kg-day/mg		NA	1.10E-06	mg/kg-day	4.00E-04	mg/kg-day	2.75E-03
				Arsenic	6.55E+00	mg/kg	2.40E-07	mg/kg-day	1.50E+00	kg-day/mg		3.60E-07	6.73E-07	mg/kg-day	3.00E-04	mg/kg-day	2.24E-03
				Cobalt	1.65E+01	mg/kg	1.01E-06	mg/kg-day	NA	kg-day/mg		NA	2.82E-06	mg/kg-day	3.00E-04	mg/kg-day	9.39E-03
				Cyanide	3.40E+00	mg/kg	2.08E-07	mg/kg-day	NA	kg-day/mg		NA	5.83E-07	mg/kg-day	6.30E-04	mg/kg-day	
				Manganese	2.34E+02	mg/kg	1.43E-05	mg/kg-day	NA	kg-day/mg		NA	4.01E-05	mg/kg-day	2.40E-02	mg/kg-day	1.67E-03
				Nickel	6.02E+01	mg/kg	3.68E-06	mg/kg-day	NA	kg-day/mg		NA	1.03E-05	mg/kg-day	2.00E-02	mg/kg-day	
				Thallium	2.38E-01	mg/kg	1.46E-08	mg/kg-day	NA	kg-day/mg		NA	4.08E-08	mg/kg-day	1.00E-05	mg/kg-day	
				Vanadium	1.49E+02	mg/kg	9.11E-06	mg/kg-day	NA	kg-day/mg		NA	2.55E-05	mg/kg-day	5.04E-03	mg/kg-day	5.06E-03
				PCBs													
				Total PCBs	5.93E-01	mg/kg	3.63E-08	mg/kg-day	2.00E+00	kg-day/mg		7.25E-08	1.02E-07	mg/kg-day	2.00E-05	mg/kg-day	5.08E-03
				SVOCs													
				Benzo(a)anthracene	1.25E+00	mg/kg	7.65E-08	mg/kg-day	1.00E-01	kg-day/mg	1	7.65E-09	-	mg/kg-day	NA	mg/kg-day	
				Benzo(a)pyrene	7.62E-01	mg/kg	4.66E-08	mg/kg-day	1.00E+00	kg-day/mg	1	4.66E-08	1.30E-07	mg/kg-day	3.00E-04	mg/kg-day	4.35E-04
				Benzo(b)fluoranthene	1.12E+00	mg/kg	6.84E-08	mg/kg-day	1.00E-01	kg-day/mg	1	6.84E-09		mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	4.07E-01	mg/kg	2.49E-08	mg/kg-day	1.00E-02	kg-day/mg	1	2.49E-10		mg/kg-day	NA	mg/kg-day	NA
				Chrysene	1.01E+00	mg/kg	6.18E-08	mg/kg-day	1.00E-03	kg-day/mg	1	6.18E-11	1.73E-07	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.79E-01	mg/kg	1.09E-08	mg/kg-day	1.00E+00	kg-day/mg	1	1.09E-08	3.07E-08	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	6.55E-01	mg/kg	4.01E-08	mg/kg-day	1.00E-01	kg-day/mg	1	4.01E-09	1.12E-07	mg/kg-day	NA	mg/kg-day	NA
				TPH										1			
				Diesel Range Organics (C10-C20)	1.25E+02	mg/kg	7.63E-06	mg/kg-day	NA	kg-day/mg		NA	2.14E-05	mg/kg-day	1.00E-02	mg/kg-day	
			Exp. Route Total									2.20E-06					8.78E-02

Table H-1-16. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards -Shoreline Worker Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Shoreline Worker Receptor Age: Adult

								Cano	er Risk Calcu	ulations				Noncancer Ha	azard Calcula	ations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposu	re Concentration	С	SF		Cancer	Intake/Exposur	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Dermal														
	Surface	Investigation		Dioxin													
	Sediment	Area		2,3,7,8-TCDD-TEQ	2.13E-04	mg/kg	4.13E-12	mg/kg-day	1.30E+05	kg-day/mg		5.37E-07	1.16E-11	mg/kg-day	7.00E-10	mg/kg-day	1.65E-02
				Metals													
				Aluminum	8.92E+03	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E+00	mg/kg-day	NA
				Antimony	6.43E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	6.00E-05	mg/kg-day	NA
				Arsenic	6.55E+00	mg/kg	1.27E-07	mg/kg-day	1.50E+00	kg-day/mg		1.91E-07	3.56E-07	mg/kg-day	3.00E-04	mg/kg-day	1.19E-03
				Cobalt	1.65E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	3.00E-04	mg/kg-day	NA
				Cyanide	3.40E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	NA	mg/kg-day	NA
				Manganese	2.34E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	9.60E-04	mg/kg-day	NA
				Nickel	6.02E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	8.00E-04	mg/kg-day	NA
				Thallium	2.38E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-05	mg/kg-day	NA
				Vanadium	1.49E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.31E-04	mg/kg-day	NA
				PCBs													
				Total PCBs	5.93E-01	mg/kg	5.37E-08	mg/kg-day	2.00E+00	kg-day/mg		1.07E-07	1.50E-07	mg/kg-day	2.00E-05	mg/kg-day	7.52E-03
				SVOCs													
				Benzo(a)anthracene	1.25E+00	mg/kg	1.05E-07	mg/kg-day	1.00E-01	kg-day/mg	1	1.05E-08	2.95E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	7.62E-01	mg/kg	6.41E-08	mg/kg-day	1.00E+00	kg-day/mg	1	6.41E-08	1.79E-07	mg/kg-day	3.00E-04	mg/kg-day	5.98E-04
				Benzo(b)fluoranthene	1.12E+00	mg/kg	9.41E-08	mg/kg-day	1.00E-01	kg-day/mg	1	9.41E-09	2.64E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	4.07E-01	mg/kg	3.42E-08	mg/kg-day	1.00E-02	kg-day/mg	1	3.42E-10	9.59E-08	mg/kg-day	NA	mg/kg-day	NA
				Chrysene	1.01E+00	mg/kg	8.50E-08	mg/kg-day	1.00E-03	kg-day/mg	1	8.50E-11	2.38E-07	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.79E-01	mg/kg	1.51E-08	mg/kg-day	1.00E+00	kg-day/mg	1	1.51E-08	4.22E-08	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	6.55E-01	mg/kg	5.51E-08	mg/kg-day	1.00E-01	kg-day/mg	1	5.51E-09	1.54E-07	mg/kg-day	NA	mg/kg-day	NA
				TPH													
]]		Diesel Range Organics (C10-C20)	1.25E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-02	mg/kg-day	NA
			Exp. Route Total	<u> </u>			<u></u>					9.40E-07	<u></u>				2.58E-02
<u> </u>		Exposure Point	Total				<u> </u>					3.14E-06		·			1.14E-01
	Exposure Medio	um Total										3.14E-06		·			1.14E-01
Sediment Total												3.14E-06					1.14E-01

Table H-1-16. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards -Shoreline Worker Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Shoreline Worker Receptor Age: Adult

								Cano	er Risk Calcu	ulations				Noncancer Ha	azard Calcula	ations	
	Exposure	Exposure	Exposure	Chemical of	EPC	:	Intake/Exposu	re Concentration	С	SF		Cancer	Intake/Exposur	e Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Surface	Surface	Waterside	Ingestion														
Water	Water	Investigation		Dioxin													
		Area		2,3,7,8-TCDD-TEQ	6.12E-07	ug/L	4.87E-15	mg/kg-day	1.30E+05	kg-day/mg		6.33E-10	1.36E-14	mg/kg-day	7.00E-10	mg/kg-day	1.95E-05
				Metals													
				Arsenic	9.21E-01	ug/L	7.32E-09	mg/kg-day	1.50E+00	kg-day/mg		1.10E-08	2.05E-08	mg/kg-day	3.00E-04	mg/kg-day	6.83E-05
				Cobalt	1.04E+00	ug/L	8.27E-09	mg/kg-day	NA	kg-day/mg		NA	2.32E-08	mg/kg-day	3.00E-04	mg/kg-day	
				Manganese	1.48E+02	ug/L	1.17E-06	mg/kg-day	NA	kg-day/mg		NA	3.29E-06	mg/kg-day	2.40E-02	mg/kg-day	1.37E-04
				Pesticides													
				4,4'-DDT	1.60E-03	ug/L	1.27E-11	mg/kg-day	3.40E-01	kg-day/mg		4.32E-12	3.56E-11	mg/kg-day	5.00E-04	mg/kg-day	7.12E-08
				PCBs													
				Total PCBs	9.40E-03	ug/L	7.47E-11	mg/kg-day	4.00E-01	kg-day/mg		2.99E-11	2.09E-10	mg/kg-day	2.00E-05	mg/kg-day	
			Exp. Route Total									1.16E-08					3.12E-04
			Dermal														
				Dioxin													
				2,3,7,8-TCDD-TEQ	6.12E-07	ug/L	5.44E-12	mg/kg-day	1.30E+05	kg-day/mg		7.07E-07	1.52E-11	mg/kg-day	7.00E-10	mg/kg-day	2.18E-02
				Metals													
				Arsenic	9.21E-01	ug/L	3.97E-09	mg/kg-day	1.50E+00	kg-day/mg		5.96E-09		mg/kg-day	3.00E-04	mg/kg-day	
				Cobalt	1.04E+00	ug/L	1.79E-09	mg/kg-day	NA	kg-day/mg		NA	5.02E-09	mg/kg-day	3.00E-04	mg/kg-day	
				Manganese	1.48E+02	ug/L	6.37E-07	mg/kg-day	NA	kg-day/mg		NA	1.78E-06	mg/kg-day	9.60E-04	mg/kg-day	1.86E-03
				Pesticides													
				4,4'-DDT	1.60E-03	ug/L	8.21E-09	mg/kg-day	3.40E-01	kg-day/mg		2.79E-09	2.30E-08	mg/kg-day	5.00E-04	mg/kg-day	4.60E-05
				PCBs													
				Total PCBs	9.40E-03	ug/L	5.75E-08	mg/kg-day	4.00E-01	kg-day/mg		2.30E-08	1.61E-07	mg/kg-day	2.00E-05	3 3 ,	
	ı		Exp. Route Total	JI			<u></u>					7.39E-07					3.18E-02
ļ		Exposure Point	Total				<u></u>					7.51E-07					3.21E-02
	Exposure Medi	um Total										7.51E-07	<u> </u>				3.21E-02
Surface Water T												7.51E-07					3.21E-02
Total Receptor R	lisk/Hazard											3.89E-06	I <u></u>				1.46E-01

Notes:

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

NA - Not applicable.

PCB - Polychlorinated Biphenyl.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

(1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.

Risk Summary Tables (RME)

Scenario Timeframe: Future Receptor Population: Construction Worker

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern	Carcinoge	nic Risk - Ba	sed on Unit Con	centration (1)	Non-Card	inogenic Hazard Quotier	it - Based on Uni	it Concentration (1)	
				Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Soil	Soil											
			Dioxin									
			2,3,7,8-TCDD-TEQ	8.40E-04		8.08E-05	9.20E-04	Reproductive, Developmental	6.46E+02		6.21E+01	7.08E+02
			Inorganics									
			Arsenic	5.81E-09		9.32E-10	6.74E-09	Skin, Vascular	9.04E-04		1.45E-04	1.05E-03
			Cobalt	NA		NA	NA	Thyroid	1.51E-03		NA	1.51E-03
			Manganese	NA		NA	NA	Neurological	1.88E-05		NA	1.88E-05
			L					Decreased body and organ				
			Nickel	NA		NA	NA	weights	2.26E-05		NA	2.26E-05
			Thallium	NA		NA	NA	Hair	4.52E-02		NA	4.52E-02
			Vanadium	NA		NA	NA	Hair	8.97E-05		NA	8.97E-05
			PCBs									
			Total PCBs	1.29E-08		5.80E-09	1.87E-08	Ocular/eye, Nails, Immune	9.04E-03		4.06E-03	1.31E-02
			SVOCs									
			Benzo(a)anthracene	6.46E-10		2.69E-10	9.15E-10	NA	NA		NA	NA
			Benzo(a)pyrene	6.46E-09		2.69E-09	9.15E-09	Developmental	1.51E-03		6.28E-04	2.13E-03
			Benzo(b)fluoranthene	6.46E-10		2.69E-10	9.15E-10	NA	NA		NA	NA
			Benzo(k)fluoranthene	6.46E-11		2.69E-11	9.15E-11	NA	NA		NA	NA
			Chrysene	6.46E-12		2.69E-12	9.15E-12	NA	NA		NA	NA
			Dibenzo(a,h)anthracene	6.46E-09		2.69E-09	9.15E-09	NA	NA		NA	NA
			Indeno(1,2,3-cd)pyrene	6.46E-10		2.69E-10	9.15E-10	NA	NA		NA	NA
			Naphthalene	NA		NA	NA	Developmental	2.26E-05		9.42E-06	3.20E-05
			ТРН								·	
			Diesel Range Organics (C10-C20)	NA		NA	NA	Liver, Kidney, Blood	4.52E-05		NA	4.52E-05
		Exposure Point Total			<u> </u>		(2)	<u> </u>		<u> </u>		(2)
	Exposure Medium Total		IL				(2)					(2)

Scenario Timeframe: Future Receptor Population: Construction Worker Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern	Carcinoge	enic Risk - Bas	sed on Unit Con	centration (1)	Non-Carci	nogenic Hazard Quotie	nt - Based on Uni	t Concentration (1)	
				Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Soil	Outdoor Air											
			Dioxin									
			2.3.7.8-TCDD-TEQ		1.98E-02		1.98E-02	Liver, reproductive, developmental, endocrine, respiratory, blood		9.13E+05		9.13E+05
			Inorganics	-	1.50L-02		1.30L-02	respiratory, blood		9.13E+03		9.13L+03
			Arsenic		2.24E-06		2.24E-06	Neurological, developmental		2.44E+03		2.44E+03
			Cobalt		4.70E-06		4.70E-06	Respiratory		6.09E+03	-	6.09E+03
			Manganese	-	NA		NA	Neurological		7.31E+02	-	7.31E+02
		ĺ	Nickel		1.36E-07		1.36E-07	Respiratory		4.06E+02		4.06E+02
		ĺ	Thallium		NA		NA	NA NA		NA NA		NA
			Vanadium		NA		NA	Respiratory		3.65E+02		3.65E+02
			PCBs									
			Total PCBs		2.98E-07		2.98E-07	NA		NA		NA
			SVOCs									
			Benzo(a)anthracene	-	3.13E-08		3.13E-08	NA	-	NA	-	NA
			Benzo(a)pyrene	-	3.13E-07		3.13E-07	Developmental		1.83E+04		1.83E+04
			Benzo(b)fluoranthene	-	3.13E-08		3.13E-08	NA		NA		NA
			Benzo(k)fluoranthene		3.13E-09		3.13E-09	NA		NA		NA
			Chrysene	-	3.13E-10		3.13E-10	NA		NA		NA
			Dibenzo(a,h)anthracene	-	3.13E-07		3.13E-07	NA		NA		NA
			Indeno(1,2,3-cd)pyrene	-	3.13E-08		3.13E-08	NA		NA		NA
			Naphthalene		1.77E-08		1.77E-08	Neurological and Respiratory		1.22E+01		1.22E+01
			ТРН									
			Diesel Range Organics (C10-C20)	-	NA		NA	Respiratory		3.65E-01		3.65E-01
		Exposure Point Total					(2)					(2)
	Exposure Medium Total	Exposure Point Total					(2)					(2)
Soil	Exposure Medium Total						(2)					(2)
	Township Ale	1					(2)					(2)
Groundwater	Trench Air	ĺ	VOCs Bromodichloromethane	NIA	4.83E-09	NIA	4.83E-09	NA	NIA	NA	NA	NA
		ĺ	Bromodichloromethane Butyl alcohol, tert-	NA NA	4.83E-09 NA	NA NA	4.83E-09 NA	Reproductive	NA NA	NA 4.57E-02	NA NA	NA 4.57E-02
		ĺ	Chloroform	NA NA	3.00E-09	NA NA	3.00E-09	Liver	NA NA	4.57E-02 9.32E-02	NA NA	4.57E-02 9.32E-02
		ĺ	Methyl tert-Butyl Ether (MTBE)	NA NA	3.39E-11	NA NA	3.00E-09 3.39E-11	Liver, Kidney, Ocular	NA NA	9.32E-02 3.04E-03	NA NA	9.32E-02 3.04E-03
			Tetrachloroethylene	NA NA	3.39E-11	NA NA	3.39E-11	Neurological, Ocular	NA NA	2.28E-01	NA NA	2.28E-01
		ĺ	i cu aci iloroettiylerie	INA	J.38E-11	INA	3.39E-11	Thyroid	INA	Z.Z0E=U1	INA	Z.Z0E=U1
			Trichloroethene	NA	5.35E-10	NA	5.35E-10	Vascular	NA	4.57E+00	NA	4.57E+00
			Vinyl Chloride	NA	5.74E-10	NA	5.74E-10	Liver	NA NA	9.13E-02	NA NA	9.13E-02
		ĺ			1 1							
Receptor Total		•	·				(2)					(2)

Notes:

NA - Not Applicable; no dose-response value.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

(2) Totals not provided here; potential risks and hazards are based on the unit concentration. Totals are provided in the scaling table.

⁽¹⁾ Due to the multiple soil areas, a unit soil concentration of 1 mg/kg and a unit air concentration of 1 mg/m3 is used to calculate a potential excess lifetime cancer risk (ELCR) and noncancer hazard quotient (HQ) based on a unit soil concentration. Potential ELCRs and HQs calculated based on a unit concentration will be adjusted based on the area-specific EPCs in a scaling table.

Scenario Timeframe: Future

Receptor Population: Construction Worker

Medium	Exposure Medium	Chemical of Potential Concern		sk/HQ - Routes Total	Primary Target Organ(s)	Нур	othetical Future Pa	ark Land /Green S	pace		Warehouse an	d Laydown Area	
			Unit Cancer	Unit Hazard		El	PC .	Cancer	Hazard	EF	PC .	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Soil	Soil												
		Dioxin											
		2,3,7,8-TCDD-TEQ	9.20E-04	7.08E+02	Reproductive, Developmental	2.51E-06	mg/kg	2.31E-09	1.78E-03	2.85E-05	mg/kg	2.63E-08	2.02E-02
		Inorganics											
		Arsenic	6.74E-09	1.05E-03	Skin, Vascular	2.60E+00	mg/kg	1.75E-08	2.73E-03	2.70E+01	mg/kg	1.82E-07	2.84E-02
		Cobalt	NA	1.51E-03	Thyroid	1.30E+02	mg/kg	NA	1.96E-01	2.99E+01	mg/kg	NA	4.51E-02
		Manganese	NA	1.88E-05	Neurological	3.70E+02	mg/kg	NA	6.97E-03	7.05E+02	mg/kg	NA	1.33E-02
		Nickel	NA	2.26E-05	Decreased body and organ weights	1.20E+01	mg/kg	NA	2.71E-04	9.36E+02	mg/kg	NA	2.12E-02
		Thallium	NA	4.52E-02	Hair	5.30E-02	mg/kg	NA	2.40E-03	2.45E-01	mg/kg	NA	1.11E-02
		Vanadium	NA	8.97E-05	Hair	5.80E+01	mg/kg	NA	5.20E-03	4.51E+03	mg/kg	NA	4.05E-01
		PCBs											
		Total PCBs	1.87E-08	1.31E-02	Ocular/eye, Nails, Immune	2.66E-02	mg/kg	4.98E-10	3.48E-04	8.34E+00	mg/kg	1.56E-07	1.09E-01
		SVOCs											
		Benzo(a)anthracene	9.15E-10	NA	NA	1.56E-01	mg/kg	1.43E-10	NA	2.85E+00	mg/kg	2.60E-09	NA
		Benzo(a)pyrene	9.15E-09	2.13E-03	Developmental	1.50E-01	mg/kg	1.37E-09	3.20E-04	1.78E+00	mg/kg	1.63E-08	3.80E-03
		Benzo(b)fluoranthene	9.15E-10	NA	NA	1.85E-01	mg/kg	1.69E-10	NA	3.90E+00	mg/kg	3.56E-09	NA
		Benzo(k)fluoranthene	9.15E-11	NA	NA	7.24E-02	mg/kg	6.62E-12	NA	6.01E-01	mg/kg	5.50E-11	NA
		Chrysene	9.15E-12	NA	NA	1.63E-01	mg/kg	1.49E-12	NA	3.94E+00	mg/kg	3.61E-11	NA
		Dibenzo(a,h)anthracene	9.15E-09	NA	NA	3.33E-02	mg/kg	3.05E-10	NA	2.54E-01	mg/kg	2.32E-09	NA
		Indeno(1,2,3-cd)pyrene	9.15E-10	NA	NA	1.06E-01	mg/kg	9.70E-11	NA	1.21E+00	mg/kg	1.11E-09	NA
		Naphthalene	NA	3.20E-05	Developmental	1.15E-02	mg/kg	NA	3.68E-07	9.07E-02	mg/kg	NA	2.90E-06
		TPH											
		Diesel Range Organics (C10-C20)	NA	4.52E-05	Liver, Kidney, Blood	1.30E+01	mg/kg	NA	5.88E-04	8.23E+02	mg/kg	NA	3.72E-02
		Exposure Point Total	<u> </u>					2.24E-08	2.16E-01			3.91E-07	6.94E-01
	Exposure Medi	ium Total						2.24E-08	2.16E-01			3.91E-07	6.94E-01

Scenario Timeframe: Future

Receptor Population: Construction Worker

Medium	Exposure Medium	Chemical of Potential Concern		sk/HQ - Routes Total	Primary Target Organ(s)	Нур	othetical Future P	ark Land /Green S	pace		Warehouse an	d Laydown Area	
			Unit Cancer	Unit Hazard		EF	C	Cancer	Hazard	EF	C	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Soil	Outdoor Air												
		Dioxin											
		2,3,7,8-TCDD-TEQ	1.98E-02	9.13E+05	Liver, reproductive, developmental, endocrine, respiratory, blood	3.49E-12	mg/m3	6.92E-14	3.19E-06	3.97E-11	mg/m3	7.87E-13	3.62E-05
		Inorganics											
		Arsenic	2.24E-06	2.44E+03	Neurological, developmental	3.62E-06	mg/m3	8.11E-12	8.80E-03	3.76E-05	mg/m3	8.44E-11	9.16E-02
		Cobalt	4.70E-06	6.09E+03	Respiratory	1.81E-04	mg/m3	8.49E-10	1.10E+00	4.16E-05	mg/m3	1.95E-10	2.53E-01
		Manganese	NA	7.31E+02	Neurological	5.15E-04	mg/m3	NA	3.76E-01	9.80E-04	mg/m3	NA	7.16E-01
		Nickel	1.36E-07	4.06E+02	Respiratory	1.67E-05	mg/m3	2.26E-12	6.77E-03	1.30E-03	mg/m3	1.77E-10	5.28E-01
		Thallium	NA	NA	NA	7.37E-08	mg/m3	NA	NA	3.41E-07	mg/m3	NA	NA
		Vanadium	NA	3.65E+02	Respiratory	8.07E-05	mg/m3	NA	2.95E-02	6.27E-03	mg/m3	NA	2.29E+00
		PCBs											
		Total PCBs	2.98E-07	NA	NA	3.70E-08	mg/m3	1.10E-14	NA	1.16E-05	mg/m3	3.46E-12	NA
		SVOCs											
		Benzo(a)anthracene	3.13E-08	NA	NA	2.17E-07	mg/m3	6.79E-15	NA	3.96E-06	mg/m3	1.24E-13	NA
		Benzo(a)pyrene	3.13E-07	1.83E+04	Developmental	2.09E-07	mg/m3	6.53E-14	3.81E-03	2.47E-06	mg/m3	7.75E-13	4.52E-02
		Benzo(b)fluoranthene	3.13E-08	NA	NA	2.57E-07	mg/m3	8.06E-15	NA	5.42E-06	mg/m3	1.70E-13	NA
		Benzo(k)fluoranthene	3.13E-09	NA	NA	1.01E-07	mg/m3	3.15E-16	NA	8.36E-07	mg/m3	2.62E-15	NA
		Chrysene	3.13E-10	NA	NA	2.27E-07	mg/m3	7.10E-17	NA	5.48E-06	mg/m3	1.72E-15	NA
		Dibenzo(a,h)anthracene	3.13E-07	NA	NA	4.63E-08	mg/m3	1.45E-14	NA	3.53E-07	mg/m3	1.11E-13	NA
		Indeno(1,2,3-cd)pyrene	3.13E-08	NA	NA	1.47E-07	mg/m3	4.62E-15	NA	1.69E-06	mg/m3	5.29E-14	NA
		Naphthalene	1.77E-08	1.22E+01	Neurological and Respiratory	1.60E-08	mg/m3	2.84E-16	1.95E-07	1.26E-07	mg/m3	2.24E-15	1.54E-06
		ТРН											
		Diesel Range Organics (C10-C20)	NA	3.65E-01	Respiratory	1.81E-05	mg/m3	NA	6.60E-06	1.14E-03	mg/m3	NA	4.18E-04
		Exposure Point Total						8.60E-10	1.53E+00			4.62E-10	3.93E+00
	Exposure Med	um Total						8.60E-10	1.53E+00			4.62E-10	3.93E+00
Soil	· · · · · · · · · · · · · · · · · · ·		i i			-	-	2.33E-08	1.74E+00			3.91E-07	4.62E+00

Scenario Timeframe: Future

Receptor Population: Construction Worker

Receptor Age: Adult

Medium	Exposure Medium	Chemical of Potential Concern		sk/HQ - Routes Total	Primary Target Organ(s)	Нур	othetical Future P	ark Land /Green S	pace	Warehouse and Laydown Area			
			Unit Cancer	Unit Hazard		El	PC .	Cancer	Hazard	EF	PC	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Groundwater	Trench Air	VOCs											
		Bromodichloromethane	4.83E-09	NA	NA	ND	mg/m3	ND	ND	2.29E-03	mg/m3	1.11E-11	NA
		Butyl alcohol, tert-	NA	4.57E-02	Reproductive	ND	mg/m3	ND	ND	ND	mg/m3	ND	ND
		Chloroform	3.00E-09	9.32E-02	Liver	9.03E-03	mg/m3	2.71E-11	8.42E-04	8.00E-03	mg/m3	2.40E-11	7.46E-04
		Methyl tert-Butyl Ether (MTBE)	3.39E-11	3.04E-03	Liver, Kidney, Ocular	1.03E-02	mg/m3	3.49E-13	3.13E-05	9.87E-03	mg/m3	3.35E-13	3.00E-05
		Tetrachloroethylene	3.39E-11	2.28E-01	Neurological, Ocular	6.47E-02	mg/m3	2.20E-12	1.48E-02	9.70E-02	mg/m3	3.29E-12	2.21E-02
		Trichloroethene	5.35E-10	4.57E+00	Thyroid Vascular	9.72E-03	mg/m3	5.20E-12	4.44E-02	1.67E-02	mg/m3	8.91E-12	7.61E-02
		Vinyl Chloride	5.74E-10	9.13E-02	Liver	ND	mg/m3	ND	ND	ND	mg/m3	ND	ND
		Exposure Point Total						3.48E-11	6.00E-02			4.76E-11	9.90E-02
	Exposure Med							3.48E-11	6.00E-02			4.76E-11	9.90E-02
Groundwater								3.48E-11	6.00E-02			4.76E-11	9.90E-02
Receptor Total								2.33E-08	1.80E+00			3.91E-07	4.72E+00

Notes:

EPC - Exposure Point Concentration.

NA - Not Applicable; no dose-response value.

ND - Not Detected.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

VOC - Volatile Organic Compound.

(1) The potential carcinogenic risk and noncarcinogenic hazard quotients are calculated per exposure area by multiplying the soil or air EPCs associated with each EA by the unit risks and hazard quotients calculated in the Tables G-1-1. RME and G-2a-1. RME based on a unit soil or air concentration.

Target Endpoint Evaluation		Target Endpoint Evaluation	
Organ	Endpoint HI	Organ	Endpoint HI
Blood	5.91E-04	Blood	3.72E-02
Decreased body and organ weights	2.71E-04	Decreased body and organ weights	2.12E-02
Endocrine	3.19E-06	Endocrine	3.62E-05
Developmental	1.47E-02	Developmental	1.61E-01
Hair	7.60E-03	Hair	4.16E-01
Immune	3.48E-04	Immune	1.09E-01
Kidney	6.19E-04	Kidney	3.72E-02
Liver	1.46E-03	Liver	3.80E-02
Nails	3.48E-04	Nails	1.09E-01
Neurological	4.06E-01	Neurological	8.43E-01
Ocular	1.52E-02	Ocular	1.31E-01
Reproductive	1.78E-03	Reproductive	2.02E-02
Respiratory	1.14E+00	Respiratory	3.07E+00
Skin	2.73E-03	Skin	2.84E-02
Thyroid	2.40E-01	Thyroid	1.21E-01
Vascular	4.71E-02	Vascular	1.04E-01

Scenario Timeframe: Future

Receptor Population: Construction Worker

Medium	Exposure Medium	Chemical of Potential Concern		sk/HQ - Routes Total	Primary Target Organ(s)	S	alvage Yard and \	Waste Storage Are	ea		Stores and Fleet	Maintenance Area	ı
			Unit Cancer	Unit Hazard		EF	C	Cancer	Hazard	EF	C	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Soil	Soil												
		Dioxin											
		2,3,7,8-TCDD-TEQ	9.20E-04	7.08E+02	Reproductive, Developmental	8.23E-05	mg/kg	7.57E-08	5.83E-02	1.25E-05	mg/kg	1.15E-08	8.82E-03
		Inorganics											
		Arsenic	6.74E-09	1.05E-03	Skin, Vascular	1.40E+01	mg/kg	9.44E-08	1.47E-02	5.56E+00	mg/kg	3.75E-08	5.83E-03
		Cobalt	NA	1.51E-03	Thyroid	1.70E+01	mg/kg	NA	2.56E-02	5.09E+00	mg/kg	NA	7.68E-03
		Manganese	NA	1.88E-05	Neurological	5.00E+02	mg/kg	NA	9.42E-03	1.55E+02	mg/kg	NA	2.93E-03
		Nickel	NA	2.26E-05	Decreased body and organ weights	2.70E+01	mg/kg	NA	6.10E-04	2.19E+01	mg/kg	NA	4.95E-04
		Thallium	NA	4.52E-02	Hair	2.00E-01	mg/kg	NA	9.04E-03	1.17E-01	mg/kg	NA	5.29E-03
		Vanadium	NA	8.97E-05	Hair	3.60E+01	mg/kg	NA	3.23E-03	2.37E+01	mg/kg	NA	2.13E-03
		PCBs					-						
		Total PCBs	1.87E-08	1.31E-02	Ocular/eye, Nails, Immune	1.32E+00	mg/kg	2.47E-08	1.73E-02	7.14E-01	mg/kg	1.34E-08	9.35E-03
		SVOCs											
		Benzo(a)anthracene	9.15E-10	NA	NA	2.35E+01	mg/kg	2.15E-08	NA	4.63E+00	mg/kg	4.23E-09	NA
		Benzo(a)pyrene	9.15E-09	2.13E-03	Developmental	2.14E+01	mg/kg	1.96E-07	4.57E-02	2.31E+00	mg/kg	2.11E-08	4.93E-03
		Benzo(b)fluoranthene	9.15E-10	NA	NA	2.21E+01	mg/kg	2.02E-08	NA	4.66E+00	mg/kg	4.27E-09	NA
		Benzo(k)fluoranthene	9.15E-11	NA	NA	5.87E+00	mg/kg	5.37E-10	NA	4.46E-01	mg/kg	4.08E-11	NA
		Chrysene	9.15E-12	NA	NA	2.51E+01	mg/kg	2.30E-10	NA	4.25E+00	mg/kg	3.89E-11	NA
		Dibenzo(a,h)anthracene	9.15E-09	NA	NA	9.18E-01	mg/kg	8.40E-09	NA	1.69E-01	mg/kg	1.55E-09	NA
		Indeno(1,2,3-cd)pyrene	9.15E-10	NA	NA	1.29E+01	mg/kg	1.18E-08	NA	6.11E-01	mg/kg	5.59E-10	NA
		Naphthalene	NA	3.20E-05	Developmental	7.24E-01	mg/kg	NA	2.32E-05	8.86E-02	mg/kg	NA	2.84E-06
	1	TPH											
		Diesel Range Organics (C10-C20)	NA	4.52E-05	Liver, Kidney, Blood	2.09E+03	mg/kg	NA	9.46E-02	7.82E+01	mg/kg	NA	3.53E-03
		Exposure Point Total	<u> </u>					4.53E-07	2.79E-01			9.42E-08	5.10E-02
	Exposure Medi	um Total					-	4.53E-07	2.79E-01		_	9.42E-08	5.10E-02

Scenario Timeframe: Future

Receptor Population: Construction Worker

Medium	Exposure Medium	Chemical of Potential Concern	Unit Ri Exposure F	sk/HQ - Routes Total	Primary Target Organ(s)	\$	Salvage Yard and	Waste Storage Are	ea		Stores and Fleet	Maintenance Area	
			Unit Cancer	Unit Hazard		El	PC	Cancer	Hazard	EI	PC	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Soil	Outdoor Air												
		Dioxin											
		2,3,7,8-TCDD-TEQ	1.98E-02	9.13E+05	Liver, reproductive, developmental, endocrine, respiratory, blood	1.14E-10	mg/m3	2.27E-12	1.05E-04	1.73E-11	mg/m3	3.44E-13	1.58E-05
		Inorganics											
		Arsenic	2.24E-06	2.44E+03	Neurological, developmental	1.95E-05	mg/m3	4.37E-11	4.74E-02	7.73E-06	mg/m3	1.74E-11	1.88E-02
		Cobalt	4.70E-06	6.09E+03	Respiratory	2.36E-05	mg/m3	1.11E-10	1.44E-01	7.08E-06	mg/m3	3.33E-11	4.31E-02
		Manganese	NA	7.31E+02	Neurological	6.95E-04	mg/m3	NA	5.08E-01	2.16E-04	mg/m3	NA	1.58E-01
		Nickel	1.36E-07	4.06E+02	Respiratory	3.75E-05	mg/m3	5.09E-12	1.52E-02	3.04E-05	mg/m3	4.13E-12	1.24E-02
		Thallium	NA	NA	NA	2.78E-07	mg/m3	NA	NA	1.63E-07	mg/m3	NA	NA
		Vanadium	NA	3.65E+02	Respiratory	5.01E-05	mg/m3	NA	1.83E-02	3.30E-05	mg/m3	NA	1.20E-02
		PCBs											
		Total PCBs	2.98E-07	NA	NA	1.84E-06	mg/m3	5.48E-13	NA	9.93E-07	mg/m3	2.96E-13	NA
		SVOCs											
		Benzo(a)anthracene	3.13E-08	NA	NA	3.27E-05	mg/m3	1.02E-12	NA	6.43E-06	mg/m3	2.01E-13	NA
		Benzo(a)pyrene	3.13E-07	1.83E+04	Developmental	2.98E-05	mg/m3	9.32E-12	5.44E-01	3.21E-06	mg/m3	1.01E-12	5.87E-02
		Benzo(b)fluoranthene	3.13E-08	NA	NA	3.07E-05	mg/m3	9.62E-13	NA	6.49E-06	mg/m3	2.03E-13	NA
		Benzo(k)fluoranthene	3.13E-09	NA	NA	8.16E-06	mg/m3	2.55E-14	NA	6.20E-07	mg/m3	1.94E-15	NA
		Chrysene	3.13E-10	NA	NA	3.49E-05	mg/m3	1.09E-14	NA	5.91E-06	mg/m3	1.85E-15	NA
		Dibenzo(a,h)anthracene	3.13E-07	NA	NA	1.28E-06	mg/m3	4.00E-13	NA	2.35E-07	mg/m3	7.36E-14	NA
		Indeno(1,2,3-cd)pyrene	3.13E-08	NA	NA	1.80E-05	mg/m3	5.62E-13	NA	8.50E-07	mg/m3	2.66E-14	NA
		Naphthalene	1.77E-08	1.22E+01	Neurological and Respiratory	1.01E-06	mg/m3	1.79E-14	1.23E-05	1.23E-07	mg/m3	2.19E-15	1.50E-06
		ТРН											
		Diesel Range Organics (C10-C20)	NA	3.65E-01	Respiratory	2.91E-03	mg/m3	NA	1.06E-03	1.09E-04	mg/m3	NA	3.97E-05
		Exposure Point Total		I				1.75E-10	1.28E+00			5.69E-11	3.03E-01
	Exposure Med	ium Total						1.75E-10	1.28E+00			5.69E-11	3.03E-01
Soil								4.54E-07	1.56E+00			9.42E-08	3.54E-01

Table H-2b-1. RME v of Recentor Risks and Hazards for COPC

Summary of Receptor Risks and Hazards for COPCs - Future Construction Worker
Reasonable Maximum Exposure
Benning Road Facility RI/FS Project
3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future

Receptor Population: Construction Worker

Receptor Age: Adult

Medium	Exposure Medium	Chemical of Potential Concern		sk/HQ - Routes Total	Primary Target Organ(s)	Ş	Salvage Yard and	Waste Storage Are	ea	Stores and Fleet Maintenance Area			
			Unit Cancer	Unit Hazard		E	PC PC	Cancer	Hazard	EF	PC .	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Groundwater	Trench Air	VOCs											
		Bromodichloromethane	4.83E-09	NA	NA	ND	mg/m3	ND	ND	1.65E-02	mg/m3	7.98E-11	NA
		Butyl alcohol, tert-	NA	4.57E-02	Reproductive	ND	mg/m3	ND	ND	1.33E-01	mg/m3	NA	6.07E-03
		Chloroform	3.00E-09	9.32E-02	Liver	ND	mg/m3	ND	ND	1.13E-01	mg/m3	3.39E-10	1.05E-02
		Methyl tert-Butyl Ether (MTBE)	3.39E-11	3.04E-03	Liver, Kidney, Ocular	3.95E-02	mg/m3	1.34E-12	1.20E-04	2.77E-01	mg/m3	9.41E-12	8.44E-04
		Tetrachloroethylene	3.39E-11	2.28E-01	Neurological, Ocular	1.75E-03	mg/m3	5.92E-14	3.99E-04	8.08E-02	mg/m3	2.74E-12	1.84E-02
		Trichloroethene	5.35E-10	4.57E+00	Thyroid Vascular	ND	mg/m3	ND	ND	4.20E-03	mg/m3	2.25E-12	1.92E-02
		Vinyl Chloride	5.74E-10	9.13E-02	Liver	ND	mg/m3	ND	ND	ND	mg/m3	ND	ND
		Exposure Point Total						1.40E-12	5.19E-04			4.33E-10	5.51E-02
	Exposure Med	ium Total						1.40E-12	5.19E-04			4.33E-10	5.51E-02
Groundwater	.,							1.40E-12	5.19E-04			4.33E-10	5.51E-02
Receptor Total	•						•	4.54E-07	1.56E+00		•	9.47E-08	4.09E-01

Notes:

EPC - Exposure Point Concentration.

NA - Not Applicable; no dose-response value.

ND - Not Detected.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

VOC - Volatile Organic Compound.

(1) The potential carcinogenic risk and noncarcinogenic hazard quotients are calculated per exposure area by multiplying the soil or air EPCs associated with each EA by the unit risks and hazard quotients calculated in the Tables G-1-1. RME and G-2a-1. RME based on a unit soil or air concentration.

Target Endpoint Evaluation		Target Endpoint Evaluation	
Organ	Endpoint HI	Organ	Endpoint HI
Blood	9.47E-02	Blood	3.55E-03
Decreased body and organ weights	6.10E-04	Decreased body and organ weights	4.95E-04
Endocrine	1.05E-04	Endocrine	1.58E-05
Developmental	6.95E-01	Developmental	9.13E-02
Hair	1.23E-02	Hair	7.42E-03
Immune	1.73E-02	Immune	9.35E-03
Kidney	9.47E-02	Kidney	4.38E-03
Liver	9.48E-02	Liver	1.49E-02
Nails	1.73E-02	Nails	9.35E-03
Neurological	5.65E-01	Neurological	1.98E-01
Ocular	1.78E-02	Ocular	2.86E-02
Reproductive	5.84E-02	Reproductive	1.49E-02
Respiratory	1.79E-01	Respiratory	6.76E-02
Skin	1.47E-02	Skin	5.83E-03
Thyroid	2.56E-02	Thyroid	2.69E-02
Vascular	1.47E-02	Vascular	2.50E-02

Scenario Timeframe: Future

Receptor Population: Construction Worker

Medium	Exposure Medium	Chemical of Potential Concern	Unit Ris Exposure R		Primary Target Organ(s)		Offices and	d Parking Lot			Substa	ation #7	
			Unit Cancer	Unit Hazard		El	PC	Cancer	Hazard	EF	PC	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Soil	Soil												
		Dioxin											
		2,3,7,8-TCDD-TEQ	9.20E-04	7.08E+02	Reproductive, Developmental	1.37E-05	mg/kg	1.26E-08	9.70E-03	4.37E-06	mg/kg	4.02E-09	3.09E-03
		Inorganics											
		Arsenic	6.74E-09	1.05E-03	Skin, Vascular	4.20E+00	mg/kg	2.83E-08	4.41E-03	3.30E+01	mg/kg	2.23E-07	3.46E-02
		Cobalt	NA	1.51E-03	Thyroid	1.30E+01	mg/kg	NA	1.96E-02	4.70E+00	mg/kg	NA	7.08E-03
		Manganese	NA	1.88E-05	Neurological	4.00E+02	mg/kg	NA	7.53E-03	3.70E+02	mg/kg	NA	6.97E-03
		Nickel	NA	2.26E-05	Decreased body and organ weights	3.00E+01	mg/kg	NA	6.78E-04	1.40E+01	mg/kg	NA	3.16E-04
		Thallium	NA	4.52E-02	Hair	1.30E-01	mg/kg	NA	5.88E-03	2.50E-01	mg/kg	NA	1.13E-02
		Vanadium	NA	8.97E-05	Hair	3.60E+01	mg/kg	NA	3.23E-03	3.20E+01	mg/kg	NA	2.87E-03
		PCBs											
		Total PCBs	1.87E-08	1.31E-02	Ocular/eye, Nails, Immune	1.73E-01	mg/kg	3.24E-09	2.27E-03	1.56E+00	mg/kg	2.92E-08	2.04E-02
		SVOCs											
		Benzo(a)anthracene	9.15E-10	NA	NA	3.07E+01	mg/kg	2.81E-08	NA	1.80E+00	mg/kg	1.65E-09	NA
		Benzo(a)pyrene	9.15E-09	2.13E-03	Developmental	2.72E+01	mg/kg	2.49E-07	5.80E-02	1.34E+00	mg/kg	1.22E-08	2.85E-03
		Benzo(b)fluoranthene	9.15E-10	NA	NA	2.15E+01	mg/kg	1.97E-08	NA	3.20E+00	mg/kg	2.93E-09	NA
		Benzo(k)fluoranthene	9.15E-11	NA	NA	2.15E+01	mg/kg	1.97E-09	NA	1.62E+00	mg/kg	1.48E-10	NA
		Chrysene	9.15E-12	NA	NA	2.68E+01	mg/kg	2.45E-10	NA	3.20E+00	mg/kg	2.93E-11	NA
		Dibenzo(a,h)anthracene	9.15E-09	NA	NA	7.68E+00	mg/kg	7.02E-08	NA	4.00E-01	mg/kg	3.66E-09	NA
		Indeno(1,2,3-cd)pyrene	9.15E-10	NA	NA	1.68E+01	mg/kg	1.54E-08	NA	1.30E+00	mg/kg	1.19E-09	NA
		Naphthalene	NA	3.20E-05	Developmental	1.12E+00	mg/kg	NA	3.60E-05	6.70E-02	mg/kg	NA	2.15E-06
		TPH											
		Diesel Range Organics (C10-C20)	NA	4.52E-05	Liver, Kidney, Blood	2.30E+01	mg/kg	NA	1.04E-03	2.00E+01	mg/kg	NA	9.04E-04
		Exposure Point Total	<u> </u>					4.28E-07	1.12E-01			2.78E-07	9.05E-02
	Exposure Medi			1				4.28E-07	1.12E-01			2.78E-07	9.05E-02

Scenario Timeframe: Future

Receptor Population: Construction Worker

Medium	Exposure Medium	Chemical of Potential Concern		sk/HQ - Routes Total	Primary Target Organ(s)		Offices and	l Parking Lot			Subst	ation #7	
			Unit Cancer	Unit Hazard		EI	PC PC	Cancer	Hazard	EF	PC	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Soil	Outdoor Air												
		Dioxin											
		2,3,7,8-TCDD-TEQ	1.98E-02	9.13E+05	Liver, reproductive, developmental, endocrine, respiratory, blood	1.91E-11	mg/m3	3.78E-13	1.74E-05	6.08E-12	mg/m3	1.21E-13	5.55E-06
		Inorganics											
		Arsenic	2.24E-06	2.44E+03	Neurological, developmental	5.84E-06	mg/m3	1.31E-11	1.42E-02	4.59E-05	mg/m3	1.03E-10	1.12E-01
		Cobalt	4.70E-06	6.09E+03	Respiratory	1.81E-05	mg/m3	8.49E-11	1.10E-01	6.54E-06	mg/m3	3.07E-11	3.98E-02
		Manganese	NA	7.31E+02	Neurological	5.56E-04	mg/m3	NA	4.06E-01	5.15E-04	mg/m3	NA	3.76E-01
		Nickel	1.36E-07	4.06E+02	Respiratory	4.17E-05	mg/m3	5.66E-12	1.69E-02	1.95E-05	mg/m3	2.64E-12	7.90E-03
		Thallium	NA	NA	NA	1.81E-07	mg/m3	NA	NA	3.48E-07	mg/m3	NA	NA
		Vanadium	NA	3.65E+02	Respiratory	5.01E-05	mg/m3	NA	1.83E-02	4.45E-05	mg/m3	NA	1.63E-02
		PCBs											
		Total PCBs	2.98E-07	NA	NA	2.41E-07	mg/m3	7.17E-14	NA	2.17E-06	mg/m3	6.47E-13	NA
		SVOCs											
		Benzo(a)anthracene	3.13E-08	NA	NA	4.27E-05	mg/m3	1.34E-12	NA	2.50E-06	mg/m3	7.84E-14	NA
		Benzo(a)pyrene	3.13E-07	1.83E+04	Developmental	3.78E-05	mg/m3	1.18E-11	6.90E-01	1.86E-06	mg/m3	5.82E-13	3.40E-02
		Benzo(b)fluoranthene	3.13E-08	NA	NA	2.99E-05	mg/m3	9.37E-13	NA	4.45E-06	mg/m3	1.39E-13	NA
		Benzo(k)fluoranthene	3.13E-09	NA	NA	2.99E-05	mg/m3	9.37E-14	NA	2.25E-06	mg/m3	7.06E-15	NA
		Chrysene	3.13E-10	NA	NA	3.73E-05	mg/m3	1.17E-14	NA	4.45E-06	mg/m3	1.39E-15	NA
		Dibenzo(a,h)anthracene	3.13E-07	NA	NA	1.07E-05	mg/m3	3.34E-12	NA	5.56E-07	mg/m3	1.74E-13	NA
		Indeno(1,2,3-cd)pyrene	3.13E-08	NA	NA	2.34E-05	mg/m3	7.33E-13	NA	1.81E-06	mg/m3	5.66E-14	NA
		Naphthalene	1.77E-08	1.22E+01	Neurological and Respiratory	1.56E-06	mg/m3	2.77E-14	1.90E-05	9.32E-08	mg/m3	1.65E-15	1.13E-06
		ТРН											
		Diesel Range Organics (C10-C20)	NA	3.65E-01	Respiratory	3.20E-05	mg/m3	NA	1.17E-05	2.78E-05	mg/m3	NA	1.02E-05
		Exposure Point Total		I			1	1.22E-10	1.26E+00		1	1.38E-10	5.86E-01
	Exposure Medi	ium Total						1.22E-10	1.26E+00			1.38E-10	5.86E-01
Soil								4.29E-07	1.37E+00			2.78E-07	6.76E-01

Scenario Timeframe: Future

Receptor Population: Construction Worker

Receptor Age: Adult

Medium	Exposure Medium	Chemical of Potential Concern		sk/HQ - Routes Total	Primary Target Organ(s)		Offices and	d Parking Lot		Substation #7			
			Unit Cancer	Unit Hazard		EF	PC .	Cancer	Hazard	EF	PC	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Groundwater	Trench Air	VOCs											
		Bromodichloromethane	4.83E-09	NA	NA	ND	mg/m3	ND	ND	ND	mg/m3	ND	ND
		Butyl alcohol, tert-	NA	4.57E-02	Reproductive	ND	mg/m3	ND	ND	ND	mg/m3	ND	ND
		Chloroform	3.00E-09	9.32E-02	Liver	9.78E-03	mg/m3	2.94E-11	9.12E-04	ND	mg/m3	ND	ND
		Methyl tert-Butyl Ether (MTBE)	3.39E-11	3.04E-03	Liver, Kidney, Ocular	4.03E-02	mg/m3	1.37E-12	1.23E-04	1.69E-01	mg/m3	5.75E-12	5.16E-04
		Tetrachloroethylene	3.39E-11	2.28E-01	Neurological, Ocular	1.01E+00	mg/m3	3.43E-11	2.31E-01	6.21E-03	mg/m3	2.11E-13	1.42E-03
		Trichloroethene	5.35E-10	4.57E+00	Thyroid Vascular	9.31E-02	mg/m3	4.98E-11	4.25E-01	1.23E-03	mg/m3	6.59E-13	5.62E-03
		Vinyl Chloride	5.74E-10	9.13E-02	Liver	5.59E-02	mg/m3	3.21E-11	5.10E-03	ND	mg/m3	ND	ND
		Exposure Point Total						1.47E-10	6.62E-01			6.62E-12	7.56E-03
	Exposure Med	ium Total						1.47E-10	6.62E-01			6.62E-12	7.56E-03
Groundwater	•							1.47E-10	6.62E-01		•	6.62E-12	7.56E-03
Receptor Total	•					-		4.29E-07	2.03E+00		•	2.78E-07	6.84E-01

Notes:

EPC - Exposure Point Concentration.

NA - Not Applicable; no dose-response value.

ND - Not Detected.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

VOC - Volatile Organic Compound.

(1) The potential carcinogenic risk and noncarcinogenic hazard quotients are calculated per exposure area by multiplying the soil or air EPCs associated with each EA by the unit risks and hazard quotients calculated in the Tables G-1-1. RME and G-2a-1. RME based on a unit soil or air concentration.

Target Endpoint Evaluation		Target Endpoint Evaluation	
Organ	Endpoint HI	Organ	Endpoint HI
Blood	1.06E-03	Blood	9.10E-04
Decreased body and organ weights	6.78E-04	Decreased body and organ weights	3.16E-04
Endocrine	1.74E-05	Endocrine	5.55E-06
Developmental	7.72E-01	Developmental	1.52E-01
Hair	9.11E-03	Hair	1.42E-02
Immune	2.27E-03	Immune	2.04E-02
Kidney	1.16E-03	Kidney	1.42E-03
Liver	7.19E-03	Liver	1.43E-03
Nails	2.27E-03	Nails	2.04E-02
Neurological	6.59E-01	Neurological	4.96E-01
Ocular	2.33E-01	Ocular	2.24E-02
Reproductive	9.72E-03	Reproductive	3.10E-03
Respiratory	1.45E-01	Respiratory	6.40E-02
Skin	4.41E-03	Skin	3.46E-02
Thyroid	4.45E-01	Thyroid	1.27E-02
Vascular	4.29E-01	Vascular	4.02E-02

Scenario Timeframe: Future

Receptor Population: Construction Worker

Medium	Exposure Medium	Chemical of Potential Concern		sk/HQ - Routes Total	Primary Target Organ(s)		Transfor	mer Shop			Vehicle Re	efueling Area	
			Unit Cancer	Unit Hazard		EF	PC .	Cancer	Hazard	EF	PC .	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Soil	Soil												
		Dioxin											
		2,3,7,8-TCDD-TEQ	9.20E-04	7.08E+02	Reproductive, Developmental	ND	mg/kg	ND	ND	ND	mg/kg	ND	ND
		Inorganics											
		Arsenic	6.74E-09	1.05E-03	Skin, Vascular	7.70E+00	mg/kg	5.19E-08	8.08E-03	3.70E+00	mg/kg	2.50E-08	3.88E-03
		Cobalt	NA	1.51E-03	Thyroid	6.50E+00	mg/kg	NA	9.79E-03	7.30E+00	mg/kg	NA	1.10E-02
		Manganese	NA	1.88E-05	Neurological	2.60E+02	mg/kg	NA	4.90E-03	2.00E+02	mg/kg	NA	3.77E-03
		Nickel	NA	2.26E-05	Decreased body and organ weights	2.30E+01	mg/kg	NA	5.20E-04	1.20E+01	mg/kg	NA	2.71E-04
		Thallium	NA	4.52E-02	Hair	1.70E-01	mg/kg	NA	7.68E-03	1.50E-01	mg/kg	NA	6.78E-03
		Vanadium	NA	8.97E-05	Hair	2.30E+01	mg/kg	NA	2.06E-03	2.90E+01	mg/kg	NA	2.60E-03
		PCBs											
		Total PCBs	1.87E-08	1.31E-02	Ocular/eye, Nails, Immune	1.26E+02	mg/kg	2.35E-06	1.64E+00	6.03E-02	mg/kg	1.13E-09	7.90E-04
		SVOCs											
		Benzo(a)anthracene	9.15E-10	NA	NA	3.04E+00	mg/kg	2.78E-09	NA	8.96E-01	mg/kg	8.20E-10	NA
		Benzo(a)pyrene	9.15E-09	2.13E-03	Developmental	2.52E+00	mg/kg	2.30E-08	5.37E-03	6.81E-01	mg/kg	6.23E-09	1.45E-03
		Benzo(b)fluoranthene	9.15E-10	NA	NA	3.25E+00	mg/kg	2.97E-09	NA	1.01E+00	mg/kg	9.20E-10	NA
		Benzo(k)fluoranthene	9.15E-11	NA	NA	1.22E+00	mg/kg	1.12E-10	NA	2.63E-01	mg/kg	2.41E-11	NA
		Chrysene	9.15E-12	NA	NA	2.77E+00	mg/kg	2.54E-11	NA	8.78E-01	mg/kg	8.03E-12	NA
		Dibenzo(a,h)anthracene	9.15E-09	NA	NA	5.67E-01	mg/kg	5.19E-09	NA	1.17E-01	mg/kg	1.07E-09	NA
		Indeno(1,2,3-cd)pyrene	9.15E-10	NA	NA	1.82E+00	mg/kg	1.67E-09	NA	4.50E-01	mg/kg	4.12E-10	NA
		Naphthalene	NA	3.20E-05	Developmental	1.94E-01	mg/kg	NA	6.21E-06	2.37E-01	mg/kg	NA	7.59E-06
		TPH											
		Diesel Range Organics (C10-C20)	NA	4.52E-05	Liver, Kidney, Blood	8.00E+01	mg/kg	NA	3.62E-03	3.80E+02	mg/kg	NA	1.72E-02
		Exposure Point Total	II.					2.44E-06	1.69E+00			3.56E-08	4.77E-02
	Exposure Medi	ium Total						2.44E-06	1.69E+00			3.56E-08	4.77E-02

Scenario Timeframe: Future

Receptor Population: Construction Worker

Medium	Exposure Medium	Chemical of Potential Concern		sk/HQ - Routes Total	Primary Target Organ(s)		Transfor	mer Shop			Vehicle Re	fueling Area	
			Unit Cancer	Unit Hazard		El	PC	Cancer	Hazard	EF	PC	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Soil	Outdoor Air												
		Dioxin											
		2,3,7,8-TCDD-TEQ	1.98E-02	9.13E+05	Liver, reproductive, developmental, endocrine, respiratory, blood	ND	mg/m3	ND	ND	ND	mg/m3	ND	ND
		Inorganics											
		Arsenic	2.24E-06	2.44E+03	Neurological, developmental	1.07E-05	mg/m3	2.40E-11	2.61E-02	5.15E-06	mg/m3	1.15E-11	1.25E-02
		Cobalt	4.70E-06	6.09E+03	Respiratory	9.04E-06	mg/m3	4.25E-11	5.50E-02	1.02E-05	mg/m3	4.77E-11	6.18E-02
		Manganese	NA	7.31E+02	Neurological	3.62E-04	mg/m3	NA	2.64E-01	2.78E-04	mg/m3	NA	2.03E-01
		Nickel	1.36E-07	4.06E+02	Respiratory	3.20E-05	mg/m3	4.34E-12	1.30E-02	1.67E-05	mg/m3	2.26E-12	6.77E-03
		Thallium	NA	NA	NA	2.36E-07	mg/m3	NA	NA	2.09E-07	mg/m3	NA	NA
		Vanadium	NA	3.65E+02	Respiratory	3.20E-05	mg/m3	NA	1.17E-02	4.03E-05	mg/m3	NA	1.47E-02
		PCBs											
		Total PCBs	2.98E-07	NA	NA	1.75E-04	mg/m3	5.20E-11	NA	8.39E-08	mg/m3	2.50E-14	NA
		SVOCs											
		Benzo(a)anthracene	3.13E-08	NA	NA	4.22E-06	mg/m3	1.32E-13	NA	1.25E-06	mg/m3	3.90E-14	NA
		Benzo(a)pyrene	3.13E-07	1.83E+04	Developmental	3.50E-06	mg/m3	1.10E-12	6.39E-02	9.47E-07	mg/m3	2.97E-13	1.73E-02
		Benzo(b)fluoranthene	3.13E-08	NA	NA	4.52E-06	mg/m3	1.42E-13	NA	1.40E-06	mg/m3	4.38E-14	NA
		Benzo(k)fluoranthene	3.13E-09	NA	NA	1.70E-06	mg/m3	5.33E-15	NA	3.66E-07	mg/m3	1.15E-15	NA
		Chrysene	3.13E-10	NA	NA	3.86E-06	mg/m3	1.21E-15	NA	1.22E-06	mg/m3	3.82E-16	NA
		Dibenzo(a,h)anthracene	3.13E-07	NA	NA	7.88E-07	mg/m3	2.47E-13	NA	1.63E-07	mg/m3	5.09E-14	NA
		Indeno(1,2,3-cd)pyrene	3.13E-08	NA	NA	2.53E-06	mg/m3	7.93E-14	NA	6.26E-07	mg/m3	1.96E-14	NA
		Naphthalene	1.77E-08	1.22E+01	Neurological and Respiratory	2.70E-07	mg/m3	4.79E-15	3.28E-06	3.30E-07	mg/m3	5.85E-15	4.01E-06
		TPH											
		Diesel Range Organics (C10-C20)	NA	3.65E-01	Respiratory	1.11E-04	mg/m3	NA	4.06E-05	5.28E-04	mg/m3	NA	1.93E-04
		Exposure Point Total		1			<u> </u>	1.25E-10	4.34E-01		1	6.20E-11	3.17E-01
	Exposure Medi	ium Total						1.25E-10	4.34E-01			6.20E-11	3.17E-01
Soil	, ,		i i					2.44E-06	2.12E+00			3.56E-08	3.64E-01

Scenario Timeframe: Future

Receptor Population: Construction Worker

Receptor Age: Adult

Medium	Exposure Medium	Chemical of Potential Concern	Unit Risk/HQ - Exposure Routes Total		Primary Target Organ(s)	Transformer Shop				Vehicle Refueling Area			
			Unit Cancer Un	Unit Hazard		EPC		Cancer	Hazard	EPC		Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Groundwater	Trench Air	VOCs											
		Bromodichloromethane	4.83E-09	NA	NA	ND	mg/m3	ND	ND	ND	mg/m3	ND	ND
		Butyl alcohol, tert-	NA	4.57E-02	Reproductive	ND	mg/m3	ND	ND	ND	mg/m3	ND	ND
		Chloroform	3.00E-09	9.32E-02	Liver	3.31E-03	mg/m3	9.94E-12	3.09E-04	2.48E-02	mg/m3	7.45E-11	2.31E-03
		Methyl tert-Butyl Ether (MTBE)	3.39E-11	3.04E-03	Liver, Kidney, Ocular	ND	mg/m3	ND	ND	1.29E-02	mg/m3	4.38E-13	3.93E-05
		Tetrachloroethylene	3.39E-11	2.28E-01	Neurological, Ocular	1.29E-03	mg/m3	4.39E-14	2.95E-04	1.68E-03	mg/m3	5.70E-14	3.84E-04
		Trichloroethene	5.35E-10	4.57E+00	Thyroid Vascular	ND	mg/m3	ND	ND	ND	mg/m3	ND	ND
		Vinyl Chloride	5.74E-10	9.13E-02	Liver	ND	mg/m3	ND	ND	ND	mg/m3	ND	ND
		Exposure Point Total						9.98E-12	6.04E-04			7.50E-11	2.74E-03
Exposure Medium Total								9.98E-12	6.04E-04			7.50E-11	2.74E-03
Groundwater								9.98E-12	6.04E-04			7.50E-11	2.74E-03
Receptor Total								2.44E-06	2.12E+00			3.57E-08	3.67E-01

Notes:

EPC - Exposure Point Concentration.

NA - Not Applicable; no dose-response value.

ND - Not Detected.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

VOC - Volatile Organic Compound.

(1) The potential carcinogenic risk and noncarcinogenic hazard quotients are calculated per exposure area by multiplying the soil or air EPCs associated with each EA by the unit risks and hazard quotients calculated in the Tables G-1-1. RME and G-2a-1. RME based on a unit soil or air concentration.

Target Endpoint Evaluation		Target Endpoint Evaluation				
Organ	Endpoint HI	Organ	Endpoint HI			
Blood	3.62E-03	Blood	1.72E-02			
Decreased body and organ weights	5.20E-04	Decreased body and organ weights	2.71E-04			
Endocrine		Endocrine				
Developmental	9.54E-02	Developmental	3.13E-02			
Hair	9.75E-03	Hair	9.38E-03			
Immune	1.64E+00	Immune	7.90E-04			
Kidney	3.62E-03	Kidney	1.72E-02			
Liver	3.93E-03	Liver	1.95E-02			
Nails	1.64E+00	Nails	7.90E-04			
Neurological	2.95E-01	Neurological	2.20E-01			
Ocular	1.64E+00	Ocular	1.21E-03			
Reproductive		Reproductive				
Respiratory	7.97E-02	Respiratory	8.35E-02			
Skin	8.08E-03	Skin	3.88E-03			
Thyroid	9.79E-03	Thyroid	1.10E-02			
Vascular	8.08E-03	Vascular	3.88E-03			

Table H-2a-2. RME Summary of Receptor Risks and Hazards for COPCs Based on Unit Concentrations - Outdoor Industrial Worker Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future

Receptor Population: Outdoor Industrial Worker

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern	Carcinogenic Risk - Based on Unit Concentration (1)				Non-Carcinogenic Hazard Quotient - Based on Unit Concentration (1)				
				Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Surface Soil	Surface Soil											
			Dioxin									
			2,3,7,8-TCDD-TEQ	3.58E-02		4.54E-03	4.03E-02	Reproductive, Developmental	1.10E+03		1.40E+02	1.24E+03
			Inorganics									
			Arsenic	2.48E-07		5.24E-08	3.00E-07	Skin, Vascular	1.54E-03		3.26E-04	1.87E-03
			Cobalt	NA		NA	NA	Thyroid	2.57E-03		NA	2.57E-03
			Manganese	NA		NA	NA	Neurological	3.21E-05		NA	3.21E-05
								Decreased body and organ				
			Nickel	NA		NA	NA	weights	3.85E-05		NA	3.85E-05
			Thallium	NA		NA	NA	Hair	7.71E-02		NA	7.71E-02
			Vanadium	NA		NA	NA	Hair	1.53E-04		NA	1.53E-04
			PCBs									
			Total PCBs	5.50E-07		3.26E-07	8.77E-07	Ocular/eye, Nails, Immune	3.85E-02		2.28E-02	6.14E-02
			SVOCs									
			Benzo(a)anthracene	2.75E-08		1.51E-08	4.27E-08	NA	NA		NA	NA
			Benzo(a)pyrene	2.75E-07		1.51E-07	4.27E-07	Developmental	2.57E-03		1.41E-03	3.98E-03
			Benzo(b)fluoranthene	2.75E-08		1.51E-08	4.27E-08	NA	NA		NA	NA
			Benzo(k)fluoranthene	2.75E-09		1.51E-09	4.27E-09	NA	NA		NA	NA
			Chrysene	2.75E-10		1.51E-10	4.27E-10	NA	NA		NA	NA
			Dibenzo(a,h)anthracene	2.75E-07		1.51E-07	4.27E-07	NA	NA		NA	NA
			Indeno(1,2,3-cd)pyrene	2.75E-08		1.51E-08	4.27E-08	NA	NA		NA	NA
			Naphthalene	NA		NA	NA	Developmental	3.85E-05		2.12E-05	5.97E-05
			TPH									
			Diesel Range Organics (C10-C20)	NA		NA	NA	Liver, Kidney, Blood	7.71E-05		NA	7.71E-05
		Exposure Point Total					(2)					(2)
	Exposure Medium Total			ĺ			(2)					(2)

Table H-2a-2. RME Summary of Receptor Risks and Hazards for COPCs Based on Unit Concentrations - Outdoor Industrial Worker Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future

Receptor Population: Outdoor Industrial Worker

Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern	Carcinoge	enic Risk - Ba	sed on Unit Con	centration (1)	Non-Carc	nogenic Hazard Quotien	t - Based on Uni	t Concentration (1)	
				Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary	Ingestion	Inhalation	Dermal	Exposure Routes Total
	<u> </u>				ļ		Routes Lotal	Target Organ(s)				Routes Lotal
Surface Soil	Outdoor Air											
			Dioxin									
								Liver, reproductive,				
								developmental, endocrine,				
			2,3,7,8-TCDD-TEQ		2.79E+00		2.79E+00	respiratory, blood		5.14E+06		5.14E+06
			Inorganics									
			Arsenic		3.16E-04		3.16E-04	Neurological, developmental		1.37E+04		1.37E+04
			Cobalt		6.60E-04		6.60E-04	Respiratory		3.42E+04		3.42E+04
			Manganese		NA		NA	Neurological	-	4.11E+03		4.11E+03
			Nickel		1.91E-05		1.91E-05	Respiratory		2.28E+03		2.28E+03
			Thallium		NA		NA	NA		NA		NA
			Vanadium		NA		NA	Respiratory		2.05E+03		2.05E+03
			PCBs									
			Total PCBs		4.19E-05		4.19E-05	NA		NA		NA
			SVOCs									
			Benzo(a)anthracene		4.40E-06		4.40E-06	NA		NA		NA
			Benzo(a)pyrene		4.40E-05		4.40E-05	Developmental		1.03E+05		1.03E+05
			Benzo(b)fluoranthene		4.40E-06		4.40E-06	NA		NA		NA
			Benzo(k)fluoranthene		4.40E-07		4.40E-07	NA		NA		NA
			Chrysene		4.40E-08		4.40E-08	NA		NA		NA
			Dibenzo(a,h)anthracene		4.40E-05		4.40E-05	NA		NA		NA
			Indeno(1,2,3-cd)pyrene		4.40E-06		4.40E-06	NA		NA	-	NA
		1	Naphthalene		2.50E-06		2.50E-06	Neurological and Respiratory	-	6.85E+01	-	6.85E+01
		1	TPH									
		1	Diesel Range Organics (C10-C20)		NA		NA	Respiratory	-	2.05E+00	-	2.05E+00
		1										
		Exposure Point Total			<u>_</u>		(2)			•		(2)
	Exposure Medium Total	11 -	11				(2)					(2)
Surface Soil				Ì			(2)					(2)
Receptor Total				i			(2)	1				(2)

Notes:

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

NA - Not applicable; no dose-response value.

PCB - Polychlorinated Biphenyl.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

- (1) Due to the multiple soil areas, a unit soil concentration of 1 mg/kg and a unit air concentration of 1 mg/m3 is used to calculate a potential excess lifetime cancer risk (ELCR) and noncancer hazard quotient (HQ) based on a unit soil concentration. Potential ELCRs and HQs calculated based on a unit concentration will be adjusted based on the area-specific EPCs in a scaling table.
- (2) Totals not provided here; potential risks and hazards are based on the unit concentration. Totals are provided in the scaling table.

Summary of Receptor Risks and Hazards for COPCs - Future Outdoor Industrial Worker Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future

Receptor Population: Outdoor Industrial Worker

Receptor Age: Adult

Medium	Exposure Medium	Chemical of Potential Concern	Unit Ri Exposure F		Primary Target Organ(s)	Ну	pothetical Future P	ark Land/Green Sp	ace		Warehouse and	d Laydown Area	
			Unit Cancer	Unit Hazard		EF	PC	Cancer	Hazard	EF	PC	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Surface Soil	Surface Soil												
		Dioxin											
		2,3,7,8-TCDD-TEQ	4.03E-02	1.24E+03	Reproductive, Developmental	2.51E-06	mg/kg	1.01E-07	3.11E-03	3.17E-05	mg/kg	1.28E-06	3.93E-02
		Inorganics											
		Arsenic	3.00E-07	1.87E-03	Skin, Vascular	2.60E+00	mg/kg	7.80E-07	4.85E-03	3.85E+01	mg/kg	1.16E-05	7.19E-02
		Cobalt	NA	2.57E-03	Thyroid	1.30E+02	mg/kg	NA	3.34E-01	4.55E+01	mg/kg	NA	1.17E-01
		Manganese	NA	3.21E-05	Neurological	2.00E+02	mg/kg	NA	6.42E-03	1.05E+03	mg/kg	NA	3.37E-02
		Nickel	NA	3.85E-05	Decreased body and organ weights	1.20E+01	mg/kg	NA	4.62E-04	1.53E+03	mg/kg	NA	5.91E-02
		Thallium	NA	7.71E-02	Hair	ND	mg/kg	ND	ND	1.56E-01	mg/kg	NA	1.20E-02
		Vanadium	NA	1.53E-04	Hair	5.80E+01	mg/kg	NA	8.87E-03	7.06E+03	mg/kg	NA	1.08E+00
		PCBs											
		Total PCBs	8.77E-07	6.14E-02	Ocular/eye, Nails, Immune	9.20E-02	mg/kg	8.06E-08	5.64E-03	5.19E+00	mg/kg	4.55E-06	3.18E-01
		SVOCs											
		Benzo(a)anthracene	4.27E-08	NA	NA	1.90E-01	mg/kg	8.11E-09	NA	5.83E-01	mg/kg	2.49E-08	NA
		Benzo(a)pyrene	4.27E-07	3.98E-03	Developmental	1.80E-01	mg/kg	7.68E-08	7.17E-04	5.77E-01	mg/kg	2.46E-07	2.30E-03
		Benzo(b)fluoranthene	4.27E-08	NA	NA	2.60E-01	mg/kg	1.11E-08	NA	6.81E-01	mg/kg	2.91E-08	NA
		Benzo(k)fluoranthene	4.27E-09	NA	NA	9.10E-02	mg/kg	3.88E-10	NA	2.58E-01	mg/kg	1.10E-09	NA
		Chrysene	4.27E-10	NA	NA	2.00E-01	mg/kg	8.53E-11	NA	6.39E-01	mg/kg	2.73E-10	NA
		Dibenzo(a,h)anthracene	4.27E-07	NA	NA	4.60E-02	mg/kg	1.96E-08	NA	1.50E-01	mg/kg	6.40E-08	NA
		Indeno(1,2,3-cd)pyrene	4.27E-08	NA	NA	1.50E-01	mg/kg	6.40E-09	NA	4.42E-01	mg/kg	1.89E-08	NA
		Naphthalene	NA	5.97E-05	Developmental	1.80E-02	mg/kg	NA	1.08E-06	1.14E-01	mg/kg	NA	6.81E-06
		TPH											
		Diesel Range Organics (C10-C20)	NA	7.71E-05	Liver, Kidney, Blood	1.30E+01	mg/kg	NA	1.00E-03	1.49E+02	mg/kg	NA	1.15E-02
		Exposure Point Total	1					1.08E-06	3.65E-01			1.78E-05	1.74E+00
	Exposure Mediu	um Total	1					1.08E-06	3.65E-01			1.78E-05	1.74E+00

Summary of Receptor Risks and Hazards for COPCs - Future Outdoor Industrial Worker Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future

Receptor Population: Outdoor Industrial Worker

Receptor Age: Adult

Medium	Exposure Medium	Chemical of Potential Concern	Unit Ri Exposure F		Primary Target Organ(s)	Ну	pothetical Future F	Park Land/Green Sp	ace		Warehouse an	d Laydown Area	
			Unit Cancer	Unit Hazard		EF	PC	Cancer	Hazard	EF	PC	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Surface Soil	Outdoor Air												
		Dioxin											
		2,3,7,8-TCDD-TEQ	2.79E+00	5.14E+06	Liver, reproductive, developmental, endocrine, respiratory, blood	4.39E-15	mg/m3	1.22E-14	2.26E-08	5.54E-14	mg/m3	1.54E-13	2.84E-07
		Inorganics											
		Arsenic	3.16E-04	1.37E+04	Neurological, developmental	4.55E-09	mg/m3	1.43E-12	6.23E-05	6.74E-08	mg/m3	2.13E-11	9.23E-04
		Cobalt	6.60E-04	3.42E+04	Respiratory	2.27E-07	mg/m3	1.50E-10	7.79E-03	7.96E-08	mg/m3	5.26E-11	2.73E-03
		Manganese	NA	4.11E+03	Neurological	3.50E-07	mg/m3	NA	1.44E-03	1.84E-06	mg/m3	NA	7.55E-03
		Nickel	1.91E-05	2.28E+03	Respiratory	2.10E-08	mg/m3	4.00E-13	4.79E-05	2.68E-06	mg/m3	5.12E-11	6.12E-03
		Thallium	NA	NA	NA	ND	mg/m3	ND	ND	2.73E-10	mg/m3	NA	NA
		Vanadium	NA	2.05E+03	Respiratory	1.01E-07	mg/m3	NA	2.08E-04	1.23E-05	mg/m3	NA	2.54E-02
		PCBs											
		Total PCBs	4.19E-05	NA	NA	1.61E-10	mg/m3	6.75E-15	NA	9.08E-09	mg/m3	3.81E-13	NA
		SVOCs											
		Benzo(a)anthracene	4.40E-06	NA	NA	3.32E-10	mg/m3	1.46E-15	NA	1.02E-09	mg/m3	4.49E-15	NA
		Benzo(a)pyrene	4.40E-05	1.03E+05	Developmental	3.15E-10	mg/m3	1.39E-14	3.23E-05	1.01E-09	mg/m3	4.44E-14	1.04E-04
		Benzo(b)fluoranthene	4.40E-06	NA	NA	4.55E-10	mg/m3	2.00E-15	NA	1.19E-09	mg/m3	5.24E-15	NA
		Benzo(k)fluoranthene	4.40E-07	NA	NA	1.59E-10	mg/m3	7.01E-17	NA	4.51E-10	mg/m3	1.99E-16	NA
		Chrysene	4.40E-08	NA	NA	3.50E-10	mg/m3	1.54E-17	NA	1.12E-09	mg/m3	4.92E-17	NA
		Dibenzo(a,h)anthracene	4.40E-05	NA	NA	8.05E-11	mg/m3	3.54E-15	NA	2.62E-10	mg/m3	1.16E-14	NA
		Indeno(1,2,3-cd)pyrene	4.40E-06	NA	NA	2.62E-10	mg/m3	1.16E-15	NA	7.73E-10	mg/m3	3.40E-15	NA
		Naphthalene	2.50E-06	6.85E+01	Neurological and Respiratory	3.15E-11	mg/m3	7.86E-17	2.16E-09	1.99E-10	mg/m3	4.97E-16	1.37E-08
		TPH											
		Diesel Range Organics (C10-C20)	NA	2.05E+00	Respiratory	2.27E-08	mg/m3	NA	4.67E-08	2.61E-07	mg/m3	NA	5.35E-07
		Exposure Point Total						1.52E-10	9.58E-03			1.26E-10	4.28E-02
	Exposure Medi	um Total						1.52E-10	9.58E-03			1.26E-10	4.28E-02
Surface Soil		<u> </u>						1.08E-06	3.75E-01			1.78E-05	1.79E+00
Receptor Total	•						•	1.08E-06	3.75E-01		•	1.78E-05	1.79E+00

Notes

EPC - Exposure Point Concentration.

NA - Not applicable; no dose-response value.

ND - Not Detected.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

VOC - Volatile Organic Compound.

(1) The potential carcinogenic risk and noncarcinogenic hazard quotients are calculated per exposure area by multiplying the soil or air EPCs associated with each EA by the unit risks and hazard quotients calculated in the Tables G-1-2. RME and G-2a-2. RME based on a unit soil or air concentration.

Target Endpoint Evaluation		Target Endpoint Evaluation	
Organ	Endpoint HI	Organ	Endpoint HI
Blood	1.00E-03	Blood	1.15E-02
Decreased body and organ weights	4.62E-04	Decreased body and organ weights	5.91E-02
Endocrine	2.26E-08	Endocrine	2.84E-07
Developmental	3.93E-03	Developmental	4.26E-02
Eye	5.64E-03	Eye	3.18E-01
Hair	8.87E-03	Hair	1.09E+00
Immune	5.64E-03	Immune	3.18E-01
Kidney	1.00E-03	Kidney	1.15E-02
Liver	1.00E-03	Liver	1.15E-02
Nails	5.64E-03	Nails	3.18E-01
Neurological	7.92E-03	Neurological	4.22E-02
Reproductive	3.11E-03	Reproductive	3.93E-02
Respiratory	8.04E-03	Respiratory	3.42E-02
Skin	4.85E-03	Skin	7.19E-02
Thyroid	3.34E-01	Thyroid	1.17E-01
Vascular	4.85E-03	Vascular	7.19E-02

Table H-2b-2. RME Summary of Receptor Risks and Hazards for COPCs - Future Outdoor Industrial Worker

Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future

Receptor Population: Outdoor Industrial Worker

Receptor Age: Adult

Medium	Exposure Medium	Chemical of Potential Concern	Unit Ris Exposure R		Primary Target Organ(s)	:	Salvage Yard and	Waste Storage Are	a		Stores and Fleet	Maintenance Area	
			Unit Cancer	Unit Hazard		EF	PC	Cancer	Hazard	EF	PC .	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Surface Soil	Surface Soil												
		Dioxin											
		2,3,7,8-TCDD-TEQ	4.03E-02	1.24E+03	Reproductive, Developmental	1.08E-04	mg/kg	4.34E-06	1.34E-01	1.45E-05	mg/kg	5.84E-07	1.80E-02
		Inorganics											
		Arsenic	3.00E-07	1.87E-03	Skin, Vascular	1.40E+01	mg/kg	4.20E-06	2.61E-02	7.50E+00	mg/kg	2.25E-06	1.40E-02
		Cobalt	NA	2.57E-03	Thyroid	1.70E+01	mg/kg	NA	4.37E-02	7.90E+00	mg/kg	NA	2.03E-02
		Manganese	NA	3.21E-05	Neurological	5.00E+02	mg/kg	NA	1.61E-02	2.20E+02	mg/kg	NA	7.06E-03
		Nickel	NA	3.85E-05	Decreased body and organ weights	2.70E+01	mg/kg	NA	1.04E-03	3.10E+01	mg/kg	NA	1.19E-03
		Thallium	NA	7.71E-02	Hair	2.00E-01	mg/kg	NA	1.54E-02	1.70E-01	mg/kg	NA	1.31E-02
		Vanadium	NA	1.53E-04	Hair	3.60E+01	mg/kg	NA	5.50E-03	3.00E+01	mg/kg	NA	4.59E-03
		PCBs											
		Total PCBs	8.77E-07	6.14E-02	Ocular/eye, Nails, Immune	2.15E+00	mg/kg	1.88E-06	1.32E-01	1.35E+00	mg/kg	1.18E-06	8.28E-02
		SVOCs											
		Benzo(a)anthracene	4.27E-08	NA	NA	1.34E+00	mg/kg	5.72E-08	NA	3.70E-01	mg/kg	1.58E-08	NA
		Benzo(a)pyrene	4.27E-07	3.98E-03	Developmental	1.29E+00	mg/kg	5.50E-07	5.13E-03	5.41E-01	mg/kg	2.31E-07	2.15E-03
		Benzo(b)fluoranthene	4.27E-08	NA	NA	2.03E+00	mg/kg	8.68E-08	NA	6.87E-01	mg/kg	2.93E-08	NA
		Benzo(k)fluoranthene	4.27E-09	NA	NA	4.92E-01	mg/kg	2.10E-09	NA	2.73E-01	mg/kg	1.16E-09	NA
		Chrysene	4.27E-10	NA	NA	1.41E+00	mg/kg	6.00E-10	NA	6.82E-01	mg/kg	2.91E-10	NA
		Dibenzo(a,h)anthracene	4.27E-07	NA	NA	2.40E-01	mg/kg	1.02E-07	NA	1.39E-01	mg/kg	5.93E-08	NA
		Indeno(1,2,3-cd)pyrene	4.27E-08	NA	NA	9.69E-01	mg/kg	4.13E-08	NA	4.37E-01	mg/kg	1.86E-08	NA
		Naphthalene	NA	5.97E-05	Developmental	1.66E-01	mg/kg	NA	9.91E-06	4.00E-02	mg/kg	NA	2.39E-06
		TPH											1
		Diesel Range Organics (C10-C20)	NA	7.71E-05	Liver, Kidney, Blood	3.40E+03	mg/kg	NA	2.62E-01	1.70E+02	mg/kg	NA	1.31E-02
		Exposure Point Total						1.13E-05	6.40E-01			4.37E-06	1.76E-01
	Exposure Media	um Total					·	1.13E-05	6.40E-01		·	4.37E-06	1.76E-01

Summary of Receptor Risks and Hazards for COPCs - Future Outdoor Industrial Worker Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future

Receptor Population: Outdoor Industrial Worker

Receptor Age: Adult

Medium	Exposure Medium	Chemical of Potential Concern	Unit Ri Exposure F		Primary Target Organ(s)		Salvage Yard and	Waste Storage Are	a		Stores and Fleet	Maintenance Area	
			Unit Cancer	Unit Hazard		E	PC	Cancer	Hazard	EF	PC	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Surface Soil	Outdoor Air												
		Dioxin											
		2,3,7,8-TCDD-TEQ	2.79E+00	5.14E+06	Liver, reproductive, developmental, endocrine, respiratory, blood	1.88E-13	mg/m3	5.26E-13	9.68E-07	2.53E-14	mg/m3	7.06E-14	1.30E-07
		Inorganics											
		Arsenic	3.16E-04	1.37E+04	Neurological, developmental	2.45E-08	mg/m3	7.73E-12	3.35E-04	1.31E-08	mg/m3	4.14E-12	1.80E-04
		Cobalt	6.60E-04	3.42E+04	Respiratory	2.97E-08	mg/m3	1.96E-11	1.02E-03	1.38E-08	mg/m3	9.13E-12	4.73E-04
		Manganese	NA	4.11E+03	Neurological	8.75E-07	mg/m3	NA	3.59E-03	3.85E-07	mg/m3	NA	1.58E-03
		Nickel	1.91E-05	2.28E+03	Respiratory	4.72E-08	mg/m3	9.01E-13	1.08E-04	5.42E-08	mg/m3	1.03E-12	1.24E-04
		Thallium	NA	NA	NA	3.50E-10	mg/m3	NA	NA	2.97E-10	mg/m3	NA	NA
		Vanadium	NA	2.05E+03	Respiratory	6.30E-08	mg/m3	NA	1.29E-04	5.25E-08	mg/m3	NA	1.08E-04
		PCBs											
		Total PCBs	4.19E-05	NA	NA	3.76E-09	mg/m3	1.58E-13	NA	2.36E-09	mg/m3	9.90E-14	NA
		SVOCs											
		Benzo(a)anthracene	4.40E-06	NA	NA	2.35E-09	mg/m3	1.03E-14	NA	6.47E-10	mg/m3	2.85E-15	NA
		Benzo(a)pyrene	4.40E-05	1.03E+05	Developmental	2.25E-09	mg/m3	9.93E-14	2.32E-04	9.46E-10	mg/m3	4.17E-14	9.72E-05
		Benzo(b)fluoranthene	4.40E-06	NA	NA	3.56E-09	mg/m3	1.57E-14	NA	1.20E-09	mg/m3	5.29E-15	NA
		Benzo(k)fluoranthene	4.40E-07	NA	NA	8.61E-10	mg/m3	3.79E-16	NA	4.77E-10	mg/m3	2.10E-16	NA
		Chrysene	4.40E-08	NA	NA	2.46E-09	mg/m3	1.08E-16	NA	1.19E-09	mg/m3	5.25E-17	NA
		Dibenzo(a,h)anthracene	4.40E-05	NA	NA	4.20E-10	mg/m3	1.85E-14	NA	2.43E-10	mg/m3	1.07E-14	NA
		Indeno(1,2,3-cd)pyrene	4.40E-06	NA	NA	1.69E-09	mg/m3	7.46E-15	NA	7.64E-10	mg/m3	3.37E-15	NA
		Naphthalene	2.50E-06	6.85E+01	Neurological and Respiratory	2.90E-10	mg/m3	7.24E-16	1.99E-08	7.00E-11	mg/m3	1.75E-16	4.79E-09
		TPH											
		Diesel Range Organics (C10-C20)	NA	2.05E+00	Respiratory	5.95E-06	mg/m3	NA	1.22E-05	2.97E-07	mg/m3	NA	6.11E-07
		B. L. T. L.	 					1 0015 11	5 405 00			1	0.505.00
	ļ	Exposure Point Total	<u> </u>					2.91E-11	5.43E-03			1.45E-11	2.56E-03
	Exposure Medi	um Total	<u> </u>					2.91E-11	5.43E-03			1.45E-11	2.56E-03
Surface Soil			<u> </u>					1.13E-05	6.46E-01			4.37E-06	1.79E-01
Receptor Total			<u> </u>					1.13E-05	6.46E-01			4.37E-06	1.79E-01

Notes

EPC - Exposure Point Concentration.

NA - Not applicable; no dose-response value.

ND - Not Detected.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

VOC - Volatile Organic Compound.

(1) The potential carcinogenic risk and noncarcinogenic hazard quotients are calculated per exposure area by multiplying the soil or air EPCs associated with each EA by the unit risks and hazard quotients calculated in the Tables G-1-2. RME and G-2a-2. RME based on a unit soil or air concentration.

