

Appendix E

Aestus ERI Survey Technical Memorandum

AESTUS' GEOTRAX SURVEY[™] SITE CHARACTERIZATION WORK PEPCO BENNING FACILITY WASHINGTON, D.C., USA

PREPARED FOR: AECOM

PREPARED BY: Aestus, LLC

DATE: October 4, 2013

EXECUTIVE SUMMARY

An innovative approach to site characterization was performed by AECOM at the PEPCO Benning Facility located in Washington, D.C. Aestus, LLC (Aestus) was retained by AECOM to scan the subsurface of this site with its proprietary electrical resistivity imaging (GeoTrax Survey[™]) technology to map subsurface environmental impacts. This "scan first and then drill" approach has been very successful in the oil/gas and medical industries and has facilitated a very high data density site characterization effort, relative to simply installing a few monitoring wells via the conventional "drilling blind" methodology.

The project objectives of this investigation program included using Aestus' GeoTrax Survey[™] technology to assist AECOM with:

- 1. Lateral and horizontal extent of impacts
- 2. Map geology/geotechnical data
- 3. Optimize placement of monitoring wells
- 4. Identify the Arundel clay and potential preferential pathways
- 5. Address site as a potential PCB impact to Anacostia River

A total of 10 GeoTrax Surveys[™] were performed at the locations shown on Figure PV-1. Aestus employed its "Evidence-Based Geophysics" process to effectively integrate and view available data (i.e., geophysical and historical/confirmation drilling/sampling data) together on the 2-D survey images and in a 3-D visualization model, which assists AECOM in developing a robust conceptual site model (CSM). Figures 1 through 10 show GeoTrax Survey[™] 2-D images, selected for detailed discussion, in one site specific resistivity color contouring scheme. Figures 12 through 16 show example 3-D perspective views (entire 3-D model is provided as Electronic Appendix E2). Please note that the various data sets combined in the 2-D Figures and 3-D visualization model are not all exactly aligned temporally or geospatially.

The following conclusions are offered at the time of this technical memo based on Aestus experience, professional judgment and our Evidence-Based Geophysics process. As with all environmental assessments, these conclusions are reached with a certain acceptable degree of uncertainty, due to the possibility that relevant subsurface conditions may exist beyond the scope of this geophysical investigation. The below conclusions are subject to revision based on any follow up drilling/sampling data from anomalous locations detected by Aestus.

- 1. Based on the areas surveyed, the site appears largely unimpacted.
- 2. Deeper electrically resistive zones do not appear to be impacted (Note: these zones may reflect naturally occurring gas pockets; methane or CO2).
- 3. Shallow electrically resistive zones are lightly impacted with PAHs & hydrocarbon/MTBE (location dependent). No PCBs were detected above regulatory standards (i.e., Project Screening Levels or PSLs) in confirmation borings performed along GeoTrax Survey[™] transect lines.
- 4. The abovementioned shallow impacts appear small and isolated. Based on the proximity to electrically conductive zones these shallow impacts are likely undergoing some level of naturally occurring biodegradation.
- 5. GeoTrax Survey[™] data can be used to delineate targets that are slightly above regulatory levels.
- 6. Should additional questions remain that drilling alone cannot address, additional GeoTrax Surveys[™] could be performed if/as necessary.

Aestus believes that our GeoTrax Survey[™] work combined with AECOM's follow up confirmation drilling/sampling work achieved the abovementioned project objectives and provided the following value added elements to the project:

- High resolution/high data density scanning left "fewer stones unturned" and focused AECOM's drilling work on potential anomalous zones detected by Aestus
- The integrated geophysical and drilling data sets provide strong integrated evidence of low impacts on site
- This approach yielded a stronger conceptual site model with increased certainty and decreased potential trailing liabilities for Pepco
- Shallow pockets of impacts were pinpointed
- Potential biodegradation zones provide data for potential MNA evaluation

LIST OF TABLES

- Table 1
 Electrode Spacing, Survey Line Length, and Survey Depth
- Table 2
 GeoTrax Survey™ End Electrode Land Survey Coordinates
- Table 3
 Distance Along Survey Line from Electrode No. 1 (1.5 m electrode spacing)
- Table 4
 Distance Along Survey Line from Electrode No. 1 (2.0 m electrode spacing)
- Table 5
 Distance Along Survey Line from Electrode No. 1 (2.5 m electrode spacing)
- Table 6
 Distance Along Survey Line from Electrode No. 1 (3.0 m electrode spacing)

LIST OF FIGURES

TITLE PAGE	
LS-1	Legends and Symbols
LS-2	Interpretive Electrical Resistivity Scale (Site Specific)
Figure PV-1	Plan View - As-Built GeoTrax Survey™ and Confirmation Boring Location
Figure 1	GeoTrax Survey™ WAS-01 (Common Earth Model Data Compilation)
Figure 2	GeoTrax Survey™ WAS-02 (Common Earth Model Data Compilation)
Figure 3	GeoTrax Survey™ WAS-03 (Common Earth Model Data Compilation)
Figure 4	GeoTrax Survey™ WAS-04 (Common Earth Model Data Compilation)
Figure 5	GeoTrax Survey™ WAS-05 (Common Earth Model Data Compilation)
Figure 6	GeoTrax Survey™ WAS-06 (Common Earth Model Data Compilation)
Figure 7	GeoTrax Survey™ WAS-07 (Common Earth Model Data Compilation)
Figure 8	GeoTrax Survey™ WAS-08 (Common Earth Model Data Compilation)
Figure 9	GeoTrax Survey™ WAS-09 (Common Earth Model Data Compilation)
Figure 10	GeoTrax Survey™ WAS-10 (Common Earth Model Data Compilation)
Figure 11	Representative Site Photos (GeoTrax Survey™ Data Acquisition)
Figure 12	3-D Perspective View; GeoTrax Survey [™] Images with Transparent Aerial Photo; Custom Color Scheme
Figure 13	3-D Perspective View; GeoTrax Survey™ Images with Aerial Photo; Custom Color Scheme
Figure 14	3-D Perspective View; GeoTrax Survey [™] Images only; Custom Color Scheme
Figure 15	3-D Perspective View; GeoTrax Survey [™] Images with Aerial Photo; Conductive Only Color Scheme
Figure 16	3-D Perspective View; GeoTrax Survey [™] Images only; Resistive Only Color Scheme

LIST OF ELECTRONIC APPENDICES

Appendix A Aestus' GeoTrax Survey[™] Field Notes

- Appendix B Reference Technical Paper (The Effects of LNAPL Biodegradation Products on Electrical Conductivity Measurements)
- Electronic Appendix E-1 Site Photographs
- Electronic Appendix E-2 3-D Visualization Model and Free Viewer Software
- Electronic Appendix E-3 XYZR GeoTrax Survey[™] Data Output Files

TABLES

Table 1Electrode Spacing, Survey Line Length, and Survey DepthPEPCO-Benning FacilityWashington, DC, USA

Survey ID	Electrode Spacing (m)	Survey Line Length (ft)	Image Depth (ft)
WAS-01	2.00	361	72
WAS-02	3.00	541	108
WAS-03	3.00	541	108
WAS-04	3.00	541	108
WAS-05	3.00	541	108
WAS-06	2.50	451	90
WAS-07	3.00	541	108
WAS-08	3.00	541	108
WAS-09	3.00	541	108
WAS-10	1.50	271	54

Table 2 GeoTrax Survey[™] End Electrode Land Survey Coordinates PEPCO-Benning Facility Washington, DC, USA

	Electrode 1					
Survey ID	Easting (ft)	Northing (ft)	Elevation (ft)	Easting (ft)	Northing (ft)	Elevation (ft)
WAS-01	1,324,607.56	448,626.23	23.16	1,324,594.32	448,986.84	19.09
WAS-02	1,324,104.88	448,768.20	19.13	1,324,622.88	448,922.28	17.63
WAS-03	1,324,128.29	448,641.37	21.37	1,324,663.68	448,565.75	23.52
WAS-04	1,324,400.73	448,603.34	20.45	1,324,935.58	448,526.77	25.91
WAS-05	1,324,138.60	448,050.22	21.67	1,324,170.56	448,589.54	19.96
WAS-06	1,324,309.41	448,778.50	19.82	1,324,339.94	449,227.44	18.40
WAS-07	1,325,445.92	448,381.17	29.54	1,325,448.82	448,921.24	25.98
WAS-08	1,326,175.06	448,366.12	37.46	1,325,636.13	448,322.15	32.46
WAS-09	1,326,448.93	448,386.02	35.12	1,325,910.63	448,343.68	35.96
WAS-10	1,326,080.97	447,947.60	32.45	1,325,886.83	447,759.36	34.07

Notes:

1. Coordinates provided: D.C./Maryland State Plane Coordinate System. Horizontal Datum: NAD83. Vertical Datum: MLLW.

Table 3Distance Along Survey Line from Electrode No. 1 (1.5 m Spacing)PEPCO-Benning FacilityWashington, DC, USA

		1.5	5 meter spacing		
Electrode	<u>Meters</u>	<u>Feet</u>	<u>Electrode</u>	<u>Meters</u>	<u>Feet</u>
1	0.00	0	29	42.00	138
2	1.50	5	30	43.50	143
3	3.00	10	31	45.00	148
4	4.50	15	32	46.50	153
5	6.00	20	33	48.00	157
6	7.50	25	34	49.50	162
7	9.00	30	35	51.00	167
8	10.50	34	36	52.50	172
9	12.00	39	37	54.00	177
10	13.50	44	38	55.50	182
11	15.00	49	39	57.00	187
12	16.50	54	40	58.50	192
13	18.00	59	41	60.00	197
14	19.50	64	42	61.50	202
15	21.00	69	43	63.00	207
16	22.50	74	44	64.50	212
17	24.00	79	45	66.00	217
18	25.50	84	46	67.50	221
19	27.00	89	47	69.00	226
20	28.50	94	48	70.50	231
21	30.00	98	49	72.00	236
22	31.50	103	50	73.50	241
23	33.00	108	51	75.00	246
24	34.50	113	52	76.50	251
25	36.00	118	53	78.00	256
26	37.50	123	54	79.50	261
27	39.00	128	55	81.00	266
28	40.50	133	56	82.50	271

* NOTE: Survey WAS-10 has a 1.5 meter electrode spacing.

Table 4Distance Along Survey Line from Electrode No. 1 (2.0 m Spacing)PEPCO-Benning FacilityWashington, DC, USA

		2	? meter spacing		
Electrode	<u>Meters</u>	<u>Feet</u>	Electrode	<u>Meters</u>	<u>Feet</u>
1	0.00	0	29	56.00	184
2	2.00	7	30	58.00	190
3	4.00	13	31	60.00	197
4	6.00	20	32	62.00	203
5	8.00	26	33	64.00	210
6	10.00	33	34	66.00	217
7	12.00	39	35	68.00	223
8	14.00	46	36	70.00	230
9	16.00	52	37	72.00	236
10	18.00	59	38	74.00	243
11	20.00	66	39	76.00	249
12	22.00	72	40	78.00	256
13	24.00	79	41	80.00	262
14	26.00	85	42	82.00	269
15	28.00	92	43	84.00	276
16	30.00	98	44	86.00	282
17	32.00	105	45	88.00	289
18	34.00	112	46	90.00	295
19	36.00	118	47	92.00	302
20	38.00	125	48	94.00	308
21	40.00	131	49	96.00	315
22	42.00	138	50	98.00	322
23	44.00	144	51	100.00	328
24	46.00	151	52	102.00	335
25	48.00	157	53	104.00	341
26	50.00	164	54	106.00	348
27	52.00	171	55	108.00	354
28	54.00	177	56	110.00	361

* NOTE: Survey WAS-01 had a 2.0 meter electrode spacing.

Table 5Distance Along Survey Line from Electrode No. 1 (2.5 m Spacing)PEPCO-Benning FacilityWashington, DC, USA

		2.5	i meter spacing		
Electrode	<u>Meters</u>	<u>Feet</u>	Electrode	<u>Meters</u>	<u>Feet</u>
1	0.00	0	29	70.00	230
2	2.50	8	30	72.50	238
3	5.00	16	31	75.00	246
4	7.50	25	32	77.50	254
5	10.00	33	33	80.00	262
6	12.50	41	34	82.50	271
7	15.00	49	35	85.00	279
8	17.50	57	36	87.50	287
9	20.00	66	37	90.00	295
10	22.50	74	38	92.50	303
11	25.00	82	39	95.00	312
12	27.50	90	40	97.50	320
13	30.00	98	41	100.00	328
14	32.50	107	42	102.50	336
15	35.00	115	43	105.00	344
16	37.50	123	44	107.50	353
17	40.00	131	45	110.00	361
18	42.50	139	46	112.50	369
19	45.00	148	47	115.00	377
20	47.50	156	48	117.50	385
21	50.00	164	49	120.00	394
22	52.50	172	50	122.50	402
23	55.00	180	51	125.00	410
24	57.50	189	52	127.50	418
25	60.00	197	53	130.00	427
26	62.50	205	54	132.50	435
27	65.00	213	55	135.00	443
28	67.50	221	56	137.50	451

* NOTE: Survey WAS-06 had a 2.5 meter electrode spacing.

Table 6Distance Along Survey Line from Electrode No. 1 (3.0 m Spacing)PEPCO-Benning FacilityWashington, DC, USA

		3	meter spacing		
Electrode	<u>Meters</u>	<u>Feet</u>	<u>Electrode</u>	<u>Meters</u>	<u>Feet</u>
1	0.00	0	29	84.00	276
2	3.00	10	30	87.00	285
3	6.00	20	31	90.00	295
4	9.00	30	32	93.00	305
5	12.00	39	33	96.00	315
6	15.00	49	34	99.00	325
7	18.00	59	35	102.00	335
8	21.00	69	36	105.00	344
9	24.00	79	37	108.00	354
10	27.00	89	38	111.00	364
11	30.00	98	39	114.00	374
12	33.00	108	40	117.00	384
13	36.00	118	41	120.00	394
14	39.00	128	42	123.00	404
15	42.00	138	43	126.00	413
16	45.00	148	44	129.00	423
17	48.00	157	45	132.00	433
18	51.00	167	46	135.00	443
19	54.00	177	47	138.00	453
20	57.00	187	48	141.00	463
21	60.00	197	49	144.00	472
22	63.00	207	50	147.00	482
23	66.00	217	51	150.00	492
24	69.00	226	52	153.00	502
25	72.00	236	53	156.00	512
26	75.00	246	54	159.00	522
27	78.00	256	55	162.00	531
28	81.00	266	56	165.00	541

* NOTE: Surveys WAS-02 through WAS-05, and WAS-07 through WAS-09 have a 3.0 meter electrode spacing.

FIGURES

Well Expla	Ination			
^{>} borings are all Te	mporary wells.			
Distance and dire	ection from			
GeoTrax Survey	M			
ght gray	mplified			
edium sand, ge	ology from ell logs			
Indicate	es lithology			
ght gray				
lty sand, well aded, HC odor				
Indicates s	oil sample ta	ken from	a specif	ic interval
Indicates of the second sec	broundwater	sample ta	aken froi	m a
specific in	terval/screen	interval		
Indicates a	a soil sample	where or	ne or mo	ore
constituen	ts are above	standard	S	-
Indicates a	a water samp	le where	one or i	nore
constituen	ts are above	standard	S	
Indicates a	a soil sample	where or	ne or mo	ore
metals are	e above stand	dards		
Indicates a motolo or	a water samp	le where	one or I	nore
metals are				
	Well		DP-35	
	Sample Date Sample Depth (feet		3/28/13	
	Parameters (mg/kg)	PSL (mg/kg)		
	Arsenic Chromium	1.6 5.6	0.81 9.2	
	Cobalt	30	1.2	
	DRO (C10-C20)	2300	< 20 U	
sed on USEPA	PSL = Project	Screening I	Level bas	ed on
ality Criteria for	USEPA Region	nal Screeni 12 Values	ng Level I for nonca	or Industri-
only. Default	are divided by	10. Bold va	alues indi	cate an
plied.	exceedance of	the PSL in	some sa	mple(s).
ntified; the associat	ed numerical va	lue is the a	pproxima	te concentra-
hut was not date at	ad above the re	norted com		litation limit
l in the method blar	ed above the re	poned san	ipie quan	
zed beyond the spe	cified holding ti	me		
lata marked as unv	alidated.			
			FIGL	IRE
			. ~	
			LS	-1
or \Lambda 💳		A *	LS	-1
or A=	CON		LS	-1