Target Endpoint Evaluation		Target Endpoint Evaluation	
Organ	Endpoint HI	Organ	Endpoint HI
Blood	2.62E-01	Blood	1.31E-02
Decreased body and organ weights	1.04E-03	Decreased body and organ weights	1.19E-03
Endocrine	9.68E-07	Endocrine	1.30E-07
Developmental	1.39E-01	Developmental	2.04E-02
Eye	1.32E-01	Eye	8.28E-02
Hair	2.09E-02	Hair	1.77E-02
Immune	1.32E-01	Immune	8.28E-02
Kidney	2.62E-01	Kidney	1.31E-02
Liver	2.62E-01	Liver	1.31E-02
Nails	1.32E-01	Nails	8.28E-02
Neurological	2.00E-02	Neurological	8.82E-03
Reproductive	1.34E-01	Reproductive	1.80E-02
Respiratory	1.27E-03	Respiratory	7.06E-04
Skin	2.61E-02	Skin	1.40E-02
Thyroid	4.37E-02	Thyroid	2.03E-02
Vascular	2.61E-02	Vascular	1.40E-02

Summary of Receptor Risks and Hazards for COPCs - Future Outdoor Industrial Worker Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future

Receptor Population: Outdoor Industrial Worker

Receptor Age: Adult

Medium	Exposure Medium	Chemical of Potential Concern	Unit Ri: Exposure R		Primary Target Organ(s)		Offices and	d Parking Lot			Substa	ation #7	
			Unit Cancer	Unit Hazard		EF	PC	Cancer	Hazard	EF	PC	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Surface Soil	Surface Soil												
		Dioxin											
		2,3,7,8-TCDD-TEQ	4.03E-02	1.24E+03	Reproductive, Developmental	1.37E-05	mg/kg	5.52E-07	1.70E-02	4.37E-06	mg/kg	1.76E-07	5.42E-03
		Inorganics											
		Arsenic	3.00E-07	1.87E-03	Skin, Vascular	3.70E+00	mg/kg	1.11E-06	6.91E-03	3.30E+01	mg/kg	9.90E-06	6.16E-02
		Cobalt	NA	2.57E-03	Thyroid	1.10E+01	mg/kg	NA	2.83E-02	4.70E+00	mg/kg	NA	1.21E-02
		Manganese	NA	3.21E-05	Neurological	2.60E+02	mg/kg	NA	8.35E-03	3.70E+02	mg/kg	NA	1.19E-02
		Nickel	NA	3.85E-05	Decreased body and organ weights	3.00E+01	mg/kg	NA	1.16E-03	1.40E+01	mg/kg	NA	5.39E-04
		Thallium	NA	7.71E-02	Hair	ND	mg/kg	ND	ND	2.50E-01	mg/kg	NA	1.93E-02
		Vanadium	NA	1.53E-04	Hair	2.30E+01	mg/kg	NA	3.52E-03	2.30E+01	mg/kg	NA	3.52E-03
		PCBs											
		Total PCBs	8.77E-07	6.14E-02	Ocular/eye, Nails, Immune	3.30E-01	mg/kg	2.89E-07	2.02E-02	5.10E+00	mg/kg	4.47E-06	3.13E-01
		SVOCs											
		Benzo(a)anthracene	4.27E-08	NA	NA	2.79E+00	mg/kg	1.19E-07	NA	1.80E+00	mg/kg	7.68E-08	NA
		Benzo(a)pyrene	4.27E-07	3.98E-03	Developmental	2.27E+00	mg/kg	9.67E-07	9.03E-03	1.40E+00	mg/kg	5.97E-07	5.57E-03
		Benzo(b)fluoranthene	4.27E-08	NA	NA	2.58E+00	mg/kg	1.10E-07	NA	3.20E+00	mg/kg	1.37E-07	NA
		Benzo(k)fluoranthene	4.27E-09	NA	NA	1.12E+00	mg/kg	4.76E-09	NA	1.70E+00	mg/kg	7.25E-09	NA
		Chrysene	4.27E-10	NA	NA	2.45E+00	mg/kg	1.04E-09	NA	3.20E+00	mg/kg	1.37E-09	NA
		Dibenzo(a,h)anthracene	4.27E-07	NA	NA	4.70E-01	mg/kg	2.01E-07	NA	4.00E-01	mg/kg	1.71E-07	NA
		Indeno(1,2,3-cd)pyrene	4.27E-08	NA	NA	1.51E+00	mg/kg	6.46E-08	NA	1.30E+00	mg/kg	5.55E-08	NA
		Naphthalene	NA	5.97E-05	Developmental	7.92E-02	mg/kg	NA	4.73E-06	6.70E-02	mg/kg	NA	4.00E-06
		ТРН	<u> </u>										
		Diesel Range Organics (C10-C20)	NA	7.71E-05	Liver, Kidney, Blood	ND	mg/kg	ND	ND	2.00E+01	mg/kg	NA	1.54E-03
		Exposure Point Total	1					3.42E-06	9.45E-02			1.56E-05	4.34E-01
	Exposure Mediu	um Total	1	,				3.42E-06	9.45E-02			1.56E-05	4.34E-01

Summary of Receptor Risks and Hazards for COPCs - Future Outdoor Industrial Worker Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future

Receptor Population: Outdoor Industrial Worker

Receptor Age: Adult

Medium	Exposure Medium	Chemical of Potential Concern	Unit Ri Exposure F		Primary Target Organ(s)		Offices and	d Parking Lot			Substa	ation #7	
			Unit Cancer	Unit Hazard		EI	PC	Cancer	Hazard	EF	PC	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Surface Soil	Outdoor Air												
		Dioxin											
		2,3,7,8-TCDD-TEQ	2.79E+00	5.14E+06	Liver, reproductive, developmental, endocrine, respiratory, blood	2.40E-14	mg/m3	6.68E-14	1.23E-07	7.64E-15	mg/m3	2.13E-14	3.93E-08
		Inorganics											
		Arsenic	3.16E-04	1.37E+04	Neurological, developmental	6.47E-09	mg/m3	2.04E-12	8.86E-05	5.77E-08	mg/m3	1.82E-11	7.91E-04
		Cobalt	6.60E-04	3.42E+04	Respiratory	1.92E-08	mg/m3	1.27E-11	6.59E-04	8.22E-09	mg/m3	5.43E-12	2.82E-04
		Manganese	NA	4.11E+03	Neurological	4.55E-07	mg/m3	NA	1.87E-03	6.47E-07	mg/m3	NA	2.66E-03
		Nickel	1.91E-05	2.28E+03	Respiratory	5.25E-08	mg/m3	1.00E-12	1.20E-04	2.45E-08	mg/m3	4.67E-13	5.59E-05
		Thallium	NA	NA	NA	ND	mg/m3	ND	ND	4.37E-10	mg/m3	NA	NA
		Vanadium	NA	2.05E+03	Respiratory	4.02E-08	mg/m3	NA	8.27E-05	4.02E-08	mg/m3	NA	8.27E-05
		PCBs											
		Total PCBs	4.19E-05	NA	NA	5.77E-10	mg/m3	2.42E-14	NA	8.92E-09	mg/m3	3.74E-13	NA
		SVOCs											
		Benzo(a)anthracene	4.40E-06	NA	NA	4.88E-09	mg/m3	2.15E-14	NA	3.15E-09	mg/m3	1.39E-14	NA
		Benzo(a)pyrene	4.40E-05	1.03E+05	Developmental	3.97E-09	mg/m3	1.75E-13	4.07E-04	2.45E-09	mg/m3	1.08E-13	2.52E-04
		Benzo(b)fluoranthene	4.40E-06	NA	NA	4.50E-09	mg/m3	1.98E-14	NA	5.60E-09	mg/m3	2.46E-14	NA
		Benzo(k)fluoranthene	4.40E-07	NA	NA	1.95E-09	mg/m3	8.59E-16	NA	2.97E-09	mg/m3	1.31E-15	NA
		Chrysene	4.40E-08	NA	NA	4.28E-09	mg/m3	1.88E-16	NA	5.60E-09	mg/m3	2.46E-16	NA
		Dibenzo(a,h)anthracene	4.40E-05	NA	NA	8.22E-10	mg/m3	3.62E-14	NA	7.00E-10	mg/m3	3.08E-14	NA
		Indeno(1,2,3-cd)pyrene	4.40E-06	NA	NA	2.65E-09	mg/m3	1.17E-14	NA	2.27E-09	mg/m3	1.00E-14	NA
		Naphthalene	2.50E-06	6.85E+01	Neurological and Respiratory	1.39E-10	mg/m3	3.46E-16	9.49E-09	1.17E-10	mg/m3	2.92E-16	8.03E-09
		TPH											
		Diesel Range Organics (C10-C20)	NA	2.05E+00	Respiratory	ND	mg/m3	ND	ND	3.50E-08	mg/m3	NA	7.19E-08
		E Bitti	<u> </u>	<u> </u>				1	0.005.00			0.475.44	4.405.06
		Exposure Point Total	1					1.61E-11	3.23E-03			2.47E-11	4.12E-03
	Exposure Medi	um Total	<u> </u>					1.61E-11	3.23E-03			2.47E-11	4.12E-03
Surface Soil			<u> </u>					3.42E-06	9.77E-02			1.56E-05	4.38E-01
Receptor Total		· · · · · · · · · · · · · · · · · · ·						3.42E-06	9.77E-02		•	1.56E-05	4.38E-01

Notes

EPC - Exposure Point Concentration.

NA - Not applicable; no dose-response value.

ND - Not Detected.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

VOC - Volatile Organic Compound.

(1) The potential carcinogenic risk and noncarcinogenic hazard quotients are calculated per exposure area by multiplying the soil or air EPCs associated with each EA by the unit risks and hazard quotients calculated in the Tables G-1-2. RME and G-2a-2. RME based on a unit soil or air concentration.

Target Endpoint Evaluation		Target Endpoint Evaluation	
Organ	Endpoint HI	Organ	Endpoint HI
Blood	1.23E-07	Blood	1.54E-03
Decreased body and organ weights	1.16E-03	Decreased body and organ weights	5.39E-04
Endocrine	1.23E-07	Endocrine	3.93E-08
Developmental	2.65E-02	Developmental	1.20E-02
Eye	2.02E-02	Eye	3.13E-01
Hair	3.52E-03	Hair	2.28E-02
Immune	2.02E-02	Immune	3.13E-01
Kidney		Kidney	1.54E-03
Liver	1.23E-07	Liver	1.54E-03
Nails	2.02E-02	Nails	3.13E-01
Neurological	1.03E-02	Neurological	1.53E-02
Reproductive	1.70E-02	Reproductive	5.42E-03
Respiratory	8.61E-04	Respiratory	4.20E-04
Skin	6.91E-03	Skin	6.16E-02
Thyroid	2.83E-02	Thyroid	1.21E-02
Vascular	6.91E-03	Vascular	6.16E-02

Summary of Receptor Risks and Hazards for COPCs - Future Outdoor Industrial Worker Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future

Receptor Population: Outdoor Industrial Worker

Receptor Age: Adult

Medium	Exposure Medium	Chemical of Potential Concern	Unit Ri Exposure F		Primary Target Organ(s)		Transfor	mer Shop			Vehicle Re	fueling Area	
			Unit Cancer	Unit Hazard		EI	PC	Cancer	Hazard	E	PC	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Surface Soil	Surface Soil												
		Dioxin											
		2,3,7,8-TCDD-TEQ	4.03E-02	1.24E+03	Reproductive, Developmental	ND	mg/kg	ND	ND	ND	mg/kg	ND	ND
		Inorganics											
		Arsenic	3.00E-07	1.87E-03	Skin, Vascular	1.70E+00	mg/kg	5.10E-07	3.17E-03	ND	mg/kg	ND	ND
		Cobalt	NA	2.57E-03	Thyroid	2.70E+00	mg/kg	NA	6.93E-03	ND	mg/kg	ND	ND
		Manganese	NA	3.21E-05	Neurological	2.60E+02	mg/kg	NA	8.35E-03	ND	mg/kg	ND	ND
		Nickel	NA	3.85E-05	Decreased body and organ weights	1.60E+01	mg/kg	NA	6.16E-04	ND	mg/kg	ND	ND
		Thallium	NA	7.71E-02	Hair	ND	mg/kg	ND	ND	ND	mg/kg	ND	ND
		Vanadium	NA	1.53E-04	Hair	9.70E+00	mg/kg	NA	1.48E-03	ND	mg/kg	ND	ND
		PCBs											
		Total PCBs	8.77E-07	6.14E-02	Ocular/eye, Nails, Immune	2.01E+03	mg/kg	1.76E-03	1.24E+02	1.40E-01	mg/kg	1.23E-07	8.59E-03
		SVOCs											
		Benzo(a)anthracene	4.27E-08	NA	NA	7.49E-01	mg/kg	3.20E-08	NA	2.60E+00	mg/kg	1.11E-07	NA
		Benzo(a)pyrene	4.27E-07	3.98E-03	Developmental	6.52E-01	mg/kg	2.78E-07	2.60E-03	1.30E+00	mg/kg	5.55E-07	5.18E-03
		Benzo(b)fluoranthene	4.27E-08	NA	NA	8.16E-01	mg/kg	3.48E-08	NA	2.20E+00	mg/kg	9.39E-08	NA
		Benzo(k)fluoranthene	4.27E-09	NA	NA	2.33E-01	mg/kg	9.94E-10	NA	6.10E-01	mg/kg	2.60E-09	NA
		Chrysene	4.27E-10	NA	NA	7.36E-01	mg/kg	3.14E-10	NA	2.50E+00	mg/kg	1.07E-09	NA
		Dibenzo(a,h)anthracene	4.27E-07	NA	NA	1.22E-01	mg/kg	5.20E-08	NA	3.10E-01	mg/kg	1.32E-07	NA
		Indeno(1,2,3-cd)pyrene	4.27E-08	NA	NA	3.91E-01	mg/kg	1.67E-08	NA	7.80E-01	mg/kg	3.33E-08	NA
		Naphthalene	NA	5.97E-05	Developmental	2.67E-02	mg/kg	NA	1.59E-06	6.30E-01	mg/kg	NA	3.76E-05
		TPH											
		Diesel Range Organics (C10-C20)	NA	7.71E-05	Liver, Kidney, Blood	8.00E+01	mg/kg	NA	6.16E-03	3.80E+02	mg/kg	NA	2.93E-02
		Exposure Point Total	<u> </u>			<u> </u>		1.77E-03	1.24E+02			1.05E-06	4.31E-02
	Exposure Mediu		11					1.77E-03	1.24E+02			1.05E-06	4.31E-02

Summary of Receptor Risks and Hazards for COPCs - Future Outdoor Industrial Worker Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future

Receptor Population: Outdoor Industrial Worker

Receptor Age: Adult

Medium	Exposure Medium	Chemical of Potential Concern	Unit Ri Exposure F		Primary Target Organ(s)		Transfor	mer Shop			Vehicle Re	fueling Area	
			Unit Cancer	Unit Hazard		Е	PC	Cancer	Hazard	EF	PC	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Surface Soil	Outdoor Air												
		Dioxin											
		2,3,7,8-TCDD-TEQ	2.79E+00	5.14E+06	Liver, reproductive, developmental, endocrine, respiratory, blood	ND	mg/m3	ND	ND	ND	mg/m3	ND	ND
		Inorganics											
		Arsenic	3.16E-04	1.37E+04	Neurological, developmental	2.97E-09	mg/m3	9.38E-13	4.07E-05	ND	mg/m3	ND	ND
		Cobalt	6.60E-04	3.42E+04	Respiratory	4.72E-09	mg/m3	3.12E-12	1.62E-04	ND	mg/m3	ND	ND
		Manganese	NA	4.11E+03	Neurological	4.55E-07	mg/m3	NA	1.87E-03	ND	mg/m3	ND	ND
		Nickel	1.91E-05	2.28E+03	Respiratory	2.80E-08	mg/m3	5.34E-13	6.39E-05	ND	mg/m3	ND	ND
		Thallium	NA	NA	NA	ND	mg/m3	ND	ND	ND	mg/m3	ND	ND
		Vanadium	NA	2.05E+03	Respiratory	1.70E-08	mg/m3	NA	3.49E-05	ND	mg/m3	ND	ND
		PCBs											
		Total PCBs	4.19E-05	NA	NA	3.52E-06	mg/m3	1.48E-10	NA	2.45E-10	mg/m3	1.03E-14	NA
		SVOCs											
		Benzo(a)anthracene	4.40E-06	NA	NA	1.31E-09	mg/m3	5.77E-15	NA	4.55E-09	mg/m3	2.00E-14	NA
		Benzo(a)pyrene	4.40E-05	1.03E+05	Developmental	1.14E-09	mg/m3	5.02E-14	1.17E-04	2.27E-09	mg/m3	1.00E-13	2.34E-04
		Benzo(b)fluoranthene	4.40E-06	NA	NA	1.43E-09	mg/m3	6.28E-15	NA	3.85E-09	mg/m3	1.69E-14	NA
		Benzo(k)fluoranthene	4.40E-07	NA	NA	4.08E-10	mg/m3	1.79E-16	NA	1.07E-09	mg/m3	4.70E-16	NA
		Chrysene	4.40E-08	NA	NA	1.29E-09	mg/m3	5.67E-17	NA	4.37E-09	mg/m3	1.93E-16	NA
		Dibenzo(a,h)anthracene	4.40E-05	NA	NA	2.13E-10	mg/m3	9.40E-15	NA	5.42E-10	mg/m3	2.39E-14	NA
		Indeno(1,2,3-cd)pyrene	4.40E-06	NA	NA	6.84E-10	mg/m3	3.01E-15	NA	1.36E-09	mg/m3	6.01E-15	NA
		Naphthalene	2.50E-06	6.85E+01	Neurological and Respiratory	4.67E-11	mg/m3	1.17E-16	3.20E-09	1.10E-09	mg/m3	2.75E-15	7.55E-08
		ТРН											
		Diesel Range Organics (C10-C20)	NA	2.05E+00	Respiratory	1.40E-07	mg/m3	NA	2.88E-07	6.65E-07	mg/m3	NA	1.37E-06
		Exposure Point Total	-	<u> </u>			<u> </u>	1.52E-10	2.29E-03			1.81E-13	2.35E-04
	Europeuro Maria		1			<u> </u>							
	Exposure Medi	um rotai	 					1.52E-10	2.29E-03			1.81E-13	2.35E-04
Surface Soil			<u> </u>					1.77E-03	1.24E+02			1.05E-06	4.33E-02
Receptor Total			<u> </u>					1.77E-03	1.24E+02			1.05E-06	4.33E-02

Notes

EPC - Exposure Point Concentration.

NA - Not applicable; no dose-response value.

ND - Not Detected.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

VOC - Volatile Organic Compound.

(1) The potential carcinogenic risk and noncarcinogenic hazard quotients are calculated per exposure area by multiplying the soil or air EPCs associated with each EA by the unit risks and hazard quotients calculated in the Tables G-1-2. RME and G-2a-2. RME based on a unit soil or air concentration.

Target Endpoint Evaluation		Target Endpoint Evaluation	
Organ	Endpoint HI	Organ	Endpoint HI
Blood	6.16E-03	Blood	2.93E-02
Decreased body and organ weights	6.16E-04	Decreased body and organ weights	
Endocrine		Endocrine	
Developmental	2.76E-03	Developmental	5.45E-03
Eye	1.24E+02	Eye	8.59E-03
Hair	1.48E-03	Hair	
Immune	1.24E+02	Immune	8.59E-03
Kidney	6.16E-03	Kidney	2.93E-02
Liver	6.16E-03	Liver	2.93E-02
Nails	1.24E+02	Nails	8.59E-03
Neurological	1.03E-02	Neurological	7.55E-08
Reproductive		Reproductive	
Respiratory	2.61E-04	Respiratory	1.44E-06
Skin	3.17E-03	Skin	
Thyroid	6.93E-03	Thyroid	
Vascular	3.17E-03	Vascular	

Table H-2-3. RME Summary of Receptor Risks and Hazards for COPCs - Recreational Visitor Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future

Receptor Population: Recreational Visitor Receptor Age: Older Child/Teen (7 to <19 years)

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcin	ogenic Risk			Non-Carcinogen	ic Hazard Quotier	nt										
				Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total									
Strafe Soil	Surface Soil	Hypothetical Future	Dioxin																		
		Park Land/Green	2.3.7.8-TCDD-TEQ	5.64E-09		1.34E-10	5.77E-09	Reproductive, Developmental	3.61E-04		8.57E-06	3.70E-04									
		Space	Inorganics		1																
			Arsenic	4.04E-08		1.60E-09	4.20E-08	Skin, Vascular	5.24E-04		2.07E-05	5.45E-04									
			Cobalt	NA		NA	NA	Thyroid	4.37E-02		NA	4.37E-02									
			Manganese	NA		NA	NA	Neurological	8.40E-04		NA	8.40E-04									
			Nickel	NA		NA	NA	Decreased body and organ weights	6.05E-05		NA	6.05E-05									
			Thallium	ND		ND	ND	Hair	ND		ND	ND									
			Vanadium	NA		NA	NA	Hair	1.16E-03		NA	1.16E-03									
			PCBs																		
												Total PCBs	3.18E-09		3.52E-10	3.53E-09	Ocular/eye, Nails, Immune	4.64E-04		5.13E-05	5.15E-04
																SVOCs					
			Benzo(a)anthracene	8.21E-10		8.43E-11	9.05E-10	NA	NA		NA	NA									
			Benzo(a)pyrene	7.78E-09		7.99E-10	8.57E-09	Developmental	6.05E-05		6.21E-06	6.67E-05									
			Benzo(b)fluoranthene	1.12E-09		1.15E-10	1.24E-09	NA	NA		NA	NA									
			Benzo(k)fluoranthene	3.93E-11		4.04E-12	4.33E-11	NA	NA		NA	NA									
			Chrysene	8.64E-12		8.87E-13	9.53E-12	NA	NA		NA	NA									
			Dibenzo(a,h)anthracene	1.99E-09		2.04E-10	2.19E-09	NA	NA		NA	NA									
			Indeno(1,2,3-cd)pyrene	6.48E-10		6.65E-11	7.15E-10	NA	NA		NA	NA									
			Naphthalene	NA		NA	NA	Developmental	9.07E-08		9.32E-09	1.00E-07									
			ТРН																		
			Diesel Range Organics (C10-C20)	NA		NA	NA	Liver, Kidney, Blood	1.31E-04		NA	1.31E-04									
		Exposure Point Total					6.50E-08					4.74E-02									
	Exposure Medium Total				-		6.50E-08			-		4.74E-02									

Table H-2-3. RME Summary of Receptor Risks and Hazards for COPCs - Recreational Visitor Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future

Receptor Population: Recreational Visitor Receptor Age: Older Child/Teen (7 to <19 years)

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcin	ogenic Risk			Non-Carcinogen	ic Hazard Quotier	nt	
				Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Surface Soil	Outdoor Air											
		Hypothetical Future	Dioxin									
		Park Land/Green	2,3,7,8-TCDD-TEQ		2.55E-16		2.55E-16	Liver, reproductive, developmental, endocrine, respiratory, blood		9.77E-10		9.77E-10
			Inorganics									
			Arsenic	-	2.98E-14		2.98E-14	Neurological, developmental		2.70E-06		2.70E-06
			Cobalt		3.12E-12		3.12E-12	Respiratory		3.37E-04		3.37E-04
			Manganese		NA		NA	Neurological		6.23E-05		6.23E-05
			Nickel		8.33E-15		8.33E-15	Respiratory		2.08E-06		2.08E-06
			Thallium		ND		ND	NA		ND		ND
			Vanadium		NA		NA	Respiratory		9.03E-06		9.03E-06
			PCBs									
			Total PCBs		1.40E-16		1.40E-16	NA		NA		NA
			SVOCs									
			Benzo(a)anthracene		7.61E-17		7.61E-17	NA		NA		NA
			Benzo(a)pyrene		7.21E-16		7.21E-16	Developmental		1.40E-06		1.40E-06
			Benzo(b)fluoranthene		1.04E-16		1.04E-16	NA		NA		NA
			Benzo(k)fluoranthene		3.64E-18		3.64E-18	NA		NA		NA
			Chrysene		8.01E-19		8.01E-19	NA		NA		NA
			Dibenzo(a,h)anthracene		1.84E-16		1.84E-16	NA		NA		NA
			Indeno(1,2,3-cd)pyrene		6.01E-17		6.01E-17	NA		NA		NA
			Naphthalene		1.63E-18		1.63E-18	Neurological and Respiratory		9.34E-11		9.34E-11
			TPH									
			Diesel Range Organics (C10-C20)		NA	-	NA	Respiratory	-	2.02E-09		2.02E-09
		Exposure Point Total			1		3.16E-12			<u> </u>		4.15E-04
	Exposure Medium Total	Exposure Fourt Total					3.16E-12					4.15E-04
Surface Soil	Exposure inicularit rotal						6.50E-08					4.78E-02
Receptor Total							6.50E-08					4.78E-02

Notes: CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

NA - Not applicable/no dose-response value.

ND - Not Detected in this area.

PCB - Polychlorinated Biphenyl.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

0.50E-08				4.70E-UZ
Target		Target Organ Hazard Index		
Organ	Chemical (ing/dermal)	Chemical (inhalation)	Surface Soil	Total
Blood	DRO	TCDD-TEQ	1.31E-04	1.31E-04
Decreased body and organ weights	Nickel		6.05E-05	6.05E-05
Developmental	TCDD-TEQ, BaP, Naphthalene	TCDD-TEQ, Arsenic, Benzo(a)pyrene	4.41E-04	4.41E-04
Endocrine		TCDD-TEQ	9.77E-10	9.77E-10
Eye	Total PCBs		5.15E-04	5.15E-04
Hair	Thallium, Vanadium		1.16E-03	1.16E-03
Immune	Total PCBs		5.15E-04	5.15E-04
Kidney	DRO		1.31E-04	1.31E-04
Liver	DRO	TCDD-TEQ	1.31E-04	1.31E-04
Nails	Total PCBs		5.15E-04	5.15E-04
Nervous System				
Reproductive	TCDD-TEQ	TCDD-TEQ	3.70E-04	3.70E-04
Respiratory		Cobalt, DRO, Nickel, Vanadium, Naphthalene, TCDD-TEQ	3.49E-04	3.49E-04
Skin	Arsenic		5.45E-04	5.45E-04
Thyroid	Cobalt		4.37E-02	4.37E-02
Vascular	Arsenic		5.45E-04	5.45E-04

Table H-2-4. RME Summary of Receptor Risks and Hazards for COPCs - Adult Angler (Mixed Fish Diet) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	k		Non-Carcinogenic Hazard Quotient		
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total
Sediment	Fringe	Waterside	1				2. 32. 2. 32. (2)			
	Surface	Investigation	Dioxin							İ
	Sediment	Area	2,3,7,8-TCDD-TEQ	3.52E-07	2.41E-07	5.92E-07	Reproductive, Developmental	1.35E-02	9.25E-03	2.28E-02
			Metals							
			Aluminum	NA	NA	NA	Neurological	3.97E-04	NA	3.97E-04
			Antimony	NA	NA	NA	Mortality, Blood	7.15E-04	NA	7.15E-04
			Arsenic	7.50E-08	8.55E-08	1.60E-07	Skin, Vascular	5.83E-04	6.65E-04	1.25E-03
			Cobalt	NA	NA	NA	Thyroid	2.44E-03	NA	2.44E-03
			Cyanide	NA	NA	NA	Reproductive	2.40E-04	NA	2.40E-04
			Manganese	NA	NA	NA	Neurological	4.35E-04	NA	4.35E-04
			Nickel	NA	NA	NA	Decreased body and organ weights	1.34E-04	NA	1.34E-04
			Thallium	NA	NA	NA	Hair	1.06E-03	NA	1.06E-03
			Vanadium	NA	NA	NA	Hair	1.32E-03	NA	1.32E-03
			PCBs							
			Total PCBs	1.51E-08	4.82E-08	6.32E-08	Ocular/eye, Nails, Immune	1.32E-03	4.21E-03	5.53E-03
			SVOCs							1
			Benzo(a)anthracene	1.59E-09	4.72E-09	6.31E-09	NA	NA	NA	NA
			Benzo(a)pyrene	9.69E-09	2.87E-08	3.84E-08	Developmental	1.13E-04	3.35E-04	4.48E-04
			Benzo(b)fluoranthene	1.42E-09	4.22E-09	5.64E-09	NA	NA .	NA NA	NA NA
			Benzo(k)fluoranthene	5.18E-11	1.53E-10	2.05E-10	NA	NA	NA	NA
			Chrysene	1.28E-11	3.81E-11	5.09E-11	NA	NA	NA	NA
			Dibenzo(a,h)anthracene	2.28E-09	6.75E-09	9.03E-09	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	8.33E-10	2.47E-09	3.30E-09	NA	NA	NA	NA
			TPH							1
			Diesel Range Organics (C10-C20)	NA	NA	NA	Liver, Kidney, Blood	5.55E-04	NA	5.55E-04
			Chemical Total	4.58E-07	4.21E-07	8.79E-07		2.28E-02	1.45E-02	3.73E-02
		Exposure Point Tota		1.002 07	1.2.12.07	8.79E-07		2.202 02	11.102.02	3.73E-02
	Exposure Medium Total		1	_		8.79E-07				3.73E-02
0 "	Exposure Medium Total			-						
Sediment Total			11			8.79E-07				3.73E-02
Surface	Surface	Waterside	L							İ
Water	Water	Investigation	Dioxin							
		Area	2,3,7,8-TCDD-TEQ	2.63E-10	Outside EPD	2.63E-10	Reproductive, Developmental	1.01E-05	Outside EPD	1.01E-05
			Metals							
			Arsenic	4.57E-09	1.34E-09	5.90E-09	Skin, Vascular	3.55E-05	1.04E-05	4.59E-05
		1	Cobalt	NA	NA	NA	Thyroid	4.01E-05	4.69E-06	4.48E-05
			Manganese	NA	NA	NA	Neurological	7.12E-05	5.21E-04	5.92E-04
		1	Pesticides							
			4,4'-DDT	1.80E-12	Outside EPD	1.80E-12	Liver	3.70E-08	Outside EPD	3.70E-08
		1	PCBs							
		1	Total PCBs	1.24E-11	Outside EPD	1.24E-11	Ocular/eye, Nails, Immune	5.44E-06	Outside EPD	5.44E-06
			Chemical Total	4.85E-09	1.34E-09	6.18E-09		1.62E-04	5.36E-04	6.98E-04
]		Exposure Point Tota	I			6.18E-09				6.98E-04
	Exposure Medium Total					6.18E-09				6.98E-04
Surface Water Total						6.18E-09			_	6.98E-04

Table H-2-4. RME Summary of Receptor Risks and Hazards for COPCs - Adult Angler (Mixed Fish Diet) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	sk	Non-Carcinogenic Hazard Quotient			
				Ingestion	Dermal	Exposure	Primary	Ingestion	Dermal	Exposure
				-		Routes Total	Target Organ(s)	-		Routes Total
Fish Tissue	Fish Fillet Tissue -	Upper Anacostia								
	Mixed Diet (1)		Metals							
			Mercury	NA		NA	Neurological (methyl mercury)	1.98E-01		1.98E-01
			Pesticides							
			4,4'-DDD	1.57E-07		1.57E-07	Liver	7.65E-02		7.65E-02
			4,4'-DDE	2.94E-07		2.94E-07	Liver, Developmental	1.01E-02		1.01E-02
			Aldrin	2.09E-07		2.09E-07	Liver	1.43E-03		1.43E-03
			alpha-Chlordane	3.48E-07		3.48E-07	Liver	6.97E-03		6.97E-03
			cis-Nonachlor	1.27E-07		1.27E-07	Liver	2.54E-03		2.54E-03
			Dieldrin	3.42E-06		3.42E-06	Liver	1.49E-02		1.49E-02
			gamma-Chlordane	6.46E-08		6.46E-08	Liver	1.29E-03		1.29E-03
			Heptachlor epoxide	6.26E-07		6.26E-07	Liver	1.85E-02		1.85E-02
			Mirex	1.81E-07		1.81E-07	Endocrine, Liver	1.76E-04		1.76E-04
			Oxychlordane	3.23E-08		3.23E-08	Liver	6.46E-04		6.46E-04
			trans-Nonachlor	2.00E-07		2.00E-07	Liver	4.00E-03		4.00E-03
			PCBs							
		1	Total PCBs	2.23E-05		2.23E-05	Ocular/eye, Nails, Immune	1.95E+00		1.95E+00
			PCB-TEQ	8.87E-06		8.87E-06	Reproductive, Developmental	3.41E-01		3.41E-01
Fish Tissue Total - Uppe	er Anacostia (Total PCBs)	3				2.80E-05				2.29E+00
Fish Tissue Total - Uppe	r Anacostia (PCB-TEQ)*					1.45E-05				6.76E-01
	Total F	Receptor Risk/Hazard	- Upper Anacostia (includes Total PCBs for sec	diment, surface w	ater, and fish)	2.89E-05				2.33E+00
			a (includes Total PCBs for sediment and surface			1.54E-05				7.14E-01

Notes

NA - Not applicable.

EPD - Effective Predictive Domain.

PCB - Polychlorinated Biphenyl.

PCB-TEQ - PCB Toxicity Equivalence.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-Tetrachloro-dibenzo-p-dioxin Toxicity Equivalence.

- (1) Assumes a mixed fish diet of the species with available fillet data based on a pooled EPC.
- (2) Total Risk/Hazard based on all COPCs except PCB-TEQ.
- (3) Total Risk/Hazard based on all COPCs except Total PCBs.

	Target Organ HI - Sediment, Surface	ce Water, and Upper	Anacostia Fish		
Organ	Chemical	Sediment	Surface Water	Fish Tissue	Total
	Antimony, DRO	1.27E-03			1E-03
Decreased body and organ weights	Nickel	1.34E-04			1E-04
	TCDD-TEQ, PCB-TEQ, Benzo(a)pyrene, 4,4-DDE	2.32E-02	1.01E-05	3.51E-01	4E-01
Endocrine	Mirex			1.76E-04	2E-04
Eye	Total PCBs	5.53E-03	5.44E-06	1.95E+00	2E+00
Hair	Thallium, Vanadium	2.38E-03			2E-03
Immune	Total PCBs	5.53E-03	5.44E-06	1.95E+00	2E+00
Kidney	DRO	5.55E-04			6E-04
Liver	Pesticides, DRO	5.55E-04	3.70E-08	1.37E-01	1E-01
Mortality	Antimony	7.15E-04			7E-04
Nails	Total PCBs	5.53E-03	5.44E-06	1.95E+00	2E+00
Neurological	Aluminum, Manganese, Methyl Mercury	8.32E-04	5.92E-04	1.98E-01	2E-01
Reproductive	TCDD-TEQ, PCB-TEQ, Cyanide	2.30E-02	1.01E-05	3.41E-01	4E-01
Skin	Arsenic	1.25E-03	4.59E-05		1E-03
Thyroid	Cobalt	2.44E-03	4.48E-05		2E-03
Vascular	Arsenic	1.25E-03	4.59E-05		1E-03

Table H-2-5. RME Summary of Receptor Risks and Hazards for COPCs - Older Child/Teen Angler (Mixed Fish Diet) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	sk	N	on-Carcinogenic Hazard Quotient		
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Tota
Sediment	Fringe	Waterside								
	Surface	Investigation	Dioxin							
	Sediment	Area	2,3,7,8-TCDD-TEQ	3.18E-07	1.29E-07	4.48E-07	Reproductive, Developmental	2.04E-02	8.30E-03	2.87E-02
			Metals							
			Aluminum	NA	NA	NA	Neurological	5.99E-04	NA	5.99E-04
			Antimony	NA	NA	NA	Mortality, Blood	1.08E-03	NA	1.08E-03
			Arsenic	6.79E-08	4.60E-08	1.14E-07	Skin, Vascular	8.80E-04	5.96E-04	1.48E-03
			Cobalt	NA	NA	NA	Thyroid	3.68E-03	NA	3.68E-03
			Cyanide	NA	NA	NA	Reproductive	3.63E-04	NA	3.63E-04
			Manganese	NA	NA	NA	Neurological	6.56E-04	NA	6.56E-04
			Nickel	NA	NA	NA	Decreased body and organ weights	2.02E-04	NA	2.02E-04
			Thallium	NA	NA	NA	Hair	1.60E-03	NA	1.60E-03
			Vanadium	NA	NA	NA	Hair	1.99E-03	NA	1.99E-03
			PCBs							
			Total PCBs	1.37E-08	2.59E-08	3.96E-08	Ocular/eye, Nails, Immune	1.99E-03	3.78E-03	5.77E-03
			SVOCs							
			Benzo(a)anthracene	3.60E-09	6.35E-09	9.95E-09	NA	NA	NA	NA
			Benzo(a)pyrene	2.19E-08	3.87E-08	6.06E-08	Developmental	1.71E-04	3.01E-04	4.71E-04
			Benzo(b)fluoranthene	3.22E-09	5.68E-09	8.90E-09	NA	NA	NA	NA
			Benzo(k)fluoranthene	1.17E-10	2.06E-10	3.24E-10	NA	NA	NA	NA
			Chrysene	2.91E-11	5.12E-11	8.03E-11	NA	NA	NA	NA
			Dibenzo(a,h)anthracene	5.16E-09	9.08E-09	1.42E-08	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	1.89E-09	3.32E-09	5.21E-09	NA	NA	NA	NA
			ТРН							
			Diesel Range Organics (C10-C20)	NA	NA	NA	Liver, Kidney, Blood	8.38E-04	NA	8.38E-04
			Chemical Total	4.36E-07	2.65E-07	7.01E-07		3.45E-02	1.30E-02	4.74E-02
		Exposure Point Tot	al			7.01E-07				4.74E-02
	Exposure Medium Total	al				7.01E-07				4.74E-02
Sediment Total						7.01E-07				4.74E-02
Surface	Surface	Waterside								
Water	Water	Investigation	Dioxin							
		Area	2,3,7,8-TCDD-TEQ	2.38E-10	Outside EPD	2.38E-10	Reproductive, Developmental	1.53E-05	Outside EPD	1.53E-05
			Metals							
			Arsenic	4.14E-09	8.63E-10	5.00E-09	Skin, Vascular	5.36E-05	1.12E-05	6.48E-05
			Cobalt	NA	NA	NA	Thyroid	6.06E-05	5.05E-06	6.56E-05
			Manganese	NA	NA	NA	Neurological	1.08E-04	5.60E-04	6.68E-04
			Pesticides				-			1
			4,4'-DDT	1.63E-12	Outside EPD	1.63E-12	Liver	5.59E-08	Outside EPD	5.59E-08
			PCBs							
			Total PCBs	1.13E-11	Outside EPD	1.13E-11	Ocular/eye, Nails, Immune	8.21E-06	Outside EPD	8.21E-06
			Chemical Total	4.39E-09	8.63E-10	5.25E-09	Social/cyc, Halls, Illindie	2.45E-04	5.77E-04	8.22E-04
		Exposure Point Tot	· · ·	4.532-09	0.03L-10	5.25E-09	I	2,40L-04	J.11L-04	8.22E-04
	Exposure Medium Tota		aı			5.25E-09 5.25E-09				
	Exposure iviedium Tota	di					<u> </u>			8.22E-04
ırface Water Total	e Water Total			П		5.25E-09				8.22E-04

Table H-2-5. RME Summary of Receptor Risks and Hazards for COPCs - Older Child/Teen Angler (Mixed Fish Diet) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Older Child/Teen

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ri	sk	N	on-Carcinogenic Hazard Quotient		
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total
Fish Tissue	Fish Fillet Tissue -	Upper Anacostia								1
	Mixed Diet (1)	.,,,	Metals							+
	, ,		Mercury	NA		NA	Neurological (methyl mercury)	1.94E-01		1.94E-01
			Pesticides							1
			4,4'-DDD	9.26E-08		9.26E-08	Liver	7.50E-02		7.50E-02
			4,4'-DDE	1.73E-07		1.73E-07	Liver, Developmental	9.90E-03		9.90E-03
			Aldrin	1.23E-07		1.23E-07	Liver	1.41E-03		1.41E-03
			alpha-Chlordane	2.05E-07		2.05E-07	Liver	6.84E-03		6.84E-03
			cis-Nonachlor	7.46E-08		7.46E-08	Liver	2.49E-03		2.49E-03
			Dieldrin	2.01E-06		2.01E-06	Liver	1.47E-02		1.47E-02
			gamma-Chlordane	3.80E-08		3.80E-08	Liver	1.27E-03		1.27E-03
			Heptachlor epoxide	3.69E-07		3.69E-07	Liver	1.82E-02		1.82E-02
			Mirex	1.06E-07		1.06E-07	Endocrine, Liver	1.72E-04		1.72E-04
			Oxychlordane	1.90E-08		1.90E-08	Liver	6.34E-04		6.34E-04
			trans-Nonachlor	1.18E-07		1.18E-07	Liver	3.92E-03		3.92E-03
			PCBs							
			Total PCBs	1.31E-05		1.31E-05	Ocular/eye, Nails, Immune	1.92E+00		1.92E+00
			PCB-TEQ	5.22E-06		5.22E-06	Reproductive, Developmental	3.35E-01		3.35E-01
Fish Tissue Total - Uppe	er Anacostia (Total PCBs)	3			-	1.65E-05	·		-	2.24E+00
Fish Tissue Total - Uppe	er Anacostia (PCB-TEQ)*					8.55E-06				6.63E-01
	Total R	eceptor Risk/Hazard -	Upper Anacostia (includes Total PCBs for s	sediment, surface v	vater, and fish)	1.72E-05		•	•	2.29E+00
	Total Receptor Risk/Hazard - Upper Anacostia (includes Total PCBs for sediment and surface water and PCB-TEQ for fis				9.25E-06				7.11E-01	

Notes

NA - Not applicable.

EPD - Effective Predictive Domain.

PCB - Polychlorinated Biphenyl.

PCB-TEQ - PCB Toxicity Equivalence.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-Tetrachloro-dibenzo-p-dioxin Toxicity Equivalence.

- (1) Assumes a mixed fish diet of the species with available fillet data based on a pooled EPC.
- (2) Total Risk/Hazard based on all COPCs except PCB-TEQ.
- (3) Total Risk/Hazard based on all COPCs except Total PCBs.

Target	Organ HI - Sediment, Surface Wa	ater, and Upper An	acostia Fish		
Organ	Chemical	Sediment	Surface Water	Fish Tissue	Total
Blood Antimony,	DRO	1.92E-03			2E-03
Weights Nickel		2.02E-04			2E-0
Developmental TCDD-TE	Q, PCB-TEQ, Benzo(a)pyrene, 4	2.92E-02	1.53E-05	3.45E-01	4E-0
Endocrine Mirex				1.72E-04	2E-0
Eye Total PCB	is	5.77E-03	8.21E-06	1.92E+00	2E+0
Hair Thallium,	Vanadium	3.59E-03			4E-0
Immune Total PCB	is	5.77E-03	8.21E-06	1.92E+00	2E+0
Kidney DRO		8.38E-04			8E-0
Liver Pesticides	s, DRO	8.38E-04	5.59E-08	1.34E-01	1E-0
Mortality Antimony		1.08E-03			1E-0
Nails Total PCB	ls	5.77E-03	8.21E-06	1.92E+00	2E+0
Neurological Aluminum	, Manganese, Methyl Mercury	1.26E-03	6.68E-04	1.94E-01	2E-0
Reproductive TCDD-TE	Q, PCB-TEQ, Cyanide	2.91E-02	1.53E-05	3.35E-01	4E-0
Skin Arsenic		1.48E-03	6.48E-05		2E-0
Thyroid Cobalt		3.68E-03	6.56E-05		4E-0
Vascular Arsenic		1.48E-03	6.48E-05		2E-0

Table H-2-6. RME Summary of Receptor Risks and Hazards for COPCs - Child Angler (Mixed Fish Diet) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	sk	N	on-Carcinogenic Hazard Quotient		
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Tota
Sediment	Fringe	Waterside								
	Surface	Investigation	Dioxin							
	Sediment	Area	2,3,7,8-TCDD-TEQ	9.93E-07	1.72E-07	1.16E-06	Reproductive, Developmental	1.27E-01	2.20E-02	1.49E-01
			Metals							
			Aluminum	NA	NA	NA	Neurological	3.74E-03	NA	3.74E-03
			Antimony	NA	NA	NA	Mortality, Blood	6.73E-03	NA	6.73E-03
			Arsenic	2.12E-07	6.10E-08	2.73E-07	Skin, Vascular	5.49E-03	1.58E-03	7.07E-03
			Cobalt	NA	NA	NA	Thyroid	2.30E-02	NA	2.30E-02
			Cyanide	NA	NA	NA	Reproductive	2.26E-03	NA	2.26E-03
			Manganese	NA	NA	NA	Neurological	4.09E-03	NA	4.09E-03
			Nickel	NA	NA	NA	Decreased body and organ weights	1.26E-03	NA	1.26E-03
			Thallium	NA	NA	NA	Hair	9.97E-03	NA	9.97E-03
			Vanadium	NA	NA	NA	Hair	1.24E-02	NA	1.24E-02
			PCBs							
			Total PCBs	4.26E-08	3.43E-08	7.69E-08	Ocular/eye, Nails, Immune	1.24E-02	1.00E-02	2.24E-02
			SVOCs							
			Benzo(a)anthracene	1.89E-08	1.41E-08	3.30E-08	NA	NA	NA	NA
			Benzo(a)pyrene	1.15E-07	8.61E-08	2.01E-07	Developmental	1.06E-03	7.97E-04	1.86E-03
			Benzo(b)fluoranthene	1.69E-08	1.26E-08	2.95E-08	NA	NA	NA	NA
			Benzo(k)fluoranthene	6.14E-10	4.60E-10	1.07E-09	NA	NA	NA	NA
			Chrysene	1.52E-10	1.14E-10	2.66E-10	NA	NA	NA	NA
			Dibenzo(a,h)anthracene	2.70E-08	2.02E-08	4.72E-08	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	9.88E-09	7.40E-09	1.73E-08	NA	NA	NA	NA
			ТРН							
			Diesel Range Organics (C10-C2	NA	NA	NA	Liver, Kidney, Blood	5.23E-03	NA	5.23E-03
			Chemical Total	1.44E-06	4.08E-07	1.84E-06		2.15E-01	3.44E-02	2.49E-01
		Exposure Point Tota	al			1.84E-06				2.49E-01
	Exposure Medium Tota	al .				1.84E-06				2.49E-01
Sediment Total						1.84E-06				2.49E-01
Surface	Surface	Waterside								
Water	Water	Investigation	Dioxin							
		Area	2,3,7,8-TCDD-TEQ	3.71E-10	Outside EPD	3.71E-10	Reproductive, Developmental	4.76E-05	Outside EPD	4.76E-05
			Metals							
			Arsenic	6.45E-09	1.02E-09	7.47E-09	Skin, Vascular	1.67E-04	2.65E-05	1.94E-04
			Cobalt	NA	NA	NA	Thyroid	1.89E-04	1.20E-05	2.01E-04
			Manganese	NA	NA	NA	Neurological	3.35E-04	1.33E-03	1.66E-03
			Pesticides							
			4,4'-DDT	2.54E-12	Outside EPD	2.54E-12	Liver	1.74E-07	Outside EPD	1.74E-07
			PCBs							
			Total PCBs	1.76E-11	Outside EPD	1.76E-11	Ocular/eye, Nails, Immune	2.56E-05	Outside EPD	
			Chemical Total	6.84E-09	1.02E-09	7.86E-09		7.65E-04	1.36E-03	2.13E-03
		Exposure Point Tota	al			7.86E-09				2.13E-03
	Exposure Medium Tota	al				7.86E-09				2.13E-03
urface Water Total	·					7.86E-09				2.13E-03

Table H-2-6. RME Summary of Receptor Risks and Hazards for COPCs - Child Angler (Mixed Fish Diet) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future
Receptor Population: Angler
Receptor Age: Child

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	sk	N	on-Carcinogenic Hazard Quotient		
				Ingestion	Dermal	Exposure	Primary	Ingestion	Dermal	Exposure
				, and the second		Routes Total	Target Organ(s)	· ·		Routes Total
Fish Tissue	Fish Fillet Tissue -	Upper Anacostia								
	Mixed Diet (1)		Metals							
			Mercury	NA	-	NA	Neurological (methyl mercury)	3.25E-01		3.25E-01
			Pesticides							
			4,4'-DDD	7.77E-08		7.77E-08	Liver	1.26E-01		1.26E-01
			4,4'-DDE	1.45E-07		1.45E-07	Liver, Developmental	1.66E-02		1.66E-02
			Aldrin	1.03E-07		1.03E-07	Liver	2.36E-03		2.36E-03
			alpha-Chlordane	1.72E-07		1.72E-07	Liver	1.15E-02		1.15E-02
			cis-Nonachlor	6.26E-08		6.26E-08	Liver	4.18E-03		4.18E-03
			Dieldrin	1.69E-06		1.69E-06	Liver	2.46E-02		2.46E-02
			gamma-Chlordane	3.19E-08		3.19E-08	Liver	2.13E-03		2.13E-03
			Heptachlor epoxide	3.09E-07		3.09E-07	Liver	3.05E-02		3.05E-02
			Mirex	8.92E-08		8.92E-08	Endocrine, Liver	2.89E-04		2.89E-04
			Oxychlordane	1.60E-08		1.60E-08	Liver	1.06E-03		1.06E-03
			trans-Nonachlor	9.88E-08		9.88E-08	Liver	6.59E-03		6.59E-03
			PCBs							
			Total PCBs	1.10E-05		1.10E-05	Ocular/eye, Nails, Immune	3.22E+00		3.22E+00
			PCB-TEQ	4.38E-06	-	4.38E-06	Reproductive, Developmental	5.62E-01		5.62E-01
Fish Tissue Total - Uppe	r Anacostia (Total PCBs)	3		•	•	1.38E-05			•	3.77E+00
Fish Tissue Total - Uppe	r Anacostia (PCB-TEQ) ⁴	•				7.18E-06				1.11E+00
	Total Receptor Risk	k/Hazard - Upper Anac	costia (includes Total PCBs for se	diment, surface w	rater, and fish)	1.57E-05	_		•	4.02E+00
Total Recep	otor Risk/Hazard - Upper	Anacostia (includes T	otal PCBs for sediment and surfa	ce water and PCE	3-TEQ for fish)	9.03E-06	_			1.36E+00

Notes

NA - Not applicable.

EPD - Effective Predictive Domain.

PCB - Polychlorinated Biphenyl.

PCB-TEQ - PCB Toxicity Equivalence.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-Tetrachloro-dibenzo-p-dioxin Toxicity Equivalence.

- (1) Assumes a mixed fish diet of the species with available fillet data based on a pooled EPC.
- (2) Total Risk/Hazard based on all COPCs except PCB-TEQ.
- (3) Total Risk/Hazard based on all COPCs except Total PCBs.

	Target Organ HI - Sediment, Surface W	ater, and Upper Ar	nacostia Fish		
Organ	Chemical	Sediment	Surface Water	Fish Tissue	Tot
	Antimony, DRO	1.20E-02			1E-
Decreased body and organ weights	Nickel	1.26E-03			1E-
Developmental	TCDD-TEQ, PCB-TEQ, Benzo(a)pyrene, 4,4-DDE	1.51E-01	4.76E-05	5.78E-01	7E-
Endocrine	Mirex			2.89E-04	3E-
Eye	Total PCBs	2.24E-02	2.56E-05	3.22E+00	3E-
Hair	Thallium, Vanadium	2.24E-02			2E-
Immune	Total PCBs	2.24E-02	2.56E-05	3.22E+00	3E-
Kidney	DRO	5.23E-03			5E
Liver	Pesticides, DRO	5.23E-03	1.74E-07	2.26E-01	2E
Mortality	Antimony	6.73E-03			7E
Nails	Total PCBs	2.24E-02	2.56E-05	3.22E+00	3E-
Neurological	Aluminum, Manganese, Methyl Mercury	7.83E-03	1.66E-03	3.25E-01	3E
Reproductive	TCDD-TEQ, PCB-TEQ, Cyanide	1.52E-01	4.76E-05	5.62E-01	7E
Skin	Arsenic	7.07E-03	1.94E-04		7E
Thyroid	Cobalt	2.30E-02	2.01E-04		2E-
Vascular	Arsenic	7.07E-03	1.94E-04		7E

Table H-2-7. RME Summary of Receptor Risks and Hazards for COPCs - Adult Angler (Mixed Fish Diet) - Regional Areas Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ri	sk	1	Non-Carcinogenic Hazard Quotient		
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Tota
Fish Tissue	Fish Fillet Tissue -	Upper Potomac								
	Mixed Diet (1)		Inorganics							
			Arsenic	2.13E-06		2.13E-06	Skin, Vascular	1.66E-02		1.66E-02
			Arsenic, organic	NA		NA	Bladder	2.24E-03		2.24E-03
			Mercury	NA		NA	Neurological (methyl mercury)	2.01E-01		2.01E-01
			Pesticides							
			4,4'-DDD	3.26E-07		3.26E-07	Liver	1.58E-01		1.58E-01
			4,4'-DDE	2.66E-06		2.66E-06	Liver, Developmental	9.11E-02		9.11E-02
			Aldrin	6.56E-07		6.56E-07	Liver	4.50E-03		4.50E-03
			alpha-Chlordane	5.74E-07		5.74E-07	Liver	1.15E-02		1.15E-02
			beta-BHC	1.00E-07		1.00E-07	NA	NA		NA
			cis-Nonachlor	2.48E-07		2.48E-07	Liver	4.95E-03		4.95E-03
			Dieldrin	1.48E-05		1.48E-05	Liver	6.46E-02		6.46E-02
			gamma-Chlordane	5.22E-08		5.22E-08	Liver	1.04E-03		1.04E-03
			Heptachlor epoxide	9.92E-07		9.92E-07	Liver	2.93E-02		2.93E-02
			Hexachlorobenzene	7.97E-08		7.97E-08	Liver	2.18E-04		2.18E-04
			Mirex	1.99E-07		1.99E-07	Endocrine, Liver	1.94E-04		1.94E-04
			Oxychlordane	6.19E-08		6.19E-08	Liver	1.24E-03		1.24E-03
			trans-Nonachlor	7.04E-07		7.04E-07	Liver	1.41E-02		1.41E-02
			PCBs							
			Total PCBs	9.99E-05		9.99E-05	Ocular/eye, Nails, Immune	8.75E+00		8.75E+00
			PCB-TEQ	1.41E-04		1.41E-04	Reproductive, Developmental	5.42E+00		5.42E+00
Fish Tissue Total - Upper	Anacostia (Total PCBs)3	3				1.23E-04				9.35E+00
Fish Tissue Total - Upper	Anacostia (PCB-TEQ) ⁴					1.64E-04				6.02E+00
Fish Tissue	Fish Fillet Tissue -	Lower Potomac								
	Mixed Diet (1)		Inorganics							
	, ,		Arsenic	1.99E-05		1.99E-05	Skin, Vascular	1.55E-01		1.55E-01
			Arsenic, organic	NA		NA	Bladder	2.09E-02		2.09E-02
			Mercury	NA		NA	Neurological (methyl mercury)	1.38E-01		1.38E-01
			Pesticides							
			4,4'-DDD	6.40E-08		6.40E-08	Liver	3.11E-02		3.11E-02
			4,4'-DDE	4.48E-07		4.48E-07	Liver, Developmental	1.54E-02		1.54E-02
			alpha-Chlordane	1.73E-07		1.73E-07	Liver	3.47E-03		3.47E-03
			Dieldrin	3.40E-06		3.40E-06	Liver	1.49E-02		1.49E-02
			gamma-Chlordane	8.97E-08		8.97E-08	Liver	1.79E-03		1.79E-03
			Heptachlor epoxide	9.10E-07		9.10E-07	Liver	2.69E-02		2.69E-02
			Oxychlordane	4.34E-08		4.34E-08	Liver	8.69E-04		8.69E-04
			trans-Nonachlor	2.18E-07	-	2.18E-07	Liver	4.37E-03		4.37E-03
			PCBs							
			Total PCBs	1.57E-05		1.57E-05	Ocular/eye, Nails, Immune	1.37E+00		1.37E+00
			PCB-TEQ	1.80E-05		1.80E-05	Reproductive, Developmental	6.92E-01		6.92E-01
ish Tissue Total - Lower	Potomac (Total PCBs)3		··			4.09E-05		•		1.78E+00
	Potomac (PCB-TEQ)*					4.32E-05				1.10E+00

Table H-2-7. RME Summary of Receptor Risks and Hazards for COPCs - Adult Angler (Mixed Fish Diet) - Regional Areas Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris		N	Ion-Carcinogenic Hazard Quotier		
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Tota
Fish Tissue	Fish Fillet Tissue -	Non-Tidal Anacostia								
	Mixed Diet (1)		Dioxin							
			2,3,7,8-TCDD-TEQ	3.95E-07		3.95E-07	Reproductive, Developmental	1.52E-02		1.52E-02
			Inorganics							
			Arsenic	4.06E-07	-	4.06E-07	Skin, Vascular	3.16E-03		3.16E-03
			Arsenic, organic	NA		NA	Bladder	4.26E-04		4.26E-04
			Cobalt	NA		NA	Thyroid	6.75E-03		6.75E-03
			Mercury	NA		NA	Neurological (methyl mercury)	3.73E-01		3.73E-01
			Thallium	NA		NA	Hair	4.81E-02		4.81E-02
			Pesticides							
			Chlordane	2.94E-07	-	2.94E-07	Liver	5.87E-03		5.87E-03
			Dieldrin	1.01E-06		1.01E-06	Liver	4.44E-03		4.44E-03
			Heptachlor epoxide	5.02E-07		5.02E-07	Liver	1.48E-02		1.48E-02
			PCBs							
			Total PCBs	2.06E-06		2.06E-06	Ocular/eye, Nails, Immune	1.80E-01		1.80E-01
		<u> </u>	PCB-TEQ	2.89E-06		2.89E-06	Reproductive, Developmental	1.11E-01		1.11E-01
	Tidal Anacostia (Total Po					4.67E-06				6.51E-01
ish Tissue Total - Non-	Tidal Anacostia (PCB-TE	:Q) ⁻				5.50E-06				5.82E-01
Fish Tissue	Fish Fillet Tissue -	Lower Anacostia								
	Mixed Diet (1)		Metals							
			Arsenic	1.31E-06		1.31E-06	Skin, Vascular	1.02E-02		1.02E-02
			Arsenic, organic	NA	-	NA	Bladder	1.38E-03		1.38E-03
			Mercury	NA		NA	Neurological (methyl mercury)	1.22E-01		1.22E-01
			Pesticides							
			4,4'-DDD	2.56E-07		2.56E-07	Liver	1.25E-01		1.25E-01
			4,4'-DDE	7.23E-07	-	7.23E-07	Liver, Developmental	2.48E-02		2.48E-02
			Aldrin	2.20E-07	-	2.20E-07	Liver	1.51E-03		1.51E-03
			alpha-Chlordane	4.05E-07		4.05E-07	Liver	8.11E-03		8.11E-03
			cis-Nonachlor	1.74E-07		1.74E-07	Liver	3.48E-03		3.48E-03
			Dieldrin	9.15E-06	-	9.15E-06	Liver	4.01E-02		4.01E-02
			gamma-Chlordane	2.23E-07	-	2.23E-07	Liver	4.46E-03		4.46E-03
			Heptachlor epoxide	1.25E-06		1.25E-06	Liver	3.69E-02		3.69E-02
			Mirex	2.27E-07		2.27E-07	Endocrine, Liver	2.21E-04		2.21E-04
			Oxychlordane	9.15E-08	-	9.15E-08	Liver Liver	1.83E-03		1.83E-03
			trans-Nonachlor PCBs	5.04E-07	-	5.04E-07	Livei	1.01E-02		1.01E-02
			Total PCBs	3.28E-05		3.28E-05	Ocular/eye, Nails, Immune	2.87E+00		2.87E+00
			PCB-TEQ	3.28E-05 4.62E-05		3.28E-05 4.62E-05	Reproductive, Developmental	2.87E+00 1.78E+00		2.87E+00 1.78E+00
ich Tiesus Total	Assessin (Total DOD-	12	FUD-IEU	4.02E-05	-		reproductive, Developmental	1./0E+00		
	er Anacostia (Total PCBs er Anacostia (PCB-TEQ)					4.73E-05				3.26E+00
ion rissue rolai - LOW	n niacostia (FCD-TEQ)	<u> </u>	D T		/T-1-I DOD-17	6.07E-05				2.16E+00
			· · · · · · · · · · · · · · · · · · ·	Ipper Potomac Fish		1.23E-04				9.35E+00
				Jpper Potomac Fish		1.64E-04				6.02E+00
				ower Potomac Fish		4.09E-05				1.78E+00
				ower Potomac Fish		4.32E-05				1.10E+00
	<u> </u>		Receptor Total - Non-T			4.67E-06			·	6.51E-01
	<u> </u>		Receptor Total - Non-1	Tidal Anacostia Fish	(PCB-TEQs) ³	5.50E-06			·	5.82E-01
			Receptor Total - Lo	wer Anacostia Fish	(Total PCBs) ²	4.73E-05				3.26E+00
			Receptor Total - Lo	ower Anacostia Fish	(PCB-TEQs) ³	6.07E-05				2.16E+00

Table H-2-7. RME Summary of Receptor Risks and Hazards for COPCs - Adult Angler (Mixed Fish Diet) - Regional Areas Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Teen

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern	Carcinogenic Risk		Non-Carcinogenic Hazard Quotient				
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total

Notes

NA - Not applicable.

ND - Not Detected.

PCB - Polychlorinated Biphenyl.

PCB-TEQ - PCB Toxicity Equivalence.

RfD - Oral Reference Dose.

- (1) Assumes a mixed fish diet of the species with available fillet data based on a pooled EPC.
- (2) Total Receptor Risk/Hazard based on all COPCs except PCB-TEQ.
- (3) Total Receptor Risk/Hazard based on all COPCs except Total PCBs.

	Targe	et Organ HI - Upper Potomac Fish		
Organ		Chemical	Fish Tissue	Total
	Bladder	Arsenic, organic	2.24E-03	2E-03
	Developmental	PCB-TEQ, TCDD-TEQ, 4,4-DDE	5.51E+00	6E+00
	Endocrine	Mirex	1.94E-04	2E-04
	Eye	Total PCBs	8.75E+00	9E+00
	Immune	Total PCBs	8.75E+00	9E+00
	Liver	Pesticides	3.81E-01	4E-01
	Nails	Total PCBs	8.75E+00	9E+00
	Neurological	Methyl Mercury	2.01E-01	2E-01
	Reproductive	PCB-TEQ, TCDD-TEQ	5.42E+00	5E+00
	Skin	Arsenic	1.66E-02	2E-02
	Vascular	Arsenic	1.66E-02	2E-02

Targ	et Organ HI - Lower Potomac Fish		
Organ	Chemical	Fish Tissue	Total
Bladder	Arsenic, organic	2.09E-02	2E-02
Developmental	PCB-TEQ, TCDD-TEQ, 4,4-DDE	7.07E-01	7E-01
Eye	Total PCBs	1.37E+00	1E+00
Immune	Total PCBs	1.37E+00	1E+00
Liver	Pesticides	9.88E-02	1E-01
Nails	Total PCBs	1.37E+00	1E+00
Neurological	Methyl Mercury	1.38E-01	1E-01
Reproductive	PCB-TEQ, TCDD-TEQ	6.92E-01	7E-01
Skin	Arsenic	1.55E-01	2E-01
Vascular	Arsenic	1.55E-01	2E-01

	Target Organ HI - Lower Anacostia		
Organ	Chemical	Fish Tissue	Total
Bladder	Arsenic, organic	1.38E-03	1E-03
Developmental	PCB-TEQ, TCDD-TEQ, 4,4-DDE	1.80E+00	2E+00
Endocrine	Mirex	2.21E-04	2E-04
Eye	Total PCBs	2.87E+00	3E+00
Immune	Total PCBs	2.87E+00	3E+00
Liver	Pesticides	2.56E-01	3E-01
Nails	Total PCBs	2.87E+00	3E+00
Neurological	Methyl Mercury	1.22E-01	1E-01
Reproductive	PCB-TEQ, TCDD-TEQ	1.78E+00	2E+00
Skin	Arsenic	1.02E-02	1E-02
Vascular	Arsenic	1.02E-02	1E-02

Target	Organ HI - Non-Tidal Anacostia Fish		
Organ	Chemical	Fish Tissue	Total
Bladder	Arsenic, organic	4.26E-04	4E-04
Developmental	PCB-TEQ, TCDD-TEQ, 4,4-DDE	1.26E-01	1E-01
Eye	Total PCBs	1.80E-01	2E-01
Hair	Thallium	4.81E-02	5E-02
Immune	Total PCBs	1.80E-01	2E-01
Liver	Pesticides	2.52E-02	3E-02
Nails	Total PCBs	1.80E-01	2E-01
Neurological	Methyl Mercury	3.73E-01	4E-01
Reproductive	PCB-TEQ, TCDD-TEQ	1.26E-01	1E-01
Skin	Arsenic	3.16E-03	3E-03
Thyroid	Cobalt	6.75E-03	7E-03
Vascular	Arsenic	3.16E-03	3E-03

Table H-2-8. RME Summary of Receptor Risks and Hazards for COPCs - Older Child/Teen Angler (Mixed Fish Diet) - Regional Areas Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ri	isk	1	Ion-Carcinogenic Hazard Quotient		
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Tota
Fish Tissue	Fish Fillet Tissue -	Upper Potomac								
	Mixed Diet (1)		Metals							
			Arsenic	1.26E-06	1	1.26E-06	Skin, Vascular	1.63E-02		1.63E-02
			Arsenic, organic	NA		NA	Bladder	2.20E-03		2.20E-03
			Mercury	NA	-	NA	Neurological (methyl mercury)	1.97E-01		1.97E-01
			Pesticides							
			4,4'-DDD	1.92E-07	-	1.92E-07	Liver	1.55E-01		1.55E-01
			4,4'-DDE	1.56E-06	-	1.56E-06	Liver, Developmental	8.94E-02		8.94E-02
			Aldrin	3.86E-07	-	3.86E-07	Liver	4.42E-03		4.42E-03
			alpha-Chlordane	3.38E-07	-	3.38E-07	Liver	1.13E-02		1.13E-02
			beta-BHC	5.89E-08	-	5.89E-08	NA	NA		NA
			cis-Nonachlor	1.46E-07	-	1.46E-07	Liver	4.86E-03		4.86E-03
			Dieldrin	8.69E-06	-	8.69E-06	Liver	6.34E-02		6.34E-02
			gamma-Chlordane	3.07E-08	-	3.07E-08	Liver	1.02E-03		1.02E-03
			Heptachlor epoxide	5.84E-07	-	5.84E-07	Liver	2.88E-02		2.88E-02
			Hexachlorobenzene	4.69E-08	-	4.69E-08	Liver	2.14E-04		2.14E-04
			Mirex	1.17E-07		1.17E-07	Endocrine, Liver	1.90E-04		1.90E-04
			Oxychlordane	3.64E-08	-	3.64E-08	Liver	1.21E-03		1.21E-03
			trans-Nonachlor	4.15E-07	-	4.15E-07	Liver	1.38E-02		1.38E-02
			PCBs							
			Total PCBs	5.88E-05	-	5.88E-05	Ocular/eye, Nails, Immune	8.58E+00		8.58E+00
			PCB-TEQ	8.29E-05		8.29E-05	Reproductive, Developmental	5.32E+00		5.32E+00
	r Anacostia (Total PCBs)3	3				7.27E-05				9.17E+00
Fish Tissue Total - Uppe	r Anacostia (PCB-TEQ)*					9.68E-05				5.91E+00
Fish Tissue	Fish Fillet Tissue -	Lower Potomac								
	Mixed Diet (1)		Metals							
			Arsenic	1.17E-05	-	1.17E-05	Skin, Vascular	1.52E-01		1.52E-01
			Arsenic, organic	NA	-	NA	Bladder	2.05E-02		2.05E-02
			Mercury	NA	-	NA	Neurological (methyl mercury)	1.35E-01		1.35E-01
			Pesticides							
			4,4'-DDD	3.76E-08	-	3.76E-08	Liver	3.05E-02		3.05E-02
			4,4'-DDE	2.64E-07	-	2.64E-07	Liver, Developmental	1.51E-02		1.51E-02
			alpha-Chlordane	1.02E-07	-	1.02E-07	Liver	3.40E-03		3.40E-03
			Dieldrin	2.00E-06	-	2.00E-06	Liver	1.46E-02		1.46E-02
			gamma-Chlordane	5.28E-08	-	5.28E-08	Liver	1.76E-03		1.76E-03
			Heptachlor epoxide	5.36E-07	-	5.36E-07	Liver	2.64E-02		2.64E-02
			Oxychlordane	2.56E-08	1	2.56E-08	Liver	8.52E-04		8.52E-04
			trans-Nonachlor	1.28E-07	1	1.28E-07	Liver	4.28E-03		4.28E-03
			PCBs							
			Total PCBs	9.22E-06	-	9.22E-06	Ocular/eye, Nails, Immune	1.34E+00		1.34E+00
	<u> </u>		PCB-TEQ	1.06E-05	ı	1.06E-05	Reproductive, Developmental	6.79E-01		6.79E-01
Fish Tissue Total - Lowe	r Potomac (Total PCBs)3	-		· -	•	2.41E-05				1.75E+00
ish Tissue Total - Lowe	r Potomac (PCB-TEQ)*					2.54E-05				1.08E+00

Table H-2-8. RME Summary of Receptor Risks and Hazards for COPCs - Older Child/Teen Angler (Mixed Fish Diet) - Regional Areas Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	•	N	lon-Carcinogenic Hazard Quotier	•	
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Tota
Fish Tissue	Fish Fillet Tissue -	Upstream Non-Tidal								
	Mixed Diet (1)	Anacostia	Dioxin							
			2,3,7,8-TCDD-TEQ	2.32E-07	-	2.32E-07	Reproductive, Developmental	1.49E-02		1.49E-02
			Metals					0.00E+00		
			Arsenic	2.39E-07	-	2.39E-07	Skin, Vascular	3.10E-03		3.10E-03
			Arsenic, organic	NA		NA	Bladder	4.18E-04		4.18E-04
			Cobalt	NA		NA	Thyroid	6.62E-03		6.62E-03
			Mercury	NA		NA	Neurological (methyl mercury)	3.65E-01		3.65E-01
			Thallium	NA		NA	Hair	4.72E-02		4.72E-02
			Pesticides					0.00E+00		
			Chlordane	1.73E-07	-	1.73E-07	Liver	5.76E-03		5.76E-03
			Dieldrin	5.97E-07	1	5.97E-07	Liver	4.35E-03		4.35E-03
			Heptachlor epoxide	2.95E-07	-	2.95E-07	Liver	1.46E-02		1.46E-02
			PCBs					0.00E+00		
			Total PCBs	1.21E-06		1.21E-06	Ocular/eye, Nails, Immune	1.77E-01		1.77E-01
			PCB-TEQ	1.70E-06	-	1.70E-06	Reproductive, Developmental	1.09E-01		1.09E-01
ish Tissue Total - Non-	Tidal Anacostia (Total Po	CBs) ³				2.75E-06				6.39E-01
ish Tissue Total - Non-	Tidal Anacostia (PCB-TE	Q) ⁴				3.24E-06				5.71E-01
Fish Tissue	Fish Fillet Tissue -	Lower Anacostia								
11011110000	Mixed Diet (1)	20WOI 7 WIGOOOKG	Metals							
	mixed Blot (1)		Arsenic	7.73E-07	_	7.73E-07	Skin, Vascular	1.00E-02		1.00E-02
			Arsenic, organic	NA NA		NA	Bladder	1.35E-03		1.35E-03
			Mercury	NA NA		NA NA	Neurological (methyl mercury)	1.20E-01		1.20E-01
			Pesticides	101		10.1	,	1.202 01		1.202 01
			4,4'-DDD	1.51E-07	_	1.51E-07	Liver	1.22E-01		1.22E-01
			4.4'-DDE	4.26E-07	_	4.26E-07	Liver, Developmental	2.44E-02		2.44E-02
			Aldrin	1.29E-07		1.29E-07	Liver	1.48E-03		1.48E-03
			alpha-Chlordane	2.39E-07	-	2.39E-07	Liver	7.96E-03		7.96E-03
			cis-Nonachlor	1.02E-07	-	1.02E-07	Liver	3.41E-03		3.41E-03
			Dieldrin	5.39E-06	-	5.39E-06	Liver	3.93E-02		3.93E-02
			gamma-Chlordane	1.31E-07	-	1.31E-07	Liver	4.38E-03		4.38E-03
			Heptachlor epoxide	7.35E-07	-	7.35E-07	Liver	3.62E-02		3.62E-02
			Mirex	1.34E-07	-	1.34E-07	Endocrine, Liver	2.16E-04		2.16E-04
			Oxychlordane	5.38E-08	_	5.38E-08	Liver	1.79E-03		1.79E-03
			trans-Nonachlor	2.97E-07		2.97E-07	Liver	9.89E-03		9.89E-03
			PCBs	2.916-01		2.97 E-07	Livei	9.69E-03		9.09E-03
			Total PCBs	1.93E-05		1.93E-05	Ocular/eye, Nails, Immune	2.82E+00		2.82E+00
			PCB-TEQ	1.93E-05 2.72E-05	-	1.93E-05 2.72E-05	Reproductive, Developmental	2.82E+00 1.74E+00		2.82E+00 1.74E+00
"at There Tarel Laws	A	12	FCB-TEQ	2.72E-03	-		reproductive, Developmental	1.74E+00		
	er Anacostia (Total PCBs)				2.79E-05				3.20E+00
isii rissue rotai - Lowe	er Anacostia (PCB-TEQ) ³					3.57E-05				2.12E+00
			· · · · · · · · · · · · · · · · · · ·	lpper Potomac Fish		7.27E-05				9.17E+00
				Jpper Potomac Fish		9.68E-05				5.91E+00
	· · · · · · · · · · · · · · · · · · ·			ower Potomac Fish		2.41E-05				1.75E+00
			Receptor Total -L	ower Potomac Fish.	(PCB-TEQs) ³	2.54E-05				1.08E+00
•			Receptor Total - Non-T	idal Anacostia Fish	(Total PCBs)2	2.75E-06				6.39E-01
			Receptor Total - Non-1			3.24E-06				5.71E-01
			recouptor rotal rion							
			Receptor Total - Lo		, ,	2.79E-05				3.20E+00

Table H-2-8. RME Summary of Receptor Risks and Hazards for COPCs - Older Child/Teen Angler (Mixed Fish Diet) - Regional Areas Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Older Child/Teen

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern	Carcinogenic Risk		Non-Carcinogenic Hazard Quotient				
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total

Notes

NA - Not applicable.

ND - Not Detected.

PCB - Polychlorinated Biphenyl.

PCB-TEQ - PCB Toxicity Equivalence.

RfD - Oral Reference Dose.

- (1) Assumes a mixed fish diet of the species with available fillet data based on a pooled EPC.
- (2) Total Receptor Risk/Hazard based on all COPCs except PCB-TEQ.
- (3) Total Receptor Risk/Hazard based on all COPCs except Total PCBs.

	Targ	et Organ HI - Upper Potomac Fish		
Organ		Chemical	Fish Tissue	Total
	Bladder	Arsenic, organic	2.20E-03	2E-03
0	evelopmental	PCB-TEQ, TCDD-TEQ, 4,4-DDE	5.41E+00	5E+00
	Endocrine	Mirex	1.90E-04	2E-04
	Eye	Total PCBs	8.58E+00	9E+00
	Immune	Total PCBs	8.58E+00	9E+00
	Liver	Pesticides	3.74E-01	4E-01
	Nails	Total PCBs	8.58E+00	9E+00
	Neurological	Methyl Mercury	1.97E-01	2E-01
	Reproductive	PCB-TEQ, TCDD-TEQ	5.32E+00	5E+00
	Skin	Arsenic	1.63E-02	2E-02
	Vascular	Arsenic	1.63E-02	2E-02

Target Organ HI - Lower Potomac Fish									
	Organ Chemical Fish Tissue								
Bladder	Arsenic, organic	2.05E-02	2E-02						
Developmental	PCB-TEQ, TCDD-TEQ, 4,4-DDE	6.94E-01	7E-01						
Eye	Total PCBs	1.34E+00	1E+00						
Immune	Total PCBs	1.34E+00	1E+00						
Liver	Pesticides	9.69E-02	1E-01						
Nails	Total PCBs	1.34E+00	1E+00						
Neurological	Methyl Mercury	1.35E-01	1E-01						
Reproductive	PCB-TEQ, TCDD-TEQ	6.79E-01	7E-01						
Skin	Arsenic	1.52E-01	2E-01						
Vascular	Arsenic	1.52E-01	2E-01						

Target	Organ HI - Non-Tidal Anacostia Fish		
Organ	Chemical	Fish Tissue	Total
Bladder	Arsenic, organic	4.18E-04	4E-04
Developmental	PCB-TEQ, TCDD-TEQ, 4,4-DDE	1.24E-01	1E-01
Eye	Total PCBs	1.77E-01	2E-01
Hair	Thallium	4.72E-02	5E-02
Immune	Total PCBs	1.77E-01	2E-01
Liver	Pesticides	2.47E-02	2E-02
Nails	Total PCBs	1.77E-01	2E-01
Neurological	Methyl Mercury	3.65E-01	4E-01
Reproductive	PCB-TEQ, TCDD-TEQ	1.24E-01	1E-01
Skin	Arsenic	3.10E-03	3E-03
Thyroid	Cobalt	6.62E-03	7E-03
Vascular	Arsenic	3.10E-03	3E-03

	Target Organ HI - Lower Anacostia									
Organ	Chemical	Fish Tissue	Total							
Bladder	Arsenic, organic	1.35E-03	1E-03							
Developmental	PCB-TEQ, TCDD-TEQ, 4,4-DDE	1.77E+00	2E+00							
Endocrine	Mirex	2.16E-04	2E-04							
Eye	Total PCBs	2.82E+00	3E+00							
Immune	Total PCBs	2.82E+00	3E+00							
Liver	Pesticides	2.51E-01	3E-01							
Nails	Total PCBs	2.82E+00	3E+00							
Neurological	Methyl Mercury	1.20E-01	1E-01							
Reproductive	PCB-TEQ, TCDD-TEQ	1.74E+00	2E+00							
Skin	Arsenic	1.00E-02	1E-02							
Vascular	Arsenic	1.00E-02	1E-02							

Table H-2-9. RME Summary of Receptor Risks and Hazards for COPCs - Child Angler (Mixed Fish Diet) - Regional Areas Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ri	sk	١	Ion-Carcinogenic Hazard Quotient		
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Tota
Fish Tissue	Fish Fillet Tissue -	Upper Potomac								
	Mixed Diet (1)		Metals							
			Arsenic	1.05E-06	1	1.05E-06	Skin, Vascular	2.73E-02		2.73E-02
			Arsenic, organic	NA	1	NA	Bladder	3.69E-03		3.69E-03
			Mercury	NA	-	NA	Neurological (methyl mercury)	3.31E-01		3.31E-01
			Pesticides							
			4,4'-DDD	1.61E-07		1.61E-07	Liver	2.61E-01		2.61E-01
			4,4'-DDE	1.31E-06		1.31E-06	Liver, Developmental	1.50E-01		1.50E-01
			Aldrin	3.24E-07		3.24E-07	Liver	7.41E-03		7.41E-03
			alpha-Chlordane	2.84E-07		2.84E-07	Liver	1.89E-02		1.89E-02
			beta-BHC	4.95E-08	1	4.95E-08	NA	NA		NA
			cis-Nonachlor	1.22E-07	1	1.22E-07	Liver	8.15E-03		8.15E-03
			Dieldrin	7.29E-06		7.29E-06	Liver	1.06E-01		1.06E-01
			gamma-Chlordane	2.58E-08		2.58E-08	Liver	1.72E-03		1.72E-03
			Heptachlor epoxide	4.90E-07		4.90E-07	Liver	4.83E-02		4.83E-02
			Hexachlorobenzene	3.94E-08		3.94E-08	Liver	3.59E-04		3.59E-04
			Mirex	9.85E-08		9.85E-08	Endocrine, Liver	3.19E-04		3.19E-04
			Oxychlordane	3.06E-08		3.06E-08	Liver	2.04E-03		2.04E-03
			trans-Nonachlor	3.48E-07		3.48E-07	Liver	2.32E-02		2.32E-02
			PCBs							
			Total PCBs	4.94E-05		4.94E-05	Ocular/eye, Nails, Immune	1.44E+01		1.44E+01
			PCB-TEQ	6.96E-05	-	6.96E-05	Reproductive, Developmental	8.92E+00		8.92E+00
ish Tissue Total - Upper	Anacostia (Total PCBs)3	3				6.10E-05				1.54E+01
ish Tissue Total - Upper	Anacostia (PCB-TEQ)*					8.12E-05				9.91E+00
Fish Tissue	Fish Fillet Tissue -	Lower Potomac								
	Mixed Diet (1)		Metals							
			Arsenic	9.82E-06		9.82E-06	Skin, Vascular	2.55E-01		2.55E-01
			Arsenic, organic	NA NA	-	NA	Bladder	3.44E-02		3.44E-02
			Mercury	NA	-	NA	Neurological (methyl mercury)	2.26E-01		2.26E-01
			Pesticides							
			4,4'-DDD	3.16E-08	-	3.16E-08	Liver	5.12E-02		5.12E-02
			4,4'-DDE	2.21E-07	-	2.21E-07	Liver, Developmental	2.53E-02		2.53E-02
			alpha-Chlordane	8.56E-08	-	8.56E-08	Liver	5.71E-03		5.71E-03
			Dieldrin	1.68E-06	-	1.68E-06	Liver	2.45E-02		2.45E-02
			gamma-Chlordane	4.43E-08		4.43E-08	Liver	2.95E-03		2.95E-03
			Heptachlor epoxide	4.49E-07		4.49E-07	Liver	4.43E-02		4.43E-02
			Oxychlordane	2.15E-08		2.15E-08	Liver	1.43E-03		1.43E-03
			trans-Nonachlor	1.08E-07		1.08E-07	Liver	7.19E-03		7.19E-03
			PCBs							
			Total PCBs	7.74E-06		7.74E-06	Ocular/eye, Nails, Immune	2.26E+00		2.26E+00
			PCB-TEQ	8.89E-06		8.89E-06	Reproductive, Developmental	1.14E+00		1.14E+00
ish Tissue Total - Lower	Potomac (Total PCBs)3		··	-1		2.02E-05		•	•	2.94E+00
ish Tissue Total - Lower						2.14E-05				1.82E+00

Table H-2-9. RME Summary of Receptor Risks and Hazards for COPCs - Child Angler (Mixed Fish Diet) - Regional Areas Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ri	sk	N	on-Carcinogenic Hazard Quotien	t	
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total
Fish Tissue	Fish Fillet Tissue -	Upstream Non-Tidal								
	Mixed Diet (1)	Anacostia	Dioxin							
			2,3,7,8-TCDD-TEQ	1.95E-07		1.95E-07	Reproductive, Developmental	2.50E-02		2.50E-02
			Metals							
			Arsenic	2.01E-07	-	2.01E-07	Skin, Vascular	5.20E-03		5.20E-03
			Arsenic, organic	NA		NA	Bladder	7.02E-04		7.02E-04
			Cobalt	NA		NA	Thyroid	1.11E-02		1.11E-02
			Mercury	NA	-	NA	Neurological (methyl mercury)	6.14E-01		6.14E-01
			Thallium	NA		NA	Hair	7.93E-02		7.93E-02
			Pesticides							
			Chlordane	9.95E-08	-	9.95E-08	Liver	1.61E-01		1.61E-01
			Dieldrin	1.06E-08	-	1.06E-08	Liver	1.22E-03		1.22E-03
			Heptachlor epoxide	4.63E-07		4.63E-07	Liver	1.06E-02		1.06E-02
			PCBs		1					
			Total PCBs	1.02E-06		1.02E-06	Ocular/eye, Nails, Immune	2.97E-01		2.97E-01
			PCB-TEQ	1.43E-06		1.43E-06	Reproductive, Developmental	1.83E-01		1.83E-01
Fish Tissue Total - Non-	-Tidal Anacostia (Total Po	CBs) ³	•			1.99E-06				1.20E+00
Fish Tissue Total - Non-	ish Tissue Total - Non-Tidal Anacostia (PCB-TEQ)*									1.09E+00
Fish Tissue	Fish Fillet Tissue -	Lower Anacostia								
11011110000	Mixed Diet (1)	20110171110000110	Metals							
			Arsenic	6.49E-07	-	6.49E-07	Skin, Vascular	1.68E-02		1.68E-02
			Arsenic, organic	NA		NA NA	Bladder	2.27E-03		2.27E-03
			Mercury	NA NA	-	NA NA	Neurological (methyl mercury)	2.01E-01		2.01E-01
			Pesticides				· · · · · · · · · · · · · · · · · · ·	2.012 01		2.012 01
			4,4'-DDD	1.27E-07		1.27E-07	Liver	2.05E-01		2.05E-01
			4.4'-DDE	3.57E-07		3.57E-07	Liver, Developmental	4.09E-02		4.09E-02
			Aldrin	1.09E-07	-	1.09E-07	Liver	2.48E-03		2.48E-03
			alpha-Chlordane	2.00E-07	-	2.00E-07	Liver	1.34E-02		1.34E-02
			cis-Nonachlor	8.59E-08		8.59E-08	Liver	5.73E-03		5.73E-03
			Dieldrin	4.52E-06	-	4.52E-06	Liver	6.60E-02		6.60E-02
			gamma-Chlordane	1.10E-07		1.10E-07	Liver	7.35E-03		7.35E-03
			Heptachlor epoxide	6.17E-07		6.17E-07	Liver	6.08E-02		6.08E-02
			Mirex	1.12E-07		1.12E-07	Endocrine, Liver	3.63E-04		3.63E-04
			Oxychlordane	4.52E-08	-	4.52E-08	Liver	3.01E-03		3.01E-03
			trans-Nonachlor	2.49E-07	-	2.49E-07	Liver	1.66E-02		1.66E-02
			PCBs	2		2				1.002 02
			Total PCBs	1.62E-05		1.62E-05	Ocular/eye, Nails, Immune	4.73E+00		4.73E+00
		1	PCB-TEQ	2.28E-05	-	2.28E-05	Reproductive, Developmental	2.92E+00		2.92E+00
ish Tissua Total - Lowe	er Anacostia (Total PCBs)2				2.34E-05				5.37E+00
	er Anacostia (PCB-TEQ)	7				3.00E-05				3.57E+00
House Folds Low		1	Pagantar Tatal III	nnor Botomoo Cinh	/Total DCDc\ ²	6.10E-05				
	Receptor Total - Upper Potomac Fish (Total PCBs) ²									1.54E+01
	Receptor Total - Upper Potomac Fish (PCB-TEQs) ³									9.91E+00
	Receptor Total - Lower Potomac Fish (Total PCBs) ²					2.02E-05				2.94E+00
Receptor Total -Lower Potomac Fish (PCB-TEQs) ³					2.14E-05				1.82E+00	
			Receptor Total - Non-T			1.99E-06				1.20E+00
	<u> </u>	-	Receptor Total - Non-T	idal Anacostia Fish	(PCB-TEQs) ³	2.40E-06			·	1.09E+00
			Receptor Total - Lo	wer Anacostia Fish	(Total PCBs)2	2.34E-05				5.37E+00
			Desenter Total I a	wer Anacostia Fish	(DCD TEOn)3	3.00E-05				3.57E+00

Table H-2-9. RME Summary of Receptor Risks and Hazards for COPCs - Child Angler (Mixed Fish Diet) - Regional Areas Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern	Carcinogenic Risk		Non-Carcinogenic Hazard Quotient				
				Ingestion	Dermal	Exposure	Primary	Ingestion	Dermal	Exposure
						Routes Total	Target Organ(s)			Routes Total
Notes					Targ	et Organ HI - Upper Potomac Fish				
NA - Not applicable.							Organ	Chemical	Fish Tissue	Total
ND - Not Detected.							Bladder	Arsenic, organic	3.69E-03	4E-03
PCB - Polychlorinated B	iphenyl.						Developmental	PCB-TEQ, TCDD-TEQ, 4,4-DDE	9.07E+00	9E+00
PCB-TEQ - PCB Toxicit	y Equivalence.						Endocrine	Mirex	3.19E-04	3E-04
RfD - Oral Reference Do	ose.						Eye	Total PCBs	1.44E+01	1E+01
							Immune	Total PCBs	1.44E+01	1E+01
(1) Assumes a mixed fis	h diet of the species with	available fillet data ba	sed on a pooled EPC.				Liver	Pesticides	6.28E-01	6E-01
(2) Total Receptor Risk/	Hazard based on all COP	Cs except PCB-TEQ.					Nails	Total PCBs	1.44E+01	1E+01
(3) Total Receptor Risk/Hazard based on all COPCs except Total PCBs.							Neurological	Methyl Mercury	3.31E-01	3E-01
							Reproductive	PCB-TEQ, TCDD-TEQ	8.92E+00	9E+00
							Skin	Arsenic	2.73E-02	3E-02
							Vascular	Arsenic	2.73E-02	3F-02

Targe	et Organ HI - Lower Potomac Fish		
Organ	Chemical	Fish Tissue	Total
Bladder	Arsenic, organic	3.44E-02	3E-02
Developmental	PCB-TEQ, TCDD-TEQ, 4,4-DDE	1.16E+00	1E+00
Eye	Total PCBs	2.26E+00	2E+00
Immune	Total PCBs	2.26E+00	2E+00
Liver	Pesticides	1.63E-01	2E-01
Nails	Total PCBs	2.26E+00	2E+00
Neurological	Methyl Mercury	2.26E-01	2E-01
Reproductive	PCB-TEQ, TCDD-TEQ	1.14E+00	1E+00
Skin	Arsenic	2.55E-01	3E-01
Vascular	Arsenic	2.55E-01	3E-01