WAS-06 SUS/DP05	SUS/DP11	SUS/DP13		20	ant age
SUS/DP08 SUS/DP04	WAS-01 WAS-02 DP-27 DP-26		SUS/DP18 WAS-07 SUS/DP16	SUS/DP24	29
DP-28 WAS-05	DP-29 WAS-03	P10 WAS-04	SUS/DP17	OIE SI NIE	the and
		3 SUS/DP12	SUS/DP15 DP-33 WAS-08 SUS/DP20	SUS/DP23 DP-34	P25 WAS-09
DP-30 SUS/DP06 SUS/DP03	SUS/DP09		SUS/DP14	DP-35	E.
Ben	ning Rd NE	© 2013 Google (via Aes	SUS/DP19 WA Stus' Google Earth Pro Subscription)	SUS/DP21	
A contraction of the second se	7 Red Oak Road Wilmington, DE 19806 2605 Dotsero Court Loveland, CO 80538	Scale: NTS unless specified Drawn By: MAS Approved By: SWM	Plan View Map Showing Site Bori PEPCO-Benning Facility Washington, D.C., USA	ngs, Features, & GeoTrax S	urvey™
1.888.GEO.TRAX www.aestuslic.com	6005 West 19th Avenue Stillwater, OK 74074	Date: 10-04-13 Project No.: 12-106-10		Prepai	red for

Groundwater Sample Results				
Well		DP-26		
Sample Date		3/29/13		
Parameters (µg/L)	PSL (µg/L)			
Arsenic (D)	1.4	1.1		
Manganese (D)	1000	3100 B		
Arsenic (T)	1.4	6.4		
Manganese (T)	1000	2800 B		
DRO (C10-C20)		< 510 U		
ORO (C20-C36)		< 510 U		
GRO (C6-C10)		76 J B		
PCBs (Total Aroclors)		< 0.0097 U		
МТВЕ		2.2		
Benzo(a)pyrene	0.18	< 0.19 U		
Indeno(1,2,3-cd)pyrene	0.18	< 0.19 U		

EVIDENCE-BASED GEOPHYSICS DATA INTEGRATION

Distance (ft)

Soil Sample Results					
Well		DP-26	DP-26	DP-26	
Sample Date		3/28/13	3/29/13	3/29/13	
Sample Depth (feet)		3.5-4.5'	13.5-14.5'	29.5-30.5'	
Parameters (mg/kg)	PSL (mg/kg)				
Arsenic	1.6	1.6	1.9	0.26	
Chromium	5.6	14	5.6	14	
Cobalt	30	4.4	4.5	6.5	
Manganese	2300	80 B	43 B	290 B	
DRO (C10-C20)		< 19 U	< 19 U	< 21 U	
ORO (C20-C36)		28	33	72	
GRO (C6-C10)		0.051 J B	< 0.085 U	0.056 J B	
PCBs (Total Aroclors)	0.74	< 0.0047 U	< 0.0047 U	< 0.0052 U	
Benzo(a)pyrene	0.21	0.24	< 0.0076 U	< 0.0084 U	
Indeno(1,2,3-cd)pyrene	2.1	0.15	< 0.0076 U	< 0.0084 U	
Phenanthrene	17000	0.4	< 0.0076 U	< 0.0084 U	
Pyrene	1700	0.34	< 0.0076 U	< 0.0084 U	

Groundwater Quality Sample Results

Well	DP-26				
Sample Date		3/29/13			
Parameters	Units				
Temperature	°C	17.45			
рН	S.U.	5.6			
Specific Conductivity	mS/cm	0.581			
DO	Mg/L	1.37			
ORP	mV	237.3			
Calcium, dissolved	μg/L	24,000			
Iron, dissolved	μg/L	2400			
Manganese, dissolved	µg/L	3100 B			

٨	7 Red Oak Road	Scale: NTS ur	less specified	GeoTrax Survey [™] Investigation Results	
	Wilmington, DE 19806	Drawn By:	MAS	PEPCO-Benning Facility	
estus	2605 Dotsero Court Loveland, CO 80538	Approved By:	SWM	Washington, D.C., USA	
1 888 GEO TRAX	6005 West 19th Avenue	Date:	10-04-13		Pre
www.aestuslic.com	Stillwater, OK 74074	Project No.:	12-106-10		

Groundwater Sample Results			
Well	DP-27		
Sample Date		3/26/13	
Parameters (µg/L)	PSL (µg/L)		
Arsenic	1.4	2.3	
Manganese	1000	870 B	
Arsenic	1.4	18	
Manganese	1000	1800 B	
DRO (C10-C20)		< 480 U	
ORO (C20-C36)		490	
GRO (C6-C10)		73 J B	
PCBs (Total Aroclors)		0.023	
МТВЕ		< 1.0 U	
Benzo(a)pyrene	0.18	< 0.19 U	
Indeno(1,2,3-cd)pyrene	0.18	< 0.19 U	

Soil Sample Results				
Well		DP-27	DP-27	DP-27
Sample Date		3/26/13	3/26/13	3/26/13
Sample Depth (feet)		6.5-7.5'	21.5-22.5'	57.5-58.5'
Parameters (mg/kg)	PSL (mg/kg)			
Arsenic	1.6	9.5	1.9	0.076 J
Chromium	5.6	16	12	4
Cobalt	30	6.9	10	0.52
Manganese	2300	150 B	110 B	28 B
DRO (C10-C20)		68	< 24 U	< 20 U
ORO (C20-C36)		220	56	< 20 U
GRO (C6-C10)		< 0.094 U	0.057 J B	0.047 J B
PCBs (Total Aroclors)	0.74	0.35	< .0061 U	< 0.001 U
Benzo(a)pyrene	0.21	0.330	< 0.0098 U	< 0.0081 U
Indeno(1,2,3-cd)pyrene	2.1	0.2	< 0.0098 U	< 0.0081 U
Phenanthrene	17000	0.49	< 0.0098 U	< 0.0081 U
Pyrene	1700	0.530	< 0.0098 U	< 0.0081 U

ak Road	Scale: NTS unless spec		
ton, DE 19806	Drawn By:	MAS	
tsero Court d. CO 80538	Approved By:	SWM	
st 19th Avenue	Date:	10-04-1	
er, OK 74074	Project No.:	12-106	

1.888.GEO.TRAX www.aestusllc.com Date:

Project No.:

6005 West 19th Avenue

Stillwater, OK 74074

10-04-13

12-106-10

Groundwater Quality Sample Results				
Well		DP-28	DP-29	
Sample Date		4/2/13	4/2/13	
Parameters	Units			
Temperature	٥C	15.53	16.19	
рН	S.U.	7.02	5.73	
Specific Conductivity	mS/cm	1.303	0.607	
00	Mg/L	0.28	0.39	
ORP	mV	212.6	51.7	
Calcium, dissolved	μg/L	83,000 B	30,000 B	
ron, dissolved	μg/L	32 J B	6,000 B	
Manganese, dissolved	μg/L	93 B	860 B	

dwater Quality Sample Results					
		DP-30	DP-30	DP-31	DP-31
		28'	50-55'	20'	37'-42'
Date		4/3/13	4/3/13	4/1/13	4/1/13
ters	Units				
ure	°C	16.02	17.5	18.05	18.04
	S.U.	6.21	6.12	6.47	5.96
Conductivity	mS/cm	1.23	0.593	1.851	0.259
	Mg/L	0.56	0.21	0.32	0.2
	mV	30.1	11.6	-46.3	-14.5
dissolved	μg/L	37,000 B	21,000 B	57,000 B	18,000 B
blved	μg/L	360 B	6,300 B	7.8 J B	39 J B
se, dissolved	μg/L	2200 B	980 B	3700 B	530 B

Quality Sample Results			
DP40		DP40	
		5/28/13	
	Units	50-55'	
	°C	17.67	
	S.U.	6.26	
ity	mS/cm	0.332	
	Mg/L	0.86	
	mV	-77.5	
	μg/L	14,000 B	
	μg/L	6,000	
ved	μg/L	670 B	

Groundwater Quality Sample Results				
Well	DP-33			
Sample Date	4/4/13			
Parameters	Units			
Temperature	°C	17.5		
рН	S.U.	5.43		
Specific Conductivity	mS/cm	1.705		
DO	Mg/L	0.43		
ORP	mV	57.3		
Calcium, dissolved	μg/L	51,000 B		
Iron, dissolved	μg/L	1,700 B		
Manganese, dissolved	μg/L	1,900 B		

Groundwater Quality Sample Results				
Well	DP-34			
Sample Date	3/29/13			
Parameters	Units			
Temperature	°C	17.27		
рН	S.U.	5.97		
Specific Conductivity	mS/cm	0.357		
DO	Mg/L	0.45		
ORP	mV	16.5		
Calcium, dissolved	μg/L	20,000 B		
Iron, dissolved	μg/L	4,600 B		
Manganese, dissolved	μg/L	580 B		

Groundwater Sample Results				
Well	DP-35			
Sample Date	3/28/13			
Parameters (µg/L)	PSL (µg/L)			
Arsenic	1.4	2.7		
Manganese	1000	2500 B		
Arsenic	1.4	4.0		
Manganese	1000	2000 B		
DRO (C10-C20)		< 480 U		
ORO (C20-C36)		< 480 U		
GRO (C6-C10)		68 J B		
PCBs (Total Aroclors)		< 0.0095 U		
МТВЕ		< 1.0 U		
Benzo(a)pyrene	0.18	< 0.19 U		
Indeno(1,2,3-cd)pyrene	0.18	< 0.19 U		

Soil Sample Results				
Well	DP-35	DP-35		
Sample Date		3/28/13	3/28/13	
Sample Depth (feet)		14.5-15.5'	33.5-34.5	
Parameters (mg/kg)	PSL (mg/kg)			
Arsenic	1.6	0.81	0.2	
Chromium	5.6	9.2	15	
Cobalt	30	1.2	3.6	
Manganese	2300	9.9 B	96 B	
DRO (C10-C20)		< 20 U	< 20 U	
ORO (C20-C36)		< 20 U	< 20 U	
GRO (C6-C10)		0.048 J B	0.070 J B	
PCBs (Total Aroclors)	0.74	< 0.0049 U	< 0.0051 U	
Benzo(a)pyrene	0.21	< 0.0079 U	< 0.0083 U	
Indeno(1,2,3-cd)pyrene	2.1	< 0.0079 U	< 0.0083 U	
Phenanthrene	17000	< 0.0079 U	< 0.0083 U	
Pyrene	1700	< 0.0079 U	< 0.0083 U	

12-106-10

Groundwater Quality Sample Results			
Well	DP-35		
Sample Date	3/28/13		
Parameters	Units		
Temperature	٥C	15.85	
рН	S.U.	4.34	
Specific Conductivity	mS/cm	1.698	
DO	Mg/L	0.61	
ORP	mV	263.9	
Calcium, dissolved	μg/L	65,000 B	
Iron, dissolved	μg/L	1,100 B	
Manganese, dissolved	μg/L	2,500 B	

7 Red Oak Road	Scale: NTS
Wilmington, DE 19806	Drawn By:
2605 Dotsero Court	Approved By
6005 West 19th Avenue	Date:
Stillwater, OK 74074	Project No.:

Representative Site Photos*

* All site photos included as an electronic appendix to this report

	1	1			
٨	7 Red Oak Road	Scale: NTS u	nless specified	Photos of GeoTrax Survey [™] Locations	
	Wilmington, DE 19806	Drawn By:	MAS	PEPCO-Benning Facility	
estus	2605 Dotsero Court Loveland, CO 80538	Approved By:	SWM	Washington, D.C., USA	
1 888 GEO TRAX	6005 West 19th Avenue	Date:	10-04-13		Prepared t
www.aestuslic.com	Stillwater, OK 74074	Project No.:	12-106-10		•

for AECOM 11

3-D Visualization Model Perspective View Images with Transparent Aerial Photo; Custom Color Scheme

General Note:

Because this perspective view is rotated at an arbitrary angle away from plan view, the locations of survey images, site features, and text may appear slightly different or inaccurate relative to actual conditions. To ascertain actual locations of data points/features shown in this 3-D perspective view, please refer to electronic 3-D model files included with this report.

٨	7 Red Oak Road	Scale: NTS u	nless specified	3-D Model Perspective Views; GeoTrax Survey [™]	Investigation Re
	Wilmington, DE 19806	Drawn By:	MAS	PEPCO-Benning Facility	•
estus	2605 Dotsero Court Loveland, CO 80538	Approved By:	SWM	Washington, D.C., USA	
1.888.GEO.TRAX	6005 West 19th Avenue	Date:	10-04-13		Prepared for
www.aestusllc.com	Stillwater, OK 74074	Project No.:	12-106-10		

3-D Visualization Model Perspective View Images with Aerial Photo; Custom Color Scheme

General Note:

Because this perspective view is rotated at an arbitrary angle away from plan view, the locations of survey images, site features, and text may appear slightly different or inaccurate relative to actual conditions. To ascertain actual locations of data points/features shown in this 3-D perspective view, please refer to electronic 3-D model files included with this report.

٨	7 Red Oak Road	Scale: NTS ur	nless specified	3-D Model Perspective Views; GeoTrax Survey [™] Inves	stigation Res
	Wilmington, DE 19806	Drawn By:	MAS	PEPCO-Benning Facility	-
estus	2605 Dotsero Court Loveland, CO 80538	Approved By:	SWM	Washington, D.C., USA	
1 888 GEO TRAX	6005 West 19th Avenue	Date:	10-04-13		Prepared fo
www.aestuslic.com	Stillwater, OK 74074	Project No.:	12-106-10		eparoa re

3-D Visualization Model Perspective View Images only; Custom Color Scheme

General Note:

Because this perspective view is rotated at an arbitrary angle away from plan view, the locations of survey images, site features, and text may appear slightly different or inaccurate relative to actual conditions. To ascertain actual locations of data points/features shown in this 3-D perspective view, please refer to electronic 3-D model files included with this report.

3-D Visualization Model Perspective View Images only; Conductive Only Color Scheme

General Note:

Because this perspective view is rotated at an arbitrary angle away from plan view, the locations of survey images, site features, and text may appear slightly different or inaccurate relative to actual conditions. To ascertain actual locations of data points/features shown in this 3-D perspective view, please refer to electronic 3-D model files included with this report.

APPENDICES

Appendix A

Aestus' GeoTrax Survey[™] Field Notes

File Name	W	A	S	ß	1	JQ
-----------	---	---	---	---	---	----

IAIS	
	IAIS

NQ

Project Name PEPCO-Benning Facility Relative to North arrow on Sketch Page (reference point is looking from E-01 towards E-56): "Left" of Survey Line = _____ (specify direction) "Right" of Survey Line = _____(specify direction) Electrode Electrode Notes Notes # # 1 7m Wof Bldg 65 in Line @ W/ N. Corner 81.5 Ē Ē trans tomer nce ROAD BLDG 65 -approx 5m SE tormer storage areas Aline RIGHT & LEFF 12 5 fence fince im Sot only lite ? de 56 0

Project Name PEPCO-Benning Facility

File Name W A S 0 3

VQ

	Project Name	e PEPCO-Benn	ing Facility				
	Relative to	North arrow o	n Sketch Page (ref	erence point is lo	ooking from	E-01 towards E-56):	
	"Left" of Survey	/ Line =	(specify direction)	"Right" of Survey	y Line =	(specify direction)	
	Electrode #	and the second s	Notes	Electrode #		Notes	
TANK	1 Ym	S of Em	anhole in R	JAD \$ 29	9)
Gum	í 2	2m w		<u> </u>		и. И	
South	3.5	E		31		X II	
00010	4	1 1 1 1		32			
	5			33 5	Storm	drain Im S	
	6	1.	e:	34			
	7	8		35 35.	5 Bldg 3	35 2mN	
	8 .75	i:		36	0		.)
- I	9		2	37			.
	10		-	38			. /
	11			39			. /
	12	2017 e		40		4	.
	13			41 4	41.5 manh	ole 1m South	.
	14			42			.
	15 (720 Hydrau	nt 1.5m 3	43	*		.
	16,25	16.5,16.7	15 1+20	44			. /
	17 , s'	E		45			.
	18	420		46			
	19	2		47	-	2	
	20	Blog 35	5m N	48	Lorner In	terrection Roap	de
	21			49			
	22			50			14
l	23			51			
	24		ал. -	52			
	25			53			
	26		5	5 <mark>54.75</mark>	edge	ROAD	
	27			55	1		* x •
	28			56 Ym	r Sof Ra	AD . Sm Wof Cur	6

File Name | W | A S 6 VO

Project Name PEPCO-Benning Facility

File Name	W	A	S	0	4	NR
-----------	---	---	---	---	---	----

Pro	ject Nan	ne <u>PEPCO-B</u> e	enning Facility			
	Relative t	o North arrow	on Sketch Page (re	ference point is	looking fro	m E-01 towards E-56):
"Le	ft" of Surve	ey Line =	(specify direction)	"Right" of Surve	ey Line =	(specify direction)
El	ectrode #		Notes	Electrode #		Notes
_()	A1 d	of ROAD of	phosite 3rd gay	agre edi 29		
Blog 3m	2 20:	n farthe	st west	30		
35	3		-			
dg 35	4			32	Cence	Salvage yard
orth	5.5	Storm dra	ain im S	33		1
17	6			34		
2m 7.	5 7			35		
	8		A.	36		
LaNK Par	m 9	2		37		
SOUTH	10			38		
	11			39		
	12			40		
	13,5	manhol.	e lin S	41		
	14			42		
*	15			43		
	16			44		
	17			45		
	18			46		
-	19			47		
V	20	Corner in	Lergection Ri	A0 48		S
	21			49		
	22			50		V fene
	23		10	51	Park	lot Bldg 88
	24			52	l ·	D
	25			53		
	26			54		
	27			55	7	9
	28			56 60	m E o f	gate 3m Noffe