	Target Organ HI - Lower Anacostia								
Organ	Chemical	Fish Tissue	Total						
Bladder	Arsenic, organic	2.27E-03	2E-03						
Developmental	PCB-TEQ, TCDD-TEQ, 4,4-DDE	2.96E+00	3E+00						
Endocrine	Mirex	3.63E-04	4E-04						
Eye	Total PCBs	4.73E+00	5E+00						
Immune	Total PCBs	4.73E+00	5E+00						
Liver	Pesticides	4.22E-01	4E-01						
Nails	Total PCBs	4.73E+00	5E+00						
Neurological	Methyl Mercury	2.01E-01	2E-01						
Reproductive	PCB-TEQ, TCDD-TEQ	2.92E+00	3E+00						
Skin	Arsenic	1.68E-02	2E-02						
Vascular	Arsenic	1.68E-02	2E-02						

Target	Organ HI - Non-Tidal Anacostia Fish		
Organ	Chemical	Fish Tissue	Total
Bladder	Arsenic, organic	7.02E-04	7E-04
Developmental	PCB-TEQ, TCDD-TEQ, 4,4-DDE	2.08E-01	2E-01
Eye	Total PCBs	2.97E-01	3E-01
Hair	Thallium	7.93E-02	8E-02
Immune	Total PCBs	2.97E-01	3E-01
Liver	Pesticides	1.73E-01	2E-01
Nails	Total PCBs	2.97E-01	3E-01
Neurological	Methyl Mercury	6.14E-01	6E-01
Reproductive	PCB-TEQ, TCDD-TEQ	2.08E-01	2E-01
Skin	Arsenic	5.20E-03	5E-03
Thyroid	Cobalt	1.11E-02	1E-02
Vascular	Arsenic	5.20E-03	5E-03

Table H-2-10. RME Summary of Receptor Risks and Hazards for COPCs - Adult Swimmer Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future
Receptor Population: Swimmer
Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	sk	Non	n-Carcinogenic Hazard (Quotient	
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total
Sediment	Fringe	Waterside								
	Surface	Investigation	Dioxin							
	Sediment	Area	2,3,7,8-TCDD-TEQ	1.76E-07	1.20E-07	2.96E-07	Reproductive, Developmental	6.76E-03	4.63E-03	1.14E-02
			Metals							
			Aluminum	NA	NA	NA	Neurological	1.99E-04	NA	1.99E-04
			Antimony	NA	NA	NA	Mortality, Blood	3.58E-04	NA	3.58E-04
			Arsenic	3.75E-08	4.27E-08	8.02E-08	Skin, Vascular	2.92E-04	3.32E-04	6.24E-04
			Cobalt	NA	NA	NA	Thyroid	1.22E-03	NA	1.22E-03
			Cyanide	NA	NA	NA	Reproductive	1.20E-04	NA	1.20E-04
			Manganese	NA	NA	NA	Neurological	2.17E-04	NA	2.17E-04
			Nickel	NA	NA	NA	Decreased body and organ weights	6.69E-05	NA	6.69E-05
			Thallium	NA	NA	NA	Hair	5.30E-04	NA	5.30E-04
			Vanadium	NA	NA	NA	Hair	6.58E-04	NA	6.58E-04
			PCBs							
			Total PCBs	7.54E-09	2.41E-08	3.16E-08	Ocular/eye, Nails, Immune	6.60E-04	2.11E-03	2.77E-03
			SVOCs							
			Benzo(a)anthracene	7.96E-10	2.36E-09	3.15E-09	NA	NA	NA	NA
			Benzo(a)pyrene	4.85E-09	1.44E-08	1.92E-08	Developmental	5.65E-05	1.68E-04	2.24E-04
			Benzo(b)fluoranthene	7.12E-10	2.11E-09	2.82E-09	NA	NA	NA	NA
			Benzo(k)fluoranthene	2.59E-11	7.67E-11	1.03E-10	NA	NA	NA	NA
			Chrysene	6.42E-12	1.90E-11	2.55E-11	NA	NA	NA	NA
			Dibenzo(a,h)anthracene	1.14E-09	3.37E-09	4.51E-09	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	4.17E-10	1.23E-09	1.65E-09	NA	NA	NA	NA
			ТРН							
			Diesel Range Organics (C10-C20)	NA	NA	NA	Liver, Kidney, Blood	2.78E-04	NA	2.78E-04
			Chemical Total	2.29E-07	2.11E-07	4.39E-07		1.14E-02	7.23E-03	1.86E-02
		Exposure Point Tota	al			4.39E-07				1.86E-02
	Exposure Medium Tota	al				4.39E-07				1.86E-02
ediment Total	-1.					4.39E-07				1.86E-02
Surface	Surface	Waterside								
Water	Water	Investigation	Dioxin		1	1				
water	Water	Area	2,3,7,8-TCDD-TEQ	3.59E-10	4.36E-07	4.36E-07	Reproductive, Developmental	1.38E-05	1.68E-02	1.68E-02
		71100	Metals	0.03E 10	4.00L 01	4.002 07	reproductive, Developmental	1.002 00	1.002 02	1.002 02
			Arsenic	6.24E-09	1.84E-09	8.07E-09	Skin, Vascular	4.85E-05	1.43E-05	6.28E-05
			Cobalt	NA	NA	NA	Thyroid	5.48E-05	6.45E-06	6.12E-05
			Manganese	NA NA	NA NA	NA NA	Neurological	9.73E-05	7.16E-04	8.13E-04
			Pesticides	14/1	14/1	1971	rectrological	3.70L 00	7.102.07	0.102.04
			4,4'-DDT	2.46E-12	1.72E-09	1.72E-09	Liver	5.06E-08	3.54E-05	3.55E-05
			PCBs	2.402 12	1.722 03	1.722 03	LIVE	0.00L 00	0.04E 00	5.50L 00
			Total PCBs	1.70E-11	1.42E-08	1.42E-08	Ocular/eye, Nails, Immune	7.43E-06	6.20E-03	6.21E-03
			Chemical Total	6.62E-09	4.54E-07	4.60E-07	Osulai/eye, Nalis, Illillulle	2.22E-04	2.37E-02	2.40E-02
		Exposure Point Tota		0.022 03	4.04E 07	4.60E-07	<u> </u>	2.22L V7	2.07 E 02	2.40E-02
	Exposure Medium Tota		21			4.60E-07				2.40E-02 2.40E-02
f 1M-1 T-: '	Exposure iviedium Tota	11				4.60E-07 4.60E-07				2.40E-02 2.40E-02
urface Water Total										
eceptor Total						9.00E-07				4.26E-02

Table H-2-10. RME Summary of Receptor Risks and Hazards for COPCs - Adult Swimmer Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern	Carcinogenic Risk		Non-Carcinogenic Hazard Quotient				
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total

Notes

NA - Not Applicable

Target		Target Organ Hazard Ir	ndex	
Organ	Chemical	Sediment	Surface Water	Total
Blood	Antimony, DRO	6.35E-04		6.35E-04
Decreased body and organ weights	Nickel	6.69E-05	-	6.69E-05
Developmental	2,3,7,8-TCDD-TEQ, Benzo(a)pyrene	1.16E-02	1.68E-02	2.84E-02
Eye	Total PCBs	2.77E-03	6.21E-03	8.97E-03
Hair	Thallium, Vanadium	1.19E-03	-	1.19E-03
Immune	Total PCBs, Nickel	2.77E-03	6.21E-03	8.97E-03
Kidney	DRO	2.78E-04	-	2.78E-04
Liver	4,4'-DDT, DRO	2.78E-04	3.55E-05	3.13E-04
Mortality	Antimony	3.58E-04		3.58E-04
Nails	Total PCBs	2.77E-03	6.21E-03	8.97E-03
Neurological	Aluminum, manganese	4.16E-04	8.13E-04	1.23E-03
Reproductive	TCDD-TEQ, Cyanide	1.15E-02	1.68E-02	2.83E-02
Skin	Arsenic	6.24E-04	6.28E-05	6.87E-04
Thyroid	Cobalt	1.22E-03	6.12E-05	1.28E-03
Vascular	Arsenic	6.24E-04	6.28E-05	6.87E-04

Table H-2-11. RME Summary of Receptor Risks and Hazards for COPCs - Teen Swimmer Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Teen

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	sk	Non	n-Carcinogenic Hazard	Quotient	
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total
Sediment	Fringe	Waterside								
	Surface	Investigation	Dioxin							
	Sediment	Area	2,3,7,8-TCDD-TEQ	3.18E-07	1.29E-07	4.48E-07	Reproductive, Developmental	2.04E-02	8.30E-03	2.87E-02
			Metals							
			Aluminum	NA	NA	NA	Neurological	5.99E-04	NA	5.99E-04
			Antimony	NA	NA 1005 00	NA	Mortality, Blood	1.08E-03	NA	1.08E-03
			Arsenic	6.79E-08	4.60E-08	1.14E-07	Skin, Vascular	8.80E-04	5.96E-04	1.48E-03
			Cobalt	NA NA	NA	NA	Thyroid	3.68E-03	NA NA	3.68E-03
			Cyanide	NA NA	NA NA	NA NA	Reproductive	3.63E-04	NA NA	3.63E-04
			Manganese	NA	NA		Neurological	6.56E-04		6.56E-04
			Nickel	NA NA	NA	NA	Decreased body and organ weights	2.02E-04	NA NA	2.02E-04
			Thallium	NA NA	NA	NA	Hair	1.60E-03	NA NA	1.60E-03
			Vanadium	NA	NA	NA	Hair	1.99E-03	NA	1.99E-03
			PCBs						0.705.00	
			Total PCBs	1.37E-08	2.59E-08	3.96E-08	Ocular/eye, Nails, Immune	1.99E-03	3.78E-03	5.77E-03
			SVOCs	0.005.00	0.055.00	0.055.00	NA	N/A	N.A.	N14
			Benzo(a)anthracene	3.60E-09	6.35E-09 3.87E-08	9.95E-09 6.06E-08		NA 1.71E-04	NA 3.01E-04	NA 4.71E-04
			Benzo(a)pyrene Benzo(b)fluoranthene	2.19E-08 3.22E-09	5.68E-09	8.90E-09	Developmental NA	1.71E-04 NA	3.01E-04 NA	4.71E-04 NA
			Benzo(k)fluoranthene	1.17E-10	2.06E-10	3.24E-10	NA NA	NA NA	NA NA	NA NA
			Chrysene	2.91E-11	5.12E-11	8.03E-11	NA NA	NA NA	NA NA	NA NA
			Dibenzo(a,h)anthracene	5.16E-09	9.08E-09	1.42E-08	NA NA	NA NA	NA NA	NA NA
			Indeno(1,2,3-cd)pyrene	1.89E-09	3.32E-09	5.21E-09	NA NA	NA NA	NA NA	NA NA
			TPH	1.09E-09	3.32E-09	5.21E-09	NA NA	INA	INA	INA
			Diesel Range Organics (C10-C20)	NA	NA	NA	Liver, Kidney, Blood	8.38E-04	NA	8.38E-04
			Chemical Total	4.36E-07	2.65E-07	7.01E-07	Liver, Ridney, Blood	3.45E-02	1.30E-02	4.74E-02
		Exposure Point Tota		4.30L-07	2.03L-01	7.01E-07	<u> </u>	3.40L-02	1.50L-02	4.74E-02
	Exposure Medium Tota		11			7.01E-07 7.01E-07				4.74E-02 4.74E-02
Constant Trade	Exposure Medium Tota	I								
liment Total		T			1	7.01E-07			1	4.74E-02
Surface	Surface	Waterside	L							
Water	Water	Investigation	Dioxin	0 = 1 = 10	0	0.545.40		== .=	0	
		Area	2,3,7,8-TCDD-TEQ	6.51E-10	Outside EPD	6.51E-10	Reproductive, Developmental	4.17E-05	Outside EPD	4.17E-05
			Metals Arsenic	1.13E-08	2.36E-09	1.37E-08	Olde Manufac	1.46E-04	3.06E-05	1.77E-04
					2.36E-09 NA		Skin, Vascular	1.46E-04 1.65E-04		
			Cobalt	NA NA		NA NA	Thyroid		1.38E-05	1.79E-04
			Manganese Pesticides	NA	NA	NA	Neurological	2.94E-04	1.53E-03	1.83E-03
			4,4'-DDT	4.45E-12	Outside EPD	4.45E-12	Liver	1.53E-07	Outside EPD	1.53E-07
			PCBs	4.40E-12	Outside EPD	4.45E-12	Liver	1.03E-U/	Outside EPD	1.53E-07
			Total PCBs	3.08E-11	Outside EPD	3.08E-11	Ogular/ava Naila Immuna	2.24E-05	Outside EPD	2.24E-05
	I		Chemical Total	1.20E-08	2.36E-09	3.08E-11 1.43E-08	Ocular/eye, Nails, Immune	6.70E-04	1.58E-03	2.24E-05 2.25E-03
			CHEITHOU I Uldi	1.200-08	2.300-09			0.70⊑-04	1.30E=03	
		Consesses Daint Total	1							
	Function Medium Tele	Exposure Point Tota	al .			1.43E-08				2.25E-03
ace Water Total	Exposure Medium Tota		al			1.43E-08 1.43E-08 1.43E-08				2.25E-03 2.25E-03 2.25E-03

Table H-2-11. RME Summary of Receptor Risks and Hazards for COPCs - Teen Swimmer Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Teen

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern	Carcinogenic Risk		Non-Carcinogenic Hazard Quotient				
				Ingestion Dermal Exposure Routes Total		Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total	

Notes

NA - Not Applicable

Target		Target Organ Hazard In	ndex	
Organ	Chemical	Sediment	Surface Water	Total
Blood	Antimony, DRO	1.92E-03	-	1.92E-03
Decreased body and organ weights	Nickel	2.02E-04		2.02E-04
Developmental	2,3,7,8-TCDD-TEQ, Benzo(a)pyrene	2.92E-02	4.17E-05	2.92E-02
Eye '	Total PCBs	5.77E-03	2.24E-05	5.79E-03
Hair	Thallium, Vanadium	3.59E-03		3.59E-03
Immune	Total PCBs, Nickel	5.77E-03	2.24E-05	5.79E-03
Kidney	DRO	8.38E-04		8.38E-04
Liver	4,4'-DDT, DRO	8.38E-04	1.53E-07	8.38E-04
Mortality	Antimony	1.08E-03		1.08E-03
Nails '	Total PCBs	5.77E-03	2.24E-05	5.79E-03
Neurological	Aluminum, manganese	1.26E-03	1.83E-03	3.08E-03
Reproductive	TCDD-TEQ, Cyanide	2.91E-02	4.17E-05	2.91E-02
Skin	Arsenic	1.48E-03	1.77E-04	1.65E-03
Thyroid	Cobalt	3.68E-03	1.79E-04	3.86E-03
Vascular	Arsenic	1.48E-03	1.77E-04	1.65E-03

Table H-2-12. RME Summary of Receptor Risks and Hazards for COPCs - Child Swimmer Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	k	Nor	n-Carcinogenic Hazard	Quotient	
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total
Sediment	Fringe	Waterside								
	Surface	Investigation	Dioxin		8.58E-08	5.82E-07				T 405 00
	Sediment	Area	2,3,7,8-TCDD-TEQ Metals	4.96E-07	8.58E-08	5.82E-07	Reproductive, Developmental	6.36E-02	1.10E-02	7.46E-02
			Aluminum	NA	NA	NA	Neurological	1.87E-03	NA	1.87E-03
			Antimony	NA NA	NA NA	NA NA	Mortality, Blood	3.37E-03	NA NA	3.37E-03
			Arsenic	1.06E-07	3.05E-08	1.36E-07	Skin, Vascular	2.74E-03	7.90E-04	3.53E-03
			Cobalt	NA	3.03E-06 NA	NA	Thyroid	1.15E-02	7.90E-04 NA	1.15E-02
			Cvanide	NA NA	NA NA	NA NA	Reproductive	1.13E-02 1.13E-03	NA NA	1.13E-02 1.13E-03
			Manganese	NA NA	NA NA	NA NA	Neurological	2.05E-03	NA NA	2.05E-03
			Nickel	NA NA	NA NA	NA NA	Decreased body and organ weights	6.30E-04	NA NA	6.30E-04
			Thallium	NA NA	NA NA	NA NA	Hair	4.99E-03	NA NA	4.99E-03
			Vanadium	NA NA	NA NA	NA NA	Hair	6.19E-03	NA NA	6.19E-03
			PCBs	IVA	INA	INA	i idii	0.191-03	INA	0.132-03
			Total PCBs	2.13E-08	1.72E-08	3.85E-08	Ocular/eye, Nails, Immune	6.21E-03	5.01E-03	1.12E-02
			SVOCs	2.102 00	11122 00	0.002 00	Coalaireye, Halle, Illinaire	0.212 00	0.012 00	11122 02
			Benzo(a)anthracene	9.44E-09	7.06E-09	1.65E-08	NA	NA	NA	NA
			Benzo(a)pyrene	5.75E-08	4.30E-08	1.01E-07	Developmental	5.32E-04	3.98E-04	9.31E-04
			Benzo(b)fluoranthene	8.44E-09	6.32E-09	1.48E-08	NA NA	NA NA	NA NA	NA NA
			Benzo(k)fluoranthene	3.07E-10	2.30E-10	5.37E-10	NA	NA	NA	NA
			Chrysene	7.62E-11	5.70E-11	1.33E-10	NA	NA	NA	NA
			Dibenzo(a,h)anthracene	1.35E-08	1.01E-08	2.36E-08	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	4.94E-09	3.70E-09	8.64E-09	NA	NA	NA	NA
			ТРН							
			Diesel Range Organics (C10-C20)	NA	NA	NA	Liver, Kidney, Blood	2.61E-03	NA	2.61E-03
			Chemical Total	7.18E-07	2.04E-07	9.22E-07		1.07E-01	1.72E-02	1.25E-01
		Exposure Point Total	al			9.22E-07				1.25E-01
	Exposure Medium Tota	ľ				9.22E-07				1.25E-01
ediment Total	-11-					9.22E-07				1.25E-01
Surface	Surface	Waterside								
Water	Water	Investigation	Dioxin		1					
		Area	2,3,7,8-TCDD-TEQ	8.57E-10	Outside EPD	8.57E-10	Reproductive, Developmental	1.10E-04	Outside EPD	1.10E-04
			Metals							
			Arsenic	1.49E-08	9.30E-10	1.58E-08	Skin, Vascular	3.86E-04	2.41E-05	4.10E-04
			Cobalt	NA	NA	NA	Thyroid	4.36E-04	1.09E-05	4.47E-04
			Manganese	NA	NA	NA	Neurological	7.74E-04	1.21E-03	1.98E-03
			Pesticides					·		
			4,4'-DDT	5.86E-12	Outside EPD	5.86E-12	Liver	4.02E-07	Outside EPD	4.02E-07
			PCBs							
			Total PCBs	4.05E-11	Outside EPD	4.05E-11	Ocular/eye, Nails, Immune	5.91E-05	Outside EPD	5.91E-05
			Chemical Total	1.58E-08	9.30E-10	1.67E-08		1.76E-03	1.24E-03	3.01E-03
		Exposure Point Tota	al			1.67E-08				3.01E-03
	Exposure Medium Tota					1.67E-08				3.01E-03
rface Water Total	face Water Total					1.67E-08				3.01E-03
ceptor Total						9.38E-07				1.28E-01

Table H-2-12. RME Summary of Receptor Risks and Hazards for COPCs - Child Swimmer Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Child

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern	Carcinogenic Risk		No	n-Carcinogenic Hazard (Quotient		
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total

Notes

NA - Not Applicable

Target		Target Organ Hazard II	ndex	•
Organ	Chemical	Sediment	Surface Water	Total
Blood	Antimony, DRO	5.98E-03	-	5.98E-03
Decreased body and organ weights	Nickel	6.30E-04	-	6.30E-04
Developmental	2,3,7,8-TCDD-TEQ, Benzo(a)pyrene	7.56E-02	1.10E-04	7.57E-02
Eye	Total PCBs	1.12E-02	5.91E-05	1.13E-02
Hair	Thallium, Vanadium	1.12E-02		1.12E-02
Immune	Total PCBs, Nickel	1.12E-02	5.91E-05	1.13E-02
Kidney	DRO	2.61E-03		2.61E-03
Liver	4,4'-DDT, DRO	2.61E-03	4.02E-07	2.61E-03
Mortality	Antimony	3.37E-03		3.37E-03
Nails	Total PCBs	1.12E-02	5.91E-05	1.13E-02
Neurological	Aluminum, manganese	3.91E-03	1.98E-03	5.90E-03
Reproductive	TCDD-TEQ, Cyanide	7.58E-02	1.10E-04	7.59E-02
Skin	Arsenic	3.53E-03	4.10E-04	3.94E-03
Thyroid	Cobalt	1.15E-02	4.47E-04	1.19E-02
Vascular	Arsenic	3.53E-03	4.10E-04	3.94E-03

Table H-2-13. RME Summary of Receptor Risks and Hazards for COPCs - Adult Wader Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	sk	Non	-Carcinogenic Hazard (Quotient	
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total
Sediment	Fringe	Waterside								
	Surface	Investigation	Dioxin							
	Sediment	Area	2,3,7,8-TCDD-TEQ	4.73E-07	3.24E-07	7.97E-07	Reproductive, Developmental	1.82E-02	1.25E-02	3.07E-02
			Metals				Manualantal	5.05E.04	NIA.	5.055.04
			Aluminum	NA	NA	NA	Neurological	5.35E-04	NA NA	5.35E-04
			Antimony	NA 1 045 07	NA	NA 0.405.07	Mortality, Blood	9.63E-04	NA 0.055.04	9.63E-04
			Arsenic	1.01E-07	1.15E-07	2.16E-07	Skin, Vascular	7.85E-04	8.95E-04	1.68E-03
			Cobalt	NA	NA NA	NA NA	Thyroid	3.29E-03	NA NA	3.29E-03
			Cyanide	NA NA	NA NA	NA NA	Reproductive	3.24E-04	NA NA	3.24E-04
			Manganese	NA	NA	NA	Neurological	5.85E-04	NA NA	5.85E-04
			Nickel	NA	NA	NA	Decreased body and organ weights	1.80E-04	NA NA	1.80E-04
			Thallium	NA	NA	NA	Hair	1.43E-03	NA NA	1.43E-03
			Vanadium	NA	NA	NA	Hair	1.77E-03	NA	1.77E-03
			PCBs		0.405.00	0.545.00		. ==== ==	E 075 00	= 4== 00
			Total PCBs	2.03E-08	6.48E-08	8.51E-08	Ocular/eye, Nails, Immune	1.78E-03	5.67E-03	7.45E-03
			SVOCs	0.445.00		0.405.00				
			Benzo(a)anthracene	2.14E-09	6.35E-09	8.49E-09	NA NA	NA	NA 1 = 1 = 0.1	NA
			Benzo(a)pyrene	1.30E-08	3.87E-08	5.17E-08 7.60E-09	Developmental	1.52E-04	4.51E-04	6.03E-04
			Benzo(b)fluoranthene	1.92E-09 6.97E-11	5.68E-09 2.07E-10	7.60E-09 2.76E-10	NA NA	NA NA	NA NA	NA NA
			Benzo(k)fluoranthene		5.13E-11	6.86E-11	NA NA	NA NA	NA NA	NA NA
			Chrysene	1.73E-11	9.08E-09	1.21E-08	NA NA	NA NA	NA NA	NA NA
			Dibenzo(a,h)anthracene	3.07E-09 1.12E-09	9.08E-09 3.32E-09	1.21E-08 4.45E-09	NA NA	NA NA	NA NA	NA NA
			Indeno(1,2,3-cd)pyrene TPH	1.12E-09	3.32E-09	4.45E-09	NA NA	INA	INA	INA
			Diesel Range Organics (C10-C20)	NA	NA	NA	Liver, Kidney, Blood	7.47E-04	NA	7.47E-04
			Diesei Range Organics (C10-C20)	INA	INA	INA	Liver, Kidney, Blood	7.47 E-04	NA NA	7.47E-04
			Chemical Total	6.16E-07	5.67E-07	1.18E-06	+	3.07E-02	1.95E-02	5.02E-02
		Exposure Point Tota		0.10L 07	0.07 E 07	1.18E-06		0.07 L 0Z	1.50L 02	5.02E-02
	Exposure Medium Tota		ш			1.18E-06				5.02E-02
Sediment Total	Exposure iviedium rota					1.18E-06				5.02E-02 5.02E-02
	1 0 /	M/-t1d-	-			1.10E-00			T	5.02E-02
Surface	Surface	Waterside	L							
Water	Water	Investigation	Dioxin	0 = 1 = 10						
		Area	2,3,7,8-TCDD-TEQ	3.54E-10	3.02E-07	3.02E-07	Reproductive, Developmental	1.36E-05	1.16E-02	1.16E-02
			Metals	0.455.00	4 005 00		a	. === ==		0.405.05
			Arsenic	6.15E-09	1.80E-09	7.95E-09	Skin, Vascular	4.78E-05	1.40E-05	6.18E-05
			Cobalt	NA	NA NA	NA NA	Thyroid	5.40E-05	6.32E-06	6.03E-05
			Manganese	NA	NA	NA	Neurological	9.59E-05	7.01E-04	7.97E-04
			Pesticides 4,4'-DDT	2.42E-12	1.19E-09	1.19E-09	Liver	4.99E-08	2.45E-05	2.46E-05
			PCBs	Z.42E-12	1.19E-09	1.19E-09	Liver	4.99E-00	Z.45E-U5	Z.40E-U0
			Total PCBs	1 675 14	9.81E-09	9.82E-09	Oculariova Naila Immuse	7 225 06	4 20E 02	4 205 02
			Chemical Total	1.67E-11 6.52E-09	9.81E-09 3.15E-07	9.82E-09 3.21E-07	Ocular/eye, Nails, Immune	7.32E-06 2.19E-04	4.29E-03 1.66E-02	4.30E-03 1.69E-02
		Europeuro Deini Tota		0.02E-U9	3.10E-U/			Z.19E-U4	1.00E-UZ	1.69E-02
		Exposure Point Tota	U			3.21E-07				
	Exposure Medium Total					3.21E-07				1.69E-02
Surface Water Total						3.21E-07				1.69E-02
eceptor Total	tor Total					1.50E-06	<u> </u>			6.71E-02

Table H-2-13. RME Summary of Receptor Risks and Hazards for COPCs - Adult Wader Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern	Carcinogenic Risk		Non-Carcinogenic Hazard Quotient					
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total	

Notes

NA - Not Applicable

Target		Target Organ Hazard Ir	ndex	
Organ	Chemical	Sediment	Surface Water	Total
Blood	Antimony, DRO	1.71E-03		1.71E-03
Decreased body and organ weights	Nickel	1.80E-04	-	1.80E-04
Developmental	2,3,7,8-TCDD-TEQ, Benzo(a)pyrene	3.13E-02	1.16E-02	4.29E-02
Eye	Total PCBs	7.45E-03	4.30E-03	1.17E-02
Hair	Thallium, Vanadium	3.20E-03	-	3.20E-03
Immune	Total PCBs, Nickel	7.45E-03	4.30E-03	1.17E-02
Kidney	DRO	7.47E-04	-	7.47E-04
Liver	4,4'-DDT, DRO	7.47E-04	2.46E-05	7.72E-04
Mortality	Antimony	9.63E-04	-	9.63E-04
Nails	Total PCBs	7.45E-03	4.30E-03	1.17E-02
Neurological	Aluminum, manganese	1.12E-03	7.97E-04	1.92E-03
Reproductive	TCDD-TEQ, Cyanide	3.10E-02	1.16E-02	4.26E-02
Skin	Arsenic	1.68E-03	6.18E-05	1.74E-03
Thyroid	Cobalt	3.29E-03	6.03E-05	3.35E-03
Vascular	Arsenic	1.68E-03	6.18E-05	1.74E-03

Table H-2-14. RME Summary of Receptor Risks and Hazards for COPCs - Teen Wader Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Teen

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	sk	Non-	-Carcinogenic Hazard	Quotient	
i				Ingestion	Dermal	Exposure	Primary	Ingestion	Dermal	Exposure
i						Routes Total	Target Organ(s)			Routes Total
Sediment	Fringe	Waterside								
i	Surface	Investigation	Dioxin							
i	Sediment	Area	2,3,7,8-TCDD-TEQ	5.27E-07	2.14E-07	7.41E-07	Reproductive, Developmental	3.38E-02	1.37E-02	4.75E-02
i			Metals							
			Aluminum	NA	NA	NA	Neurological	9.91E-04	NA	9.91E-04
			Antimony	NA	NA	NA	Mortality, Blood	1.79E-03	NA	1.79E-03
			Arsenic	1.12E-07	7.61E-08	1.88E-07	Skin, Vascular	1.46E-03	9.86E-04	2.44E-03
			Cobalt	NA	NA	NA	Thyroid	6.09E-03	NA	6.09E-03
			Cyanide	NA	NA	NA	Reproductive	6.00E-04	NA	6.00E-04
			Manganese	NA	NA	NA	Neurological	1.09E-03	NA	1.09E-03
			Nickel	NA	NA	NA	Decreased body and organ weights	3.34E-04	NA	3.34E-04
			Thallium	NA	NA	NA	Hair	2.65E-03	NA	2.65E-03
			Vanadium	NA	NA	NA	Hair	3.29E-03	NA	3.29E-03
			PCBs							
			Total PCBs	2.26E-08	4.29E-08	6.55E-08	Ocular/eye, Nails, Immune	3.30E-03	6.25E-03	9.55E-03
			SVOCs							
			Benzo(a)anthracene	5.96E-09	1.05E-08	1.65E-08	NA	NA	NA	NA
			Benzo(a)pyrene	3.63E-08	6.39E-08	1.00E-07	Developmental	2.82E-04	4.97E-04	7.80E-04
i			Benzo(b)fluoranthene	5.33E-09	9.39E-09	1.47E-08	NA	NA	NA	NA
			Benzo(k)fluoranthene	1.94E-10	3.41E-10	5.35E-10	NA NA	NA	NA	NA
			Chrysene	4.81E-11	8.47E-11	1.33E-10	NA	NA	NA	NA
			Dibenzo(a,h)anthracene	8.53E-09	1.50E-08	2.35E-08	NA NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	3.12E-09	5.50E-09	8.62E-09	NA	NA	NA	NA
			TPH				Li de Brat	4.005.00	N/A	4.005.00
			Diesel Range Organics (C10-C20)	NA	NA	NA	Liver, Kidney, Blood	1.39E-03	NA	1.39E-03
			Chemical Total	7.21E-07	4.38E-07	1.16E-06		5.70E-02	2.15E-02	7.85E-02
		Exposure Point Tota	al			1.16E-06				7.85E-02
	Exposure Medium Tota	1				1.16E-06				7.85E-02
Sediment Total						1.16E-06				7.85E-02
Surface	Surface	Waterside	1						1	
Water	Water	Investigation	Dioxin							
		Area	2,3,7,8-TCDD-TEQ	3.94E-10	Outside EPD	3.94E-10	Reproductive, Developmental	2.53E-05	Outside EPD	2.53E-05
			Metals							
			Arsenic	6.84E-09	1.43E-09	8.27E-09	Skin, Vascular	8.87E-05	1.85E-05	1.07E-04
			Cobalt	NA	NA	NA	Thyroid	1.00E-04	8.35E-06	1.09E-04
			Manganese	NA	NA	NA	Neurological	1.78E-04	9.27E-04	1.10E-03
			Pesticides				, and the second			
			4,4'-DDT	2.69E-12	Outside EPD	2.69E-12	Liver	9.25E-08	Outside EPD	9.25E-08
			PCBs							
			Total PCBs	1.86E-11	Outside EPD	1.86E-11	Ocular/eye, Nails, Immune	1.36E-05	Outside EPD	1.36E-05
		<u>[</u>	Chemical Total	7.26E-09	1.43E-09	8.69E-09		4.06E-04	9.54E-04	1.36E-03
l		Exposure Point Tota	al		_	8.69E-09		-	•	1.36E-03
						0.005.00				
	Exposure Medium Tota	l				8.69E-09				1.36E-03
Surface Water Total	Exposure Medium Tota	l				8.69E-09 8.69E-09				1.36E-03 1.36E-03

Table H-2-14. RME Summary of Receptor Risks and Hazards for COPCs - Teen Wader Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Teen

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern	Carcinogenic Risk		Non-Carcinogenic Hazard Quotient				
				Ingestion	Dermal	Exposure	Primary	Ingestion	Dermal	Exposure
						Routes Total	Target Organ(s)			Routes Total

Notes

NA - Not Applicable

Target		Target Organ Hazard I	ndex	
Organ	Chemical	Sediment	Surface Water	Total
Blood	Antimony, DRO	3.17E-03		3.17E-03
Decreased body and organ weights	Nickel	3.34E-04		3.34E-04
Developmental	2,3,7,8-TCDD-TEQ, Benzo(a)pyrene	4.83E-02	2.53E-05	4.83E-02
Eye	Total PCBs	9.55E-03	1.36E-05	9.56E-03
Hair	Thallium, Vanadium	5.93E-03		5.93E-03
Immune	Total PCBs, Nickel	9.55E-03	1.36E-05	9.56E-03
Kidney	DRO	1.39E-03		1.39E-03
Liver	4,4'-DDT, DRO	1.39E-03	9.25E-08	1.39E-03
Mortality	Antimony	1.79E-03		1.79E-03
Nails	Total PCBs	9.55E-03	1.36E-05	9.56E-03
Neurological	Aluminum, manganese	2.08E-03	1.10E-03	3.18E-03
Reproductive	TCDD-TEQ, Cyanide	4.81E-02	2.53E-05	4.81E-02
Skin	Arsenic	2.44E-03	1.07E-04	2.55E-03
Thyroid	Cobalt	6.09E-03	1.09E-04	6.20E-03
Vascular	Arsenic	2.44E-03	1.07E-04	2.55E-03

Table H-2-15. RME Summary of Receptor Risks and Hazards for COPCs - Child Wader Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	sk	Non-	-Carcinogenic Hazard	Quotient	
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total
Sediment	Fringe	Waterside								
	Surface	Investigation	Dioxin							
	Sediment	Area	2,3,7,8-TCDD-TEQ	1.34E-06	2.31E-07	1.57E-06	Reproductive, Developmental	1.71E-01	2.96E-02	2.01E-01
			Metals							
			Aluminum	NA	NA	NA	Neurological	5.03E-03	NA	5.03E-03
			Antimony	NA	NA	NA	Mortality, Blood	9.06E-03	NA	9.06E-03
			Arsenic	2.85E-07	8.21E-08	3.67E-07	Skin, Vascular	7.39E-03	2.13E-03	9.51E-03
			Cobalt	NA	NA	NA	Thyroid	3.09E-02	NA	3.09E-02
			Cyanide	NA	NA	NA	Reproductive	3.05E-03	NA	3.05E-03
			Manganese	NA	NA	NA	Neurological	5.51E-03	NA	5.51E-03
			Nickel	NA	NA	NA	Decreased body and organ weights	1.70E-03	NA	1.70E-03
			Thallium	NA	NA	NA	Hair	1.34E-02	NA	1.34E-02
			Vanadium	NA	NA	NA	Hair	1.67E-02	NA	1.67E-02
			PCBs							
			Total PCBs	5.73E-08	4.62E-08	1.04E-07	Ocular/eye, Nails, Immune	1.67E-02	1.35E-02	3.02E-02
			SVOCs							
			Benzo(a)anthracene	2.54E-08	1.90E-08	4.44E-08	NA	NA	NA	NA
			Benzo(a)pyrene	1.55E-07	1.16E-07	2.71E-07	Developmental	1.43E-03	1.07E-03	2.51E-03
			Benzo(b)fluoranthene	2.27E-08	1.70E-08	3.97E-08	NA	NA	NA	NA
			Benzo(k)fluoranthene	8.26E-10	6.19E-10	1.45E-09	NA	NA	NA	NA
			Chrysene	2.05E-10	1.54E-10	3.59E-10	NA	NA	NA	NA
			Dibenzo(a,h)anthracene	3.63E-08	2.72E-08	6.36E-08	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	1.33E-08	9.96E-09	2.33E-08	NA	NA	NA	NA
			TPH							
			Diesel Range Organics (C10-C20)	NA	NA	NA	Liver, Kidney, Blood	7.03E-03	NA	7.03E-03
			Chemical Total	1.93E-06	5.49E-07	2.48E-06	-	2.89E-01	4.63E-02	3.36E-01
		Exposure Point Tota				2.48E-06	1		· ·	3.36E-01
	Exposure Medium Tota					2.48E-06	1			3.36E-01
Sediment Total	Exposure modium rote					2.48E-06				3.36E-01
Surface	Surface	Waterside	Tr		T .	2.402 00			T	0.00E 01
Water	Water	Investigation	Dioxin							
water	vvalei	Area	2,3,7,8-TCDD-TEQ	5.00E-10	Outside EPD	5.00E-10	Reproductive, Developmental	6.41E-05	Outside EPD	6.41E-05
		Alea	Metals	3.00E-10	Outside EFD	3.00E-10	Reproductive, Developmental	0.41E-03	Outside EFD	0.41E-03
			Arsenic	8.68E-09	1.37E-09	1.01E-08	Skin, Vascular	2.25E-04	3.56E-05	2.61E-04
			Cobalt	8.68E-09 NA	1.37E-09 NA	NA	,	2.25E-04 2.54E-04	1.61E-05	2.61E-04 2.70E-04
				NA NA	NA NA	NA NA	Thyroid	2.54E-04 4.51E-04	1.61E-05 1.79E-03	2.70E-04 2.24E-03
		1	Manganese Pesticides	INA	NA.	INA	Neurological	4.51E-U4	1./9E-U3	Z.24E-U3
				3.42E-12	Outside EPD	3.42E-12	Liver	2.35E-07	Outside EDD	2.35E-07
		1	4,4'-DDT PCBs	3.42E-12	Outside EPD	3.42E-12	Liver	2.30E-U/	Outside EPD	∠.35E-U/
		1	Total PCBs	2.36E-11	Outside EPD	2.36E-11	Ocular/eye, Nails, Immune	3.45E-05	Outside EPD	3.45E-05
		1			1.37E-09	2.36E-11 1.06E-08	Ocular/eye, Malis, Immune	3.45E-05 1.03E-03	1.84E-03	3.45E-05 2.87E-03
		F 5	Chemical Total	9.21E-09	1.37E-09			1.U3E-U3	1.84E-03	
	-	Exposure Point Tota	31			1.06E-08				2.87E-03
	Exposure Medium Tota	al .				1.06E-08				2.87E-03
Surface Water Total						1.06E-08				2.87E-03
Receptor Total						2.49E-06	JL			3.38E-01

Table H-2-15. RME Summary of Receptor Risks and Hazards for COPCs - Child Wader Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Child

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	sk	Nor	n-Carcinogenic Hazard (Quotient	
				Ingestion Dermal Exposure		Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total

Notes

NA - Not Applicable

Target		Target Organ Hazard II	ndex	
	Chemical	Sediment	Surface Water	Total
Blood	Antimony, DRO	1.61E-02		1.61E-02
Decreased body and organ weights	Nickel	1.70E-03		1.70E-03
Developmental	2,3,7,8-TCDD-TEQ, Benzo(a)pyrene	2.03E-01	6.41E-05	2.04E-01
Eye	Total PCBs	3.02E-02	3.45E-05	3.02E-02
Hair	Thallium, Vanadium	3.01E-02	-	3.01E-02
Immune	Total PCBs, Nickel	3.02E-02	3.45E-05	3.02E-02
Kidney	DRO	7.03E-03	-	7.03E-03
Liver	4,4'-DDT, DRO	7.03E-03	2.35E-07	7.03E-03
Mortality	Antimony	9.06E-03		9.06E-03
Nails	Total PCBs	3.02E-02	3.45E-05	3.02E-02
Neurological	Aluminum, manganese	1.05E-02	2.24E-03	1.28E-02
Reproductive	TCDD-TEQ, Cyanide	2.04E-01	6.41E-05	2.04E-01
Skin	Arsenic	9.51E-03	2.61E-04	9.77E-03
Thyroid	Cobalt	3.09E-02	2.70E-04	3.12E-02
Vascular	Arsenic	9.51E-03	2.61E-04	9.77E-03

Table H-2-16. RME Summary of Receptor Risks and Hazards for COPCs - Shoreline Worker Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	sk	Non-	Carcinogenic Hazard	Quotient	
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total
Sediment	Fringe	Waterside								
	Surface	Investigation	Dioxin							
	Sediment	Area	2,3,7,8-TCDD-TEQ	1.69E-06	5.37E-07	2.23E-06	Reproductive, Developmental	5.20E-02	1.65E-02	6.85E-02
			Metals	110	N10	NA	No. of the Control	4.50E.00	N/A	4.505.00
			Aluminum	NA NA	NA	NA NA	Neurological	1.53E-03	NA NA	1.53E-03
			Antimony	NA	NA	NA .	Mortality, Blood	2.75E-03	NA 1.10F.00	2.75E-03
			Arsenic	3.60E-07	1.91E-07	5.51E-07	Skin, Vascular	2.24E-03	1.19E-03	3.43E-03
			Cobalt	NA	NA	NA	Thyroid	9.39E-03	NA	9.39E-03
			Cyanide	NA	NA	NA	Reproductive	9.25E-04	NA	9.25E-04
			Manganese	NA	NA	NA	Neurological	1.67E-03	NA	1.67E-03
			Nickel	NA	NA	NA	Decreased body and organ weights	5.15E-04	NA	5.15E-04
			Thallium	NA	NA	NA	Hair	4.08E-03	NA	4.08E-03
			Vanadium	NA	NA	NA	Hair	5.06E-03	NA	5.06E-03
			PCBs							
			Total PCBs	7.25E-08	1.07E-07	1.80E-07	Ocular/eye, Nails, Immune	5.08E-03	7.52E-03	1.26E-02
			SVOCs							
			Benzo(a)anthracene	7.65E-09	1.05E-08	1.82E-08	NA	NA	NA	NA
			Benzo(a)pyrene	4.66E-08	6.41E-08	1.11E-07	Developmental	4.35E-04	5.98E-04	1.03E-03
			Benzo(b)fluoranthene	6.84E-09	9.41E-09	1.63E-08	NA	NA	NA	NA
			Benzo(k)fluoranthene	2.49E-10	3.42E-10	5.91E-10	NA	NA	NA	NA
			Chrysene	6.18E-11	8.50E-11	1.47E-10	NA	NA	NA	NA
			Dibenzo(a,h)anthracene	1.09E-08	1.51E-08	2.60E-08	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	4.01E-09	5.51E-09	9.52E-09	NA	NA	NA	NA
			TPH							
			Diesel Range Organics (C10-C20)	NA	NA	NA	Liver, Kidney, Blood	2.14E-03	NA	2.14E-03
			Chemical Total	2.20E-06	9.40E-07	3.14E-06		8.78E-02	2.58E-02	1.14E-01
		Exposure Point Tota	al			3.14E-06				1.14E-01
	Exposure Medium Tota	al				3.14E-06				1.14E-01
diment Total						3.14E-06				1.14E-01
Surface	Surface	Waterside	1							
Water	Water	Investigation	Dioxin							
		Area	2,3,7,8-TCDD-TEQ	6.33E-10	7.07E-07	7.08E-07	Reproductive, Developmental	1.95E-05	2.18E-02	2.18E-02
			Metals				,			
				1 10F-08	5 96F-09	1 69F-08	Skin Vascular	6.83F-05	3.71F-05	1 05F-04
			Arsenic	1.10E-08 NA	5.96E-09 NA	1.69E-08 NA	Skin, Vascular Thyroid	6.83E-05 7.72E-05	3.71E-05 1.67E-05	1.05E-04 9.39E-05
			Arsenic Cobalt	NA	NA	NA	Thyroid	7.72E-05	1.67E-05	9.39E-05
			Arsenic Cobalt Manganese							
			Arsenic Cobalt Manganese Pesticides	NA NA	NA NA	NA NA	Thyroid Neurological	7.72E-05 1.37E-04	1.67E-05 1.86E-03	9.39E-05 2.00E-03
			Arsenic Cobalt Manganese Pesticides 4,4-DDT	NA	NA	NA	Thyroid	7.72E-05	1.67E-05	9.39E-05
			Arsenic Cobalt Manganese Pesticides 4,4'-DDT PCBs	NA NA 4.32E-12	NA NA 2.79E-09	NA NA 2.79E-09	Thyroid Neurological Liver	7.72E-05 1.37E-04 7.12E-08	1.67E-05 1.86E-03 4.60E-05	9.39E-05 2.00E-03 4.60E-05
			Arsenic Cobalt Manganese Pesticides 4,4'-DDT PCBS Total PCBs	NA NA 4.32E-12 2.99E-11	NA NA 2.79E-09 2.30E-08	NA NA 2.79E-09 2.30E-08	Thyroid Neurological	7.72E-05 1.37E-04 7.12E-08	1.67E-05 1.86E-03 4.60E-05	9.39E-05 2.00E-03 4.60E-05 8.06E-03
		Exposure Point Total	Arsenic Cobalt Manganese Pesticides 4,4'-DDT PCBs Total PCBs Chemical Total	NA NA 4.32E-12	NA NA 2.79E-09	NA NA 2.79E-09 2.30E-08 7.51E-07	Thyroid Neurological Liver	7.72E-05 1.37E-04 7.12E-08	1.67E-05 1.86E-03 4.60E-05	9.39E-05 2.00E-03 4.60E-05 8.06E-03 3.21E-02
	Evoceura Medium Tot	Exposure Point Tota	Arsenic Cobalt Manganese Pesticides 4,4'-DDT PCBs Total PCBs Chemical Total	NA NA 4.32E-12 2.99E-11	NA NA 2.79E-09 2.30E-08	NA NA 2.79E-09 2.30E-08 7.51E-07	Thyroid Neurological Liver	7.72E-05 1.37E-04 7.12E-08	1.67E-05 1.86E-03 4.60E-05	9.39E-05 2.00E-03 4.60E-05 8.06E-03 3.21E-02 3.21E-02
rface Water Total	Exposure Medium Tota		Arsenic Cobalt Manganese Pesticides 4,4'-DDT PCBs Total PCBs Chemical Total	NA NA 4.32E-12 2.99E-11	NA NA 2.79E-09 2.30E-08	NA NA 2.79E-09 2.30E-08 7.51E-07	Thyroid Neurological Liver	7.72E-05 1.37E-04 7.12E-08	1.67E-05 1.86E-03 4.60E-05	9.39E-05 2.00E-03 4.60E-05 8.06E-03 3.21E-02

Table H-2-16. RME Summary of Receptor Risks and Hazards for COPCs - Shoreline Worker Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Shoreline Worker Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	sk	Noi	n-Carcinogenic Hazard	Quotient	
				Ingestion Dermal Exposure			Primary	Ingestion	Dermal	Exposure
						Routes Total	Target Organ(s)			Routes Total

Notes

NA - Not Applicable

Target		Target Organ Hazard II	ndex	
Organ	Chemical	Sediment	Surface Water	Total
Blood	Antimony, DRO	4.89E-03	-	4.89E-03
Decreased body and organ weights	Nickel	5.15E-04	-	5.15E-04
Developmental	2,3,7,8-TCDD-TEQ, Benzo(a)pyrene	6.96E-02	2.18E-02	9.13E-02
Eye	Total PCBs	1.26E-02	8.06E-03	2.07E-02
Hair	Thallium, Vanadium	9.14E-03		9.14E-03
Immune	Total PCBs, Nickel	1.26E-02	8.06E-03	2.07E-02
Kidney	DRO	2.14E-03	-	2.14E-03
Liver	4,4'-DDT, DRO	2.14E-03	4.60E-05	2.18E-03
Mortality	Antimony	2.75E-03	-	2.75E-03
Nails	Total PCBs	1.26E-02	8.06E-03	2.07E-02
Neurological	Aluminum, manganese	3.20E-03	2.00E-03	5.19E-03
Reproductive	TCDD-TEQ, Cyanide	6.95E-02	2.18E-02	9.12E-02
Skin	Arsenic	3.43E-03	1.05E-04	3.53E-03
Thyroid	Cobalt	9.39E-03	9.39E-05	9.48E-03
Vascular	Arsenic	3.43E-03	1.05E-04	3.53E-03

Central Tendency Exposure (CTE)

Risk Calculation Tables (CTE)

Table H-1-1. CTE

Calculation of Chemical Cancer Risks and Non-Cancer Hazards Based on Unit Concentrations - Construction Worker Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future

Receptor Population: Construction Worker

Receptor Age: Adult

	1						C	ancer Risk Calcula	itions - Basen	on Unit Cond	centration		Noncance	r Hazard Calcula	ions - Basen	on Unit Cond	entration
	Exposure	Exposure	Exposure	Chemical of	Unit EP	C (1)		re Concentration		/IUR		Cancer		re Concentration)/RfC	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (2)	Risk	Value	Units	Value	Units	Quotient
Soil	Soil		Ingestion	Dioxin 2,3,7,8-TCDD-TEQ Inorganics Arsenic	1.00E+00 1.00E+00	mg/kg mg/kg	3.23E-09 1.94E-09	mg/kg-day mg/kg-day	1.30E+05 1.50E+00	kg-day/mg kg-day/mg		4.20E-04 2.91E-09	2.26E-07 1.36E-07	mg/kg-day mg/kg-day	7.00E-10 3.00E-04	mg/kg-day mg/kg-day	3.23E+02 4.52E-04
				Cobalt	1.00E+00	mg/kg	3.23E-09	mg/kg-day	NA	kg-day/mg		NA	2.26E-07	mg/kg-day	3.00E-04	mg/kg-day	7.53E-04
				Manganese	1.00E+00	mg/kg	3.23E-09	mg/kg-day	NA	kg-day/mg		NA	2.26E-07	mg/kg-day	2.40E-02	mg/kg-day	9.42E-06
				Nickel	1.00E+00	mg/kg	3.23E-09	mg/kg-day	NA	kg-day/mg		NA	2.26E-07	mg/kg-day	2.00E-02	mg/kg-day	1.13E-05
				Thallium	1.00E+00	mg/kg	3.23E-09	mg/kg-day	NA	kg-day/mg		NA	2.26E-07	mg/kg-day	1.00E-05	mg/kg-day	2.26E-02
				Vanadium PCBs	1.00E+00	mg/kg	3.23E-09	mg/kg-day	NA	kg-day/mg		NA	2.26E-07	mg/kg-day	5.04E-03	mg/kg-day	4.48E-05
				Total PCBs SVOCs	1.00E+00	mg/kg	3.23E-09	mg/kg-day	2.00E+00	kg-day/mg		6.46E-09	2.26E-07	mg/kg-day	5.00E-05	mg/kg-day	4.52E-03
				Benzo(a)anthracene	1.00E+00	mg/kg	3.23E-09	mg/kg-day	1.00E-01	kg-day/mg	1	3.23E-10	2.26E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	1.00E+00	mg/kg	3.23E-09	mg/kg-day	1.00E+00	kg-day/mg	1	3.23E-09	2.26E-07	mg/kg-day	3.00E-04	mg/kg-day	7.53E-04
				Benzo(b)fluoranthene	1.00E+00	mg/kg	3.23E-09	mg/kg-day	1.00E-01	kg-day/mg	1	3.23E-10	2.26E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	1.00E+00	mg/kg	3.23E-09	mg/kg-day	1.00E-02	kg-day/mg	1	3.23E-11	2.26E-07	mg/kg-day	NA	mg/kg-day	NA
				Chrysene	1.00E+00	mg/kg	3.23E-09	mg/kg-day	1.00E-03	kg-day/mg	1	3.23E-12	2.26E-07	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.00E+00	mg/kg	3.23E-09	mg/kg-day	1.00E+00	kg-day/mg	1	3.23E-09	2.26E-07	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	1.00E+00	mg/kg	3.23E-09	mg/kg-day	1.00E-01	kg-day/mg	1	3.23E-10	2.26E-07	mg/kg-day	NA	mg/kg-day	NA
				Naphthalene	1.00E+00	mg/kg	3.23E-09	mg/kg-day	NA	kg-day/mg		NA	2.26E-07	mg/kg-day	2.00E-02	mg/kg-day	1.13E-05
				TPH Diesel Range Organics (C10-C20)	1.00E+00	mg/kg	3.23E-09	mg/kg-day	NA	kg-day/mg		NA	2.26E-07	mg/kg-day	1.00E-02	mg/kg-day	2.26E-05
			Exp. Route Total									(3)				l	(3)
Soil	Sol		Dermal Dermal									(0)					(0)
				Dioxin 2.3.7.8-TCDD-TEQ	1.00E+00	mg/kg	3.11E-10	mg/kg-day	1.30E+05	kg-day/mg		4.04E-05	2.17E-08	mg/kg-day	7.00E-10	mg/kg-day	3.11E+0
				Inorganics Arsenic	1.00E+00	mg/kg	3.11E-10	mg/kg-day	1.50E+00	kg-day/mg		4.66E-10	2.17E-08	mg/kg-day	3.00E-04	mg/kg-day	7.25E-05
				Cobalt	1.00E+00 1.00E+00	mg/kg	3.11E-10 NA	mg/kg-day	1.50E+00 NA	kg-day/mg		4.66E-10	2.17E-06 NA	mg/kg-day	3.00E-04 3.00E-04	mg/kg-day	7.23E-00 NA
				Manganese	1.00E+00	mg/kg	NA NA	mg/kg-day	NA NA	kg-day/mg		NA NA	NA NA	mg/kg-day	9.60E-04	mg/kg-day	NA NA
				Nickel	1.00E+00	mg/kg	NA NA	mg/kg-day	NA NA	kg-day/mg		NA NA	NA NA	mg/kg-day	8.00E-04	mg/kg-day	NA NA
				Thallium	1.00E+00	mg/kg	NA NA	mg/kg-day	NA.	kg-day/mg		NA.	NA.	mg/kg-day	1.00E-05	mg/kg-day	NA.
				Vanadium PCBs	1.00E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.31E-04	mg/kg-day	NA
				Total PCBs SVOCs	1.00E+00	mg/kg	1.45E-09	mg/kg-day	2.00E+00	kg-day/mg		2.90E-09	1.01E-07	mg/kg-day	5.00E-05	mg/kg-day	2.03E-0
				Benzo(a)anthracene	1.00E+00	mg/kg	1.35E-09	mg/kg-day	1.00E-01	kg-day/mg	1	1.35E-10	9.42E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	1.00E+00	mg/kg	1.35E-09	mg/kg-day	1.00E+00	kg-day/mg	1	1.35E-09	9.42E-08	mg/kg-day	3.00E-04	mg/kg-day	3.14E-04
				Benzo(b)fluoranthene	1.00E+00	mg/kg	1.35E-09	mg/kg-day	1.00E-01	kg-day/mg	1	1.35E-10	9.42E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	1.00E+00	mg/kg	1.35E-09	mg/kg-day	1.00E-02	kg-day/mg	1	1.35E-11	9.42E-08	mg/kg-day	NA	mg/kg-day	NA
				Chrysene	1.00E+00	mg/kg	1.35E-09	mg/kg-day	1.00E-03	kg-day/mg	1	1.35E-12	9.42E-08	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.00E+00	mg/kg	1.35E-09	mg/kg-day	1.00E+00	kg-day/mg	1	1.35E-09	9.42E-08	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	1.00E+00	mg/kg	1.35E-09	mg/kg-day	1.00E-01	kg-day/mg	1	1.35E-10	9.42E-08	mg/kg-day	NA	mg/kg-day	NA
				Naphthalene	1.00E+00	mg/kg	1.35E-09	mg/kg-day	NA	kg-day/mg		NA	9.42E-08	mg/kg-day	2.00E-02	mg/kg-day	4.71E-06
				TPH Diesel Range Organics (C10-C20)	1.00E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-02	mg/kg-day	NA
				3 3 ,		5 5		,	1	, , ,				"",	1	"",	

Table H-1-1. CTE

Calculation of Chemical Cancer Risks and Non-Cancer Hazards Based on Unit Concentrations - Construction Worker Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future

Receptor Population: Construction Worker

Receptor Age: Adult

							C	ancer Risk Calcula	tions - Based	on Unit Cond	centration		Noncance	er Hazard Calcula	tions - Based	on Unit Cond	centration
	Exposure	Exposure	Exposure	Chemical of	Unit EF	C (1)		e Concentration		/IUR	Contiduon	Cancer		re Concentration		/RfC	Hazar
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (2)	Risk	Value	Units	Value	Units	Quotie
Soil	Outdoor air	1 Oint	Inhalation	i oteritar concern	value	Offico	value	Offits	value	OTING	710711	TAIGIA	value	Office	value	Cinto	Quoti
Oon	o atabor an		minalation	Dioxin													
				2,3,7,8-TCDD-TEQ	1.00E+00	mg/m3	2.61E-04	mg/m3	3.80E+01	mg/m3		9.92E-03	1.83E-02	mg/m3	4.00E-08	mg/m3	4.57E
				Inorganics													
				Arsenic	1.00E+00	mg/m3	2.61E-04	mg/m3	4.30E-03	mg/m3		1.12E-06	1.83E-02	mg/m3	1.50E-05	mg/m3	1.22E
				Cobalt	1.00E+00	mg/m3	2.61E-04	mg/m3	9.00E-03	mg/m3		2.35E-06	1.83E-02	mg/m3	6.00E-06	mg/m3	3.04E
				Manganese	1.00E+00	mg/m3	2.61E-04	mg/m3	NA	mg/m3		NA	1.83E-02	mg/m3	5.00E-05	mg/m3	3.65E
				Nickel	1.00E+00	mg/m3	2.61E-04	mg/m3	2.60E-04	mg/m3		6.78E-08	1.83E-02	mg/m3	9.00E-05	mg/m3	2.03E
				Thallium	1.00E+00	mg/m3	2.61E-04	mg/m3	NA	mg/m3		NA	1.83E-02	mg/m3	NA	mg/m3	N/
				Vanadium	1.00E+00	mg/m3	2.61E-04	mg/m3	NA	mg/m3		NA	1.83E-02	mg/m3	1.00E-04	mg/m3	1.83E
				PCBs				Ü		· ·				· ·			
				Total PCBs	1.00E+00	mg/m3	2.61E-04	mg/m3	5.71E-04	mg/m3		1.49E-07	1.83E-02	mg/m3	NA	mg/m3	N/
				SVOCs		_		-						-			
				Benzo(a)anthracene	1.00E+00	mg/m3	2.61E-04	mg/m3	6.00E-05	mg/m3	1	1.57E-08	1.83E-02	mg/m3	NA	mg/m3	N/
				Benzo(a)pyrene	1.00E+00	mg/m3	2.61E-04	mg/m3	6.00E-04	mg/m3	1	1.57E-07	1.83E-02	mg/m3	2.00E-06	mg/m3	9.13
				Benzo(b)fluoranthene	1.00E+00	mg/m3	2.61E-04	mg/m3	6.00E-05	mg/m3	1	1.57E-08	1.83E-02	mg/m3	NA	mg/m3	N
				Benzo(k)fluoranthene	1.00E+00	mg/m3	2.61E-04	mg/m3	6.00E-06	mg/m3	1	1.57E-09	1.83E-02	mg/m3	NA	mg/m3	N
				Chrysene	1.00E+00	mg/m3	2.61E-04	mg/m3	6.00E-07	mg/m3	1	1.57E-10	1.83E-02	mg/m3	NA	mg/m3	N
				Dibenzo(a,h)anthracene	1.00E+00	mg/m3	2.61E-04	mg/m3	6.00E-04	mg/m3	1	1.57E-07	1.83E-02	mg/m3	NA	mg/m3	N
				Indeno(1,2,3-cd)pyrene	1.00E+00	mg/m3	2.61E-04	mg/m3	6.00E-05	mg/m3	1	1.57E-08	1.83E-02	mg/m3	NA	mg/m3	N
				Naphthalene	1.00E+00	mg/m3	2.61E-04	mg/m3	3.40E-05	mg/m3		8.87E-09	1.83E-02	mg/m3	3.00E-03	mg/m3	6.09
				ТРН													
				Diesel Range Organics (C10-C20)	1.00E+00	mg/m3	2.61E-04	mg/m3	NA	mg/m3		NA	1.83E-02	mg/m3	1.00E-01	mg/m3	1.83E
	1		Exp. Route Total	<u></u>								(3)					(3
		Exposure Point Total										(3)					(3
Total	Exposure Mediu	im Total										(3)					(3
l Total	Transh Air		T	1			11					(3)					(3
roundwater	Trench Air		Inhalation	voo:													
				VOCs Bromodichloromethane	4.005.00		0.505.05		2.705.05			0.445.00	4.575.00		NA	/2	N.
				Butyl alcohol, tert-	1.00E+00 1.00E+00	mg/m3 mg/m3	6.52E-05 6.52E-05	mg/m3 mg/m3	3.70E-05 NA	mg/m3 mg/m3		2.41E-09 NA	4.57E-03 4.57E-03	mg/m3	2.00E-01	mg/m3 mg/m3	2.28
				Chloroform	1.00E+00 1.00E+00	mg/m3	6.52E-05 6.52E-05	mg/m3	2.30E-05	mg/m3		1.50E-09	4.57E-03 4.57E-03	mg/m3 mg/m3	9.80E-02	mg/m3	4.66
				Methyl tert-Butyl Ether (MTBE)	1.00E+00	mg/m3	6.52E-05	mg/m3	2.60E-05	mg/m3		1.70E-11	4.57E-03 4.57E-03	mg/m3	3.00E+00	mg/m3	1.52
				Tetrachloroethylene	1.00E+00	mg/m3	6.52E-05	mg/m3	2.60E-07	mg/m3		1.70E-11	4.57E-03	mg/m3	4.00E-02	mg/m3	1.14
				Trichloroethene	1.00E+00	mg/m3	6.52E-05	mg/m3	4.10E-06	mg/m3	1	2.67E-10	4.57E-03 4.57E-03	mg/m3	2.00E-02	mg/m3	2.28
				Vinyl Chloride	1.00E+00	mg/m3	6.52E-05	mg/m3	4.40E-06	mg/m3	'	2.87E-10	4.57E-03	mg/m3	1.00E-01	mg/m3	4.57
				Viriyi Chionde	1.002+00	ilig/ilio	0.32L-03	mg/ms	4.40L-00	ilig/ilio		2.07L-10	4.57 L-03	ilig/ili3	1.00L-01	mg/ms	4.571
			Exp. Route Total	1	L	1					1	(3)					(3
		Exposure Point Total	<u></u>				<u> </u>					(3)					(3
	Exposure Mediu						í 					(3)					(3
oundwater	Exposure Medic	- Total										(3)					(3

Notes:

ADAF - Age-Dependent Adjustment Factor. PCB - Polychlorinated Biphenyl. CSF - Cancer Slope Factor. RfD - Oral Reference Dose.

EPC - Exposure Point Concentration. SVOC - Semivolatile Organic Compound.

NA - Not Applicable; no dose-response value. TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

- (2) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.
- (3) Totals not provided here; potential risks and hazards are based on the unit concentration. Totals are provided in the scaling table.

⁽¹⁾ Due to the multiple soil areas, a unit soil concentration of 1 mg/kg and a unit air concentration of 1 mg/m3 is used to calculate a potential excess lifetime cancer risk (ELCR) and noncancer hazard quotient (HQ) based on a unit soil concentration. Potential ELCRs and HQs calculated based on a unit concentration will be adjusted based on the area-specific EPCs in a scaling table.

Table H-1-2. CTE

Calculation of Chemical Cancer Risks and Non-Cancer Hazards Based on Unit Concentrations - Outdoor Industrial Worker Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future

Receptor Population: Outdoor Industrial Worker

Receptor Age: Adult

			1	T			C	ancer Risk Calcula	ations - Based	d on Unit Con	centration		Noncance	er Hazard Calculat	tions - Based	on Unit Cond	centration
	Exposure	Exposure	Exposure	Chemical of	Unit EP	C (1)		re Concentration		F/IUR		Cancer		re Concentration		/RfC	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (2)	Risk	Value	Units	Value	Units	Quotient
Surface Soil	Surface Soil		Ingestion	Dioxin 2,3,7,8-TCDD-TEQ Inorganics	1.00E+00	mg/kg	3.54E-08	mg/kg-day	1.30E+05	kg-day/mg		4.60E-03	3.75E-07	mg/kg-day	7.00E-10	mg/kg-day	5.36E+02
				Arsenic	1.00E+00	mg/kg	2.12E-08	mg/kg-day	1.50E+00	kg-day/mg		3.18E-08	2.25E-07	mg/kg-day	3.00E-04	mg/kg-day	7.50E-04
				Cobalt	1.00E+00	mg/kg	3.54E-08	mg/kg-day	NA	kg-day/mg		NA	3.75E-07	mg/kg-day	3.00E-04	mg/kg-day	1.25E-03
				Manganese	1.00E+00	mg/kg	3.54E-08	mg/kg-day	NA	kg-day/mg		NA	3.75E-07	mg/kg-day	2.40E-02	mg/kg-day	1.56E-05
				Nickel	1.00E+00	mg/kg	3.54E-08	mg/kg-day	NA	kg-day/mg		NA	3.75E-07	mg/kg-day	2.00E-02	mg/kg-day	1.88E-05
				Thallium	1.00E+00	mg/kg	3.54E-08	mg/kg-day	NA	kg-day/mg		NA	3.75E-07	mg/kg-day	1.00E-05	mg/kg-day	3.75E-02
				Vanadium	1.00E+00	mg/kg	3.54E-08	mg/kg-day	NA	kg-day/mg		NA	3.75E-07	mg/kg-day	5.04E-03	mg/kg-day	7.44E-05
				PCBs Total PCBs	1.00E+00	mg/kg	3.54E-08	mg/kg-day	2.00E+00	kg-day/mg		7.07E-08	3.75E-07	mg/kg-day	2.00E-05	mg/kg-day	1.88E-02
				SVOCs	4.005.00	/	2.545.00	and a day.	4 005 04			2.545.00	2.755.07		NIA		NIA
				Benzo(a)anthracene	1.00E+00 1.00E+00	mg/kg	3.54E-08 3.54E-08	mg/kg-day	1.00E-01 1.00E+00	kg-day/mg	1	3.54E-09 3.54E-08	3.75E-07 3.75E-07	mg/kg-day	NA 3.00E-04	mg/kg-day	NA 1.25E-03
				Benzo(a)pyrene Benzo(b)fluoranthene	1.00E+00 1.00E+00	mg/kg mg/kg	3.54E-08 3.54E-08	mg/kg-day mg/kg-day	1.00E+00 1.00E-01	kg-day/mg kg-day/mg	1	3.54E-08 3.54E-09	3.75E-07 3.75E-07	mg/kg-day mg/kg-day	3.00E-04 NA	mg/kg-day mg/kg-day	1.25E-03 NA
				Benzo(k)fluoranthene	1.00E+00	mg/kg	3.54E-08	mg/kg-day	1.00E-01 1.00E-02	kg-day/mg	1	3.54E-09	3.75E-07 3.75E-07	mg/kg-day	NA NA	mg/kg-day	NA NA
				Chrysene	1.00E+00	mg/kg	3.54E-08	mg/kg-day	1.00E-02	kg-day/mg	1	3.54E-11	3.75E-07	mg/kg-day	NA NA	mg/kg-day	NA NA
				Dibenzo(a,h)anthracene	1.00E+00	mg/kg	3.54E-08	mg/kg-day	1.00E+00	kg-day/mg	1	3.54E-08	3.75E-07	mg/kg-day	NA NA	mg/kg-day	NA NA
				Indeno(1,2,3-cd)pyrene	1.00E+00	mg/kg	3.54E-08	mg/kg-day	1.00E-01	kg-day/mg	1	3.54E-09	3.75E-07	mg/kg-day	NA.	mg/kg-day	NA.
				Naphthalene	1.00E+00	mg/kg	3.54E-08	mg/kg-day	NA	kg-day/mg	·	NA	3.75E-07	mg/kg-day	2.00E-02	mg/kg-day	1.88E-05
				ТРН		3 3		3 3,		3,. 3				3 3,		3 3,	
				Diesel Range Organics (C10-C20)	1.00E+00	mg/kg	3.54E-08	mg/kg-day	NA	kg-day/mg		NA	3.75E-07	mg/kg-day	1.00E-02	mg/kg-day	3.75E-05
			Exp. Route Total	1		•		•	•	•		(3)		•		,	(3)
Surface Soil	Surface Soil		Dermal	T T													
				Dioxin 2,3,7,8-TCDD-TEQ	1.00E+00	mg/kg	8.98E-09	mg/kg-day	1.30E+05	kg-day/mg		1.17E-03	9.52E-08	mg/kg-day	7.00E-10	mg/kg-day	1.36E+02
				Inorganics													
				Arsenic	1.00E+00	mg/kg	8.98E-09	mg/kg-day	1.50E+00	kg-day/mg		1.35E-08	9.52E-08	mg/kg-day	3.00E-04	mg/kg-day	3.17E-04
				Cobalt	1.00E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	3.00E-04	mg/kg-day	NA
				Manganese	1.00E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	9.60E-04	mg/kg-day	NA
				Nickel	1.00E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	8.00E-04	mg/kg-day	NA
				Thallium	1.00E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-05	mg/kg-day	NA
				Vanadium	1.00E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.31E-04	mg/kg-day	NA
				PCBs Total PCBs	4.005.00		4.405.00		0.005.00	La la tar		8.38E-08	4.44E-07		0.005.05		2.22E-02
				SVOCs	1.00E+00	mg/kg	4.19E-08	mg/kg-day	2.00E+00	kg-day/mg		8.38E-08	4.44E-07	mg/kg-day	2.00E-05	mg/kg-day	2.22E-02
				Benzo(a)anthracene	1.00E+00	mg/kg	3.89E-08	mg/kg-day	1.00E-01	kg-day/mg	1	3.89E-09	4.13E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	1.00E+00 1.00E+00	mg/kg	3.89E-08	mg/kg-day	1.00E+00	kg-day/mg	1	3.89E-08	4.13E-07 4.13E-07	mg/kg-day	3.00E-04	mg/kg-day	1.38E-03
				Benzo(b)fluoranthene	1.00E+00	mg/kg	3.89E-08	mg/kg-day	1.00E+00	kg-day/mg	1	3.89E-09	4.13E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	1.00E+00	mg/kg	3.89E-08	mg/kg-day	1.00E-02	kg-day/mg	1	3.89E-10	4.13E-07	mg/kg-day	NA.	mg/kg-day	NA.
				Chrysene	1.00E+00	mg/kg	3.89E-08	mg/kg-day	1.00E-03	kg-day/mg	1	3.89E-11	4.13E-07	mg/kg-day	NA	mg/kg-day	NA.
			1	Dibenzo(a,h)anthracene	1.00E+00	mg/kg	3.89E-08	mg/kg-day	1.00E+00	kg-day/mg	1	3.89E-08	4.13E-07	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	1.00E+00	mg/kg	3.89E-08	mg/kg-day	1.00E-01	kg-day/mg	1	3.89E-09	4.13E-07	mg/kg-day	NA	mg/kg-day	NA
				Naphthalene	1.00E+00	mg/kg	3.89E-08	mg/kg-day	NA	kg-day/mg		NA	4.13E-07	mg/kg-day	2.00E-02	mg/kg-day	2.06E-05
				ТРН		-		1								/	
l l				Diesel Range Organics (C10-C20)	1.00E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg	l	NA	NA	mg/kg-day	1.00E-02	mg/kg-day	NA
						55				ng day/mg						3 3,	

Table H-1-2. CTE

Calculation of Chemical Cancer Risks and Non-Cancer Hazards Based on Unit Concentrations - Outdoor Industrial Worker Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Future

Receptor Population: Outdoor Industrial Worker

Receptor Age: Adult

							С	ancer Risk Calcula	tions - Based	l on Unit Con	centration		Noncance	r Hazard Calcula	tions - Based	d on Unit Con	centration
	Exposure	Exposure	Exposure	Chemical of	Unit EP	C (1)	Intake/Exposu	re Concentration	CSF	/IUR		Cancer	Intake/Exposur	re Concentration	RfD)/RfC	Hazard
dium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (2)	Risk	Value	Units	Value	Units	Quotient
ce Soil	Outdoor air		Inhalation														
				Dioxin													
				2,3,7,8-TCDD-TEQ	1.00E+00	mg/m3	1.89E-02	mg/m3	3.80E+01	mg/m3		7.17E-01	2.00E-01	mg/m3	4.00E-08	mg/m3	5.00E+0
				Inorganics													
				Arsenic	1.00E+00	mg/m3	1.89E-02	mg/m3	4.30E-03	mg/m3		8.11E-05	2.00E-01	mg/m3	1.50E-05	mg/m3	1.33E+0
				Cobalt	1.00E+00	mg/m3	1.89E-02	mg/m3	9.00E-03	mg/m3		1.70E-04	2.00E-01	mg/m3	6.00E-06	mg/m3	3.33E+0
				Manganese	1.00E+00	mg/m3	1.89E-02	mg/m3	NA	mg/m3		NA	2.00E-01	mg/m3	5.00E-05	mg/m3	4.00E+0
				Nickel	1.00E+00	mg/m3	1.89E-02	mg/m3	2.60E-04	mg/m3		4.90E-06	2.00E-01	mg/m3	9.00E-05	mg/m3	2.22E+0
				Thallium	1.00E+00	mg/m3	1.89E-02	mg/m3	NA	mg/m3		NA	2.00E-01	mg/m3	NA	mg/m3	NA
				Vanadium	1.00E+00	mg/m3	1.89E-02	mg/m3	NA	mg/m3		NA	2.00E-01	mg/m3	1.00E-04	mg/m3	2.00E+0
				PCBs													
				Total PCBs	1.00E+00	mg/m3	1.89E-02	mg/m3	5.71E-04	mg/m3		1.08E-05	2.00E-01	mg/m3	NA	mg/m3	NA
				SVOCs													
				Benzo(a)anthracene	1.00E+00	mg/m3	1.89E-02	mg/m3	6.00E-05	mg/m3	1	1.13E-06	2.00E-01	mg/m3	NA	mg/m3	NA
				Benzo(a)pyrene	1.00E+00	mg/m3	1.89E-02	mg/m3	6.00E-04	mg/m3	1	1.13E-05	2.00E-01	mg/m3	2.00E-06	mg/m3	1.00E+0
				Benzo(b)fluoranthene	1.00E+00	mg/m3	1.89E-02	mg/m3	6.00E-05	mg/m3	1	1.13E-06	2.00E-01	mg/m3	NA	mg/m3	NA
				Benzo(k)fluoranthene	1.00E+00	mg/m3	1.89E-02	mg/m3	6.00E-06	mg/m3	1	1.13E-07	2.00E-01	mg/m3	NA	mg/m3	NA
				Chrysene	1.00E+00	mg/m3	1.89E-02	mg/m3	6.00E-07	mg/m3	1	1.13E-08	2.00E-01	mg/m3	NA	mg/m3	NA
				Dibenzo(a,h)anthracene	1.00E+00	mg/m3	1.89E-02	mg/m3	6.00E-04	mg/m3	1	1.13E-05	2.00E-01	mg/m3	NA	mg/m3	NA
				Indeno(1,2,3-cd)pyrene	1.00E+00	mg/m3	1.89E-02	mg/m3	6.00E-05	mg/m3	1	1.13E-06	2.00E-01	mg/m3	NA	mg/m3	NA
				Naphthalene	1.00E+00	mg/m3	1.89E-02	mg/m3	3.40E-05	mg/m3		6.41E-07	2.00E-01	mg/m3	3.00E-03	mg/m3	6.67E+0
				ТРН													
				Diesel Range Organics (C10-C20)	1.00E+00	mg/m3	1.89E-02	mg/m3	NA	mg/m3		NA	2.00E-01	mg/m3	1.00E-01	mg/m3	2.00E+0
				1													<u></u>
]		Exp. Route Total									(3)					(3)
_		Exposure Point Total			-			•	•	•		(3)		-			(3)
	Exposure Mediu	ım Total										(3)					(3)
Soil Tot	al						-	•				(3)					(3)
eceptor F	Risk/Hazard											(3)					(3)

Notes:

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

NA - Not applicable; no dose-response value.

PCB - Polychlorinated Biphenyl.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

- (1) Due to the multiple soil areas, a unit soil concentration of 1 mg/kg and a unit air concentration of 1 mg/m3 is used to calculate a potential excess lifetime cancer risk (ELCR) and noncancer hazard quotient (HQ) based on a unit soil concentration. Potential ELCRs and HQs calculated based on a unit concentration will be adjusted based on the area-specific EPCs in a scaling table.
- (2) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.
- (3) Totals not provided here; potential risks and hazards are based on the unit concentration. Totals are provided in the scaling table.

Scenario Timeframe: Future Receptor Population: Recreational Visitor Receptor Age: Older Child/Teen (7 to <19 years)

								Can	cer Risk Calc	ulations				Noncancer	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC		Intake/Exposu	re Concentration	CSF	F/IUR		Cancer	Intake/Exposu	re Concentration	RfE)/RfC	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Surface Soil	Surface Soil	Hypothetical Future Park Land/Green Space	Ingestion	Dioxin 2,3,7,8-TCDD-TEQ Inorganics	1.89E-06	mg/kg	3.98E-15	mg/kg-day	1.30E+05	kg-day/mg		5.17E-10	4.64E-14	mg/kg-day	7.00E-10	mg/kg-day	6.63E-05
				Arsenic	2.20E+00	mg/kg	2.78E-09	mg/kg-day	1.50E+00	kg-day/mg		4.17E-09	3.24E-08	mg/kg-day	3.00E-04	mg/kg-day	1.08E-04
				Cobalt	1.11E+02	mg/kg	2.76E-03 2.34E-07	mg/kg-day	NA	kg-day/mg		NA	2.73E-06	mg/kg-day	3.00E-04	mg/kg-day	9.09E-03
				Manganese	1.11E+02	mg/kg	2.48E-07	mg/kg-day	NA NA	kg-day/mg		NA NA	2.90E-06	mg/kg-day	2.40E-02	mg/kg-day	1.21E-04
				Nickel	1.04E+01	mg/kg	2.18E-08	mg/kg-day	NA	kg-day/mg		NA.	2.54E-07	mg/kg-day	2.00E-02	mg/kg-day	1.27E-05
				Thallium	ND	mg/kg	ND	mg/kg-day	NA	kg-day/mg		ND	ND	mg/kg-day	1.00E-05	mg/kg-day	ND
				Vanadium PCBs	3.70E+01	mg/kg	7.79E-08	mg/kg-day	NA	kg-day/mg		NA	9.09E-07	mg/kg-day	5.04E-03	mg/kg-day	1.80E-04
				Total PCBs SVOCs	4.42E-02	mg/kg	9.30E-11	mg/kg-day	2.00E+00	kg-day/mg		1.86E-10	1.09E-09	mg/kg-day	2.00E-05	mg/kg-day	5.43E-05
				Benzo(a)anthracene	1.37E-01	mg/kg	2.88E-10	mg/kg-day	1.00E-01	kg-day/mg	2.5	7.21E-11	3.36E-09	mg/kg-day	NA	mg/kg-day	NA
			ĺ	Benzo(a)pyrene	1.55E-01	mg/kg	3.26E-10	mg/kg-day	1.00E+00	kg-day/mg	2.5	8.16E-10	3.81E-09	mg/kg-day	3.00E-04	mg/kg-day	1.27E-05
			ĺ	Benzo(b)fluoranthene	1.65E-01	mg/kg	3.47E-10	mg/kg-day	1.00E-01	kg-day/mg	2.5	8.68E-11	4.05E-09	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	6.80E-02	mg/kg	1.43E-10	mg/kg-day	1.00E-02	kg-day/mg	2.5	3.58E-12	1.67E-09	mg/kg-day	NA	mg/kg-day	NA
				Chrysene	1.53E-01	mg/kg	3.22E-10	mg/kg-day	1.00E-03	kg-day/mg	2.5	8.05E-13	3.76E-09	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	3.23E-02	mg/kg	6.80E-11	mg/kg-day	1.00E+00	kg-day/mg	2.5	1.70E-10	7.93E-10	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	1.04E-01	mg/kg	2.19E-10	mg/kg-day	1.00E-01	kg-day/mg	2.5	5.47E-11	2.55E-09	mg/kg-day	NA	mg/kg-day	NA
				Naphthalene TPH	1.22E-02	mg/kg	2.57E-11	mg/kg-day	NA	kg-day/mg		NA	3.00E-10	mg/kg-day	2.00E-02	mg/kg-day	1.50E-08
				Diesel Range Organics (C10-C20)	1.30E+01	mg/kg	2.74E-08	mg/kg-day	NA	kg-day/mg		NA	3.19E-07	mg/kg-day	1.00E-02	mg/kg-day	3.19E-05
			Exp. Route Total						•			6.07E-09					9.67E-03
Surface Soil	Surface Soil	Hypothetical Future	Dermal														
		Park Land/Green		Dioxin													
		Space		2,3,7,8-TCDD-TEQ	1.89E-06	mg/kg	1.89E-16	mg/kg-day	1.30E+05	kg-day/mg		2.45E-11	2.20E-15	mg/kg-day	7.00E-10	mg/kg-day	3.14E-06
				Inorganics	0.005.00		0.405.40		4.505.00	La la fara		0.005.40	0.505.00		0.005.04		0.505.00
				Arsenic	2.20E+00	mg/kg	2.19E-10	mg/kg-day	1.50E+00	kg-day/mg		3.29E-10	2.56E-09	mg/kg-day	3.00E-04	mg/kg-day	8.53E-06
				Cobalt Manganese	1.11E+02 1.18E+02	mg/kg mg/kg	NA NA	mg/kg-day mg/kg-day	NA NA	kg-day/mg kg-day/mg		NA NA	NA NA	mg/kg-day mg/kg-day	3.00E-04 9.60E-04	mg/kg-day mg/kg-day	NA NA
				Nickel	1.04E+01	mg/kg	NA NA	mg/kg-day	NA NA	kg-day/mg		NA NA	NA NA	mg/kg-day	8.00E-04	mg/kg-day	NA NA
				Thallium	ND	mg/kg	ND.	mg/kg-day	NA.	kg-day/mg		ND	ND.	mg/kg-day	1.00E-05	mg/kg-day	ND
				Vanadium PCBs	3.70E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.31E-04	mg/kg-day	NA
				Total PCBs SVOCs	4.42E-02	mg/kg	2.06E-11	mg/kg-day	2.00E+00	kg-day/mg		4.11E-11	2.40E-10	mg/kg-day	2.00E-05	mg/kg-day	1.20E-05
			ĺ	Benzo(a)anthracene	1.37E-01	mg/kg	5.92E-11	mg/kg-day	1.00E-01	kg-day/mg	2.5	1.48E-11	6.91E-10	mg/kg-day	NA	mg/kg-day	NA
			ĺ	Benzo(a)pyrene	1.55E-01	mg/kg	6.70E-11	mg/kg-day	1.00E+00	kg-day/mg	2.5	1.40E-11	7.82E-10	mg/kg-day	3.00E-04	mg/kg-day	2.61E-06
			ĺ	Benzo(b)fluoranthene	1.65E-01	mg/kg	7.13E-11	mg/kg-day	1.00E-01	kg-day/mg	2.5	1.78E-11	8.32E-10	mg/kg-day	NA	mg/kg-day	NA
			ĺ	Benzo(k)fluoranthene	6.80E-02	mg/kg	2.94E-11	mg/kg-day	1.00E-02	kg-day/mg	2.5	7.35E-13	3.43E-10	mg/kg-day	NA	mg/kg-day	NA
			ĺ	Chrysene	1.53E-01	mg/kg	6.61E-11	mg/kg-day	1.00E-03	kg-day/mg	2.5	1.65E-13	7.72E-10	mg/kg-day	NA	mg/kg-day	NA
			ĺ	Dibenzo(a,h)anthracene	3.23E-02	mg/kg	1.40E-11	mg/kg-day	1.00E+00	kg-day/mg	2.5	3.49E-11	1.63E-10	mg/kg-day	NA	mg/kg-day	NA
			ĺ	Indeno(1,2,3-cd)pyrene	1.04E-01	mg/kg	4.50E-11	mg/kg-day	1.00E-01	kg-day/mg	2.5	1.12E-11	5.24E-10	mg/kg-day	NA	mg/kg-day	NA
			ĺ	Naphthalene	1.22E-02	mg/kg	5.27E-12	mg/kg-day	NA	kg-day/mg		NA	6.15E-11	mg/kg-day	2.00E-02	mg/kg-day	3.08E-09
				TPH Diesel Range Organics (C10-C20)	1.30E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-02	mg/kg-day	NA
			Exp. Route Total	ga - 2 ga - 12 (12 y 0=0)				J J,		3 - 1,1 1.9		6.42E-10		J J,		J 3,	2.63E-05
			Exp. Route rotal				<u> </u>					0.42E-10					∠.03E-U5

Scenario Timeframe: Future Receptor Population: Recreational Visitor Receptor Age: Older Child/Teen (7 to <19 years)

								Can	cer Risk Calc	ulations				Noncancer	Hazard Calci	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPO		Intake/Exposu	re Concentration	CSF	/IUR		Cancer	Intake/Exposur	re Concentration	RfD)/RfC	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Medium Surface Soil	Medium Outdoor air	Point Hypothetical Future Park Land/Green Space	Route Inhalation	Potential Concern Dioxin 2,3,7,8-TCDD-TEQ Inorganics Arsenic Cobalt Manganese Nickel Thallium Vanadium PCBs Total PCBs SVOCs Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Indenof(1,2,3-cd)pyrene	3.31E-15 3.85E-09 1.94E-07 2.06E-07 1.81E-08 ND 6.47E-08 7.73E-11 2.40E-10 2.71E-10 2.89E-10 1.19E-10 2.68E-11 1.82E-10	mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3	Value 6.15E-19 7.15E-13 3.61E-11 3.84E-11 3.87E-12 ND 1.20E-11 1.44E-14 4.45E-14 5.37E-14 2.21E-14 4.97E-14 1.05E-14 3.38E-14	mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3	3.80E+01 4.30E-03 9.00E-03 NA 2.60E-04 NA 5.71E-04 6.00E-05 6.00E-06 6.00E-07 6.00E-07	mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	Risk 2.34E-17 3.08E-15 3.25E-13 NA 8.75E-16 ND NA 8.21E-18 6.68E-18 7.56E-17 3.32E-19 7.46E-20 1.58E-17 5.07E-18	7.17E-18 8.35E-12 4.21E-10 4.48E-10 3.93E-11 ND 1.40E-10 1.68E-13 5.20E-13 6.26E-13 6.26E-13 1.23E-13 1.395E-13	mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3	Value 4.00E-08 1.50E-05 6.00E-06 5.00E-05 NA 1.00E-04 NA NA NA NA NA NA NA NA NA NA NA NA NA	mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3 mg/m3	Quotient 1.79E-10 5.56E-07 7.02E-05 8.95E-06 4.36E-07 ND 1.40E-06 NA NA NA NA NA NA NA
				Naphthalene	2.13E-11	mg/m3	3.97E-15	mg/m3	3.40E-05	mg/m3	2.5	1.35E-19	4.63E-14	mg/m3	3.00E-03	mg/m3	1.54E-11
				TPH Diesel Range Organics (C10-C20)	2.27E-08	mg/m3	4.23E-12	mg/m3	NA	mg/m3		NA	4.93E-11	mg/m3	1.00E-01	mg/m3	4.93E-10
			Exp. Route Total	1					•			3.29E-13					8.18E-05
		Exposure Point Total					<u> </u>					6.72E-09					9.78E-03
	Exposure Medi	um Total					<u> </u>					6.72E-09					9.78E-03
urface Soil To	tal											6.72E-09					9.78E-03
tal Receptor	Risk/Hazard											6.72E-09					9.78E-03

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

NA - Not applicable/no dose-response value.

ND - Not Detected in this area.

PCB - Polychlorinated Biphenyl. RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

(1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.

								Car	ncer Risk Cal	lculations				Noncancer I	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposu	re Concentration	C	SF		Cancer	Intake/Exposur	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Ingestion														
	Surface	Investigation		Dioxin													
	Sediment	Area		2,3,7,8-TCDD-TEQ	7.25E-05	mg/kg	1.15E-13	mg/kg-day	1.30E+05	kg-day/mg		1.50E-08	8.06E-13	mg/kg-day	7.00E-10	mg/kg-day	1.15E-03
				Metals													
				Aluminum	8.07E+03	mg/kg	1.28E-05	mg/kg-day	NA	kg-day/mg		NA	8.98E-05	mg/kg-day	1.00E+00	mg/kg-day	8.98E-05
				Antimony	1.93E+00	mg/kg	3.07E-09	mg/kg-day	NA	kg-day/mg		NA	2.15E-08	mg/kg-day	4.00E-04	mg/kg-day	5.37E-05
				Arsenic	5.56E+00	mg/kg	5.30E-09	mg/kg-day	1.50E+00	kg-day/mg		7.95E-09	3.71E-08	mg/kg-day	3.00E-04	mg/kg-day	1.24E-04
				Cobalt	1.51E+01	mg/kg	2.40E-08	mg/kg-day	NA	kg-day/mg		NA	1.68E-07	mg/kg-day	3.00E-04	mg/kg-day	5.60E-04
				Cyanide	8.76E-01	mg/kg	1.39E-09	mg/kg-day	NA	kg-day/mg		NA	9.74E-09	mg/kg-day	6.30E-04	mg/kg-day	1.55E-05
				Manganese	2.10E+02	mg/kg	3.34E-07	mg/kg-day	NA	kg-day/mg		NA	2.34E-06	mg/kg-day	2.40E-02	mg/kg-day	9.73E-05
				Nickel	5.07E+01	mg/kg	8.06E-08	mg/kg-day	NA	kg-day/mg		NA	5.64E-07	mg/kg-day	2.00E-02	mg/kg-day	2.82E-05
				Thallium	2.10E-01	mg/kg	3.34E-10	mg/kg-day	NA	kg-day/mg		NA	2.34E-09	mg/kg-day	1.00E-05	mg/kg-day	2.34E-04
				Vanadium	8.70E+01	mg/kg	1.38E-07	mg/kg-day	NA	kg-day/mg		NA	9.68E-07	mg/kg-day	5.04E-03	mg/kg-day	1.92E-04
				PCBs													
				Total PCBs	4.47E-01	mg/kg	7.10E-10	mg/kg-day	2.00E+00	kg-day/mg		1.42E-09	4.97E-09	mg/kg-day	2.00E-05	mg/kg-day	2.49E-04
				SVOCs													
				Benzo(a)anthracene	5.90E-01	mg/kg	9.37E-10	mg/kg-day	1.00E-01	kg-day/mg	1	9.37E-11	6.56E-09	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	6.50E-01	mg/kg	1.03E-09	mg/kg-day	1.00E+00	kg-day/mg	1	1.03E-09	7.23E-09	mg/kg-day	3.00E-04	mg/kg-day	2.41E-05
				Benzo(b)fluoranthene	9.70E-01	mg/kg	1.54E-09	mg/kg-day	1.00E-01	kg-day/mg	1	1.54E-10	1.08E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	3.55E-01	mg/kg	5.64E-10	mg/kg-day	1.00E-02	kg-day/mg	1	5.64E-12	3.95E-09	mg/kg-day	NA	mg/kg-day	NA
				Chrysene	8.76E-01	mg/kg	1.39E-09	mg/kg-day	1.00E-03	kg-day/mg	1	1.39E-12	9.74E-09	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.48E-01	mg/kg	2.35E-10	mg/kg-day	1.00E+00	kg-day/mg	1	2.35E-10	1.65E-09	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	5.70E-01	mg/kg	9.06E-10	mg/kg-day	1.00E-01	kg-day/mg	1	9.06E-11	6.34E-09	mg/kg-day	NA	mg/kg-day	NA
				TPH													
				Diesel Range Organics (C10-C20)	9.10E+01	mg/kg	1.45E-07	mg/kg-day	NA	kg-day/mg		NA	1.01E-06	mg/kg-day	1.00E-02	mg/kg-day	1.01E-04
			Exp. Route Total									2.60E-08					2.92E-03

								Car	ncer Risk Cal	Iculations				Noncancer	Hazard Calcu	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposu	re Concentration	C	SF		Cancer	Intake/Exposu	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Dermal														
	Surface	Investigation		Dioxin													
	Sediment	Area		2,3,7,8-TCDD-TEQ	7.25E-05	mg/kg	1.58E-13	mg/kg-day	1.30E+05	kg-day/mg		2.05E-08	1.10E-12	mg/kg-day	7.00E-10	mg/kg-day	1.58E-03
				Metals													1
				Aluminum	8.07E+03	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E+00	mg/kg-day	NA
				Antimony	1.93E+00	mg/kg	0.00E+00	mg/kg-day	NA	kg-day/mg		NA	0.00E+00	mg/kg-day	NA	mg/kg-day	NA
				Arsenic	5.56E+00	mg/kg	1.21E-08	mg/kg-day	1.50E+00	kg-day/mg		1.81E-08	8.46E-08	mg/kg-day	3.00E-04	mg/kg-day	2.82E-04
				Cobalt	1.51E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	3.00E-04	mg/kg-day	NA
				Cyanide	8.76E-01	mg/kg	0.00E+00	mg/kg-day	NA	kg-day/mg		NA	0.00E+00	mg/kg-day	NA	mg/kg-day	NA
				Manganese	2.10E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	9.60E-04	mg/kg-day	NA
				Nickel	5.07E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	8.00E-04	mg/kg-day	NA
				Thallium	2.10E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-05	mg/kg-day	NA
				Vanadium	8.70E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.31E-04	mg/kg-day	NA
				PCBs													1
				Total PCBs	4.47E-01	mg/kg	4.53E-09	mg/kg-day	2.00E+00	kg-day/mg		9.07E-09	3.17E-08	mg/kg-day	2.00E-05	mg/kg-day	1.59E-03
				SVOCs													1
				Benzo(a)anthracene	5.90E-01	mg/kg	5.56E-09	mg/kg-day	1.00E-01	kg-day/mg	1	5.56E-10	3.89E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	6.50E-01	mg/kg	6.12E-09	mg/kg-day	1.00E+00	kg-day/mg	1	6.12E-09	4.29E-08	mg/kg-day	3.00E-04	mg/kg-day	1.43E-04
				Benzo(b)fluoranthene	9.70E-01	mg/kg	9.14E-09	mg/kg-day	1.00E-01	kg-day/mg	1	9.14E-10	6.40E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	3.55E-01	mg/kg	3.34E-09	mg/kg-day	1.00E-02	kg-day/mg	1	3.34E-11	2.34E-08	mg/kg-day	NA	mg/kg-day	NA
				Chrysene	8.76E-01	mg/kg	8.25E-09	mg/kg-day	1.00E-03	kg-day/mg	1	8.25E-12	5.78E-08	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.48E-01	mg/kg	1.39E-09	mg/kg-day	1.00E+00	kg-day/mg	1	1.39E-09	9.76E-09	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	5.70E-01	mg/kg	5.37E-09	mg/kg-day	1.00E-01	kg-day/mg	1	5.37E-10	3.76E-08	mg/kg-day	NA	mg/kg-day	NA
				ТРН													
			1	Diesel Range Organics (C10-C20)	9.10E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-02	mg/kg-day	NA
																	'
				<u> </u>													
	[,		Exp. Route Total									5.72E-08	<u> </u>				3.59E-03
		Exposure Point To	tal		-							8.32E-08					6.51E-03
	Exposure Medi	um Total			-							8.32E-08					6.51E-03
Sediment Total		·			<u> </u>							8.32E-08					6.51E-03

								Car	ncer Risk Ca	lculations				Noncancer F	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC		Intake/Exposu	re Concentration	C	CSF		Cancer	Intake/Exposur	e Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Surface	Surface	Waterside	Ingestion								i i						
Water	Water	Investigation	-	Dioxin													
		Area		2.3.7.8-TCDD-TEQ	4.08E-07	ug/L	1.04E-16	mg/kg-day	1.30E+05	kg-day/mg		1.35E-11	7.26E-16	mg/kg-day	7.00E-10	mg/kg-day	1.04E-06
				Metals				3 3,		3				3 3,		3 3,	
				Arsenic	7.80E-01	ug/L	1.98E-10	mg/kg-day	1.50E+00	kg-day/mg		2.97E-10	1.39E-09	mg/kg-day	3.00E-04	mg/kg-day	4.63E-06
				Cobalt	9.80E-01	ug/L	2.49E-10	mg/kg-day	NA	kg-day/mg		NA	1.74E-09	mg/kg-day	3.00E-04	mg/kg-day	5.81E-06
				Manganese	1.40E+02	ug/L	3.56E-08	mg/kg-day	NA.	kg-day/mg		NA	2.49E-07	mg/kg-day	2.40E-02	mg/kg-day	1.04E-05
				Pesticides	11.102.102	ugic	0.002 00	mg/ng day		ng day/mg			2.102 07	mg/ng day	2.102 02	grug day	1.012 00
				4.4'-DDT	1.30E-03	ug/L	3.30E-13	mg/kg-day	3.40E-01	kg-day/mg		1.12E-13	2.31E-12	mg/kg-day	5.00E-04	mg/kg-day	4.63E-09
				PCBs	1.002 00	ugic	0.002 10	mg/ng day	0.102 01	ng day/mg		22 .0	2.012 12	mg/ng day	0.002 01	grug day	
				Total PCBs	9.40E-03	ug/L	2.39E-12	mg/kg-day	4.00E-01	kg-day/mg		9.56E-13	1.67E-11	mg/kg-day	2.00E-05	mg/kg-day	8.36E-07
				Total 1 CDS	9.40L-03	ug/L	2.55L-12	ilig/kg-uay	4.00L-01	kg-day/ilig		3.30L-13	1.071-11	ilig/kg-day	2.00L-03	ilig/kg-day	0.30L-07
			Exp. Route Total							l .	' <u> </u>	3.12E-10			l .		2.27E-05
			Dermal	<u> </u>	1			1		1	 -	0.122 10				1	2:272 00
			Deliliai	Dioxin													
i				2.3.7.8-TCDD-TEQ	4.08E-07	/1	Outside EPD		4 205 - 05	leas alasse/assas	l I,	Outside EPD	Outside EPD	as a /lea alas e	7.005.40	/l	Outside EPE
				Metals	4.06⊑-07	ug/L	Outside EPD	mg/kg-day	1.30E+05	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	7.00E-10	mg/kg-day	Outside EPI
					7.80E-01		0.405.44		4.505.00	to a decides a		1.41E-10	6.59E-10	and a decident	0.005.04		2.20E-06
				Arsenic		ug/L	9.42E-11	mg/kg-day	1.50E+00	kg-day/mg				mg/kg-day	3.00E-04	mg/kg-day	
				Cobalt	9.80E-01	ug/L	4.73E-11	mg/kg-day	NA	kg-day/mg		NA	3.31E-10	mg/kg-day	3.00E-04	mg/kg-day	1.10E-06
				Manganese	1.40E+02	ug/L	1.69E-08	mg/kg-day	NA	kg-day/mg		NA	1.18E-07	mg/kg-day	9.60E-04	mg/kg-day	1.23E-04
				Pesticides						l	l I.		0				
				4,4'-DDT	1.30E-03	ug/L	Outside EPD	mg/kg-day	3.40E-01	kg-day/mg	l l	Outside EPD	Outside EPD	mg/kg-day	5.00E-04	mg/kg-day	Outside EPI
				PCBs													
				Total PCBs	9.40E-03	ug/L	Outside EPD	mg/kg-day	4.00E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	2.00E-05	mg/kg-day	Outside EPI
		ı	E. D. D. Taral	<u> </u>							L	4 445 40					1.075.04
		Exposure Point Tot	Exp. Route Total	<u> </u>			<u> </u>					1.41E-10 4.53E-10					1.27E-04 1.49E-04
i i	F		rai				<u> </u>										
Surface Water	Exposure Medi	um rotai										4.53E-10 4.53E-10	<u> </u>				1.49E-04 1.49E-04
			1	<u></u>	1			1		1	<u> </u>	4.53E-10	<u> </u>				1.49E-04
Fish Tissue	Fish Fillet	Upper Anacostia	Ingestion														
	Tissue - Mixed			Metals						l							
	Diet (2)			Mercury	1.08E-01	mg/kg	4.83E-07	mg/kg-day	NA	kg-day/mg		NA	3.38E-06	mg/kg-day	1.00E-04	mg/kg-day	3.38E-02
				Pesticides													
				4,4'-DDD	5.47E-03	mg/kg	1.66E-08	mg/kg-day	2.40E-01	kg-day/mg		3.99E-09	1.16E-07	mg/kg-day	3.00E-05	mg/kg-day	3.88E-03
				4,4'-DDE	1.56E-02	mg/kg	4.72E-08	mg/kg-day	3.40E-01	kg-day/mg		1.61E-08	3.31E-07	mg/kg-day	3.00E-04	mg/kg-day	1.10E-03
				Aldrin	1.46E-04	mg/kg	4.43E-10	mg/kg-day	1.70E+01	kg-day/mg		7.53E-09	3.10E-09	mg/kg-day	3.00E-05	mg/kg-day	1.03E-04
				alpha-Chlordane	9.58E-03	mg/kg	2.91E-08	mg/kg-day	3.50E-01	kg-day/mg		1.02E-08	2.04E-07	mg/kg-day	5.00E-04	mg/kg-day	4.07E-04
				cis-Nonachlor	4.13E-03	mg/kg	1.26E-08	mg/kg-day	3.50E-01	kg-day/mg		4.39E-09	8.79E-08	mg/kg-day	5.00E-04	mg/kg-day	1.76E-04
				Dieldrin	2.89E-03	mg/kg	8.77E-09	mg/kg-day	1.60E+01	kg-day/mg		1.40E-07	6.14E-08	mg/kg-day	5.00E-05	mg/kg-day	1.23E-03
				gamma-Chlordane	3.47E-03	mg/kg	1.05E-08	mg/kg-day	3.50E-01	kg-day/mg		3.69E-09	7.38E-08	mg/kg-day	5.00E-04	mg/kg-day	1.48E-04
				Heptachlor epoxide	1.31E-03	mg/kg	3.99E-09	mg/kg-day	9.10E+00	kg-day/mg		3.63E-08	2.79E-08	mg/kg-day	1.30E-05	mg/kg-day	2.15E-03
				Mirex	1.76E-04	mg/kg	5.34E-10	mg/kg-day	1.80E+01	kg-day/mg		9.62E-09	3.74E-09	mg/kg-day	2.00E-04	mg/kg-day	1.87E-05
				Oxychlordane	1.82E-03	mg/kg	5.52E-09	mg/kg-day	3.50E-01	kg-day/mg		1.93E-09	3.86E-08	mg/kg-day	5.00E-04	mg/kg-day	7.72E-05
				trans-Nonachlor	1.07E-02	mg/kg	3.24E-08	mg/kg-day	3.50E-01	kg-day/mg		1.13E-08	2.26E-07	mg/kg-day	5.00E-04	mg/kg-day	4.53E-04
				PCBs													
				Total PCBs	1.92E-01	mg/kg	5.99E-07	mg/kg-day	2.00E+00	kg-day/mg		1.20E-06	4.19E-06	mg/kg-day	2.00E-05	mg/kg-day	2.10E-01
				PCB-TEQ	1.30E-06	mg/kg	3.02E-12	mg/kg-day	1.30E+05	kg-day/mg		3.92E-07	2.11E-11	mg/kg-day	7.00E-10	mg/kg-day	3.02E-02
													<u> </u>				
		ostia (Total PCBs)3										1.44E-06					2.53E-01
Fish Tissue Tot	al - Upper Anaco	ostia (PCB-TEQ)*										6.37E-07					7.37E-02
Receptor Total	s																
Total Receptor	Risk/Hazard - U	pper Anacostia (incl	ludes Total PCBs fo	or sediment, surface water, and fish)				•				1.53E-06	<u> </u>				2.60E-01
Total Receptor	Risk/Hazard - U	pper Anacostia (incl	ludes Total PCBs fo	or sediment and surface water and PC	B-TEQ for fish)							7.21E-07					8.03E-02

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Adult

ĺ									Can	cer Risk Cal	culations				Noncancer F	lazard Calcu	lations	
		Exposure	Exposure	Exposure	Chemical of	EPC	EPC		re Concentration		SF		Cancer	Intake/Exposur	e Concentration	R	RfD	Hazard
	Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient

Notes:

ADAF - Age-Dependent Adjustment Factor. PCB - Polychlorinated Biphenyl.

CSF - Cancer Slope Factor. PCB-TEQ - PCB Toxicity Equivalence.

EPC - Exposure Point Concentration. RfD - Oral Reference Dose.

EPD - Effective Predictive Domain. SVOC - Semivolatile Organic Compound.

NA - Not applicable. TCDD-TEQ - 2,3,7,8-Tetrachloro-dibenzo-p-dioxin Toxicity Equivalence.

- (1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.
- (2) Assumes a mixed fish diet of the species with available fillet data based on a pooled EPC.
- (3) Fish consumption Risk/Hazard based on all COPCs except PCB-TEQ.
- (4) Fish consumption Risk/Hazard based on all COPCs except Total PCBs.

								Can	cer Risk Cald	ulations				Noncancer F	Hazard Calcu	lations	
	Exposure	Exposure	Exposure	Chemical of	EPC)	Intake/Exposu	re Concentration	C	SF		Cancer	Intake/Exposu	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotien
Sediment	Fringe	Waterside	Ingestion														
	Surface	Investigation		Dioxin													
	Sediment	Area		2,3,7,8-TCDD-TEQ	7.25E-05	mg/kg	1.04E-13	mg/kg-day	1.30E+05	kg-day/mg		1.36E-08	1.22E-12	mg/kg-day	7.00E-10	mg/kg-day	1.74E-0
				Metals		0 0		,									
				Aluminum	8.07E+03	mg/kg	1.16E-05	mg/kg-day	NA	kg-day/mg		NA	1.35E-04	mg/kg-day	1.00E+00	mg/kg-day	1.35E-0
				Antimony	8.07E+03	mg/kg	1.16E-05	mg/kg-day	NA	kg-day/mg		NA	1.35E-04	mg/kg-day	1.00E+00	mg/kg-day	1.35E-0
				Arsenic	5.56E+00	mg/kg	4.80E-09	mg/kg-day	1.50E+00	kg-day/mg		7.20E-09	5.60E-08	mg/kg-day	3.00E-04	mg/kg-day	1.87E-0
				Cobalt	1.51E+01	mg/kg	2.17E-08	mg/kg-day	NA	kg-day/mg		NA	2.53E-07	mg/kg-day	3.00E-04	mg/kg-day	8.45E-0
				Cyanide	8.76E-01	mg/kg	1.26E-09	mg/kg-day	NA	kg-day/mg		NA.	1.47E-08	mg/kg-day	6.30E-04	mg/kg-day	2.33E-0
				Manganese	2.10E+02	mg/kg	3.02E-07	mg/kg-day	NA NA	kg-day/mg		NA NA	3.53E-06	mg/kg-day	2.40E-02	mg/kg-day	1.47E-
				Nickel	5.07E+01		7.30E-08		NA NA			NA NA	8.51E-07		2.40E-02 2.00E-02		4.26E
				Thallium		mg/kg	3.02E-10	mg/kg-day	NA NA	kg-day/mg		NA NA	3.53E-09	mg/kg-day		mg/kg-day	3.53E
					2.10E-01	mg/kg		mg/kg-day		kg-day/mg				mg/kg-day	1.00E-05	mg/kg-day	
				Vanadium	8.70E+01	mg/kg	1.25E-07	mg/kg-day	NA	kg-day/mg		NA	1.46E-06	mg/kg-day	5.04E-03	mg/kg-day	2.90E
				PCBs	_		_					_					
				Total PCBs	4.47E-01	mg/kg	6.43E-10	mg/kg-day	2.00E+00	kg-day/mg		1.29E-09	7.50E-09	mg/kg-day	2.00E-05	mg/kg-day	3.75E
				SVOCs													
				Benzo(a)anthracene	5.90E-01	mg/kg	8.49E-10	mg/kg-day	1.00E-01	kg-day/mg	2.5	2.12E-10	9.90E-09	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	6.50E-01	mg/kg	9.35E-10	mg/kg-day	1.00E+00	kg-day/mg	2.5	2.34E-09	1.09E-08	mg/kg-day	3.00E-04	mg/kg-day	3.64E
				Benzo(b)fluoranthene	9.70E-01	mg/kg	1.40E-09	mg/kg-day	1.00E-01	kg-day/mg	2.5	3.49E-10	1.63E-08	mg/kg-day	NA	mg/kg-day	N.
				Benzo(k)fluoranthene	3.55E-01	mg/kg	5.11E-10	mg/kg-day	1.00E-02	kg-day/mg	2.5	1.28E-11	5.96E-09	mg/kg-day	NA	mg/kg-day	N/
				Chrysene	8.76E-01	mg/kg	1.26E-09	mg/kg-day	1.00E-03	kg-day/mg	2.5	3.15E-12	1.47E-08	mg/kg-day	NA	mg/kg-day	N.
				Dibenzo(a,h)anthracene	1.48E-01	mg/kg	2.13E-10	mg/kg-day	1.00E+00	kg-day/mg	2.5	5.32E-10	2.48E-09	mg/kg-day	NA	mg/kg-day	N/
				Indeno(1,2,3-cd)pyrene	5.70E-01	mg/kg	8.20E-10	mg/kg-day	1.00E-01	kg-day/mg	2.5	2.05E-10	9.57E-09	mg/kg-day	NA	mg/kg-day	N/
				ТРН													
				Diesel Range Organics (C10-C20)	9.10E+01	mg/kg	1.31E-07	mg/kg-day	NA	kg-day/mg		NA	1.53E-06	mg/kg-day	1.00E-02	mg/kg-day	1.53E
				3 3 (3 3		3 3 ,		3,. 3				3 3,		3 3 ,	
			Exp. Route Total	1					1			2.57E-08		ı			4.46E-
Sediment	Fringe	Waterside	Dermal														
Sediment	Fringe Surface		Dermal	Dioxin													
Sediment	Surface	Investigation	Dermal	Dioxin 2.3.7.8-TCDD-TEQ	7.25E-05	ma/ka	8.48E-14	mg/kg-dav	1.30E+05	ka-dav/ma		1.10E-08	9.89E-13	ma/ka-dav	7.00E-10	mg/kg-dav	1.41E
Sediment			Dermal	2,3,7,8-TCDD-TEQ	7.25E-05	mg/kg	8.48E-14	mg/kg-day	1.30E+05	kg-day/mg		1.10E-08	9.89E-13	mg/kg-day	7.00E-10	mg/kg-day	1.41E
Sediment	Surface	Investigation	Dermal	2,3,7,8-TCDD-TEQ Metals													
Sediment	Surface	Investigation	Dermal	2,3,7,8-TCDD-TEQ Metals Aluminum	8.07E+03	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E+00	mg/kg-day	N.
Sediment	Surface	Investigation	Dermal	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony	8.07E+03 1.93E+00	mg/kg mg/kg	NA NA	mg/kg-day mg/kg-day	NA NA	kg-day/mg kg-day/mg		NA NA	NA NA	mg/kg-day mg/kg-day	1.00E+00 6.00E-05	mg/kg-day mg/kg-day	N/
Sediment	Surface	Investigation	Dermal	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic	8.07E+03 1.93E+00 5.56E+00	mg/kg mg/kg mg/kg	NA NA 6.50E-09	mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00	kg-day/mg kg-day/mg kg-day/mg		NA NA 9.76E-09	NA NA 7.59E-08	mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E-05 3.00E-04	mg/kg-day mg/kg-day mg/kg-day	N/ N/ 2.53E
Sediment	Surface	Investigation	Dermal	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic Cobalt	8.07E+03 1.93E+00 5.56E+00 1.51E+01	mg/kg mg/kg mg/kg mg/kg	NA NA 6.50E-09 NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00 NA	kg-day/mg kg-day/mg kg-day/mg kg-day/mg		NA NA 9.76E-09 NA	NA NA 7.59E-08 NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E-05 3.00E-04 3.00E-04	mg/kg-day mg/kg-day mg/kg-day mg/kg-day	N/ N/ 2.53E N/
Sediment	Surface	Investigation	Dermal	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic Cobalt Cyanide	8.07E+03 1.93E+00 5.56E+00 1.51E+01 8.76E-01	mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA 6.50E-09 NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00 NA NA	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg		NA NA 9.76E-09 NA NA	NA NA 7.59E-08 NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E-05 3.00E-04 3.00E-04 NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	N. N. 2.53E N. N.
Sediment	Surface	Investigation	Dermal	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic Cobalt Cyanide Manganese	8.07E+03 1.93E+00 5.56E+00 1.51E+01 8.76E-01 2.10E+02	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA 6.50E-09 NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00 NA NA	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg		NA NA 9.76E-09 NA NA	NA NA 7.59E-08 NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E-05 3.00E-04 3.00E-04 NA 9.60E-04	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	N, N, 2.53E N, N,
Sediment	Surface	Investigation	Dermal	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic Cobalt Cyanide Manganese Nickel	8.07E+03 1.93E+00 5.56E+00 1.51E+01 8.76E-01 2.10E+02 5.07E+01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA 6.50E-09 NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00 NA NA NA	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg		NA NA 9.76E-09 NA NA NA	NA NA 7.59E-08 NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E-05 3.00E-04 3.00E-04 NA 9.60E-04 8.00E-04	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	N/ N/ 2.53E N/ N/ N/
Sediment	Surface	Investigation	Dermal	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic Cobalt Cyanide Manganese Nickel Thallium	8.07E+03 1.93E+00 5.56E+00 1.51E+01 8.76E-01 2.10E+02 5.07E+01 2.10E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA 6.50E-09 NA NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00 NA NA NA NA	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg		NA NA 9.76E-09 NA NA NA NA	NA NA 7.59E-08 NA NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E-05 3.00E-04 3.00E-04 NA 9.60E-04 8.00E-04 1.00E-05	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	N/ N/ 2.53E N/ N/ N/ N/
Sediment	Surface	Investigation	Dermal	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic Cobalt Cyanide Manganese Nickel Thallium Vanadium	8.07E+03 1.93E+00 5.56E+00 1.51E+01 8.76E-01 2.10E+02 5.07E+01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA 6.50E-09 NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00 NA NA NA	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg		NA NA 9.76E-09 NA NA NA	NA NA 7.59E-08 NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E-05 3.00E-04 3.00E-04 NA 9.60E-04 8.00E-04	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	N/ N/ 2.53E N/ N/ N/ N/
Sediment	Surface	Investigation	Dermal	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic Cobalt Cyanide Manganese Nickel Thallium Vanadium PCBs	8.07E+03 1.93E+00 5.56E+00 1.51E+01 8.76E-01 2.10E+02 5.07E+01 2.10E-01 8.70E+01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA 6.50E-09 NA NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00 NA NA NA NA NA	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg		NA NA 9.76E-09 NA NA NA NA NA	NA NA 7.59E-08 NA NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E-05 3.00E-04 3.00E-04 NA 9.60E-04 8.00E-04 1.00E-05 1.31E-04	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 2.53E NA NA NA NA
Sediment	Surface	Investigation	Dermal	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic Cobalt Cyanide Manganese Nickel Thallium Vanadium PCBs Total PCBs	8.07E+03 1.93E+00 5.56E+00 1.51E+01 8.76E-01 2.10E+02 5.07E+01 2.10E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA 6.50E-09 NA NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00 NA NA NA NA	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg		NA NA 9.76E-09 NA NA NA NA	NA NA 7.59E-08 NA NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E-05 3.00E-04 3.00E-04 NA 9.60E-04 8.00E-04 1.00E-05	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	N/ N/ 2.53B N/ N/ N/ N/ N/
Sediment	Surface	Investigation	Dermal	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic Cobalt Cyanide Manganese Nickel Thallium Vanadium PCBs SVOCs	8.07E+03 1.93E+00 5.56E+00 1.51E+01 8.76E-01 2.10E+02 5.07E+01 2.10E-01 8.70E+01 4.47E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA 6.50E-09 NA NA NA NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00 NA NA NA NA NA NA	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg		NA NA 9.76E-09 NA NA NA NA NA NA	NA NA 7.59E-08 NA NA NA NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E-05 3.00E-04 3.00E-04 NA 9.60E-04 8.00E-04 1.00E-05 1.31E-04	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 2.53E NA NA NA NA NA
Sediment	Surface	Investigation	Dermal	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic Cobalt Cyanide Manganese Nickel Thallium Vanadium PCBs Total PCBs	8.07E+03 1.93E+00 5.56E+00 1.51E+01 8.76E-01 2.10E+02 5.07E+01 2.10E-01 8.70E+01 4.47E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA 6.50E-09 NA NA NA NA NA NA 2.44E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00 NA NA NA NA NA 1.00E+00	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	2.5	NA NA 9.76E-09 NA NA NA NA NA NA 4.88E-09	NA NA 7.59E-08 NA NA NA NA NA NA NA 3.49E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E-05 3.00E-04 3.00E-04 NA 9.60E-04 8.00E-04 1.00E-05 1.31E-04 2.00E-05	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	N/ N/ 2.53E N/ N/ N/ N/ N/ N/ N/
Sediment	Surface	Investigation	Dermal	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic Cobalt Cyanide Manganese Nickel Thallium Vanadium PCBs Total PCBs SVOCs Benzo(a)anthracene Benzo(a)pyrene	8.07E+03 1.93E+00 5.56E+00 1.51E+01 8.76E-01 2.10E+02 5.07E+01 2.10E-01 8.70E+01 4.47E-01 5.90E-01 6.50E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA 6.50E-09 NA NA NA NA NA 2.44E-09 2.99E-09 3.30E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00 NA NA NA NA NA 1.00E+00	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	2.5	NA NA 9.76E-09 NA NA NA NA NA NA 4.88E-09 7.48E-10 8.24E-09	NA NA 7.59E-08 NA NA NA NA NA NA 2.85E-08 3.49E-08 3.84E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E-05 3.00E-04 3.00E-04 NA 9.60E-04 1.00E-05 1.31E-04 2.00E-05 NA 3.00E-04	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 2.53E NA NA NA NA NA 1.42E NA 1.28E
iediment	Surface	Investigation	Dermal	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic Cobalt Cyanide Manganese Nickel Thallium Vanadium PCBs Total PCBs SVOCs Benzo(a)anthracene	8.07E+03 1.93E+00 5.56E+00 1.51E+01 8.76E-01 2.10E+02 5.07E+01 2.10E-01 8.70E+01 4.47E-01 5.90E-01 6.50E-01 9.70E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA 6.50E-09 NA NA NA NA NA 2.44E-09 2.99E-09 3.30E-09 4.92E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00 NA NA NA NA NA 1.00E+00 1.00E+01 1.00E+01	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	2.5 2.5	NA NA 9.76E-09 NA NA NA NA NA 4.88E-09 7.48E-10 8.24E-09 1.23E-09	NA NA 7.59E-08 NA NA NA NA NA NA NA 3.49E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E-05 3.00E-04 3.00E-04 NA 9.60E-04 8.00E-04 1.00E-05 1.31E-04 2.00E-05	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	N. N. 2.5331 N. 81
ediment	Surface	Investigation	Dermal	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic Cobalt Cyanide Manganese Nickel Thallium Vanadium PCBs Total PCBs SVOCs Benzo(a)anthracene Benzo(a)pyrene	8.07E+03 1.93E+00 5.56E+00 1.51E+01 8.76E-01 2.10E+02 5.07E+01 2.10E-01 8.70E+01 4.47E-01 5.90E-01 6.50E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA 6.50E-09 NA NA NA NA NA 2.44E-09 2.99E-09 3.30E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00 NA NA NA NA NA 1.00E+00	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	2.5 2.5 2.5	NA NA 9.76E-09 NA NA NA NA NA NA 4.88E-09 7.48E-10 8.24E-09	NA NA 7.59E-08 NA NA NA NA NA NA 2.85E-08 3.49E-08 3.84E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E-05 3.00E-04 3.00E-04 NA 9.60E-04 1.00E-05 1.31E-04 2.00E-05 NA 3.00E-04	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	N N 2.533 N N N N N 1.421 N 1.281
ediment	Surface	Investigation	Dermal	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic Cobalt Cyanide Manganese Nickel Thallium Vanadium PCBs SVOCs Benzo(a)anthracene Benzo(a)pyrene Benzo(b)lluoranthene	8.07E+03 1.93E+00 5.56E+00 1.51E+01 8.76E-01 2.10E+02 5.07E+01 2.10E-01 8.70E+01 4.47E-01 5.90E-01 6.50E-01 9.70E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA 6.50E-09 NA NA NA NA NA 2.44E-09 2.99E-09 3.30E-09 4.92E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00 NA NA NA NA NA 1.00E+00 1.00E+01 1.00E+01	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	2.5 2.5	NA NA 9.76E-09 NA NA NA NA NA 4.88E-09 7.48E-10 8.24E-09 1.23E-09	NA NA 7.59E-08 NA NA NA NA NA NA 2.85E-08 3.49E-08 3.84E-08 5.74E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E-05 3.00E-04 3.00E-04 NA 9.60E-04 1.00E-05 1.31E-04 2.00E-05 NA 3.00E-04 NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	N. N. 2.53I N. N. N. N. N. N. N. N. N. N. N. N. N.
ediment	Surface	Investigation	Dermal	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic Cobalt Cyanide Manganese Nickel Thallium Vanadium PCBs Total PCBs SVOCs Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Chrysene	8.07E+03 1.93E+00 5.56E+00 1.51E+01 8.76E-01 2.10E+02 5.07E+01 2.10E-01 8.70E+01 4.47E-01 5.90E-01 6.50E-01 9.70E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA 6.50E-09 NA NA NA NA NA 2.44E-09 2.99E-09 3.30E-09 4.92E-09 1.80E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00 NA NA NA NA NA 1.00E+00 1.00E+01 1.00E+01 1.00E+01	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	2.5 2.5 2.5	NA NA 9.76E-09 NA NA NA NA NA 4.88E-09 7.48E-10 8.24E-09 4.23E-09 4.50E-11	NA NA 7.59E-08 NA NA NA NA NA NA 2.85E-08 3.49E-08 3.84E-08 2.10E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E-05 3.00E-04 3.00E-04 NA 9.60E-04 1.00E-05 1.31E-04 2.00E-05 NA 3.00E-04 NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	N. N. 2.5331 N. N. N. N. N. N. N. N. 1.4221 N. 1.281 N. N. N. N. N. N. N. N. N. N. N. N. N.
iediment	Surface	Investigation	Dermal	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic Cobalt Cyanide Manganese Nickel Thallium Vanadium PCBs Total PCBs SVOCS Benzo(a)anthracene Benzo(a)[Niluoranthene Benzo(b)[Iluoranthene Benzo(b)[Iluoranthene Benzo(b)[Iluoranthene	8.07E+03 1.93E+00 5.56E+00 1.51E+01 8.76E-01 2.10E+02 5.07E+01 8.70E+01 4.47E-01 5.90E-01 9.70E-01 3.55E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA 6.50E-09 NA NA NA NA NA 2.44E-09 2.99E-09 4.92E-09 1.80E-09 4.44E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00 NA NA NA NA NA 1.00E+00 1.00E-01 1.00E-01 1.00E-01 1.00E-02	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	2.5 2.5 2.5 2.5	NA NA 9.76E-09 NA NA NA NA NA 4.88E-09 7.48E-10 8.24E-09 4.50E-11 1.11E-11	NA NA 7.59E-08 NA NA NA NA NA NA 2.85E-08 3.49E-08 3.84E-08 5.74E-08 2.10E-08 5.18E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E-05 3.00E-04 3.00E-04 3.00E-04 8.00E-04 1.00E-05 1.31E-04 2.00E-05 NA 3.00E-04 NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	N. N. 2.5331 N. N. N. N. N. N. N. N. N. 1.4281 N. 1.2881 N. N. N. N. N. N. N. N. N. N. N. N. N.
ediment	Surface	Investigation	Dermal	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic Cobalt Cyanide Manganese Nickel Thallium Vanadium PCBs Total PCBs SVOCS Benzo(a)anthracene Benzo(b)luoranthene Benzo(K)fluoranthene Benzo(K)fluoranthene Chysene Dibenzo(a,h)anthracene	8.07E+03 1.93E+00 5.56E+00 1.51E+01 8.76E-01 2.10E+02 5.07E+01 4.47E-01 5.90E-01 6.50E-01 9.70E-01 8.76E-01 1.48E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA 6.50E-09 NA NA NA NA NA 2.44E-09 2.99E-09 3.30E-09 4.92E-09 1.80E-09 4.44E-09 7.50E-10	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00 NA NA NA NA NA 2.00E+00 1.00E-01 1.00E-01 1.00E-02 1.00E-02	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	2.5 2.5 2.5 2.5 2.5	NA NA 9.76E-09 NA NA NA NA NA 4.88E-09 7.48E-10 8.24E-09 1.23E-09 4.50E-11 1.11E-11 1.11E-11	NA NA 7.59E-08 NA NA NA NA NA NA 2.85E-08 3.49E-08 3.84E-08 5.74E-08 2.10E-08 5.18E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E-05 3.00E-04 3.00E-04 NA 9.60E-04 1.00E-05 1.31E-04 2.00E-05 NA 3.00E-04 NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	N N 2.553 N N N N N N 1.422 N 1.283 N N
sediment	Surface	Investigation	Dermal	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic Cobalt Cyanide Manganese Nickel Thallium Vanadium PCBs Total PCBs SVOCs Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a),h)anthracene Indeno(1,2,3-cd)pyrene TPH	8.07E+03 1.93E+00 5.56E+00 1.51E+01 8.76E-01 2.10E+02 5.07E+01 4.47E-01 5.90E-01 6.50E-01 9.70E-01 8.76E-01 1.48E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA 6.50E-09 NA NA NA NA NA 2.44E-09 2.99E-09 3.30E-09 4.92E-09 1.80E-09 4.44E-09 7.50E-10	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00 NA NA NA NA NA 2.00E+00 1.00E-01 1.00E-01 1.00E-02 1.00E-02	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	2.5 2.5 2.5 2.5 2.5	NA NA 9.76E-09 NA NA NA NA NA 4.88E-09 7.48E-10 8.24E-09 1.23E-09 4.50E-11 1.11E-11 1.11E-11	NA NA 7.59E-08 NA NA NA NA NA NA 2.85E-08 3.49E-08 3.84E-08 5.74E-08 2.10E-08 5.18E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E-05 3.00E-04 3.00E-04 NA 9.60E-04 1.00E-05 1.31E-04 2.00E-05 NA 3.00E-04 NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	N. N. 2.531 N. N. N. N. N. N. N. N. N. N. N. N. N.
Sediment	Surface	Investigation	Dermal	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic Cobalt Cyanide Manganese Nickel Thallium Vanadium PCBs Total PCBs SVOCS Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Chrysene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene	8.07E+03 1.93E+00 5.56E+00 1.51E+01 8.76E-01 2.10E+02 5.07E+01 8.70E+01 8.70E+01 4.47E-01 5.90E-01 9.70E-01 3.55E-01 1.48E-01 5.70E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA 6.50E-09 NA NA NA NA NA 2.44E-09 2.99E-09 4.92E-09 1.80E-09 4.44E-09 7.50E-10 2.89E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00 NA NA NA NA NA 1.00E+00 1.00E-01 1.00E-03 1.00E-03 1.00E-03 1.00E-01	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	2.5 2.5 2.5 2.5 2.5	NA NA 9.76E-09 NA NA NA NA NA NA 4.88E-09 7.48E-10 8.24E-09 1.23E-09 4.50E-11 1.11E-11 1.88E-09 7.22E-10	NA NA 7.59E-08 NA NA NA NA NA NA 2.85E-08 3.49E-08 3.84E-08 5.74E-08 2.10E-08 8.75E-09 3.37E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E+05 3.00E-04 3.00E-04 NA 9.60E-04 8.00E-04 1.00E-05 1.31E-04 2.00E-05 NA 3.00E-04 NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	N. N. 2.53F N. N. N. N. N. N. N. N. N. N. N. N. N.
Sediment	Surface	Investigation	Dermal	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic Cobalt Cyanide Manganese Nickel Thallium Vanadium PCBs Total PCBs SVOCs Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a),h)anthracene Indeno(1,2,3-cd)pyrene TPH	8.07E+03 1.93E+00 5.56E+00 1.51E+01 8.76E-01 2.10E+02 5.07E+01 8.70E+01 8.70E+01 4.47E-01 5.90E-01 9.70E-01 3.55E-01 1.48E-01 5.70E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA 6.50E-09 NA NA NA NA NA 2.44E-09 2.99E-09 4.92E-09 1.80E-09 4.44E-09 7.50E-10 2.89E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00 NA NA NA NA NA 1.00E+00 1.00E-01 1.00E-03 1.00E-03 1.00E-03 1.00E-01	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	2.5 2.5 2.5 2.5 2.5	NA NA 9.76E-09 NA NA NA NA NA NA 4.88E-09 7.48E-10 8.24E-09 1.23E-09 4.50E-11 1.11E-11 1.88E-09 7.22E-10	NA NA 7.59E-08 NA NA NA NA NA NA 2.85E-08 3.49E-08 3.84E-08 5.74E-08 2.10E-08 8.75E-09 3.37E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E+05 3.00E-04 3.00E-04 NA 9.60E-04 8.00E-04 1.00E-05 1.31E-04 2.00E-05 NA 3.00E-04 NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.42E NA NA NA NA NA NA NA NA NA NA NA NA NA
Sediment	Surface	Investigation		2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic Cobalt Cyanide Manganese Nickel Thallium Vanadium PCBs Total PCBs SVOCs Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a),h)anthracene Indeno(1,2,3-cd)pyrene TPH	8.07E+03 1.93E+00 5.56E+00 1.51E+01 8.76E-01 2.10E+02 5.07E+01 8.70E+01 8.70E+01 4.47E-01 5.90E-01 9.70E-01 3.55E-01 1.48E-01 5.70E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA 6.50E-09 NA NA NA NA NA 2.44E-09 2.99E-09 4.92E-09 1.80E-09 4.44E-09 7.50E-10 2.89E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00 NA NA NA NA NA 1.00E+00 1.00E-01 1.00E-03 1.00E-03 1.00E-03 1.00E-01	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	2.5 2.5 2.5 2.5 2.5	NA NA 9.76E-09 NA NA NA NA NA NA 4.88E-09 7.48E-10 8.24E-09 1.23E-09 1.23E-01 1.11E-11 1.88E-09 7.22E-10 NA	NA NA 7.59E-08 NA NA NA NA NA NA 2.85E-08 3.49E-08 3.84E-08 5.74E-08 2.10E-08 8.75E-09 3.37E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E+05 3.00E-04 3.00E-04 NA 9.60E-04 8.00E-04 1.00E-05 1.31E-04 2.00E-05 NA 3.00E-04 NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.42E N/A N/A N/A N/A N/A 1.42E N/A N/A N/A N/A N/A
Sediment	Surface	Investigation Area	Exp. Route Total	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic Cobalt Cyanide Manganese Nickel Thallium Vanadium PCBs Total PCBs SVOCs Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a),h)anthracene Indeno(1,2,3-cd)pyrene TPH	8.07E+03 1.93E+00 5.56E+00 1.51E+01 8.76E-01 2.10E+02 5.07E+01 8.70E+01 8.70E+01 4.47E-01 5.90E-01 9.70E-01 3.55E-01 1.48E-01 5.70E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA 6.50E-09 NA NA NA NA NA 2.44E-09 2.99E-09 4.92E-09 1.80E-09 4.44E-09 7.50E-10 2.89E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00 NA NA NA NA NA 1.00E+00 1.00E-01 1.00E-03 1.00E-03 1.00E-03 1.00E-01	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	2.5 2.5 2.5 2.5 2.5	NA NA 9.76E-09 NA NA NA NA NA NA 4.88E-09 7.48E-10 8.24E-09 1.23E-09 4.50E-11 1.11E-11 1.18E-09 7.22E-10 NA	NA NA 7.59E-08 NA NA NA NA NA NA 2.85E-08 3.49E-08 3.84E-08 5.74E-08 2.10E-08 8.75E-09 3.37E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E+05 3.00E-04 3.00E-04 NA 9.60E-04 8.00E-04 1.00E-05 1.31E-04 2.00E-05 NA 3.00E-04 NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NAA NAA 2.53E3 NAA NAA NAA 1.42E NAA NAA NAA NAA NAA NAA NAA NAA NAA NA
iediment	Surface Sediment	Investigation Area	Exp. Route Total	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic Cobalt Cyanide Manganese Nickel Thallium Vanadium PCBs Total PCBs SVOCs Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a),h)anthracene Indeno(1,2,3-cd)pyrene TPH	8.07E+03 1.93E+00 5.56E+00 1.51E+01 8.76E-01 2.10E+02 5.07E+01 8.70E+01 8.70E+01 4.47E-01 5.90E-01 9.70E-01 3.55E-01 1.48E-01 5.70E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA 6.50E-09 NA NA NA NA NA 2.44E-09 2.99E-09 4.92E-09 1.80E-09 4.44E-09 7.50E-10 2.89E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00 NA NA NA NA NA 1.00E+00 1.00E-01 1.00E-03 1.00E-03 1.00E-03 1.00E-01	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	2.5 2.5 2.5 2.5 2.5	NA NA 9.76E-09 NA NA NA NA NA 4.88E-09 7.48E-10 8.24E-09 1.23E-09 4.50E-11 1.11E-11 1.18E-09 7.22E-10 NA	NA NA 7.59E-08 NA NA NA NA NA NA 2.85E-08 3.49E-08 3.84E-08 5.74E-08 2.10E-08 8.75E-09 3.37E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E+05 3.00E-04 3.00E-04 NA 9.60E-04 8.00E-04 1.00E-05 1.31E-04 2.00E-05 NA 3.00E-04 NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	N.N. N.2.2.53E N.S. N.N. N.N. N.N. N.N. N.N. N.N. N.N
ment Total	Surface	Investigation Area	Exp. Route Total	2,3,7,8-TCDD-TEQ Metals Aluminum Antimony Arsenic Cobalt Cyanide Manganese Nickel Thallium Vanadium PCBs Total PCBs SVOCs Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a),h)anthracene Indeno(1,2,3-cd)pyrene TPH	8.07E+03 1.93E+00 5.56E+00 1.51E+01 8.76E-01 2.10E+02 5.07E+01 8.70E+01 8.70E+01 4.47E-01 5.90E-01 9.70E-01 3.55E-01 1.48E-01 5.70E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA 6.50E-09 NA NA NA NA NA 2.44E-09 2.99E-09 4.92E-09 1.80E-09 4.44E-09 7.50E-10 2.89E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 1.50E+00 NA NA NA NA NA 1.00E+00 1.00E-01 1.00E-03 1.00E-03 1.00E-03 1.00E-01	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	2.5 2.5 2.5 2.5 2.5	NA NA 9.76E-09 NA NA NA NA NA NA 4.88E-09 7.48E-10 8.24E-09 1.23E-09 4.50E-11 1.11E-11 1.18E-09 7.22E-10 NA	NA NA 7.59E-08 NA NA NA NA NA NA 2.85E-08 3.49E-08 3.84E-08 5.74E-08 2.10E-08 8.75E-09 3.37E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.00E+00 6.00E+05 3.00E-04 3.00E-04 NA 9.60E-04 8.00E-04 1.00E-05 1.31E-04 2.00E-05 NA 3.00E-04 NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	1.41E NAA NAA NAA NAA NAA NAA NAA NAA NAA NA

								Can	cer Risk Calo	culations				Noncancer H	lazard Calcu	lations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposur	e Concentration	(CSF		Cancer	Intake/Exposu	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Surface	Surface	Waterside	Ingestion														
Water	Water	Investigation		Dioxin													
		Area		2,3,7,8-TCDD-TEQ	4.08E-07	ug/L	9.39E-17	mg/kg-day	1.30E+05	kg-day/mg		1.22E-11	1.10E-15	mg/kg-day	7.00E-10	mg/kg-day	1.57E-06
				Metals	7.005.04		4 005 40		4 505 00	l		0.005.40	0.405.00		0.005.04		0.005.00
				Arsenic Cobalt	7.80E-01 9.80E-01	ug/L ug/L	1.80E-10 2.26E-10	mg/kg-day mg/kg-day	1.50E+00 NA	kg-day/mg kg-day/mg		2.69E-10 NA	2.10E-09 2.63E-09	mg/kg-day mg/kg-day	3.00E-04 3.00E-04	mg/kg-day mg/kg-day	6.98E-06 8.77E-06
				Manganese	1.40E+02	ug/L ug/L	3.22E-08	mg/kg-day	NA NA	kg-day/mg		NA NA	3.76E-07	mg/kg-day	2.40E-02	mg/kg-day	1.57E-05
				Pesticides	11.102.102	ug/ E	0.222 00	mg/ng day		ng day/mg			0.702 07	mg ng day	2.102 02	mg/ng day	1.07 2 00
				4,4'-DDT	1.30E-03	ug/L	2.99E-13	mg/kg-day	3.40E-01	kg-day/mg		1.02E-13	3.49E-12	mg/kg-day	5.00E-04	mg/kg-day	6.98E-09
				PCBs		-											
				Total PCBs	9.40E-03	ug/L	2.16E-12	mg/kg-day	4.00E-01	kg-day/mg		8.66E-13	2.52E-11	mg/kg-day	2.00E-05	mg/kg-day	1.26E-06
			Exp. Route Total	1						<u> </u>	l .	2.83E-10					3.43E-05
			Dermal	-													
				Dioxin													
			1	2,3,7,8-TCDD-TEQ	4.08E-07	ug/L	Outside EPD	mg/kg-day	1.30E+05	kg-day/mg	l	Outside EPE	Outside EPD	mg/kg-day	7.00E-10	mg/kg-day	Outside EPD
			1	Metals							l						
				Arsenic	7.80E-01	ug/L	6.08E-11	mg/kg-day	1.50E+00	kg-day/mg		9.12E-11	7.10E-10	mg/kg-day	3.00E-04	mg/kg-day	2.37E-06
				Cobalt	9.80E-01 1.40E+02	ug/L	3.06E-11 1.09E-08	mg/kg-day	NA	kg-day/mg		NA NA	3.57E-10 1.27E-07	mg/kg-day	3.00E-04 9.60E-04	mg/kg-day	1.19E-06 1.33E-04
				Manganese Pesticides	1.40E+02	ug/L	1.09E-08	mg/kg-day	NA	kg-day/mg		NA	1.2/E-0/	mg/kg-day	9.60E-04	mg/kg-day	1.33E-04
				4,4'-DDT	1.30E-03	ug/L	Outside EPD	mg/kg-day	3.40E-01	kg-day/mg		Outside EPE	Outside EPD	mg/kg-day	5.00E-04	mg/kg-day	Outside EPD
				PCBs		-9-		99)		9,9				99)		55)	
				Total PCBs	9.40E-03	ug/L	Outside EPD	mg/kg-day	4.00E-01	kg-day/mg		Outside EPE	Outside EPD	mg/kg-day	2.00E-05	mg/kg-day	Outside EPD
			Exp. Route Total	1		l					l	9.12E-11					1.36E-04
		Exposure Point Tota		Л								3.74E-10					1.71E-04
İ	Exposure Medium											3.74E-10					1.71E-04
Surface Water To		Total										3.74E-10					1.71E-04
Fish Tissue	otai	Upper Anacostia	Ingestion				1				1	0.7 12 10					112 01
	Fish Fillet Tissue -			Metals													
	Mixed Diet (2)			Mercury	1.08E-01	mg/kg	3.06E-07	mg/kg-day	NA	kg-day/mg		NA	3.57E-06	mg/kg-day	1.00E-04	mg/kg-day	3.57E-02
				Pesticides													
				4,4'-DDD	5.47E-03	mg/kg	1.05E-08	mg/kg-day	2.40E-01	kg-day/mg		2.53E-09	1.23E-07	mg/kg-day	3.00E-05	mg/kg-day	4.10E-03
				4,4'-DDE	1.56E-02	mg/kg	2.99E-08	mg/kg-day	3.40E-01	kg-day/mg		1.02E-08	3.49E-07	mg/kg-day	3.00E-04	mg/kg-day	1.16E-03
			1	Aldrin alpha-Chlordane	1.46E-04 9.58E-03	mg/kg mg/kg	2.81E-10 1.84E-08	mg/kg-day	1.70E+01 3.50E-01	kg-day/mg kg-day/mg	l	4.78E-09 6.45E-09	3.28E-09 2.15E-07	mg/kg-day mg/kg-day	3.00E-05 5.00E-04	mg/kg-day mg/kg-day	1.09E-04 4.30E-04
			1	cis-Nonachlor	9.58E-03 4.13E-03	mg/kg mg/kg	7.96E-09	mg/kg-day mg/kg-day	3.50E-01	kg-day/mg		2.78E-09	9.28E-08	mg/kg-day mg/kg-day	5.00E-04 5.00E-04	mg/kg-day mg/kg-day	4.30E-04 1.86E-04
			1	Dieldrin	2.89E-03	mg/kg	5.56E-09	mg/kg-day	1.60E+01	kg-day/mg		8.89E-08	6.49E-08	mg/kg-day	5.00E-05	mg/kg-day	1.30E-03
			1	gamma-Chlordane	3.47E-03	mg/kg	6.69E-09	mg/kg-day	3.50E-01	kg-day/mg	l	2.34E-09	7.80E-08	mg/kg-day	5.00E-04	mg/kg-day	1.56E-04
			1	Heptachlor epoxide	1.31E-03	mg/kg	2.53E-09	mg/kg-day	9.10E+00	kg-day/mg	l	2.30E-08	2.95E-08	mg/kg-day	1.30E-05	mg/kg-day	2.27E-03
			1	Mirex	1.76E-04	mg/kg	3.39E-10	mg/kg-day	1.80E+01	kg-day/mg	l	6.10E-09	3.95E-09	mg/kg-day	2.00E-04	mg/kg-day	1.98E-05
			1	Oxychlordane	1.82E-03	mg/kg	3.50E-09	mg/kg-day	3.50E-01	kg-day/mg	l	1.22E-09	4.08E-08	mg/kg-day	5.00E-04	mg/kg-day	8.16E-05
			1	trans-Nonachlor PCBs	1.07E-02	mg/kg	2.05E-08	mg/kg-day	3.50E-01	kg-day/mg	l	7.18E-09	2.39E-07	mg/kg-day	5.00E-04	mg/kg-day	4.79E-04
			1	Total PCBs	1.92E-01	mg/kg	3.80E-07	mg/kg-day	2.00E+00	kg-day/mg	l	7.60E-07	4.43E-06	mg/kg-day	2.00E-05	mg/kg-day	2.22E-01
			1	PCB-TEQ	1.30E-06	mg/kg	1.91E-12	mg/kg-day	1.30E+05	kg-day/mg		2.49E-07	2.23E-11	mg/kg-day	7.00E-10	mg/kg-day	3.19E-02
								1		•				1			<u> </u>
	 Upper Anacostia Upper Anacostia 		·	•					·			9.15E-07			·		2.68E-01
		(FUD-IEW)										4.04E-07					7.79E-02
Receptor Totals												V					·
				ment, surface water, and fish)								9.80E-07					2.75E-01
rotal Receptor R	isk/Hazard - Upper	r Anacostia (includes	Total PCBs for sedir	ment and surface water and PCB-TEQ for fish)								4.69E-07					8.57E-02

Table H-1-5. CTE

Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Older Child/Teen Angler (Mixed Fish Diet) Central Tendency Exposure Benning Road Facility RI/FS Project

3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Older Child/Teen

								Can	cer Risk Calc	ulations				Noncancer F	lazard Calcul	ations	
	Exposure	Exposure	Exposure	Chemical of	EPC	EPC		re Concentration	С	SF		Cancer	Intake/Exposur	e Concentration	R	:fD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient

Notes:

ADAF - Age-Dependent Adjustment Factor. PCB - Polychlorinated Biphenyl. PCB-TEQ - PCB Toxicity Equivalence. CSF - Cancer Slope Factor. EPC - Exposure Point Concentration. RfD - Oral Reference Dose. EPD - Effective Predictive Domain. SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-Tetrachloro-dibenzo-p-dioxin Toxicity Equivalence. NA - Not applicable.

- (1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.
- (2) Assumes a mixed fish diet of the species with available fillet data based on a pooled EPC.
- (3) Fish consumption Risk/Hazard based on all COPCs except PCB-TEQ.
- (4) Fish consumption Risk/Hazard based on all COPCs except Total PCBs.

1								Car	ncer Risk Cal	culations				Noncancer Ha	azard Calcula	itions	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposu	re Concentration	C	SF		Cancer	Intake/Exposur	e Concentration	R	tfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Ingestion														
	Surface	Investigation		Dioxin	7.055.05		0.475.40		4 005 05	l		0.005.00	7.505.40		7.005.40		4 005 00
	Sediment	Area		2,3,7,8-TCDD-TEQ Metals	7.25E-05	mg/kg	2.17E-13	mg/kg-day	1.30E+05	kg-day/mg		2.82E-08	7.59E-12	mg/kg-day	7.00E-10	mg/kg-day	1.08E-02
				Aluminum	8.07E+03	mg/kg	2.41E-05	mg/kg-day	NA	kg-day/mg		NA	8.45E-04	mg/kg-day	1.00E+00	mg/kg-day	8.45E-04
				Antimony	1.93E+00	mg/kg	5.77E-09	mg/kg-day	NA NA	kg-day/mg		NA NA	2.02E-07	mg/kg-day	4.00E-04	mg/kg-day	5.05E-04
				Arsenic	5.56E+00	mg/kg	9.98E-09	mg/kg-day	1.50E+00	kg-day/mg		1.50E-08	3.49E-07	mg/kg-day	3.00E-04	mg/kg-day	1.16E-03
				Cobalt	1.51E+01	mg/kg	4.52E-08	mg/kg-day	NA NA	kg-day/mg		NA	1.58E-06	mg/kg-day	3.00E-04	mg/kg-day	5.27E-03
				Cyanide	8.76E-01	mg/kg	2.62E-09	mg/kg-day	NA	kg-day/mg		NA	9.17E-08	mg/kg-day	6.30E-04	mg/kg-day	1.46E-04
				Manganese	2.10E+02	mg/kg	6.28E-07	mg/kg-day	NA	kg-day/mg		NA	2.20E-05	mg/kg-day	2.40E-02	mg/kg-day	9.16E-04
				Nickel	5.07E+01	mg/kg	1.52E-07	mg/kg-day	NA	kg-day/mg		NA	5.31E-06	mg/kg-day	2.00E-02	mg/kg-day	2.65E-04
				Thallium	2.10E-01	mg/kg	6.28E-10	mg/kg-day	NA	kg-day/mg		NA	2.20E-08	mg/kg-day	1.00E-05	mg/kg-day	2.20E-03
				Vanadium	8.70E+01	mg/kg	2.60E-07	mg/kg-day	NA	kg-day/mg		NA	9.11E-06	mg/kg-day	5.04E-03	mg/kg-day	1.81E-03
				PCBs													
				Total PCBs SVOCs	4.47E-01	mg/kg	1.34E-09	mg/kg-day	2.00E+00	kg-day/mg		2.67E-09	4.68E-08	mg/kg-day	2.00E-05	mg/kg-day	2.34E-03
				Benzo(a)anthracene	5.90E-01	mg/kg	1.76E-09	mg/kg-day	1.00E-01	kg-day/mg	4.2	7.41E-10	6.18E-08	mg/kg-day	NA	mg/kg-day	NA
			1	Benzo(a)pyrene	6.50E-01	mg/kg	1.94E-09	mg/kg-day	1.00E+00	kg-day/mg	4.2	8.16E-09	6.80E-08	mg/kg-day	3.00E-04	mg/kg-day	2.27E-04
			1	Benzo(b)fluoranthene	9.70E-01	mg/kg	2.90E-09	mg/kg-day	1.00E-01	kg-day/mg	4.2	1.22E-09	1.02E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	3.55E-01	mg/kg	1.06E-09	mg/kg-day	1.00E-02	kg-day/mg	4.2	4.46E-11	3.72E-08	mg/kg-day	NA	mg/kg-day	NA
				Chrysene	8.76E-01	mg/kg	2.62E-09	mg/kg-day	1.00E-03	kg-day/mg	4.2	1.10E-11	9.17E-08	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.48E-01	mg/kg	4.43E-10	mg/kg-day	1.00E+00	kg-day/mg	4.2	1.86E-09	1.55E-08	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	5.70E-01	mg/kg	1.70E-09	mg/kg-day	1.00E-01	kg-day/mg	4.2	7.16E-10	5.97E-08	mg/kg-day	NA	mg/kg-day	NA
				TPH Diesel Range Organics (C10-C20)	9.10E+01	mg/kg	2.72E-07	mg/kg-day	NA	kg-day/mg		NA	9.53E-06	mg/kg-day	1.00E-02	mg/kg-day	9.53E-04
						3 3				3 . , 3				3 3,		0 0,	
			Exp. Route Total		<u> </u>	l		l	l	l		5.86E-08		l .	l		2.75E-02
Sediment	Fringe	Waterside	Dermal		1				1	1		0.002 00		1	1		2.702 02
Gediment	Surface	Investigation	Dermai	Dioxin													
	Sediment	Area		2.3.7.8-TCDD-TEQ	7.25E-05	mg/kg	7.49E-14	mg/kg-day	1.30E+05	kg-day/mg		9.74E-09	2.62E-12	mg/kg-day	7.00E-10	mg/kg-day	3.75E-03
				Metals		5 5		3 3,		3,. 3			-	3 3 4 7		0 0,	
				Aluminum	8.07E+03	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E+00	mg/kg-day	NA
				Antimony	1.93E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	6.00E-05	mg/kg-day	NA
				Arsenic	5.56E+00	mg/kg	5.75E-09	mg/kg-day	1.50E+00	kg-day/mg		8.62E-09	2.01E-07	mg/kg-day	3.00E-04	mg/kg-day	6.70E-04
				Cobalt	1.51E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	3.00E-04	mg/kg-day	NA
				Cyanide	8.76E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA			mg/kg-day	NA
			I	Manganese										mg/kg-day	NA		
					2.10E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	9.60E-04	mg/kg-day	NA
				Nickel	5.07E+01	mg/kg	NA	mg/kg-day mg/kg-day	NA NA	kg-day/mg		NA	NA	mg/kg-day mg/kg-day	9.60E-04 8.00E-04	mg/kg-day mg/kg-day	NA
				Nickel Thallium	5.07E+01 2.10E-01	mg/kg mg/kg	NA NA	mg/kg-day mg/kg-day mg/kg-day	NA NA NA	kg-day/mg kg-day/mg		NA NA	NA NA	mg/kg-day mg/kg-day mg/kg-day	9.60E-04 8.00E-04 1.00E-05	mg/kg-day mg/kg-day mg/kg-day	NA NA
				Nickel Thallium Vanadium	5.07E+01	mg/kg	NA	mg/kg-day mg/kg-day	NA NA	kg-day/mg		NA	NA	mg/kg-day mg/kg-day	9.60E-04 8.00E-04	mg/kg-day mg/kg-day	NA
				Nickel Thallium Vanadium PCBs Total PCBs	5.07E+01 2.10E-01	mg/kg mg/kg	NA NA	mg/kg-day mg/kg-day mg/kg-day	NA NA NA	kg-day/mg kg-day/mg		NA NA	NA NA	mg/kg-day mg/kg-day mg/kg-day	9.60E-04 8.00E-04 1.00E-05	mg/kg-day mg/kg-day mg/kg-day	NA NA
				Nickel Thalilum Vanadium PCBs Total PCBs SVOCs	5.07E+01 2.10E-01 8.70E+01 4.47E-01	mg/kg mg/kg mg/kg mg/kg	NA NA NA 2.16E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA NA 2.00E+00	kg-day/mg kg-day/mg kg-day/mg kg-day/mg		NA NA NA 4.31E-09	NA NA NA 7.55E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	9.60E-04 8.00E-04 1.00E-05 1.31E-04 2.00E-05	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA 3.77E-03
				Nickel Thallium Vanadium PCBs Total PCBs SVOCs Benzo(a)anthracene	5.07E+01 2.10E-01 8.70E+01 4.47E-01 5.90E-01	mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA NA 2.16E-09 2.64E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA NA 2.00E+00	kg-day/mg kg-day/mg kg-day/mg kg-day/mg	4.2	NA NA NA 4.31E-09	NA NA NA 7.55E-08 9.25E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	9.60E-04 8.00E-04 1.00E-05 1.31E-04 2.00E-05	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA 3.77E-03
				Nickel Thalium Vanadium PCBs Total PCBs SVOCs Benzo(a)anthracene Benzo(a)pyrene	5.07E+01 2.10E-01 8.70E+01 4.47E-01 5.90E-01 6.50E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA NA 2.16E-09 2.64E-09 2.91E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA NA 2.00E+00 1.00E-01 1.00E+00	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	4.2	NA NA NA 4.31E-09 1.11E-09 1.22E-08	NA NA NA 7.55E-08 9.25E-08 1.02E-07	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	9.60E-04 8.00E-04 1.00E-05 1.31E-04 2.00E-05 NA 3.00E-04	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA 3.77E-03 NA 3.40E-04
				Nickel Thallium Vanadium PCBs Total PCBs SVOCS Benzo(a)anthracene Benzo(a)prene Benzo(a)prene	5.07E+01 2.10E-01 8.70E+01 4.47E-01 5.90E-01 6.50E-01 9.70E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA NA 2.16E-09 2.64E-09 2.91E-09 4.34E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA NA 2.00E+00 1.00E-01 1.00E+00 1.00E-01	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	4.2 4.2	NA NA NA 4.31E-09 1.11E-09 1.22E-08 1.82E-09	NA NA NA 7.55E-08 9.25E-08 1.02E-07 1.52E-07	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	9.60E-04 8.00E-04 1.00E-05 1.31E-04 2.00E-05 NA 3.00E-04 NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA 3.77E-03 NA 3.40E-04 NA
				Nickel Thallium Vanadium PCBs Total PCBs SVOCS Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene	5.07E+01 2.10E-01 8.70E+01 4.47E-01 5.90E-01 6.50E-01 9.70E-01 3.55E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA NA 2.16E-09 2.64E-09 2.91E-09 4.34E-09 1.59E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA NA 2.00E+00 1.00E-01 1.00E-01 1.00E-02	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	4.2 4.2 4.2	NA NA NA 4.31E-09 1.11E-09 1.22E-08 1.82E-09 6.68E-11	NA NA NA 7.55E-08 9.25E-08 1.02E-07 1.52E-07 5.56E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	9.60E-04 8.00E-04 1.00E-05 1.31E-04 2.00E-05 NA 3.00E-04 NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA 3.77E-03 NA 3.40E-04 NA NA
				Nickel Thallium Vanadium PCBs Total PCBs SVOCs Benzo(a)anintracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene	5.07E+01 2.10E-01 8.70E+01 4.47E-01 5.90E-01 6.50E-01 9.70E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA NA 2.16E-09 2.64E-09 2.91E-09 4.34E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA NA 2.00E+00 1.00E+00 1.00E+01 1.00E-02 1.00E-03	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	4.2 4.2	NA NA NA 4.31E-09 1.11E-09 1.22E-08 1.82E-09	NA NA NA 7.55E-08 9.25E-08 1.02E-07 1.52E-07	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	9.60E-04 8.00E-04 1.00E-05 1.31E-04 2.00E-05 NA 3.00E-04 NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA 3.77E-03 NA 3.40E-04 NA
				Nickel Thallium Vanadium PCBs Total PCBs SVOCS Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenzo(a, h)anthracene	5.07E+01 2.10E-01 8.70E+01 4.47E-01 5.90E-01 6.50E-01 9.70E-01 3.55E-01 8.76E-01 1.48E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA NA 2.16E-09 2.64E-09 2.91E-09 4.34E-09 1.59E-09 3.92E-09 6.63E-10	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA NA 2.00E+00 1.00E+00 1.00E+01 1.00E-02 1.00E-03 1.00E+00	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	4.2 4.2 4.2 4.2	NA NA NA 4.31E-09 1.11E-09 1.22E-08 1.82E-09 6.68E-11 1.65E-11	NA NA NA 7.55E-08 9.25E-08 1.02E-07 1.52E-07 5.56E-08 1.37E-07	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	9.60E-04 8.00E-04 1.00E-05 1.31E-04 2.00E-05 NA 3.00E-04 NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA 3.77E-03 NA 3.40E-04 NA NA
				Nickel Thallium Vanadium PCBs Total PCBs SVOCs Benzo(a)anintracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene	5.07E+01 2.10E-01 8.70E+01 4.47E-01 5.90E-01 6.50E-01 9.70E-01 3.55E-01 8.76E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA NA 2.16E-09 2.64E-09 2.91E-09 4.34E-09 1.59E-09 3.92E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA NA 2.00E+00 1.00E+00 1.00E+01 1.00E-02 1.00E-03	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	4.2 4.2 4.2 4.2 4.2	NA NA NA 4.31E-09 1.11E-09 1.22E-08 1.82E-09 6.68E-11 1.65E-11 2.78E-09	NA NA NA 7.55E-08 9.25E-08 1.02E-07 1.52E-07 5.56E-08 1.37E-07 2.32E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	9.60E-04 8.00E-04 1.00E-05 1.31E-04 2.00E-05 NA 3.00E-04 NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA 3.77E-03 NA 3.40E-04 NA NA NA
				Nickel Thallium Vanadium PCBs Total PCBs SVOCs Berzo(a)anthracene Berzo(a)pyrene Benzo(b)fluoranthene Benzo(h)fluoranthene Chrysene Diberzo(a,h)anthracene Indeno(1,2,3-cd)pyrene	5.07E+01 2.10E-01 8.70E+01 4.47E-01 5.90E-01 6.50E-01 9.70E-01 3.55E-01 8.76E-01 1.48E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA NA 2.16E-09 2.64E-09 2.91E-09 4.34E-09 1.59E-09 3.92E-09 6.63E-10	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA NA 2.00E+00 1.00E+00 1.00E+01 1.00E-02 1.00E-03 1.00E+00	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	4.2 4.2 4.2 4.2 4.2	NA NA NA 4.31E-09 1.11E-09 1.22E-08 1.82E-09 6.68E-11 1.65E-11 2.78E-09	NA NA NA 7.55E-08 9.25E-08 1.02E-07 1.52E-07 5.56E-08 1.37E-07 2.32E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	9.60E-04 8.00E-04 1.00E-05 1.31E-04 2.00E-05 NA 3.00E-04 NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA 3.77E-03 NA 3.40E-04 NA NA NA
				Nickel Thallium Variadium PCBs Total PCBs SVOCS Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenzo(a,h)anthracene lindeno(1,2,3-cd)pyrene TPH	5.07E+01 2.10E-01 8.70E+01 4.47E-01 5.90E-01 6.50E-01 9.70E-01 3.55E-01 8.76E-01 1.48E-01 5.70E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA NA 2.16E-09 2.64E-09 2.91E-09 4.34E-09 1.59E-09 6.63E-10 2.55E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA NA 2.00E+00 1.00E+00 1.00E+01 1.00E-02 1.00E-03 1.00E+00 1.00E-01	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	4.2 4.2 4.2 4.2 4.2	NA NA NA 4.31E-09 1.12E-09 1.22E-08 1.82E-09 6.68E-11 1.65E-11 2.78E-09 1.07E-09	NA NA NA 7.55E-08 9.25E-08 1.02E-07 1.52E-07 5.56E-08 1.37E-07 2.32E-08 8.93E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	9.60E-04 8.00E-04 1.00E-05 1.31E-04 2.00E-05 NA 3.00E-04 NA NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA 3.77E-03 NA 3.40E-04 NA NA NA NA
			Exp. Route Total	Nickel Thallium Variadium PCBs Total PCBs SVOCS Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenzo(a,h)anthracene lindeno(1,2,3-cd)pyrene TPH	5.07E+01 2.10E-01 8.70E+01 4.47E-01 5.90E-01 6.50E-01 9.70E-01 3.55E-01 8.76E-01 1.48E-01 5.70E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA NA 2.16E-09 2.64E-09 2.91E-09 4.34E-09 1.59E-09 6.63E-10 2.55E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA NA 2.00E+00 1.00E+00 1.00E+01 1.00E-02 1.00E-03 1.00E+00 1.00E-01	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	4.2 4.2 4.2 4.2 4.2	NA NA NA 4.31E-09 1.12E-09 1.22E-08 1.82E-09 6.68E-11 1.65E-11 2.78E-09 1.07E-09	NA NA NA 7.55E-08 9.25E-08 1.02E-07 1.52E-07 5.56E-08 1.37E-07 2.32E-08 8.93E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	9.60E-04 8.00E-04 1.00E-05 1.31E-04 2.00E-05 NA 3.00E-04 NA NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA 3.77E-03 NA 3.40E-04 NA NA NA NA
		Exposure Point Total	Exp. Route Total	Nickel Thallium Variadium PCBs Total PCBs SVOCS Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenzo(a,h)anthracene lindeno(1,2,3-cd)pyrene TPH	5.07E+01 2.10E-01 8.70E+01 4.47E-01 5.90E-01 6.50E-01 9.70E-01 3.55E-01 8.76E-01 1.48E-01 5.70E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA NA 2.16E-09 2.64E-09 2.91E-09 4.34E-09 1.59E-09 6.63E-10 2.55E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA NA 2.00E+00 1.00E+00 1.00E+01 1.00E-02 1.00E-03 1.00E+00 1.00E-01	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	4.2 4.2 4.2 4.2 4.2	NA NA NA 4.31E-09 1.11E-09 1.22E-08 1.82E-09 6.68E-11 1.65E-11 2.78E-09 1.07E-09	NA NA NA 7.55E-08 9.25E-08 1.02E-07 1.52E-07 5.56E-08 1.37E-07 2.32E-08 8.93E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	9.60E-04 8.00E-04 1.00E-05 1.31E-04 2.00E-05 NA 3.00E-04 NA NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA 3.77E-03 NA 3.40E-04 NA NA NA NA NA
	Exposure Mediu		Exp. Route Total	Nickel Thallium Variadium PCBs Total PCBs SVOCS Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenzo(a,h)anthracene lindeno(1,2,3-cd)pyrene TPH	5.07E+01 2.10E-01 8.70E+01 4.47E-01 5.90E-01 6.50E-01 9.70E-01 3.55E-01 8.76E-01 1.48E-01 5.70E-01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NA NA NA 2.16E-09 2.64E-09 2.91E-09 4.34E-09 1.59E-09 6.63E-10 2.55E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA NA 2.00E+00 1.00E+00 1.00E+01 1.00E-02 1.00E-03 1.00E+00 1.00E-01	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg	4.2 4.2 4.2 4.2 4.2	NA NA 4.31E-09 1.11E-09 1.22E-08 1.82E-09 6.68E-11 2.78E-09 1.07E-09 NA	NA NA NA 7.55E-08 9.25E-08 1.02E-07 1.52E-07 5.56E-08 1.37E-07 2.32E-08 8.93E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	9.60E-04 8.00E-04 1.00E-05 1.31E-04 2.00E-05 NA 3.00E-04 NA NA NA NA	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA NA 3.77E-03 NA 3.40E-04 NA NA NA NA NA

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Child

				1				Ca	ncer Risk Ca	lculations				Noncancer H	azard Calcul	ations	
	Exposure	Exposure	Exposure	Chemical of	EPC			e Concentration	-	SF		Cancer		re Concentration		RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Surface	Surface	Waterside	Ingestion										I				
Water	Water	Investigation		Dioxin													
		Area		2,3,7,8-TCDD-TEQ	4.08E-07	ug/L	1.90E-15	mg/kg-day	1.30E+05	kg-day/mg		2.48E-10	2.22E-14	mg/kg-day	7.00E-10	mg/kg-day	3.17E-05
				Metals	7.80F-01		3.64F-09		4 505 00			5.46F-09	4.055.00		0.005.04		4 405 04
				Arsenic Cobalt	7.80E-01 9.80E-01	ug/L ug/L	3.64E-09 4.58E-09	mg/kg-day mg/kg-day	1.50E+00 NA	kg-day/mg kg-day/mg		5.46E-09 NA	4.25E-08 5.34E-08	mg/kg-day mg/kg-day	3.00E-04 3.00E-04	mg/kg-day mg/kg-day	
				Manganese	1.40E+02	ug/L ug/L	6.54E-07	mg/kg-day	NA NA	kg-day/mg		NA NA	7.63E-06	mg/kg-day	2.40E-02	mg/kg-day	
				Pesticides	1.102102	09/2	0.012 07	mg ng day		ng day/mg			7.002 00	mg ng day	2.102 02	mg ng day	0.102 01
				4,4'-DDT	1.30E-03	ug/L	6.07E-12	mg/kg-day	3.40E-01	kg-day/mg		2.06E-12	7.08E-11	mg/kg-day	5.00E-04	mg/kg-day	1.42E-07
				PCBs													
				Total PCBs	9.40E-03	ug/L	4.39E-11	mg/kg-day	4.00E-01	kg-day/mg		1.76E-11	5.12E-10	mg/kg-day	2.00E-05	mg/kg-day	2.56E-05
		İ	Exp. Route Total	1		<u> </u>			l			5.73E-09					6.95E-04
1			Dermal	1									i				-
				Dioxin													
				2,3,7,8-TCDD-TEQ	4.08E-07	ug/L	Outside EPD	mg/kg-day	1.30E+05	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	7.00E-10	mg/kg-day	Outside EPI
				Metals													
				Arsenic	7.80E-01	ug/L	5.76E-10	mg/kg-day	1.50E+00	kg-day/mg		8.64E-10	6.72E-09	mg/kg-day	3.00E-04	mg/kg-day	
				Cobalt Manganese	9.80E-01 1.40E+02	ug/L ug/L	2.90E-10 1.03E-07	mg/kg-day mg/kg-day	NA NA	kg-day/mg kg-day/mg		NA NA	3.38E-09 1.21E-06	mg/kg-day mg/kg-day	3.00E-04 9.60E-04	mg/kg-day mg/kg-day	
				Pesticides	1.402+02	ug/L	1.03E=07	ilig/kg-uay	INA	kg-uay/ilig		INA	1.212-00	ilig/kg-uay	9.00E*04	ilig/kg•uay	1.20E=03
				4,4'-DDT	1.30E-03	ug/L	Outside EPD	mg/kg-day	3.40E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	5.00E-04	mg/kg-day	Outside EPI
				PCBs													
				Total PCBs	9.40E-03	ug/L	Outside EPD	mg/kg-day	4.00E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	2.00E-05	mg/kg-day	Outside EPI
			Exp. Route Total	J.								8.64E-10					1.29E-03
		Exposure Point Total										6.59E-09					1.99E-03
Surface Water T	Exposure Mediu	im Total										6.59E-09 6.59E-09					1.99E-03 1.99E-03
Fish Tissue	otal Fish Fillet	Upper Anacostia	Ingestion	1			ī					6.59E-09	<u> </u>	1			1.99E-03
FISH HISSUE	Tissue - Mixed	Opper Ariacostia	ingestion	Metals													
	Diet (2)			Mercury	1.08E-01	mg/kg	1.36E-07	mg/kg-day	NA	kg-day/mg		NA	4.77E-06	mg/kg-day	1.00E-04	mg/kg-day	4.77E-02
				Pesticides		55											
				4,4'-DDD	5.47E-03	mg/kg	4.69E-09	mg/kg-day	2.40E-01	kg-day/mg		1.13E-09	1.64E-07	mg/kg-day	3.00E-05	mg/kg-day	5.47E-03
				4,4'-DDE	1.56E-02	mg/kg	1.33E-08	mg/kg-day	3.40E-01	kg-day/mg		4.53E-09	4.67E-07	mg/kg-day	3.00E-04	mg/kg-day	1.56E-03
				Aldrin	1.46E-04	mg/kg	1.25E-10	mg/kg-day	1.70E+01	kg-day/mg		2.13E-09	4.38E-09	mg/kg-day	3.00E-05	mg/kg-day	1.46E-04
				alpha-Chlordane	9.58E-03	mg/kg	8.21E-09	mg/kg-day	3.50E-01	kg-day/mg		2.87E-09	2.87E-07	mg/kg-day	5.00E-04	mg/kg-day	
				cis-Nonachlor	4.13E-03	mg/kg	3.54E-09	mg/kg-day	3.50E-01	kg-day/mg		1.24E-09	1.24E-07	mg/kg-day	5.00E-04	mg/kg-day	
				Dieldrin	2.89E-03	mg/kg	2.48E-09	mg/kg-day	1.60E+01	kg-day/mg		3.96E-08	8.67E-08	mg/kg-day	5.00E-05	mg/kg-day	
				gamma-Chlordane	3.47E-03	mg/kg	2.98E-09	mg/kg-day	3.50E-01	kg-day/mg		1.04E-09	1.04E-07	mg/kg-day	5.00E-04	mg/kg-day	
				Heptachlor epoxide	1.31E-03	mg/kg	1.13E-09	mg/kg-day	9.10E+00	kg-day/mg		1.02E-08	3.94E-08	mg/kg-day	1.30E-05	mg/kg-day	3.03E-03
				Mirex	1.76E-04	mg/kg	1.51E-10	mg/kg-day	1.80E+01	kg-day/mg		2.72E-09	5.28E-09	mg/kg-day	2.00E-04	mg/kg-day	
				Oxychlordane trans-Nonachlor	1.82E-03 1.07E-02	mg/kg	1.56E-09 9.13E-09	mg/kg-day	3.50E-01 3.50E-01	kg-day/mg		5.45E-10 3.20E-09	5.45E-08 3.20E-07	mg/kg-day	5.00E-04 5.00E-04	mg/kg-day	1.09E-04 6.39E-04
				trans-nonacnior PCBs	1.07E-02	mg/kg	9.13E-09	mg/kg-day	3.50E-01	kg-day/mg		3.20E-09	3.2UE-U/	mg/kg-day	3.00E-04	mg/kg-day	0.39⊏-04
				Total PCBs	1.92E-01	mg/kg	1.69E-07	mg/kg-day	2.00E+00	kg-day/mg		3.38E-07	5.92E-06	mg/kg-day	2.00E-05	mg/kg-day	2.96E-01
				PCB-TEQ	1.30E-06	mg/kg	8.52E-13	mg/kg-day	1.30E+05	kg-day/mg		1.11E-07	2.98E-11	mg/kg-day	7.00E-10	mg/kg-day	
Fish Tissue T. (I Henry An	-ti- (T-t-LDCD-\sq					ļ					4.005.55	<u> </u>				0.505
	al - Upper Anacos al - Upper Anacos											4.08E-07 1.80E-07	 				3.58E-01 1.04E-01
Receptor Total												1.00E=0/					1.04E-01
		ner Anacoetia (include	se Total DCRe for one	diment, surface water, and fish)								5.15E-07	11				3.96E-01
				diment, surface water, and rish) diment and surface water and PCB-TEQ for	fish)							2.87E-07	1				1.42E-01
		,			- 1								1				

Notes:
ADAF - Age-Dependent Adjustment Factor.
CSF - Cancer Slope Factor.
EPC - Exposure Point Concentration.

PCB - Polychlorinated Biphenyl. PCB-TEQ - PCB Toxicity Equivalence. RfD - Oral Reference Dose.

NA - Not applicable.