File Name 🛛 🛛 🗸	AS		
-----------------	----	--	--

File Name W A S 10 NQ

Project Name PEPCO-Benning Facility

File Name	W	Α	S	0	6	VQ	
-----------	---	---	---	---	---	----	--

"	Left" of Survey	Line = (sp	ecify direction)	"Right" of Su	rvey Line	9 =	_(specify direction)
	Electrode #	No	tes	Electro #	de		Notes	
	1 1 1 1	Wof SUS	/DP-07	_N 29				
216	210	5m Sof	SUS/DP-0	07 30				
or	3			31				
ß	4			32	51	2		
vel	5			+33	<pre></pre>	lono		
	6			34	I			
	7			35	X	1	Pipes al	nove ground
	8			36				t
	9			37)	
	10			38			¥	
	. 11			39 ુ	5 (040	39.5 - 56?R	oad
	12			40				
	13			41,	5 13			
	14			42	SE			
	15			43				
	16			44		4	5-56 Water lin	e II to
Ø	17,25	SUS/DP-0	08 contri	<u>ــــــــــــــــــــــــــــــــــــ</u>	17-		ne e at 3 m w	est
((18	1.5		46		45.5 Stor	m	
	19			47		Gutter		
	20			48				
	21			49	E			
	22			50	Cou	ling 6	ower 5m l	
	23	fence		5 1	50.5	Pipe (r vertical in	nto coolie
DIRF	24			52	tou	ver c	udergrau	nd also Z
(25			53			l	
	26			54				
ŀ	27			55	55	Vertica	d pipe into	costing for
	28	28 Storm Drain	9m west	56	Unde	r grou	nd also	6
				56	2.5	m S	of E. Va	Jlt

Fil	le	Name	
			1.1.5

S W A 7 NQ 0

Project Name PEPCO-Benning Facility

Checklist - Site Features to Sketch/Note:

- Monitoring Wells (ID and distance away)
- Underground Utilities (Location and Type)
- Metallic Light Poles
- Streets (w/ street names)

- Potential contamination source areas (tanks, etc.)
- Buildings (w/ address if known)
- Other site features within ~15 feet of survey line
- Add Legend (if using abbreviations)
 - Overhead power lines/obstacles for future drilling

Fil	le	N	a	m	6

S 0 va

Project Name PEPCO-Benning Facility

Relative to North arrow on Sketch Page (reference point is looking from E-01 towards E-56):

"Left" of Survey Line = _____ (specify direction) "Right" of Survey Line = _____(specify direction)

A

	Electrode	Notes	Electrode	Notes
	#		#	Notes
	1 6 m	of Sever manhole	29	10 295
a.K	a 3mi	Not plower pole in park	lof 30	
lot	3 Seu	ver man hole on lin	<u>م</u> 31	
	4 _		32	Blog 41 3mE
	5		33	
	6		34	
	7		35	
	8		36	
	9		37	V 37.5
	10		38	
	11		39	
	12		40 ,75	Bldy 60 JME
	♥ 13 <u>(ev</u>	ice, Blog 42 3m E	41	0
	14	Ψ	42	
	15		43	
	16		44 E	7 44.25
	17		45	
	18	17 18.25	46 (5	420
	19 <u> </u>		47.25	Blog 46 3ME
	20		48	
	21		49	
	22		50	
	23		$51.5Hz_{\hat{c}}$)
	24 5 <u>B</u>	dg 61 3m E	52	\$ 52,25
	25	V	53	
	26		54	
	27		55	
	28 [56	Fince, @ 1 st fince Dole
			le	of Corner

File Name	W	Α	S	0	8
-----------	---	---	---	---	---

Project Name PEPCO-Benning Facility

Relative to North arrow on Sketch Page (reference point is looking from E-01 towards E-56):

"Left" of Survey Line = _____ (specify direction) "Right" of Survey Line = _____(specify direction)

SQ

	ectrode #	Notes	Electr #	ode	Notes
The P	1	WAS09-29	29		
	2		30		
	3		31		
	4		32		
	5		33		
	6		34		
	7		35		
	8	Phone pole 2.5ms	36		14
	9	1	37		
	10		38		
	11		39	Ĩ	Phone Pole Sm N- there
	12		40	15	yellow centron lape on
	13		41	11 M	otor all spillareg "Z
	14		42		
	15 _ ج	E	43		
	16		44	а	E
	17		45		
	18		46		
1.	19		47		х. х. х. Х
arallel	20 .45	E man hole 20.25 & 21	48		
nN	21	E. man hole E Manhole	49	25	Phone Pole 1.5m N
56	22		50		
[23		51		
	24		52		
	25		53		
	26		54		
	27,5	Phone Bole Smon	55		
	-28		56	1 Sw	s of S.E corner

File Name	W	Α	S	0	a	Va
-----------	---	---	---	---	---	----

Project Name PEPCO-Benning Facility	3) 		
Relative to North arrow on Sketch Page (referen	nce point is lo	oking from E-01 towards E-56):	
"Left" of Survey Line = (specify direction) "R	ight" of Survey	Line =(specify direction)	
Electrode Notes	Flockrodo	Notes	
#	#	Notes	
1.25m Naf 8th fence pole	29	DE 42 E Electric	E
@ from corner @ fence-	30	parallel	1 Sm
3	31		15
4	32		
5 E. Thormer 1. S	33	2	
6	34		
7 (forgas bin Sn N	35		
8 1 2	36	Phone and 25 5	
9	37	TONE NOR LISM S	
10 E	38		
11 Engelister 15mil	- 39		
12 E	40 25	Store attac	
13,5 €	41	Jilim goliev	
14	42 -		Jon
15	43.5	1	43.5
16	44	6	
17	45		
18	46		
19	47.25	E manhale 1.5m N	Eparallel
20	48	Emanhole 1.8m 1	I.SmN
21	49 -	o mane a como	1
22	50.35	E	
23	51		
24	52		
25	53	а	
26	54.5 1	Phone Dode, 5m S	1
27	55		
28	56		14
			N

File Name W A

S

Project Name PEPCO-Benning Facility Relative to North arrow on Sketch Page (reference point is looking from E-01 towards E-56): "Left" of Survey Line = _____ (specify direction) "Right" of Survey Line = _____(specify direction) Electrode Notes **Electrode Notes** # # Ween two load ram ps 2.5m L Bldg 57 Sm LEFT 7.25 util Communication E man hale 4m L 8.25E 8.5 util Electric orage Containers 1.5mL 39 51 brass cover 248 man hole SmL Drum Gtorage area m pipe some where grea for trans 10m 56 3.5m E of PI pler (a) conter of

Appendix B

REFERENCE - TECHNICAL PAPER

The Effects of LNAPL Biodegradation Products on Electrical Conductivity Measurements

The Effects of LNAPL Biodegradation Products on Electrical Conductivity Measurements

Daniel P Cassidy¹. D. Dale Werkema. Jr.¹. William Sauck¹, Estella Atekwana², Silvia Rossbach³ and Joe Duris
 ¹Western Michigan University. Department of Geosciences, Kalamazoo. Mich. 49008. U.S.A.
 ²Uiniversity of Missouri-Rolla. Department of Geology & Geophysics. Rolla, MO. 65409, U.S.A.
 ³Western Michigan University. Department of Biological Sciences, Kalamazoo, Mich. 49008. C.S.A.