(1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation. (2) Assumes a mixed fish diet of the species with available fillet data based on a pooled EPC. (3) Total Risk/Hazard based on all COPCs except PCB-TEQ. (4) Total Risk/Hazard based on all COPCs except Total PCBs.

									er Risk Calc					Noncancer Ha			
	Exposure	Exposure	Exposure	Chemical of	EPC			re Concentration		SF	(1)	Cancer	•	re Concentration		RfD	Haza
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quo
Fish Tissue	Fish Fillet	Upper Potomac	Ingestion														
	Tissue - Mixed			Inorganics													
	Diet (2)			Arsenic	2.39E-02	mg/kg	1.07E-07	mg/kg-day	1.50E+00	kg-day/mg		1.60E-07	7.47E-07	mg/kg-day	3.00E-04	mg/kg-day	2.49
				Arsenic, organic	2.15E-01	mg/kg	9.60E-07	mg/kg-day	NA	kg-day/mg		NA	6.72E-06	mg/kg-day	2.00E-02	mg/kg-day	3.36
				Mercury	1.23E-01	mg/kg	5.49E-07	mg/kg-day	NA	kg-day/mg		NA	3.84E-06	mg/kg-day	1.00E-04	mg/kg-day	3.84
				Pesticides													
				4,4'-DDD	1.03E-02	mg/kg	3.13E-08	mg/kg-day	2.40E-01	kg-day/mg		7.50E-09	2.19E-07	mg/kg-day	3.00E-05	mg/kg-day	7.30
				4,4'-DDE	6.24E-02	mg/kg	1.89E-07	mg/kg-day	3.40E-01	kg-day/mg		6.44E-08	1.33E-06	mg/kg-day	3.00E-04	mg/kg-day	4.42
				Aldrin	2.21E-04	mg/kg	6.72E-10	mg/kg-day	1.70E+01	kg-day/mg		1.14E-08	4.70E-09	mg/kg-day	3.00E-05	mg/kg-day	1.57
				alpha-Chlordane	1.23E-02	mg/kg	3.73E-08	mg/kg-day	3.50E-01	kg-day/mg		1.31E-08	2.61E-07	mg/kg-day	5.00E-04	mg/kg-day	5.23
				beta-BHC	6.91E-04	mg/kg	2.10E-09	mg/kg-day	1.80E+00	kg-day/mg		3.78E-09	1.47E-08	mg/kg-day	NA	mg/kg-day	N
				cis-Nonachlor	3.87E-03	mg/kg	1.17E-08	mg/kg-day	3.50E-01	kg-day/mg		4.11E-09	8.22E-08	mg/kg-day	5.00E-04	mg/kg-day	1.64
				Dieldrin	7.28E-03	mg/kg	2.21E-08	mg/kg-day	1.60E+01	kg-day/mg		3.54E-07	1.55E-07	mg/kg-day	5.00E-05	mg/kg-day	3.09
				gamma-Chlordane	2.54E-03	mg/kg	7.71E-09	mg/kg-day	3.50E-01	kg-day/mg		2.70E-09	5.40E-08	mg/kg-day	5.00E-04	mg/kg-day	1.08
				Heptachlor epoxide	1.97E-03	mg/kg	5.98E-09	mg/kg-day	9.10E+00	kg-day/mg		5.44E-08	4.19E-08	mg/kg-day	1.30E-05	mg/kg-day	3.22
				Hexachlorobenzene	7.46E-04	mg/kg	2.26E-09	mg/kg-day	1.60E+00	kg-day/mg		3.62E-09	1.59E-08	mg/kg-day	8.00E-04	mg/kg-day	1.98
				Mirex	1.75E-04	mg/kg	5.30E-10	mg/kg-day	1.80E+01	kg-day/mg		9.54E-09	3.71E-09	mg/kg-day	2.00E-04	mg/kg-day	1.86
				Oxychlordane	1.87E-03	mg/kg	5.68E-09	mg/kg-day	3.50E-01	kg-day/mg		1.99E-09	3.97E-08	mg/kg-day	5.00E-04	mg/kg-day	7.95
				trans-Nonachlor	1.05E-02	mg/kg	3.19E-08	mg/kg-day	3.50E-01	kg-day/mg		1.12E-08	2.23E-07	mg/kg-day	5.00E-04	mg/kg-day	4.46
				PCBs	4.505.04		4 405 00	and the state of	0.005.00	to a standard		0.075.00	4.005.05		0.005.05		- 00
				Total PCBs	4.59E-01	mg/kg	1.43E-06	mg/kg-day	2.00E+00	kg-day/mg		2.87E-06	1.00E-05	mg/kg-day	2.00E-05	mg/kg-day	5.02
				PCB-TEQ	1.48E-05	mg/kg	3.43E-11	mg/kg-day	1.30E+05	kg-day/mg		4.46E-06	2.40E-10	mg/kg-day	7.00E-10	mg/kg-day	3.43
ish Tissue To	tal - Upper Potor	nac (Total PCBs) ³										3.57E-06					5.63
	tal - Upper Potor tal - Upper Potor	nac (Total PCBs) ³ nac (PCB-TEQ)*					<u> </u>					3.57E-06 5.16E-06					5.63I 4.04I
sh Tissue To			Ingestion														
	tal - Upper Potor Fish Fillet Tissue - Mixed	nac (PCB-TEQ)*	Ingestion	Inorganics													
sh Tissue To	tal - Upper Potor Fish Fillet	nac (PCB-TEQ)*	Ingestion	Inorganics Arsenic	5.03E-02	mg/kg	2.25E-07	mg/kg-day	1.50E+00	kg-day/mg			1.57E-06	mg/kg-day	3.00E-04	mg/kg-day	
sh Tissue To	tal - Upper Potor Fish Fillet Tissue - Mixed	nac (PCB-TEQ)*	Ingestion	-	5.03E-02 4.53E-01	mg/kg mg/kg	2.25E-07 2.02E-06	mg/kg-day mg/kg-day	1.50E+00 NA	kg-day/mg kg-day/mg		5.16E-06	1.57E-06 1.42E-05	mg/kg-day mg/kg-day	3.00E-04 2.00E-02	mg/kg-day mg/kg-day	4.04
sh Tissue To	tal - Upper Potor Fish Fillet Tissue - Mixed	nac (PCB-TEQ)*	Ingestion	Arsenic						0 , 0		5.16E-06 3.37E-07				00,	5.24
sh Tissue To	tal - Upper Potor Fish Fillet Tissue - Mixed	nac (PCB-TEQ)*	Ingestion	Arsenic Arsenic, organic	4.53E-01	mg/kg	2.02E-06	mg/kg-day	NA	kg-day/mg		5.16E-06 3.37E-07 NA	1.42E-05	mg/kg-day	2.00E-02	mg/kg-day	5.24 7.08
sh Tissue To	tal - Upper Potor Fish Fillet Tissue - Mixed	nac (PCB-TEQ)*	Ingestion	Arsenic Arsenic, organic Mercury	4.53E-01	mg/kg	2.02E-06	mg/kg-day	NA	kg-day/mg		5.16E-06 3.37E-07 NA	1.42E-05	mg/kg-day	2.00E-02	mg/kg-day	5.24 7.08
sh Tissue To	tal - Upper Potor Fish Fillet Tissue - Mixed	nac (PCB-TEQ)*	Ingestion	Arsenic Arsenic, organic Mercury Pesticides	4.53E-01 8.31E-02	mg/kg mg/kg	2.02E-06 3.71E-07	mg/kg-day mg/kg-day	NA NA	kg-day/mg kg-day/mg		3.37E-07 NA NA	1.42E-05 2.60E-06	mg/kg-day mg/kg-day	2.00E-02 1.00E-04	mg/kg-day mg/kg-day	5.24 7.08 2.60
sh Tissue To	tal - Upper Potor Fish Fillet Tissue - Mixed	nac (PCB-TEQ)*	Ingestion	Arsenic Arsenic, organic Mercury Pesticides 4,4'-DDD	4.53E-01 8.31E-02 3.46E-03	mg/kg mg/kg mg/kg	2.02E-06 3.71E-07 1.05E-08	mg/kg-day mg/kg-day mg/kg-day	NA NA 2.40E-01	kg-day/mg kg-day/mg kg-day/mg		3.37E-07 NA NA 2.52E-09	1.42E-05 2.60E-06 7.35E-08	mg/kg-day mg/kg-day mg/kg-day	2.00E-02 1.00E-04 3.00E-05	mg/kg-day mg/kg-day mg/kg-day	5.24 7.08 2.60 2.45
sh Tissue To	tal - Upper Potor Fish Fillet Tissue - Mixed	nac (PCB-TEQ)*	Ingestion	Arsenic Arsenic, organic Mercury Pesticides 4,4'-DDD 4,4'-DDE	4.53E-01 8.31E-02 3.46E-03 1.71E-02	mg/kg mg/kg mg/kg mg/kg	2.02E-06 3.71E-07 1.05E-08 5.19E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 2.40E-01 3.40E-01	kg-day/mg kg-day/mg kg-day/mg kg-day/mg		3.37E-07 NA NA 2.52E-09 1.76E-08	1.42E-05 2.60E-06 7.35E-08 3.63E-07	mg/kg-day mg/kg-day mg/kg-day mg/kg-day	2.00E-02 1.00E-04 3.00E-05 3.00E-04	mg/kg-day mg/kg-day mg/kg-day mg/kg-day	5.24 7.08 2.60 2.44 1.2
sh Tissue To	tal - Upper Potor Fish Fillet Tissue - Mixed	nac (PCB-TEQ)*	Ingestion	Arsenic Arsenic, organic Mercury Pesticides 4,4'-DDD 4,4'-DDE alpha-Chlordane	4.53E-01 8.31E-02 3.46E-03 1.71E-02 5.71E-03	mg/kg mg/kg mg/kg mg/kg mg/kg	2.02E-06 3.71E-07 1.05E-08 5.19E-08 1.73E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 2.40E-01 3.40E-01 3.50E-01	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg		3.37E-07 NA NA 2.52E-09 1.76E-08 6.07E-09	1.42E-05 2.60E-06 7.35E-08 3.63E-07 1.21E-07	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	2.00E-02 1.00E-04 3.00E-05 3.00E-04 5.00E-04	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	5.24 7.08 2.60 2.48 1.2° 2.43
h Tissue To	tal - Upper Potor Fish Fillet Tissue - Mixed	nac (PCB-TEQ)*	Ingestion	Arsenic Arsenic, organic Mercury Pesticides 4,4'-DDD 4,4'-DDE alpha-Chlordane Dieldrin	4.53E-01 8.31E-02 3.46E-03 1.71E-02 5.71E-03 3.82E-03	mg/kg mg/kg mg/kg mg/kg mg/kg	2.02E-06 3.71E-07 1.05E-08 5.19E-08 1.73E-08 1.16E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 2.40E-01 3.40E-01 3.50E-01 1.60E+01	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg		3.37E-07 NA NA 2.52E-09 1.76E-08 6.07E-09 1.86E-07	1.42E-05 2.60E-06 7.35E-08 3.63E-07 1.21E-07 8.12E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	2.00E-02 1.00E-04 3.00E-05 3.00E-04 5.00E-04 5.00E-05	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	5.24 7.08 2.60 2.44 1.2 2.44 1.62
h Tissue To	tal - Upper Potor Fish Fillet Tissue - Mixed	nac (PCB-TEQ)*	Ingestion	Arsenic Arsenic, organic Mercury Pesticides 4,4'-DDD 4,4'-DDE alpha-Chlordane Dieldrin gamma-Chlordane	4.53E-01 8.31E-02 3.46E-03 1.71E-02 5.71E-03 3.82E-03 2.79E-03	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2.02E-06 3.71E-07 1.05E-08 5.19E-08 1.73E-08 1.16E-08 8.47E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 2.40E-01 3.40E-01 3.50E-01 1.60E+01 3.50E-01	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg		3.37E-07 NA NA 2.52E-09 1.76E-08 6.07E-09 1.86E-07 2.96E-09	1.42E-05 2.60E-06 7.35E-08 3.63E-07 1.21E-07 8.12E-08 5.93E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	2.00E-02 1.00E-04 3.00E-05 3.00E-04 5.00E-04 5.00E-05 5.00E-04	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	5.2 7.0 2.6 2.4 1.2 2.4 1.6 1.1 2.2 7.1
h Tissue To	tal - Upper Potor Fish Fillet Tissue - Mixed	nac (PCB-TEQ)*	Ingestion	Arsenic Arsenic, organic Mercury Pesticides 4,4-DDD 4,4'-DDE alpha-Chlordane Dieldrin gamma-Chlordane Heptachlor epoxide	4.53E-01 8.31E-02 3.46E-03 1.71E-02 5.71E-03 3.82E-03 2.79E-03 1.37E-03	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2.02E-06 3.71E-07 1.05E-08 5.19E-08 1.73E-08 1.16E-08 8.47E-09 4.16E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 2.40E-01 3.40E-01 3.50E-01 1.60E+01 3.50E-01 9.10E+00	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg		3.37E-07 NA NA 2.52E-09 1.76E-08 6.07E-09 1.86E-07 2.96E-09 3.78E-08	1.42E-05 2.60E-06 7.35E-08 3.63E-07 1.21E-07 8.12E-08 5.93E-08 2.91E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	2.00E-02 1.00E-04 3.00E-05 3.00E-04 5.00E-04 5.00E-05 5.00E-04 1.30E-05	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	5.2 7.0 2.6 2.4 1.2 2.4 1.6 1.1 2.2
h Tissue To	tal - Upper Potor Fish Fillet Tissue - Mixed	nac (PCB-TEQ)*	Ingestion	Arsenic Arsenic, organic Mercury Pesticides 4,4'-DDD 4,4'-DDE alpha-Chlordane Dieldrin gamma-Chlordane Heptachlor epoxide Oxychlordane	4.53E-01 8.31E-02 3.46E-03 1.71E-02 5.71E-03 3.82E-03 2.79E-03 1.37E-03 1.68E-03	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2.02E-06 3.71E-07 1.05E-08 5.19E-08 1.73E-08 1.16E-08 8.47E-09 4.16E-09 5.10E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 2.40E-01 3.40E-01 3.50E-01 1.60E+01 3.50E-01 9.10E+00 3.50E-01	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg		3.37E-07 NA NA 2.52E-09 1.76E-08 6.07E-09 1.86E-07 2.96E-09 3.78E-08 1.79E-09	1.42E-05 2.60E-06 7.35E-08 3.63E-07 1.21E-07 8.12E-08 5.93E-08 2.91E-08 3.57E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	2.00E-02 1.00E-04 3.00E-05 3.00E-04 5.00E-04 5.00E-04 1.30E-05 5.00E-04	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	5.2 7.0 2.6 2.4 1.2 2.4 1.6 1.1 2.2 7.1
n Tissue To	tal - Upper Potor Fish Fillet Tissue - Mixed	nac (PCB-TEQ)*	Ingestion	Arsenic Arsenic, organic Mercury Pesticides 4,4'-DDD 4,4'-DDE alpha-Chlordane Dieldrin gamma-Chlordane Heptachlor epoxide Oxychlordane trans-Nonachlor	4.53E-01 8.31E-02 3.46E-03 1.71E-02 5.71E-03 3.82E-03 2.79E-03 1.37E-03 1.68E-03	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2.02E-06 3.71E-07 1.05E-08 5.19E-08 1.73E-08 1.16E-08 8.47E-09 4.16E-09 5.10E-09	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 2.40E-01 3.40E-01 3.50E-01 1.60E+01 3.50E-01 9.10E+00 3.50E-01	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg		3.37E-07 NA NA 2.52E-09 1.76E-08 6.07E-09 1.86E-07 2.96E-09 3.78E-08 1.79E-09	1.42E-05 2.60E-06 7.35E-08 3.63E-07 1.21E-07 8.12E-08 5.93E-08 2.91E-08 3.57E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	2.00E-02 1.00E-04 3.00E-05 3.00E-04 5.00E-04 5.00E-04 1.30E-05 5.00E-04	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	5.2 7.0 2.6 2.4 1.2 2.4 1.6 1.1 2.2 7.1
Tissue To	tal - Upper Potor Fish Fillet Tissue - Mixed	nac (PCB-TEQ)*	Ingestion	Arsenic Arsenic, organic Mercury Pesticides 4,4'-DDD 4,4'-DDE alpha-Chlordane Dieldrin gamma-Chlordane Heptachlor epoxide Oxychlordane trans-Nonachlor PCBs	4.53E-01 8.31E-02 3.46E-03 1.71E-02 5.71E-03 3.82E-03 2.79E-03 1.37E-03 1.68E-03 7.81E-03	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2.02E-06 3.71E-07 1.05E-08 5.19E-08 1.73E-08 1.16E-08 8.47E-09 4.16E-09 5.10E-09 2.37E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 2.40E-01 3.50E-01 1.60E+01 3.50E-01 9.10E+00 3.50E-01 3.50E-01	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg		5.16E-06 3.37E-07 NA NA 2.52E-09 1.76E-08 6.07E-09 1.86E-07 2.96E-09 3.78E-08 1.79E-09 8.30E-09	1.42E-05 2.60E-06 7.35E-08 3.63E-07 1.21E-07 8.12E-08 5.93E-08 2.91E-08 3.57E-08 1.66E-07	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	2.00E-02 1.00E-04 3.00E-05 3.00E-04 5.00E-04 5.00E-04 1.30E-05 5.00E-04 5.00E-04	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	5.2 7.0 2.6 2.4 1.2 2.4 1.6 1.1 2.2 7.1 3.3
Tissue To	tal - Upper Potor Fish Fillet Tissue - Mixed Diet ⁽²⁾	nac (PCB-TEQ)*	Ingestion	Arsenic Arsenic, organic Mercury Pesticides 4,4'-DDD 4,4'-DDE alpha-Chlordane Dieldrin gamma-Chlordane Heptachlor epoxide Oxychlordane trans-Nonachlor PCBs Total PCBs	4.53E-01 8.31E-02 3.46E-03 1.71E-02 5.71E-03 3.82E-03 2.79E-03 1.37E-03 1.68E-03 7.81E-03	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2.02E-06 3.71E-07 1.05E-08 5.19E-08 1.73E-08 1.16E-09 4.16E-09 5.10E-09 2.37E-08	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	NA NA 2.40E-01 3.40E-01 3.50E-01 1.60E+01 3.50E-01 9.10E+00 3.50E-01 3.50E-01	kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg kg-day/mg		3.37E-07 NA NA 2.52E-09 1.76E-08 6.07E-09 1.86E-07 2.96E-09 3.78E-08 1.79E-09 8.30E-09	1.42E-05 2.60E-06 7.35E-08 3.63E-07 1.21E-07 8.12E-08 5.93E-08 2.91E-08 3.57E-08 1.66E-07	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	2.00E-02 1.00E-04 3.00E-05 3.00E-04 5.00E-04 5.00E-04 1.30E-05 5.00E-04 5.00E-04	mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day mg/kg-day	5.2 7.0 2.6 2.4 1.2 2.4 1.6 1.1 2.2 7.1 3.3

Table H-1-7. CTE Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Adult Angler (Mixed Fish Diet) - Regional Areas Central Tendency Exposure Benning Road Facility RI/FS Project

Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

							1										
									er Risk Calc					Noncancer Ha			,
	Exposure	Exposure	Exposure	Chemical of	EPC			re Concentration		SF	(4)	Cancer		re Concentration		RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Fish Tissue	Fish Fillet	Non-Tidal Anacostia	Ingestion														
	Tissue - Mixed			Dioxin													
	Diet (2)			2,3,7,8-TCDD-TEQ	9.74E-08	mg/kg	2.26E-13	mg/kg-day	1.30E+05	kg-day/mg		2.94E-08	1.58E-12	mg/kg-day	7.00E-10	mg/kg-day	2.26E-03
				Inorganics													
				Arsenic	6.43E-03	mg/kg	2.87E-08	mg/kg-day	1.50E+00	kg-day/mg		4.31E-08	2.01E-07	mg/kg-day	3.00E-04	mg/kg-day	6.70E-04
				Arsenic, organic	5.79E-02	mg/kg	2.58E-07	mg/kg-day	NA	kg-day/mg		NA	1.81E-06	mg/kg-day	2.00E-02	mg/kg-day	9.05E-05
				Cobalt	1.21E-02	mg/kg	5.40E-08	mg/kg-day	NA	kg-day/mg		NA	3.78E-07	mg/kg-day	3.00E-04	mg/kg-day	1.26E-03
				Mercury	2.57E-01	mg/kg	1.15E-06	mg/kg-day	NA	kg-day/mg		NA	8.03E-06	mg/kg-day	1.00E-04	mg/kg-day	8.03E-02
				Thallium	3.43E-03	mg/kg	1.53E-08	mg/kg-day	NA	kg-day/mg		NA	1.07E-07	mg/kg-day	1.00E-05	mg/kg-day	1.07E-02
				Pesticides													
				Chlordane	2.16E-02	mg/kg	6.55E-08	mg/kg-day	3.50E-01	kg-day/mg		2.29E-08	4.59E-07	mg/kg-day	5.00E-04	mg/kg-day	9.18E-04
				Dieldrin	1.54E-03	mg/kg	4.68E-09	mg/kg-day	1.60E+01	kg-day/mg		7.48E-08	3.27E-08	mg/kg-day	5.00E-05	mg/kg-day	6.55E-04
				Heptachlor epoxide	1.24E-03	mg/kg	3.76E-09	mg/kg-day	9.10E+00	kg-day/mg		3.42E-08	2.63E-08	mg/kg-day	1.30E-05	mg/kg-day	2.02E-03
				PCBs													
				Total PCBs	2.84E-02	mg/kg	8.88E-08	mg/kg-day	2.00E+00	kg-day/mg		1.78E-07	6.21E-07	mg/kg-day	2.00E-05	mg/kg-day	3.11E-02
				PCB-TEQ	6.65E-07	mg/kg	1.54E-12	mg/kg-day	1.30E+05	kg-day/mg		2.01E-07	1.08E-11	mg/kg-day	7.00E-10	mg/kg-day	1.54E-02
		nacostia (Total PCBs)3										3.82E-07					1.30E-01
Fish Tissue Tota	al - Non-Tidal Ar	nacostia (PCB-TEQ)*										4.05E-07					1.14E-01
Fish Tissue	Fish Fillet	Lower Anacostia	Ingestion														
	Tissue - Mixed			Metals													
	Diet (2)			Arsenic	2.45E-02	mg/kg	1.09E-07	mg/kg-day	1.50E+00	kg-day/mg		1.64E-07	7.66E-07	mg/kg-day	3.00E-04	mg/kg-day	2.55E-03
				Arsenic, organic	2.21E-01	mg/kg	9.84E-07	mg/kg-day	NA	kg-day/mg		NA	6.89E-06	mg/kg-day	2.00E-02	mg/kg-day	3.45E-04
				Mercury	7.20E-02	mg/kg	3.21E-07	mg/kg-day	NA	kg-day/mg		NA	2.25E-06	mg/kg-day	1.00E-04	mg/kg-day	2.25E-02
				Pesticides													
				4,4'-DDD	1.08E-02	mg/kg	3.29E-08	mg/kg-day	2.40E-01	kg-day/mg		7.89E-09	2.30E-07	mg/kg-day	3.00E-05	mg/kg-day	7.67E-03
				4,4'-DDE	3.63E-02	mg/kg	1.10E-07	mg/kg-day	3.40E-01	kg-day/mg		3.75E-08	7.72E-07	mg/kg-day	3.00E-04	mg/kg-day	2.57E-03
				Aldrin	2.04E-04	mg/kg	6.19E-10	mg/kg-day	1.70E+01	kg-day/mg		1.05E-08	4.34E-09	mg/kg-day	3.00E-05	mg/kg-day	1.45E-04
				alpha-Chlordane	1.89E-02	mg/kg	5.74E-08	mg/kg-day	3.50E-01	kg-day/mg		2.01E-08	4.02E-07	mg/kg-day	5.00E-04	mg/kg-day	8.04E-04
				cis-Nonachlor	7.13E-03	mg/kg	2.16E-08	mg/kg-day	3.50E-01	kg-day/mg		7.57E-09	1.51E-07	mg/kg-day	5.00E-04	mg/kg-day	3.03E-04
				Dieldrin	6.21E-03	mg/kg	1.89E-08	mg/kg-day	1.60E+01	kg-day/mg		3.02E-07	1.32E-07	mg/kg-day	5.00E-05	mg/kg-day	2.64E-03
				gamma-Chlordane	9.07E-03	mg/kg	2.75E-08	mg/kg-day	3.50E-01	kg-day/mg		9.64E-09	1.93E-07	mg/kg-day	5.00E-04	mg/kg-day	3.86E-04
				Heptachlor epoxide	2.35E-03	mg/kg	7.14E-09	mg/kg-day	9.10E+00	kg-day/mg		6.49E-08	5.00E-08	mg/kg-day	1.30E-05	mg/kg-day	3.84E-03
				Mirex	2.12E-04	mg/kg	6.44E-10	mg/kg-day	1.80E+01	kg-day/mg		1.16E-08	4.51E-09	mg/kg-day	2.00E-04	mg/kg-day	2.25E-05
				Oxychlordane	3.51E-03	mg/kg	1.07E-08	mg/kg-day	3.50E-01	kg-day/mg		3.73E-09	7.46E-08	mg/kg-day	5.00E-04	mg/kg-day	1.49E-04
				trans-Nonachlor	1.97E-02	mg/kg	5.98E-08	mg/kg-day	3.50E-01	kg-day/mg		2.09E-08	4.18E-07	mg/kg-day	5.00E-04	mg/kg-day	8.37E-04
				PCBs				0 0 7		0 , 0				0 0 7			
				Total PCBs	3.17E-01	mg/kg	9.90E-07	mg/kg-day	2.00E+00	kg-day/mg		1.98E-06	6.93E-06	mg/kg-day	2.00E-05	mg/kg-day	3.46E-01
				PCB-TEQ	8.15E-06	mg/kg	1.89E-11	mg/kg-day	1.30E+05	kg-day/mg		2.46E-06	1.32E-10	mg/kg-day	7.00E-10	mg/kg-day	1.89E-01
								"" '		, , ,				" " '		" " "	
Fish Tissue Tota	al - Lower Anaco	ostia (Total PCBs)3		•		•	`	•	•			2.64E-06		•	•	•	3.91E-01
		ostia (PCB-TEQ)*										3.12E-06					2.34E-01
Receptor Total	s																
Total Receptor I	Risk/Hazard - U	pper Potomac (Total PC	CBs) ³									3.57E-06					5.63E-01
		pper Potomac (PCB-TE										5.16E-06					4.04E-01
Total Receptor I	Risk/Hazard - Lo	ower Potomac (Total PC	CBs) ³									1.62E-06					2.19E-01
		ower Potomac (PCB-TE										1.63E-06					1.19E-01
Total Receptor I	Risk/Hazard - No	on-Tidal Anacostia (Tot	al PCBs)3									3.82E-07					1.30E-01
		on-Tidal Anacostia (PC										4.05E-07					1.14E-01
Total Receptor I	Risk/Hazard - Lo	ower Anacostia (Total P	CBs) ³									2.64E-06					3.91E-01
		ower Anacostia (PCB-TI										3.12E-06					2.34E-01
			,									J. 12L-00	1				

Table H-1-7. CTE

Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Adult Angler (Mixed Fish Diet) - Regional Areas Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Adult

								Canc	er Risk Calc	ulations				Noncancer Ha	zard Calcula	ations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposu	re Concentration	C	SF		Cancer	Intake/Exposur	e Concentration	R	:fD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient

Notes

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

PCB - Polychlorinated Biphenyl.

PCB-TEQ - PCB Toxicity Equivalence.

RfD - Oral Reference Dose.

NA - Not applicable.

- (1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.
- (2) Assumes a mixed fish diet of the species with available fillet data based on a pooled EPC.
- (3) Total Receptor Risk/Hazard based on all COPCs except PCB-TEQ.
- (4) Total Receptor Risk/Hazard based on all COPCs except Total PCBs.

Table H-1-8. CTE Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Older Child/Teen Angler (Mixed Fish Diet) - Regional Areas Central Tendency Exposure

Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

	I							Cano	er Risk Calc	ulations				Noncancer Ha	azard Calcul	ations	
	Exposure	Exposure	Exposure	Chemical of	EPO	:	Intake/Exposu	re Concentration		SF		Cancer	Intake/Exposu	re Concentration		RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Fish Tissue	Fish Fillet	Upper Potomac	Ingestion														
	Tissue - Mixed	-11	3	Metals													
	Diet (2)			Arsenic	2.39E-02	mg/kg	6.76E-08	mg/kg-day	1.50E+00	kg-day/mg		1.01E-07	7.89E-07	mg/kg-day	3.00E-04	mg/kg-day	2.63E-03
				Arsenic, organic	2.15E-01	mg/kg	6.08E-07	mg/kg-day	NA	kg-day/mg		NA	7.10E-06	mg/kg-day	2.00E-02	mg/kg-day	3.55E-04
				Mercury	1.23E-01	mg/kg	3.48E-07	mg/kg-day	NA	kg-day/mg		NA	4.06E-06	mg/kg-day	1.00E-04	mg/kg-day	4.06E-02
				Pesticides													
				4,4'-DDD	1.03E-02	mg/kg	1.98E-08	mg/kg-day	2.40E-01	kg-day/mg		4.76E-09	2.31E-07	mg/kg-day	3.00E-05	mg/kg-day	7.71E-03
				4,4'-DDE	6.24E-02	mg/kg	1.20E-07	mg/kg-day	3.40E-01	kg-day/mg		4.08E-08	1.40E-06	mg/kg-day	3.00E-04	mg/kg-day	4.67E-03
				Aldrin	2.21E-04	mg/kg	4.26E-10	mg/kg-day	1.70E+01	kg-day/mg		7.24E-09	4.97E-09	mg/kg-day	3.00E-05	mg/kg-day	1.66E-04
				alpha-Chlordane	1.23E-02	mg/kg	2.37E-08	mg/kg-day	3.50E-01	kg-day/mg		8.29E-09	2.76E-07	mg/kg-day	5.00E-04	mg/kg-day	5.52E-04
				beta-BHC	6.91E-04	mg/kg	1.33E-09	mg/kg-day	1.80E+00	kg-day/mg		2.39E-09	1.55E-08	mg/kg-day	NA	mg/kg-day	NA
				cis-Nonachlor	3.87E-03	mg/kg	7.45E-09	mg/kg-day	3.50E-01	kg-day/mg		2.61E-09	8.69E-08	mg/kg-day	5.00E-04	mg/kg-day	1.74E-04
				Dieldrin	7.28E-03	mg/kg	1.40E-08	mg/kg-day	1.60E+01	kg-day/mg		2.24E-07	1.63E-07	mg/kg-day	5.00E-05	mg/kg-day	3.27E-03
				gamma-Chlordane	2.54E-03	mg/kg	4.89E-09	mg/kg-day	3.50E-01	kg-day/mg		1.71E-09	5.70E-08	mg/kg-day	5.00E-04	mg/kg-day	1.14E-04
				Heptachlor epoxide	1.97E-03	mg/kg	3.79E-09	mg/kg-day	9.10E+00	kg-day/mg		3.45E-08	4.42E-08	mg/kg-day	1.30E-05	mg/kg-day	3.40E-03
				Hexachlorobenzene	7.46E-04	mg/kg	1.44E-09	mg/kg-day	1.60E+00	kg-day/mg		2.30E-09	1.67E-08	mg/kg-day	8.00E-04	mg/kg-day	2.09E-05
				Mirex	1.75E-04	mg/kg	3.36E-10	mg/kg-day	1.80E+01	kg-day/mg		6.05E-09	3.92E-09	mg/kg-day	2.00E-04	mg/kg-day	1.96E-05
				Oxychlordane	1.87E-03	mg/kg	3.60E-09	mg/kg-day	3.50E-01	kg-day/mg		1.26E-09	4.20E-08	mg/kg-day	5.00E-04	mg/kg-day	8.40E-05
				trans-Nonachlor	1.05E-02	mg/kg	2.02E-08	mg/kg-day	3.50E-01	kg-day/mg		7.07E-09	2.36E-07	mg/kg-day	5.00E-04	mg/kg-day	4.72E-04
				PCBs													
				Total PCBs	4.59E-01	mg/kg	9.09E-07	mg/kg-day	2.00E+00	kg-day/mg		1.82E-06	1.06E-05	mg/kg-day	2.00E-05	mg/kg-day	
				PCB-TEQ	1.48E-05	mg/kg	2.17E-11	mg/kg-day	1.30E+05	kg-day/mg		2.83E-06	2.54E-10	mg/kg-day	7.00E-10	mg/kg-day	3.62E-01
Figh Tiggue Tota	al - I Inner Potom	nac (Total PCBs) ³					<u> </u>					2.26E-06		<u> </u>			5.94E-01
	al - Upper Potom											3.27E-06					4.27E-01
Fish Tissue	Fish Fillet	Lower Potomac	Ingestion														
	Tissue - Mixed			Metals													
	Diet (2)			Arsenic	5.03E-02	mg/kg	1.42E-07	mg/kg-day	1.50E+00	kg-day/mg		2.14E-07	1.66E-06	mg/kg-day	3.00E-04	mg/kg-day	5.54E-03
				Arsenic, organic	4.53E-01	mg/kg	1.28E-06	mg/kg-day	NA	kg-day/mg		NA	1.50E-05	mg/kg-day	2.00E-02	mg/kg-day	7.48E-04
				Mercury	8.31E-02	mg/kg	2.35E-07	mg/kg-day	NA	kg-day/mg		NA	2.74E-06	mg/kg-day	1.00E-04	mg/kg-day	2.74E-02
				Pesticides													
				4,4'-DDD	3.46E-03	mg/kg	6.66E-09	mg/kg-day	2.40E-01	kg-day/mg		1.60E-09	7.77E-08	mg/kg-day	3.00E-05	mg/kg-day	2.59E-03
				4,4'-DDE	1.71E-02	mg/kg	3.29E-08	mg/kg-day	3.40E-01	kg-day/mg		1.12E-08	3.84E-07	mg/kg-day	3.00E-04	mg/kg-day	1.28E-03
				alpha-Chlordane	5.71E-03	mg/kg	1.10E-08	mg/kg-day	3.50E-01	kg-day/mg		3.85E-09	1.28E-07	mg/kg-day	5.00E-04	mg/kg-day	2.56E-04
				Dieldrin	3.82E-03	mg/kg	7.35E-09	mg/kg-day	1.60E+01	kg-day/mg		1.18E-07	8.58E-08	mg/kg-day	5.00E-05	mg/kg-day	1.72E-03
				gamma-Chlordane	2.79E-03	mg/kg	5.37E-09	mg/kg-day	3.50E-01	kg-day/mg		1.88E-09	6.26E-08	mg/kg-day	5.00E-04	mg/kg-day	1.25E-04
				Heptachlor epoxide	1.37E-03	mg/kg	2.64E-09	mg/kg-day	9.10E+00	kg-day/mg		2.40E-08	3.08E-08	mg/kg-day	1.30E-05	mg/kg-day	2.37E-03
				Oxychlordane	1.68E-03	mg/kg	3.23E-09	mg/kg-day	3.50E-01	kg-day/mg		1.13E-09	3.77E-08	mg/kg-day	5.00E-04	mg/kg-day	7.54E-05
				trans-Nonachlor	7.81E-03	mg/kg	1.50E-08	mg/kg-day	3.50E-01	kg-day/mg		5.26E-09	1.75E-07	mg/kg-day	5.00E-04	mg/kg-day	3.51E-04
				PCBs	0.00E+00									1			
				Total PCBs	1.64E-01	mg/kg	3.24E-07	mg/kg-day	2.00E+00	kg-day/mg		6.49E-07	3.78E-06	mg/kg-day	2.00E-05	mg/kg-day	1.89E-01
				PCB-TEQ	3.41E-06	mg/kg	5.02E-12	mg/kg-day	1.30E+05	kg-day/mg		6.52E-07	5.85E-11	mg/kg-day	7.00E-10	mg/kg-day	8.36E-02
Fish Tissus Total	al Lauras Detroit	on (Total DCDs)3			l	l	<u> </u>	l			<u> </u>	1.005.00		<u> </u>	l	1	0.005.01
		nac (Total PCBs) ³										1.03E-06					2.32E-01
i ioii iiooue 10la												1.03E-06	i				1.26E-01

Table H-1-8. CTE

Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Older Child/Teen Angler (Mixed Fish Diet) - Regional Areas Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

								Cano	er Risk Calc	ulations				Noncancer Ha	zard Calcul	ations	
	Exposure	Exposure	Exposure	Chemical of	EPO	;	Intake/Exposu	re Concentration		SF		Cancer	Intake/Exposu	re Concentration		RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Fish Tissue			Ingestion														
				Dioxin						, i							
	Fish Fillet	Upstream Non-Tidal		2,3,7,8-TCDD-TEQ	9.74E-08	mg/kg	1.43E-13	mg/kg-day	1.30E+05	kg-day/mg		1.86E-08	1.67E-12	mg/kg-day	7.00E-10	mg/kg-day	2.39E-03
	Tissue - Mixed	Anacostia		Metals													
	Diet (2)			Arsenic	6.43E-03	mg/kg	1.82E-08	mg/kg-day	1.50E+00	kg-day/mg		2.73E-08	2.12E-07	mg/kg-day	3.00E-04	mg/kg-day	7.08E-04
				Arsenic, organic	5.79E-02	mg/kg	1.64E-07	mg/kg-day	NA	kg-day/mg		NA	1.91E-06	mg/kg-day	2.00E-02	mg/kg-day	9.56E-05
				Cobalt	1.21E-02	mg/kg	3.42E-08	mg/kg-day	NA	kg-day/mg		NA	4.00E-07	mg/kg-day	3.00E-04	mg/kg-day	1.33E-03
				Mercury	2.57E-01	mg/kg	7.27E-07	mg/kg-day	NA	kg-day/mg		NA	8.49E-06	mg/kg-day	3.00E-04	mg/kg-day	2.83E-02
				Thallium	3.43E-03	mg/kg	9.71E-09	mg/kg-day	NA	kg-day/mg		NA	1.13E-07	mg/kg-day	1.00E-05	mg/kg-day	1.13E-02
				Pesticides													
				Chlordane	2.16E-02	mg/kg	4.16E-08	mg/kg-day	3.50E-01	kg-day/mg		1.45E-08	4.85E-07	mg/kg-day	5.00E-04	mg/kg-day	9.70E-04
				Dieldrin	1.54E-03	mg/kg	2.97E-09	mg/kg-day	1.60E+01	kg-day/mg		4.75E-08	3.46E-08	mg/kg-day	5.00E-05	mg/kg-day	6.92E-04
				Heptachlor epoxide	1.24E-03	mg/kg	2.38E-09	mg/kg-day	9.10E+00	kg-day/mg		2.17E-08	2.78E-08	mg/kg-day	1.30E-05	mg/kg-day	2.14E-03
				PCBs	2.045.02		F 62F 00	man // ton along	2.005.00	l		4 425 07	0.505.07	/Ira day	2.005.05		2 205 02
				Total PCBs PCB-TEQ	2.84E-02 6.65E-07	mg/kg	5.63E-08 9.78E-13	mg/kg-day	2.00E+00	kg-day/mg		1.13E-07 1.27E-07	6.56E-07 1.14E-11	mg/kg-day	2.00E-05 7.00E-10	mg/kg-day	3.28E-02
				PCB-TEQ	6.65E-07	mg/kg	9.78E-13	mg/kg-day	1.30E+05	kg-day/mg		1.2/E-0/	1.14E-11	mg/kg-day	7.00E-10	mg/kg-day	1.63E-02
Fish Tissue Tot	al - Non-Tidal A	nacostia (Total PCBs) ³				l .		l				2.23E-07				l .	7.84E-02
		nacostia (PCB-TEQ)*										2.38E-07					6.19E-02
Fish Tissue	Fish Fillet	Lower Anacostia	Ingestion														
	Tissue - Mixed		9	Metals													
	Diet (2)			Arsenic	2.45E-02	mg/kg	6.93E-08	mg/kg-day	1.50E+00	kg-day/mg		1.04E-07	8.09E-07	mg/kg-day	3.00E-04	mg/kg-day	2.70E-03
				Arsenic, organic	2.21E-01	mg/kg	6.24E-07	mg/kg-day	NA	kg-day/mg		NA	7.28E-06	mg/kg-day	2.00E-02	mg/kg-day	3.64E-04
				Mercury	7.20E-02	mg/kg	2.04E-07	mg/kg-day	NA	kg-day/mg		NA	2.38E-06	mg/kg-day	1.00E-04	mg/kg-day	
				Pesticides		3 3		3 3,		3 , 3				3 3,		3 3,	
				4,4'-DDD	1.08E-02	mg/kg	2.08E-08	mg/kg-day	2.40E-01	kg-day/mg		5.00E-09	2.43E-07	mg/kg-day	3.00E-05	mg/kg-day	8.10E-03
				4,4'-DDE	3.63E-02	mg/kg	6.99E-08	mg/kg-day	3.40E-01	kg-day/mg		2.38E-08	8.16E-07	mg/kg-day	3.00E-04	mg/kg-day	2.72E-03
				Aldrin	2.04E-04	mg/kg	3.93E-10	mg/kg-day	1.70E+01	kg-day/mg		6.67E-09	4.58E-09	mg/kg-day	3.00E-05	mg/kg-day	1.53E-04
				alpha-Chlordane	1.89E-02	mg/kg	3.64E-08	mg/kg-day	3.50E-01	kg-day/mg		1.27E-08	4.25E-07	mg/kg-day	5.00E-04	mg/kg-day	8.49E-04
				cis-Nonachlor	7.13E-03	mg/kg	1.37E-08	mg/kg-day	3.50E-01	kg-day/mg		4.80E-09	1.60E-07	mg/kg-day	5.00E-04	mg/kg-day	3.20E-04
				Dieldrin	6.21E-03	mg/kg	1.20E-08	mg/kg-day	1.60E+01	kg-day/mg		1.91E-07	1.39E-07	mg/kg-day	5.00E-05	mg/kg-day	2.79E-03
				gamma-Chlordane	9.07E-03	mg/kg	1.75E-08	mg/kg-day	3.50E-01	kg-day/mg		6.11E-09	2.04E-07	mg/kg-day	5.00E-04	mg/kg-day	4.07E-04
				Heptachlor epoxide	2.35E-03	mg/kg	4.52E-09	mg/kg-day	9.10E+00	kg-day/mg		4.12E-08	5.28E-08	mg/kg-day	1.30E-05	mg/kg-day	4.06E-03
				Mirex	2.12E-04	mg/kg	4.08E-10	mg/kg-day	1.80E+01	kg-day/mg		7.34E-09	4.76E-09	mg/kg-day	2.00E-04	mg/kg-day	2.38E-05
				Oxychlordane	3.51E-03	mg/kg	6.76E-09	mg/kg-day	3.50E-01	kg-day/mg		2.37E-09	7.89E-08	mg/kg-day	5.00E-04	mg/kg-day	1.58E-04
				trans-Nonachlor	1.97E-02	mg/kg	3.79E-08	mg/kg-day	3.50E-01	kg-day/mg		1.33E-08	4.42E-07	mg/kg-day	5.00E-04	mg/kg-day	8.84E-04
				PCBs													
				Total PCBs	3.17E-01	mg/kg	6.27E-07	mg/kg-day	2.00E+00	kg-day/mg		1.25E-06	7.32E-06	mg/kg-day	2.00E-05	mg/kg-day	3.66E-01
				PCB-TEQ	8.15E-06	mg/kg	1.20E-11	mg/kg-day	1.30E+05	kg-day/mg		1.56E-06	1.40E-10	mg/kg-day	7.00E-10	mg/kg-day	2.00E-01
		ostia (Total PCBs)3										1.67E-06					4.13E-01
		ostia (PCB-TEQ)*										1.98E-06					2.47E-01
Receptor Total											· · · · · · · · · · · · · · · · · · ·						
		pper Potomac (Total PC pper Potomac (PCB-TE										2.26E-06					5.94E-01
		· · · · · · · · · · · · · · · · · · ·										3.27E-06	<u> </u>				4.27E-01
		ower Potomac (Total PC ower Potomac (PCB-TE										1.03E-06					2.32E-01
		,										1.03E-06					1.26E-01
		on-Tidal Anacostia (Tot on-Tidal Anacostia (PC										2.23E-07					7.84E-02
		•										2.38E-07					6.19E-02
		ower Anacostia (Total Power Anacostia (PCB-T										1.67E-06					4.13E-01 2.47E-01
i otai iveceptori	viorvi iazdiu - Li	ATTACOSTIA (FUD-1)	- ·×/									1.98E-06					2.47E-01

Table H-1-8. CTE

Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Older Child/Teen Angler (Mixed Fish Diet) - Regional Areas Central Tendency Exposure Benning Road Facility RI/FS Project

3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Older Child/Teen

ĺ									Canc	er Risk Calc	ulations				Noncancer Ha	zard Calcula	ations	
		Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposu	re Concentration	C	SF		Cancer	Intake/Exposur	e Concentration	R	:fD	Hazard
	Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient

Notes

ADAF - Age-Dependent Adjustment Factor. CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

NA - Not applicable.

ND - Not Detected.

PCB - Polychlorinated Biphenyl. PCB-TEQ - PCB Toxicity Equivalence.

RfD - Oral Reference Dose.

- (1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.
- (2) Assumes a mixed fish diet of the species with available fillet data based on a pooled EPC.
- (3) Total Receptor Risk/Hazard based on all COPCs except PCB-TEQ.
- (4) Total Receptor Risk/Hazard based on all COPCs except Total PCBs.

Scenario Timeframe: Current/Future Receptor Population: Angler

Receptor Age: Child

1	1							Cano	er Risk Calc	ulations				Noncancer Ha	rard Calcul	ations	
	Exposure	Exposure	Exposure	Chemical of	EPC	:	Intake/Exposu	re Concentration		SF		Cancer	Intake/Exposur	re Concentration		RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Fish Tissue	Fish Fillet	Upper Potomac	Ingestion				1 300						1 3				1
	Tissue - Mixed			Metals													
	Diet (2)			Arsenic	2.39E-02	mg/kg	3.01E-08	mg/kg-day	1.50E+00	kg-day/mg		4.52E-08	1.05E-06	mg/kg-day	3.00E-04	mg/kg-day	3.51E-03
				Arsenic, organic	2.15E-01	mg/kg	2.71E-07	mg/kg-day	NA	kg-day/mg		NA	9.49E-06	mg/kg-day	2.00E-02	mg/kg-day	4.74E-04
				Mercury	1.23E-01	mg/kg	1.55E-07	mg/kg-day	NA	kg-day/mg		NA	5.43E-06	mg/kg-day	1.00E-04	mg/kg-day	5.43E-02
				Pesticides		3 3		3 3 ,		3 , 3				3 3,		3 3,	
				4,4'-DDD	1.03E-02	mg/kg	8.83E-09	mg/kg-day	2.40E-01	kg-day/mg		2.12E-09	3.09E-07	mg/kg-day	3.00E-05	mg/kg-day	1.03E-02
				4,4'-DDE	6.24E-02	mg/kg	5.35E-08	mg/kg-day	3.40E-01	kg-day/mg		1.82E-08	1.87E-06	mg/kg-day	3.00E-04	mg/kg-day	6.24E-03
				Aldrin	2.21E-04	mg/kg	1.90E-10	mg/kg-day	1.70E+01	kg-day/mg		3.22E-09	6.64E-09	mg/kg-day	3.00E-05	mg/kg-day	2.21E-04
				alpha-Chlordane	1.23E-02	mg/kg	1.05E-08	mg/kg-day	3.50E-01	kg-day/mg		3.69E-09	3.69E-07	mg/kg-day	5.00E-04	mg/kg-day	7.38E-04
				beta-BHC	6.91E-04	mg/kg	5.92E-10	mg/kg-day	1.80E+00	kg-day/mg		1.07E-09	2.07E-08	mg/kg-day	NA	mg/kg-day	NA
l	l			cis-Nonachlor	3.87E-03	mg/kg	3.32E-09	mg/kg-day	3.50E-01	kg-day/mg		1.16E-09	1.16E-07	mg/kg-day	5.00E-04	mg/kg-day	2.32E-04
l	l			Dieldrin	7.28E-03	mg/kg	6.24E-09	mg/kg-day	1.60E+01	kg-day/mg		9.98E-08	2.18E-07	mg/kg-day	5.00E-05	mg/kg-day	4.37E-03
				gamma-Chlordane	2.54E-03	mg/kg	2.18E-09	mg/kg-day	3.50E-01	kg-day/mg		7.62E-10	7.62E-08	mg/kg-day	5.00E-04	mg/kg-day	1.52E-04
				Heptachlor epoxide	1.97E-03	mg/kg	1.69E-09	mg/kg-day	9.10E+00	kg-day/mg		1.54E-08	5.91E-08	mg/kg-day	1.30E-05	mg/kg-day	4.55E-03
				Hexachlorobenzene	7.46E-04	mg/kg	6.39E-10	mg/kg-day	1.60E+00	kg-day/mg		1.02E-09	2.24E-08	mg/kg-day	8.00E-04	mg/kg-day	2.80E-05
				Mirex	1.75E-04	mg/kg	1.50E-10	mg/kg-day	1.80E+01	kg-day/mg		2.69E-09	5.24E-09	mg/kg-day	2.00E-04	mg/kg-day	2.62E-05
				Oxychlordane	1.87E-03	mg/kg	1.60E-09	mg/kg-day	3.50E-01	kg-day/mg		5.61E-10	5.61E-08	mg/kg-day	5.00E-04	mg/kg-day	1.12E-04
				trans-Nonachlor	1.05E-02	mg/kg	9.00E-09	mg/kg-day	3.50E-01	kg-day/mg		3.15E-09	3.15E-07	mg/kg-day	5.00E-04	mg/kg-day	6.30E-04
				PCBs													
				Total PCBs	4.59E-01	mg/kg	4.05E-07	mg/kg-day	2.00E+00	kg-day/mg		8.10E-07	1.42E-05	mg/kg-day	2.00E-05	mg/kg-day	7.08E-01
				PCB-TEQ	1.48E-05	mg/kg	9.69E-12	mg/kg-day	1.30E+05	kg-day/mg		1.26E-06	3.39E-10	mg/kg-day	7.00E-10	mg/kg-day	4.84E-01
Figh Tipous Tota	al Upper Betom	ac (Total PCBs) ³										1.01E-06					7.94E-01
	al - Upper Potom											1.46E-06					5.70E-01
Fish Tissue	Fish Fillet	Lower Potomac	Ingestion														
	Tissue - Mixed			Metals													
	Diet (2)			Arsenic	5.03E-02	mg/kg	6.34E-08	mg/kg-day	1.50E+00	kg-day/mg		9.51E-08	2.22E-06	mg/kg-day	3.00E-04	mg/kg-day	7.40E-03
				Arsenic, organic	4.53E-01	mg/kg	5.71E-07	mg/kg-day	NA	kg-day/mg		NA	2.00E-05	mg/kg-day	2.00E-02	mg/kg-day	9.99E-04
				Mercury	8.31E-02	mg/kg	1.05E-07	mg/kg-day	NA	kg-day/mg		NA	3.67E-06	mg/kg-day	1.00E-04	mg/kg-day	3.67E-02
				Pesticides													
				4,4'-DDD	3.46E-03	mg/kg	2.97E-09	mg/kg-day	2.40E-01	kg-day/mg		7.12E-10	1.04E-07	mg/kg-day	3.00E-05	mg/kg-day	3.46E-03
				4,4'-DDE	1.71E-02	mg/kg	1.47E-08	mg/kg-day	3.40E-01	kg-day/mg		4.98E-09	5.13E-07	mg/kg-day	3.00E-04	mg/kg-day	1.71E-03
				alpha-Chlordane	5.71E-03	mg/kg	4.89E-09	mg/kg-day	3.50E-01	kg-day/mg		1.71E-09	1.71E-07	mg/kg-day	5.00E-04	mg/kg-day	3.43E-04
				Dieldrin	3.82E-03	mg/kg	3.27E-09	mg/kg-day	1.60E+01	kg-day/mg		5.24E-08	1.15E-07	mg/kg-day	5.00E-05	mg/kg-day	2.29E-03
l	l			gamma-Chlordane	2.79E-03	mg/kg	2.39E-09	mg/kg-day	3.50E-01	kg-day/mg		8.37E-10	8.37E-08	mg/kg-day	5.00E-04	mg/kg-day	1.67E-04
l	l			Heptachlor epoxide	1.37E-03	mg/kg	1.17E-09	mg/kg-day	9.10E+00	kg-day/mg		1.07E-08	4.11E-08	mg/kg-day	1.30E-05	mg/kg-day	3.16E-03
l	l			Oxychlordane	1.68E-03	mg/kg	1.44E-09	mg/kg-day	3.50E-01	kg-day/mg		5.04E-10	5.04E-08	mg/kg-day	5.00E-04	mg/kg-day	1.01E-04
				trans-Nonachlor PCBs	7.81E-03	mg/kg	6.69E-09	mg/kg-day	3.50E-01	kg-day/mg		2.34E-09	2.34E-07	mg/kg-day	5.00E-04	mg/kg-day	4.69E-04
l	l			Total PCBs	1.64E-01	malka	1.44E-07	ma/ka do:	2.005.00	ka dov/m=		2.89E-07	5.06E-06	ma/ka da::	2.005.05	malka da	2 525 04
l	l			PCB-TEQ	3.41E-06	mg/kg ma/ka	1.44E-07 2.23E-12	mg/kg-day mg/kg-day	2.00E+00 1.30E+05	kg-day/mg kg-day/mg		2.89E-07 2.90E-07	7.82E-11	mg/kg-day mg/kg-day	2.00E-05 7.00E-10	mg/kg-day mg/kg-day	2.53E-01 1.12E-01
l	l			FUD-TEQ	3.41E-U6	mg/kg	2.23E-12	ing/kg-uay	1.30=+05	kg-day/ing		2.90E-07	7.02E-11	mg/kg-day	7.00E-10	mg/kg-day	1.12E-0
Fish Tissue Tota	al - Lower Potom	ac (Total PCBs)3		<u>I</u>	<u> </u>		·	<u>I</u>			<u> </u>	4.58E-07		1	1		3.10E-0
	al - Lower Potom											4.60E-07	 				1.68E-0
		,										7.00L-07					1.002-0

Scenario Timeframe: Current/Future Receptor Population: Angler

Receptor Population: Angler Receptor Age: Child

I 							1						1				
									er Risk Calc					Noncancer Ha			
	Exposure	Exposure	Exposure	Chemical of	EPC			re Concentration		SF	(4)	Cancer		re Concentration		RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Fish Tissue	Fish Fillet	Upstream Non-Tidal	Ingestion														
	Tissue - Mixed	Anacostia		Dioxin													
	Diet (2)			2,3,7,8-TCDD-TEQ	9.74E-08	mg/kg	6.38E-14	mg/kg-day	1.30E+05	kg-day/mg		8.30E-09	2.23E-12	mg/kg-day	7.00E-10	mg/kg-day	3.19E-03
				Metals													
				Arsenic	6.43E-03	mg/kg	8.11E-09	mg/kg-day	1.50E+00	kg-day/mg		1.22E-08	2.84E-07	mg/kg-day	3.00E-04	mg/kg-day	9.46E-04
				Arsenic, organic	5.79E-02	mg/kg	7.30E-08	mg/kg-day	NA	kg-day/mg		NA	2.55E-06	mg/kg-day	2.00E-02	mg/kg-day	1.28E-04
				Cobalt	1.21E-02	mg/kg	1.53E-08	mg/kg-day	NA	kg-day/mg		NA	5.34E-07	mg/kg-day	3.00E-04	mg/kg-day	1.78E-03
				Mercury	2.57E-01	mg/kg	3.24E-07	mg/kg-day	NA	kg-day/mg		NA	1.13E-05	mg/kg-day	1.00E-04	mg/kg-day	1.13E-01
				Thallium	3.43E-03	mg/kg	4.32E-09	mg/kg-day	NA	kg-day/mg		NA	1.51E-07	mg/kg-day	1.00E-05	mg/kg-day	1.51E-02
				Pesticides													
				Chlordane	2.16E-02	mg/kg	1.85E-08	mg/kg-day	3.50E-01	kg-day/mg		6.48E-09	6.48E-07	mg/kg-day	5.00E-04	mg/kg-day	1.30E-03
				Dieldrin	1.54E-03	mg/kg	1.32E-09	mg/kg-day	1.60E+01	kg-day/mg		2.11E-08	4.62E-08	mg/kg-day	5.00E-05	mg/kg-day	9.25E-04
				Heptachlor epoxide	1.24E-03	mg/kg	1.06E-09	mg/kg-day	9.10E+00	kg-day/mg		9.65E-09	3.71E-08	mg/kg-day	1.30E-05	mg/kg-day	2.85E-03
				PCBs													
				Total PCBs	2.84E-02	mg/kg	2.51E-08	mg/kg-day	2.00E+00	kg-day/mg		5.01E-08	8.77E-07	mg/kg-day	2.00E-05	mg/kg-day	4.39E-02
				PCB-TEQ	6.65E-07	mg/kg	4.36E-13	mg/kg-day	1.30E+05	kg-day/mg		5.66E-08	1.53E-11	mg/kg-day	7.00E-10	mg/kg-day	2.18E-02
		nacostia (Total PCBs)3										1.08E-07					1.83E-01
Fish Tissue Tota	al - Non-Tidal Ar	nacostia (PCB-TEQ)*										1.14E-07					1.61E-01
Fish Tissue	Fish Fillet	Lower Anacostia	Ingestion														
	Tissue - Mixed			Metals													
	Diet (2)			Arsenic	2.45E-02	mg/kg	3.09E-08	mg/kg-day	1.50E+00	kg-day/mg		4.63E-08	1.08E-06	mg/kg-day	3.00E-04	mg/kg-day	3.60E-03
				Arsenic, organic	2.21E-01	mg/kg	2.78E-07	mg/kg-day	NA	kg-day/mg		NA	9.73E-06	mg/kg-day	2.00E-02	mg/kg-day	4.86E-04
				Mercury	7.20E-02	mg/kg	9.08E-08	mg/kg-day	NA	kg-day/mg		NA	3.18E-06	mg/kg-day	1.00E-04	mg/kg-day	3.18E-02
				Pesticides													
				4,4'-DDD	1.08E-02	mg/kg	9.28E-09	mg/kg-day	2.40E-01	kg-day/mg		2.23E-09	3.25E-07	mg/kg-day	3.00E-05	mg/kg-day	1.08E-02
				4,4'-DDE	3.63E-02	mg/kg	3.11E-08	mg/kg-day	3.40E-01	kg-day/mg		1.06E-08	1.09E-06	mg/kg-day	3.00E-04	mg/kg-day	3.63E-03
				Aldrin	2.04E-04	mg/kg	1.75E-10	mg/kg-day	1.70E+01	kg-day/mg		2.97E-09	6.12E-09	mg/kg-day	3.00E-05	mg/kg-day	2.04E-04
				alpha-Chlordane	1.89E-02	mg/kg	1.62E-08	mg/kg-day	3.50E-01	kg-day/mg		5.67E-09	5.67E-07	mg/kg-day	5.00E-04	mg/kg-day	1.13E-03
				cis-Nonachlor	7.13E-03	mg/kg	6.11E-09	mg/kg-day	3.50E-01	kg-day/mg		2.14E-09	2.14E-07	mg/kg-day	5.00E-04	mg/kg-day	4.28E-04
				Dieldrin	6.21E-03	mg/kg	5.32E-09	mg/kg-day	1.60E+01	kg-day/mg		8.52E-08	1.86E-07	mg/kg-day	5.00E-05	mg/kg-day	3.73E-03
				gamma-Chlordane	9.07E-03	mg/kg	7.78E-09	mg/kg-day	3.50E-01	kg-day/mg		2.72E-09	2.72E-07	mg/kg-day	5.00E-04	mg/kg-day	5.44E-04
				Heptachlor epoxide	2.35E-03	mg/kg	2.01E-09	mg/kg-day	9.10E+00	kg-day/mg		1.83E-08	7.05E-08	mg/kg-day	1.30E-05	mg/kg-day	5.42E-03
				Mirex	2.12E-04	mg/kg	1.82E-10	mg/kg-day	1.80E+01	kg-day/mg		3.27E-09	6.36E-09	mg/kg-day	2.00E-04	mg/kg-day	3.18E-05
				Oxychlordane	3.51E-03	mg/kg	3.01E-09	mg/kg-day	3.50E-01	kg-day/mg		1.05E-09	1.05E-07	mg/kg-day	5.00E-04	mg/kg-day	2.11E-04
				trans-Nonachlor	1.97E-02	mg/kg	1.69E-08	mg/kg-day	3.50E-01	kg-day/mg		5.90E-09	5.90E-07	mg/kg-day	5.00E-04	mg/kg-day	1.18E-03
			**	PCBs													
				Total PCBs	3.17E-01	mg/kg	2.79E-07	mg/kg-day	2.00E+00	kg-day/mg		5.59E-07	9.78E-06	mg/kg-day	2.00E-05	mg/kg-day	4.89E-01
				PCB-TEQ	8.15E-06	mg/kg	5.34E-12	mg/kg-day	1.30E+05	kg-day/mg		6.94E-07	1.87E-10	mg/kg-day	7.00E-10	mg/kg-day	2.67E-01
Fish Tissue Tota	al - Lower Anaco	ostia (Total PCBs)3										7.45E-07					5.52E-01
		ostia (PCB-TEQ)*		<u> </u>	<u> </u>		<u> </u>					8.81E-07					3.30E-01
Receptor Totals	S									-			•				
		pper Potomac (Total PC										1.01E-06					7.94E-01
												5.70E-01					
		ower Potomac (Total PC										4.58E-07					3.10E-01
Total Receptor F	Risk/Hazard - Lo	ower Potomac (PCB-TE	Q) ⁴									4.60E-07					1.68E-01
		on-Tidal Anacostia (Tota										1.08E-07					1.83E-01
Total Receptor F	Risk/Hazard - No	on-Tidal Anacostia (PCI	B-TEQ)*									1.14E-07					1.61E-01
		ower Anacostia (Total P										7.45E-07					5.52E-01
Total Receptor F	Risk/Hazard - Lo	ower Anacostia (PCB-Ti	EQ)*									8.81E-07					3.30E-01

Table H-1-9. CTE

Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Child Angler (Mixed Fish Diet) - Regional Areas Central Tendency Exposure Benning Road Facility RI/FS Project

3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Child

								Canc	er Risk Calcu	ulations				Noncancer Ha	zard Calcula	ations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposu	re Concentration	C	SF		Cancer	Intake/Exposur	e Concentration	R	fD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient

Notes:

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

PCB - Polychlorinated Biphenyl.

PCB-TEQ - PCB Toxicity Equivalence.

RfD - Oral Reference Dose.

NA - Not applicable.

- (1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.
- (2) Assumes a mixed fish diet of the species with available fillet data based on a pooled EPC.
- (3) Total Receptor Risk/Hazard based on all COPCs except PCB-TEQ.
- (4) Total Receptor Risk/Hazard based on all COPCs except Total PCBs.

								Ca	ncer Risk C	alculations				Noncancer	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposure	e Concentration	C	SF		Cancer	Intake/Exposur	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Ingestion														
	Surface	Investigation		Dioxin													1
	Sediment	Area		2,3,7,8-TCDD-TEQ	7.25E-05	mg/kg	5.76E-14	mg/kg-day	1.30E+05	kg-day/mg		7.49E-09	4.03E-13	mg/kg-day	7.00E-10	mg/kg-day	5.76E-04
				Metals													
				Aluminum	8.07E+03	mg/kg	6.41E-06	mg/kg-day	NA	kg-day/mg		NA	4.49E-05	mg/kg-day	1.00E+00	mg/kg-day	4.49E-05
				Antimony	1.93E+00	mg/kg	1.53E-09	mg/kg-day	NA	kg-day/mg		NA	1.07E-08	mg/kg-day	4.00E-04	mg/kg-day	2.68E-05
				Arsenic	5.56E+00	mg/kg	2.65E-09	mg/kg-day	1.50E+00	kg-day/mg		3.98E-09	1.86E-08	mg/kg-day	3.00E-04	mg/kg-day	6.18E-05
				Cobalt	1.51E+01	mg/kg	1.20E-08	mg/kg-day	NA	kg-day/mg		NA	8.40E-08	mg/kg-day	3.00E-04	mg/kg-day	2.80E-04
				Cyanide	8.76E-01	mg/kg	6.96E-10	mg/kg-day	NA	kg-day/mg		NA	4.87E-09	mg/kg-day	6.30E-04	mg/kg-day	7.73E-06
				Manganese	2.10E+02	mg/kg	1.67E-07	mg/kg-day	NA	kg-day/mg		NA	1.17E-06	mg/kg-day	2.40E-02	mg/kg-day	4.87E-05
				Nickel	5.07E+01	mg/kg	4.03E-08	mg/kg-day	NA	kg-day/mg		NA	2.82E-07	mg/kg-day	2.00E-02	mg/kg-day	1.41E-05
				Thallium	2.10E-01	mg/kg	1.67E-10	mg/kg-day	NA	kg-day/mg		NA	1.17E-09	mg/kg-day	1.00E-05	mg/kg-day	1.17E-04
				Vanadium	8.70E+01	mg/kg	6.91E-08	mg/kg-day	NA	kg-day/mg		NA	4.84E-07	mg/kg-day	5.04E-03	mg/kg-day	9.60E-05
				PCBs													1
				Total PCBs	4.47E-01	mg/kg	3.55E-10	mg/kg-day	2.00E+00	kg-day/mg		7.10E-10	2.49E-09	mg/kg-day	2.00E-05	mg/kg-day	1.24E-04
				SVOCs													
				Benzo(a)anthracene	5.90E-01	mg/kg	4.69E-10	mg/kg-day	1.00E-01	kg-day/mg	1	4.69E-11	3.28E-09	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	6.50E-01	mg/kg	5.16E-10	mg/kg-day	1.00E+00	kg-day/mg	1	5.16E-10	3.61E-09	mg/kg-day	3.00E-04	mg/kg-day	1.20E-05
				Benzo(b)fluoranthene	9.70E-01	mg/kg	7.71E-10	mg/kg-day	1.00E-01	kg-day/mg	1	7.71E-11	5.39E-09	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	3.55E-01	mg/kg	2.82E-10	mg/kg-day	1.00E-02	kg-day/mg	1	2.82E-12	1.97E-09	mg/kg-day	NA	mg/kg-day	NA
				chrysene	8.76E-01	mg/kg	6.96E-10	mg/kg-day	1.00E-03	kg-day/mg	1	6.96E-13	4.87E-09	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.48E-01	mg/kg	1.18E-10	mg/kg-day	1.00E+00	kg-day/mg	1	1.18E-10	8.23E-10	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	5.70E-01	mg/kg	4.53E-10	mg/kg-day	1.00E-01	kg-day/mg	1	4.53E-11	3.17E-09	mg/kg-day	NA	mg/kg-day	NA
				TPH													1
		<u> </u>		Diesel Range Organics (C10-C20)	9.10E+01	mg/kg	7.23E-08	mg/kg-day	NA	kg-day/mg		NA	5.06E-07	mg/kg-day	1.00E-02	mg/kg-day	5.06E-05
			Exp. Route Total									1.30E-08	<u> </u>				1.46E-03

								Ca	ıncer Risk Ca	alculations				Noncancer I	Hazard Calci	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposure	e Concentration	C	SF		Cancer	Intake/Exposur	e Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Dermal														ĺ
	Surface	Investigation		Dioxin													ĺ
	Sediment	Area		2,3,7,8-TCDD-TEQ	7.25E-05	mg/kg	7.88E-14	mg/kg-day	1.30E+05	kg-day/mg		1.02E-08	5.52E-13	mg/kg-day	7.00E-10	mg/kg-day	7.88E-04
				Metals													ĺ
				Aluminum	8.07E+03	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E+00	mg/kg-day	NA
				Antimony	1.93E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	6.00E-05	mg/kg-day	NA
				Arsenic	5.56E+00	mg/kg	6.04E-09	mg/kg-day	1.50E+00	kg-day/mg		9.06E-09	4.23E-08	mg/kg-day	3.00E-04	mg/kg-day	1.41E-04
				Cobalt	1.51E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	3.00E-04	mg/kg-day	NA
				Cyanide	8.76E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	NA	mg/kg-day	NA
				Manganese	2.10E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	9.60E-04	mg/kg-day	NA
				Nickel	5.07E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	8.00E-04	mg/kg-day	NA
				Thallium	2.10E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-05	mg/kg-day	NA
				Vanadium	8.70E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.31E-04	mg/kg-day	NA
				PCBs													ĺ
				Total PCBs	4.47E-01	mg/kg	2.27E-09	mg/kg-day	2.00E+00	kg-day/mg		4.53E-09	1.59E-08	mg/kg-day	2.00E-05	mg/kg-day	7.93E-04
				SVOCs													ĺ
				Benzo(a)anthracene	5.90E-01	mg/kg	2.78E-09	mg/kg-day	1.00E-01	kg-day/mg	1	2.78E-10	1.94E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	6.50E-01	mg/kg	3.06E-09	mg/kg-day	1.00E+00	kg-day/mg	1	3.06E-09	2.14E-08	mg/kg-day	3.00E-04	mg/kg-day	7.14E-05
				Benzo(b)fluoranthene	9.70E-01	mg/kg	4.57E-09	mg/kg-day	1.00E-01	kg-day/mg	1	4.57E-10	3.20E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	3.55E-01	mg/kg	1.67E-09	mg/kg-day	1.00E-02	kg-day/mg	1	1.67E-11	1.17E-08	mg/kg-day	NA	mg/kg-day	NA
				chrysene	8.76E-01	mg/kg	4.13E-09	mg/kg-day	1.00E-03	kg-day/mg	1	4.13E-12	2.89E-08	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.48E-01	mg/kg	6.97E-10	mg/kg-day	1.00E+00	kg-day/mg	1	6.97E-10	4.88E-09	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	5.70E-01	mg/kg	2.68E-09	mg/kg-day	1.00E-01	kg-day/mg	1	2.68E-10	1.88E-08	mg/kg-day	NA	mg/kg-day	NA
				TPH					l	l							l
				Diesel Range Organics (C10-C20)	9.10E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg	L	NA	NA	mg/kg-day	1.00E-02	mg/kg-day	NA 1.70F.00
			Exp. Route Total	JI								2.86E-08					1.79E-03
i		Exposure Point	l otal									4.16E-08					3.25E-03
	Exposure Medi	um I otal										4.16E-08	<u> </u>				3.25E-03
ediment Tota	ai											4.16E-08					3.25E-03

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Adult

								Ca	ncer Risk Ca	alculations				Noncancer	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposure	Concentration	C	SF		Cancer	Intake/Exposur	e Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Surface	Surface	Waterside	Ingestion														
Water	Water	Investigation		Dioxin													
		Area		2,3,7,8-TCDD-TEQ	4.08E-07	ug/L	6.81E-17	mg/kg-day	1.30E+05	kg-day/mg		8.85E-12	4.76E-16	mg/kg-day	7.00E-10	mg/kg-day	6.81E-07
				Metals													
				Arsenic	7.80E-01	ug/L	1.30E-10	mg/kg-day	1.50E+00	kg-day/mg		1.95E-10	9.11E-10	mg/kg-day	3.00E-04	mg/kg-day	3.04E-06
				Cobalt	9.80E-01	ug/L	1.63E-10	mg/kg-day	NA	kg-day/mg		NA	1.14E-09	mg/kg-day	3.00E-04	mg/kg-day	3.81E-06
				Manganese	1.40E+02	ug/L	2.34E-08	mg/kg-day	NA	kg-day/mg		NA	1.63E-07	mg/kg-day	2.40E-02	mg/kg-day	6.81E-06
				Pesticides													
				4,4'-DDT	1.30E-03	ug/L	2.17E-13	mg/kg-day	3.40E-01	kg-day/mg		7.37E-14	1.52E-12	mg/kg-day	5.00E-04	mg/kg-day	3.04E-09
				PCBs													
				Total PCBs	9.40E-03	ug/L	1.57E-12	mg/kg-day	4.00E-01	kg-day/mg		6.27E-13	1.10E-11	mg/kg-day	2.00E-05	mg/kg-day	5.49E-07
			Exp. Route Total	<u> </u>	ı							2.05E-10					1.49E-05
			Dermal														
				Dioxin		_											
				2,3,7,8-TCDD-TEQ	4.08E-07	ug/L	Outside EPD	mg/kg-day	1.30E+05	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	7.00E-10	mg/kg-day	Outside EPD
				Metals		_											
				Arsenic	7.80E-01	ug/L	1.30E-10	mg/kg-day	1.50E+00	kg-day/mg		1.94E-10	9.07E-10	mg/kg-day	3.00E-04	mg/kg-day	3.02E-06
				Cobalt	9.80E-01	ug/L	6.51E-11	mg/kg-day	NA	kg-day/mg		NA	4.56E-10	mg/kg-day	3.00E-04	mg/kg-day	1.52E-06
				Manganese	1.40E+02	ug/L	2.32E-08	mg/kg-day	NA	kg-day/mg		NA	1.63E-07	mg/kg-day	9.60E-04	mg/kg-day	1.69E-04
				Pesticides						l							
				4,4'-DDT	1.30E-03	ug/L	Outside EPD	mg/kg-day	3.40E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	5.00E-04	mg/kg-day	Outside EPD
				PCBs Total PCBs	9.40E-03	ug/L	Outside EPD	ma/ka day	4.00E-01	lea doulana		Outside EDD	Outside EPD	ma/ka day	2.005.05	ma/lea day	Outside EPD
		1	Exp. Route Total		9.40E-03	ug/L	Outside EPD	mg/kg-day	4.00E-01	kg-day/mg		1.94E-10	Outside EPD	mg/kg-day	2.00E-05	mg/kg-day	1.74E-04
	1	Exposure Point	<u> </u>	JI			<u></u>					3.99E-10					1.74E-04 1.89E-04
l i	Exposure Media		I UIdl				<u> </u>					3.99E-10 3.99E-10					1.89E-04 1.89E-04
Surface Wate		um Tulai					<u> </u>					3.99E-10	<u> </u>				1.89E-04
Total Receptor												4.20E-08					3.44E-03
rotal Necepto	n NSMHazalu											4.ZUE-U0	IL				3.445-03

Notes:

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

NA - Not applicable.

PCB - Polychlorinated Biphenyl.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

(1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Teen

								Ca	ncer Risk Ca	alculations				Noncancer	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposur	e Concentration	C	SF		Cancer	Intake/Exposul	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Ingestion														
	Surface	Investigation		Dioxin													1
	Sediment	Area		2,3,7,8-TCDD-TEQ	7.25E-05	mg/kg	1.04E-13	mg/kg-day	1.30E+05	kg-day/mg		1.36E-08	1.22E-12	mg/kg-day	7.00E-10	mg/kg-day	1.74E-03
				Metals													1
				Aluminum	8.07E+03	mg/kg	1.16E-05	mg/kg-day	NA	kg-day/mg		NA	1.35E-04	mg/kg-day	1.00E+00	mg/kg-day	1.35E-04
				Antimony	1.93E+00	mg/kg	2.78E-09	mg/kg-day	NA	kg-day/mg		NA	3.24E-08	mg/kg-day	4.00E-04	mg/kg-day	8.10E-05
				Arsenic	5.56E+00	mg/kg	4.80E-09	mg/kg-day	1.50E+00	kg-day/mg		7.20E-09	5.60E-08	mg/kg-day	3.00E-04	mg/kg-day	1.87E-04
				Cobalt	1.51E+01	mg/kg	2.17E-08	mg/kg-day	NA	kg-day/mg		NA	2.53E-07	mg/kg-day	3.00E-04	mg/kg-day	8.45E-04
				Cyanide	8.76E-01	mg/kg	1.26E-09	mg/kg-day	NA	kg-day/mg		NA	1.47E-08	mg/kg-day	6.30E-04	mg/kg-day	2.33E-05
				Manganese	2.10E+02	mg/kg	3.02E-07	mg/kg-day	NA	kg-day/mg		NA	3.53E-06	mg/kg-day	2.40E-02	mg/kg-day	1.47E-04
				Nickel	5.07E+01	mg/kg	7.30E-08	mg/kg-day	NA	kg-day/mg		NA	8.51E-07	mg/kg-day	2.00E-02	mg/kg-day	4.26E-05
				Thallium	2.10E-01	mg/kg	3.02E-10	mg/kg-day	NA	kg-day/mg		NA	3.53E-09	mg/kg-day	1.00E-05	mg/kg-day	3.53E-04
				Vanadium	8.70E+01	mg/kg	1.25E-07	mg/kg-day	NA	kg-day/mg		NA	1.46E-06	mg/kg-day	5.04E-03	mg/kg-day	2.90E-04
				PCBs													1
				Total PCBs	4.47E-01	mg/kg	6.43E-10	mg/kg-day	2.00E+00	kg-day/mg		1.29E-09	7.50E-09	mg/kg-day	2.00E-05	mg/kg-day	3.75E-04
				SVOCs													1
				Benzo(a)anthracene	5.90E-01	mg/kg	8.49E-10	mg/kg-day	1.00E-01	3	2.5	2.12E-10	9.90E-09	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	6.50E-01	mg/kg	9.35E-10	mg/kg-day	1.00E+00	3 , . 3	2.5	2.34E-09	1.09E-08	mg/kg-day	3.00E-04	mg/kg-day	3.64E-05
				Benzo(b)fluoranthene	9.70E-01	mg/kg	1.40E-09	mg/kg-day	1.00E-01	kg-day/mg	2.5	3.49E-10	1.63E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	3.55E-01	mg/kg	5.11E-10	mg/kg-day	1.00E-02	kg-day/mg	2.5	1.28E-11	5.96E-09	mg/kg-day	NA	mg/kg-day	NA
				chrysene	8.76E-01	mg/kg	1.26E-09	mg/kg-day	1.00E-03	0 , 0	2.5	3.15E-12	1.47E-08	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.48E-01	mg/kg	2.13E-10	mg/kg-day	1.00E+00	0 , 0	2.5	5.32E-10	2.48E-09	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	5.70E-01	mg/kg	8.20E-10	mg/kg-day	1.00E-01	kg-day/mg	2.5	2.05E-10	9.57E-09	mg/kg-day	NA	mg/kg-day	NA
				ТРН												1	1
		ļ <u>ļ</u>		Diesel Range Organics (C10-C20)	9.10E+01	mg/kg	1.31E-07	mg/kg-day	NA	kg-day/mg		NA	1.53E-06	mg/kg-day	1.00E-02	mg/kg-day	1.53E-04
			Exp. Route Total									2.57E-08					4.41E-03

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Teen

								Ca	ncer Risk Ca	lculations				Noncancer I	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposur	e Concentration	С	SF		Cancer	Intake/Exposur	e Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Dermal														1
	Surface	Investigation		Dioxin													i I
	Sediment	Area		2,3,7,8-TCDD-TEQ	7.25E-05	mg/kg	8.48E-14	mg/kg-day	1.30E+05	kg-day/mg		1.10E-08	9.89E-13	mg/kg-day	7.00E-10	mg/kg-day	1.41E-03
				Metals													i I
				Aluminum	8.07E+03	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E+00	mg/kg-day	NA
				Antimony	1.93E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	6.00E-05	mg/kg-day	NA
				Arsenic	5.56E+00	mg/kg	6.50E-09	mg/kg-day	1.50E+00	kg-day/mg		9.76E-09	7.59E-08	mg/kg-day	3.00E-04	mg/kg-day	2.53E-04
				Cobalt	1.51E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	3.00E-04	mg/kg-day	NA
				Cyanide	8.76E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	NA	mg/kg-day	NA
				Manganese	2.10E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	9.60E-04	mg/kg-day	NA
				Nickel	5.07E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	8.00E-04	mg/kg-day	NA
				Thallium	2.10E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-05	mg/kg-day	NA
				Vanadium	8.70E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.31E-04	mg/kg-day	NA
				PCBs													i I
				Total PCBs	4.47E-01	mg/kg	2.44E-09	mg/kg-day	2.00E+00	kg-day/mg		4.88E-09	2.85E-08	mg/kg-day	2.00E-05	mg/kg-day	1.42E-03
				SVOCs													i I
				Benzo(a)anthracene	5.90E-01	mg/kg	2.99E-09	mg/kg-day	1.00E-01	kg-day/mg	2.5	7.48E-10	3.49E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	6.50E-01	mg/kg	3.30E-09	mg/kg-day	1.00E+00	kg-day/mg	2.5	8.24E-09	3.84E-08	mg/kg-day	3.00E-04	mg/kg-day	1.28E-04
				Benzo(b)fluoranthene	9.70E-01	mg/kg	4.92E-09	mg/kg-day	1.00E-01	kg-day/mg	2.5	1.23E-09	5.74E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	3.55E-01	mg/kg	1.80E-09	mg/kg-day	1.00E-02	kg-day/mg	2.5	4.50E-11	2.10E-08	mg/kg-day	NA	mg/kg-day	NA
				chrysene	8.76E-01	mg/kg	4.44E-09	mg/kg-day	1.00E-03	kg-day/mg	2.5	1.11E-11	5.18E-08	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.48E-01	mg/kg	7.50E-10	mg/kg-day	1.00E+00	kg-day/mg	2.5	1.88E-09	8.75E-09	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	5.70E-01	mg/kg	2.89E-09	mg/kg-day	1.00E-01	kg-day/mg	2.5	7.22E-10	3.37E-08	mg/kg-day	NA	mg/kg-day	NA
				TPH	0.405.04					1 . 1. /					4 005 00		1
			F . D . T . I	Diesel Range Organics (C10-C20)	9.10E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA 0.05E.00	NA	mg/kg-day	1.00E-02	mg/kg-day	NA NA
	r		Exp. Route Total	JI			<u> </u>					3.85E-08					3.22E-03
		Exposure Point	ıotaı				<u> </u>					6.42E-08					7.62E-03
	Exposure Mediu	ım rotai										6.42E-08 6.42E-08	<u> </u>				7.62E-03
Sediment Tot	aı											ხ.4∠E-08					7.62E-03

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Teen

								Ca	ncer Risk Ca	alculations				Noncancer I	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposure	Concentration	C	SF		Cancer	Intake/Exposur	e Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Surface	Surface	Waterside	Ingestion														
Water	Water	Investigation		Dioxin													
		Area		2,3,7,8-TCDD-TEQ	4.08E-07	ug/L	2.88E-16	mg/kg-day	1.30E+05	kg-day/mg		3.74E-11	3.36E-15	mg/kg-day	7.00E-10	mg/kg-day	4.79E-06
				Metals													
				Arsenic	7.80E-01	ug/L	5.50E-10	mg/kg-day	1.50E+00	kg-day/mg		8.25E-10	6.42E-09	mg/kg-day	3.00E-04	mg/kg-day	2.14E-05
				Cobalt	9.80E-01	ug/L	6.91E-10	mg/kg-day	NA	kg-day/mg		NA	8.06E-09	mg/kg-day	3.00E-04	mg/kg-day	2.69E-05
				Manganese	1.40E+02	ug/L	9.87E-08	mg/kg-day	NA	kg-day/mg		NA	1.15E-06	mg/kg-day	2.40E-02	mg/kg-day	4.80E-05
				Pesticides													
				4,4'-DDT	1.30E-03	ug/L	9.17E-13	mg/kg-day	3.40E-01	kg-day/mg		3.12E-13	1.07E-11	mg/kg-day	5.00E-04	mg/kg-day	2.14E-08
				PCBs													
				Total PCBs	9.40E-03	ug/L	6.63E-12	mg/kg-day	4.00E-01	kg-day/mg		2.65E-12	7.73E-11	mg/kg-day	2.00E-05	mg/kg-day	3.87E-06
		İ	Exp. Route Total			l			l	l	1	8.65E-10				l	1.05E-04
			Dermal														
				Dioxin													
				2,3,7,8-TCDD-TEQ	4.08E-07	ug/L	Outside EPD	mg/kg-day	1.30E+05	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	7.00E-10	mg/kg-day	Outside EPD
				Metals													
				Arsenic	7.80E-01	ug/L	1.66E-10	mg/kg-day		kg-day/mg		2.50E-10	1.94E-09	mg/kg-day	3.00E-04	mg/kg-day	6.47E-06
				Cobalt	9.80E-01	ug/L	8.36E-11	mg/kg-day	NA	kg-day/mg		NA	9.76E-10	mg/kg-day	3.00E-04	mg/kg-day	3.25E-06
				Manganese	1.40E+02	ug/L	2.99E-08	mg/kg-day	NA	kg-day/mg		NA	3.48E-07	mg/kg-day	9.60E-04	mg/kg-day	3.63E-04
				Pesticides													
				4,4'-DDT	1.30E-03	ug/L	Outside EPD	mg/kg-day	3.40E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	5.00E-04	mg/kg-day	Outside EPD
				PCBs					l <u></u>	l							
				Total PCBs	9.40E-03	ug/L	Outside EPD	mg/kg-day	4.00E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	2.00E-05	mg/kg-day	Outside EPD
		ĺ	Exp. Route Total	i	1					1	1	2.50E-10			1		3.73E-04
		Exposure Point		~			ĺ					1.11E-09					4.78E-04
	Exposure Medic	ım Total					İ					1.11E-09					4.78E-04
Surface Water	er Total											1.11E-09					4.78E-04
Total Receptor	or Risk/Hazard										,	6.53E-08			,		8.10E-03

Notes:

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

NA - Not applicable.

PCB - Polychlorinated Biphenyl.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

(1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.

Table H-1-12. CTE Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Child Swimmer Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Child

								Ca	ancer Risk C	alculations				Noncancer	Hazard Cald	culations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposure	e Concentration	C	SF		Cancer	Intake/Exposur	e Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Ingestion														1
	Surface	Investigation		Dioxin													i II
	Sediment	Area		2,3,7,8-TCDD-TEQ	7.25E-05	mg/kg	1.08E-13	mg/kg-day	1.30E+05	kg-day/mg		1.41E-08	3.79E-12	mg/kg-day	7.00E-10	mg/kg-day	5.42E-03
				Metals													i II
				Aluminum	8.07E+03	mg/kg	1.21E-05	mg/kg-day	NA	kg-day/mg		NA	4.22E-04	mg/kg-day	1.00E+00	mg/kg-day	4.22E-04
				Antimony	1.93E+00	mg/kg	2.89E-09	mg/kg-day	NA	kg-day/mg		NA	1.01E-07	mg/kg-day	4.00E-04	mg/kg-day	2.53E-04
				Arsenic	5.56E+00	mg/kg	4.99E-09	mg/kg-day	1.50E+00	kg-day/mg		7.48E-09	1.75E-07	mg/kg-day	3.00E-04	mg/kg-day	5.82E-04
				Cobalt	1.51E+01	mg/kg	2.26E-08	mg/kg-day	NA	kg-day/mg		NA	7.90E-07	mg/kg-day	3.00E-04	mg/kg-day	2.63E-03
				Cyanide	8.76E-01	mg/kg	1.31E-09	mg/kg-day	NA	kg-day/mg		NA	4.59E-08	mg/kg-day	6.30E-04	mg/kg-day	7.28E-05
				Manganese	2.10E+02	mg/kg	3.14E-07	mg/kg-day	NA	kg-day/mg		NA	1.10E-05	mg/kg-day	2.40E-02	mg/kg-day	4.58E-04
				Nickel	5.07E+01	mg/kg	7.58E-08	mg/kg-day	NA	kg-day/mg		NA	2.65E-06	mg/kg-day	2.00E-02	mg/kg-day	1.33E-04
				Thallium	2.10E-01	mg/kg	3.14E-10	mg/kg-day	NA	kg-day/mg		NA	1.10E-08	mg/kg-day	1.00E-05	mg/kg-day	1.10E-03
				Vanadium	8.70E+01	mg/kg	1.30E-07	mg/kg-day	NA	kg-day/mg		NA	4.55E-06	mg/kg-day	5.04E-03	mg/kg-day	9.03E-04
				PCBs													i
				Total PCBs	4.47E-01	mg/kg	6.68E-10	mg/kg-day	2.00E+00	kg-day/mg		1.34E-09	2.34E-08	mg/kg-day	2.00E-05	mg/kg-day	1.17E-03
				SVOCs													i II
				Benzo(a)anthracene	5.90E-01	mg/kg	8.82E-10	mg/kg-day	1.00E-01	kg-day/mg	4.2	3.71E-10	3.09E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	6.50E-01	mg/kg	9.72E-10	mg/kg-day	1.00E+00	kg-day/mg	4.2	4.08E-09	3.40E-08	mg/kg-day	3.00E-04	mg/kg-day	1.13E-04
				Benzo(b)fluoranthene	9.70E-01	mg/kg	1.45E-09	mg/kg-day	1.00E-01	kg-day/mg	4.2	6.09E-10	5.08E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	3.55E-01	mg/kg	5.31E-10	mg/kg-day	1.00E-02	kg-day/mg	4.2	2.23E-11	1.86E-08	mg/kg-day	NA	mg/kg-day	NA
				chrysene	8.76E-01	mg/kg	1.31E-09	mg/kg-day	1.00E-03	kg-day/mg	4.2	5.50E-12	4.58E-08	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.48E-01	mg/kg	2.21E-10	mg/kg-day	1.00E+00	kg-day/mg	4.2	9.30E-10	7.75E-09	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	5.70E-01	mg/kg	8.52E-10	mg/kg-day	1.00E-01	kg-day/mg	4.2	3.58E-10	2.98E-08	mg/kg-day	NA	mg/kg-day	NA
				TPH													i
]		Diesel Range Organics (C10-C20)	9.10E+01	mg/kg	1.36E-07	mg/kg-day	NA	kg-day/mg		NA	4.76E-06	mg/kg-day	1.00E-02	mg/kg-day	4.76E-04
			Exp. Route Total									2.93E-08					1.37E-02

Table H-1-12. CTE Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Child Swimmer Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Child

								Ca	ancer Risk C	alculations				Noncancer	Hazard Cald	culations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposure	Concentration	C	SF		Cancer	Intake/Exposure	e Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Dermal														
	Surface	Investigation		Dioxin													
	Sediment	Area		2,3,7,8-TCDD-TEQ	7.25E-05	mg/kg	3.75E-14	mg/kg-day	1.30E+05	kg-day/mg		4.87E-09	1.31E-12	mg/kg-day	7.00E-10	mg/kg-day	1.87E-03
				Metals													
				Aluminum	8.07E+03	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E+00	mg/kg-day	NA
				Antimony	1.93E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	6.00E-05	mg/kg-day	NA
				Arsenic	5.56E+00	mg/kg	2.87E-09	mg/kg-day	1.50E+00	kg-day/mg		4.31E-09	1.01E-07	mg/kg-day	3.00E-04	mg/kg-day	3.35E-04
				Cobalt	1.51E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	3.00E-04	mg/kg-day	NA
				Cyanide	8.76E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	NA	mg/kg-day	NA
				Manganese	2.10E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	9.60E-04	mg/kg-day	NA
				Nickel	5.07E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	8.00E-04	mg/kg-day	NA
				Thallium	2.10E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-05	mg/kg-day	NA
				Vanadium	8.70E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.31E-04	mg/kg-day	NA
				PCBs													
				Total PCBs	4.47E-01	mg/kg	1.08E-09	mg/kg-day	2.00E+00	kg-day/mg		2.16E-09	3.77E-08	mg/kg-day	2.00E-05	mg/kg-day	1.89E-03
				SVOCs													
				Benzo(a)anthracene	5.90E-01	mg/kg	1.32E-09	mg/kg-day	1.00E-01	kg-day/mg	4.2	5.55E-10	4.62E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	6.50E-01	mg/kg	1.46E-09	mg/kg-day	1.00E+00	kg-day/mg	4.2	6.11E-09	5.09E-08	mg/kg-day	3.00E-04	mg/kg-day	1.70E-04
				Benzo(b)fluoranthene	9.70E-01	mg/kg	2.17E-09	mg/kg-day	1.00E-01	kg-day/mg	4.2	9.12E-10	7.60E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	3.55E-01	mg/kg	7.95E-10	mg/kg-day	1.00E-02	kg-day/mg	4.2	3.34E-11	2.78E-08	mg/kg-day	NA	mg/kg-day	NA
				chrysene	8.76E-01	mg/kg	1.96E-09	mg/kg-day	1.00E-03	kg-day/mg	4.2	8.24E-12	6.87E-08	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.48E-01	mg/kg	3.31E-10	mg/kg-day	1.00E+00	kg-day/mg	4.2	1.39E-09	1.16E-08	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	5.70E-01	mg/kg	1.28E-09	mg/kg-day	1.00E-01	kg-day/mg	4.2	5.36E-10	4.47E-08	mg/kg-day	NA	mg/kg-day	NA
				TPH Diesel Range Organics (C10-C20)	9.10E+01	ma/ka	NA	ma/ka day	NA	ka day/ma		NA	NA	ma/ka day	1.00E-02	ma/ka day	NA
			Exp. Route Total	0 0 1	9.10E+01	mg/kg	INA	mg/kg-day	INA	kg-day/mg		2.09E-08	INA	mg/kg-day	1.00E-02	mg/kg-day	4.26E-03
		Exposure Point		Л			<u> </u>					5.02E-08	<u> </u>				4.26E-03 1.80E-02
	Exposure Medi		I UIdl				1 <u> </u>					5.02E-08 5.02E-08					1.80E-02 1.80E-02
Sediment Tot		um rotal					<u> </u>					5.02E-08	<u> </u>				1.80E-02
Sediment 10t	aı											3.02E-06	<u> </u>				1.00E-02

Table H-1-12. CTE Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Child Swimmer Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Child

								C	ancer Risk C	alculations				Noncancer	Hazard Cald	culations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposure	Concentration	C	SF		Cancer	Intake/Exposure	e Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Surface	Surface	Waterside	Ingestion														
Water	Water	Investigation		Dioxin													
		Area		2,3,7,8-TCDD-TEQ	4.08E-07	ug/L	1.49E-16	mg/kg-day	1.30E+05	kg-day/mg		1.94E-11	5.23E-15	mg/kg-day	7.00E-10	mg/kg-day	7.47E-06
				Metals													
				Arsenic	7.80E-01	ug/L	2.86E-10	mg/kg-day	1.50E+00	kg-day/mg		4.29E-10	1.00E-08	mg/kg-day	3.00E-04	mg/kg-day	3.33E-05
				Cobalt	9.80E-01	ug/L	3.59E-10	mg/kg-day	NA	kg-day/mg		NA	1.26E-08	mg/kg-day	3.00E-04	mg/kg-day	4.19E-05
				Manganese	1.40E+02	ug/L	5.13E-08	mg/kg-day	NA	kg-day/mg		NA	1.80E-06	mg/kg-day	2.40E-02	mg/kg-day	7.48E-05
				Pesticides													
				4,4'-DDT	1.30E-03	ug/L	4.76E-13	mg/kg-day	3.40E-01	kg-day/mg		1.62E-13	1.67E-11	mg/kg-day	5.00E-04	mg/kg-day	3.33E-08
				PCBs													
				Total PCBs	9.40E-03	ug/L	3.44E-12	mg/kg-day	4.00E-01	kg-day/mg		1.38E-12	1.21E-10	mg/kg-day	2.00E-05	mg/kg-day	6.03E-06
		1 1	Exp. Route Total	1	1	l						4.50E-10					1.64E-04
		1	Dermal														
				Dioxin													
				2,3,7,8-TCDD-TEQ	4.08E-07	ug/L	Outside EPD	mg/kg-day	1.30E+05	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	7.00E-10	mg/kg-day	Outside EPD
				Metals													
				Arsenic	7.80E-01	ug/L	4.37E-11	mg/kg-day	1.50E+00	kg-day/mg		6.56E-11	1.53E-09	mg/kg-day	3.00E-04	mg/kg-day	5.10E-06
				Cobalt	9.80E-01	ug/L	2.20E-11	mg/kg-day	NA	kg-day/mg		NA	7.69E-10	mg/kg-day	3.00E-04	mg/kg-day	2.56E-06
				Manganese	1.40E+02	ug/L	7.85E-09	mg/kg-day	NA	kg-day/mg		NA	2.75E-07	mg/kg-day	9.60E-04	mg/kg-day	2.86E-04
				Pesticides													
				4,4'-DDT	1.30E-03	ug/L	Outside EPD	mg/kg-day	3.40E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	5.00E-04	mg/kg-day	Outside EPD
				PCBs													
				Total PCBs	9.40E-03	ug/L	Outside EPD	mg/kg-day	4.00E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	2.00E-05	mg/kg-day	Outside EPD
			Exp. Route Total		1	l			1	l	1	6.56E-11			1	l	2.94E-04
		Exposure Point	Total				ĺ					5.15E-10					4.57E-04
	Exposure Medi	um Total										5.15E-10					4.57E-04
Surface Water	er Total	-			-	•	•		•			5.15E-10					4.57E-04
Total Recept	or Risk/Hazard		`	-			·					5.07E-08		·			1.85E-02

Notes:

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

NA - Not applicable.

PCB - Polychlorinated Biphenyl.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

(1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.

Table H-1-13. CTE Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Adult Wader Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Adult

								Can	cer Risk Cal	culations				Noncancer	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposu	re Concentration	C	SF		Cancer	Intake/Exposur	e Concentration	ı	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Ingestion														
	Surface	Investigation		Dioxin													
	Sediment	Area		2,3,7,8-TCDD-TEQ	7.25E-05	mg/kg	1.53E-13	mg/kg-day	1.30E+05	kg-day/mg		1.99E-08	1.07E-12	mg/kg-day	7.00E-10	mg/kg-day	1.53E-03
				Metals													
				Aluminum	8.07E+03	mg/kg	1.71E-05	mg/kg-day	NA	kg-day/mg		NA	1.19E-04	mg/kg-day	1.00E+00	mg/kg-day	1.19E-04
				Antimony	1.93E+00	mg/kg	4.08E-09	mg/kg-day	NA	kg-day/mg		NA	2.86E-08	mg/kg-day	4.00E-04	mg/kg-day	7.14E-05
				Arsenic	5.56E+00	mg/kg	7.05E-09	mg/kg-day	1.50E+00	kg-day/mg		1.06E-08	4.94E-08	mg/kg-day	3.00E-04	mg/kg-day	1.65E-04
				Cobalt	1.51E+01	mg/kg	3.19E-08	mg/kg-day	NA	kg-day/mg		NA	2.24E-07	mg/kg-day	3.00E-04	mg/kg-day	7.45E-04
				Cyanide	8.76E-01	mg/kg	1.85E-09	mg/kg-day	NA	kg-day/mg		NA	1.30E-08	mg/kg-day	6.30E-04	mg/kg-day	2.06E-05
				Manganese	2.10E+02	mg/kg	4.44E-07	mg/kg-day	NA	kg-day/mg		NA	3.11E-06	mg/kg-day	2.40E-02	mg/kg-day	1.30E-04
				Nickel	5.07E+01	mg/kg	1.07E-07	mg/kg-day	NA	kg-day/mg		NA	7.51E-07	mg/kg-day	2.00E-02	mg/kg-day	3.75E-05
				Thallium	2.10E-01	mg/kg	4.44E-10	mg/kg-day	NA	kg-day/mg		NA	3.11E-09	mg/kg-day	1.00E-05	mg/kg-day	3.11E-04
				Vanadium	8.70E+01	mg/kg	1.84E-07	mg/kg-day	NA	kg-day/mg		NA	1.29E-06	mg/kg-day	5.04E-03	mg/kg-day	2.56E-04
				PCBs													
				Total PCBs	4.47E-01	mg/kg	9.45E-10	mg/kg-day	2.00E+00	kg-day/mg		1.89E-09	6.62E-09	mg/kg-day	2.00E-05	mg/kg-day	3.31E-04
				SVOCs													
				Benzo(a)anthracene	5.90E-01	mg/kg	1.25E-09	mg/kg-day	1.00E-01	kg-day/mg	1	1.25E-10	8.73E-09	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	6.50E-01	mg/kg	1.37E-09	mg/kg-day	1.00E+00	kg-day/mg	1	1.37E-09	9.62E-09	mg/kg-day	3.00E-04	mg/kg-day	3.21E-05
				Benzo(b)fluoranthene	9.70E-01	mg/kg	2.05E-09	mg/kg-day	1.00E-01	kg-day/mg	1	2.05E-10	1.44E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	3.55E-01	mg/kg	7.51E-10	mg/kg-day	1.00E-02	kg-day/mg	1	7.51E-12	5.26E-09	mg/kg-day	NA	mg/kg-day	NA
				chrysene	8.76E-01	mg/kg	1.85E-09	mg/kg-day	1.00E-03	kg-day/mg	1	1.85E-12	1.30E-08	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.48E-01	mg/kg	3.13E-10	mg/kg-day	1.00E+00	kg-day/mg	1	3.13E-10	2.19E-09	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	5.70E-01	mg/kg	1.21E-09	mg/kg-day	1.00E-01	kg-day/mg	1	1.21E-10	8.44E-09	mg/kg-day	NA	mg/kg-day	NA
				ТРН													
				Diesel Range Organics (C10-C20)	9.10E+01	mg/kg	1.92E-07	mg/kg-day	NA	kg-day/mg		NA	1.35E-06	mg/kg-day	1.00E-02	mg/kg-day	1.35E-04
			F. D. d. T.d.	1								0.405.00				l	0.005.00
			Exp. Route Total	II.								3.46E-08					3.89E-03

Table H-1-13. CTE Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Adult Wader Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Adult

								Can	cer Risk Cal	culations				Noncancer	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposu	re Concentration	C	SF		Cancer	Intake/Exposur	e Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Dermal														
	Surface	Investigation		Dioxin													1
	Sediment	Area		2,3,7,8-TCDD-TEQ	7.25E-05	mg/kg	2.10E-13	mg/kg-day	1.30E+05	kg-day/mg		2.73E-08	1.47E-12	mg/kg-day	7.00E-10	mg/kg-day	2.10E-03
				Metals													1
				Aluminum	8.07E+03	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E+00	mg/kg-day	NA
				Antimony	1.93E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	6.00E-05	mg/kg-day	NA
				Arsenic	5.56E+00	mg/kg	1.61E-08	mg/kg-day	1.50E+00	kg-day/mg		2.41E-08	1.13E-07	mg/kg-day	3.00E-04	mg/kg-day	3.75E-04
				Cobalt	1.51E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	3.00E-04	mg/kg-day	NA
				Cyanide	8.76E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	NA	mg/kg-day	NA
				Manganese	2.10E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	9.60E-04	mg/kg-day	NA
				Nickel	5.07E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	8.00E-04	mg/kg-day	NA
				Thallium	2.10E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-05	mg/kg-day	NA
				Vanadium	8.70E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.31E-04	mg/kg-day	NA
				PCBs													1
				Total PCBs	4.47E-01	mg/kg	6.03E-09	mg/kg-day	2.00E+00	kg-day/mg		1.21E-08	4.22E-08	mg/kg-day	2.00E-05	mg/kg-day	2.11E-03
				SVOCs													1
				Benzo(a)anthracene	5.90E-01	mg/kg	7.40E-09	mg/kg-day	1.00E-01	kg-day/mg	1	7.40E-10	5.18E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	6.50E-01	mg/kg	8.15E-09	mg/kg-day	1.00E+00	kg-day/mg	1	8.15E-09	5.70E-08	mg/kg-day	3.00E-04	mg/kg-day	1.90E-04
				Benzo(b)fluoranthene	9.70E-01	mg/kg	1.22E-08	mg/kg-day	1.00E-01	kg-day/mg	1	1.22E-09	8.51E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	3.55E-01	mg/kg	4.45E-09	mg/kg-day	1.00E-02	kg-day/mg	1	4.45E-11	3.12E-08	mg/kg-day	NA	mg/kg-day	NA
				chrysene	8.76E-01	mg/kg	1.10E-08	mg/kg-day	1.00E-03	kg-day/mg	1	1.10E-11	7.69E-08	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.48E-01	mg/kg	1.86E-09	mg/kg-day	1.00E+00	kg-day/mg	1	1.86E-09	1.30E-08	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	5.70E-01	mg/kg	7.15E-09	mg/kg-day	1.00E-01	kg-day/mg	1	7.15E-10	5.00E-08	mg/kg-day	NA	mg/kg-day	NA
				TPH													1
				Diesel Range Organics (C10-C20)	9.10E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-02	mg/kg-day	NA
											L		<u> </u>			l .	
	1		Exp. Route Total	Л			<u> </u>					7.62E-08	<u> </u>				4.77E-03
		Exposure Point	Lotal				<u> </u>					1.11E-07					8.66E-03
	Exposure Mediu	um Iotal										1.11E-07	<u> </u>				8.66E-03
Sediment Tot	tal											1.11E-07	<u> </u>				8.66E-03

Table H-1-13. CTE Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Adult Wader Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Adult

								Can	cer Risk Cal	culations				Noncancer	Hazard Calci	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	:	Intake/Exposur	e Concentration	C	SF		Cancer	Intake/Exposure	e Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Surface	Surface	Waterside	Ingestion														
Water	Water	Investigation		Dioxin													
		Area		2,3,7,8-TCDD-TEQ	4.08E-07	ug/L	1.38E-16	mg/kg-day	1.30E+05	kg-day/mg		1.79E-11	9.66E-16	mg/kg-day	7.00E-10	mg/kg-day	1.38E-06
				Metals													
				Arsenic	7.80E-01	ug/L	2.64E-10	mg/kg-day	1.50E+00	kg-day/mg		3.96E-10	1.85E-09	mg/kg-day	3.00E-04	mg/kg-day	6.16E-06
				Cobalt	9.80E-01	ug/L	3.32E-10	mg/kg-day	NA	kg-day/mg		NA	2.32E-09	mg/kg-day	3.00E-04	mg/kg-day	7.74E-06
				Manganese	1.40E+02	ug/L	4.74E-08	mg/kg-day	NA	kg-day/mg		NA	3.32E-07	mg/kg-day	2.40E-02	mg/kg-day	1.38E-05
				Pesticides													
				4,4'-DDT	1.30E-03	ug/L	4.40E-13	mg/kg-day	3.40E-01	kg-day/mg		1.50E-13	3.08E-12	mg/kg-day	5.00E-04	mg/kg-day	6.16E-09
				PCBs													
				Total PCBs	9.40E-03	ug/L	3.18E-12	mg/kg-day	4.00E-01	kg-day/mg		1.27E-12	2.23E-11	mg/kg-day	2.00E-05	mg/kg-day	1.11E-06
			Exp. Route Total									4.15E-10					3.02E-05
			Dermal														
				Dioxin													
				2,3,7,8-TCDD-TEQ	4.08E-07	ug/L	Outside EPD	mg/kg-day	1.30E+05	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	7.00E-10	mg/kg-day	Outside EPD
				Metals													
				Arsenic	7.80E-01	ug/L	1.25E-10	mg/kg-day	1.50E+00	kg-day/mg		1.88E-10	8.78E-10	mg/kg-day	3.00E-04	mg/kg-day	2.93E-06
				Cobalt	9.80E-01	ug/L	6.30E-11	mg/kg-day	NA	kg-day/mg		NA	4.41E-10	mg/kg-day	3.00E-04	mg/kg-day	1.47E-06
				Manganese	1.40E+02	ug/L	2.25E-08	mg/kg-day	NA	kg-day/mg		NA	1.58E-07	mg/kg-day	9.60E-04	mg/kg-day	1.64E-04
				Pesticides													
				4,4'-DDT	1.30E-03	ug/L	Outside EPD	mg/kg-day	3.40E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	5.00E-04	mg/kg-day	Outside EPD
				PCBs													
				Total PCBs	9.40E-03	ug/L	Outside EPD	mg/kg-day	4.00E-01	kg-day/mg	l		Outside EPD	mg/kg-day	2.00E-05	mg/kg-day	Outside EPD
			Exp. Route Total	<u> </u>			<u></u>					1.88E-10					1.68E-04
ļ		Exposure Poin	t Total				<u></u>					6.03E-10					1.99E-04
	Exposure Medi	um Total										6.03E-10	<u> </u>				1.99E-04
Surface Wate												6.03E-10					1.99E-04
otal Recepto	or Risk/Hazard											1.11E-07	<u> </u>				8.86E-03

Notes:

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

NA - Not applicable.

PCB - Polychlorinated Biphenyl.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

(1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.

Table H-1-14. CTE Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Teen Wader Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Teen

								Can	cer Risk Cal	culations				Noncancer	Hazard Cald	culations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposur	re Concentration	С	SF		Cancer	Intake/Exposu	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Ingestion														
	Surface	Investigation		Dioxin													
	Sediment	Area		2,3,7,8-TCDD-TEQ	7.25E-05	mg/kg	1.77E-13	mg/kg-day	1.30E+05	kg-day/mg		2.30E-08	2.06E-12	mg/kg-day	7.00E-10	mg/kg-day	2.94E-03
				Metals													
				Aluminum	8.07E+03	mg/kg	1.97E-05	mg/kg-day	NA	kg-day/mg		NA	2.29E-04	mg/kg-day	1.00E+00	mg/kg-day	2.29E-04
				Antimony	1.93E+00	mg/kg	4.70E-09	mg/kg-day	NA	kg-day/mg		NA	5.49E-08	mg/kg-day	4.00E-04	mg/kg-day	1.37E-04
				Arsenic	5.56E+00	mg/kg	8.13E-09	mg/kg-day	1.50E+00	kg-day/mg		1.22E-08	9.48E-08	mg/kg-day	3.00E-04	mg/kg-day	3.16E-04
				Cobalt	1.51E+01	mg/kg	3.68E-08	mg/kg-day	NA	kg-day/mg		NA	4.29E-07	mg/kg-day	3.00E-04	mg/kg-day	1.43E-03
				Cyanide	8.76E-01	mg/kg	2.14E-09	mg/kg-day	NA	kg-day/mg		NA	2.49E-08	mg/kg-day	6.30E-04	mg/kg-day	3.95E-05
				Manganese	2.10E+02	mg/kg	5.12E-07	mg/kg-day	NA	kg-day/mg		NA	5.97E-06	mg/kg-day	2.40E-02	mg/kg-day	2.49E-04
				Nickel	5.07E+01	mg/kg	1.24E-07	mg/kg-day	NA	kg-day/mg		NA	1.44E-06	mg/kg-day	2.00E-02	mg/kg-day	7.21E-05
				Thallium	2.10E-01	mg/kg	5.12E-10	mg/kg-day	NA	kg-day/mg		NA	5.97E-09	mg/kg-day	1.00E-05	mg/kg-day	5.97E-04
				Vanadium	8.70E+01	mg/kg	2.12E-07	mg/kg-day	NA	kg-day/mg		NA	2.47E-06	mg/kg-day	5.04E-03	mg/kg-day	4.91E-04
				PCBs													
				Total PCBs	4.47E-01	mg/kg	1.09E-09	mg/kg-day	2.00E+00	kg-day/mg		2.18E-09	1.27E-08	mg/kg-day	2.00E-05	mg/kg-day	6.35E-04
				SVOCs													
				Benzo(a)anthracene	5.90E-01	mg/kg	1.44E-09	mg/kg-day	1.00E-01	kg-day/mg	2.5	3.59E-10	1.68E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	6.50E-01	mg/kg	1.58E-09	mg/kg-day	1.00E+00	kg-day/mg	2.5	3.96E-09	1.85E-08	mg/kg-day	3.00E-04	mg/kg-day	6.16E-05
				Benzo(b)fluoranthene	9.70E-01	mg/kg	2.36E-09	mg/kg-day	1.00E-01	kg-day/mg	2.5	5.91E-10	2.76E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	3.55E-01	mg/kg	8.65E-10	mg/kg-day	1.00E-02	kg-day/mg	2.5	2.16E-11	1.01E-08	mg/kg-day	NA	mg/kg-day	NA
				chrysene	8.76E-01	mg/kg	2.13E-09	mg/kg-day	1.00E-03	kg-day/mg	2.5	5.34E-12	2.49E-08	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.48E-01	mg/kg	3.61E-10	mg/kg-day	1.00E+00	kg-day/mg	2.5	9.02E-10	4.21E-09	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	5.70E-01	mg/kg	1.39E-09	mg/kg-day	1.00E-01	kg-day/mg	2.5	3.47E-10	1.62E-08	mg/kg-day	NA	mg/kg-day	NA
				TPH													
				Diesel Range Organics (C10-C20)	9.10E+01	mg/kg	2.22E-07	mg/kg-day	NA	kg-day/mg		NA	2.59E-06	mg/kg-day	1.00E-02	mg/kg-day	2.59E-04
			Exp. Route Total	<u> </u>							L .	4.35E-08					7.46E-03
			Exp. Route 10tal	<u> </u>								4.35E-08	<u> </u>				7.40E-U3

Table H-1-14. CTE Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Teen Wader Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Teen

								Can	cer Risk Cal	culations				Noncancer	Hazard Cald	culations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposur	re Concentration	C	SF		Cancer	Intake/Exposu	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Dermal														
	Surface	Investigation		Dioxin													
	Sediment	Area		2,3,7,8-TCDD-TEQ	7.25E-05	mg/kg	1.44E-13	mg/kg-day	1.30E+05	kg-day/mg		1.87E-08	1.68E-12	mg/kg-day	7.00E-10	mg/kg-day	2.39E-03
				Metals													
				Aluminum	8.07E+03	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E+00	mg/kg-day	NA
				Antimony	1.93E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	6.00E-05	mg/kg-day	NA
				Arsenic	5.56E+00	mg/kg	1.10E-08	mg/kg-day	1.50E+00	kg-day/mg		1.65E-08	1.29E-07	mg/kg-day	3.00E-04	mg/kg-day	4.28E-04
				Cobalt	1.51E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	3.00E-04	mg/kg-day	NA
				Cyanide	8.76E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	NA	mg/kg-day	NA
				Manganese	2.10E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	9.60E-04	mg/kg-day	NA
				Nickel	5.07E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	8.00E-04	mg/kg-day	NA
				Thallium	2.10E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-05	mg/kg-day	NA
				Vanadium	8.70E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.31E-04	mg/kg-day	NA
				PCBs													
				Total PCBs	4.47E-01	mg/kg	4.13E-09	mg/kg-day	2.00E+00	kg-day/mg		8.27E-09	4.82E-08	mg/kg-day	2.00E-05	mg/kg-day	2.41E-03
				SVOCs													
				Benzo(a)anthracene	5.90E-01	mg/kg	5.07E-09	mg/kg-day	1.00E-01	kg-day/mg	2.5	1.27E-09	5.91E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	6.50E-01	mg/kg	5.58E-09	mg/kg-day	1.00E+00	kg-day/mg	2.5	1.40E-08	6.51E-08	mg/kg-day	3.00E-04	mg/kg-day	2.17E-04
				Benzo(b)fluoranthene	9.70E-01	mg/kg	8.33E-09	mg/kg-day	1.00E-01	kg-day/mg	2.5	2.08E-09	9.72E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	3.55E-01	mg/kg	3.05E-09	mg/kg-day	1.00E-02	kg-day/mg	2.5	7.62E-11	3.56E-08	mg/kg-day	NA	mg/kg-day	NA
				chrysene	8.76E-01	mg/kg	7.52E-09	mg/kg-day	1.00E-03	kg-day/mg	2.5	1.88E-11	8.77E-08	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.48E-01	mg/kg	1.27E-09	mg/kg-day	1.00E+00	kg-day/mg	2.5	3.18E-09	1.48E-08	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	5.70E-01	mg/kg	4.89E-09	mg/kg-day	1.00E-01	kg-day/mg	2.5	1.22E-09	5.71E-08	mg/kg-day	NA	mg/kg-day	NA
				ТРН													
				Diesel Range Organics (C10-C20)	9.10E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-02	mg/kg-day	NA
			Exp. Route Total			I			I	I		6.53E-08		<u> </u>	I	I	5.45E-03
		Exposure Point	Total									1.09E-07					1.29E-02
<u> </u>	Exposure Mediu	ım Total	•		-	•		•				1.09E-07		•		•	1.29E-02
Sediment Total	al										,	1.09E-07					1.29E-02

Table H-1-14. CTE Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Teen Wader Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Teen

								Can	cer Risk Cal	culations				Noncancer	Hazard Cald	culations	
	Exposure	Exposure	Exposure	Chemical of	EPO	<u>: </u>	Intake/Exposur	e Concentration	C	SF		Cancer	Intake/Exposur	e Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Surface	Surface	Waterside	Ingestion														
Water	Water	Investigation		Dioxin													
		Area		2,3,7,8-TCDD-TEQ	4.08E-07	ug/L	1.59E-16	mg/kg-day	1.30E+05	kg-day/mg		2.07E-11	1.86E-15	mg/kg-day	7.00E-10	mg/kg-day	2.65E-06
				Metals													
				Arsenic	7.80E-01	ug/L	3.04E-10	mg/kg-day	1.50E+00	kg-day/mg		4.56E-10	3.55E-09	mg/kg-day	3.00E-04	mg/kg-day	1.18E-05
				Cobalt	9.80E-01	ug/L	3.82E-10	mg/kg-day	NA	kg-day/mg		NA	4.46E-09	mg/kg-day	3.00E-04	mg/kg-day	1.49E-05
				Manganese	1.40E+02	ug/L	5.46E-08	mg/kg-day	NA	kg-day/mg		NA	6.37E-07	mg/kg-day	2.40E-02	mg/kg-day	2.65E-05
				Pesticides													
				4,4'-DDT	1.30E-03	ug/L	5.07E-13	mg/kg-day	3.40E-01	kg-day/mg		1.72E-13	5.91E-12	mg/kg-day	5.00E-04	mg/kg-day	1.18E-08
				PCBs													
				Total PCBs	9.40E-03	ug/L	3.67E-12	mg/kg-day	4.00E-01	kg-day/mg		1.47E-12	4.28E-11	mg/kg-day	2.00E-05	mg/kg-day	2.14E-06
			Exp. Route Total			1			l	l	1	4.79E-10					5.80E-05
			Dermal														
				Dioxin													
				2,3,7,8-TCDD-TEQ	4.08E-07	ug/L	Outside EPD	mg/kg-day	1.30E+05	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	7.00E-10	mg/kg-day	Outside EPI
				Metals													
				Arsenic	7.80E-01	ug/L	1.03E-10	mg/kg-day	1.50E+00	kg-day/mg		1.55E-10	1.20E-09	mg/kg-day	3.00E-04	mg/kg-day	4.01E-06
				Cobalt	9.80E-01	ug/L	5.18E-11	mg/kg-day	NA	kg-day/mg		NA	6.04E-10	mg/kg-day	3.00E-04	mg/kg-day	2.01E-06
				Manganese	1.40E+02	ug/L	1.85E-08	mg/kg-day	NA	kg-day/mg		NA	2.16E-07	mg/kg-day	9.60E-04	mg/kg-day	2.25E-04
				Pesticides	4.005.00		0 111 500		0.405.04	1 . 1		0 500	0		5 005 04		0
				4,4'-DDT PCBs	1.30E-03	ug/L	Outside EPD	mg/kg-day	3.40E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	5.00E-04	mg/kg-day	Outside EPI
				Total PCBs	9.40E-03	//	Outside EPD		4.00E-01			O. 4-14- EDD	Outside EPD		2.00E-05		Outside EDE
				Total PCBS	9.40E-03	ug/L	Outside EPD	mg/kg-day	4.00E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	2.00E-05	mg/kg-day	Outside EPI
			Exp. Route Total	1	1		1					1.55E-10	1				2.31E-04
		Exposure Point	Total									6.33E-10					2.89E-04
	Exposure Medi	um Total										6.33E-10					2.89E-04
face Wate	r Total											6.33E-10					2.89E-04
al Recepto	or Risk/Hazard			-								1.09E-07					1.32E-02

Notes:

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

NA - Not applicable.

PCB - Polychlorinated Biphenyl.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

(1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.

Table H-1-15. CTE Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Child Wader Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Child

								Ca	ncer Risk Ca	lculations				Noncancer	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposur	e Concentration	C	SF		Cancer	Intake/Exposur	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Ingestion														
	Surface	Investigation		Dioxin													
	Sediment	Area		2,3,7,8-TCDD-TEQ	7.25E-05	mg/kg	2.89E-13	mg/kg-day	1.30E+05	kg-day/mg		3.75E-08	1.01E-11	mg/kg-day	7.00E-10	mg/kg-day	1.44E-02
				Metals													
				Aluminum	8.07E+03	mg/kg	3.21E-05	mg/kg-day	NA	kg-day/mg		NA	1.12E-03	mg/kg-day	1.00E+00	mg/kg-day	1.12E-03
				Antimony	1.93E+00	mg/kg	7.68E-09	mg/kg-day	NA	kg-day/mg		NA	2.69E-07	mg/kg-day	4.00E-04	mg/kg-day	6.72E-04
				Arsenic	5.56E+00	mg/kg	1.33E-08	mg/kg-day	1.50E+00	kg-day/mg		1.99E-08	4.65E-07	mg/kg-day	3.00E-04	mg/kg-day	1.55E-03
				Cobalt	1.51E+01	mg/kg	6.01E-08	mg/kg-day	NA	kg-day/mg		NA	2.10E-06	mg/kg-day	3.00E-04	mg/kg-day	7.01E-03
				Cyanide	8.76E-01	mg/kg	3.49E-09	mg/kg-day	NA	kg-day/mg		NA	1.22E-07	mg/kg-day	6.30E-04	mg/kg-day	1.94E-04
				Manganese	2.10E+02	mg/kg	8.36E-07	mg/kg-day	NA	kg-day/mg		NA	2.93E-05	mg/kg-day	2.40E-02	mg/kg-day	1.22E-03
				Nickel	5.07E+01	mg/kg	2.02E-07	mg/kg-day	NA	kg-day/mg		NA	7.06E-06	mg/kg-day	2.00E-02	mg/kg-day	3.53E-04
				Thallium	2.10E-01	mg/kg	8.36E-10	mg/kg-day	NA	kg-day/mg		NA	2.93E-08	mg/kg-day	1.00E-05	mg/kg-day	2.93E-03
				Vanadium	8.70E+01	mg/kg	3.46E-07	mg/kg-day	NA	kg-day/mg		NA	1.21E-05	mg/kg-day	5.04E-03	mg/kg-day	2.40E-03
				PCBs													
				Total PCBs	4.47E-01	mg/kg	1.78E-09	mg/kg-day	2.00E+00	kg-day/mg		3.56E-09	6.23E-08	mg/kg-day	2.00E-05	mg/kg-day	3.11E-03
				SVOCs													
				Benzo(a)anthracene	5.90E-01	mg/kg	2.35E-09	mg/kg-day	1.00E-01	kg-day/mg	4.2	9.86E-10	8.22E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	6.50E-01	mg/kg	2.59E-09	mg/kg-day	1.00E+00	kg-day/mg	4.2	1.09E-08	9.06E-08	mg/kg-day	3.00E-04	mg/kg-day	3.02E-04
				Benzo(b)fluoranthene	9.70E-01	mg/kg	3.86E-09	mg/kg-day	1.00E-01	kg-day/mg	4.2	1.62E-09	1.35E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	3.55E-01	mg/kg	1.41E-09	mg/kg-day	1.00E-02	kg-day/mg	4.2	5.94E-11	4.95E-08	mg/kg-day	NA	mg/kg-day	NA
				chrysene	8.76E-01	mg/kg	3.49E-09	mg/kg-day	1.00E-03	kg-day/mg	4.2	1.46E-11	1.22E-07	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.48E-01	mg/kg	5.89E-10	mg/kg-day	1.00E+00	kg-day/mg	4.2	2.47E-09	2.06E-08	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	5.70E-01	mg/kg	2.27E-09	mg/kg-day	1.00E-01	kg-day/mg	4.2	9.53E-10	7.94E-08	mg/kg-day	NA	mg/kg-day	NA
				ТРН													
				Diesel Range Organics (C10-C20)	9.10E+01	mg/kg	3.62E-07	mg/kg-day	NA	kg-day/mg		NA	1.27E-05	mg/kg-day	1.00E-02	mg/kg-day	1.27E-03
		<u> </u>															
			Exp. Route Total									7.80E-08					3.66E-02

Table H-1-15. CTE Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Child Wader Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Child

								Cai	ncer Risk Ca	lculations				Noncancer	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	:	Intake/Exposur	e Concentration	C	SF		Cancer	Intake/Exposu	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Dermal														
	Surface	Investigation		Dioxin													
	Sediment	Area		2,3,7,8-TCDD-TEQ	7.25E-05	mg/kg	9.97E-14	mg/kg-day	1.30E+05	kg-day/mg		1.30E-08	3.49E-12	mg/kg-day	7.00E-10	mg/kg-day	4.99E-03
				Metals													
				Aluminum	8.07E+03	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E+00	mg/kg-day	NA
				Antimony	1.93E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	6.00E-05	mg/kg-day	NA
				Arsenic	5.56E+00	mg/kg	7.65E-09	mg/kg-day	1.50E+00	kg-day/mg		1.15E-08	2.68E-07	mg/kg-day	3.00E-04	mg/kg-day	8.92E-04
				Cobalt	1.51E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	3.00E-04	mg/kg-day	NA
				Cyanide	8.76E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	NA	mg/kg-day	NA
				Manganese	2.10E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	9.60E-04	mg/kg-day	NA
				Nickel	5.07E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	8.00E-04	mg/kg-day	NA
				Thallium	2.10E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-05	mg/kg-day	NA
				Vanadium	8.70E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.31E-04	mg/kg-day	NA
				PCBs													
				Total PCBs	4.47E-01	mg/kg	2.87E-09	mg/kg-day	2.00E+00	kg-day/mg		5.74E-09	1.00E-07	mg/kg-day	2.00E-05	mg/kg-day	5.02E-03
				SVOCs													
				Benzo(a)anthracene	5.90E-01	mg/kg	3.52E-09	mg/kg-day	1.00E-01	kg-day/mg	4.2	1.48E-09	1.23E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	6.50E-01	mg/kg	3.87E-09	mg/kg-day	1.00E+00	kg-day/mg	4.2	1.63E-08	1.36E-07	mg/kg-day	3.00E-04	mg/kg-day	4.52E-04
				Benzo(b)fluoranthene	9.70E-01	mg/kg	5.78E-09	mg/kg-day	1.00E-01	kg-day/mg	4.2	2.43E-09	2.02E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	3.55E-01	mg/kg	2.12E-09	mg/kg-day	1.00E-02	kg-day/mg	4.2	8.89E-11	7.41E-08	mg/kg-day	NA	mg/kg-day	NA
				chrysene	8.76E-01	mg/kg	5.22E-09	mg/kg-day	1.00E-03	kg-day/mg	4.2	2.19E-11	1.83E-07	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.48E-01	mg/kg	8.82E-10	mg/kg-day	1.00E+00	kg-day/mg	4.2	3.71E-09	3.09E-08	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	5.70E-01	mg/kg	3.40E-09	mg/kg-day	1.00E-01	kg-day/mg	4.2	1.43E-09	1.19E-07	mg/kg-day	NA	mg/kg-day	NA
				трн													
				Diesel Range Organics (C10-C20)	9.10E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-02	mg/kg-day	NA
			Exp. Route Total	<u> </u> 		l			l	1	1	5.56E-08			1	1	1.14E-02
		Exposure Point		*								1.34E-07					4.79E-02
Ī	Exposure Mediu											1.34E-07					4.79E-02
Sediment Tota	al						11					1.34E-07	i 				4.79E-02

Table H-1-15. CTE Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Child Wader Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Child

								Cai	ncer Risk Ca	lculations				Noncancer	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposure	e Concentration	C	SF		Cancer	Intake/Exposur	e Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Surface	Surface	Waterside	Ingestion														
Water	Water	Investigation		Dioxin													
		Area		2,3,7,8-TCDD-TEQ	4.08E-07	ug/L	1.30E-16	mg/kg-day	1.30E+05	kg-day/mg		1.69E-11	4.55E-15	mg/kg-day	7.00E-10	mg/kg-day	6.50E-06
				Metals													
				Arsenic	7.80E-01	ug/L	2.48E-10	mg/kg-day	1.50E+00	kg-day/mg		3.73E-10	8.69E-09	mg/kg-day	3.00E-04	mg/kg-day	2.90E-05
				Cobalt	9.80E-01	ug/L	3.12E-10	mg/kg-day	NA	kg-day/mg		NA	1.09E-08	mg/kg-day	3.00E-04	mg/kg-day	3.64E-05
				Manganese	1.40E+02	ug/L	4.46E-08	mg/kg-day	NA	kg-day/mg		NA	1.56E-06	mg/kg-day	2.40E-02	mg/kg-day	6.50E-05
				Pesticides													
				4,4'-DDT	1.30E-03	ug/L	4.14E-13	mg/kg-day	3.40E-01	kg-day/mg		1.41E-13	1.45E-11	mg/kg-day	5.00E-04	mg/kg-day	2.90E-08
				PCBs													
				Total PCBs	9.40E-03	ug/L	2.99E-12	mg/kg-day	4.00E-01	kg-day/mg		1.20E-12	1.05E-10	mg/kg-day	2.00E-05	mg/kg-day	5.24E-06
			Exp. Route Total			ļ				1		3.91E-10				!	1.42E-04
			Dermal														
				Dioxin													
				2,3,7,8-TCDD-TEQ	4.08E-07	ug/L	Outside EPD	mg/kg-day	1.30E+05	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	7.00E-10	mg/kg-day	Outside EPD
				Metals													
				Arsenic	7.80E-01	ug/L	6.39E-11	mg/kg-day	1.50E+00	kg-day/mg		9.58E-11	2.24E-09	mg/kg-day	3.00E-04	mg/kg-day	7.45E-06
				Cobalt	9.80E-01	ug/L	3.21E-11	mg/kg-day	NA	kg-day/mg		NA	1.12E-09	mg/kg-day	3.00E-04	mg/kg-day	3.74E-06
				Manganese	1.40E+02	ug/L	1.15E-08	mg/kg-day	NA	kg-day/mg		NA	4.01E-07	mg/kg-day	9.60E-04	mg/kg-day	4.18E-04
				Pesticides													
				4,4'-DDT	1.30E-03	ug/L	Outside EPD	mg/kg-day	3.40E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	5.00E-04	mg/kg-day	Outside EPD
				PCBs						l							===
				Total PCBs	9.40E-03	ug/L	Outside EPD	mg/kg-day	4.00E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	2.00E-05	mg/kg-day	Outside EPD
			Exp. Route Total	<u> </u>		!				,	-	9.58E-11					4.29E-04
		Exposure Point	t Total									4.87E-10					5.71E-04
	Exposure Medi	um Total										4.87E-10					5.71E-04
urface Wate		•			•	•	•	•	•	•	•	4.87E-10			,	,	5.71E-04
otal Recepto	or Risk/Hazard						•			•		1.34E-07		•			4.85E-02

Notes:

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

NA - Not applicable.

PCB - Polychlorinated Biphenyl.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

(1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.

Table H-1-16. CTE Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Shoreline Worker Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Shoreline Worker Receptor Age: Adult

								Car	ncer Risk Ca	lculations				Noncancer I	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposu	e Concentration	C	SF		Cancer	Intake/Exposur	re Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Ingestion														
	Surface	Investigation		Dioxin													
	Sediment	Area		2,3,7,8-TCDD-TEQ	7.25E-05	mg/kg	2.93E-13	mg/kg-day	1.30E+05	kg-day/mg		3.80E-08	3.10E-12	mg/kg-day	7.00E-10	mg/kg-day	4.43E-03
				Metals													
				Aluminum	8.07E+03	mg/kg	3.26E-05	mg/kg-day	NA	kg-day/mg		NA	3.45E-04	mg/kg-day	1.00E+00	mg/kg-day	3.45E-04
				Antimony	1.93E+00	mg/kg	7.79E-09	mg/kg-day	NA	kg-day/mg		NA	8.26E-08	mg/kg-day	4.00E-04	mg/kg-day	2.07E-04
				Arsenic	5.56E+00	mg/kg	1.35E-08	mg/kg-day	1.50E+00	kg-day/mg		2.02E-08	1.43E-07	mg/kg-day	3.00E-04	mg/kg-day	4.76E-04
				Cobalt	1.51E+01	mg/kg	6.09E-08	mg/kg-day	NA	kg-day/mg		NA	6.46E-07	mg/kg-day	3.00E-04	mg/kg-day	2.15E-03
				Cyanide	8.76E-01	mg/kg	3.54E-09	mg/kg-day	NA	kg-day/mg		NA	3.75E-08	mg/kg-day	6.30E-04	mg/kg-day	5.95E-05
				Manganese	2.10E+02	mg/kg	8.48E-07	mg/kg-day	NA	kg-day/mg		NA	8.99E-06	mg/kg-day	2.40E-02	mg/kg-day	3.75E-04
				Nickel	5.07E+01	mg/kg	2.05E-07	mg/kg-day	NA	kg-day/mg		NA	2.17E-06	mg/kg-day	2.00E-02	mg/kg-day	1.09E-04
				Thallium	2.10E-01	mg/kg	8.48E-10	mg/kg-day	NA	kg-day/mg		NA	8.99E-09	mg/kg-day	1.00E-05	mg/kg-day	8.99E-04
				Vanadium	8.70E+01	mg/kg	3.51E-07	mg/kg-day	NA	kg-day/mg		NA	3.72E-06	mg/kg-day	5.04E-03	mg/kg-day	7.39E-04
				PCBs													
				Total PCBs	4.47E-01	mg/kg	1.80E-09	mg/kg-day	2.00E+00	kg-day/mg		3.61E-09	1.91E-08	mg/kg-day	2.00E-05	mg/kg-day	9.57E-04
				SVOCs													
				Benzo(a)anthracene	5.90E-01	mg/kg	2.38E-09	mg/kg-day	1.00E-01	kg-day/mg	1	2.38E-10	2.53E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	6.50E-01	mg/kg	2.62E-09	mg/kg-day	1.00E+00	kg-day/mg	1	2.62E-09	2.78E-08	mg/kg-day	3.00E-04	mg/kg-day	9.28E-05
				Benzo(b)fluoranthene	9.70E-01	mg/kg	3.92E-09	mg/kg-day	1.00E-01	kg-day/mg	1	3.92E-10	4.15E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	3.55E-01	mg/kg	1.43E-09	mg/kg-day	1.00E-02	kg-day/mg	1	1.43E-11	1.52E-08	mg/kg-day	NA	mg/kg-day	NA
				chrysene	8.76E-01	mg/kg	3.54E-09	mg/kg-day	1.00E-03	kg-day/mg	1	3.54E-12	3.75E-08	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.48E-01	mg/kg	5.97E-10	mg/kg-day	1.00E+00	kg-day/mg	1	5.97E-10	6.34E-09	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	5.70E-01	mg/kg	2.30E-09	mg/kg-day	1.00E-01	kg-day/mg	1	2.30E-10	2.44E-08	mg/kg-day	NA	mg/kg-day	NA
				TPH												1	1
		1		Diesel Range Organics (C10-C20)	9.10E+01	mg/kg	3.67E-07	mg/kg-day	NA	kg-day/mg		NA	3.90E-06	mg/kg-day	1.00E-02	mg/kg-day	3.90E-04
			Exp. Route Tot	tal								6.59E-08					1.12E-02

Table H-1-16. CTE Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Shoreline Worker Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Shoreline Worker Receptor Age: Adult

								Car	ncer Risk Ca	culations				Noncancer	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC	;	Intake/Exposur	e Concentration	C	SF		Cancer	Intake/Exposur	re Concentration	ı	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Sediment	Fringe	Waterside	Dermal														
	Surface	Investigation		Dioxin													
	Sediment	Area		2,3,7,8-TCDD-TEQ	7.25E-05	mg/kg	1.86E-13	mg/kg-day	1.30E+05	kg-day/mg		2.42E-08	1.97E-12	mg/kg-day	7.00E-10	mg/kg-day	2.81E-03
				Metals													
				Aluminum	8.07E+03	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E+00	mg/kg-day	NA
				Antimony	1.93E+00	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	6.00E-05	mg/kg-day	NA
				Arsenic	5.56E+00	mg/kg	1.42E-08	mg/kg-day	1.50E+00	kg-day/mg		2.14E-08	1.51E-07	mg/kg-day	3.00E-04	mg/kg-day	5.04E-04
				Cobalt	1.51E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	3.00E-04	mg/kg-day	NA
				Cyanide	8.76E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	NA	mg/kg-day	NA
				Manganese	2.10E+02	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	9.60E-04	mg/kg-day	NA
				Nickel	5.07E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	8.00E-04	mg/kg-day	NA
				Thallium	2.10E-01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.00E-05	mg/kg-day	NA
				Vanadium	8.70E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg		NA	NA	mg/kg-day	1.31E-04	mg/kg-day	NA
				PCBs													
				Total PCBs	4.47E-01	mg/kg	5.35E-09	mg/kg-day	2.00E+00	kg-day/mg		1.07E-08	5.67E-08	mg/kg-day	2.00E-05	mg/kg-day	2.83E-03
				SVOCs													
				Benzo(a)anthracene	5.90E-01	mg/kg	6.55E-09	mg/kg-day	1.00E-01	0 , 0	1	6.55E-10	6.95E-08	mg/kg-day	NA	mg/kg-day	NA
				Benzo(a)pyrene	6.50E-01	mg/kg	7.22E-09	mg/kg-day	1.00E+00	kg-day/mg	1	7.22E-09	7.65E-08	mg/kg-day	3.00E-04	mg/kg-day	2.55E-04
				Benzo(b)fluoranthene	9.70E-01	mg/kg	1.08E-08	mg/kg-day	1.00E-01	kg-day/mg	1	1.08E-09	1.14E-07	mg/kg-day	NA	mg/kg-day	NA
				Benzo(k)fluoranthene	3.55E-01	mg/kg	3.94E-09	mg/kg-day	1.00E-02	kg-day/mg	1	3.94E-11	4.18E-08	mg/kg-day	NA	mg/kg-day	NA
				chrysene	8.76E-01	mg/kg	9.73E-09	mg/kg-day	1.00E-03	kg-day/mg	1	9.73E-12	1.03E-07	mg/kg-day	NA	mg/kg-day	NA
				Dibenzo(a,h)anthracene	1.48E-01	mg/kg	1.64E-09	mg/kg-day	1.00E+00	kg-day/mg	1	1.64E-09	1.74E-08	mg/kg-day	NA	mg/kg-day	NA
				Indeno(1,2,3-cd)pyrene	5.70E-01	mg/kg	6.33E-09	mg/kg-day	1.00E-01	kg-day/mg	1	6.33E-10	6.71E-08	mg/kg-day	NA	mg/kg-day	NA
				TPH													
				Diesel Range Organics (C10-C20)	9.10E+01	mg/kg	NA	mg/kg-day	NA	kg-day/mg	L	NA	NA	mg/kg-day	1.00E-02	mg/kg-day	NA
			Exp. Route Tot	al			<u></u>					6.75E-08	<u> </u>				6.41E-03
<u> </u>		Exposure Point	Total				<u></u>					1.33E-07	<u> </u>				1.76E-02
	Exposure Medio	ım Fotal										1.33E-07	<u> </u>				1.76E-02
Sediment Total												1.33E-07					1.76E-02

Table H-1-16. CTE Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Shoreline Worker Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Shoreline Worker Receptor Age: Adult

								Car	ncer Risk Ca	culations				Noncancer I	Hazard Calc	ulations	
	Exposure	Exposure	Exposure	Chemical of	EPC		Intake/Exposur	e Concentration	C	SF		Cancer	Intake/Exposure	e Concentration	F	RfD	Hazard
Medium	Medium	Point	Route	Potential Concern	Value	Units	Value	Units	Value	Units	ADAF (1)	Risk	Value	Units	Value	Units	Quotient
Surface	Surface	Waterside	Ingestion														
Water	Water	Investigation		Dioxin													
		Area		2,3,7,8-TCDD-TEQ	4.08E-07	ug/L	1.32E-16	mg/kg-day	1.30E+05	kg-day/mg		1.71E-11	1.40E-15	mg/kg-day	7.00E-10	mg/kg-day	2.00E-06
				Metals													
				Arsenic	7.80E-01	ug/L	2.52E-10	mg/kg-day	1.50E+00	0 , 0		3.78E-10	2.67E-09	mg/kg-day	3.00E-04	0 0 ,	8.90E-06
				Cobalt	9.80E-01	ug/L	3.16E-10	mg/kg-day	NA	kg-day/mg		NA	3.36E-09	mg/kg-day	3.00E-04	mg/kg-day	1.12E-05
				Manganese	1.40E+02	ug/L	4.52E-08	mg/kg-day	NA	kg-day/mg		NA	4.79E-07	mg/kg-day	2.40E-02	mg/kg-day	2.00E-05
				Pesticides													
				4,4'-DDT	1.30E-03	ug/L	4.20E-13	mg/kg-day	3.40E-01	kg-day/mg		1.43E-13	4.45E-12	mg/kg-day	5.00E-04	mg/kg-day	8.90E-09
				PCBs						l							
			E D . T .	Total PCBs	9.40E-03	ug/L	3.04E-12	mg/kg-day	4.00E-01	kg-day/mg		1.21E-12	3.22E-11	mg/kg-day	2.00E-05	mg/kg-day	1.61E-06
			Exp. Route Tot	iai					1		1	3.96E-10		1			4.37E-05
			Dermal														
				Dioxin 2,3,7,8-TCDD-TEQ	4.08E-07	//	Outside EDD		4.005.05			Outside EDD	Outside EPD	/(7.005.40	//	Outside EDD
				2,3,7,8-1CDD-1EQ Metals	4.08E-07	ug/L	Outside EPD	mg/kg-day	1.30E+05	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	7.00E-10	mg/kg-day	Outside EPD
					7.80E-01	//	0.005.40		4.505.00			2 225 40	0.005.00	and the start	2.005.04	//	7.85E-06
				Arsenic Cobalt	7.80E-01 9.80E-01	ug/L	2.22E-10 1.12E-10	mg/kg-day	1.50E+00 NA	0 , 0		3.33E-10 NA	2.36E-09 1.18E-09	mg/kg-day	3.00E-04 3.00E-04	0 0 ,	7.85E-06 3.95E-06
				Manganese	9.80E-01 1.40E+02	ug/L ug/L	3.99E-08	mg/kg-day	NA NA	kg-day/mg		NA NA	1.18E-09 4.23E-07	mg/kg-day	9.60E-04	mg/kg-day	3.95E-06 4.40E-04
				Pesticides	1.400+02	ug/L	3.99E-00	mg/kg-day	INA	kg-day/mg		INA	4.23E-07	mg/kg-day	9.60⊑-04	mg/kg-day	4.40E-04
				4.4'-DDT	1.30E-03	ug/L	Outside EPD	mg/kg-day	3.40E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	5.00E-04	ma/ka day	Outside EPD
				PCBs	1.30E-03	ug/L	Outside EFD	mg/kg-uay	3.40L-01	kg-day/ing		Outside EFD	Outside EFD	mg/kg-day	3.00L-04	mg/kg-uay	Outside EFD
				Total PCBs	9.40E-03	ug/L	Outside EPD	mg/kg-day	4.00E-01	kg-day/mg		Outside EPD	Outside EPD	mg/kg-day	2 00F-05	ma/ka-day	Outside EPD
		l	Exp. Route Tot		302.00	~9 [,] =	2 010100 2. 0	gring day			!	3.33E-10		g.n.g aay		g.n.g day	4.52E-04
		Exposure Point	_				" 					7.29E-10	<u> </u>				4.96E-04
	Exposure Medi	um Total					<u>"</u>					7.29E-10					4.96E-04
Surface Water	Fotal .						1					7.29E-10					4.96E-04
Total Receptor I	Risk/Hazard											1.34E-07					1.81E-02

Notes:

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

NA - Not applicable.

PCB - Polychlorinated Biphenyl.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

(1) Age-Dependent Adjustment Factor (ADAF) is used for chemicals with a mutagenic mode of action for carcinogenesis. The cancer risk is adjusted by multiplying the calculated risk by the ADAF. See Text for explanation.

Risk Summary Tables (CTE)

Scenario Timeframe: Future Receptor Population: Construction Worker

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern	Carcinoge	nic Risk - Bas	sed on Unit Con	centration (1)	Non-Carci	nogenic Hazard Quotier	t - Based on Uni	t Concentration (1)	
				Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Soil	Soil											
			Dioxin									
			2,3,7,8-TCDD-TEQ	4.20E-04		4.04E-05	4.60E-04	Reproductive, Developmental	3.23E+02		3.11E+01	3.54E+02
			Inorganics									
			Arsenic	2.91E-09		4.66E-10	3.37E-09	Skin, Vascular	4.52E-04		7.25E-05	5.25E-04
			Cobalt	NA		NA	NA	Thyroid	7.53E-04		NA	7.53E-04
			Manganese	NA		NA	NA	Neurological	9.42E-06		NA	9.42E-06
								Decreased body and organ				
			Nickel	NA		NA	NA	weights	1.13E-05		NA	1.13E-05
			Thallium	NA		NA	NA	Hair	2.26E-02		NA	2.26E-02
			Vanadium	NA		NA	NA	Hair	4.48E-05		NA	4.48E-05
			PCBs									
			Total PCBs	6.46E-09		2.90E-09	9.36E-09	Ocular/eye, Nails, Immune	4.52E-03		2.03E-03	6.55E-03
			SVOCs									
			Benzo(a)anthracene	3.23E-10		1.35E-10	4.57E-10	NA	NA		NA	NA
			Benzo(a)pyrene	3.23E-09		1.35E-09	4.57E-09	Developmental	7.53E-04		3.14E-04	1.07E-03
			Benzo(b)fluoranthene	3.23E-10		1.35E-10	4.57E-10	NA	NA		NA	NA
			Benzo(k)fluoranthene	3.23E-11		1.35E-11	4.57E-11	NA	NA		NA	NA
			Chrysene	3.23E-12		1.35E-12	4.57E-12	NA	NA		NA	NA
			Dibenzo(a,h)anthracene	3.23E-09		1.35E-09	4.57E-09	NA	NA		NA	NA
		1	Indeno(1,2,3-cd)pyrene	3.23E-10		1.35E-10	4.57E-10	NA	NA		NA	NA
		1	Naphthalene	NA		NA	NA	Developmental	1.13E-05		4.71E-06	1.60E-05
		1	TPH									
			Diesel Range Organics (C10-C20)	NA		NA	NA	Liver, Kidney, Blood	2.26E-05		NA	2.26E-05
		Exposure Point Total			<u> </u>		(2)			ı		(2)
	Exposure Medium Total	11	d L				(2)					(2)

Scenario Timeframe: Future Receptor Population: Construction Worker Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern	Carcinoge	nic Risk - Bas	sed on Unit Con	centration (1)	Non-Carci	nogenic Hazard Quotier	nt - Based on Unit	Concentration (1)	
				Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Soil	Outdoor Air											
			Dioxin									
								Liver, reproductive, developmental, endocrine,				
			2,3,7,8-TCDD-TEQ		9.92E-03		9.92E-03	respiratory, blood		4.57E+05		4.57E+05
			Inorganics					Name to all all and a second				
			Arsenic		1.12E-06		1.12E-06 2.35E-06	Neurological, developmental Respiratory		1.22E+03 3.04E+03		1.22E+03 3.04E+03
			Cobalt	-	2.35E-06		2.35E-06 NA	Neurological		3.04E+03 3.65E+02		3.04E+03 3.65E+02
			Manganese Nickel		NA 6.78E-08		6.78E-08	Respiratory		3.65E+02 2.03E+02		2.03E+02
			Thallium		0.76E-06 NA		0.76E-06 NA	NA NA		2.03E+02 NA		2.03E+02 NA
			Vanadium		NA NA		NA NA	Respiratory		1.83E+02		1.83E+02
			PCBs		INA		INA	Respiratory	-	1.03E+02	-	1.03E+U2
			Total PCBs		1.49E-07		1.49E-07	NA NA		NA		NA
			SVOCs		1.49E-07		1.49E-07	INA		INA		INA
			Benzo(a)anthracene		1.57E-08		1.57E-08	NA		NA		NA
			Benzo(a)pyrene		1.57E-07		1.57E-07	Developmental		9.13E+03		9.13E+03
			Benzo(b)fluoranthene	-	1.57E-08		1.57E-08	NA NA		9.13L+03		NA
			Benzo(k)fluoranthene		1.57E-09		1.57E-09	NA NA		NA.		NA NA
			Chrysene		1.57E-10		1.57E-10	NA NA		NA NA		NA NA
			Dibenzo(a,h)anthracene		1.57E-07		1.57E-07	NA NA		NA NA		NA NA
			Indeno(1,2,3-cd)pyrene	-	1.57E-08		1.57E-08	NA		NA		NA
			Naphthalene		8.87E-09		8.87E-09	Neurological and Respiratory		6.09E+00		6.09E+00
			ТРН									
			Diesel Range Organics (C10-C20)	-	NA		NA	Respiratory		1.83E-01		1.83E-01
		Exposure Point Total					(2)					(2)
	Exposure Medium Total						(2)					(2)
Soil							(2)					(2)
Groundwater	Trench Air		VOCs									
			Bromodichloromethane	NA	2.41E-09	NA	2.41E-09	NA	NA	NA	NA	NA
			Butyl alcohol, tert-	NA	NA	NA	NA	Reproductive	NA	2.28E-02	NA	2.28E-02
			Chloroform	NA	1.50E-09	NA	1.50E-09	Liver	NA	4.66E-02	NA	4.66E-02
			Methyl tert-Butyl Ether (MTBE)	NA	1.70E-11	NA	1.70E-11	Liver, Kidney, Ocular	NA	1.52E-03	NA	1.52E-03
			Tetrachloroethylene	NA	1.70E-11	NA	1.70E-11	Neurological, Ocular	NA	1.14E-01	NA	1.14E-01
			Trichloroethene	NA	2.67E-10	NA	2.67E-10	Thyroid Vascular	NA	2.28E+00	NA	2.28E+00
			Vinyl Chloride	NA	2.87E-10	NA	2.87E-10	Liver	NA	4.57E-02	NA	4.57E-02
Receptor Total							(2)					(2)

Notes:

NA - Not Applicable; no dose-response value.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

(2) Totals not provided here; potential risks and hazards are based on the unit concentration. Totals are provided in the scaling table.

⁽¹⁾ Due to the multiple soil areas, a unit soil concentration of 1 mg/kg and a unit air concentration of 1 mg/m3 is used to calculate a potential excess lifetime cancer risk (ELCR) and noncancer hazard quotient (HQ) based on a unit soil concentration. Potential ELCRs and HQs calculated based on a unit concentration will be adjusted based on the area-specific EPCs in a scaling table.

Scenario Timeframe: Future

Receptor Population: Construction Worker

Medium	Exposure Medium	Chemical of Potential Concern		sk/HQ - Routes Total	Primary Target Organ(s)	Нур	othetical Future Pa	ark Land /Green S	pace		Warehouse an	d Laydown Area	
			Unit Cancer	Unit Hazard		EF	C	Cancer	Hazard	EF	C	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Soil	Soil												
		Dioxin											
		2,3,7,8-TCDD-TEQ	4.60E-04	3.54E+02	Reproductive, Developmental	1.14E-06	mg/kg	5.24E-10	4.03E-04	1.35E-05	mg/kg	6.22E-09	4.78E-03
		Inorganics											
		Arsenic	3.37E-09	5.25E-04	Skin, Vascular	1.81E+00	mg/kg	6.10E-09	9.48E-04	1.40E+01	mg/kg	4.72E-08	7.35E-03
		Cobalt	NA	7.53E-04	Thyroid	5.85E+01	mg/kg	NA	4.41E-02	1.41E+01	mg/kg	NA	1.06E-02
		Manganese	NA	9.42E-06	Neurological	2.09E+02	mg/kg	NA	1.97E-03	3.12E+02	mg/kg	NA	2.94E-03
		Nickel	NA	1.13E-05	Decreased body and organ weights	7.08E+00	mg/kg	NA	8.00E-05	3.20E+02	mg/kg	NA	3.62E-03
		Thallium	NA	2.26E-02	Hair	4.50E-02	mg/kg	NA	1.02E-03	1.46E-01	mg/kg	NA	3.30E-03
		Vanadium	NA	4.48E-05	Hair	2.37E+01	mg/kg	NA	1.06E-03	1.47E+03	mg/kg	NA	6.60E-02
		PCBs					-						
		Total PCBs	9.36E-09	6.55E-03	Ocular/eye, Nails, Immune	1.42E-02	mg/kg	1.33E-10	9.30E-05	1.16E+00	mg/kg	1.09E-08	7.62E-03
		SVOCs											
		Benzo(a)anthracene	4.57E-10	NA	NA	1.05E-01	mg/kg	4.80E-11	NA	1.02E+00	mg/kg	4.66E-10	NA
		Benzo(a)pyrene	4.57E-09	1.07E-03	Developmental	1.04E-01	mg/kg	4.76E-10	1.11E-04	9.08E-01	mg/kg	4.15E-09	9.69E-04
		Benzo(b)fluoranthene	4.57E-10	NA	NA	1.24E-01	mg/kg	5.67E-11	NA	1.11E+00	mg/kg	5.06E-10	NA
		Benzo(k)fluoranthene	4.57E-11	NA	NA	5.03E-01	mg/kg	2.30E-11	NA	3.99E-01	mg/kg	1.83E-11	NA
		Chrysene	4.57E-12	NA	NA	1.13E-01	mg/kg	5.17E-13	NA	1.15E+00	mg/kg	5.26E-12	NA
		Dibenzo(a,h)anthracene	4.57E-09	NA	NA	2.30E-02	mg/kg	1.05E-10	NA	1.99E-01	mg/kg	9.10E-10	NA
		Indeno(1,2,3-cd)pyrene	4.57E-10	NA	NA	7.09E-02	mg/kg	3.24E-11	NA	5.70E-01	mg/kg	2.61E-10	NA
	1	Naphthalene	NA	1.60E-05	Developmental	7.97E-03	mg/kg	NA	1.28E-07	7.16E-02	mg/kg	NA	1.15E-06
		TPH											
		Diesel Range Organics (C10-C20)	NA	2.26E-05	Liver, Kidney, Blood	1.30E+01	mg/kg	NA	2.94E-04	6.53E+02	mg/kg	NA	1.48E-02
		Exposure Point Total	<u> </u>					7.49E-09	5.00E-02			7.07E-08	1.22E-0
	Exposure Medi		l	II.				7.49E-09	5.00E-02			7.07E-08	1.22E-0

Scenario Timeframe: Future

Receptor Population: Construction Worker

Medium	Exposure Medium	Chemical of Potential Concern	Unit Ri Exposure F	sk/HQ - Routes Total	Primary Target Organ(s)	Нур	othetical Future P	ark Land /Green S	pace		Warehouse an	d Laydown Area	
			Unit Cancer	Unit Hazard		El	PC	Cancer	Hazard	EI	PC	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Soil	Outdoor Air												
		Dioxin											
		2,3,7,8-TCDD-TEQ	9.92E-03	4.57E+05	Liver, reproductive, developmental, endocrine, respiratory, blood	1.58E-12	mg/m3	1.57E-14	7.22E-07	1.88E-11	mg/m3	1.86E-13	8.58E-06
		Inorganics											
		Arsenic	1.12E-06	1.22E+03	Neurological, developmental	2.51E-06	mg/m3	2.82E-12	3.06E-03	1.95E-05	mg/m3	2.19E-11	2.37E-02
		Cobalt	2.35E-06	3.04E+03	Respiratory	8.13E-05	mg/m3	1.91E-10	2.48E-01	1.96E-05	mg/m3	4.60E-11	5.96E-02
		Manganese	NA	3.65E+02	Neurological	2.91E-04	mg/m3	NA	1.06E-01	4.33E-04	mg/m3	NA	1.58E-01
		Nickel	6.78E-08	2.03E+02	Respiratory	9.84E-06	mg/m3	6.67E-13	2.00E-03	4.45E-04	mg/m3	3.02E-11	9.03E-02
		Thallium	NA	NA	NA	6.26E-08	mg/m3	NA	NA	2.03E-07	mg/m3	NA	NA
		Vanadium	NA	1.83E+02	Respiratory	3.29E-05	mg/m3	NA	6.01E-03	2.05E-03	mg/m3	NA	3.74E-01
		PCBs											
		Total PCBs	1.49E-07	NA	NA	1.97E-08	mg/m3	2.94E-15	NA	1.62E-06	mg/m3	2.41E-13	NA
		SVOCs											
		Benzo(a)anthracene	1.57E-08	NA	NA	1.46E-07	mg/m3	2.29E-15	NA	1.42E-06	mg/m3	2.22E-14	NA
		Benzo(a)pyrene	1.57E-07	9.13E+03	Developmental	1.45E-07	mg/m3	2.26E-14	1.32E-03	1.26E-06	mg/m3	1.98E-13	1.15E-02
		Benzo(b)fluoranthene	1.57E-08	NA	NA	1.72E-07	mg/m3	2.70E-15	NA	1.54E-06	mg/m3	2.41E-14	NA
		Benzo(k)fluoranthene	1.57E-09	NA	NA	6.99E-07	mg/m3	1.10E-15	NA	5.55E-07	mg/m3	8.69E-16	NA
		Chrysene	1.57E-10	NA	NA	1.57E-07	mg/m3	2.46E-17	NA	1.60E-06	mg/m3	2.50E-16	NA
		Dibenzo(a,h)anthracene	1.57E-07	NA	NA	3.20E-08	mg/m3	5.01E-15	NA	2.77E-07	mg/m3	4.33E-14	NA
		Indeno(1,2,3-cd)pyrene	1.57E-08	NA	NA	9.86E-08	mg/m3	1.54E-15	NA	7.93E-07	mg/m3	1.24E-14	NA
		Naphthalene	8.87E-09	6.09E+00	Neurological and Respiratory	1.11E-08	mg/m3	9.83E-17	6.75E-08	9.96E-08	mg/m3	8.83E-16	6.06E-07
		ТРН											
		Diesel Range Organics (C10-C20)	NA	1.83E-01	Respiratory	1.81E-05	mg/m3	NA	3.30E-06	9.08E-04	mg/m3	NA	1.66E-04
		Exposure Point Total		l				1.95E-10	3.66E-01			9.88E-11	7.18E-01
	Exposure Med	ium Total						1.95E-10	3.66E-01			9.88E-11	7.18E-01
Soil	-		Ì					7.69E-09	4.16E-01			7.08E-08	8.40E-01

Scenario Timeframe: Future

Receptor Population: Construction Worker

Receptor Age: Adult

Medium	Exposure Medium	Chemical of Potential Concern		sk/HQ - toutes Total	Primary Target Organ(s)	Нур	othetical Future P	ark Land /Green S	pace		Warehouse an	d Laydown Area	
			Unit Cancer	Unit Hazard		EF	PC .	Cancer	Hazard	EF	PC .	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Groundwater	Trench Air	VOCs											
		Bromodichloromethane	2.41E-09	NA	NA	ND	mg/m3	ND	ND	2.29E-03	mg/m3	5.53E-12	NA
		Butyl alcohol, tert-	NA	2.28E-02	Reproductive	ND	mg/m3	ND	ND	ND	mg/m3	ND	ND
		Chloroform	1.50E-09	4.66E-02	Liver	2.31E-03	mg/m3	3.47E-12	1.08E-04	5.71E-03	mg/m3	8.57E-12	2.66E-04
		Methyl tert-Butyl Ether (MTBE)	1.70E-11	1.52E-03	Liver, Kidney, Ocular	6.10E-03	mg/m3	1.03E-13	9.28E-06	7.71E-03	mg/m3	1.31E-13	1.17E-05
		Tetrachloroethylene	1.70E-11	1.14E-01	Neurological, Ocular	2.44E-02	mg/m3	4.13E-13	2.78E-03	7.63E-03	mg/m3	1.29E-13	8.71E-04
		Trichloroethene	2.67E-10	2.28E+00	Thyroid Vascular	5.53E-03	mg/m3	1.48E-12	1.26E-02	4.80E-03	mg/m3	1.28E-12	1.09E-02
		Vinyl Chloride	2.87E-10	4.57E-02	Liver	ND	mg/m3	ND	ND	ND	mg/m3	ND	ND
		Exposure Point Total						5.46E-12	1.55E-02			1.56E-11	1.21E-02
	Exposure Med							5.46E-12	1.55E-02			1.56E-11	1.21E-02
Groundwater	-1							5.46E-12	1.55E-02			1.56E-11	1.21E-02
Receptor Total								7.69E-09	4.32E-01			7.08E-08	8.52E-01

Notes:

EPC - Exposure Point Concentration.

NA - Not Applicable; no dose-response value.

ND - Not Detected.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

VOC - Volatile Organic Compound.

(1) The potential carcinogenic risk and noncarcinogenic hazard quotients are calculated per exposure area by multiplying the soil or air EPCs associated with each EA by the unit risks and hazard quotients calculated in the Tables G-1-1. CTE and G-2a-1. CTE based on a unit soil or air concentration.

Target Endpoint Evaluation		Target Endpoint Evaluation	
Organ	Endpoint HI	Organ	Endpoint HI
Blood	2.95E-04	Blood	1.48E-02
Decreased body and organ weights	8.00E-05	Decreased body and organ weights	3.62E-03
Endocrine	7.22E-07	Endocrine	8.58E-06
Developmental	4.90E-03	Developmental	4.10E-02
Hair	2.08E-03	Hair	6.93E-02
Immune	9.30E-05	Immune	7.62E-03
Kidney	3.03E-04	Kidney	1.48E-02
Liver	4.12E-04	Liver	1.50E-02
Nails	9.30E-05	Nails	7.62E-03
Neurological	1.14E-01	Neurological	1.86E-01
Ocular	2.88E-03	Ocular	8.51E-03
Reproductive	4.03E-04	Reproductive	4.79E-03
Respiratory	2.56E-01	Respiratory	5.24E-01
Skin	9.48E-04	Skin	7.35E-03
Thyroid	5.67E-02	Thyroid	2.16E-02
Vascular	1.36E-02	Vascular	1.83E-02

Scenario Timeframe: Future

Receptor Population: Construction Worker

Medium	Exposure Medium	Chemical of Potential Concern		sk/HQ - Routes Total	Primary Target Organ(s)	S	alvage Yard and \	Waste Storage Are	ea		Stores and Fleet	Maintenance Area	ı
			Unit Cancer	Unit Hazard		EF	C	Cancer	Hazard	EF	C	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Soil	Soil												
		Dioxin											
		2,3,7,8-TCDD-TEQ	4.60E-04	3.54E+02	Reproductive, Developmental	4.87E-05	mg/kg	2.24E-08	1.72E-02	5.51E-06	mg/kg	2.53E-09	1.95E-03
		Inorganics											
		Arsenic	3.37E-09	5.25E-04	Skin, Vascular	5.42E+00	mg/kg	1.83E-08	2.84E-03	4.49E+00	mg/kg	1.51E-08	2.36E-03
		Cobalt	NA	7.53E-04	Thyroid	6.11E+00	mg/kg	NA	4.60E-03	3.99E+00	mg/kg	NA	3.01E-03
		Manganese	NA	9.42E-06	Neurological	1.42E+02	mg/kg	NA	1.34E-03	1.18E+02	mg/kg	NA	1.11E-03
		Nickel	NA	1.13E-05	Decreased body and organ weights	1.08E+01	mg/kg	NA	1.22E-04	9.05E+00	mg/kg	NA	1.02E-04
		Thallium	NA	2.26E-02	Hair	1.30E-01	mg/kg	NA	2.94E-03	9.16E-02	mg/kg	NA	2.07E-03
		Vanadium	NA	4.48E-05	Hair	2.37E+01	mg/kg	NA	1.06E-03	1.99E+01	mg/kg	NA	8.93E-04
		PCBs					-						
		Total PCBs	9.36E-09	6.55E-03	Ocular/eye, Nails, Immune	6.59E-01	mg/kg	6.17E-09	4.32E-03	4.94E-01	mg/kg	4.62E-09	3.24E-03
		SVOCs											
		Benzo(a)anthracene	4.57E-10	NA	NA	1.02E+01	mg/kg	4.68E-09	NA	1.13E+00	mg/kg	5.17E-10	NA
		Benzo(a)pyrene	4.57E-09	1.07E-03	Developmental	8.48E+00	mg/kg	3.88E-08	9.05E-03	6.65E-01	mg/kg	3.04E-09	7.10E-04
		Benzo(b)fluoranthene	4.57E-10	NA	NA	1.03E+01	mg/kg	4.71E-09	NA	1.18E+00	mg/kg	5.38E-10	NA
		Benzo(k)fluoranthene	4.57E-11	NA	NA	4.03E+00	mg/kg	1.84E-10	NA	3.02E-01	mg/kg	1.38E-11	NA
		Chrysene	4.57E-12	NA	NA	9.11E+00	mg/kg	4.17E-11	NA	1.07E+00	mg/kg	4.88E-12	NA
		Dibenzo(a,h)anthracene	4.57E-09	NA	NA	1.10E+00	mg/kg	5.01E-09	NA	1.28E-01	mg/kg	5.86E-10	NA
		Indeno(1,2,3-cd)pyrene	4.57E-10	NA	NA	5.45E+00	mg/kg	2.49E-09	NA	3.87E-01	mg/kg	1.77E-10	NA
		Naphthalene	NA	1.60E-05	Developmental	1.80E+00	mg/kg	NA	2.88E-05	5.77E-02	mg/kg	NA	9.24E-07
		TPH											
		Diesel Range Organics (C10-C20)	NA	2.26E-05	Liver, Kidney, Blood	6.63E+02	mg/kg	NA	1.50E-02	5.15E+01	mg/kg	NA	1.16E-03
		Exposure Point Total	<u> </u>					1.03E-07	5.85E-02			2.72E-08	1.66E-02
	Exposure Medi	ium Total						1.03E-07	5.85E-02			2.72E-08	1.66E-02

Scenario Timeframe: Future

Receptor Population: Construction Worker

Medium	Exposure Medium	Chemical of Potential Concern		sk/HQ - Routes Total	Primary Target Organ(s)	Ş	Salvage Yard and	Waste Storage Are	эа		Stores and Fleet	Maintenance Area	
			Unit Cancer	Unit Hazard		Е	PC	Cancer	Hazard	EF	PC PC	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Soil	Outdoor Air							İ					İ
		Dioxin											
		2,3,7,8-TCDD-TEQ	9.92E-03	4.57E+05	Liver, reproductive, developmental, endocrine, respiratory, blood	6.78E-11	mg/m3	6.72E-13	3.09E-05	7.66E-12	mg/m3	7.59E-14	3.50E-06
		Inorganics											
		Arsenic	1.12E-06	1.22E+03	Neurological, developmental	7.54E-06	mg/m3	8.46E-12	9.18E-03	6.25E-06	mg/m3	7.01E-12	7.60E-03
		Cobalt	2.35E-06	3.04E+03	Respiratory	8.50E-06	mg/m3	2.00E-11	2.59E-02	5.55E-06	mg/m3	1.30E-11	1.69E-02
		Manganese	NA	3.65E+02	Neurological	1.98E-04	mg/m3	NA	7.22E-02	1.64E-04	mg/m3	NA	5.99E-02
		Nickel	6.78E-08	2.03E+02	Respiratory	1.50E-05	mg/m3	1.02E-12	3.05E-03	1.26E-05	mg/m3	8.53E-13	2.55E-03
		Thallium	NA	NA	NA	1.81E-07	mg/m3	NA	NA	1.27E-07	mg/m3	NA	NA
		Vanadium	NA	1.83E+02	Respiratory	3.29E-05	mg/m3	NA	6.01E-03	2.77E-05	mg/m3	NA	5.06E-03
		PCBs											
		Total PCBs	1.49E-07	NA	NA	9.16E-07	mg/m3	1.37E-13	NA	6.87E-07	mg/m3	1.02E-13	NA
		SVOCs											
		Benzo(a)anthracene	1.57E-08	NA	NA	1.42E-05	mg/m3	2.23E-13	NA	1.57E-06	mg/m3	2.46E-14	NA
		Benzo(a)pyrene	1.57E-07	9.13E+03	Developmental	1.18E-05	mg/m3	1.85E-12	1.08E-01	9.25E-07	mg/m3	1.45E-13	8.45E-03
		Benzo(b)fluoranthene	1.57E-08	NA	NA	1.43E-05	mg/m3	2.24E-13	NA	1.64E-06	mg/m3	2.56E-14	NA
		Benzo(k)fluoranthene	1.57E-09	NA	NA	5.60E-06	mg/m3	8.76E-15	NA	4.20E-07	mg/m3	6.57E-16	NA
		Chrysene	1.57E-10	NA	NA	1.27E-05	mg/m3	1.98E-15	NA	1.48E-06	mg/m3	2.32E-16	NA
		Dibenzo(a,h)anthracene	1.57E-07	NA	NA	1.52E-06	mg/m3	2.39E-13	NA	1.78E-07	mg/m3	2.79E-14	NA
		Indeno(1,2,3-cd)pyrene	1.57E-08	NA	NA	7.58E-06	mg/m3	1.19E-13	NA	5.38E-07	mg/m3	8.43E-15	NA
		Naphthalene	8.87E-09	6.09E+00	Neurological and Respiratory	2.50E-06	mg/m3	2.22E-14	1.52E-05	8.02E-08	mg/m3	7.12E-16	4.89E-07
		ТРН											
		Diesel Range Organics (C10-C20)	NA	1.83E-01	Respiratory	9.22E-04	mg/m3	NA	1.68E-04	7.15E-05	mg/m3	NA	1.31E-05
		Exposure Point Total	1	ı			<u> </u>	3.29E-11	2.24E-01		l	2.13E-11	1.00E-01
	Exposure Med	ium Total						3.29E-11	2.24E-01			2.13E-11	1.00E-01
Soil	•							1.03E-07	2.83E-01			2.72E-08	1.17E-01

Scenario Timeframe: Future

Receptor Population: Construction Worker

Receptor Age: Adult

Medium	Exposure Medium	Chemical of Potential Concern		sk/HQ - Routes Total	Primary Target Organ(s)	S	Salvage Yard and	Waste Storage Are	ea		Stores and Fleet	Maintenance Area	1
			Unit Cancer	Unit Hazard		El	PC .	Cancer	Hazard	EF	PC .	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Groundwater	Trench Air	VOCs											
		Bromodichloromethane	2.41E-09	NA	NA	ND	mg/m3	ND	ND	1.65E-02	mg/m3	3.99E-11	NA
		Butyl alcohol, tert-	NA	2.28E-02	Reproductive	ND	mg/m3	ND	ND	1.33E-01	mg/m3	NA	3.03E-03
		Chloroform	1.50E-09	4.66E-02	Liver	ND	mg/m3	ND	ND	1.18E-02	mg/m3	1.78E-11	5.51E-04
		Methyl tert-Butyl Ether (MTBE)	1.70E-11	1.52E-03	Liver, Kidney, Ocular	1.26E-02	mg/m3	2.14E-13	1.92E-05	7.03E-02	mg/m3	1.19E-12	1.07E-04
		Tetrachloroethylene	1.70E-11	1.14E-01	Neurological, Ocular	1.55E-03	mg/m3	2.63E-14	1.77E-04	1.49E-02	mg/m3	2.53E-13	1.70E-03
		Trichloroethene	2.67E-10	2.28E+00	Thyroid Vascular	ND	mg/m3	ND	ND	2.79E-03	mg/m3	7.46E-13	6.37E-03
		Vinyl Chloride	2.87E-10	4.57E-02	Liver	ND	mg/m3	ND	ND	ND	mg/m3	ND	ND
		Exposure Point Total						2.40E-13	1.96E-04			5.99E-11	1.18E-02
	Exposure Med	ium Total						2.40E-13	1.96E-04			5.99E-11	1.18E-02
Groundwater	•			-	·		•	2.40E-13	1.96E-04			5.99E-11	1.18E-02
Receptor Total	•			•		-	•	1.03E-07	2.83E-01			2.73E-08	1.29E-01

Notes:

EPC - Exposure Point Concentration.

NA - Not Applicable; no dose-response value.

ND - Not Detected.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

VOC - Volatile Organic Compound.

(1) The potential carcinogenic risk and noncarcinogenic hazard quotients are calculated per exposure area by multiplying the soil or air EPCs associated with each EA by the unit risks and hazard quotients calculated in the Tables G-1-1. CTE and G-2a-1. CTE based on a unit soil or air concentration.

Target Endpoint Evaluation		Target Endpoint Evaluation	
Organ	Endpoint HI	Organ	Endpoint HI
Blood	1.50E-02	Blood	1.17E-03
Decreased body and organ weights	1.22E-04	Decreased body and organ weights	1.02E-04
Endocrine	3.09E-05	Endocrine	3.50E-06
Developmental	1.43E-01	Developmental	1.87E-02
Hair	4.00E-03	Hair	2.96E-03
Immune	4.32E-03	Immune	3.24E-03
Kidney	1.50E-02	Kidney	1.27E-03
Liver	1.50E-02	Liver	1.82E-03
Nails	4.32E-03	Nails	3.24E-03
Neurological	8.29E-02	Neurological	7.03E-02
Ocular	4.51E-03	Ocular	5.05E-03
Reproductive	1.73E-02	Reproductive	4.99E-03
Respiratory	3.51E-02	Respiratory	2.45E-02
Skin	2.84E-03	Skin	2.36E-03
Thyroid	4.60E-03	Thyroid	9.37E-03
Vascular	2.84E-03	Vascular	8.72E-03

Scenario Timeframe: Future

Receptor Population: Construction Worker

Medium	Exposure Medium	Chemical of Potential Concern		sk/HQ - Routes Total	Primary Target Organ(s)			Parking Lot				ation #7	
			Unit Cancer	Unit Hazard		EF	C	Cancer	Hazard	EF	C	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Soil	Soil												
		Dioxin											
		2,3,7,8-TCDD-TEQ	4.60E-04	3.54E+02	Reproductive, Developmental	6.57E-06	mg/kg	3.02E-09	2.33E-03	2.37E-06	mg/kg	1.09E-09	8.37E-04
		Inorganics											
		Arsenic	3.37E-09	5.25E-04	Skin, Vascular	3.08E+00	mg/kg	1.04E-08	1.62E-03	6.64E+00	mg/kg	2.24E-08	3.48E-03
		Cobalt	NA	7.53E-04	Thyroid	8.25E+00	mg/kg	NA	6.22E-03	3.79E+00	mg/kg	NA	2.85E-03
		Manganese	NA	9.42E-06	Neurological	2.05E+02	mg/kg	NA	1.93E-03	1.34E+02	mg/kg	NA	1.26E-03
		Nickel	NA	1.13E-05	Decreased body and organ weights	1.83E+01	mg/kg	NA	2.07E-04	7.56E+00	mg/kg	NA	8.54E-05
		Thallium	NA	2.26E-02	Hair	8.89E-02	mg/kg	NA	2.01E-03	6.44E-02	mg/kg	NA	1.46E-03
		Vanadium	NA	4.48E-05	Hair	2.42E+01	mg/kg	NA	1.08E-03	1.60E+01	mg/kg	NA	7.18E-04
		PCBs					-						
		Total PCBs	9.36E-09	6.55E-03	Ocular/eye, Nails, Immune	1.08E-01	mg/kg	1.01E-09	7.07E-04	2.41E-01	mg/kg	2.25E-09	1.58E-03
		SVOCs											
		Benzo(a)anthracene	4.57E-10	NA	NA	1.07E+01	mg/kg	4.88E-09	NA	1.71E-01	mg/kg	7.82E-11	NA
		Benzo(a)pyrene	4.57E-09	1.07E-03	Developmental	9.48E+00	mg/kg	4.34E-08	1.01E-02	1.36E-01	mg/kg	6.22E-10	1.45E-04
		Benzo(b)fluoranthene	4.57E-10	NA	NA	9.11E+00	mg/kg	4.17E-09	NA	2.99E-01	mg/kg	1.37E-10	NA
		Benzo(k)fluoranthene	4.57E-11	NA	NA	6.15E+00	mg/kg	2.82E-10	NA	1.54E-01	mg/kg	7.05E-12	NA
		Chrysene	4.57E-12	NA	NA	9.54E+00	mg/kg	4.36E-11	NA	2.99E-01	mg/kg	1.37E-12	NA
		Dibenzo(a,h)anthracene	4.57E-09	NA	NA	1.80E+00	mg/kg	8.23E-09	NA	4.04E-02	mg/kg	1.85E-10	NA
	1	Indeno(1,2,3-cd)pyrene	4.57E-10	NA	NA	6.29E+00	mg/kg	2.88E-09	NA	1.26E-01	mg/kg	5.76E-11	NA
		Naphthalene	NA	1.60E-05	Developmental	1.06E+00	mg/kg	NA	1.70E-05	1.41E-02	mg/kg	NA	2.26E-07
	1	TPH											
		Diesel Range Organics (C10-C20)	NA	2.26E-05	Liver, Kidney, Blood	2.30E+01	mg/kg	NA	5.20E-04	2.00E+01	mg/kg	NA	4.52E-04
		Exposure Point Total	<u> </u>					7.83E-08	2.67E-02			2.68E-08	1.29E-02
	Exposure Medi	ium Total						7.83E-08	2.67E-02			2.68E-08	1.29E-02

Scenario Timeframe: Future

Receptor Population: Construction Worker

Medium	Exposure Medium	Chemical of Potential Concern	Unit Ri Exposure R	sk/HQ - Routes Total	Primary Target Organ(s)		Offices and	l Parking Lot			Substa	ation #7	
			Unit Cancer	Unit Hazard		El	PC	Cancer	Hazard	EI	PC	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Soil	Outdoor Air												
		Dioxin											
		2,3,7,8-TCDD-TEQ	9.92E-03	4.57E+05	Liver, reproductive, developmental, endocrine, respiratory, blood	9.14E-12	mg/m3	9.06E-14	4.17E-06	3.29E-12	mg/m3	3.26E-14	1.50E-06
		Inorganics											
		Arsenic	1.12E-06	1.22E+03	Neurological, developmental	4.29E-06	mg/m3	4.81E-12	5.22E-03	9.23E-06	mg/m3	1.04E-11	1.12E-02
		Cobalt	2.35E-06	3.04E+03	Respiratory	1.15E-05	mg/m3	2.69E-11	3.49E-02	5.26E-06	mg/m3	1.24E-11	1.60E-02
		Manganese	NA	3.65E+02	Neurological	2.84E-04	mg/m3	NA	1.04E-01	1.86E-04	mg/m3	NA	6.79E-02
		Nickel	6.78E-08	2.03E+02	Respiratory	2.55E-05	mg/m3	1.73E-12	5.17E-03	1.05E-05	mg/m3	7.13E-13	2.13E-03
		Thallium	NA	NA	NA	1.24E-07	mg/m3	NA	NA	8.96E-08	mg/m3	NA	NA
		Vanadium	NA	1.83E+02	Respiratory	3.36E-05	mg/m3	NA	6.14E-03	2.23E-05	mg/m3	NA	4.07E-03
		PCBs											
		Total PCBs	1.49E-07	NA	NA	1.50E-07	mg/m3	2.24E-14	NA	3.35E-07	mg/m3	5.00E-14	NA
		SVOCs											
		Benzo(a)anthracene	1.57E-08	NA	NA	1.48E-05	mg/m3	2.32E-13	NA	2.38E-07	mg/m3	3.72E-15	NA
		Benzo(a)pyrene	1.57E-07	9.13E+03	Developmental	1.32E-05	mg/m3	2.06E-12	1.20E-01	1.89E-07	mg/m3	2.96E-14	1.73E-03
		Benzo(b)fluoranthene	1.57E-08	NA	NA	1.27E-05	mg/m3	1.98E-13	NA	4.16E-07	mg/m3	6.51E-15	NA
		Benzo(k)fluoranthene	1.57E-09	NA	NA	8.56E-06	mg/m3	1.34E-14	NA	2.14E-07	mg/m3	3.35E-16	NA
		Chrysene	1.57E-10	NA	NA	1.33E-05	mg/m3	2.08E-15	NA	4.16E-07	mg/m3	6.51E-17	NA
		Dibenzo(a,h)anthracene	1.57E-07	NA	NA	2.50E-06	mg/m3	3.92E-13	NA	5.62E-08	mg/m3	8.80E-15	NA
		Indeno(1,2,3-cd)pyrene	1.57E-08	NA	NA	8.74E-06	mg/m3	1.37E-13	NA	1.75E-07	mg/m3	2.74E-15	NA
		Naphthalene	8.87E-09	6.09E+00	Neurological and Respiratory	1.47E-06	mg/m3	1.31E-14	8.97E-06	1.96E-08	mg/m3	1.74E-16	1.19E-07
		TPH											
		Diesel Range Organics (C10-C20)	NA	1.83E-01	Respiratory	3.20E-05	mg/m3	NA	5.84E-06	2.78E-05	mg/m3	NA	5.08E-06
		Exposure Point Total		I				3.66E-11	2.76E-01		l	2.36E-11	1.03E-01
	Exposure Medi	ium Total						3.66E-11	2.76E-01			2.36E-11	1.03E-01
Soil	41							7.83E-08	3.02E-01			2.68E-08	1.16E-01

Scenario Timeframe: Future

Receptor Population: Construction Worker

Receptor Age: Adult

Medium	Exposure Medium	Chemical of Potential Concern		sk/HQ - Routes Total	Primary Target Organ(s)		Offices and	Parking Lot			Subst	ation #7	
			Unit Cancer	Unit Hazard		El	PC .	Cancer	Hazard	EF	PC .	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Groundwater	Trench Air	VOCs											
		Bromodichloromethane	2.41E-09	NA	NA	ND	mg/m3	ND	ND	ND	mg/m3	ND	ND
		Butyl alcohol, tert-	NA	2.28E-02	Reproductive	ND	mg/m3	ND	ND	ND	mg/m3	ND	ND
		Chloroform	1.50E-09	4.66E-02	Liver	3.46E-03	mg/m3	5.19E-12	1.61E-04	ND	mg/m3	ND	ND
		Methyl tert-Butyl Ether (MTBE)	1.70E-11	1.52E-03	Liver, Kidney, Ocular	9.48E-03	mg/m3	1.61E-13	1.44E-05	4.93E-02	mg/m3	8.37E-13	7.51E-05
		Tetrachloroethylene	1.70E-11	1.14E-01	Neurological, Ocular	7.21E-01	mg/m3	1.22E-11	8.23E-02	4.43E-03	mg/m3	7.51E-14	5.06E-04
		Trichloroethene	2.67E-10	2.28E+00	Thyroid Vascular	6.69E-02	mg/m3	1.79E-11	1.53E-01	1.23E-03	mg/m3	3.29E-13	2.81E-03
		Vinyl Chloride	2.87E-10	4.57E-02	Liver	5.59E-02	mg/m3	1.60E-11	2.55E-03	ND	mg/m3	ND	ND
													<u> </u>
		Exposure Point Total						5.15E-11	2.38E-01			1.24E-12	3.39E-03
	Exposure Med	ium Total						5.15E-11	2.38E-01			1.24E-12	3.39E-03
Groundwater								5.15E-11	2.38E-01			1.24E-12	3.39E-03
Receptor Total				·			•	7.84E-08	5.40E-01			2.68E-08	1.19E-01

Notes:

EPC - Exposure Point Concentration.