ABSTRACT

Field geophysical Studies have identified anomalously high conductivities in and below the free product Tone at many sites with aged contamination by light. non-aqueous phase liquid\ (LNAPL). Laboratory experiments were conducted to test the hypotheses that these anomalously high conductivities can result from products of LNAPL biodegradation. Soil from a hydrocarbon-impacted site with anomalously high conductivities was washed repeatedly IO remove soluble constituents, recontaminated with diesel fuel (DF), and the port\ tilled with water to simulate a saturated smear Tone. Nutrients were provided at level? observed at the site. which resulted in anaerobic conditions due to DF biodegradation. Within 121) days, the increase in specific conductivity from microbial activity was 2, 100 µS/cm. caused by an increase in total dissolved solids (DS) of over 1,700 mg/L. The increase in DS was due to mineral (mostly carbonate) dissolution and to the production of organic acids and biosurfactants. Under aerobic conditions (i.e., without added nutrients) products of DF biodegradation increased the total DS and conductivity by 340 mg/L and 440 µS/cm. respectively. The results show that products of LNAPL biodegradation can drastically increase the conductivity at impacted sites.

Introduction

The collection. preparation. and analysis of ground water samples at contaminated sites constitute a major portion of the total cost for remediation (Granato and Smith, 1999) Geophysical surveys using resistivity and ground penetrating radar (GPR) are convenient, non-invasive tools 10 detect and map subsurface contamination with light, nonaqueous phase liquid\ (LNAPL). Recent reports suggest that LNAPL biodegradation can change biogeochemical properties sufficiently to have a significant impact on resistively and GPR measurements (Sauck, 2000, Werkema *et al.* 2000: Atekwana *et al.* 1998, 1999). If the geophysical responses caused by these Microbially-induced changes in pore water biogeochemistry can be better understood geophysical measurements could possibly be used to monitor contaminants and their breakdown products in the subsurface. This could allow resistivity techniques to be used as a surrogate or ground-water sampling and analysis to achieve lower cleanup costs.

Typical products of LNAPL biodegradation ale acids and biosurfactants. Carbonic and organic acids are produced during LNAPL biodegradation (Cozzarelli et al. 1990, 1994 1995; Eaganhouse et al. 1993; Hiebert et al. 1995: Baedecker et al. 1993; McMahon et al. 1995). These products increase conductivity directly by increasing the dissolved solids (DS) concentration, and indirectly by promoting mineral dissolution (Hiebert et al. 1995; McMahon et al. 1995). High DS concentrations in LNAPL- impacted zones have been invoked to explain anomalously low bulk electrical resistivity (Sauck *et al.* 1998; Bermejo *et al.* 1997). However. it has not yet been shown that temporal changes in geoelectrical properties of pore water occur due to LNAPL biodegradation.

Biosurfactants are produced by many genera of soil microorganisms during growth on NAPL (Alexander. 1994; Miller. 1995: Desai and Banat. 1997). When present at concentration above the critical micelle concentration (CMC). Surfactants product microemulsions of NAPL m water. Biosurfactant are produced by aerobic and anaerobic microorganisms (Desai and Banat. 1997: Cooper et al. 1980; McInerney et al. 1990). Biosurfactants increase DS concentrations. Perhaps more importantly, emulsion of NAPL resulting from biosurfactants could promote a change in conditions from LNAPL-wetted to water-wetted. This can increase the contact area between water and solids. providing more nutrients and promoting further biogeochemical changes. Hence, biosurfactant production he> the potential to impact both resistivity and GPR measurements tremendously. While biosurfactants have been linked with NAPL biodegradation in mixed soil reactors (Cassidy, in press). in situ biosurfactant production and NAPL emulsification have not been demonstrated.

The efficacy of resistivity surveys rests in a high electrical resistivity of LNAPL relative to subsurface materials. This "insulating layer" model has been verified in short-term laboratory and controlled spill experiments (Schneider and Greenhouse. 1992). However, investigations at numerous sites with aged contamination show that the LNAPL smear zone has a lower resistivity (higher conductivity) than the bulk formation (Atekwana *et al.*, 1998, 1999; Benson and Stubben, 1995; Gajdos and Kral, 1995; Sauck. 1998). It has been hypothesized that anomalously low apparent resistivities are the result of LNAPL biodegradation (Atekwana *et al.* 1999: Sauck, 2000). However, to confirm this hypothesis changes in geoelectrical properties must be co! related with biodegradation products over time. This paper describes laboratory experiments designed to correlate temporal changes in specific electrical conductivity. under aerobic and anaerobic conditions. The production of biosurfactants and the resulting emulsification of DF were also monitored.

Materials and Methods

The soil was obtained from a hydrocarbon-impacted

site described by Atekwana *et al.*. (1999) and Werkema *et al.*. (2000). The contaminated soil was washed five times with deionized water to remove soluble constituents. Fresh, no. 2 diesel fuel (DF) was mixed into the soil. The reactor-x consisted of 20-L plastic vessels. Approximately 18 L of soil was packed into each reactor, and deionized water was added to bring the water level up to the surface of the soil. A visible NAPL layer was present after adding water. The reactor setup was designed to simulate conditions in the saturated smear zone. A slotted, fully-penetrating PVC tube allowed composite pore water samples to be drawn and probes to be inserted into the saturated zone.

Duplicate reactors of three types were maintained for

120 days; one with added nutrients, one without added nutrients. and one "killed" (autoclaved) control without nutrients. Nutrients (4 mg/L NO₃-N₋₄ mg/L NH,-N. and I mg/L PO,-P) were added to the reactors with the deionized fill water. These nutrient concentrations arc similar- to those observed at the site. Addition of nutrients resulted in anaerobic conditions within 10 days. The reactor with added nutrients was labeled "anaerobic." Anaerobic conditions also predominate at the bite. The reactor without added nutrients maintained aerobic conditions and was labeled "aerobic."

Dissolved oxygen (DO), pH. and conductivity were measured in situ. Pore water samples were drawn to quantify volatile organic acids (VOA), aqueous DF concentration. surface tension (ST), biosurfactant concentration, and C²-concentrations. The samples were first passed through a 0.45-µm Whatman filter paper to remove suspended solids and nonemulsified DE Emulsified DF passes through this filter and is measured as aqueous DE Volatile organic acids (VOA) and Ca²- concentrations were quantified with *Standard Methods* 5560-B and 35000 D. respectively (Eaton *et al.* 1995). ST and concentrations of aqueous DF

Figure 1. Average concentrations of oil degrading mi croorganisms and DO with time.

and biosurfactants. were measured according to Cassidy (in press). Biosurfactant concentration was measured using critical micelle dilution, which provides units of "times the critical micelle concentration" (x CMC). Dissolved solids (DS) were measured on filtrate at the end of I20 days. Total. inorganic. and organic DS were measured using Standard Methods 2540-B & C (Eaton *et al.*, 1995). The concentration of DF-degrading microbes was quantified as described by Werkema *et al.* [2000].

Results and Discussion

Figure 1 shows the average measurements of oil-degrading microorganisms and DO with time. The killed controls showed no decrease in DO from the saturation concentration of 8.5 mg/L throughout the entire experiment. The killed reactors also had microbial concentrations that were essentially zero throughout the experiment. This shows that autoclaving was successful ill killing the micro organisms. In contrast, the biologically active reactors showed significant increases in microbial concentrations and decreases in DO within the first 5 to 10 days. These results show that there was considerable aerobic microbial activity in the biologically active systems. It can be concluded that this microbial activity was driven by DF biodegradation, since DF was the only major food source available. The greatest increase in CFU and decrease in DO was observed in the anaerobic systems, because adding nutrients promoted more biological activity than was possible in the aerobic systems. The anaerobic reactors showed an increase in the number of oil-degrading microbes from roughly 2 X10⁵ CFU/g to 1.9 X 10⁶ CFU/g after 120 days. This represents an increase of nearly an order of magnitude. DO in the anaerobic reactors decreased to less than 0.5 mg/ L within 10 days, and remained at this concentration thereafter. The aerobic reactors showed an increase in the number of oil degrades from roughly 2 x 10⁵ CFU/g to

Figure 2. Average concentrations of VOA and Ca²⁺ with time.

The anaerobic reactors were designed to simulate conditions observed in the subsurface at the hydrocarbon impacted site from whence the soil was obtained (Werkema et al., 2000) and at many such sites. Nutrients were provided at concentrations observed at the site, where the presence of sufficient nutrients and hydrocarbons have resulted in anaerobic conditions (*i.e.* DO < 0.5 mg/L) caused by microbial activity (Werkema PI al., 2000). Anaerobic conditions exist in the saturated zone at nearly all LNAPL impacted site& (Alexander, 1994). Nitrate (NO3-), which is present at the site and was added to the anaerobic systems. promotes the growth of denitrifying bacteria that degrade DF by providing a necessary electron acceptor. It is important to remember that aerobic reactions occur in anaerobic systems along with anaerobic reactions, which is what continually consumes oxygen and maintains anaerobic conditions. Therefore, both aerobic and anaerobic reactions took place in the anaerobic systems. The aerobic reactors were maintained as a control to observe the effects of nutrients at the site on biogeochemistry and conductivity. and to simulate a nutrient-starved, aerobic site. Killed reactors provided an abiotic system for comparison with the biologically active reactors. The average values for measurements of VOA and

 Ca^{2+} concentrations are plotted in Fig. 2. VOA levels were zero throughout the experiment in the killed and aerobic systems. However, VOA concentrations in the anaerobic systems began to increase on day 20 and stabilized at values between 30-35 mg/L as acetic acid between days 90 and 120. Since VOAs are biodegradable, an accumulation of VOA indicates that rates of production exceed rates of deg-

Figure 3. Average values of surface tension, aqueous DF concentration, and biosurfactant concentration with time.

radation during that time. Concentrations of Ca" started at

a background value of approximately 25 mg/L and increased with time in all the reactors. Increases in Ca[°] concentrations with time were probably to due to dissolution of carbonates, which comprised approximately 2% (by weight) of the soil. The lowest levels of Ca²⁺ at the end of the experiment (40 mg/L) were observed in the killed reactors, which represent\ Ca²⁺ concentrations achieved by carbonate dissolution in the absence of microbial activity. In contrast. the Ca²⁺ concentration in the aerobic and anaerobic systems reached levels of 105 mg/L and 235 mg/L, respectively.

The results in Fig. 2 show that microbial activity promoted the dissolution of carbonates, most pronounced under anaerobic conditions. The greater dissolution of carbonates achieved in the anaerobic systems is consistent with the accumulation of VOA and the overall enhanced microbial activity in these reactors compared with the aerobic reactors. While VOA was not detected in the aerobic reactors, it may have been present in low levels. CO2 is another common product of microbial activity (not measured in this study), and its production is proportional to overall microbial activity (aerobic and anaerobic). Considering that more microbial activity was observed in the anaerobic systems than the aerobic ones, and that both aerobic and anaerobic reactions took place in the anaerobic systems, it is likely that more CO₂ was produced in the anaerobic systems than the aerobic ones. CO2 and organic acid production has been demonstrated at LNAPL-impacted sites (Cozzarelli et al. 1990, 1994, 1995; Eaganhouse et al., 1993; Hiebert et al. 1995: Baedecker et al. 1993; McMahon et al. 1995) and is known co enhance the dissolution of carbonate\ and other minerals.

Figure 3 shows the average values of biosurfactant

related measurements: ST and concentrations of aqueous

DF and biosurfactants. Killed controls showed no significant decrease in surface tension from 72 dynes/cm (the value for distilled water al 25 C) throughout the entire experiment. In contrast. ST measurements in the anaerobic reactors decreased from 72 dynes/cm to approximately 30 dynes/cm after 20 days. and remained al these levels until the end of the experiment. ST in the aerobic systems decreased after day 30 IO values between SO and 55 dynes/ cm, where they remained for the remainder of the experiment. Aqueous DF concentrations were zero for the first 20-X) days in all the reactors, and remained zero throughout the experiment in the killed reactors. The aqueous concentration of DF is roughly 5 mg/L (Testa and Winegardner, 1991). hut DF sorbs readily to soil, which explains the initial absence of DF in the aqueous phase. Aqueous DF concentration\ in the aerobic systems increased after day 30 to final values of nearly 5 mg/L. Aqueous DF concentrations in the anaerobic systems increased dramatically after day 20. reaching values of 550 mg/L (over 100 times the aqueous solubility). Biosurfactant concentrations in the killed and aerobic systems (not shown) were below the CMC throughout the experiment. However, biosurfactant concentrations in the anaerobic reactors increased after day 20 to levels over 2 times the CMC during the last 40 days of the experiments.

The results in Fig. 3 show that biosurfactants were

produced in the anaerobic systems to levels over twice the CMC. The drop in ST to 30 dynes/cm observed in the anaerobic reactors coincided with biosurfactant concentrations above the CMC. and is a clear indication of surfactant concentrations above the CMC (Zajic and Seffens, 1984; Desai and Banat, 1907). Common metabolic products (e.g., organic acids) are not able to reduce ST to 30 dynes/cm. even at concentrations above 10% (Zajic and Seffens. 1984). indicating that the low ST reached in the anaerobic systems was not due to the accumulation of such products. Another unmistakable sign of biosurfactant concentration observed in the anaerobic systems was the increase in aqueous; DF concentrations coinciding with increasing biosurfactant concentrations after day 20. Aqueous DF measurements two orders of magnitude greater than the solubility limit is explained by emulsification of DE Emulsified NAPL droplets are le\s than 0.1 +m in diameter (Miller, 1995), and can pass through the 0.4%-um filter, whereas nonemulsified NAPL cannot. Biosurfactant are biodegradable and sorb readily to soil (Miller, 1995: Desai and Banat. 1997). so the accumulation of biosurfactants in the anaerobic systems indicates that the rate of production exceeded rates of biodegradation and sorption. While biosurfactant concentrations above the CMC were not measured in the aerobic systems. ST values decreased and aqueous DF concentrations increased noticeably. This suggests that biosurfactants may have been in excess of the CMC in

Figure 4. Average values of specific electrical conductivity with time.

some pores. but that the concentrations dropped to below the CMC by dilution during sampling. Increasing aqueous DF concentrations with time in the aerobic systems support this. Numerous aerobic and anaerobic species produce biosurfactants (Zajic and Seffens, 1984: Desai and Banat, 1997). However, this study is the first to demonstrate in situ biosurfactant production accompanying microbial growth on NAPL.

Figure 4 shows the average values of specific conductivity measurements in pore water r:Imple\ over time. Conductivity increased in all reactors, hut the increase was by far the greatest in anaerobic systems. The initial conductivity of the anaerobic systems began at approximately 420 µS/cm. which was considerably higher than m the killed and aerobic reactors because of the added nutrients. Conductivity then increased in the anaerobic systems to over 3,000 µS/cm after 120 days. The initial conductivity in the killed and aerobic reactors was approximately 150 µS/cm. Conductivity increased to final values of roughly 650 µS/cm and I.100 µS/cm in the killed and aerobic systems. respectively. Since conductivity increases in the killed reactors are strictly from abiotic processes. subtracting these values from those observed in the biologically active systems gives an estimate of the increases in conductivity due to DF biodegradation processes in those systems. After 120 days in the killed reactors, conductivity increased 500 µS/cm (650 µS/cm- 150 µS/cm). Subtracting this value from the conductivity increases observed after 120 days in the aerobic systems (2,600 μ S/cm) and anaerobic systems (950 $\mu {\rm S/cm}).$ yields an increase in conductivity of the aerobic and anaerobic systems of approximately 2,100 µS/cm and 450 µS/cm, respectively. From this analysis it is clear that specific conductivity increased roughly 4.5 times more in the anaerobic reactors than in the aerobic ones. This IS consistent with enhanced microbial activity, greater VOA production and carbonate dissolution. and enhanced production of biosurfactants in the anaerobic systems relative to the aerobic ones (Figs. 1-3).

Table 1. Measurements of dissolved solids in the pore waters from the three systems at the conclusion of the 120day experiment.

Measurement	Anaerodic	Acronic	
Total DS (mg/L)	$2130 \pm 64 \ (8)^{\circ}$	758 ± 46 (8)	416 ± 28 (8)
Inorganic DS (mg/L)	1518 ± 54 (8)	602 ± 35 (8)	416 ± 28 (8)
morganie Do (ingro)		122 - 21 (0)	Δ
Organic DS (mg/L)	$612 \pm 36(8)$	100 - 51 (6)	U
Inorganic DS/Organic DS	2.5	3.9	NA
Total DS/Conductivity	0.72	0.69	0.64

Bulk conductivity was not measured in the reactors. However, specific conductivity is the major variable affecting bulk conductivity measurements, as described by Archie's Law. Using a soil porosity of 0.4 (common for un consolidated sands) and other commonly used values for Archie's Law the ratio of specific conductivity to bulk conductivity is 10 (Telford *et al.*, 1990). This means that the increase in specific conductivity observed in the anaerobic systems due to DF biodegradation processes was 210 μ S/ cm (2,100 S/cm/10). This represents a significant increase in bulk conductivity measured in the field. Furthermore, the reactors in this study were only operated for 120 days. These results clearly show that biodegradation of DF can have a significant effect on bulk conductivity measurements at NAPL-impacted sites.