NA - Not Applicable; no dose-response value.

ND - Not Detected.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

VOC - Volatile Organic Compound.

(1) The potential carcinogenic risk and noncarcinogenic hazard quotients are calculated per exposure area by multiplying the soil or air EPCs associated with each EA by the unit risks and hazard quotients calculated in the Tables G-1-1. CTE and G-2a-1. CTE based on a unit soil or air concentration.

Target Endpoint Evaluation		Target Endpoint Evaluation	
Organ	Endpoint HI	Organ	Endpoint HI
Blood	5.24E-04	Blood	4.54E-04
Decreased body and organ weights	2.07E-04	Decreased body and organ weights	8.54E-05
Endocrine	4.17E-06	Endocrine	1.50E-06
Developmental	1.38E-01	Developmental	1.39E-02
Hair	3.09E-03	Hair	2.17E-03
Immune	7.07E-04	Immune	1.58E-03
Kidney	5.34E-04	Kidney	5.27E-04
Liver	3.25E-03	Liver	5.29E-04
Nails	7.07E-04	Nails	1.58E-03
Neurological	1.93E-01	Neurological	8.09E-02
Ocular	8.30E-02	Ocular	2.16E-03
Reproductive	2.33E-03	Reproductive	8.39E-04
Respiratory	4.63E-02	Respiratory	2.22E-02
Skin	1.62E-03	Skin	3.48E-03
Thyroid	1.59E-01	Thyroid	5.66E-03
Vascular	1.54E-01	Vascular	6.29E-03

Scenario Timeframe: Future

Receptor Population: Construction Worker

Medium	Exposure Medium	Chemical of Potential Concern	Unit Ri Exposure R	sk/HQ - loutes Total	Primary Target Organ(s)		Transfor	mer Shop			Vehicle Re	fueling Area	
			Unit Cancer	Unit Hazard		El	PC	Cancer	Hazard	El	PC .	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Soil	Soil												
		Dioxin											
		2,3,7,8-TCDD-TEQ	4.60E-04	3.54E+02	Reproductive, Developmental	ND	mg/kg	ND	ND	ND	mg/kg	ND	ND
		Inorganics											
		Arsenic	3.37E-09	5.25E-04	Skin, Vascular	3.40E+00	mg/kg	1.15E-08	1.78E-03	2.48E+00	mg/kg	8.36E-09	1.30E-03
		Cobalt	NA	7.53E-04	Thyroid	3.47E+00	mg/kg	NA	2.61E-03	5.52E+00	mg/kg	NA	4.16E-03
		Manganese	NA	9.42E-06	Neurological	1.57E+02	mg/kg	NA	1.47E-03	1.41E+02	mg/kg	NA	1.33E-03
		Nickel	NA	1.13E-05	Decreased body and organ weights	1.39E+01	mg/kg	NA	1.57E-04	6.34E+00	mg/kg	NA	7.17E-05
		Thallium	NA	2.26E-02	Hair	1.13E-01	mg/kg	NA	2.55E-03	1.03E-01	mg/kg	NA	2.33E-03
		Vanadium	NA	4.48E-05	Hair	1.66E+01	mg/kg	NA	7.43E-04	2.18E+01	mg/kg	NA	9.78E-04
		PCBs											
		Total PCBs	9.36E-09	6.55E-03	Ocular/eye, Nails, Immune	7.46E+01	mg/kg	6.98E-07	4.89E-01	2.32E-02	mg/kg	2.17E-10	1.52E-04
		SVOCs											
		Benzo(a)anthracene	4.57E-10	NA	NA	2.23E+00	mg/kg	1.02E-09	NA	3.73E-01	mg/kg	1.71E-10	NA
		Benzo(a)pyrene	4.57E-09	1.07E-03	Developmental	1.87E+00	mg/kg	8.57E-09	2.00E-03	3.28E-01	mg/kg	1.50E-09	3.50E-04
		Benzo(b)fluoranthene	4.57E-10	NA	NA	2.44E+00	mg/kg	1.11E-09	NA	4.40E-01	mg/kg	2.01E-10	NA
		Benzo(k)fluoranthene	4.57E-11	NA	NA	9.18E-01	mg/kg	4.20E-11	NA	1.26E-01	mg/kg	5.76E-12	NA
		Chrysene	4.57E-12	NA	NA	2.05E+00	mg/kg	9.40E-12	NA	3.91E-01	mg/kg	1.79E-12	NA
		Dibenzo(a,h)anthracene	4.57E-09	NA	NA	4.25E-01	mg/kg	1.94E-09	NA	7.31E-02	mg/kg	3.34E-10	NA
		Indeno(1,2,3-cd)pyrene	4.57E-10	NA	NA	1.38E+00	mg/kg	6.32E-10	NA	2.11E-01	mg/kg	9.65E-11	NA
		Naphthalene	NA	1.60E-05	Developmental	9.91E-02	mg/kg	NA	1.59E-06	7.18E-02	mg/kg	NA	1.15E-06
		TPH											
		Diesel Range Organics (C10-C20)	NA	2.26E-05	Liver, Kidney, Blood	1.86E+01	mg/kg	NA	4.21E-04	7.07E+01	mg/kg	NA	1.60E-03
		Exposure Point Total						7.23E-07	5.00E-01			1.09E-08	1.23E-02
	Exposure Medi	um Total					•	7.23E-07	5.00E-01			1.09E-08	1.23E-02

Scenario Timeframe: Future

Receptor Population: Construction Worker

Medium	Exposure Medium	Chemical of Potential Concern		sk/HQ - Routes Total	Primary Target Organ(s)		Transfor	mer Shop			Vehicle Re	fueling Area	
			Unit Cancer	Unit Hazard		El	PC	Cancer	Hazard	EF	PC	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Soil	Outdoor Air												
		Dioxin											
		2,3,7,8-TCDD-TEQ	9.92E-03	4.57E+05	Liver, reproductive, developmental, endocrine, respiratory, blood	ND	mg/m3	ND	ND	ND	mg/m3	ND	ND
		Inorganics											
		Arsenic	1.12E-06	1.22E+03	Neurological, developmental	4.73E-06	mg/m3	5.31E-12	5.76E-03	3.45E-06	mg/m3	3.87E-12	4.20E-03
		Cobalt	2.35E-06	3.04E+03	Respiratory	4.82E-06	mg/m3	1.13E-11	1.47E-02	7.68E-06	mg/m3	1.80E-11	2.34E-02
		Manganese	NA	3.65E+02	Neurological	2.18E-04	mg/m3	NA	7.95E-02	1.96E-04	mg/m3	NA	7.16E-02
		Nickel	6.78E-08	2.03E+02	Respiratory	1.94E-05	mg/m3	1.31E-12	3.93E-03	8.82E-06	mg/m3	5.98E-13	1.79E-03
		Thallium	NA	NA	NA	1.57E-07	mg/m3	NA	NA	1.43E-07	mg/m3	NA	NA
		Vanadium	NA	1.83E+02	Respiratory	2.30E-05	mg/m3	NA	4.21E-03	3.03E-05	mg/m3	NA	5.54E-03
		PCBs											
		Total PCBs	1.49E-07	NA	NA	1.04E-04	mg/m3	1.55E-11	NA	3.23E-08	mg/m3	4.81E-15	NA
		SVOCs											
		Benzo(a)anthracene	1.57E-08	NA	NA	3.09E-06	mg/m3	4.84E-14	NA	5.19E-07	mg/m3	8.12E-15	NA
		Benzo(a)pyrene	1.57E-07	9.13E+03	Developmental	2.60E-06	mg/m3	4.08E-13	2.38E-02	4.56E-07	mg/m3	7.14E-14	4.17E-03
		Benzo(b)fluoranthene	1.57E-08	NA	NA	3.39E-06	mg/m3	5.30E-14	NA	6.12E-07	mg/m3	9.58E-15	NA
		Benzo(k)fluoranthene	1.57E-09	NA	NA	1.28E-06	mg/m3	2.00E-15	NA	1.75E-07	mg/m3	2.74E-16	NA
		Chrysene	1.57E-10	NA	NA	2.86E-06	mg/m3	4.47E-16	NA	5.44E-07	mg/m3	8.51E-17	NA
		Dibenzo(a,h)anthracene	1.57E-07	NA	NA	5.91E-07	mg/m3	9.25E-14	NA	1.02E-07	mg/m3	1.59E-14	NA
		Indeno(1,2,3-cd)pyrene	1.57E-08	NA	NA	1.92E-06	mg/m3	3.01E-14	NA	2.93E-07	mg/m3	4.59E-15	NA
		Naphthalene	8.87E-09	6.09E+00	Neurological and Respiratory	1.38E-07	mg/m3	1.22E-15	8.39E-07	9.98E-08	mg/m3	8.86E-16	6.08E-07
		ТРН											
		Diesel Range Organics (C10-C20)	NA	1.83E-01	Respiratory	2.59E-05	mg/m3	NA	4.73E-06	9.83E-05	mg/m3	NA	1.80E-05
		Exposure Point Total	1	1				3.40E-11	1.32E-01			2.26E-11	1.11E-01
	Exposure Med	ium Total						3.40E-11	1.32E-01			2.26E-11	1.11E-01
Soil	1							7.23E-07	6.32E-01			1.09E-08	1.23E-01

Scenario Timeframe: Future

Receptor Population: Construction Worker

Receptor Age: Adult

Medium	Exposure Medium	Chemical of Potential Concern		sk/HQ - Routes Total	Primary Target Organ(s)		Transfor	mer Shop			Vehicle Re	fueling Area	
			Unit Cancer	Unit Hazard		EI	PC	Cancer	Hazard	EI	PC	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Groundwater	Trench Air	VOCs											
		Bromodichloromethane	2.41E-09	NA	NA	ND	mg/m3	ND	ND	ND	mg/m3	ND	ND
		Butyl alcohol, tert-	NA	2.28E-02	Reproductive	ND	mg/m3	ND	ND	ND	mg/m3	ND	ND
		Chloroform	1.50E-09	4.66E-02	Liver	3.31E-03	mg/m3	4.97E-12	1.54E-04	2.48E-02	mg/m3	3.73E-11	1.16E-03
		Methyl tert-Butyl Ether (MTBE)	1.70E-11	1.52E-03	Liver, Kidney, Ocular	ND	mg/m3	ND	ND	9.14E-03	mg/m3	1.55E-13	1.39E-05
		Tetrachloroethylene	1.70E-11	1.14E-01	Neurological, Ocular	1.29E-03	mg/m3	2.19E-14	1.48E-04	1.68E-03	mg/m3	2.85E-14	1.92E-04
		Trichloroethene	2.67E-10	2.28E+00	Thyroid Vascular	ND	mg/m3	ND	ND	ND	mg/m3	ND	ND
		Vinyl Chloride	2.87E-10	4.57E-02	Liver	ND	mg/m3	ND	ND	ND	mg/m3	ND	ND
		Exposure Point Total						4.99E-12	3.02E-04			3.74E-11	1.36E-03
	Exposure Med							4.99E-12	3.02E-04			3.74E-11	1.36E-03
Groundwater	-						·-	4.99E-12	3.02E-04		-	3.74E-11	1.36E-03
Receptor Total	•						•	7.23E-07	6.33E-01		•	1.10E-08	1.24E-01

Notes:

EPC - Exposure Point Concentration.

NA - Not Applicable; no dose-response value.

ND - Not Detected.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

VOC - Volatile Organic Compound.

(1) The potential carcinogenic risk and noncarcinogenic hazard quotients are calculated per exposure area by multiplying the soil or air EPCs associated with each EA by the unit risks and hazard quotients calculated in the Tables G-1-1. CTE and G-2a-1. CTE based on a unit soil or air concentration.

Target Endpoint Evaluation		Target Endpoint Evaluation	
Organ	Endpoint HI	Organ	Endpoint HI
Blood	4.21E-04	Blood	1.60E-03
Decreased body and organ weights	1.57E-04	Decreased body and organ weights	7.17E-05
Endocrine		Endocrine	
Developmental	3.15E-02	Developmental	8.72E-03
Hair	3.30E-03	Hair	3.31E-03
Immune	4.89E-01	Immune	1.52E-04
Kidney	4.21E-04	Kidney	1.61E-03
Liver	5.75E-04	Liver	2.77E-03
Nails	4.89E-01	Nails	1.52E-04
Neurological	8.69E-02	Neurological	7.73E-02
Ocular	4.89E-01	Ocular	3.58E-04
Reproductive		Reproductive	
Respiratory	2.28E-02	Respiratory	3.07E-02
Skin	1.78E-03	Skin	1.30E-03
Thyroid	2.61E-03	Thyroid	4.16E-03
Vascular	1.78E-03	Vascular	1.30E-03

Scenario Timeframe: Future

Receptor Population: Outdoor Industrial Worker

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern	Carcinoge	enic Risk - Bas	sed on Unit Con	centration (1)	Non-Carcir	nogenic Hazard Quotie	nt - Based on Unit	Concentration (1)	
				Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Surface Soil	Surface Soil											
			Dioxin									
			2,3,7,8-TCDD-TEQ	4.60E-03		1.17E-03	5.76E-03	Reproductive, Developmental	5.36E+02		1.36E+02	6.72E+02
			Inorganics									
			Arsenic	3.18E-08		1.35E-08	4.53E-08	Skin, Vascular	7.50E-04		3.17E-04	1.07E-03
			Cobalt	NA		NA	NA	Thyroid	1.25E-03		NA	1.25E-03
			Manganese	NA		NA	NA	Neurological	1.56E-05		NA	1.56E-05
								Decreased body and organ				
			Nickel	NA		NA	NA	weights	1.88E-05		NA	1.88E-05
			Thallium	NA		NA	NA	Hair	3.75E-02		NA	3.75E-02
			Vanadium	NA		NA	NA	Hair	7.44E-05		NA	7.44E-05
			PCBs									
			Total PCBs	7.07E-08		8.38E-08	1.55E-07	Ocular/eye, Nails, Immune	1.88E-02		2.22E-02	4.10E-02
			SVOCs									
			Benzo(a)anthracene	3.54E-09		3.89E-09	7.43E-09	NA	NA		NA	NA
			Benzo(a)pyrene	3.54E-08		3.89E-08	7.43E-08	Developmental	1.25E-03		1.38E-03	2.63E-03
			Benzo(b)fluoranthene	3.54E-09		3.89E-09	7.43E-09	NA	NA		NA	NA
			Benzo(k)fluoranthene	3.54E-10		3.89E-10	7.43E-10	NA	NA		NA	NA
			Chrysene	3.54E-11		3.89E-11	7.43E-11	NA	NA		NA	NA
			Dibenzo(a,h)anthracene	3.54E-08		3.89E-08	7.43E-08	NA	NA		NA	NA
			Indeno(1,2,3-cd)pyrene	3.54E-09		3.89E-09	7.43E-09	NA	NA		NA	NA
			Naphthalene	NA		NA	NA	Developmental	1.88E-05		2.06E-05	3.94E-05
			TPH									
			Diesel Range Organics (C10-C20)	NA		NA	NA	Liver, Kidney, Blood	3.75E-05		NA	3.75E-05
		Exposure Point Total					(2)					(2)
	Exposure Medium Total	11	di-				(2)					(2)

Scenario Timeframe: Future

Receptor Population: Outdoor Industrial Worker

Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern	Carcinoge	enic Risk - Ba	sed on Unit Con	centration (1)	Non-Carci	nogenic Hazard Quotien	t - Based on Uni	it Concentration (1)	
				Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Surface Soil	Outdoor Air							3 3 (1)				
Carraco Con	Outdoor 7 til		Dioxin									
								Liver, reproductive, developmental, endocrine,				
			2,3,7,8-TCDD-TEQ		7.17E-01		7.17E-01	respiratory, blood		5.00E+06		5.00E+06
			Inorganics									
			Arsenic		8.11E-05		8.11E-05	Neurological, developmental		1.33E+04		1.33E+04
			Cobalt		1.70E-04		1.70E-04	Respiratory		3.33E+04		3.33E+04
			Manganese		NA		NA	Neurological		4.00E+03		4.00E+03
			Nickel		4.90E-06		4.90E-06	Respiratory		2.22E+03		2.22E+03
			Thallium		NA		NA	NA NA		NA		NA
			Vanadium		NA		NA	Respiratory		2.00E+03		2.00E+03
			PCBs									
			Total PCBs		1.08E-05		1.08E-05	NA		NA		NA
			SVOCs									
			Benzo(a)anthracene		1.13E-06		1.13E-06	NA	-	NA		NA
			Benzo(a)pyrene		1.13E-05		1.13E-05	Developmental		1.00E+05		1.00E+05
			Benzo(b)fluoranthene		1.13E-06		1.13E-06	NA	-	NA		NA
			Benzo(k)fluoranthene		1.13E-07		1.13E-07	NA		NA		NA
			Chrysene		1.13E-08		1.13E-08	NA		NA		NA
			Dibenzo(a,h)anthracene		1.13E-05		1.13E-05	NA		NA		NA
			Indeno(1,2,3-cd)pyrene		1.13E-06		1.13E-06	NA		NA		NA
			Naphthalene		6.41E-07		6.41E-07	Neurological and Respiratory		6.67E+01		6.67E+01
		1	TPH									
		1	Diesel Range Organics (C10-C20)		NA		NA	Respiratory		2.00E+00		2.00E+00
		Exposure Point Total					(2)					(2)
	Exposure Medium Total	· · · · · · · · · · · · · · · · · · ·					(2)					(2)
Surface Soil							(2)					(2)
Receptor Total				ĺ			(2)					(2)

Notes:

ADAF - Age-Dependent Adjustment Factor.

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

NA - Not applicable; no dose-response value.

PCB - Polychlorinated Biphenyl.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

- (1) Due to the multiple soil areas, a unit soil concentration of 1 mg/kg and a unit air concentration of 1 mg/m3 is used to calculate a potential excess lifetime cancer risk (ELCR) and noncancer hazard quotient (HQ) based on a unit soil concentration. Potential ELCRs and HQs calculated based on a unit concentration will be adjusted based on the area-specific EPCs in a scaling table.
- (2) Totals not provided here; potential risks and hazards are based on the unit concentration. Totals are provided in the scaling table.

Scenario Timeframe: Future

Receptor Population: Outdoor Industrial Worker

Medium	Exposure Medium	Chemical of Potential Concern	Unit Ri Exposure F	sk/HQ - Routes Total	Primary Target Organ(s)	Нур	othetical Future Pa	ark Land/Green Sp	pace		Warehouse an	d Laydown Area	
			Unit Cancer	Unit Hazard		EI	PC .	Cancer	Hazard	EF	C	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Surface Soil	Surface Soil												
		Dioxin											
		2,3,7,8-TCDD-TEQ	5.76E-03	6.72E+02	Reproductive, Developmental	1.89E-06	mg/kg	1.09E-08	1.27E-03	1.51E-05	mg/kg	8.71E-08	1.02E-02
		Inorganics											
		Arsenic	4.53E-08	1.07E-03	Skin, Vascular	2.20E+00	mg/kg	9.96E-08	2.35E-03	1.83E+01	mg/kg	8.29E-07	1.95E-02
		Cobalt	NA	1.25E-03	Thyroid	1.11E+02	mg/kg	NA	1.39E-01	1.95E+01	mg/kg	NA	2.44E-02
		Manganese	NA	1.56E-05	Neurological	1.18E+02	mg/kg	NA	1.84E-03	3.99E+02	mg/kg	NA	6.23E-03
		Nickel	NA	1.88E-05	Decreased body and organ weights	1.04E+01	mg/kg	NA	1.94E-04	5.13E+02	mg/kg	NA	9.62E-03
		Thallium	NA	3.75E-02	Hair	ND	mg/kg	ND	ND	1.31E-01	mg/kg	NA	4.91E-03
		Vanadium	NA	7.44E-05	Hair	3.70E+01	mg/kg	NA	2.75E-03	2.24E+03	mg/kg	NA	1.67E-01
		PCBs											
		Total PCBs	1.55E-07	4.10E-02	Ocular/eye, Nails, Immune	4.42E-02	mg/kg	6.83E-09	1.81E-03	1.28E+00	mg/kg	1.97E-07	5.22E-02
		SVOCs											
		Benzo(a)anthracene	7.43E-09	NA	NA	1.37E-01	mg/kg	1.02E-09	NA	4.36E-01	mg/kg	3.24E-09	NA
		Benzo(a)pyrene	7.43E-08	2.63E-03	Developmental	1.55E-01	mg/kg	1.15E-08	4.07E-04	4.31E-01	mg/kg	3.20E-08	1.13E-03
		Benzo(b)fluoranthene	7.43E-09	NA	NA	1.65E-01	mg/kg	1.23E-09	NA	5.16E-01	mg/kg	3.83E-09	NA
		Benzo(k)fluoranthene	7.43E-10	NA	NA	6.80E-02	mg/kg	5.05E-11	NA	1.95E-01	mg/kg	1.45E-10	NA
		Chrysene	7.43E-11	NA	NA	1.53E-01	mg/kg	1.14E-11	NA	4.90E-01	mg/kg	3.64E-11	NA
		Dibenzo(a,h)anthracene	7.43E-08	NA	NA	3.23E-02	mg/kg	2.40E-09	NA	9.93E-02	mg/kg	7.37E-09	NA
		Indeno(1,2,3-cd)pyrene	7.43E-09	NA	NA	1.04E-01	mg/kg	7.72E-10	NA	3.19E-01	mg/kg	2.37E-09	NA
		Naphthalene	NA	3.94E-05	Developmental	1.22E-02	mg/kg	NA	4.80E-07	6.76E-02	mg/kg	NA	2.66E-06
		ТРН											
		Diesel Range Organics (C10-C20)	NA	3.75E-05	Liver, Kidney, Blood	1.30E+01	mg/kg	NA	4.88E-04	9.62E+01	mg/kg	NA	3.61E-03
		Exposure Point Total	<u> </u>					1.34E-07	1.50E-01			1.16E-06	2.98E-01
ĺ	Exposure Medi		1]	1			1.34E-07	1.50E-01			1.16E-06	2.98E-01
	Exposure Medi	uiii i Utai	<u> </u>					1.345-07	1.00=01			1.10=-00	2.90E-01

Scenario Timeframe: Future

Receptor Population: Outdoor Industrial Worker

Receptor Age: Adult

Medium	Exposure Medium	Chemical of Potential Concern	Unit Risk/HQ - Exposure Routes Total		Primary Target Organ(s)	Нур	Hypothetical Future Park Land/Green Space Warehous						nd Laydown Area	
			Unit Cancer	Unit Hazard		EI	PC	Cancer	Hazard	EF	PC	Cancer	Hazard	
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)	
Surface Soil	Outdoor Air													
		Dioxin												
		2,3,7,8-TCDD-TEQ	7.17E-01	5.00E+06	Liver, reproductive, developmental, endocrine, respiratory, blood	3.31E-15	mg/m3	2.37E-15	1.65E-08	2.64E-14	mg/m3	1.89E-14	1.32E-07	
		Inorganics												
		Arsenic	8.11E-05	1.33E+04	Neurological, developmental	3.85E-09	mg/m3	3.12E-13	5.13E-05	3.20E-08	mg/m3	2.60E-12	4.27E-04	
		Cobalt	1.70E-04	3.33E+04	Respiratory	1.94E-07	mg/m3	3.29E-11	6.47E-03	3.41E-08	mg/m3	5.79E-12	1.14E-03	
		Manganese	NA	4.00E+03	Neurological	2.06E-07	mg/m3	NA	8.26E-04	6.98E-07	mg/m3	NA	2.79E-03	
		Nickel	4.90E-06	2.22E+03	Respiratory	1.81E-08	mg/m3	8.88E-14	4.02E-05	8.97E-07	mg/m3	4.40E-12	1.99E-03	
		Thallium	NA	NA	NA	ND	mg/m3	ND	ND	2.29E-10	mg/m3	NA	NA	
		Vanadium	NA	2.00E+03	Respiratory	6.47E-08	mg/m3	NA	1.29E-04	3.92E-06	mg/m3	NA	7.84E-03	
		PCBs												
		Total PCBs	1.08E-05	NA	NA	7.73E-11	mg/m3	8.33E-16	NA	2.23E-09	mg/m3	2.40E-14	NA	
		SVOCs												
		Benzo(a)anthracene	1.13E-06	NA	NA	2.40E-10	mg/m3	2.71E-16	NA	7.63E-10	mg/m3	8.63E-16	NA	
		Benzo(a)pyrene	1.13E-05	1.00E+05	Developmental	2.71E-10	mg/m3	3.07E-15	2.71E-05	7.54E-10	mg/m3	8.53E-15	7.54E-05	
		Benzo(b)fluoranthene	1.13E-06	NA	NA	2.89E-10	mg/m3	3.27E-16	NA	9.02E-10	mg/m3	1.02E-15	NA	
		Benzo(k)fluoranthene	1.13E-07	NA	NA	1.19E-10	mg/m3	1.35E-17	NA	3.41E-10	mg/m3	3.86E-17	NA	
		Chrysene	1.13E-08	NA	NA	2.68E-10	mg/m3	3.03E-18	NA	8.57E-10	mg/m3	9.70E-18	NA	
		Dibenzo(a,h)anthracene	1.13E-05	NA	NA	5.65E-11	mg/m3	6.39E-16	NA	1.74E-10	mg/m3	1.97E-15	NA	
		Indeno(1,2,3-cd)pyrene	1.13E-06	NA	NA	1.82E-10	mg/m3	2.06E-16	NA	5.58E-10	mg/m3	6.31E-16	NA	
		Naphthalene	6.41E-07	6.67E+01	Neurological and Respiratory	2.13E-11	mg/m3	1.37E-17	1.42E-09	1.18E-10	mg/m3	7.58E-17	7.88E-09	
		TPH												
		Diesel Range Organics (C10-C20)	NA	2.00E+00	Respiratory	2.27E-08	mg/m3	NA	4.55E-08	1.68E-07	mg/m3	NA	3.36E-07	
			<u> </u>					<u> </u>			<u> </u>			
ll .		Exposure Point Total						3.34E-11	7.55E-03		•	1.28E-11	1.43E-02	
	Exposure Medi	um Total					•	3.34E-11	7.55E-03		·	1.28E-11	1.43E-02	
Surface Soil								1.34E-07	1.57E-01			1.16E-06	3.13E-01	
Receptor Total								1.34E-07	1.57E-01			1.16E-06	3.13E-01	

Notes:

EPC - Exposure Point Concentration.

NA - Not applicable; no dose-response value.

ND - Not Detected.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

VOC - Volatile Organic Compound.

(1) The potential carcinogenic risk and noncarcinogenic hazard quotients are calculated per exposure area by multiplying the soil or air EPCs associated with each EA by the unit risks and hazard quotients calculated in the Tables G-1-2. CTE and G-2a-2. CTE based on a unit soil or air concentration.

Target Endpoint Evaluation		Target Endpoint Evaluation				
Organ	Endpoint HI	Organ	Endpoint HI			
Blood	4.88E-04	Blood	3.61E-03			
Decreased body and organ weights	1.94E-04	Decreased body and organ weights	9.62E-03			
Developmental	1.76E-03	Developmental	1.18E-02			
Endocrine	1.65E-08	Endocrine	1.32E-07			
Eye	1.81E-03	Eye	5.22E-02			
Hair	2.75E-03	Hair	1.72E-01			
Immune	1.81E-03	Immune	5.22E-02			
Kidney	4.88E-04	Kidney	3.61E-03			
Liver	4.88E-04	Liver	3.61E-03			
Nails	1.81E-03	Nails	5.22E-02			
Neurological	2.72E-03	Neurological	9.45E-03			
Reproductive	1.27E-03	Reproductive	1.02E-02			
Respiratory	6.64E-03	Respiratory	1.10E-02			
Skin	2.35E-03	Skin	1.95E-02			
Thyroid	1.39E-01	Thyroid	2.44E-02			
Vascular	2.35E-03	Vascular	1.95E-02			

Scenario Timeframe: Future

Receptor Population: Outdoor Industrial Worker

Medium	Exposure Medium	Chemical of Potential Concern	Unit Risk/HQ - Exposure Routes Total		Primary Target Organ(s)							nd Fleet Maintenance Area		
			Unit Cancer Risk	Unit Hazard		EPC		Cancer	Hazard	EPC		Cancer	Hazard	
				Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)	
Surface Soil	Surface Soil													
		Dioxin												
		2,3,7,8-TCDD-TEQ	5.76E-03	6.72E+02	Reproductive, Developmental	6.10E-05	mg/kg	3.52E-07	4.10E-02	6.19E-06	mg/kg	3.57E-08	4.16E-03	
		Inorganics												
		Arsenic	4.53E-08	1.07E-03	Skin, Vascular	1.14E+01	mg/kg	5.15E-07	1.21E-02	5.25E+00	mg/kg	2.38E-07	5.60E-03	
		Cobalt	NA	1.25E-03	Thyroid	1.03E+01	mg/kg	NA	1.29E-02	4.48E+00	mg/kg	NA	5.59E-03	
		Manganese	NA	1.56E-05	Neurological	2.77E+02	mg/kg	NA	4.32E-03	1.18E+02	mg/kg	NA	1.84E-03	
		Nickel	NA	1.88E-05	Decreased body and organ weights	1.69E+01	mg/kg	NA	3.17E-04	1.13E+01	mg/kg	NA	2.12E-04	
		Thallium	NA	3.75E-02	Hair	1.80E-01	mg/kg	NA	6.75E-03	1.03E-01	mg/kg	NA	3.86E-03	
		Vanadium	NA	7.44E-05	Hair	2.47E+01	mg/kg	NA	1.84E-03	2.08E+01	mg/kg	NA	1.54E-03	
		PCBs												
		Total PCBs	1.55E-07	4.10E-02	Ocular/eye, Nails, Immune	1.14E+00	mg/kg	1.77E-07	4.69E-02	6.80E-01	mg/kg	1.05E-07	2.79E-02	
		SVOCs												
		Benzo(a)anthracene	7.43E-09	NA	NA	8.21E-01	mg/kg	6.10E-09	NA	2.42E-01	mg/kg	1.80E-09	NA	
		Benzo(a)pyrene	7.43E-08	2.63E-03	Developmental	7.80E-01	mg/kg	5.79E-08	2.05E-03	2.49E-01	mg/kg	1.85E-08	6.54E-04	
		Benzo(b)fluoranthene	7.43E-09	NA	NA	1.17E+00	mg/kg	8.67E-09	NA	3.24E-01	mg/kg	2.41E-09	NA	
		Benzo(k)fluoranthene	7.43E-10	NA	NA	3.57E-01	mg/kg	2.65E-10	NA	1.32E-01	mg/kg	9.80E-11	NA	
		Chrysene	7.43E-11	NA	NA	8.58E-01	mg/kg	6.37E-11	NA	3.02E-01	mg/kg	2.24E-11	NA	
		Dibenzo(a,h)anthracene	7.43E-08	NA	NA	1.42E-01	mg/kg	1.05E-08	NA	5.68E-02	mg/kg	4.22E-09	NA	
		Indeno(1,2,3-cd)pyrene	7.43E-09	NA	NA	5.90E-01	mg/kg	4.38E-09	NA	1.92E-01	mg/kg	1.43E-09	NA	
		Naphthalene	NA	3.94E-05	Developmental	1.12E-01	mg/kg	NA	4.41E-06	2.78E-02	mg/kg	NA	1.09E-06	
		ТРН												
		Diesel Range Organics (C10-C20)	NA	3.75E-05	Liver, Kidney, Blood	1.30E+03	mg/kg	NA	4.87E-02	3.98E+01	mg/kg	NA	1.49E-03	
		Exposure Point Total	<u> </u>					1.13E-06	1.77E-01		<u> </u>	4.07E-07	5.28E-02	
	Exposure Medi	um Total	1	1				1.13E-06	1.77E-01			4.07E-07	5.28E-02	

Scenario Timeframe: Future

Receptor Population: Outdoor Industrial Worker

Receptor Age: Adult

		1											
Medium	Exposure Medium	Chemical of	Unit Risk/HQ - Exposure Routes Total			:	Salvage Yard and Waste Storage Area Stores and Fleet Maintenance Area						
		Potential Concern			Primary Target Organ(s)								
			Unit Cancer	Unit Hazard		E	PC	Cancer	Hazard	EF	PC	Cancer Risk (1)	Hazard
	,		Risk			Value	Units	Risk (1)	Quotient (1)	Value	Units		Quotient (1)
Surface Soil	Outdoor Air												
		Dioxin											
		2,3,7,8-TCDD-TEQ	7.17E-01	5.00E+06	Liver, reproductive, developmental, endocrine, respiratory, blood	1.07E-13	mg/m3	7.65E-14	5.33E-07	1.08E-14	mg/m3	7.76E-15	5.42E-08
		Inorganics											
		Arsenic	8.11E-05	1.33E+04	Neurological, developmental	1.99E-08	mg/m3	1.61E-12	2.65E-04	9.18E-09	mg/m3	7.45E-13	1.22E-04
		Cobalt	1.70E-04	3.33E+04	Respiratory	1.81E-08	mg/m3	3.07E-12	6.02E-04	7.83E-09	mg/m3	1.33E-12	2.61E-04
		Manganese	NA	4.00E+03	Neurological	4.84E-07	mg/m3	NA	1.94E-03	2.06E-07	mg/m3	NA	8.25E-04
		Nickel	4.90E-06	2.22E+03	Respiratory	2.96E-08	mg/m3	1.45E-13	6.58E-05	1.98E-08	mg/m3	9.72E-14	4.40E-05
		Thallium	NA	NA	NA	3.15E-10	mg/m3	NA	NA	1.80E-10	mg/m3	NA	NA
		Vanadium	NA	2.00E+03	Respiratory	4.31E-08	mg/m3	NA	8.63E-05	3.63E-08	mg/m3	NA	7.26E-05
		PCBs											
		Total PCBs	1.08E-05	NA	NA	2.00E-09	mg/m3	2.16E-14	NA	1.19E-09	mg/m3	1.28E-14	NA
		SVOCs											
		Benzo(a)anthracene	1.13E-06	NA	NA	1.44E-09	mg/m3	1.62E-15	NA	4.23E-10	mg/m3	4.79E-16	NA
		Benzo(a)pyrene	1.13E-05	1.00E+05	Developmental	1.36E-09	mg/m3	1.54E-14	1.36E-04	4.36E-10	mg/m3	4.93E-15	4.36E-05
		Benzo(b)fluoranthene	1.13E-06	NA	NA	2.04E-09	mg/m3	2.31E-15	NA	5.67E-10	mg/m3	6.41E-16	NA
		Benzo(k)fluoranthene	1.13E-07	NA	NA	6.24E-10	mg/m3	7.06E-17	NA	2.31E-10	mg/m3	2.61E-17	NA
		Chrysene	1.13E-08	NA	NA	1.50E-09	mg/m3	1.70E-17	NA	5.28E-10	mg/m3	5.98E-18	NA
		Dibenzo(a,h)anthracene	1.13E-05	NA	NA	2.48E-10	mg/m3	2.81E-15	NA	9.93E-11	mg/m3	1.12E-15	NA
		Indeno(1,2,3-cd)pyrene	1.13E-06	NA	NA	1.03E-09	mg/m3	1.17E-15	NA	3.36E-10	mg/m3	3.80E-16	NA
		Naphthalene	6.41E-07	6.67E+01	Neurological and Respiratory	1.96E-10	mg/m3	1.26E-16	1.31E-08	4.86E-11	mg/m3	3.12E-17	3.24E-09
		TPH											
	1	Diesel Range Organics (C10-C20)	NA	2.00E+00	Respiratory	2.27E-06	mg/m3	NA	4.54E-06	6.96E-08	mg/m3	NA	1.39E-07
		Exposure Point Total						4.95E-12	3.10E-03			2.20E-12	1.37E-03
	Exposure Medi	um Total						4.95E-12	3.10E-03			2.20E-12	1.37E-03
Surface Soil	•	-					•	1.13E-06	1.80E-01		•	4.07E-07	5.42E-02
Receptor Total	Receptor Total							1.13E-06	1.80E-01			4.07E-07	5.42E-02

Notes:

EPC - Exposure Point Concentration.

NA - Not applicable; no dose-response value.

ND - Not Detected.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

VOC - Volatile Organic Compound.

(1) The potential carcinogenic risk and noncarcinogenic hazard quotients are calculated per exposure area by multiplying the soil or air EPCs associated with each EA by the unit risks and hazard quotients calculated in the Tables G-1-2. CTE and G-2a-2. CTE based on a unit soil or air concentration.

Target Endpoint Evaluation		Target Endpoint Evaluation				
Organ	Endpoint HI	Organ	Endpoint HI			
Blood	4.87E-02	Blood	1.49E-03			
Decreased body and organ weights	3.17E-04	Decreased body and organ weights	2.12E-04			
Developmental	4.34E-02	Developmental	4.98E-03			
Endocrine	5.33E-07	Endocrine	5.42E-08			
Eye	4.69E-02	Eye	2.79E-02			
Hair	8.59E-03	Hair	5.41E-03			
Immune	4.69E-02	Immune	2.79E-02			
Kidney	4.87E-02	Kidney	1.49E-03			
Liver	4.87E-02	Liver	1.49E-03			
Nails	4.69E-02	Nails	2.79E-02			
Neurological	6.52E-03	Neurological	2.79E-03			
Reproductive	4.10E-02	Reproductive	4.16E-03			
Respiratory	7.59E-04	Respiratory	3.78E-04			
Skin	1.21E-02	Skin	5.60E-03			
Thyroid	1.29E-02	Thyroid	5.59E-03			
Vascular	1.21E-02	Vascular	5.60E-03			

Scenario Timeframe: Future

Receptor Population: Outdoor Industrial Worker

Receptor Age: Adult

Medium	Exposure Medium	Chemical of Potential Concern		Risk/HQ - e Routes Total Primary Target Organ(s) er Unit Hazard Quotient			PC	Cancer	Hazard Quotient (1)	Substation #7 EPC Cancer Hazard Value Units Risk (1) Quotient (1)			
			NISK	Quotient		Value	Units	NISK (1)	Quotient (1)	value	Units	Nisk (I)	Quotient (1)
Surface Soil	Surface Soil												
		Dioxin		. ===					==			0.505.00	
		2,3,7,8-TCDD-TEQ	5.76E-03	6.72E+02	Reproductive, Developmental	9.63E-06	mg/kg	5.55E-08	6.47E-03	4.37E-06	mg/kg	2.52E-08	2.94E-03
		Inorganics	4 = 0 = 00						==				==
		Arsenic	4.53E-08	1.07E-03	Skin, Vascular	2.97E+00	mg/kg	1.34E-07	3.17E-03	1.00E+01	mg/kg	4.53E-07	1.07E-02
		Cobalt	NA	1.25E-03	Thyroid	6.87E+00	mg/kg	NA	8.58E-03	4.03E+00	mg/kg	NA	5.03E-03
		Manganese	NA	1.56E-05	Neurological	1.87E+02	mg/kg	NA	2.92E-03	1.98E+02	mg/kg	NA	3.09E-03
		Nickel	NA	1.88E-05	Decreased body and organ weights	2.27E+01	mg/kg	NA	4.25E-04	1.04E+01	mg/kg	NA	1.95E-04
		Thallium	NA	3.75E-02	Hair	ND	mg/kg	ND	ND	1.38E-01	mg/kg	NA	5.18E-03
		Vanadium	NA	7.44E-05	Hair	1.93E+01	mg/kg	NA	1.44E-03	1.46E+01	mg/kg	NA	1.09E-03
		PCBs											
		Total PCBs	1.55E-07	4.10E-02	Ocular/eye, Nails, Immune	2.34E-01	mg/kg	3.62E-08	9.59E-03	4.62E-01	mg/kg	7.14E-08	1.89E-02
		SVOCs											
		Benzo(a)anthracene	7.43E-09	NA	NA	1.24E+00	mg/kg	9.18E-09	NA	4.01E-01	mg/kg	2.98E-09	NA
		Benzo(a)pyrene	7.43E-08	2.63E-03	Developmental	1.11E+00	mg/kg	8.21E-08	2.90E-03	3.17E-01	mg/kg	2.35E-08	8.32E-04
		Benzo(b)fluoranthene	7.43E-09	NA	NA	1.33E+00	mg/kg	9.88E-09	NA	7.13E-01	mg/kg	5.30E-09	NA
		Benzo(k)fluoranthene	7.43E-10	NA	NA	5.25E-01	mg/kg	3.90E-10	NA	3.65E-01	mg/kg	2.71E-10	NA
		Chrysene	7.43E-11	NA	NA	1.17E+00	mg/kg	8.66E-11	NA	7.10E-01	mg/kg	5.27E-11	NA
		Dibenzo(a,h)anthracene	7.43E-08	NA	NA	2.47E-01	mg/kg	1.83E-08	NA	9.44E-02	mg/kg	7.01E-09	NA
		Indeno(1,2,3-cd)pyrene	7.43E-09	NA	NA	7.78E-01	mg/kg	5.78E-09	NA	2.95E-01	mg/kg	2.19E-09	NA
		Naphthalene	NA	3.94E-05	Developmental	3.93E-02	mg/kg	NA	1.55E-06	2.70E-02	mg/kg	NA	1.06E-06
II .		ТРН									•		
		Diesel Range Organics (C10-C20)	NA	3.75E-05	Liver, Kidney, Blood	ND	mg/kg	ND	ND	1.90E+01	mg/kg	NA	7.13E-04
		Exposure Point Total	<u> </u>					3.52E-07	3.55E-02			5.91E-07	4.87E-02
	Exposure Media	um Total	l	II.				3.52E-07	3.55E-02			5.91E-07	4.87E-02

Scenario Timeframe: Future

Receptor Population: Outdoor Industrial Worker

Receptor Age: Adult

Medium	Exposure Medium	Chemical of Potential Concern		Jnit Risk/HQ - sure Routes Total Primary Target Organ(s)			Offices and	d Parking Lot		Substation #7			
			Unit Cancer	Unit Hazard		EI	PC	Cancer	Hazard	EF	PC	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Surface Soil	Outdoor Air												
		Dioxin											
		2,3,7,8-TCDD-TEQ	7.17E-01	5.00E+06	Liver, reproductive, developmental, endocrine, respiratory, blood	1.68E-14	mg/m3	1.21E-14	8.42E-08	7.64E-15	mg/m3	5.48E-15	3.82E-08
		Inorganics											
		Arsenic	8.11E-05	1.33E+04	Neurological, developmental	5.19E-09	mg/m3	4.21E-13	6.92E-05	1.75E-08	mg/m3	1.42E-12	2.33E-04
		Cobalt	1.70E-04	3.33E+04	Respiratory	1.20E-08	mg/m3	2.04E-12	4.00E-04	7.04E-09	mg/m3	1.19E-12	2.35E-04
		Manganese	NA	4.00E+03	Neurological	3.27E-07	mg/m3	NA	1.31E-03	3.45E-07	mg/m3	NA	1.38E-03
		Nickel	4.90E-06	2.22E+03	Respiratory	3.97E-08	mg/m3	1.94E-13	8.81E-05	1.82E-08	mg/m3	8.92E-14	4.04E-05
		Thallium	NA	NA	NA	ND	mg/m3	ND	ND	2.41E-10	mg/m3	NA	NA
		Vanadium	NA	2.00E+03	Respiratory	3.38E-08	mg/m3	NA	6.76E-05	2.55E-08	mg/m3	NA	5.11E-05
		PCBs											
		Total PCBs	1.08E-05	NA	NA	4.09E-10	mg/m3	4.41E-15	NA	8.08E-10	mg/m3	8.71E-15	NA
		SVOCs											
		Benzo(a)anthracene	1.13E-06	NA	NA	2.16E-09	mg/m3	2.45E-15	NA	7.01E-10	mg/m3	7.94E-16	NA
		Benzo(a)pyrene	1.13E-05	1.00E+05	Developmental	1.93E-09	mg/m3	2.19E-14	1.93E-04	5.54E-10	mg/m3	6.27E-15	5.54E-05
		Benzo(b)fluoranthene	1.13E-06	NA	NA	2.33E-09	mg/m3	2.63E-15	NA	1.25E-09	mg/m3	1.41E-15	NA
		Benzo(k)fluoranthene	1.13E-07	NA	NA	9.18E-10	mg/m3	1.04E-16	NA	6.38E-10	mg/m3	7.22E-17	NA
		Chrysene	1.13E-08	NA	NA	2.04E-09	mg/m3	2.31E-17	NA	1.24E-09	mg/m3	1.41E-17	NA
		Dibenzo(a,h)anthracene	1.13E-05	NA	NA	4.32E-10	mg/m3	4.89E-15	NA	1.65E-10	mg/m3	1.87E-15	NA
		Indeno(1,2,3-cd)pyrene	1.13E-06	NA	NA	1.36E-09	mg/m3	1.54E-15	NA	5.16E-10	mg/m3	5.84E-16	NA
		Naphthalene	6.41E-07	6.67E+01	Neurological and Respiratory	6.87E-11	mg/m3	4.41E-17	4.58E-09	4.72E-11	mg/m3	3.03E-17	3.15E-09
		TPH											
		Diesel Range Organics (C10-C20)	NA	2.00E+00	Respiratory	ND	mg/m3	ND	ND	3.32E-08	mg/m3	NA	6.65E-08
		Exposure Point Total	1					2.70E-12	2.425.02			2.73E-12	2.00E-03
 	F		1						2.12E-03				
2 (2 !	Exposure Medi	um iotai	1					2.70E-12	2.12E-03			2.73E-12	2.00E-03
Surface Soil			<u> </u>					3.52E-07	3.76E-02			5.91E-07	5.07E-02
Receptor Total			<u> </u>					3.52E-07	3.76E-02			5.91E-07	5.07E-02

Notes:

EPC - Exposure Point Concentration.

NA - Not applicable; no dose-response value.

ND - Not Detected.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

VOC - Volatile Organic Compound.

(1) The potential carcinogenic risk and noncarcinogenic hazard quotients are calculated per exposure area by multiplying the soil or air EPCs associated with each EA by the unit risks and hazard quotients calculated in the Tables G-1-2. CTE and G-2a-2. CTE based on a unit soil or air concentration.

Target Endpoint Evaluation		Target Endpoint Evaluation	
Organ	Endpoint HI	Organ	Endpoint HI
Blood	8.42E-08	Blood	7.13E-04
Decreased body and organ weights	4.25E-04	Decreased body and organ weights	1.95E-04
Developmental	9.63E-03	Developmental	4.06E-03
Endocrine	8.42E-08	Endocrine	3.82E-08
Eye	9.59E-03	Eye	1.89E-02
Hair	1.44E-03	Hair	6.26E-03
Immune	9.59E-03	Immune	1.89E-02
Kidney		Kidney	7.13E-04
Liver	8.42E-08	Liver	7.13E-04
Nails	9.59E-03	Nails	1.89E-02
Neurological	4.29E-03	Neurological	4.70E-03
Reproductive	6.47E-03	Reproductive	2.94E-03
Respiratory	5.56E-04	Respiratory	3.26E-04
Skin	3.17E-03	Skin	1.07E-02
Thyroid	8.58E-03	Thyroid	5.03E-03
Vascular	3.17E-03	Vascular	1.07E-02

Scenario Timeframe: Future

Receptor Population: Outdoor Industrial Worker

Receptor Age: Adult

Medium	Exposure Medium	Chemical of Potential Concern		Risk/HQ - Routes Total Primary Target Organ(s)			Transfor	mer Shop			Vehicle Re	fueling Area	
			Unit Cancer	Unit Hazard		EI	PC .	Cancer	Hazard	EF	C	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Surface Soil	Surface Soil												
		Dioxin											
		2,3,7,8-TCDD-TEQ	5.76E-03	6.72E+02	Reproductive, Developmental	ND	mg/kg	ND	ND	ND	mg/kg	ND	ND
		Inorganics											
		Arsenic	4.53E-08	1.07E-03	Skin, Vascular	1.70E+00	mg/kg	7.70E-08	1.81E-03	ND	mg/kg	ND	ND
		Cobalt	NA	1.25E-03	Thyroid	2.70E+00	mg/kg	NA	3.38E-03	ND	mg/kg	ND	ND
		Manganese	NA	1.56E-05	Neurological	2.60E+02	mg/kg	NA	4.06E-03	ND	mg/kg	ND	ND
		Nickel	NA	1.88E-05	Decreased body and organ weights	1.60E+01	mg/kg	NA	3.00E-04	ND	mg/kg	ND	ND
		Thallium	NA	3.75E-02	Hair	ND	mg/kg	ND	ND	ND	mg/kg	ND	ND
		Vanadium	NA	7.44E-05	Hair	9.70E+00	mg/kg	NA	7.22E-04	ND	mg/kg	ND	ND
		PCBs											
		Total PCBs	1.55E-07	4.10E-02	Ocular/eye, Nails, Immune	1.89E+02	mg/kg	2.92E-05	7.76E+00	7.40E-02	mg/kg	1.14E-08	3.03E-03
		SVOCs											
		Benzo(a)anthracene	7.43E-09	NA	NA	3.24E-01	mg/kg	2.41E-09	NA	1.75E+00	mg/kg	1.30E-08	NA
		Benzo(a)pyrene	7.43E-08	2.63E-03	Developmental	2.86E-01	mg/kg	2.12E-08	7.51E-04	8.85E-01	mg/kg	6.57E-08	2.32E-03
		Benzo(b)fluoranthene	7.43E-09	NA	NA	3.80E-01	mg/kg	2.82E-09	NA	1.48E+00	mg/kg	1.10E-08	NA
		Benzo(k)fluoranthene	7.43E-10	NA	NA	1.42E-01	mg/kg	1.05E-10	NA	4.60E-01	mg/kg	3.42E-10	NA
		Chrysene	7.43E-11	NA	NA	3.23E-01	mg/kg	2.40E-11	NA	1.71E+00	mg/kg	1.27E-10	NA
		Dibenzo(a,h)anthracene	7.43E-08	NA	NA	7.51E-02	mg/kg	5.58E-09	NA	2.15E-01	mg/kg	1.60E-08	NA
		Indeno(1,2,3-cd)pyrene	7.43E-09	NA	NA	2.41E-01	mg/kg	1.79E-09	NA	5.55E-01	mg/kg	4.12E-09	NA
		Naphthalene	NA	3.94E-05	Developmental	1.70E-02	mg/kg	NA	6.70E-07	3.43E-01	mg/kg	NA	1.35E-05
		ТРН											
		Diesel Range Organics (C10-C20)	NA	3.75E-05	Liver, Kidney, Blood	8.00E+01	mg/kg	NA	3.00E-03	3.80E+02	mg/kg	NA	1.43E-02
		Exposure Point Total	1					2.94E-05	7.77E+00			1.22E-07	1.96E-02
	Exposure Media							2.94E-05	7.77E+00			1.22E-07	1.96E-02

Scenario Timeframe: Future

Receptor Population: Outdoor Industrial Worker

Receptor Age: Adult

Medium	Exposure Medium	Chemical of Potential Concern		sk/HQ - Routes Total			Transfor	rmer Shop		Vehicle Refueling Area			
			Unit Cancer	Unit Hazard		EI	PC	Cancer	Hazard	EF	PC	Cancer	Hazard
			Risk	Quotient		Value	Units	Risk (1)	Quotient (1)	Value	Units	Risk (1)	Quotient (1)
Surface Soil	Outdoor Air												
		Dioxin											
		2,3,7,8-TCDD-TEQ	7.17E-01	5.00E+06	Liver, reproductive, developmental, endocrine, respiratory, blood	ND	mg/m3	ND	ND	ND	mg/m3	ND	ND
		Inorganics											
		Arsenic	8.11E-05	1.33E+04	Neurological, developmental	2.97E-09	mg/m3	2.41E-13	3.96E-05	ND	mg/m3	ND	ND
		Cobalt	1.70E-04	3.33E+04	Respiratory	4.72E-09	mg/m3	8.01E-13	1.57E-04	ND	mg/m3	ND	ND
		Manganese	NA	4.00E+03	Neurological	4.55E-07	mg/m3	NA	1.82E-03	ND	mg/m3	ND	ND
		Nickel	4.90E-06	2.22E+03	Respiratory	2.80E-08	mg/m3	1.37E-13	6.22E-05	ND	mg/m3	ND	ND
		Thallium	NA	NA	NA	ND	mg/m3	ND	ND	ND	mg/m3	ND	ND
		Vanadium	NA	2.00E+03	Respiratory	1.70E-08	mg/m3	NA	3.39E-05	ND	mg/m3	ND	ND
		PCBs											
		Total PCBs	1.08E-05	NA	NA	3.31E-07	mg/m3	3.57E-12	NA	1.29E-10	mg/m3	1.39E-15	NA
		SVOCs											
		Benzo(a)anthracene	1.13E-06	NA	NA	5.67E-10	mg/m3	6.41E-16	NA	3.07E-09	mg/m3	3.47E-15	NA
		Benzo(a)pyrene	1.13E-05	1.00E+05	Developmental	5.00E-10	mg/m3	5.66E-15	5.00E-05	1.55E-09	mg/m3	1.75E-14	1.55E-04
		Benzo(b)fluoranthene	1.13E-06	NA	NA	6.65E-10	mg/m3	7.52E-16	NA	2.58E-09	mg/m3	2.92E-15	NA
		Benzo(k)fluoranthene	1.13E-07	NA	NA	2.48E-10	mg/m3	2.81E-17	NA	8.05E-10	mg/m3	9.10E-17	NA
		Chrysene	1.13E-08	NA	NA	5.65E-10	mg/m3	6.39E-18	NA	2.99E-09	mg/m3	3.38E-17	NA
		Dibenzo(a,h)anthracene	1.13E-05	NA	NA	1.31E-10	mg/m3	1.49E-15	NA	3.76E-10	mg/m3	4.25E-15	NA
		Indeno(1,2,3-cd)pyrene	1.13E-06	NA	NA	4.22E-10	mg/m3	4.77E-16	NA	9.71E-10	mg/m3	1.10E-15	NA
		Naphthalene	6.41E-07	6.67E+01	Neurological and Respiratory	2.97E-11	mg/m3	1.91E-17	1.98E-09	6.00E-10	mg/m3	3.85E-16	4.00E-08
		TPH											
		Diesel Range Organics (C10-C20)	NA	2.00E+00	Respiratory	1.40E-07	mg/m3	NA	2.80E-07	6.65E-07	mg/m3	NA	1.33E-06
									<u> </u>			<u> </u>	
		Exposure Point Total				_		4.76E-12	2.16E-03			3.12E-14	1.56E-04
	Exposure Medi	um Total						4.76E-12	2.16E-03			3.12E-14	1.56E-04
Surface Soil								2.94E-05	7.77E+00			1.22E-07	1.98E-02
Receptor Total								2.94E-05	7.77E+00			1.22E-07	1.98E-02

Notes:

EPC - Exposure Point Concentration.

NA - Not applicable; no dose-response value.

ND - Not Detected.

PCB - Polychlorinated Biphenyl.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

VOC - Volatile Organic Compound.

(1) The potential carcinogenic risk and noncarcinogenic hazard quotients are calculated per exposure area by multiplying the soil or air EPCs associated with each EA by the unit risks and hazard quotients calculated in the Tables G-1-2. CTE and G-2a-2. CTE based on a unit soil or air concentration.

Target Endpoint Evaluation		Target Endpoint Evaluation	
Organ	Endpoint HI	Organ	Endpoint HI
Blood	3.00E-03	Blood	1.43E-02
Decreased body and organ weights	3.00E-04	Decreased body and organ weights	
Developmental	8.41E-04	Developmental	2.49E-03
Endocrine		Endocrine	
Eye	7.76E+00	Eye	3.03E-03
Hair	7.22E-04	Hair	
Immune	7.76E+00	Immune	3.03E-03
Kidney	3.00E-03	Kidney	1.43E-02
Liver	3.00E-03	Liver	1.43E-02
Nails	7.76E+00	Nails	3.03E-03
Neurological	5.92E-03	Neurological	4.00E-08
Reproductive		Reproductive	
Respiratory	2.54E-04	Respiratory	1.37E-06
Skin	1.81E-03	Skin	
Thyroid	3.38E-03	Thyroid	
Vascular	1.81E-03	Vascular	

Scenario Timeframe: Future

Receptor Population: Recreational Visitor Receptor Age: Older Child/Teen (7 to <19 years)

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcin	ogenic Risk			Non-Carcinogenio	c Hazard Quotien	nt	
				Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Surface Soil	Surface Soil	Hypothetical Future Park Land/Green	Dioxin									
		Space	2,3,7,8-TCDD-TEQ	5.17E-10		2.45E-11	5.42E-10	Reproductive, Developmental	6.63E-05		3.14E-06	6.94E-05
		Space	Inorganics									
			Arsenic	4.17E-09		3.29E-10	4.50E-09	Skin, Vascular	1.08E-04		8.53E-06	1.17E-04
			Cobalt	NA		NA	NA	Thyroid	9.09E-03		NA	9.09E-03
			Manganese	NA		NA	NA	Neurological	1.21E-04		NA	1.21E-04
								Decreased body and organ				
			Nickel	NA		NA	NA	weights	1.27E-05		NA	1.27E-05
			Thallium	ND		ND	ND	Hair	ND		ND	ND
			Vanadium	NA		NA	NA	Hair	1.80E-04		NA	1.80E-04
			PCBs									
			Total PCBs	1.86E-10		4.11E-11	2.27E-10	Ocular/eye, Nails, Immune	5.43E-05		1.20E-05	6.63E-05
			SVOCs									
			Benzo(a)anthracene	7.21E-11		1.48E-11	8.69E-11	NA	NA		NA	NA
			Benzo(a)pyrene	8.16E-10		1.67E-10	9.83E-10	Developmental	1.27E-05		2.61E-06	1.53E-05
			Benzo(b)fluoranthene	8.68E-11		1.78E-11	1.05E-10	NA	NA		NA	NA
			Benzo(k)fluoranthene	3.58E-12		7.35E-13	4.31E-12	NA	NA		NA	NA
			Chrysene	8.05E-13		1.65E-13	9.70E-13	NA	NA		NA	NA
			Dibenzo(a,h)anthracene	1.70E-10		3.49E-11	2.05E-10	NA	NA		NA	NA
			Indeno(1,2,3-cd)pyrene	5.47E-11		1.12E-11	6.60E-11	NA	NA		NA	NA
			Naphthalene	NA		NA	NA	Developmental	1.50E-08		3.08E-09	1.81E-08
			TPH									
			Diesel Range Organics (C10-C20)	NA	-	NA	NA	Liver, Kidney, Blood	3.19E-05	-	NA	3.19E-05
		Exposure Point Total			1		6.72E-09					9.70E-03
	Exposure Medium Total	11.	1				6.72E-09					9.70E-03

Scenario Timeframe: Future

Receptor Population: Recreational Visitor Receptor Age: Older Child/Teen (7 to <19 years)

Surface Soil	Outdoor Air	Hypothetical Future Park Land/Green Space	Dioxin 2,3,7,8-TCDD-TEQ	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Surface Soil		Hypothetical Future Park Land/Green Space	2,3,7,8-TCDD-TEQ					1		+		
		Hypothetical Future Park Land/Green Space	2,3,7,8-TCDD-TEQ									
		Hypothetical Future Park Land/Green Space	2,3,7,8-TCDD-TEQ		+							
								Liver, reproductive, developmental, endocrine,				
					2.34E-17		2.34E-17	respiratory, blood		1.79E-10		1.79E-10
			Inorganics		4							
			Arsenic	-	3.08E-15		3.08E-15	Neurological, developmental	-	5.56E-07		5.56E-07
			Cobalt		3.25E-13		3.25E-13	Respiratory	-	7.02E-05		7.02E-05
			Manganese		NA		NA	Neurological	-	8.95E-06		8.95E-06
			Nickel		8.75E-16 ND		8.75E-16	Respiratory	-	4.36E-07 ND		4.36E-07 ND
			Thallium				ND	NA Desciratori				
			Vanadium PCBs		NA		NA	Respiratory	-	1.40E-06	-	1.40E-06
			Total PCBs		8.21E-18		8.21E-18	NA NA		NA NA		NA
			SVOCs		0.21E-10		0.21E-10	INA	-	INA		INA
			Benzo(a)anthracene		6.68E-18		6.68E-18	NA		NA NA		NA
			Benzo(a)pyrene		7.56E-17		7.56E-17	Developmental		2.94E-07		2.94E-07
			Benzo(b)fluoranthene		8.05E-17		8.05E-18	NA NA		2.94E-07 NA		2.94E-07 NA
			Benzo(k)fluoranthene		3.32E-19		3.32E-19	NA NA		NA NA		NA NA
			Chrysene		7.46E-20		7.46E-20	NA NA		NA NA		NA NA
			Dibenzo(a,h)anthracene		1.58E-17		1.58E-17	NA NA		NA NA		NA NA
			Indeno(1,2,3-cd)pyrene		5.07E-18		5.07E-18	NA		NA NA		NA NA
			Naphthalene		1.35E-19		1.35E-19	Neurological and Respiratory	-	1.54E-11		1.54E-11
			TPH		1.00L 10		1.00E 10			1.0.2.11		
			Diesel Range Organics (C10-C20)		NA		NA	Respiratory		4.93E-10		4.93E-10
					1			,				
	İ	Exposure Point Total					3.29E-13					8.18E-05
Exi	xposure Medium Total	1	II.				3.29E-13					8.18E-05
Surface Soil	1						6.72E-09					9.78E-03
Receptor Total							6.72E-09					9.78E-03

Notes:

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

NA - Not applicable/no dose-response value.

ND - Not Detected in this area.

PCB - Polychlorinated Biphenyl.

RfD - Oral Reference Dose. SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-TCDD Toxicity Equivalence.

Target		Target Organ Hazard Index		
Organ	Chemical (ing/dermal)	Chemical (inhalation)	Surface Soil	Total
Blood	DRO	TCDD-TEQ	3.19E-05	3.19E-05
Decreased body and organ weights	Nickel		1.27E-05	1.27E-05
Developmental	TCDD-TEQ, BaP, Naphthalene	TCDD-TEQ, Arsenic, Benzo(a)pyrene	8.56E-05	8.56E-05
Endocrine		TCDD-TEQ	1.79E-10	1.79E-10
Eye	Total PCBs		6.63E-05	6.63E-05
Hair	Thallium, Vanadium		1.80E-04	1.80E-04
Immune	Total PCBs		6.63E-05	6.63E-05
Kidney	DRO		3.19E-05	3.19E-05
Liver	DRO	TCDD-TEQ	3.19E-05	3.19E-05
Nails	Total PCBs		6.63E-05	6.63E-05
Nervous System				
Reproductive	TCDD-TEQ	TCDD-TEQ	6.94E-05	6.94E-05
Respiratory		Cobalt, DRO, Nickel, Vanadium,	7.20E-05	7.20E-05
Skin	Arsenic		1.17E-04	1.17E-04
Thyroid	Cobalt		9.09E-03	9.09E-03
Vascular	Arsenic		1.17E-04	1.17E-04

Table H-2-4. CTE Summary of Receptor Risks and Hazards for COPCs - Adult Angler (Mixed Fish Diet) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	k	Noi	n-Carcinogenic Hazard Quotient		
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total
Sediment	Fringe	Waterside								
ļ	Surface	Investigation	Dioxin							
ļ	Sediment	Area	2,3,7,8-TCDD-TEQ	1.50E-08	2.05E-08	3.55E-08	Reproductive, Developmental	1.15E-03	1.58E-03	2.73E-03
ļ			Metals							
ļ			Aluminum	NA	NA	NA	Neurological	8.98E-05	NA	8.98E-05
ļ			Antimony	NA	NA	NA	Mortality, Blood	5.37E-05	NA	5.37E-05
ļ			Arsenic	7.95E-09	1.81E-08	2.61E-08	Skin, Vascular	1.24E-04	2.82E-04	4.06E-04
ļ			Cobalt	NA	NA	NA	Thyroid	5.60E-04	NA	5.60E-04
ļ			Cyanide	NA	NA	NA	Reproductive	1.55E-05	NA	1.55E-05
ļ			Manganese	NA	NA	NA	Neurological	9.73E-05	NA	9.73E-05
ļ			Nickel	NA	NA	NA	Decreased body and organ weights	2.82E-05	NA	2.82E-05
ļ			Thallium	NA	NA	NA	Hair	2.34E-04	NA	2.34E-04
ļ			Vanadium	NA	NA	NA	Hair	1.92E-04	NA	1.92E-04
ļ			PCBs							
ļ			Total PCBs	1.42E-09	9.07E-09	1.05E-08	Ocular/eye, Nails, Immune	2.49E-04	1.59E-03	1.84E-03
ļ			SVOCs				• • • • • • • • • • • • • • • • • • • •			
ļ			Benzo(a)anthracene	9.37E-11	5.56E-10	6.49E-10	NA	NA	NA	NA
ļ			Benzo(a)pyrene	1.03E-09	6.12E-09	7.15E-09	Developmental	2.41E-05	1.43E-04	1.67E-04
ļ			Benzo(b)fluoranthene	1.54E-10	9.14E-10	1.07E-09	NA	NA NA	NA	NA
ļ			Benzo(k)fluoranthene	5.64E-12	3.34E-11	3.91E-11	NA	NA	NA	NA
ļ			Chrysene	1.39E-12	8.25E-12	9.64E-12	NA	NA	NA	NA
ļ			Dibenzo(a,h)anthracene	2.35E-10	1.39E-09	1.63E-09	NA	NA NA	NA	NA
ļ			Indeno(1,2,3-cd)pyrene	9.06E-11	5.37E-10	6.27E-10	NA	NA NA	NA NA	NA
ļ			TPH	0.002 11	0.072 10	0.272 10		101		10.
			Diesel Range Organics (C10-C20)	NA	NA	NA	Liver, Kidney, Blood	1.01E-04	NA	1.01E-04
ŀ			Chemical Total	2.60E-08	5.72E-08	8.32E-08		2.92E-03	3.59E-03	6.51E-03
ŀ		Exposure Point Tota		2.00L-00	J.72L-00	8.32E-08		Z.92L-03	3.39L-03	6.51E-03
ľ	Exposure Medium Total	<u> </u>	11			8.32E-08				
	Exposure Medium Total									6.51E-03
Sediment Total			1			8.32E-08				6.51E-03
Surface	Surface	Waterside								
Water	Water	Investigation	Dioxin							
ļ		Area	2,3,7,8-TCDD-TEQ	1.35E-11	Outside EPD	1.35E-11	Reproductive, Developmental	1.04E-06	Outside EPD	1.04E-06
ļ			Metals							
ļ			Arsenic	2.97E-10	1.41E-10	4.39E-10	Skin, Vascular	4.63E-06	2.20E-06	6.82E-06
ļ			Cobalt	NA	NA	NA	Thyroid	5.81E-06	1.10E-06	6.92E-06
			Manganese	NA	NA	NA	Neurological	1.04E-05	1.23E-04	1.34E-04
İ										
			Pesticides							
			4,4'-DDT	1.12E-13	Outside EPD	1.12E-13	Liver	4.63E-09	Outside EPD	4.63E-09
				1.12E-13	Outside EPD	1.12E-13	· ·	4.63E-09	Outside EPD	4.63E-09
			4,4'-DDT	9.56E-13	Outside EPD	9.56E-13	Liver Ocular/eye, Nails, Immune	8.36E-07	Outside EPD	8.36E-07
			4,4'-DDT PCBs				· ·			
		Exposure Point Tota	4,4'-DDT PCBs Total PCBs Chemical Total	9.56E-13	Outside EPD	9.56E-13	· ·	8.36E-07	Outside EPD	8.36E-07
	Exposure Medium Total		4,4'-DDT PCBs Total PCBs Chemical Total	9.56E-13	Outside EPD	9.56E-13 4.53E-10	· ·	8.36E-07	Outside EPD	8.36E-07 1.49E-04

Table H-2-4. CTE Summary of Receptor Risks and Hazards for COPCs - Adult Angler (Mixed Fish Diet) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Adult

Medium	Exposure Medium	Exposure Point			Carcinogenic Ris	sk	Non-Carcinogenic Hazard Quotient				
				Ingestion	Dermal	Exposure	Primary	Ingestion	Dermal	Exposure	
						Routes Total	Target Organ(s)			Routes Total	
Fish Tissue	Fish Fillet Tissue -	Upper Anacostia									
	Mixed Diet (1)		Metals								
			Mercury	NA		NA	Neurological (methyl mercury)	3.38E-02		3.38E-02	
			Pesticides								
			4,4'-DDD	3.99E-09		3.99E-09	Liver	3.88E-03		3.88E-03	
			4,4'-DDE	1.61E-08		1.61E-08	Liver, Developmental	1.10E-03		1.10E-03	
			Aldrin	7.53E-09		7.53E-09	Liver	1.03E-04		1.03E-04	
			alpha-Chlordane	1.02E-08		1.02E-08	Liver	4.07E-04		4.07E-04	
			cis-Nonachlor	4.39E-09		4.39E-09	Liver	1.76E-04		1.76E-04	
			Dieldrin	1.40E-07		1.40E-07	Liver	1.23E-03		1.23E-03	
			gamma-Chlordane	3.69E-09		3.69E-09	Liver	1.48E-04		1.48E-04	
			Heptachlor epoxide	3.63E-08		3.63E-08	Liver	2.15E-03		2.15E-03	
			Mirex	9.62E-09		9.62E-09	Endocrine, Liver	1.87E-05		1.87E-05	
			Oxychlordane	1.93E-09		1.93E-09	Liver	7.72E-05		7.72E-05	
			trans-Nonachlor	1.13E-08		1.13E-08	Liver	4.53E-04		4.53E-04	
			PCBs								
			Total PCBs	1.20E-06		1.20E-06	Ocular/eye, Nails, Immune	2.10E-01		2.10E-01	
			PCB-TEQ	3.92E-07		3.92E-07	Reproductive, Developmental	3.02E-02		3.02E-02	
Fish Tissue Total - Uppe	er Anacostia (Total PCBs))3				1.44E-06			·	2.53E-01	
Fish Tissue Total - Uppe	er Anacostia (PCB-TEQ)*					6.37E-07				7.37E-02	
	Total Re	ceptor Risk/Hazard - U	pper Anacostia (includes Total PCBs for s	ediment, surface v	vater, and fish)	1.53E-06			·	2.60E-01	
1	Total Receptor Risk/Haza	rd - Upper Anacostia (i	ncludes Total PCBs for sediment and surfa	ace water and PCE	3-TEQ for fish)	7.21E-07				8.03E-02	

Notes

NA - Not applicable.

EPD - Effective Predictive Domain.

PCB - Polychlorinated Biphenyl.

PCB-TEQ - PCB Toxicity Equivalence.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-Tetrachloro-dibenzo-p-dioxin Toxicity Equivalence.

- (1) Assumes a mixed fish diet of the species with available fillet data based on a pooled EPC.
- (2) Total Risk/Hazard based on all COPCs except PCB-TEQ.
- (3) Total Risk/Hazard based on all COPCs except Total PCBs.

	Target Organ HI - Sediment, Surface W	ater, and Upper Anaco	ostia Fish		
Organ	Chemical	Sediment	Surface Water	Fish Tissue	Total
	Antimony, DRO	1.55E-04			2E-04
Decreased body and organ weights	Nickel	2.82E-05			3E-05
Developmental	TCDD-TEQ, PCB-TEQ, Benzo(a)pyrene, 4,4-DDE	2.89E-03	1.04E-06	3.13E-02	3E-02
Endocrine	Mirex			1.87E-05	2E-05
Eye	Total PCBs	1.84E-03	8.36E-07	2.10E-01	2E-01
Hair	Thallium, Vanadium	4.26E-04			4E-04
Immune	Total PCBs	1.84E-03	8.36E-07	2.10E-01	2E-01
Kidney	DRO	1.01E-04			1E-04
Liver	Pesticides, DRO	1.01E-04	4.63E-09	9.74E-03	1E-02
Mortality	Antimony	5.37E-05			5E-05
Nails	Total PCBs	1.84E-03	8.36E-07	2.10E-01	2E-01
Neurological	Aluminum, Manganese, Methyl Mercury	1.87E-04	1.34E-04	3.38E-02	3E-02
Reproductive	TCDD-TEQ, PCB-TEQ, Cyanide	2.74E-03	1.04E-06	3.02E-02	3E-02
Skin	Arsenic	4.06E-04	6.82E-06		4E-04
Thyroid	Cobalt	5.60E-04	6.92E-06		6E-04
Vascular	Arsenic	4.06E-04	6.82E-06		4E-04

Table H-2-5. CTE Summary of Receptor Risks and Hazards for COPCs - Older Child/Teen Angler (Mixed Fish Diet) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Older Child/Teen

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	k	N	Ion-Carcinogenic Hazard Quotient		
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total
Sediment	Fringe	Waterside								
	Surface	Investigation	Dioxin							
	Sediment	Area	2,3,7,8-TCDD-TEQ	1.36E-08	1.10E-08	2.46E-08	Reproductive, Developmental	1.74E-03	1.41E-03	3.15E-03
			Metals							
			Aluminum	NA	NA	NA	Neurological	1.35E-04	NA	1.35E-04
			Antimony	NA	NA	NA	Mortality, Blood	1.35E-04	NA	1.35E-04
			Arsenic	7.20E-09	9.76E-09	1.70E-08	Skin, Vascular	1.87E-04	2.53E-04	4.40E-04
			Cobalt	NA	NA	NA	Thyroid	8.45E-04	NA	8.45E-04
			Cyanide	NA	NA	NA	Reproductive	2.33E-05	NA	2.33E-05
			Manganese	NA	NA	NA	Neurological	1.47E-04	NA	1.47E-04
			Nickel	NA	NA	NA	Decreased body and organ weights	4.26E-05	NA	4.26E-05
			Thallium	NA	NA	NA	Hair	3.53E-04	NA	3.53E-04
			Vanadium	NA	NA	NA	Hair	2.90E-04	NA	2.90E-04
			PCBs							
			Total PCBs	1.29E-09	4.88E-09	6.17E-09	Ocular/eye, Nails, Immune	3.75E-04	1.42E-03	1.80E-03
			SVOCs							
			Benzo(a)anthracene	2.12E-10	7.48E-10	9.60E-10	NA	NA	NA	NA
			Benzo(a)pyrene	2.34E-09	8.24E-09	1.06E-08	Developmental	3.64E-05	1.28E-04	1.65E-04
			Benzo(b)fluoranthene	3.49E-10	1.23E-09	1.58E-09	NA	NA	NA	NA
			Benzo(k)fluoranthene	1.28E-11	4.50E-11	5.78E-11	NA	NA	NA	NA
			Chrysene	3.15E-12	1.11E-11	1.43E-11	NA	NA	NA	NA
			Dibenzo(a,h)anthracene	5.32E-10	1.88E-09	2.41E-09	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	2.05E-10	7.22E-10	9.27E-10	NA	NA	NA	NA
			TPH							
			Diesel Range Organics (C10-C2	NA	NA	NA	Liver, Kidney, Blood	1.53E-04	NA	1.53E-04
			Chemical Total	2.57E-08	3.85E-08	6.42E-08		4.46E-03	3.22E-03	7.68E-03
				2.57E-06	3.00E-00			4.40E-U3	3.22E-03	
		Exposure Point Total				6.42E-08				7.68E-03
	Exposure Medium Total					6.42E-08				7.68E-03
Sediment Total						6.42E-08				7.68E-03
Surface	Surface	Waterside								
Water	Water	Investigation	Dioxin							
		Area	2,3,7,8-TCDD-TEQ	1.22E-11	Outside EPD	1.22E-11	Reproductive, Developmental	1.57E-06	Outside EPD	1.57E-06
			Metals							
			Arsenic	2.69E-10	9.12E-11	3.61E-10	Skin, Vascular	6.98E-06	2.37E-06	9.35E-06
		1	Cobalt	NA	NA	NA	Thyroid	8.77E-06	1.19E-06	9.96E-06
			Manganese	NA	NA	NA	Neurological	1.57E-05	1.33E-04	1.48E-04
		1	Pesticides							
		1	4,4'-DDT	1.02E-13	Outside EPD	1.02E-13	Liver	6.98E-09	Outside EPD	6.98E-09
		1	PCBs							1
		1	Total PCBs	8.66E-13	Outside EPD	8.66E-13	Ocular/eye, Nails, Immune	1.26E-06	Outside EPD	1.26E-06
			Chemical Total	2.83E-10	9.12E-11	3.74E-10		3.43E-05	1.36E-04	1.71E-04
		Exposure Point Total				3.74E-10				1.71E-04
	Exposure Medium Total					3.74E-10			•	1.71E-04
Surface Water Total			i			3.74E-10				1.71E-04

Table H-2-5. CTE Summary of Receptor Risks and Hazards for COPCs - Older Child/Teen Angler (Mixed Fish Diet) Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Older Child/Teen

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	sk	N	Non-Carcinogenic Hazard Quotient		
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total
						Roules Total	rarger Organ(s)			Roules Total
Fish Tissue	Fish Fillet Tissue -	Upper Anacostia								
	Mixed Diet (1)		Metals							
			Mercury	NA		NA	Neurological (methyl mercury)	3.57E-02		3.57E-02
			Pesticides							
			4,4'-DDD	2.53E-09		2.53E-09	Liver	4.10E-03		4.10E-03
			4,4'-DDE	1.02E-08		1.02E-08	Liver, Developmental	1.16E-03		1.16E-03
			Aldrin	4.78E-09		4.78E-09	Liver	1.09E-04		1.09E-04
			alpha-Chlordane	6.45E-09		6.45E-09	Liver	4.30E-04		4.30E-04
			cis-Nonachlor	2.78E-09		2.78E-09	Liver	1.86E-04		1.86E-04
			Dieldrin	8.89E-08		8.89E-08	Liver	1.30E-03		1.30E-03
			gamma-Chlordane	2.34E-09		2.34E-09	Liver	1.56E-04		1.56E-04
			Heptachlor epoxide	2.30E-08		2.30E-08	Liver	2.27E-03		2.27E-03
			Mirex	6.10E-09		6.10E-09	Endocrine, Liver	1.98E-05		1.98E-05
			Oxychlordane	1.22E-09		1.22E-09	Liver	8.16E-05		8.16E-05
			trans-Nonachlor	7.18E-09		7.18E-09	Liver	4.79E-04		4.79E-04
			PCBs							
			Total PCBs	7.60E-07		7.60E-07	Ocular/eye, Nails, Immune	2.22E-01		2.22E-01
			PCB-TEQ	2.49E-07		2.49E-07	Reproductive, Developmental	3.19E-02		3.19E-02
Fish Tissue Total - Uppe	er Anacostia (Total PCBs)	3				9.15E-07				2.68E-01
Fish Tissue Total - Uppe						4.04E-07				7.79E-02
	Total Recentor Ris	k/Hazard - Unner Ana	costia (includes Total PCBs for se	diment surface w	ater and fish)	9.80E-07		<u> </u>		2.75E-01
Total Rece			otal PCBs for sediment and surfa			4.69E-07				8.57E-02
Total Rece	ptor inskriazaru - Opper	Aliacostia (IIICIUUES I	otal i ODS for Scullient and Suna	ce water allu FCE	7-1 EQ 101 11511)	4.03L-07				0.07 L-02

Notes

NA - Not applicable.

EPD - Effective Predictive Domain.

PCB - Polychlorinated Biphenyl.

PCB-TEQ - PCB Toxicity Equivalence.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

 ${\sf TCDD\text{-}TEQ-2,3,7,8\text{-}Tetrachloro\text{-}dibenzo\text{-}p\text{-}dioxin}\ {\sf Toxicity}\ {\sf Equivalence}.$

- (1) Assumes a mixed fish diet of the species with available fillet data based on a pooled EPC.
- (2) Total Risk/Hazard based on all COPCs except PCB-TEQ.
- (3) Total Risk/Hazard based on all COPCs except Total PCBs.

Target Or	gan HI - Sediment, Surface V	Water, and Upper Ana	acostia Fish		
Organ	Chemical	Sediment	Surface Water	Fish Tissue	Total
Blood Antimony, D	RO	2.88E-04			3E-04
Decreased body and organi Weights		4.26E-05			4E-05
Developmental TCDD-TEQ,	PCB-TEQ, Benzo(a)pyrene,	3.32E-03	1.57E-06	3.30E-02	4E-02
Endocrine Mirex				1.98E-05	2E-0
Eye Total PCBs		1.80E-03	1.26E-06	2.22E-01	2E-0
Hair Thallium, Va	nadium	6.42E-04			6E-0
Immune Total PCBs		1.80E-03	1.26E-06	2.22E-01	2E-0
Kidney DRO		1.53E-04			2E-0
Liver Pesticides, I	DRO	1.53E-04	6.98E-09	1.03E-02	1E-0:
Mortality Antimony		1.35E-04			1E-0
Nails Total PCBs		1.80E-03	1.26E-06	2.22E-01	2E-0
Neurological Aluminum, N	Manganese, Methyl Mercury	2.82E-04	1.48E-04	3.57E-02	4E-0
Reproductive TCDD-TEQ,	PCB-TEQ, Cyanide	3.18E-03	1.57E-06	3.19E-02	4E-0
Skin Arsenic		4.40E-04	9.35E-06		4E-0
Thyroid Cobalt		8.45E-04	9.96E-06		9E-0
Vascular Arsenic		4.40E-04	9.35E-06		4E-0

Table H-2-6. CTE Summary of Receptor Risks and Hazards for COPCs - Child Angler (Mixed Fish Diet) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Child

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	k	No	on-Carcinogenic Hazard Quotient		
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total
Sediment	Fringe	Waterside								
	Surface	Investigation	Dioxin							
	Sediment	Area	2,3,7,8-TCDD-TEQ	2.82E-08	9.74E-09	3.79E-08	Reproductive, Developmental	1.08E-02	3.75E-03	1.46E-02
			Metals							
			Aluminum	NA	NA	NA	Neurological	8.45E-04	NA	8.45E-04
			Antimony	NA	NA	NA	Mortality, Blood	5.05E-04	NA	5.05E-04
			Arsenic	1.50E-08	8.62E-09	2.36E-08	Skin, Vascular	1.16E-03	6.70E-04	1.83E-03
			Cobalt	NA	NA	NA	Thyroid	5.27E-03	NA	5.27E-03
			Cyanide	NA	NA	NA	Reproductive	1.46E-04	NA	1.46E-04
			Manganese	NA	NA	NA	Neurological	9.16E-04	NA	9.16E-04
			Nickel	NA	NA	NA	Decreased body and organ weights	2.65E-04	NA	2.65E-04
			Thallium	NA	NA	NA	Hair	2.20E-03	NA	2.20E-03
			Vanadium	NA	NA	NA	Hair	1.81E-03	NA	1.81E-03
			PCBs							
			Total PCBs	2.67E-09	4.31E-09	6.99E-09	Ocular/eye, Nails, Immune	2.34E-03	3.77E-03	6.11E-03
			SVOCs							
			Benzo(a)anthracene	7.41E-10	1.11E-09	1.85E-09	NA	NA	NA	NA
			Benzo(a)pyrene	8.16E-09	1.22E-08	2.04E-08	Developmental	2.27E-04	3.40E-04	5.66E-04
	Be	Benzo(b)fluoranthene	1.22E-09	1.82E-09	3.04E-09	NA	NA	NA	NA	
			Benzo(k)fluoranthene	4.46E-11	6.68E-11	1.11E-10	NA NA	NA	NA	NA
			Chrysene	1.10E-11	1.65E-11	2.75E-11	NA NA	NA	NA	NA
			Dibenzo(a,h)anthracene	1.86E-09	2.78E-09	4.64E-09	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	7.16E-10	1.07E-09	1.79E-09	NA	NA	NA	NA
			ТРН							
			Diesel Range Organics (C10-C2	NA	NA	NA	Liver, Kidney, Blood	9.53E-04	NA	9.53E-04
			Chemical Total	5.86E-08	4.18E-08	1.00E-07		2.75E-02	8.53E-03	3.60E-02
		Exposure Point Total	al			1.00E-07				3.60E-02
	Exposure Medium Tot	al				1.00E-07				3.60E-02
Sediment Total						1.00E-07				3.60E-02
Surface	Surface	Waterside								
Water	Water	Investigation	Dioxin							
		Area	2,3,7,8-TCDD-TEQ	2.48E-10	Outside EPD	2.48E-10	Reproductive, Developmental	3.17E-05	Outside EPD	3.17E-05
			Metals							
			Arsenic	5.46E-09	8.64E-10	6.33E-09	Skin, Vascular	1.42E-04	2.24E-05	1.64E-04
			Cobalt	NA	NA	NA	Thyroid	1.78E-04	1.13E-05	1.89E-04
			Manganese	NA	NA	NA	Neurological	3.18E-04	1.26E-03	1.57E-03
			Pesticides							
			4,4'-DDT	2.06E-12	Outside EPD	2.06E-12	Liver	1.42E-07	Outside EPD	1.42E-07
			PCBs							
			Total PCBs	1.76E-11	Outside EPD	1.76E-11	Ocular/eye, Nails, Immune	2.56E-05	Outside EPD	2.56E-05
			Chemical Total	5.73E-09	8.64E-10	6.59E-09		6.95E-04	1.29E-03	1.99E-03
		Exposure Point Tota	al			6.59E-09				1.99E-03
	Exposure Medium Tot	al				6.59E-09				1.99E-03
urface Water Total						6.59E-09				1.99E-03

Table H-2-6. CTE Summary of Receptor Risks and Hazards for COPCs - Child Angler (Mixed Fish Diet) Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Child

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	sk	N	lon-Carcinogenic Hazard Quotient		
				Ingestion	Dermal	Exposure	Primary	Ingestion	Dermal	Exposure
				, and the second		Routes Total	Target Organ(s)	Ü		Routes Total
Fish Tissue	Fish Fillet Tissue -	Upper Anacostia								
	Mixed Diet (1)		Metals							
			Mercury	NA	-	NA	Neurological (methyl mercury)	4.77E-02		4.77E-02
			Pesticides							
			4,4'-DDD	1.13E-09	-	1.13E-09	Liver	5.47E-03		5.47E-03
			4,4'-DDE	4.53E-09		4.53E-09	Liver, Developmental	1.56E-03		1.56E-03
			Aldrin	2.13E-09		2.13E-09	Liver	1.46E-04		1.46E-04
			alpha-Chlordane	2.87E-09		2.87E-09	Liver	5.75E-04		5.75E-04
			cis-Nonachlor	1.24E-09		1.24E-09	Liver	2.48E-04		2.48E-04
			Dieldrin	3.96E-08		3.96E-08	Liver	1.73E-03		1.73E-03
			gamma-Chlordane	1.04E-09		1.04E-09	Liver	2.08E-04		2.08E-04
			Heptachlor epoxide	1.02E-08		1.02E-08	Liver	3.03E-03		3.03E-03
			Mirex	2.72E-09		2.72E-09	Endocrine, Liver	2.64E-05		2.64E-05
			Oxychlordane	5.45E-10		5.45E-10	Liver	1.09E-04		1.09E-04
			trans-Nonachlor	3.20E-09		3.20E-09	Liver	6.39E-04		6.39E-04
			PCBs							
			Total PCBs	3.38E-07		3.38E-07	Ocular/eye, Nails, Immune	2.96E-01		2.96E-01
			PCB-TEQ	1.11E-07	-	1.11E-07	Reproductive, Developmental	4.26E-02		4.26E-02
Fish Tissue Total - Uppe	r Anacostia (Total PCBs)	3		•	•	4.08E-07			•	3.58E-01
Fish Tissue Total - Uppe	r Anacostia (PCB-TEQ) ⁴	•			•	1.80E-07			•	1.04E-01
	Total Receptor Risk	k/Hazard - Upper Anad	costia (includes Total PCBs for se	diment, surface w	rater, and fish)	5.15E-07			•	3.96E-01
Total Recep	otor Risk/Hazard - Upper	Anacostia (includes T	otal PCBs for sediment and surfa	ce water and PCE	3-TEQ for fish)	2.87E-07			•	1.42E-01

Notes

NA - Not applicable.

EPD - Effective Predictive Domain.

PCB - Polychlorinated Biphenyl.

PCB-TEQ - PCB Toxicity Equivalence.

RfD - Oral Reference Dose.

SVOC - Semivolatile Organic Compound.

TCDD-TEQ - 2,3,7,8-Tetrachloro-dibenzo-p-dioxin Toxicity Equivalence.