Table 1 lists results from the dissolved solids (DS) measurements of pore waters from the three systems at the end of the 120-day experiment. Total DS concentrations ranged from 416 mg/L in the killed controls to 2,130 mg/ L in the anaerobic reactors. The value in the killed control (416 mg/L) was strictly due to abiotic processes, and subtracting this value from the total DS concentration in the anacrobic and aerobic systems gives an indication of the increase in those system due to DF biodegradation processes. This analysis yields an increase in total DS due to DF biodegradation in the anaerobic and aerobic systems of 1.714 mg/L and 342 mg/L, respectively. The organic DS concentration in the killed controls was zero, which is supported by the lack of microbial activity and lack of associated products (Figs. 1-3). The ratios of inorganic DS to organic DS concentrations in the anaerobic and aerobic reactors were 2.5 and 3.9, respectively. The lower ratio for the anaerobic system is explained by the greater concentrations of biosurfactants and emulsified DF (Fig. 3). The ratio of total DS concentrations to conductivity in the reactors on day 120 ranged from 0.64 to 0.72. These ratios are within the range of 0.55-0.75 reported for a survey of natural groundwaters (Hem, 1970).

The results clearly show that products of DF biodegradation in the reactors increased with increasing microbial activity and were greater for the anaerobic systems (with added nutrients) than for the aerobic ones (without added nutrients). DF biodegradation resulted in an increase in inorganic DS due to mineral dissolution and in organic DS due to organic acid and biosurfactant production. The increase in DS resulted in increases in conductivity. The anaerobic reactors simulated subsurface conditions at a LNAPL-impacted site with anomalously high conductivities (Atekwana *et al.*, 1999; Werkema *et al.*, 2000). The results from this study show that products of LNAPL biodegradation can explain those anomalous resistivities.

Conclusions

The results show that LNAPL biodegradation, under aerobic and anaerobic conditions, can substantially change pore water biogeochemistry, producing dramatic increases in electrical conductivity. These results help explain anomalously high conductivities reported in recent geophysical investigations at several LNAPL-contaminated sites. It has been known for some time that LNAPL biodegradation produces CO₂ and can produce organic acids, which enhance mineral dissolution. However, this study is the first to link these biogeochemical processes to enhanced pore water conductivity. This is also the first study demonstrating in situ biosurfactant production and LNAPL emulsification. The results suggest that biosurfactant production can accelerate a change in conditions from NAPL-wetted to water-wetted solids over time. The resulting increase in water/ solids contact area could affect resistivity and GPR measurements

References

- Alexander, M. 1994, Biodegradation and Bioremediation: Academic Press. San Diego, California.
- Atekwana, E.A., Sauck, W.A., and Werkema Jr., D.D., 1998, Characterization of a complex refinery groundwater contamination plume using multiple geoelectric methods: Proceedings of the Symposium on the Application of Geophysics

to Engineering and Environmental Problems, Chicago, Illinois, 427–436.

- Atekwana, E.A., Sauck, W.A., and Werkema Jr., D.D., 2000, Investigations of geoelectrical signatures at a hydrocarbon contaminated site: Journ. Appl. Geophysics, 44, 167–180.
- Baedecker, M.J., Cozzarelli, I.M., Eganhouse, R.P., Siegel, D.I., and Bennett, P.C., 1993, Crude oil in a shallow sand and gravel aquifer—11, Biogeochemical reactions and mass balance modeling in anoxic groundwater: Appl. Geochem., 8, 569–586.
- Benson, A.K., and Stubben, M.A., 1995. Interval resistivities and very low frequency electromagnetic induction-an ald to detecting groundwater contamination in space and time: A case study: Env. Geosci., 2, 74–84.
- Bermejo, J.L., Sauck, W.A., and Atekwana, E.A., 1997, Geophysical discovery of a new LNAPL plume at the former Wurtsmith AFB: Ground Water Monit. Remed., 17, 131– 137.
- Cassidy, D.P., in press, Biosurfactant production in a bioslurry reactor treating diesel fuel-contaminated soil: Water Environment Research.
- Cooper, D.G., Zajic, J.E., Gerson, D.F., and Manninen, K.I., 1980, Isolation and identification of biosurfactant produced dur ing anaerobic growth of *Clostridium pasteurianum*: Journ. Ferment. Technol., 58, 83–86.
- Cozzarelli, I.M., Eganhouse, R.P., and Baedecker, M.J., 1990. Transformation of monoaromatic hydrocarbons to organic acids in anoxic groundwater environment: Environ. Geol. Water Sci., 16, 135–141.
- Cozzarelli 1.M., Baedecker, M.J., Eganhouse, R.P., and Goerlitz, D.F. 1994, The geochemical evolution of low-molecularweight organic acids derived from the degradation of petroleum contaminants in groundwater: Geochim. Cosmochim. Acta, 58, 863–877.
- Cozzarelli, I.M., Herman, J.S., and Baedecker, M.J., 1995, Fate of microbial metabolites of hydrocarbons in a coastal plain aquifer: the role of electron acceptors: Environ. Sci. Technol., 29, 458–469.
- Desai, J.D., and Banat, I.M., 1997, Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61, 47–64.
- Eaton, A.D., Clesceri, L.S., and Greenberg, A.E., 1995, Standard Methods for the Examination of Water and Wastewater, 19th ed.: APHA, AWWA, WEF.
- Eganhouse, R.P., Baedecker, M.J., Cozzarelli, I.M., Aiken, G.R., Thorn, K.A., and Dorsey, T.F., 1993, Crude oil in a shallow sand and gravel aquifer: Appl. Geochem. 8, 551–567.
- Gajdos, V., and Král, V., 1995, Influence of hydrocarbon pollution to soil conductivity: Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP '95). Orlando. Florida. 785– 789.
- Granato, G.E., and Smith, K.P., 1999, Robowell: An automated process for monitoring ground water quality using estab-

lished sampling protocols: Ground Water Mon. & Rem., Fall, 81-89.

- Hem, J.D., 1970. Study and Interpretation of the Chemical Characteristics of Natural Water: U. S. Geol. Survey Water-Supply Paper no. 1473.
- Hiebert, F.K., Bennet, P.C., Folk, R.L., and Pope, S.R., 1995. Enhanced mineral alteration by petroleum biodegradation in a freshwater aquifer, *in* Microbial processes for bioremediation, Hinchee *et al.*, (eds.), Batelle Press, Columbus, pp. 297–308.
- McInerney, M.J., Javaheri, M., and Nagle, D.P., 1990. Properties of the biosurfactant produced by *Bacillus licheniformis* strain JF-2: Journ. Industrial Microbiology, **5**, 95–102.
- McMahon, P.B., Vroblesky, D.A., Bradley, P.M., Chapelle, EH., and Guller, C.D., 1995, Evidence of enhanced mineral dissolution in shallow ground water: Ground Water 33, 207– 216.
- Miller, R.M., 1995, Surfactant-enhanced bioavailability of slightly soluble organic compounds: in Skipper, H.D., and Turco, R.F., Eds., Bioremediation Science and Applications, Soil Science Special Publication No. 43, SSSA, 33–54.
- Sauck, W.A., 1998, A conceptual model for the geoelectrical response of LNAPL Plumes in granulated sediments: Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, Chicago, Illinois, 805–817.
- Snuck, W.A., 2000. A model for the resistivity structure of LNAPL plumes and their environs in sandy sediments: Applied Geophysics, 44, 151–165.
- Sauck, W.A., Atekwana, E.A., and Nash, M.S., 1998. Elevated conductivities associated with an UNAPI plume imaged by integrated geophysical techniques: Journ. Environmental and Engineering Geophysics, 2, 203–212.
- Schneider, G.W., and Greenhouse, J.P., 1992, Geophysical detection of perethonoethytene in a sandy aquifer using resistiity and nuclear logging techniques: Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, Oakbrook, Illinois, 619 628.
- Stumm, W., and Morgan, J.J., 1981, Aquatic Chemistry, 2nd ed.: John Wiley & Sons, New York.
- Tetford, W.M., Geldart, L.P., and Sheriff, R.E., 1990. Applied Geophysics, 2nd ed.: Cambridge University Press. Cambridge, U.K.
- Testa, S.M., and Winegardner, D.L., 1991, Restoration of Petroleum-Contaminated Aquifers: Lewis Publishers, Chelsea, Michigan.
- Werkema D.D., Atekwana, E.A., Sauck, W.A., Rossbach, S., and Duris, J., 2000. Vertical distribution of microbial abundances and apparent resistivity at an UNAPL optil site: Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems. Arlington Virginia, 669–678.
- Zajie, J.E., and Settens, W.,1984, Biosurfactants: CRC Critical Rev. Biotechnol., 1, 87–107.