- (1) Assumes a mixed fish diet of the species with available fillet data based on a pooled EPC.
- (2) Total Risk/Hazard based on all COPCs except PCB-TEQ.
- (3) Total Risk/Hazard based on all COPCs except Total PCBs.

	Target Organ HI - Sediment, Surface V	Vater, and Upper An	acostia Fish		
Organ	Chemical	Sediment	Surface Water	Fish Tissue	Tota
	Antimony, DRO	1.46E-03			1E-0
Decreased body and organ weights	Nickel	2.65E-04			3E-0
Developmental	TCDD-TEQ, PCB-TEQ, Benzo(a)pyrene, 4,4-DDE	1.52E-02	3.17E-05	4.41E-02	6E-
Endocrine	Mirex			2.64E-05	3E-
Eye	Total PCBs	6.11E-03	2.56E-05	2.96E-01	3E-
Hair	Thallium, Vanadium	4.01E-03			4E-
Immune	Total PCBs	6.11E-03	2.56E-05	2.96E-01	3E-
Kidney	DRO	9.53E-04			1E-
Liver	Pesticides, DRO	9.53E-04	1.42E-07	1.37E-02	1E-
Mortality	Antimony	5.05E-04			5E-
Nails	Total PCBs	6.11E-03	2.56E-05	2.96E-01	3E-
Neurological	Aluminum, Manganese, Methyl Mercury	1.76E-03	1.57E-03	4.77E-02	5E-
Reproductive	TCDD-TEQ, PCB-TEQ, Cyanide	1.47E-02	3.17E-05	4.26E-02	6E-
Skin	Arsenic	1.83E-03	1.64E-04		2E-
Thyroid	Cobalt	5.27E-03	1.89E-04		5E-
Vascular	Arsenic	1.83E-03	1.64E-04		2E-

Table H-2-7. CTE Summary of Receptor Risks and Hazards for COPCs - Adult Angler (Mixed Fish Diet) - Regional Areas Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Teen

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ri	sk	ı	Non-Carcinogenic Hazard Quotient		
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Tota
Fish Tissue	Fish Fillet Tissue -	Upper Potomac								
	Mixed Diet (1)		Inorganics							
			Arsenic	1.60E-07		1.60E-07	Skin, Vascular	2.49E-03		2.49E-03
			Arsenic, organic	NA		NA	Bladder	3.36E-04		3.36E-04
			Mercury	NA		NA	Neurological (methyl mercury)	3.84E-02		3.84E-02
			Pesticides							
			4,4'-DDD	7.50E-09	1	7.50E-09	Liver	7.30E-03		7.30E-03
			4,4'-DDE	6.44E-08	1	6.44E-08	Liver, Developmental	4.42E-03		4.42E-03
			Aldrin	1.14E-08		1.14E-08	Liver	1.57E-04		1.57E-04
			alpha-Chlordane	1.31E-08		1.31E-08	Liver	5.23E-04		5.23E-04
			beta-BHC	3.78E-09		3.78E-09	NA	NA		NA
			cis-Nonachlor	4.11E-09	1	4.11E-09	Liver	1.64E-04		1.64E-04
			Dieldrin	3.54E-07	1	3.54E-07	Liver	3.09E-03		3.09E-03
			gamma-Chlordane	2.70E-09		2.70E-09	Liver	1.08E-04		1.08E-04
			Heptachlor epoxide	5.44E-08		5.44E-08	Liver	3.22E-03		3.22E-03
			Hexachlorobenzene	3.62E-09	ŀ	3.62E-09	Liver	1.98E-05		1.98E-05
			Mirex	9.54E-09		9.54E-09	Endocrine, Liver	1.86E-05		1.86E-05
			Oxychlordane	1.99E-09		1.99E-09	Liver	7.95E-05		7.95E-05
			trans-Nonachlor	1.12E-08		1.12E-08	Liver	4.46E-04		4.46E-04
			PCBs							
			Total PCBs	2.87E-06	ŀ	2.87E-06	Ocular/eye, Nails, Immune	5.02E-01		5.02E-01
			PCB-TEQ	4.46E-06		4.46E-06	Reproductive, Developmental	3.43E-01		3.43E-01
	r Anacostia (Total PCBs)3	3				3.57E-06				5.63E-01
Fish Tissue Total - Uppe	r Anacostia (PCB-TEQ)*					5.16E-06				4.04E-01
Fish Tissue	Fish Fillet Tissue -	Lower Potomac								
	Mixed Diet (1)		Inorganics							
	` '		Arsenic	3.37E-07	-	3.37E-07	Skin, Vascular	5.24E-03		5.24E-03
			Arsenic, organic	NA		NA	Bladder	7.08E-04		7.08E-04
			Mercury	NA		NA	Neurological (methyl mercury)	2.60E-02		2.60E-02
			Pesticides							
			4,4'-DDD	2.52E-09		2.52E-09	Liver	2.45E-03		2.45E-03
			4,4'-DDE	1.76E-08	-	1.76E-08	Liver, Developmental	1.21E-03		1.21E-03
			alpha-Chlordane	6.07E-09		6.07E-09	Liver	2.43E-04		2.43E-04
			Dieldrin	1.86E-07	1	1.86E-07	Liver	1.62E-03		1.62E-03
			gamma-Chlordane	2.96E-09	-	2.96E-09	Liver	1.19E-04		1.19E-04
			Heptachlor epoxide	3.78E-08	-	3.78E-08	Liver	2.24E-03		2.24E-03
			Oxychlordane	1.79E-09	-	1.79E-09	Liver	7.14E-05		7.14E-05
			trans-Nonachlor	8.30E-09	-	8.30E-09	Liver	3.32E-04		3.32E-04
			PCBs							
			Total PCBs	1.02E-06	-	1.02E-06	Ocular/eye, Nails, Immune	1.79E-01		1.79E-01
			PCB-TEQ	1.03E-06	ı	1.03E-06	Reproductive, Developmental	7.91E-02		7.91E-02
Fish Tissue Total - Lowe	r Potomac (Total PCBs)3	-				1.62E-06			•	2.19E-01
Fish Tissue Total - Lowe	r Potomac (PCB-TEQ)*					1.63E-06				1.19E-01

Table H-2-7. CTE Summary of Receptor Risks and Hazards for COPCs - Adult Angler (Mixed Fish Diet) - Regional Areas Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Teen

	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris		N	lon-Carcinogenic Hazard Quotien		
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Tota
Fish Tissue	Fish Fillet Tissue -	Non-Tidal Anacostia								
	Mixed Diet (1)		Dioxin							
			2,3,7,8-TCDD-TEQ	2.94E-08		2.94E-08	Reproductive, Developmental	2.26E-03		2.26E-03
			Inorganics							
			Arsenic	4.31E-08		4.31E-08	Skin, Vascular	6.70E-04		6.70E-04
			Arsenic, organic	NA	-	NA	Bladder	9.05E-05		9.05E-05
			Cobalt	NA	-	NA	Thyroid	1.26E-03		1.26E-03
			Mercury	NA	-	NA	Neurological (methyl mercury)	8.03E-02		8.03E-02
			Thallium	NA		NA	Hair	1.07E-02		1.07E-02
			Pesticides							
			Chlordane	2.29E-08	-	2.29E-08	Liver	9.18E-04		9.18E-04
			Dieldrin	7.48E-08		7.48E-08	Liver	6.55E-04		6.55E-04
			Heptachlor epoxide	3.42E-08		3.42E-08	Liver	2.02E-03		2.02E-03
			PCBs							_
			Total PCBs	1.78E-07		1.78E-07	Ocular/eye, Nails, Immune	3.11E-02		3.11E-02
		<u> </u>	PCB-TEQ	2.01E-07		2.01E-07	Reproductive, Developmental	1.54E-02		1.54E-02
	Tidal Anacostia (Total Po					3.82E-07				1.30E-01
ish Tissue Total - Non-	Tidal Anacostia (PCB-TE	Q)*				4.05E-07				1.14E-01
Fish Tissue	Fish Fillet Tissue -	Lower Anacostia								
	Mixed Diet (1)		Metals							
			Arsenic	1.64E-07		1.64E-07	Skin, Vascular	2.55E-03		2.55E-03
			Arsenic, organic	NA	-	NA	Bladder	3.45E-04		3.45E-04
			Mercury	NA		NA	Neurological (methyl mercury)	2.25E-02		2.25E-02
			Pesticides							
			4,4'-DDD	7.89E-09	-	7.89E-09	Liver	7.67E-03		7.67E-03
			4,4'-DDE	3.75E-08	-	3.75E-08	Liver, Developmental	2.57E-03		2.57E-03
			Aldrin	1.05E-08	-	1.05E-08	Liver	1.45E-04		1.45E-04
			alpha-Chlordane	2.01E-08	-	2.01E-08	Liver	8.04E-04		8.04E-04
			cis-Nonachlor	7.57E-09	-	7.57E-09	Liver	3.03E-04		3.03E-04
			Dieldrin	3.02E-07	-	3.02E-07	Liver	2.64E-03		2.64E-03
			gamma-Chlordane	9.64E-09	-	9.64E-09	Liver	3.86E-04		3.86E-04
			Heptachlor epoxide	6.49E-08	-	6.49E-08	Liver	3.84E-03		3.84E-03
			Mirex	1.16E-08		1.16E-08	Endocrine, Liver	2.25E-05		2.25E-05
			Oxychlordane	3.73E-09	-	3.73E-09	Liver	1.49E-04		1.49E-04
			trans-Nonachlor	2.09E-08	-	2.09E-08	Liver	8.37E-04		8.37E-04
			PCBs							
			Total PCBs	1.98E-06	-	1.98E-06	Ocular/eye, Nails, Immune	3.46E-01		3.46E-01
	<u> </u>	<u> </u>	PCB-TEQ	2.46E-06		2.46E-06	Reproductive, Developmental	1.89E-01		1.89E-01
	er Anacostia (Total PCBs	2				2.64E-06	<u> </u>			3.91E-01
ish Tissue Total - Lowe	er Anacostia (PCB-TEQ) ³					3.12E-06				2.34E-01
			Receptor Total - U	Ipper Potomac Fish	(Total PCBs) ²	3.57E-06				5.63E-01
			Receptor Total - L	Jpper Potomac Fish	(PCB-TEQs) ³	5.16E-06				4.04E-01
			Receptor Total - L	ower Potomac Fish	(Total PCBs) ²	1.62E-06				2.19E-01
			Receptor Total -L	ower Potomac Fish	(PCB-TEQs)°	1.63E-06				1.19E-01
			Receptor Total - Non-T	idal Anacostia Fish	(Total PCBs)2	3.82F-07				1,30E-01
			Receptor Total - Non-T Receptor Total - Non-T			3.82E-07 4.05E-07				1.30E-01 1.14E-01
				Tidal Anacostia Fish	(PCB-TEQs) ³	3.82E-07 4.05E-07 2.64E-06				1.30E-01 1.14E-01 3.91E-01

Table H-2-7. CTE Summary of Receptor Risks and Hazards for COPCs - Adult Angler (Mixed Fish Diet) - Regional Areas Central Tendency Exposure Benning Road Facility RI/FS Project

3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Teen

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	k	N	lon-Carcinogenic Hazard Quotient		
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total

Notes

NA - Not applicable.

PCB - Polychlorinated Biphenyl.

PCB-TEQ - PCB Toxicity Equivalence.

RfD - Oral Reference Dose.

- (1) Assumes a mixed fish diet of the species with available fillet data based on a pooled EPC.
- (2) Total Risk/Hazard based on all COPCs except PCB-TEQ.
- (3) Total Risk/Hazard based on all COPCs except Total PCBs.

Targ	et Organ HI - Upper Potomac Fish		
Organ	Chemical	Fish Tissue	Total
Bladder	Arsenic, organic	3.36E-04	3E-04
Developmental	PCB-TEQ, TCDD-TEQ, 4,4-DDE	3.47E-01	3E-01
Endocrine	Mirex	1.86E-05	2E-05
Eye	Total PCBs	5.02E-01	5E-01
Immune	Total PCBs	5.02E-01	5E-01
Liver	Pesticides	1.95E-02	2E-02
Nails	Total PCBs	5.02E-01	5E-01
Neurological	Methyl Mercury	3.84E-02	4E-02
Reproductive	PCB-TEQ, TCDD-TEQ	3.43E-01	3E-01
Skin	Arsenic	2.49E-03	2E-03
Vascular	Arsenic	2.49E-03	2E-03

Targ	et Organ HI - Lower Potomac Fish		
Organ	Chemical	Fish Tissue	Total
Bladder	Arsenic, organic	7.08E-04	7E-04
Developmental	PCB-TEQ, TCDD-TEQ, 4,4-DDE	8.03E-02	8E-02
Eye	Total PCBs	1.79E-01	2E-01
Immune	Total PCBs	1.79E-01	2E-01
Liver	Pesticides	8.29E-03	8E-03
Nails	Total PCBs	1.79E-01	2E-01
Neurological	Methyl Mercury	2.60E-02	3E-02
Reproductive	PCB-TEQ, TCDD-TEQ	7.91E-02	8E-02
Skin	Arsenic	5.24E-03	5E-03
Vascular	Arsenic	5.24E-03	5E-03

Target	Organ HI - Non-Tidal Anacostia Fish		
Organ	Chemical	Fish Tissue	Total
Bladder	Arsenic, organic	9.05E-05	9E-05
Developmental	PCB-TEQ, TCDD-TEQ, 4,4-DDE	1.77E-02	2E-02
Eye	Total PCBs	3.11E-02	3E-02
Hair	Thallium	1.07E-02	1E-02
Immune	Total PCBs	3.11E-02	3E-02
Liver	Pesticides	3.59E-03	4E-03
Nails	Total PCBs	3.11E-02	3E-02
Neurological	Methyl Mercury	8.03E-02	8E-02
Reproductive	PCB-TEQ, TCDD-TEQ	1.77E-02	2E-02
Skin	Arsenic	6.70E-04	7E-04
Thyroid	Cobalt	1.26E-03	1E-03
Vascular	Arsenic	6.70E-04	7E-04

	Target Organ HI - Lower Anacostia		
Organ	Chemical	Fish Tissue	Total
Bladder	Arsenic, organic	3.45E-04	3E-04
Developmental	PCB-TEQ, TCDD-TEQ, 4,4-DDE	1.92E-01	2E-01
Endocrine	Mirex	2.25E-05	2E-05
Eye	Total PCBs	3.46E-01	3E-01
Immune	Total PCBs	3.46E-01	3E-01
Liver	Pesticides	1.94E-02	2E-02
Nails	Total PCBs	3.46E-01	3E-01
Neurological	Methyl Mercury	2.25E-02	2E-02
Reproductive	PCB-TEQ, TCDD-TEQ	1.89E-01	2E-01
Skin	Arsenic	2.55E-03	3E-03
Vascular	Arsenic	2.55E-03	3E-03

Table H-2-8. CTE Summary of Receptor Risks and Hazards for COPCs - Older Child/Teen Angler (Mixed Fish Diet) - Regional Areas Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Older Child/Teen

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ri	sk	1	Ion-Carcinogenic Hazard Quotient		
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Tota
Fish Tissue	Fish Fillet Tissue -	Upper Potomac								
	Mixed Diet (1)		Metals							
			Arsenic	1.01E-07		1.01E-07	Skin, Vascular	2.63E-03		2.63E-03
			Arsenic, organic	NA		NA	Bladder	3.55E-04		3.55E-04
			Mercury	NA		NA	Neurological (methyl mercury)	4.06E-02		4.06E-02
			Pesticides							
			4,4'-DDD	4.76E-09		4.76E-09	Liver	7.71E-03		7.71E-03
			4,4'-DDE	4.08E-08		4.08E-08	Liver, Developmental	4.67E-03		4.67E-03
			Aldrin	7.24E-09		7.24E-09	Liver	1.66E-04		1.66E-04
			alpha-Chlordane	8.29E-09		8.29E-09	Liver	5.52E-04		5.52E-04
			beta-BHC	2.39E-09		2.39E-09	NA	NA		NA
			cis-Nonachlor	2.61E-09		2.61E-09	Liver	1.74E-04		1.74E-04
			Dieldrin	2.24E-07		2.24E-07	Liver	3.27E-03		3.27E-03
			gamma-Chlordane	1.71E-09	-	1.71E-09	Liver	1.14E-04		1.14E-04
			Heptachlor epoxide	3.45E-08	-	3.45E-08	Liver	3.40E-03		3.40E-03
			Hexachlorobenzene	2.30E-09		2.30E-09	Liver	2.09E-05		2.09E-05
			Mirex	6.05E-09		6.05E-09	Endocrine, Liver Liver	1.96E-05		1.96E-05
			Oxychlordane trans-Nonachlor	1.26E-09 7.07E-09		1.26E-09 7.07E-09	Liver	8.40E-05 4.72E-04		8.40E-05 4.72E-04
			PCBs	7.07E-09	-	7.07E-09	Livei	4.72E-04		4.72E-04
			Total PCBs	1.82E-06		1.82E-06	Ocular/eye, Nails, Immune	5.30E-01		5.30E-01
			PCB-TEQ	2.83E-06		2.83E-06	Reproductive, Developmental	3.62E-01		3.62E-01
Figh Tiggue Total - Uppe	r Anacostia (Total PCBs) ³	3	I CB-IEQ	2.03L-00		2.26E-06	repression of porcional	3.02E-01		5.94E-01
Fish Tissue Total - Uppe			П	+		3.27E-06		T	1	4.27E-01
Fish Tissue	, ,	Lower Potomac	1			3.27E-00		1		4.27E-01
FISH TISSUE	Fish Fillet Tissue -	Lower Potomac								
	Mixed Diet (1)		Metals	2.445.07		2 4 4 5 0 7	Skin, Vascular	5.54E.02		5.54E-03
			Arsenic	2.14E-07 NA	-	2.14E-07 NA	Bladder	5.54E-03 7.48E-04		7.48E-04
			Arsenic, organic Mercury	NA NA		NA NA	Neurological (methyl mercury)	2.74E-02		2.74E-02
			Pesticides	INA		INA	Neurological (metry mercury)	2.74E-02		2.74E-02
			4,4'-DDD	1.60E-09		1.60E-09	Liver	2.59E-03		2.59E-03
			4,4'-DDE	1.12E-08		1.12E-08	Liver, Developmental	1.28E-03		1.28E-03
			alpha-Chlordane	3.85E-09		3.85E-09	Liver	2.56E-04		2.56E-04
			Dieldrin	1.18E-07		1.18E-07	Liver	1.72E-03		1.72E-03
			gamma-Chlordane	1.88E-09		1.88E-09	Liver	1.25E-04		1.25E-04
			Heptachlor epoxide	2.40E-08	_	2.40E-08	Liver	2.37E-03		2.37E-03
			Oxychlordane	1.13E-09	-	1.13E-09	Liver	7.54E-05		7.54E-05
			trans-Nonachlor	5.26E-09	-	5.26E-09	Liver	3.51E-04		3.51E-04
			PCBs							1
			Total PCBs	6.49E-07		6.49E-07	Ocular/eye, Nails, Immune	1.89E-01		1.89E-01
			PCB-TEQ	6.52E-07		6.52E-07	Reproductive, Developmental	8.36E-02		8.36E-02
Fish Tissue Total - Lowe	r Potomac (Total PCBs)3			11		1.03E-06		•		2.32E-01
Fish Tissue Total - Lowe						1.03E-06				1.26E-01

Table H-2-8. CTE Summary of Receptor Risks and Hazards for COPCs - Older Child/Teen Angler (Mixed Fish Diet) - Regional Areas Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Older Child/Teen

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris		N	on-Carcinogenic Hazard Quotier		
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Tota
Fish Tissue	Fish Fillet Tissue -	Upstream Non-Tidal								
	Mixed Diet (1)	Anacostia	Dioxin							
			2,3,7,8-TCDD-TEQ	1.86E-08	-	1.86E-08	Reproductive, Developmental	2.39E-03		2.39E-03
			Metals							
			Arsenic	2.73E-08	-	2.73E-08	Skin, Vascular	7.08E-04		7.08E-04
			Arsenic, organic	NA	-	NA	Bladder	9.56E-05		9.56E-05
			Cobalt	NA	-	NA	Thyroid	1.33E-03		1.33E-03
			Mercury	NA		NA	Neurological (methyl mercury)	2.83E-02		2.83E-02
			Thallium	NA		NA	Hair	1.13E-02		1.13E-02
			Pesticides							
			Chlordane	1.45E-08		1.45E-08	Liver	9.70E-04		9.70E-04
			Dieldrin	4.75E-08	-	4.75E-08	Liver	6.92E-04		6.92E-04
			Heptachlor epoxide	2.17E-08	-	2.17E-08	Liver	2.14E-03		2.14E-03
	Ì	1	PCBs	0.00E+00	-			0.00E+00		
			Total PCBs	1.13E-07		1.13E-07	Ocular/eye, Nails, Immune	3.28E-02		3.28E-02
			PCB-TEQ	1.27E-07	-	1.27E-07	Reproductive, Developmental	1.63E-02		1.63E-02
ish Tissue Total - Non-	n Tissue Total - Non-Tidal Anacostia (Total PCBs) ³									8.08E-02
ish Tissue Total - Non-	Tidal Anacostia (PCB-TE	Q) ⁴				2.57E-07				6.42E-02
Fish Tissue	Fish Fillet Tissue -	Lower Anacostia								
11011110000	Mixed Diet (1)	20110171110000110	Metals							
	mixed Biot (1)		Arsenic	1.04E-07	-	1.04E-07	Skin, Vascular	2.70E-03		2.70E-03
			Arsenic, organic	NA NA	_	NA	Bladder	3.64E-04		3.64E-04
			Mercury	NA NA		NA NA	Neurological (methyl mercury)	2.38E-02		2.38E-02
			Pesticides	101		10.	,	2.002 02		2.002 02
			4,4'-DDD	5.00E-09		5.00E-09	Liver	8.10E-03		8.10E-03
			4.4'-DDE	2.38E-08	-	2.38E-08	Liver, Developmental	2.72E-03		2.72E-03
			Aldrin	6.67E-09		6.67E-09	Liver	1.53E-04		1.53E-04
			alpha-Chlordane	1.27E-08	-	1.27E-08	Liver	8.49E-04		8.49E-04
			cis-Nonachlor	4.80E-09		4.80E-09	Liver	3.20E-04		3.20E-04
			Dieldrin	1.91E-07		1.91E-07	Liver	2.79E-03		2.79E-03
			gamma-Chlordane	6.11E-09	-	6.11E-09	Liver	4.07E-04		4.07E-04
			Heptachlor epoxide	4.12E-08	-	4.12E-08	Liver	4.06E-03		4.07E-04 4.06E-03
			Mirex	7.34E-09		7.34E-09	Endocrine, Liver	4.00E-03 2.38E-05		2.38E-05
			Oxychlordane	2.37E-09	_	2.37E-09	Liver	2.36E-05 1.58E-04		1.58E-04
				1.33E-08	-	1.33E-08	Liver	8.84E-04		8.84E-04
			trans-Nonachlor PCBs	1.33E-08	-	1.33E-00	Livei	0.04E-U4		0.04E-U4
			Total PCBs	1.25E-06		1.25E-06	Ocular/eye, Nails, Immune	3.66E-01		3.66E-01
	İ	Ì	PCB-TEQ	1.25E-06 1.56E-06	-	1.25E-06 1.56E-06	Reproductive, Developmental	3.66E-01 2.00E-01		3.66E-01 2.00E-01
	L		PCB-TEQ	1.56E-06	-		Reproductive, Developmental	2.00E-01		
	er Anacostia (Total PCBs)-				1.67E-06				4.13E-01
ish rissue rotal - Lowe	er Anacostia (PCB-TEQ) ³	<u> </u>				1.98E-06				2.47E-01
	<u> </u>		Receptor Total - L	lpper Potomac Fish	(Total PCBs) ²	2.26E-06	<u> </u>		<u> </u>	5.94E-01
			Receptor Total - L	Jpper Potomac Fish	(PCB-TEQs)3	3.27E-06				4.27E-01
			Receptor Total - L	ower Potomac Fish	(Total PCBs)2	1.03E-06				2.32E-01
			Receptor Total -L	ower Potomac Fish	(PCB-TEQs) ³	1.03E-06				1.26E-01
			Receptor Total - Non-T	idal Anacostia Fish	(Total PCBs)2	2.42E-07				8.08E-02
			Receptor Total - Non-1							6.42E-02
				idal Anacostia Fish	(PCB-TEQs) ³	2.57E-07 1.67E-06				6.42E-02 4.13E-01

Table H-2-8. CTE Summary of Receptor Risks and Hazards for COPCs - Older Child/Teen Angler (Mixed Fish Diet) - Regional Areas Central Tendency Exposure Benning Road Facility RI/FS Project

3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Older Child/Teen

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern	Carcinogenic Risk		Non-Carcinogenic Hazard Quotient				
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total

Notes

NA - Not applicable.

ND - Not Detected.

PCB - Polychlorinated Biphenyl.

PCB-TEQ - PCB Toxicity Equivalence.

RfD - Oral Reference Dose.

- (1) Assumes a mixed fish diet of the species with available fillet data based on a pooled EPC.
- (2) Total Receptor Risk/Hazard based on all COPCs except PCB-TEQ.
- (3) Total Receptor Risk/Hazard based on all COPCs except Total PCBs.

Targ	et Organ HI - Upper Potomac Fish		
Organ	Chemical	Fish Tissue	Total
Bladder	Arsenic, organic	3.55E-04	4E-04
Developmental	PCB-TEQ, TCDD-TEQ, 4,4-DDE	3.67E-01	4E-01
Endocrine	Mirex	1.96E-05	2E-05
Eye	Total PCBs	5.30E-01	5E-01
Immune	Total PCBs	5.30E-01	5E-01
Liver	Pesticides	2.07E-02	2E-02
Nails	Total PCBs	5.30E-01	5E-01
Neurological	Methyl Mercury	4.06E-02	4E-02
Reproductive	PCB-TEQ, TCDD-TEQ	3.62E-01	4E-01
Skin	Arsenic	2.63E-03	3E-03
Vascular	Arsenic	2.63E-03	3E-03

Targ	et Organ HI - Lower Potomac Fish		
Organ	Chemical	Fish Tissue	Total
Bladder	Arsenic, organic	7.48E-04	7E-04
Developmental	PCB-TEQ, TCDD-TEQ, 4,4-DDE	8.49E-02	8E-02
Eye	Total PCBs	1.89E-01	2E-01
Immune	Total PCBs	1.89E-01	2E-01
Liver	Pesticides	8.76E-03	9E-03
Nails	Total PCBs	1.89E-01	2E-01
Neurological	Methyl Mercury	2.74E-02	3E-02
Reproductive	PCB-TEQ, TCDD-TEQ	8.36E-02	8E-02
Skin	Arsenic	5.54E-03	6E-03
Vascular	Arsenic	5.54E-03	6E-03

Target	Organ HI - Non-Tidal Anacostia Fish		
Organ	Chemical	Fish Tissue	Total
Bladder	Arsenic, organic	9.56E-05	1E-04
Developmental	PCB-TEQ, TCDD-TEQ, 4,4-DDE	1.87E-02	2E-02
Eye	Total PCBs	3.28E-02	3E-02
Hair	Thallium	1.13E-02	1E-02
Immune	Total PCBs	3.28E-02	3E-02
Liver	Pesticides	3.80E-03	4E-03
Nails	Total PCBs	3.28E-02	3E-02
Neurological	Methyl Mercury	2.83E-02	3E-02
Reproductive	PCB-TEQ, TCDD-TEQ	1.87E-02	2E-02
Skin	Arsenic	7.08E-04	7E-04
Thyroid	Cobalt	1.33E-03	1E-03
Vascular	Arsenic	7.08E-04	7E-04

	Target Organ HI - Lower Anacostia		
Organ	Chemical	Fish Tissue	Total
Bladder	Arsenic, organic	3.64E-04	4E-04
Developmental	PCB-TEQ, TCDD-TEQ, 4,4-DDE	2.03E-01	2E-01
Endocrine	Mirex	2.38E-05	2E-05
Eye	Total PCBs	3.66E-01	4E-01
Immune	Total PCBs	3.66E-01	4E-01
Liver	Pesticides	2.05E-02	2E-02
Nails	Total PCBs	3.66E-01	4E-01
Neurological	Methyl Mercury	2.38E-02	2E-02
Reproductive	PCB-TEQ, TCDD-TEQ	2.00E-01	2E-01
Skin	Arsenic	2.70E-03	3E-03
Vascular	Arsenic	2.70E-03	3E-03

Table H-2-9. CTE Summary of Receptor Risks and Hazards for COPCs - Child Angler (Mixed Fish Diet) - Regional Areas Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Child

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ri	sk	N	Ion-Carcinogenic Hazard Quotient		
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Tot
Fish Tissue	Fish Fillet Tissue -	Upper Potomac								
	Mixed Diet (1)		Metals							
			Arsenic	4.52E-08		4.52E-08	Skin, Vascular	3.51E-03		3.51E-03
			Arsenic, organic	NA		NA	Bladder	4.74E-04		4.74E-04
			Mercury	NA		NA	Neurological (methyl mercury)	5.43E-02		5.43E-02
			Pesticides							
			4,4'-DDD	2.12E-09	-	2.12E-09	Liver	1.03E-02		1.03E-02
			4,4'-DDE	1.82E-08		1.82E-08	Liver, Developmental	6.24E-03		6.24E-03
			Aldrin	3.22E-09		3.22E-09	Liver	2.21E-04		2.21E-04
			alpha-Chlordane	3.69E-09		3.69E-09	Liver	7.38E-04		7.38E-04
			beta-BHC	1.07E-09		1.07E-09	NA	NA		NA
			cis-Nonachlor	1.16E-09		1.16E-09	Liver	2.32E-04		2.32E-04
			Dieldrin	9.98E-08		9.98E-08	Liver	4.37E-03		4.37E-03
			gamma-Chlordane	7.62E-10		7.62E-10	Liver	1.52E-04		1.52E-04
			Heptachlor epoxide	1.54E-08		1.54E-08	Liver	4.55E-03		4.55E-03
			Hexachlorobenzene	1.02E-09		1.02E-09	Liver	2.80E-05		2.80E-05
			Mirex	2.69E-09		2.69E-09	Endocrine, Liver	2.62E-05		2.62E-05
			Oxychlordane	5.61E-10		5.61E-10	Liver	1.12E-04		1.12E-04
			trans-Nonachlor	3.15E-09		3.15E-09	Liver	6.30E-04		6.30E-04
			PCBs							
			Total PCBs	8.10E-07		8.10E-07	Ocular/eye, Nails, Immune	7.08E-01		7.08E-01
			PCB-TEQ	1.26E-06		1.26E-06	Reproductive, Developmental	4.84E-01		4.84E-01
sh Tissue Total - Uppe	er Anacostia (Total PCBs)					1.01E-06				7.94E-01
sh Tissue Total - Uppe	er Anacostia (PCB-TEQ)*					1.46E-06				5.70E-01
Fish Tissue	Fish Fillet Tissue -	Lower Potomac	i							
	Mixed Diet (1)		Metals							
			Arsenic	9.51E-08		9.51E-08	Skin, Vascular	7.40E-03		7.40E-03
			Arsenic, organic	NA NA		NA	Bladder	9.99E-04		9.99E-04
			Mercury	NA		NA	Neurological (methyl mercury)	3.67E-02		3.67E-02
			Pesticides				. , , , , , , , , , , , , , , , , , , ,			
			4,4'-DDD	7.12E-10		7.12E-10	Liver	3.46E-03		3.46E-03
			4.4'-DDE	4.98E-09		4.98E-09	Liver, Developmental	1.71E-03		1.71E-03
			alpha-Chlordane	1.71E-09		1.71E-09	Liver	3.43E-04		3.43E-04
			Dieldrin	5.24E-08		5.24E-08	Liver	2.29E-03		2.29E-03
			gamma-Chlordane	8.37E-10		8.37E-10	Liver	1.67E-04		1.67E-04
			Heptachlor epoxide	1.07E-08		1.07E-08	Liver	3.16E-03		3.16E-03
			Oxychlordane	5.04E-10		5.04E-10	Liver	1.01E-04		1.01E-04
			trans-Nonachlor	2.34E-09		2.34E-09	Liver	4.69E-04		4.69E-04
			PCBs							
			Total PCBs	2.89E-07		2.89E-07	Ocular/eye, Nails, Immune	2.53E-01		2.53E-01
			PCB-TEQ	2.90E-07		2.90E-07	Reproductive, Developmental	1.12E-01		1.12E-0
sh Tissue Total - Lowe	er Potomac (Total PCBs)3			-11		4.58E-07		•	•	3.10E-01
	er Potomac (PCB-TEQ)*					4.60E-07				1.68E-0

Table H-2-9. CTE Summary of Receptor Risks and Hazards for COPCs - Child Angler (Mixed Fish Diet) - Regional Areas Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Child

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ri	sk	N	Non-Carcinogenic Hazard Quotient				
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total		
Fish Tissue	Fish Fillet Tissue -	Upstream Non-Tidal										
	Mixed Diet (1)	Anacostia	Dioxin									
			2,3,7,8-TCDD-TEQ	8.30E-09		8.30E-09	Reproductive, Developmental	3.19E-03		3.19E-03		
			Metals									
			Arsenic	1.22E-08		1.22E-08	Skin, Vascular	9.46E-04		9.46E-04		
			Arsenic, organic	NA		NA	Bladder	1.28E-04		1.28E-04		
			Cobalt	NA		NA	Thyroid	1.78E-03		1.78E-03		
			Mercury	NA		NA	Neurological (methyl mercury)	1.13E-01		1.13E-01		
			Thallium	NA		NA	Hair	1.51E-02		1.51E-02		
			Pesticides									
			Chlordane	6.48E-09		6.48E-09	Liver	1.30E-03		1.30E-03		
			Dieldrin	2.11E-08		2.11E-08	Liver	9.25E-04		9.25E-04		
			Heptachlor epoxide	9.65E-09		9.65E-09	Liver	2.85E-03		2.85E-03		
			PCBs					0.00E+00				
			Total PCBs	5.01E-08		5.01E-08	Ocular/eye, Nails, Immune	4.39E-02		4.39E-02		
			PCB-TEQ	5.66E-08		5.66E-08	Reproductive, Developmental	2.18E-02		2.18E-02		
ish Tissue Total - Non-	sh Tissue Total - Non-Tidal Anacostia (Total PCBs) ³									1.83E-01		
ish Tissue Total - Non-	Tidal Anacostia (PCB-TE	EQ)*				1.14E-07				1.61E-01		
Fish Tissue	Fish Fillet Tissue -	Lower Anacostia										
	Mixed Diet (1)		Metals									
	,		Arsenic	4.63E-08		4.63E-08	Skin, Vascular	3.60E-03		3.60E-03		
			Arsenic, organic	NA		NA	Bladder	4.86E-04		4.86E-04		
			Mercury	NA		NA	Neurological (methyl mercury)	3.18E-02		3.18E-02		
			Pesticides				, , ,					
			4,4'-DDD	2.23E-09		2.23E-09	Liver	1.08E-02		1.08E-02		
			4.4'-DDE	1.06E-08		1.06E-08	Liver, Developmental	3.63E-03		3.63E-03		
			Aldrin	2.97E-09		2.97E-09	Liver	2.04E-04		2.04E-04		
			alpha-Chlordane	5.67E-09		5.67E-09	Liver	1.13E-03		1.13E-03		
			cis-Nonachlor	2.14E-09		2.14E-09	Liver	4.28E-04		4.28E-04		
			Dieldrin	8.52E-08		8.52E-08	Liver	3.73E-03		3.73E-03		
			gamma-Chlordane	2.72E-09		2.72E-09	Liver	5.44E-04		5.44E-04		
			Heptachlor epoxide	1.83E-08		1.83E-08	Liver	5.42E-03		5.42E-03		
			Mirex	3.27E-09		3.27E-09	Endocrine, Liver	3.18E-05		3.18E-05		
			Oxychlordane	1.05E-09		1.05E-09	Liver	2.11E-04		2.11E-04		
			trans-Nonachlor	5.90E-09		5.90E-09	Liver	1.18E-03		1.18E-03		
			PCBs	1			-					
			Total PCBs	5.59E-07		5.59E-07	Ocular/eye, Nails, Immune	4.89E-01		4.89E-01		
			PCB-TEQ	6.94E-07		6.94E-07	Reproductive, Developmental	2.67E-01		2.67E-01		
ish Tissue Total - Lowe	er Anacostia (Total PCBs) ²				7.45E-07				5.52E-01		
	er Anacostia (PCB-TEQ)					8.81E-07				3.30E-01		
2011		<u> </u>	Receptor Total - U	nner Potomac Fish	(Total PCRc) ²	1.01E-06				7.94E-01		
				•		1.01E-06 1.46E-06				7.94E-01 5.70E-01		
			Receptor Total - U									
			Receptor Total - Lo			4.58E-07				3.10E-01		
				ower Potomac Fish		4.60E-07				1.68E-01		
			Receptor Total - Non-Ti			1.08E-07				1.83E-01		
			Receptor Total - Non-T	idal Anacostia Fish	(PCB-TEQs) ³	1.14E-07				1.61E-01		
			Receptor Total - Lo	wer Anacostia Fish	(Total PCBs)2	7.45E-07				5.52E-01		
			Recentor Total - Lo	wer Anacostia Fish	(PCB-TEQs)°	8.81E-07				3.30E-01		

Table H-2-9. CTE Summary of Receptor Risks and Hazards for COPCs - Child Angler (Mixed Fish Diet) - Regional Areas Central Tendency Exposure

Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Angler Receptor Age: Child

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern	Carcinogenic Risk		Non-Carcinogenic Hazard Quotient				
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total
Notes	otes						Target Organ HI - Upper Potomac Fish			

NA - Not applicable.

PCB - Polychlorinated Biphenyl.

PCB-TEQ - PCB Toxicity Equivalence.

RfD - Oral Reference Dose.

- (1) Assumes a mixed fish diet of the species with available fillet data based on a pooled EPC.
- (2) Total Receptor Risk/Hazard based on all COPCs except PCB-TEQ.
- (3) Total Receptor Risk/Hazard based on all COPCs except Total PCBs.

raiget Organ(s)			rtoutes rotal
Targ	et Organ HI - Upper Potomac Fish		
Organ	Chemical	Fish Tissue	Total
Bladder	Arsenic, organic	4.74E-04	5E-04
Developmental	PCB-TEQ, TCDD-TEQ, 4,4-DDE	4.91E-01	5E-01
Endocrine	Mirex	2.62E-05	3E-05
Eye	Total PCBs	7.08E-01	7E-01
Immune	Total PCBs	7.08E-01	7E-01
Liver	Pesticides	2.76E-02	3E-02
Nails	Total PCBs	7.08E-01	7E-01
Neurological	Methyl Mercury	5.43E-02	5E-02
Reproductive	PCB-TEQ, TCDD-TEQ	4.84E-01	5E-01
Skin	Arsenic	3.51E-03	4E-03
Vascular	Arsenic	3.51E-03	4E-03

Targe	et Organ HI - Lower Potomac Fish		
Organ	Chemical	Fish Tissue	Total
Bladder	Arsenic, organic	9.99E-04	1E-03
Developmental	PCB-TEQ, TCDD-TEQ, 4,4-DDE	1.13E-01	1E-01
Eye	Total PCBs	2.53E-01	3E-01
Immune	Total PCBs	2.53E-01	3E-01
Liver	Pesticides	1.17E-02	1E-02
Nails	Total PCBs	2.53E-01	3E-01
Neurological	Methyl Mercury	3.67E-02	4E-02
Reproductive	PCB-TEQ, TCDD-TEQ	1.12E-01	1E-01
Skin	Arsenic	7.40E-03	7E-03
Vascular	Arsenic	7.40E-03	7E-03

	Target Organ HI - Lower Anacostia		
Organ	Chemical	Fish Tissue	Total
Bladder	Arsenic, organic	4.86E-04	5E-04
Developmental	PCB-TEQ, TCDD-TEQ, 4,4-DDE	2.71E-01	3E-01
Endocrine	Mirex	3.18E-05	3E-05
Eye	Total PCBs	4.89E-01	5E-01
Immune	Total PCBs	4.89E-01	5E-01
Liver	Pesticides	2.73E-02	3E-02
Nails	Total PCBs	4.89E-01	5E-01
Neurological	Methyl Mercury	3.18E-02	3E-02
Reproductive	PCB-TEQ, TCDD-TEQ	2.67E-01	3E-01
Skin	Arsenic	3.60E-03	4E-03
Vascular	Arsenic	3.60E-03	4E-03

Target	Organ HI - Non-Tidal Anacostia Fish		
Organ	Chemical	Fish Tissue	Total
Bladder	Arsenic, organic	1.28E-04	1E-04
Developmental	PCB-TEQ, TCDD-TEQ, 4,4-DDE	2.50E-02	2E-02
Eye	Total PCBs	4.39E-02	4E-02
Hair	Thallium	1.51E-02	2E-02
Immune	Total PCBs	4.39E-02	4E-02
Liver	Pesticides	5.07E-03	5E-03
Nails	Total PCBs	4.39E-02	4E-02
Neurological	Methyl Mercury	1.13E-01	1E-01
Reproductive	PCB-TEQ, TCDD-TEQ	2.50E-02	2E-02
Skin	Arsenic	9.46E-04	9E-04
Thyroid	Cobalt	1.78E-03	2E-03
Vascular	Arsenic	9.46E-04	9E-04

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	k	Non	-Carcinogenic Hazard	Quotient	
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total
Sediment	Fringe	Waterside	L							
	Surface Sediment	Investigation	Dioxin 2,3,7,8-TCDD-TEQ	7.49E-09	1.02E-08	1.77E-08	Reproductive, Developmental	5.76E-04	7.88E-04	1.36E-03
	Seament	Area	Metals	7.49E-09	1.02E-06	1.//E-06	Reproductive, Developmental	5.76E-U4	7.00⊑-04	1.30E-03
			Aluminum	NA	NA	NA	Neurological	4.49E-05	NA	4.49E-05
			Antimony	NA NA	NA NA	NA NA	Mortality, Blood	2.68E-05	NA NA	2.68E-05
			Arsenic	3.98E-09	9.06E-09	1.30E-08	Skin, Vascular	6.18E-05	1.41E-04	2.03E-04
			Cobalt	0.90L-09 NA	9.00L-09 NA	NA	Thyroid	2.80E-04	NA	2.80E-04
			Cvanide	NA NA	NA NA	NA NA	Reproductive	7.73E-06	NA NA	7.73E-06
			Manganese	NA NA	NA NA	NA NA	Neurological	4.87E-05	NA NA	4.87E-05
			Nickel	NA NA	NA NA	NA NA	Decreased body and organ weights	1.41E-05	NA NA	1.41E-05
			Thallium	NA NA	NA NA	NA NA	Hair	1.17E-04	NA NA	1.17E-04
			Vanadium	NA NA	NA NA	NA NA	Hair	9.60E-05	NA NA	9.60E-05
			PCBs	10.				0.002 00		0.002 00
			Total PCBs	7.10E-10	4.53E-09	5.24E-09	Ocular/eye, Nails, Immune	1.24E-04	7.93E-04	9.18E-04
			SVOCs	7.1102 10	1.002 00	0.212 00		1.2.12.01	7.002 01	0.102 01
			Benzo(a)anthracene	4.69E-11	2.78E-10	3.25E-10	NA	NA	NA	NA
			Benzo(a)pyrene	5.16E-10	3.06E-09	3.58E-09	Developmental	1.20E-05	7.14E-05	8.35E-05
			Benzo(b)fluoranthene	7.71E-11	4.57E-10	5.34E-10	NA	NA NA	NA NA	NA NA
			Benzo(k)fluoranthene	2.82E-12	1.67E-11	1.95E-11	NA	NA	NA	NA
			Chrysene	6.96E-13	4.13E-12	4.82E-12	NA	NA	NA	NA
			Dibenzo(a,h)anthracene	1.18E-10	6.97E-10	8.15E-10	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	4.53E-11	2.68E-10	3.14E-10	NA	NA	NA	NA
			ТРН							
			Diesel Range Organics (C10-C20)	NA	NA	NA	Liver, Kidney, Blood	5.06E-05	NA	5.06E-05
			Chemical Total	1.30E-08	2.86E-08	4.16E-08		1.46E-03	1.79E-03	3.25E-03
		Exposure Point Tota	al			4.16E-08			•	3.25E-03
	Exposure Medium Tota	<u> </u>				4.16E-08				3.25E-03
diment Total	<u> </u>					4.16E-08				3.25E-03
Surface	Surface	Waterside								
Water	Water	Investigation	Dioxin		1				1	
774.01	· · · · · · · · · · · · · · · · · · ·	Area	2,3,7,8-TCDD-TEQ	8.85E-12	Outside EPD	8.85E-12	Reproductive, Developmental	6.81E-07	Outside EPD	6.81E-07
			Metals				,,,,			
			Arsenic	1.95E-10	1.94E-10	3.89E-10	Skin, Vascular	3.04E-06	3.02E-06	6.06E-06
			Cobalt	NA	NA	NA	Thyroid	3.81E-06	1.52E-06	5.33E-06
			Manganese	NA	NA	NA	Neurological	6.81E-06	1.69E-04	1.76E-04
			Pesticides					*****		
			4,4'-DDT	7.37E-14	Outside EPD	7.37E-14	Liver	3.04E-09	Outside EPD	3.04E-09
			PCBs				-			
			Total PCBs	6.27E-13	Outside EPD	6.27E-13	Ocular/eye, Nails, Immune	5.49E-07	Outside EPD	5.49E-07
			Chemical Total	2.05E-10	1.94E-10	3.99E-10		1.49E-05	1.74E-04	1.89E-04
		Exposure Point Tota	al			3.99E-10	-		•	1.89E-04
	Exposure Medium Tota					3.99E-10				1.89E-04
	ce Water Total					3.99E-10				1.89E-04
tace Water Total										

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern	Carcinogenic Risk		Non-Carcinogenic Hazard Quotient				
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total

Notes

NA - Not Applicable

Target	Target Organ Hazard I	ndex	
Organ Chemical	Sediment	Surface Water	Total
Blood Antimony, DRO	7.74E-05		7.74E-05
Decreased body and organ weights Nickel	1.41E-05		1.41E-05
Developmental 2,3,7,8-TCDD-TEQ, Benzo(a)pyrene	1.45E-03	6.81E-07	1.45E-03
Eye Total PCBs	9.18E-04	5.49E-07	9.18E-04
Hair Thallium, Vanadium	2.13E-04		2.13E-04
Immune Total PCBs, Nickel	9.18E-04	5.49E-07	9.18E-04
Kidney DRO	5.06E-05		5.06E-05
Liver 4,4'-DDT, DRO	5.06E-05	3.04E-09	5.06E-05
Mortality Antimony	2.68E-05		2.68E-05
Nails Total PCBs	9.18E-04	5.49E-07	9.18E-04
Neurological Aluminum, manganese	9.35E-05	1.76E-04	2.70E-04
Reproductive TCDD-TEQ, Cyanide	1.37E-03	6.81E-07	1.37E-03
Skin Arsenic	2.03E-04	6.06E-06	2.09E-04
Thyroid Cobalt	2.80E-04	5.33E-06	2.85E-04
Vascular Arsenic	2.03E-04	6.06E-06	2.09E-04

Table H-2-11. CTE Summary of Receptor Risks and Hazards for COPCs - Teen Swimmer Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Teen

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	k	Non	n-Carcinogenic Hazard	Quotient	
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total
Sediment	Fringe	Waterside								
	Surface	Investigation	Dioxin							
	Sediment	Area	2,3,7,8-TCDD-TEQ	1.36E-08	1.10E-08	2.46E-08	Reproductive, Developmental	1.74E-03	1.41E-03	3.15E-03
			Metals							
			Aluminum	NA	NA	NA	Neurological	1.35E-04	NA	1.35E-04
			Antimony	NA	NA	NA	Mortality, Blood	8.10E-05	NA	8.10E-05
			Arsenic	7.20E-09	9.76E-09	1.70E-08	Skin, Vascular	1.87E-04	2.53E-04	4.40E-04
			Cobalt	NA	NA	NA	Thyroid	8.45E-04	NA	8.45E-04
			Cyanide	NA	NA	NA	Reproductive	2.33E-05	NA	2.33E-05
			Manganese	NA	NA	NA	Neurological	1.47E-04	NA	1.47E-04
			Nickel	NA	NA	NA	Decreased body and organ weights	4.26E-05	NA	4.26E-05
			Thallium	NA	NA	NA	Hair	3.53E-04	NA	3.53E-04
			Vanadium	NA	NA	NA	Hair	2.90E-04	NA	2.90E-04
			PCBs							
			Total PCBs	1.29E-09	4.88E-09	6.17E-09	Ocular/eye, Nails, Immune	3.75E-04	1.42E-03	1.80E-03
			SVOCs							
			Benzo(a)anthracene	2.12E-10	7.48E-10	9.60E-10	NA .	NA	NA	NA
			Benzo(a)pyrene	2.34E-09	8.24E-09	1.06E-08	Developmental	3.64E-05	1.28E-04	1.65E-04
			Benzo(b)fluoranthene	3.49E-10	1.23E-09	1.58E-09	NA NA	NA	NA	NA
			Benzo(k)fluoranthene	1.28E-11	4.50E-11	5.78E-11	NA NA	NA	NA	NA
			Chrysene	3.15E-12	1.11E-11	1.43E-11	NA	NA	NA	NA
			Dibenzo(a,h)anthracene	5.32E-10	1.88E-09	2.41E-09	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	2.05E-10	7.22E-10	9.27E-10	NA	NA	NA	NA
			ТРН							
			Diesel Range Organics (C10-C20)	NA	NA	NA	Liver, Kidney, Blood	1.53E-04	NA 0.00E.00	1.53E-04
			Chemical Total	2.57E-08	3.85E-08	6.42E-08		4.41E-03	3.22E-03	7.62E-03
		Exposure Point Tota	al			6.42E-08				7.62E-03
	Exposure Medium Tota	al				6.42E-08				7.62E-03
Sediment Total						6.42E-08				7.62E-03
Surface	Surface	Waterside						·		
Water	Water	Investigation	Dioxin							
		Area	2,3,7,8-TCDD-TEQ	3.74E-11	Outside EPD	3.74E-11	Reproductive, Developmental	4.79E-06	Outside EPD	4.79E-06
			Metals							
			Arsenic	8.25E-10	2.50E-10	1.07E-09	Skin, Vascular	2.14E-05	6.47E-06	2.79E-05
			Cobalt	NA	NA	NA	Thyroid	2.69E-05	3.25E-06	3.01E-05
			Manganese	NA	NA	NA	Neurological	4.80E-05	3.63E-04	4.11E-04
			Pesticides							
			4,4'-DDT	3.12E-13	Outside EPD	3.12E-13	Liver	2.14E-08	Outside EPD	2.14E-08
			PCBs							
			Total PCBs	2.65E-12	Outside EPD	2.65E-12	Ocular/eye, Nails, Immune	3.87E-06	Outside EPD	3.87E-06
			Chemical Total	8.65E-10	2.50E-10	1.11E-09		1.05E-04	3.73E-04	4.78E-04
		Exposure Point Total	al			1.11E-09				4.78E-04
	Exposure Medium Total					1.11E-09		•		4.78E-04
Surface Water Total					1.11E-09				4.78E-04	
Receptor Total						6.53E-08				8.10E-03

Table H-2-11. CTE Summary of Receptor Risks and Hazards for COPCs - Teen Swimmer Central Tendency Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Teen

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	k	Noi	n-Carcinogenic Hazard C	Quotient	
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total

Notes

NA - Not Applicable

Target		Target Organ Hazard Ir	ndex	
Organ	Chemical	Sediment	Surface Water	Total
Blood	Antimony, DRO	2.34E-04	-	2.34E-04
Decreased body and organ weights	Nickel	4.26E-05		4.26E-05
Developmental	2,3,7,8-TCDD-TEQ, Benzo(a)pyrene	3.32E-03	4.79E-06	3.32E-03
Eye	Total PCBs	1.80E-03	3.87E-06	1.80E-03
Hair	Thallium, Vanadium	6.42E-04		6.42E-04
Immune	Total PCBs, Nickel	1.80E-03	3.87E-06	1.80E-03
Kidney	DRO	1.53E-04		1.53E-04
Liver	4,4'-DDT, DRO	1.53E-04	2.14E-08	1.53E-04
Mortality	Antimony	8.10E-05	-	8.10E-05
Nails	Total PCBs	1.80E-03	3.87E-06	1.80E-03
Neurological	Aluminum, manganese	2.82E-04	4.11E-04	6.93E-04
Reproductive	TCDD-TEQ, Cyanide	3.18E-03	4.79E-06	3.18E-03
Skin	Arsenic	4.40E-04	2.79E-05	4.67E-04
Thyroid	Cobalt	8.45E-04	3.01E-05	8.75E-04
Vascular	Arsenic	4.40E-04	2.79E-05	4.67E-04

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Child

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	k	Nor	n-Carcinogenic Hazard	Quotient	
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total
Sediment	Fringe	Waterside								
	Surface	Investigation	Dioxin							
	Sediment	Area	2,3,7,8-TCDD-TEQ	1.41E-08	4.87E-09	1.90E-08	Reproductive, Developmental	5.42E-03	1.87E-03	7.29E-03
			Metals							
			Aluminum	NA	NA	NA	Neurological	4.22E-04	NA	4.22E-04
			Antimony	NA	NA	NA	Mortality, Blood	2.53E-04	NA	2.53E-04
			Arsenic	7.48E-09	4.31E-09	1.18E-08	Skin, Vascular	5.82E-04	3.35E-04	9.17E-04
			Cobalt	NA	NA	NA	Thyroid	2.63E-03	NA	2.63E-03
			Cyanide	NA	NA	NA	Reproductive	7.28E-05	NA	7.28E-05
			Manganese	NA	NA	NA	Neurological	4.58E-04	NA	4.58E-04
			Nickel	NA	NA	NA	Decreased body and organ weights	1.33E-04	NA	1.33E-04
			Thallium	NA	NA	NA	Hair	1.10E-03	NA	1.10E-03
			Vanadium	NA	NA	NA	Hair	9.03E-04	NA	9.03E-04
			PCBs							
			Total PCBs	1.34E-09	2.16E-09	3.49E-09	Ocular/eye, Nails, Immune	1.17E-03	1.89E-03	3.06E-03
			SVOCs							
			Benzo(a)anthracene	3.71E-10	5.55E-10	9.25E-10	NA	NA	NA	NA
			Benzo(a)pyrene	4.08E-09	6.11E-09	1.02E-08	Developmental	1.13E-04	1.70E-04	2.83E-04
			Benzo(b)fluoranthene	6.09E-10	9.12E-10	1.52E-09	NA	NA	NA	NA
			Benzo(k)fluoranthene	2.23E-11	3.34E-11	5.57E-11	NA	NA	NA	NA
			Chrysene	5.50E-12	8.24E-12	1.37E-11	NA	NA	NA	NA
			Dibenzo(a,h)anthracene	9.30E-10	1.39E-09	2.32E-09	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	3.58E-10	5.36E-10	8.94E-10	NA	NA	NA	NA
			ТРН							
			Diesel Range Organics (C10-C20)	NA	NA	NA	Liver, Kidney, Blood	4.76E-04	NA	4.76E-04
			Chemical Total	2.93E-08	2.09E-08	5.02E-08	·	1.37E-02	4.26E-03	1.80E-02
		Exposure Point Tota	1		•	5.02E-08			•	1.80E-02
	Exposure Medium Tota					5.02E-08				1.80E-02
Sediment Total		-				5.02E-08				1.80E-02
Surface	Surface	Waterside			1	0.022 00				1.002 02
Water	Water	Investigation	Dioxin							
vvalei	vvalei	Area	2,3,7,8-TCDD-TEQ	1.94E-11	Outside EPD	1.94E-11	Reproductive, Developmental	7.47E-06	Outside EPD	7.47E-06
		Area	Metals	1.94E-11	Outside EPD	1.94E-11	Reproductive, Developmental	7.47E-U0	Outside EPD	7.47E-06
			Arsenic	4.29E-10	6.56E-11	4.94E-10	Skin, Vascular	3.33E-05	5.10E-06	3.84E-05
				4.29E-10	NA	4.94E-10 NA	Thyroid	4.19E-05	2.56E-06	4.45E-05
			Cobalt	NA NA	NA NA	NA NA				
			Manganese Pesticides	INA	INA	INA	Neurological	7.48E-05	2.86E-04	3.61E-04
			4,4'-DDT	1.62E-13	Outside EPD	1.62E-13	Liver	3.33E-08	Outside EPD	3.33E-08
			PCBs	1.02E-13	Outside EPD	1.02E-13	Livei	3.33E-U0	Outside EPD	3.33E-U0
				4 205 40	Outside EDD	4 205 42	Opularious Naila Immuri	C 02F 0C	Outside EDD	C 02E 0C
			Total PCBs Chemical Total	1.38E-12 4.50E-10	Outside EPD 6.56E-11	1.38E-12 5.15E-10	Ocular/eye, Nails, Immune	6.03E-06 1.64E-04	Outside EPD 2.94E-04	6.03E-06 4.57E-04
		Emanue Balai T.		4.50E-10	0.30E-11			1.04E-U4	Z.94E-U4	
		Exposure Point Tota	N .			5.15E-10				4.57E-04
	Exposure Medium Tota	l				5.15E-10				4.57E-04
Surface Water Total					5.15E-10				4.57E-04	
Receptor Total					5.07E-08	<u> </u>			1.85E-02	

Scenario Timeframe: Current/Future Receptor Population: Swimmer Receptor Age: Child

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern	Carcinogenic Risk		Non-Carcinogenic Hazard Quotient				
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total

Notes

NA - Not Applicable

Target	Target Organ Hazard I	ndex	
Organ Chemical	Sediment	Surface Water	Total
Blood Antimony, DRO	7.29E-04		7.29E-04
Decreased body and organ weights Nickel	1.33E-04		1.33E-04
Developmental 2,3,7,8-TCDD-TEQ, Benzo(a)pyrene	7.58E-03	7.47E-06	7.58E-03
Eye Total PCBs	3.06E-03	6.03E-06	3.06E-03
Hair Thallium, Vanadium	2.00E-03		2.00E-03
Immune Total PCBs, Nickel	3.06E-03	6.03E-06	3.06E-03
Kidney DRO	4.76E-04		4.76E-04
Liver 4,4'-DDT, DRO	4.76E-04	3.33E-08	4.76E-04
Mortality Antimony	2.53E-04		2.53E-04
Nails Total PCBs	3.06E-03	6.03E-06	3.06E-03
Neurological Aluminum, manganese	8.80E-04	3.61E-04	1.24E-03
Reproductive TCDD-TEQ, Cyanide	7.37E-03	7.47E-06	7.37E-03
Skin Arsenic	9.17E-04	3.84E-05	9.56E-04
Thyroid Cobalt	2.63E-03	4.45E-05	2.68E-03
Vascular Arsenic	9.17E-04	3.84E-05	9.56E-04

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	k	Non	-Carcinogenic Hazard	Quotient	
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total
Sediment	Fringe	Waterside								
	Surface	Investigation	Dioxin							
	Sediment	Area	2,3,7,8-TCDD-TEQ	1.99E-08	2.73E-08	4.72E-08	Reproductive, Developmental	1.53E-03	2.10E-03	3.63E-03
			Metals Aluminum	NA	NA	NA	Neurological	1.19E-04	NA	1.19E-04
			Antimony	NA NA	NA NA	NA NA	Mortality, Blood	7.14E-05	NA NA	7.14E-05
			Arsenic	1.06E-08	2.41E-08	3.47E-08	Skin, Vascular	1.65E-04	3.75E-04	5.40E-04
			Cobalt	NA	2.41E-08 NA	NA	Thyroid	7.45E-04	3.75E-04 NA	7.45E-04
			Cvanide	NA NA	NA NA	NA NA	Reproductive	2.06E-05	NA NA	2.06E-05
			Manganese	NA NA	NA NA	NA NA	Neurological	1.30E-04	NA NA	1.30E-04
			Nickel	NA NA	NA NA	NA	Decreased body and organ weights	3.75E-05	NA NA	3.75E-05
			Thallium	NA NA	NA NA	NA	Hair	3.11E-04	NA NA	3.11E-04
			Vanadium	NA	NA	NA	Hair	2.56E-04	NA	2.56E-04
			PCBs							
			Total PCBs	1.89E-09	1.21E-08	1.40E-08	Ocular/eye, Nails, Immune	3.31E-04	2.11E-03	2.44E-03
			SVOCs							
			Benzo(a)anthracene	1.25E-10	7.40E-10	8.64E-10	NA	NA	NA	NA
			Benzo(a)pyrene	1.37E-09	8.15E-09	9.52E-09	Developmental	3.21E-05	1.90E-04	2.22E-04
			Benzo(b)fluoranthene	2.05E-10	1.22E-09	1.42E-09	NA	NA	NA	NA
			Benzo(k)fluoranthene	7.51E-12	4.45E-11	5.20E-11	NA	NA	NA	NA
			Chrysene	1.85E-12	1.10E-11	1.28E-11	NA	NA	NA	NA
			Dibenzo(a,h)anthracene	3.13E-10	1.86E-09	2.17E-09	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	1.21E-10	7.15E-10	8.35E-10	NA	NA	NA	NA
			ТРН							
			Diesel Range Organics (C10-C20)	NA	NA	NA	Liver, Kidney, Blood	1.35E-04	NA	1.35E-04
			Chemical Total	3.46E-08	7.62E-08	1.11E-07		3.89E-03	4.77E-03	8.66E-03
		Exposure Point Tota	al		•	1.11E-07			•	8.66E-03
	Exposure Medium Tota					1.11E-07				8.66E-03
ediment Total	 					1.11E-07				8.66E-03
Surface	Surface	Waterside								
Water	Water	Investigation	Dioxin							
		Area	2,3,7,8-TCDD-TEQ	1.79E-11	Outside EPD	1.79E-11	Reproductive, Developmental	1.38E-06	Outside EPD	1.38E-06
			Metals							
			Arsenic	3.96E-10	1.88E-10	5.84E-10	Skin, Vascular	6.16E-06	2.93E-06	9.08E-06
			Cobalt	NA	NA	NA	Thyroid	7.74E-06	1.47E-06	9.21E-06
			Manganese	NA	NA	NA	Neurological	1.38E-05	1.64E-04	1.78E-04
			Pesticides							
			4,4'-DDT	1.50E-13	Outside EPD	1.50E-13	Liver	6.16E-09	Outside EPD	6.16E-09
			PCBs							
			Total PCBs	1.27E-12	Outside EPD	1.27E-12	Ocular/eye, Nails, Immune	1.11E-06	Outside EPD	1.11E-06
			Chemical Total	4.15E-10	1.88E-10	6.03E-10		3.02E-05	1.68E-04	1.99E-04
		Exposure Point Tota	al			6.03E-10				1.99E-04
	Exposure Medium Tota	1				6.03E-10				1.99E-04
urface Water Total						6.03E-10				1.99E-04
eceptor Total						1.11E-07				8.86E-03

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern	Carcinogenic Risk		Non-Carcinogenic Hazard Quotient					
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total	

Notes

NA - Not Applicable

Target		Target Organ Hazard Ir	ndex	
Organ	Chemical	Sediment	Surface Water	Total
Blood	Antimony, DRO	2.06E-04		2.06E-04
Decreased body and organ weights	Nickel	3.75E-05	-	3.75E-05
Developmental	2,3,7,8-TCDD-TEQ, Benzo(a)pyrene	3.85E-03	1.38E-06	3.85E-03
Eye	Total PCBs	2.44E-03	1.11E-06	2.44E-03
Hair	Thallium, Vanadium	5.66E-04	-	5.66E-04
Immune	Total PCBs, Nickel	2.44E-03	1.11E-06	2.44E-03
Kidney	DRO	1.35E-04		1.35E-04
Liver	4,4'-DDT, DRO	1.35E-04	6.16E-09	1.35E-04
Mortality	Antimony	7.14E-05		7.14E-05
Nails	Total PCBs	2.44E-03	1.11E-06	2.44E-03
Neurological	Aluminum, manganese	2.49E-04	1.78E-04	4.27E-04
Reproductive	TCDD-TEQ, Cyanide	3.65E-03	1.38E-06	3.65E-03
Skin	Arsenic	5.40E-04	9.08E-06	5.49E-04
Thyroid	Cobalt	7.45E-04	9.21E-06	7.54E-04
Vascular	Arsenic	5.40E-04	9.08E-06	5.49E-04

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Teen

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	sk	Non-	-Carcinogenic Hazard	Quotient	
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total
Sediment	Fringe	Waterside								
	Surface	Investigation	Dioxin							
	Sediment	Area	2,3,7,8-TCDD-TEQ	2.30E-08	1.87E-08	4.16E-08	Reproductive, Developmental	2.94E-03	2.39E-03	5.34E-03
			Metals							
			Aluminum	NA	NA	NA	Neurological	2.29E-04	NA	2.29E-04
			Antimony	NA	NA	NA	Mortality, Blood	1.37E-04	NA	1.37E-04
			Arsenic	1.22E-08	1.65E-08	2.87E-08	Skin, Vascular	3.16E-04	4.28E-04	7.45E-04
			Cobalt	NA	NA	NA	Thyroid	1.43E-03	NA	1.43E-03
			Cyanide	NA	NA	NA	Reproductive	3.95E-05	NA	3.95E-05
			Manganese	NA	NA	NA	Neurological	2.49E-04	NA	2.49E-04
			Nickel	NA	NA	NA	Decreased body and organ weights	7.21E-05	NA	7.21E-05
			Thallium	NA	NA	NA	Hair	5.97E-04	NA	5.97E-04
			Vanadium	NA	NA	NA	Hair	4.91E-04	NA	4.91E-04
			PCBs							
			Total PCBs	2.18E-09	8.27E-09	1.04E-08	Ocular/eye, Nails, Immune	6.35E-04	2.41E-03	3.05E-03
			SVOCs							
			Benzo(a)anthracene	3.59E-10	1.27E-09	1.63E-09	NA .	NA	NA	NA
			Benzo(a)pyrene	3.96E-09	1.40E-08	1.79E-08	Developmental	6.16E-05	2.17E-04	2.79E-04
			Benzo(b)fluoranthene	5.91E-10	2.08E-09	2.67E-09	NA NA	NA	NA	NA
			Benzo(k)fluoranthene	2.16E-11	7.62E-11	9.78E-11	NA NA	NA NA	NA NA	NA
			Chrysene	5.34E-12	1.88E-11	2.41E-11	NA NA	NA	NA	NA
			Dibenzo(a,h)anthracene	9.02E-10	3.18E-09	4.08E-09	NA NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	3.47E-10	1.22E-09	1.57E-09	NA	NA	NA	NA
			TPH	NA	NA	NA	1: 161 8: 1	0.505.04	N. A.	2.59E-04
			Diesel Range Organics (C10-C20)	NA	NA	NA	Liver, Kidney, Blood	2.59E-04	NA	2.59E-04
			Chemical Total	4.35E-08	6.53E-08	1.09E-07	+	7.46E-03	5.45E-03	1.29E-02
		Exposure Point Tota		1.002 00	0.002 00	1.09E-07	<u> </u>	7.102.00	0.102.00	1.29E-02
	Exposure Medium Tota		A.			1.09E-07	<u> </u>			1.29E-02
ediment Total	Exposure Medium Tota	عاد				1.09E-07	II.			1.29E-02
Surface	Surface	Waterside	1		1	1.03E 07			1	1.232 02
Water	Water	Investigation	Dioxin							
water	vvalei	Area	2,3,7,8-TCDD-TEQ	2.07E-11	Outside EPD	2.07E-11	Reproductive, Developmental	2.65E-06	Outside EPD	2.65E-06
		Area	Metals	2.07E-11	Outside EPD	2.07E-11	Reproductive, Developmental	2.00E-U0	Outside EPD	2.00E-00
			Arsenic	4.56E-10	1.55E-10	6.11E-10	Skin, Vascular	1.18E-05	4.01E-06	1.58E-05
			Cobalt	4.56E-10 NA	NA	NA NA	Thyroid	1.49E-05	2.01E-06	1.69E-05
			Manganese	NA NA	NA NA	NA NA	Neurological	2.65E-05	2.25E-04	2.51E-04
			Pesticides	INA	INA	INA	Neurological	2.00E-00	2.23E-04	2.31E-04
			4,4'-DDT	1.72E-13	Outside EPD	1.72E-13	Liver	1.18E-08	Outside EPD	1.18E-08
			PCBs	1.726-13	Outside LFD	1.121-13	Livei	1.10L-00	Outside LFD	1.101-00
			Total PCBs	1.47E-12	Outside EPD	1.47E-12	Ocular/eye, Nails, Immune	2.14E-06	Outside EPD	2.14E-06
			Chemical Total	4.79E-10	1.55E-10	6.33E-10	Oculai/eye, Ivalis, Illilliufie	5.80E-05	2.31E-04	2.14E-06 2.89E-04
		Exposure Point Tota		4.73L-10	1.00L-10	6.33E-10	<u> </u>	J.00L-03	2.01L-04	2.89E-04
	Foreston Madic T /		11				<u> </u>			
, W. T. I	Exposure Medium Total					6.33E-10	<u> </u>			2.89E-04
urface Water Total						6.33E-10	1			2.89E-04
ceptor Total						1.09E-07				1.32E-02

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Teen

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern	Carcinogenic Risk		Non-Carcinogenic Hazard Quotient				
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total

Notes

NA - Not Applicable

Target		Target Organ Hazard II	ndex	
Organ	Chemical	Sediment	Surface Water	Total
Blood	Antimony, DRO	3.96E-04		3.96E-04
Decreased body and organ weights	Nickel	7.21E-05		7.21E-05
Developmental	2,3,7,8-TCDD-TEQ, Benzo(a)pyrene	5.62E-03	2.65E-06	5.62E-03
Eye	Total PCBs	3.05E-03	2.14E-06	3.05E-03
Hair	Thallium, Vanadium	1.09E-03		1.09E-03
Immune	Total PCBs, Nickel	3.05E-03	2.14E-06	3.05E-03
Kidney	DRO	2.59E-04		2.59E-04
Liver	4,4'-DDT, DRO	2.59E-04	1.18E-08	2.59E-04
Mortality	Antimony	1.37E-04		1.37E-04
Nails	Total PCBs	3.05E-03	2.14E-06	3.05E-03
Neurological	Aluminum, manganese	4.78E-04	2.51E-04	7.29E-04
Reproductive	TCDD-TEQ, Cyanide	5.38E-03	2.65E-06	5.38E-03
Skin	Arsenic	7.45E-04	1.58E-05	7.60E-04
Thyroid	Cobalt	1.43E-03	1.69E-05	1.45E-03
Vascular	Arsenic	7.45E-04	1.58E-05	7.60E-04

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Child

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	sk	Non	-Carcinogenic Hazard	Quotient	
				Ingestion	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Dermal	Exposure Routes Total
Sediment	Fringe	Waterside								
	Surface	Investigation	Dioxin							
	Sediment	Area	2,3,7,8-TCDD-TEQ	3.75E-08	1.30E-08	5.05E-08	Reproductive, Developmental	1.44E-02	4.99E-03	1.94E-02
			Metals							
			Aluminum	NA	NA	NA	Neurological	1.12E-03	NA	1.12E-03
			Antimony	NA	NA	NA	Mortality, Blood	6.72E-04	NA	6.72E-04
			Arsenic	1.99E-08	1.15E-08	3.14E-08	Skin, Vascular	1.55E-03	8.92E-04	2.44E-03
			Cobalt	NA	NA	NA	Thyroid	7.01E-03	NA	7.01E-03
			Cyanide	NA	NA	NA	Reproductive	1.94E-04	NA	1.94E-04
			Manganese	NA	NA	NA	Neurological	1.22E-03	NA	1.22E-03
			Nickel	NA	NA	NA	Decreased body and organ weights	3.53E-04	NA	3.53E-04
			Thallium	NA	NA	NA	Hair	2.93E-03	NA	2.93E-03
			Vanadium	NA	NA	NA	Hair	2.40E-03	NA	2.40E-03
			PCBs							
			Total PCBs	3.56E-09	5.74E-09	9.30E-09	Ocular/eye, Nails, Immune	3.11E-03	5.02E-03	8.14E-03
			SVOCs							
			Benzo(a)anthracene	9.86E-10	1.48E-09	2.46E-09	NA	NA	NA	NA
			Benzo(a)pyrene	1.09E-08	1.63E-08	2.71E-08	Developmental	3.02E-04	4.52E-04	7.54E-04
			Benzo(b)fluoranthene	1.62E-09	2.43E-09	4.05E-09	NA	NA	NA	NA
			Benzo(k)fluoranthene	5.94E-11	8.89E-11	1.48E-10	NA	NA	NA	NA
			Chrysene	1.46E-11	2.19E-11	3.66E-11	NA	NA	NA	NA
			Dibenzo(a,h)anthracene	2.47E-09	3.71E-09	6.18E-09	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	9.53E-10	1.43E-09	2.38E-09	NA	NA	NA	NA
			TPH							
			Diesel Range Organics (C10-C20)	NA	NA	NA	Liver, Kidney, Blood	1.27E-03	NA	1.27E-03
			Chemical Total	7.80E-08	5.56E-08	1.34E-07		3.66E-02	1.14E-02	4.79E-02
		Exposure Point Tota		7.002 00	0.002 00	1.34E-07		0.002 02	11112 02	4.79E-02
	Exposure Medium Tota		21			1.34E-07	<u> </u>			4.79E-02
Sediment Total	Exposure Medium Tota	11				1.34E-07	<u> </u>			4.79E-02
		1 14/ / 11				1.34E-07				4.79E-02
Surface Water	Surface Water	Waterside Investigation	Dioxin							
water	Water	Area	2,3,7,8-TCDD-TEQ	1.69E-11	Outside EPD	1.69E-11	Reproductive, Developmental	6.50E-06	Outside EPD	6.50E-06
		Alea	Metals	1.03L-11	Outside LFD	1.03L-11	reproductive, Developmental	0.30L-00	Outside LFD	0.30L-00
			Arsenic	3.73E-10	9.58E-11	4.68E-10	Skin, Vascular	2.90E-05	7.45E-06	3.64E-05
			Cobalt	NA	NA NA	NA	Thyroid	3.64E-05	3.74E-06	4.02E-05
			Manganese	NA NA	NA NA	NA NA	Neurological	6.50E-05	4.18E-04	4.83E-04
			Pesticides	INA	INA	INA	Neurological	0.30L-03	4.10L-04	4.03L-04
			4,4'-DDT	1.41E-13	Outside EPD	1.41E-13	Liver	2.90E-08	Outside EPD	2.90E-08
	1	1	PCBs	1.412 13	Subjuc EFD	1.412 13	LIVEI	2.302 00	Culside El D	2.30L 30
	1	1	Total PCBs	1.20E-12	Outside EPD	1.20E-12	Ocular/eye, Nails, Immune	5.24E-06	Outside EPD	5.24E-06
	1	1	Chemical Total	3.91E-10	9.58E-11	4.87E-10	Soulai/eye, Ivalis, Illillidle	1.42E-04	4.29E-04	5.71E-04
	1	Exposure Point Tota		3.51L 10	J.500E 11	4.87E-10		1.746 07	T.20L 07	5.71E-04
	Evangura Madium Tata		וג			4.87E-10				
f \M/-4 T : 1	Exposure Medium Tota	II								5.71E-04
urface Water Total						4.87E-10				5.71E-04
ceptor Total						1.34E-07				4.85E-02

Scenario Timeframe: Current/Future Receptor Population: Wader Receptor Age: Child

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern	Carcinogenic Risk		Non-Carcinogenic Hazard Quotient				
				Ingestion	Dermal	Exposure	Primary	Ingestion	Dermal	Exposure
						Routes Total	Target Organ(s)			Routes Total

Notes

NA - Not Applicable

Target		Target Organ Hazard II	ndex	
Organ Ch		Sediment	Surface Water	Total
Blood Ar	ntimony, DRO	1.94E-03		1.94E-03
Decreased body and organ weights Ni	ickel	3.53E-04		3.53E-04
Developmental 2,3	3,7,8-TCDD-TEQ, Benzo(a)pyrene	2.02E-02	6.50E-06	2.02E-02
Eye To	otal PCBs	8.14E-03	5.24E-06	8.14E-03
Hair Th	hallium, Vanadium	5.33E-03	-	5.33E-03
Immune To	otal PCBs, Nickel	8.14E-03	5.24E-06	8.14E-03
Kidney DF	RO	1.27E-03	-	1.27E-03
Liver 4,4	4'-DDT, DRO	1.27E-03	2.90E-08	1.27E-03
Mortality Ar	ntimony	6.72E-04		6.72E-04
Nails To	otal PCBs	8.14E-03	5.24E-06	8.14E-03
Neurological Ali	luminum, manganese	2.34E-03	4.83E-04	2.83E-03
Reproductive TC	CDD-TEQ, Cyanide	1.96E-02	6.50E-06	1.96E-02
Skin Ar	rsenic	2.44E-03	3.64E-05	2.48E-03
Thyroid Co	obalt	7.01E-03	4.02E-05	7.05E-03
Vascular Ar	rsenic	2.44E-03	3.64E-05	2.48E-03

Scenario Timeframe: Current/Future Receptor Population: Shoreline Worker Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ris	sk	Non	ı-Carcinogenic Hazard	Quotient	
				Ingestion	Dermal	Exposure	Primary	Ingestion	Dermal	Exposure
				ľ		Routes Total	Target Organ(s)	ŭ		Routes Total
Sediment	Fringe	Waterside								
Codimoni	Surface	Investigation	Dioxin							
	Sediment	Area	2.3.7.8-TCDD-TEQ	3.80E-08	2.42E-08	6.22E-08	Reproductive, Developmental	4.43E-03	2.81E-03	7.25E-03
			Metals							
			Aluminum	NA	NA	NA	Neurological	3.45E-04	NA	3.45E-04
			Antimony	NA	NA	NA	Mortality, Blood	2.07E-04	NA	2.07E-04
			Arsenic	2.02E-08	2.14E-08	4.16E-08	Skin, Vascular	4.76E-04	5.04E-04	9.80E-04
			Cobalt	NA	NA	NA	Thyroid	2.15E-03	NA	2.15E-03
			Cyanide	NA	NA	NA	Reproductive	5.95E-05	NA	5.95E-05
			Manganese	NA	NA	NA	Neurological	3.75E-04	NA	3.75E-04
			Nickel	NA	NA	NA	Decreased body and organ weights	1.09E-04	NA	1.09E-04
			Thallium	NA	NA	NA	Hair	8.99E-04	NA	8.99E-04
			Vanadium	NA	NA	NA	Hair	7.39E-04	NA	7.39E-04
			PCBs							
			Total PCBs	3.61E-09	1.07E-08	1.43E-08	Ocular/eye, Nails, Immune	9.57E-04	2.83E-03	3.79E-03
			SVOCs				, , , , , , , , , , , , , , , , , , , ,	*****		
			Benzo(a)anthracene	2.38E-10	6.55E-10	8.93E-10	NA	NA	NA	NA
			Benzo(a)pyrene	2.62E-09	7.22E-09	9.84E-09	Developmental	9.28E-05	2.55E-04	3.48E-04
			Benzo(b)fluoranthene	3.92E-10	1.08E-09	1.47E-09	NA	NA	NA	NA
			Benzo(k)fluoranthene	1.43E-11	3.94E-11	5.37E-11	NA	NA	NA	NA
			Chrysene	3.54E-12	9.73E-12	1.33E-11	NA	NA	NA	NA
			Dibenzo(a,h)anthracene	5.97E-10	1.64E-09	2.24E-09	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	2.30E-10	6.33E-10	8.63E-10	NA	NA	NA	NA
			ТРН							
			Diesel Range Organics (C10-C20)	NA	NA	NA	Liver, Kidney, Blood	3.90E-04	NA	3.90E-04
			Chemical Total	6.59E-08	6.75E-08	1.33E-07		1.12E-02	6.41E-03	1.76E-02
		Exposure Point Tota	al .			1.33E-07			•	1.76E-02
	Exposure Medium Tota	al				1.33E-07				1.76E-02
Sediment Total	'					1.33E-07				1.76E-02
Surface	Surface	Waterside	1		1					
Water	Water	Investigation	Dioxin							
174.01	· · · · · · · · · · · · · · · · · · ·	Area	2.3.7.8-TCDD-TEQ	1.71E-11	Outside EPD	1.71E-11	Reproductive, Developmental	2.00E-06	Outside EPD	2.00E-06
			Metals				,,,			
			Arsenic	3.78E-10	3.33E-10	7.11E-10	Skin, Vascular	8.90E-06	7.85E-06	1.68E-05
			Cobalt	NA	NA	NA NA	Thyroid	1.12E-05	3.95E-06	1.51E-05
			Manganese	NA	NA	NA	Neurological	2.00E-05	4.40E-04	4.60E-04
			Pesticides		1		3 3			
			4,4'-DDT	1.43E-13	Outside EPD	1.43E-13	Liver	8.90E-09	Outside EPD	8.90E-09
			PCBs							
			Total PCBs	1.21E-12	Outside EPD	1.21E-12	Ocular/eye, Nails, Immune	1.61E-06	Outside EPD	1.61E-06
			Chemical Total	3.96E-10	3.33E-10	7E-10		4.37E-05	4.52E-04	4.96E-04
		Exposure Point Tota			•	7.29E-10			•	4.96E-04
	Exposure Medium Tota					7.29E-10				4.96E-04
Surface Water Total	1 100					7.29E-10				4.96E-04
Receptor Total				L		1.34E-07				1.81E-02
receptor rotal						1.07L-07	(1.01L-02

Scenario Timeframe: Current/Future Receptor Population: Shoreline Worker Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Ri	sk	Nor	n-Carcinogenic Hazard (Quotient	
				Ingestion	Dermal	Exposure	Primary	Ingestion	Dermal	Exposure
						Routes Total	Target Organ(s)			Routes Total

Notes

NA - Not Applicable

Target		Target Organ Hazard II	ndex	
	Chemical	Sediment	Surface Water	Total
Blood	Antimony, DRO	5.96E-04	-	5.96E-04
Decreased body and organ weights	Nickel	1.09E-04		1.09E-04
Developmental	2,3,7,8-TCDD-TEQ, Benzo(a)pyrene	7.60E-03	2.00E-06	7.60E-03
Eye	Total PCBs	3.79E-03	1.61E-06	3.79E-03
Hair	Thallium, Vanadium	1.64E-03	-	1.64E-03
Immune	Total PCBs, Nickel	3.79E-03	1.61E-06	3.79E-03
Kidney	DRO	3.90E-04	-	3.90E-04
Liver	4,4'-DDT, DRO	3.90E-04	8.90E-09	3.90E-04
Mortality	Antimony	2.07E-04		2.07E-04
Nails	Total PCBs	3.79E-03	1.61E-06	3.79E-03
Neurological	Aluminum, manganese	7.20E-04	4.60E-04	1.18E-03
Reproductive	TCDD-TEQ, Cyanide	7.31E-03	2.00E-06	7.31E-03
Skin	Arsenic	9.80E-04	1.68E-05	9.96E-04
Thyroid	Cobalt	2.15E-03	1.51E-05	2.17E-03
Vascular	Arsenic	9.80E-04	1.68E-05	9.96E-04

Alternate Diet Risk Calculation Table

Table H-3-1. RME Calculation of Chemical Cancer Risks and Non-Cancer Hazards - Angler Reasonable Maximum Exposure Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Scenario Timeframe: Current/Future
Receptor Population: Angler
Receptor Age: Child and Adult

	Medium/						Cancer Ris	Noncancer Hazard Calculations							
	Exposure	Exposure	Chemical of	EPC		Intake/Exposure Concentration		CSF		Cancer	Intake/Exposur	e Concentration	RfD		Hazard
Receptor	Medium/Exposure Route	Point	Potential Concern	Value	Units	Value	Units	Value	Units	Risk	Value	Units	Value	Units	Quotient
Young Child	Fish Fillet Tissue	Upper Anacostia													
	Ingestion	Mixed diet (1)	Total PCBs	3.6E-01	mg/kg	5.5E-06	mg/kg-day	2.0E+00	kg-day/mg	1.1E-05	6.4E-05	mg/kg-day	2.0E-05	mg/kg-day	3.2E+00
		100% catfish (2)	Total PCBs	2.5E-01	mg/kg	3.9E-06	mg/kg-day	2.0E+00	kg-day/mg	7.8E-06	4.5E-05	mg/kg-day	2.0E-05	mg/kg-day	2.3E+00
		100% carp (2)	Total PCBs	6.8E-01	mg/kg	1.0E-05	mg/kg-day	2.0E+00	kg-day/mg	2.1E-05	1.2E-04	mg/kg-day	2.0E-05	mg/kg-day	6.1E+00
		100% largemouth bass (2)	Total PCBs	1.2E-01	mg/kg	1.8E-06	mg/kg-day	2.0E+00	kg-day/mg	3.7E-06	2.1E-05	mg/kg-day	2.0E-05	mg/kg-day	1.1E+00
		100% sunfish (2)	Total PCBs	4.2E-02	mg/kg	6.4E-07	mg/kg-day	2.0E+00	kg-day/mg	1.3E-06	7.5E-06	mg/kg-day	2.0E-05	mg/kg-day	3.8E-01
		100% northern snakehead (2)	Total PCBs	5.0E-02	mg/kg	7.7E-07	mg/kg-day	2.0E+00	kg-day/mg	1.5E-06	9.0E-06	mg/kg-day	2.0E-05	mg/kg-day	4.5E-01
		50% catfish & 50% largemouth bass (3)	Total PCBs	1.9E-01	mg/kg	2.9E-06	mg/kg-day	2.0E+00	kg-day/mg	5.7E-06	3.3E-05	mg/kg-day	2.0E-05	mg/kg-day	1.7E+00

	Medium/						Cancer Ris	Cancer Risk Calculations				Noncancer Hazard Calculations				
	Exposure	Exposure	Chemical of	EPC		Intake/Exposure Concentration		CSF		Cancer	Intake/Exposure Concentration		RfD		Hazard	
Receptor	Medium	Point	Potential Concern	Value	Units	Value	Units	Value	Units	Risk	Value	Units	Value	Units	Quotient	
Adult	Mixed	Upper Anacostia														
		Mixed diet (1)	Total PCBs	3.6E-01	mg/kg	1.1E-05	mg/kg-day	2.0E+00	kg-day/mg	2.2E-05	3.9E-05	mg/kg-day	2.0E-05	mg/kg-day	2.0E+00	
		100% catfish (2)	Total PCBs	2.5E-01	mg/kg	7.9E-06	mg/kg-day	2.0E+00	kg-day/mg	1.6E-05	2.8E-05	mg/kg-day	2.0E-05	mg/kg-day	1.4E+00	
		100% carp (2)	Total PCBs	6.8E-01	mg/kg	2.1E-05	mg/kg-day	2.0E+00	kg-day/mg	4.2E-05	7.4E-05	mg/kg-day	2.0E-05	mg/kg-day	3.7E+00	
		100% largemouth bass (2)	Total PCBs	1.2E-01	mg/kg	3.7E-06	mg/kg-day	2.0E+00	kg-day/mg	7.5E-06	1.3E-05	mg/kg-day	2.0E-05	mg/kg-day	6.5E-01	
		100% sunfish (2)	Total PCBs	4.2E-02	mg/kg	1.3E-06	mg/kg-day	2.0E+00	kg-day/mg	2.6E-06	4.6E-06	mg/kg-day	2.0E-05	mg/kg-day	2.3E-01	
		100% northern snakehead (2)	Total PCBs	5.0E-02	mg/kg	1.6E-06	mg/kg-day	2.0E+00	kg-day/mg	3.1E-06	5.4E-06	mg/kg-day	2.0E-05	mg/kg-day	2.7E-01	
		50% catfish & 50% largemouth bass (3)	Total PCBs	1.9E-01	mg/kg	5.8E-06	mg/kg-day	2.0E+00	kg-day/mg	1.2E-05	2.0E-05	mg/kg-day	2.0E-05	mg/kg-day	1.0E+00	

Notes:

CSF - Cancer Slope Factor.

EPC - Exposure Point Concentration.

PCB - Polychlorinated Biphenyl.

RfD - Oral Reference Dose.

- (1) Baseline diet. Assumes a mixed fish diet of the species with available fillet data based on a pooled EPC. See Table 3-8.
- (2) Based on maximum concentration for this species.
- (3) Based on the average of the maximum values for catfish and largemouth bass.